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Abstract

We study the moments E[dα1,k] of the k-th nearest neighbor distance
for independent identically distributed points in ℜ

n. In the earlier litera-
ture, the case α > n has been analyzed by assuming a bounded support
for the underlying density. The boundedness assumption is removed by
assuming the multivariate Gaussian distribution. In this case, the nearest
neighbor distances show very different behavior in comparison to earlier
results. In the unbounded case, it is shown that E[dα1,k] is asymptotically

proportional to M
−1 logn−1−α/2

M instead of M−α/n as in the previous
literature.

keywords: nearest neighbor; moments; gaussian; random geometry

1 Introduction

Consider a set of independent identically distributed (i.i.d.) random variables
(Xi)

M
i=1 with a common density p(x) on ℜn. We study the moments of the

nearest neighbor distance
E[dα1,k] (1)

in the limit M → ∞. The quantity (1) appears commonly in the literature
on random geometric graphs, where directed and undirected nearest neighbor
graphs are analyzed as special cases of more general frameworks [9, 10, 13]. In
this paper, the nearest neighbor distance serves as the quantity of interest with
the hope that in the future, the ideas can be represented in a more abstract
form.

The expectation (1) is also of interest in its own right and tends to appear
under various scientific contexts. A significant application is found in the non-
parametric estimation of Rényi entropies, where asymptotic analysis provides
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theoretically sound estimators [5, 6, 8]. Moreover, nearest neighbor distances
and distributions play a major role in the understanding of nonparametric esti-
mation in general [1, 4]. Finally, it should be mentioned that quantities related
to (1) are encountered in physics, especially statistical mechanics and the theory
of gases and liquids [11, 3].

In the earlier literature, it has been shown that under general conditions (Γ
denotes the Gamma function)

E[dα1,k] → V −α/n
n

Γ(k + α/n)

Γ(k)

∫

ℜn

p(x)1−α/ndx

in the limit M → ∞ if 0 < α < n [12, 2]. However, the case α > n is quite
different and usually a boundedness condition must be imposed on the support
of p(x). As the contribution of this paper, we analyze what happens if α > n,
while p(x) is unbounded. To simplify matters, we examine only the multivariate
Gaussian distribution

p(x) = (2π)−n/2e−
1
2‖x‖

2

with the long term goal of extending the results to more general classes of
densities. It turns out that the asymptotic behavior is very different to the case
0 < α < n. We show that in the limit M → ∞,

(M logα/2+1−n M)E[dα1,k] →
2n−α/2−1nVn

(k − 1)!

∫ ∞

0

g

(

1

y

)

dy,

where the definition of g depends on n, k and α (see Section 3).

2 Definitions

We start with some basic definitions. Vn denotes the volume of the unit ball
B(0, 1) in ℜn in the Euclidean norm (which will be used all the time in this
paper). I(·) refers to the indicator function of a random event. For a vector
x ∈ ℜn, x(j) denotes component j of that vector. The volume of a set A with
respect to the Lebesgue measure is denoted by λ(A). If g(r) is a function defined
on an open subset of ℜ, we denote the derivative of g by Dg.

(Xi)
M
i=1 is taken as an i.i.d. sample withXi ∈ ℜn. EachXi follows a common

density p(x); our work concerns the Gaussian case

p(x) = (2π)−n/2e−
1
2‖x‖

2

. (2)

The first nearest neighbor of Xi is defined by

N [i, 1] = argmin1≤j≤M,j 6=i‖Xj −Xi‖

and by recursion, the k-th nearest neighbor is

N [i, k] = argmin1≤j≤M,j /∈{i,N [i,1],...,N [i,k−1]}‖Xj −Xi‖.
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The corresponding k-th nearest neighbor distance is di,k = ‖XN [i,k] −Xi‖. The
goal of the paper is to analyze

E[dαi,k] (3)

in the limit M → ∞ with everything else fixed. Because the sample is indepen-
dent identically distributed (i.i.d), we set i = 1.

Throughout the paper there will be constants, which depend on some vari-
ables, but not on the others. Such variables are denoted by c(. . .), where inside
the parentheses we indicate the dependency. Strictly speaking, c is a function
of some variables, but in the standard convention, it will be called a constant.
During the course of our proofs, several different unknown constants will emerge.
To keep them separate, lower indices (in the form ci) are used.

General error terms, which can be bounded but not written in closed form,
will be denoted by R (or Ri with a lower index i). After the appearance of each
such term, we write an equation of the form

|R| ≤ c(. . .)f(. . .),

where c is a constant and f is a function of M or some other variables. Inside
proofs, the Big-Oh notation will be invoked as another way to express unknown
but negligible terms.

3 Main Results and Previous Work

The analysis of nearest neighbor distances can be viewed as part of the general
framework of random geometric graphs. In this field, results are established for
quantities of the form

ξ(X1, (Xi)
M
i=1),

where ξ has some locality properties. By imposing higher levels of abstraction,
very general functions can be analyzed as long as locality arguments are avail-
able. We refer to [9, 10, 13] as a starting point to understand the issues arising
in the field.

However, abstract theories do not directly give exact information about the
asymptotic behavior of the moments (3). The step towards concretizing the
results concerning nearest neighbor graphs was taken in [12]. The following has
been proven:

Theorem 1. Suppose that 0 < α < n, p(x) is a density with

∫

ℜn

p(x)1−α/ndx < ∞

and
∫

ℜn

‖x‖rp(x)dx < ∞
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for some r > n/(n− α). Then

Mα/nE[dα1,k] → V −α/n
n

Γ(k + α/n)

Γ(k)

∫

ℜn

p(x)1−α/ndx

in the limit M → ∞. Γ(·) refers to the Gamma function. If α ≥ n, the limit
holds if p(x) is bounded from below and above on a bounded convex set X .

As a downside, Theorem 1 has the convexity requirement on X if α > n.
Furthermore, it does not provide a rate of convergence. These issues have
been addressed by the concrete approach in [2], where it was shown that if
infx∈X p(x) > 0 and p(x) has a bounded gradient on X , then under rather weak
conditions on the space X , we have

Mα/nE[dα1,k] = V −α/n
n

Γ(k + α/n)

Γ(k)

∫

X
p(x)1−α/ndx+O(M−1/n+ρ)

for any ρ > 0 removing the convexity requirement.
As a common factor between the results, observe that in the case α > n,

two requirements must be satisfied:

1. The set X must be bounded.

2. infx∈X p(x) > 0.

In this paper we ask, what happens when neither 1. nor 2. hold but α > n (the
case α = n is not addressed). The early works in random geometry took the
uniform distributions as a case of special interest. Analogously, we choose the
Gaussian density

p(x) = (2π)−n/2e−
1
2‖x‖

2

as our target of study.
It turns out that the behavior for α > n is very different to Theorem 1 for

the Gaussian distribution. As the main contribution of the paper, we prove the
following.

Theorem 2. Suppose that Equation (2) holds and α > n. Then

(M logα/2+1−n M)E[dα1,k] →
2n−α/2−1nVn

(k − 1)!

∫ ∞

0

g

(

1

y

)

dy.

in the limit M → ∞ with

g(t) =

∫ ∞

0

ωk−1e−ωf−1(ωt)αdω,

where f−1 refers to the inverse function of

f(t) = tn
∫

B(0,1)

ety
(1)

dy.
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The main difference to Theorem 1 is that now E[dα1,k] is of orderM(logM)n−α/2−1

instead of M−α/n. Theorem 2 can be further developed by analyzing the rate of
convergence and possible applications. This remains a topic of future research.
Another open question is the extension to a general density p, which the author
believes is possible. This could possibly unify the case with boundary effect [7]
and the more general unbounded case

4 Outline of the Proof

We will use the small ball probability

ωx(r) =

∫

B(x,r)

p(y)dy

due to its useful distribution free properties. In fact, [2] shows that the distribu-
tion of the quantity ωX1

(d1,k) does not depend on the density p and moreover,
tends to take values of order M−1. Another useful fact is that conditionalization
on X1 does not change the distribution of ωX1

(d1,k). We approximate

ωx(r) = (2π)−n/2

∫

B(x,r)

e−
1
2‖y‖

2

dy

= (2π)−n/2

∫

B(x,r)

e−
1
2‖x‖

2−xT (y−x)− 1
2‖y−x‖2

dy

≈ p(x)

∫

B(0,r)

e−xT ydy = p(x)rn
∫

B(0,1)

e−rxT ydy (4)

assuming that e−
1
2 r

2

is close to 1. By a change of variables (rotation inside the
last integral in (4)) we have

ωx(r) ≈ p(x)rn
∫

B(0,1)

e−r‖x‖y(1)

dy.

Now if we take f(t) = tn
∫

B(0,1)
e−ty(1)

dy, then ‖x‖nωx(r) ≈ p(x)f(‖x‖r) and

we solve

r ≈
f−1

(

‖x‖nωx(r)
p(x)

)

‖x‖ .

f−1 refers to the inverse of f . By substituting d1,k in place of r and ‖X1‖ in
place of ‖x‖, we get conditionally on X1

E[dα1,k] ≈ E[E[
f−1

(

‖X1‖nωX1
(d1,k)

p(X1)

)α

‖X1‖α
|X1]].

The argument for f−1 looks rather complicated. However, because the condi-
tional distribution of ωX1

(d1,k) does not depend on the density p(x) or X1, it
would be sufficient to somehow control the dependency on X1.
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Our strategy can be summarized as dividing ℜn into the three regions S1,
S2 and S3 together with decomposing

E[dα1,k] =

∫

S1

E[dα1,k|X1 = x]p(x)dx+

∫

S2

E[dα1,k|X1 = x]p(x)dx

+

∫

S3

E[dα1,k|X1 = x]p(x)dx.

The three sets depend on a variable 0 < ǫ < 1 and the number of samples
M . We think ǫ > 0 as a parameter, which at the end of the analysis is set to
approach zero after first taking the limit M → ∞. As a sidenote, it should be
clear at this point that the parameters (n, k, α) are assumed to stay fixed all
the time.

The motivation for S1 might be seen in the idea of performing a Taylor
expansion of f−1(·)α at zero, which might render the analysis into the well-
known case [2]. Keeping in mind that ωX1

(d1,k) is of order of magnitude M−1,
we take (the definition applies for any n ≥ 1)

S1 = {x ∈ ℜn : p(x) >
logn/2 M

ǫM
}

= {x ∈ ℜn : ‖x‖ <
√

2 logM − n log logM + 2 log ǫ}; (5)

then for large M , ‖X1‖ = O(
√
logM) and

‖X1‖nωX1
(d1,k)

p(X1)
= O(ǫ)

by substituting ωX1
(d1,k) =

1
M to analyze the order of magnitude. If ǫ is small,

then this shows that the argument of f−1 is small suggesting that a Taylor
expansion might be possible. However, during the course of the proof, it turns
out that points in S1 contribute little in comparison to the set

S2 = {x ∈ ℜn :
ǫ logn/2 M

M
≤ p(x) ≤ logn/2 M

ǫM
}. (6)

In this case, a Taylor expansion does not seem possible. Fortunately, we are
able to show that conditionally on X1 ∈ S2, the variable

Y =
Mp(X1)

logn/2 M
(7)

is approximately uniformly distributed on [ǫ, ǫ−1] and moreover, it is indepen-
dent of ωX1

(d1,k). This is useful, because for large M , ‖X1‖ ≈
√
2 logM and

we get

E[dα1,k|X1 ∈ S2] ≈ E[
f−1

(

2n/2ωX1
(d1,k)

Y

)α

(2 logM)α/2
|X1 ∈ S2]. (8)
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Because the probability P (X1 ∈ S2) turns out to admit a convenient asymptotic
expression, it is possible to use Equation (8) to estimate the quantity

∫

S2

E[dα1,k|X1 = x]p(x)dx = E[dα1,k|X1 ∈ S2]P (X1 ∈ S2).

In addition to S1 and S2, there is the set

S3 = {x ∈ ℜn : p(x) <
ǫ logn/2 M

M
}. (9)

However, similarly as S1, nearest neighbor distances corresponding to X1 ∈ S3

turn out to have a neglible effect if ǫ is small.

5 Auxiliary Results

In this section, we give some results and applications for ωX1
(d1,k), where

ωx(r) =

∫

B(x,r)

p(x)dx.

The following result characterizes the distribution of ωX1
(d1,k), which conve-

niently does not depend on X1 or the density p(x).

Lemma 1. Given X1, the conditional density of ωX1
(d1,k) is given by

p(ω|X1) = p(ω) = k

(

M − 1

k

)

ωk−1(1− ω)M−k−1. (10)

Moreover,

E[ωX1
(d1,k)

α|X1] =
Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
. (11)

Proof. In [2], it has been shown that d1,k has the conditional density

P (d1,k ∈ [r1, r2]|X1 = x) = k

(

M − 1

k

)
∫

[r1,r2]

ωx(r)
k−1(1−ωx(r))

M−k−1dωx(r).

Here dωx(r) refers to the Lebesgue-Stieltjes measure, where ωx(r) is considered
a function of r. Because ωx(r) is differentiable, we have

P (d1,k ∈[r1, r2]|X1 = x)

= k

(

M − 1

k

)
∫

[r1,r2]

ωx(r)
k−1(1− ωx(r))

M−k−1Dωx(r)dr. (12)

By monotonicity of ωx(r) we have

P (ωX1
(d1,k) ∈ [ωX1

(r1), ωX1
(r2)]|X1 = x) = P (d1,k ∈ [r1, r2]|X1 = x).
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Using the change of variables y = ωx(r) in (12) now yields

P (ωX1
(d1,k) ∈ [ωX1

(r1), ωX1
(r2)]|X1 = x)

= k

(

M − 1

k

)
∫

[ωx(r1),ωx(r2)]

yk−1(1− y)M−k−1dy,

which is sufficient to verify (10). The moments are computed using the formula
for Beta functions

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
(a, b > 0)

together with

k

(

M − 1

k

)

=
Γ(M)

Γ(k)Γ(M − k)
.

It is useful to observe that for any β > 0,

Γ(M + β)

Γ(M)
= Mβ +O(Mβ−1) (13)

to understand better the moments (11). The following is useful for technical
reasons:

Lemma 2. Assume that Equation (2) holds. Then for 0 < r < 1 and x ∈ ℜn,

ωx(r) ≥ cp(x)rn

for some constant c(n) > 0.

Proof. We compute straightforwardly:

ωx(r) = (2π)−n/2

∫

B(x,r)

e−
1
2‖y‖

2

dy

= (2π)−n/2e−
1
2‖x‖

2

∫

B(x,r)

e−xT (y−x)− 1
2‖y−x‖2

dy

≥ p(x)e−
1
2 r

2

∫

B(x,r)

e−xT (y−x)dy ≥ e−
1
2

2
Vnp(x)r

n.

The moments E[dα1,k|X1] do not get too large if ‖X1‖ does not get too large:

Lemma 3. Assume that (2) holds. Then for x ∈ ℜn, M > 2k and α > 0

E[dα1,k|X1 = x] ≤ c(‖x‖α + 1)

for some constant c(n, k, α).
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Proof. If (Xi)
M
i=2 is partitioned into k parts and from each we take the small-

est distance to X1, then dα1,k is smaller than the maximum of these distances.
Consequently, it is also smaller than the sum of the distances and by the i.i.d.
assumption, for any x ∈ ℜn

E[dα1,k|X1 = x] ≤ kE[ min
2≤i<(M−1)/k

‖Xi − x‖α]

≤ kE[‖X2 − x‖α] ≤ cE[‖X2‖α + ‖x‖α]

for some constant c(k, α). Observing that the α moments of X2 are finite
completes the proof.

Next we show that the α-moments are at most of order (p(x)M)−α/n if
the quantity inside the parentheses does not get too small. The result is an
application of Lemmas 1-2.

Lemma 4. Assume that Equation (2) holds and fix any δ > 0. Then if p(x) >
δ logn/2 M

M , we find a threshold M0(n, k, α, δ) such that for all M > M0, we have
almost surely,

E[dα1,k|X1 = x] ≤ c(p(x)M)−α/n

for some constant c(n, k, α).

Proof. We decompose

E[dα1,k|X1 = x] = E[dα1,kI(d1,k ≤ 1)|X1 = x] +E[dα1,kI(d1,k > 1)|X1 = x]. (14)

We consider next the first term in the right side. By Lemma 2,

dn1,k
ωX1

(d1,k)
I(d1,k ≤ 1) ≤ c1

p(X1)
(15)

(for some constant c1(n)) and using this we have by Lemma 1 together with
Equations (13) and (15),

E[dα1,kI(d1,k ≤ 1)|X1 = x]

= E[

(

dn1,k
ωX1

(d1,k)

)α/n

ωX1
(d1,k)

α/nI(d1,k ≤ 1)|X1 = x]

≤ c
α/n
1 p(x)−α/nE[ωX1

(d1,k)
α/n|X1 = x]

≤ c2(p(x)M)−α/n (16)

for some constant c2(n, k, α). We have proven the claim for the first term in
(14). For the second term, we apply Hölder’s inequality:

E[dα1,kI(d1,k > 1)|X1 = x] ≤
√

P (d1,k > 1|X1 = x)
√

E[d2α1,k|X1 = x]. (17)
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ωx(r) is a strictly increasing function with respect to r. Using this fact and the
inequalities k

(

M−1
k

)

≤ Mk and 1− ω ≤ e−ω together with Lemma 1, we have

P (d1,k > 1|X1 = x) = P (ωX1
(d1,k) > ωX1

(1)|X1 = x)

= k

(

M − 1

k

)
∫ 1

ωx(1)

ωk−1(1− ω)M−k−1dω

≤ Mk

∫ 1

ωx(1)

ωk−1e−(M−k−1)ωdω

=

(

M

M − k − 1

)k ∫ M−k−1

(M−k−1)ωx(1)

ωk−1e−ωdω

=

(

M

M − k − 1

)k ∫ M−k−1

(M−k−1)ωx(1)

e−ω+(k−1) logωdω. (18)

Now
ωx(1) ≥ c1p(x) (19)

by Equation (15) and if k > 1,

logω ≤ 1

2(k − 1)
ω + log(1 + 2(k − 1)). (20)

The previous equation can be proven by moving the terms in the right side
to the left and finding the zero point of the first derivative. The derivation is
not very relevant the main point being the slow increase of the logarithm in
comparison to the term ω. Using the two facts (19) and (20), we have

P (d1,k > 1|X1 = x)

≤
(

M

M − k − 1

)k ∫ M

c1p(x)(M−k−1)

e−
1
2ω+(k−1) log(1+2(k−1))dω

= 2(1 + 2(k − 1))k−1

(

M

M − k − 1

)k

(e−
1
2 c1p(x)(M−k−1) − e−

1
2M )

≤ c3e
− 1

4 c1p(x)M (21)

for some c3(n, k) assuming that M > 2k+2. By the assumptions of the lemma

p(x) > δ logn/2 M
M , which implies

‖x‖ ≤
√

2 logM − n log logM − 2 log δ − n log(2π) ≤
√

3 logM

after some threshold M0(n, δ) and M > M0. By Lemma 3 we then have

E[d2α1,k|X1 = x] ≤ c4 log
α M (22)

for some constant c4(n, k, α) (assuming trivially M > 1). Equations (21) and
(22) together with (17) now imply

E[dα1,kI(d1,k > 1)|X1 = x] ≤ √
c3c4e

− 1
8 c1p(x)M logα/2 M . (23)
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The assumption p(x)M ≥ δ logn/2 M implies that for any j > 0,

e−
1
8 c1p(x)M ≤ 8jj!

cj1δ
j(p(x)M)j

showing that in the limitM → ∞, (23) approaches zero faster than (p(x)M)−α/n

in Equation (16).

We formalize the argument in Section 4, which connects ωx(r) to the function
f :

Lemma 5. Assume that Equation (2) holds. Then

‖x‖nωx(r) = p(x)f(‖x‖r)−R

with

f(t) = tn
∫

B(0,1)

ety
(1)

dy

and
0 ≤ R ≤ p(x)r2f(‖x‖r).

f is defined and continuous on [0,∞) and it has the range [0,∞). It is also
strictly increasing implying the existence of an inverse function f−1 : [0,∞) 7→
[0,∞).

Proof. The proof involves extracting the error term and bounding it.

‖x‖nωx(r) = (2π)−n/2‖x‖n
∫

B(x,r)

e−
1
2‖y‖

2

dy

= (2π)−n/2(‖x‖r)n
∫

B(0,1)

e−
1
2‖ry−x‖2

dy

= (2π)−n/2(‖x‖r)ne− 1
2‖x‖

2

∫

B(0,1)

erx
T ydy −A

= p(x)(‖x‖r)n
∫

B(0,1)

erx
T ydy −A (24)

with

A = p(x)(‖x‖r)n
∫

B(0,1)

erx
T y(1− e−

1
2 r

2‖y‖2

)dy. (25)

The main task is to bound A. This is achieved by the mean-value theorem: for
‖y‖ ≤ 1 and r > 0,

1− e−
1
2 r

2‖y‖2

=
1

2
r2‖y‖2e−δ ≤ r2

for some δ ∈ [0,∞]. This inequality implies that

0 ≤ A ≤ p(x)(‖x‖r)nr2
∫

B(0,1)

erx
T ydy

≤ p(x)(‖x‖r)nr2
∫

B(0,1)

er‖x‖y
(1)

dy = p(x)r2f(‖x‖r).
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In the last inequality, the vectors have been conveniently rotated. The same
rotation shows that in (24), we have

p(x)(‖x‖r)n
∫

B(0,1)

erx
T ydy = p(x)f(‖x‖r).

For t > 0, we define

g(t) =

∫ ∞

0

ωk−1e−ωf−1(ωt)αdω. (26)

We show that g approaches zero at least as fast as tα/n and grows at most
logarithmically if t → ∞. The same holds for f−1(t)α:

Lemma 6. The function (26) satisfies

0 ≤ g(t) + f−1(t)α ≤ ctα/n

on (0, 1] for some constant c(n, k, α). On (1,∞) we have

0 ≤ g(t) + f−1(t)α ≤ c(1 + logα t).

Proof. 1. Bounds on f−1

Consider t ∈ (0, 1). For any

z >

(

2t

Vn

)1/n

,

we have

f(z) >
2t
∫

B(0,1)
ezy

(1)

dy

Vn
> t.

This implies that

f−1(t) ≤
(

2t

Vn

)1/n

.

Next assume that t > 1. Take z > 2 log t+A+ 1 with

A = λ(B(0, 1) ∩ {x ∈ ℜn : x(1) >
1

2
})−1.

Then

f(z) > A

∫

B(0,1)∩{x: x(1)> 1
2}

e2y
(1) log tdy

> A

∫

B(0,1)∩{x: x(1)> 1
2}

elog tdy = t.

12



This means that
f−1(t) ≤ 2 log t+A+ 1.

The outcome for f−1(t)α follows by recalling that (a + b)α ≤ 2α(aα + bα) for
any a, b > 0.

2. The function g
We proceed to bounds on the function g. We take t ∈ (0, 1). Then using the
results for f−1 yield

g(t) =

∫ 1/t

0

ωk−1e−ωf−1(ωt)αdω +

∫ ∞

1/t

ωk−1e−ωf−1(ωt)αdω

≤ c1t
α/n

∫ 1/t

0

ωk−1+α/ne−ωdω + c1

∫ ∞

1/t

ωk−1e−ω logα((2 + ω)(2 + t))dω

≤ c2t
α/n

∫ 1/t

0

ωk−1+α/ne−ωdω + c2 log
α(2 + t)

∫ ∞

1/t

ωk−1e−ωdω

+ c2

∫ ∞

1/t

ωk−1e−ω logα(2 + ω)dω

= I1 + I2 + I3 (27)

for some constants c1(n, α) and c2(n, α). The shorthand notation Ii (i = 1, 2, 3)
was adopted for the three terms. The argument (2+ t)(2+ω) for the logarithm
was chosen in order to ensure that the upper bound can be assumed to hold
also for t > 1.

Now

I1 ≤ c2t
α/n

∫ ∞

0

ωk−1+α/ne−ωdω. (28)

Also, for example by partial integration (the point being the fast decrease of
e−ω),

I2 ≤ k!c2e
−1/tt−k logα(2 + t) ≤ c3t

α/n (29)

for some constant c3(n, k, α). Of course, the last inequality is not tight, because
e−1/t approaches zero very fast in the limit t → 0, but nevertheless it fits our
purpose. Similarly, using log(2 + ω) ≤ ω for ω ≥ 1 gives

|I3| ≤ c2

∫ ∞

1/t

ωk+α−1e−ωdω ≤ c4t
1/n (30)

(for some c4(n, k, α)) by the same proof as for I2. In summary, Equations (27)-
(30) show that for 0 < t < 1,

g(t) ≤ c5t
α/n

13



for some constant c5(n, k, α). There is still the case t > 1. We again use the
decomposition (27):

I1 ≤ c2t
1−k

∫ 1/t

0

dω = t−k

I2 ≤ c2 log
α(2 + t)

∫ ∞

0

ωk−1e−ωdω

I3 ≤ c2

∫ ∞

0

ωk−1e−ω logα(2 + ω)dω

The only term that grows with respect to t is I2, which grows proportionally to
logα(2 + t); in the final claim, we use t instead of 2 + t.

6 Region S1

Recall that region S1 is defined by

S1 = {x ∈ ℜn : p(x) >
logn/2 M

ǫM
}

= {x ∈ ℜn : ‖x‖ <
√

2 logM − n log logM + 2 log ǫ− n log(2π)}. (31)

It may happen that S1 is an empty set; from now on we always assume that
M is large enough in comparison to ǫ−1 and n in order to ensure that S1 is
non-empty with a positive volume. Similar convention is adopted for the sets
S2 and S3.

As stated in Section 4, 0 < ǫ < 1 is a fixed constant until the end, where the
limit ǫ → 0 is taken after the limit M → ∞. We define (assuming that α > n)

i∗ = [log−1 2
n log logM

α− n
] + 1.

[·] refers to the integer part of the number inside the bracket. As our proof
strategy, S1 is divided into smaller subsets, which are easier to control with the
tools we have available this far:

S̃1,i = {x ∈ ℜn : 2i
logn/2 M

ǫM
≤ p(x) < 2i+1 log

n/2 M

ǫM
}

= {x ∈ ℜn : ‖x‖ ∈ [ai, bi)} (32)

(0 ≤ i ≤ i∗) with

ai =
√

2 logM − n log logM − 2(i+ 1) log 2 + 2 log ǫ− n log(2π)

bi =
√

2 logM − n log logM − 2i log 2 + 2 log ǫ− n log(2π).

14



The remaining part is denoted by

S1,C = S1 \ ∪i∗

i=0S̃1,i.

The following bounds the nearest neighbor distance when X1 ∈ S̃1,i. Without
losing generality, we prove the claim after some threshold M0, which is natural
as in any case later the limit M → ∞ is taken. As a somewhat subtle detail, we
will generally adopt this way of expressing our statements in those cases, where
proving the claim for all M > 0 is not an obvious task.

Lemma 7. Assume that (2) holds and α > n. Then there exists a threshold
M0(n, k, α, ǫ) > 0 such that for 0 ≤ i ≤ i∗ and M > M0,

∫

S̃1,i

E[dα1,k|X1 = x]p(x)dx ≤ 2i(1−α/n)cǫα/n−1 log
n−α/2−1 M

M

for some constant c(n, k, α).

Proof. By Lemma 4,
∫

S̃1,i

E[dα1,k|X1 = x]p(x)dx ≤ c1M
−α/n

∫

S̃1,i

p(x)1−α/ndx

≤ 2i(1−α/n)c1M
−α/n

(

logn/2 M

ǫM

)1−α/n

λ(S̃1,i)

≤ 2i(1−α/n)c1ǫ
α/n−1 log

n/2−α/2 M

M
λ(S̃1,i) (33)

for some constant c1(n, k, α) and M0(n, k, α, ǫ). We should now compute the
volume λ(S̃1,i). The set S̃1,i consists of points x ∈ ℜn with ‖x‖ in the interval

[ai, bi). Then λ(S̃1,i) = Vn(b
n
i − ani ). By a Taylor expansion,

ani = 2n/2 logn/2 M

(

1− n2 log logM + 2n(i+ 1) log 2− 2n log ǫ+ n2 log(2π)

4 logM

)

+R (34)

in the limit M → ∞ with everything else fixed and

|R| ≤ c2
log2 logM

log2−n/2 M

with c2(n, k, α, ǫ) independent of i. Similar approximation holds for bni . Using
the expansion,

λ(S̃1,i) = Vn(b
n
i − ani )

= (2n/2−1 log 2)nVn log
n/2−1 M +O

(

log2 logM

log2−n/2 M

)

. (35)
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By substitution of (35) into (33), we have

∫

S̃1,i

E[dα1,k|X1 = x]p(x)dx ≤ 2i(1−α/n)+n/2−1c1nVnǫ
α/n−1 log

n−α/2−1 M

M

+ c2
logn−α/2−2 M

M

for some constants c3(n, k, α, ǫ). Of the two terms in the right side, the latter
converges to zero faster with respect to M and consequently becomes smaller
after some threshold M0(n, k, α, ǫ).

After removing the sets S̃1,i, we are left with S̃1,C . However, it does not
pose problems.

Lemma 8. Assume that (2) holds and α > n. Then there exists a threshold
M0(n, k, α, ǫ) such that for any M > M0, we have

∫

S̃1,C

E[dα1,k|X1 = x]p(x)dx ≤ cǫα/n−1 log
n−α/2−1 M

M

for some constant c(n, k, α).

Proof. By Lemma 4 and the definition of S̃1,C ,

∫

S̃1,C

E[dα1,k|X1 = x]p(x)dx ≤ c1M
−α/n

∫

S̃1,C

p(x)1−α/ndx

≤ 2i
∗(1−α/n)c1ǫ

α/n−1 log
n/2−α/2 M

M
λ(S̃1,C) (36)

for some constant c1(n, k, α). S̃1,C consists of points x ∈ ℜn with

‖x‖ ≤
√

2 logM − n log logM − 2i∗ log 2 + 2 log ǫ− n log(2π) ≤
√

3 logM

once M exceeds some threshold depending on n, k, α and ǫ. This implies that

λ(S̃1,C) ≤ 3n/2Vn log
n/2 M . (37)

Also, we compute

2i
∗(1−α/n) = ei

∗(1−α/n) log 2 ≤ log−1 M . (38)

Substituting Equations (37) and (38) into (36) yields

∫

S̃1,C

E[dα1,k|X1 = x]p(x)dx ≤ 3n/2c1Vnǫ
α/n−1 log

n−α/2−1 M

M
.
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Lemmas 7 and 8 imply that for α > n,

∫

S1

E[dα1,k|X1 = x]p(x)dx =

∫

S̃1,C

E[dα1,k|X1 = x]p(x)dx

+

i∗
∑

i=0

∫

S̃1,i

E[dα1,k|X1 = x]p(x)dx

≤ cǫα/n−1 log
n−α/2−1 M

M

+
i∗
∑

i=0

2i(1−α/n)cǫα/n−1 log
n−α/2−1 M

M

≤ cǫα/n−1 log
n−α/2−1 M

M
(1 +

∞
∑

i=0

2i(1−α/n)). (39)

for some constant c(n, k, α) and M > M0. We conclude

Lemma 9. Assume that (2) holds and α > n. Then there exists a threshold
M0(n, k, α, ǫ) such that for any M > M0, we have

∫

S1

E[dα1,k|X1 = x]p(x)dx ≤ cǫα/n−1 log
n−α/2−1 M

M

for some constant c(n, k, α).

7 Region S2

Region 2 is defined by

S2 = {x ∈ ℜn :
ǫ logn/2 M

M
≤ p(x) ≤ logn/2 M

ǫM
}. (40)

As mentioned earlier, M is assumed to be large enough to ensure that S2 has
a positive volume. It is necessary to obtain an approximation to P (X1 ∈ S2).
This can be done rather straightforwardly:

Lemma 10. Assuming (2), it holds that

P (X1 ∈ S2) =
2n/2−1nVn log

n−1 M

ǫM
(1− ǫ2) +R

with

|R| ≤ c
log2 logM logn−2 M

M

for some constant c(n, ǫ).
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Proof. S2 consists of points x with

‖x‖ ∈ [a, b]

a =
√

2 logM − n log logM + 2 log ǫ− n log(2π)

b =
√

2 logM − n log logM − 2 log ǫ− n log(2π).

We compute

P (X1 ∈ S2) = (2π)−n/2

∫

S2

p(x)dx = (2π)−n/2nVn

∫ b

a

xn−1e−
1
2x

2

dx

= (2π)−n/2nVn

∫ b

a

xn−1e−
1
2a

2−(x−a)a− 1
2 (x−a)2dx

= nVnp(a)a
n−1

∫ b

a

e−(x−a)adx

+ nVnp(a)

∫ b

a

(xn−1 − an−1)e−(x−a)a− 1
2 (x−a)2dx

+ nVnp(a)a
n−1

∫ b

a

(e−
1
2 (x−a)2 − 1)e−(x−a)adx

= I1 + I2 + I3

with

I1 =
nVn log

n/2 M

ǫM
an−1

∫ b

a

e−(x−a)adx

=
nVn log

n/2 M

ǫM
an−2(1− e−(b−a)a)

I2 =
nVn log

n/2 M

ǫM

∫ b

a

(xn−1 − an−1)e−(x−a)a− 1
2 (x−a)2dx

I3 =
nVn log

n/2 M

ǫM
an−1

∫ b

a

(e−
1
2 (x−a)2 − 1)e−(x−a)adx.

During the proof it is easiest to employ the Big-Oh notation. Such error
terms depend here on n and ǫ.

1. The term I1

By a Taylor expansion, in analog to Equation (34),

a =
√

2 logM − n log logM

2
√
2 logM

+
log ǫ√
2 logM

− n log(2π)

2
√
2 logM

+O

(

log2 logM

log3/2 M

)

(41)

b =
√

2 logM − n log logM

2
√
2 logM

− log ǫ√
2 logM

− n log(2π)

2
√
2 logM

+O

(

log2 logM

log3/2 M

)

.

(42)
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By (41)-(42),

b− a =

√
2 log ǫ−1

√
logM

+O(
log2 logM

log3/2 M
) (43)

and

1− e−(b−a)a = e
[
√

2 log ǫ
√

log M
+O( log2 log M

log3/2 M
)][

√
2 logM+O( log log M

√
log M

)] − 1

= 1− e2 log ǫ+O( log2 log M
log M ) = 1− ǫ2 +O

(

log2 logM

logM

)

. (44)

Also,

an−2 = 2n/2−1 logn/2−1 M +O

(

log logM

log2−n/2 M

)

. (45)

Using Equations (44) and (45) in the expression for I1 yields

I1 =
nVn log

n/2 M

ǫM

[

2n/2−1 logn/2−1 M +O

(

log logM

log2−n/2 M

)]

[1− ǫ2

+O(
log2 logM

logM
)]

=
2n/2−1nVn log

n−1 M

ǫM
(1− ǫ2) +O

(

log2 logM logn−2 M

M

)

.

2. The term I2

By the mean-value theorem,

|xn−1 − an−1| ≤ |bn−1 − an−1| ≤ c1 log
n/2−3/2 M

for some constant c1(n, ǫ). Also, a
−1 ≤ c2 log

−1/2 M for some c2(n, ǫ). We have

I2 ≤ c1nVn log
n−3/2 M

ǫM

∫ b

a

e−(x−a)adx

≤ c1c2nVn log
n−2 M

ǫM
.

3. The term I3

Now

|I3| ≤
nVn log

n/2 M

ǫM
an−1(1− e−

1
2 (b−a)2)

∫ b

a

e−(x−a)adx. (46)

Again,
∫ b

a

e−(x−a)adx = a−1(1− e−(b−a)a) ≤ a−1. (47)
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Moreover, by the expansion for b− a appearing in Equation (43),

1− e−
1
2 (b−a)2 = −1

2
(b− a)2 +O((b− a)4) ≤ c3

logM
(48)

for some constant c3(n, ǫ) Finally,

an−2 ≤ c4 log
n/2−1 M . (49)

for some constant c4(n, ǫ). Substituting (47)-(49) into (46) yields

|I3| ≤
c3c4nVn log

n−2 M

ǫM
.

The proof is finished since the terms I1,I2 and I3 have been addressed.

In general, to establish asymptotics, it is useful to truncate d1,k to avoid
too large values. To this end, we choose some L > 0 (recall that at this point,
α, n, k and ǫ stay fixed) and define

IL = I(d1,k <
L

ǫ1/n
√
logM

).

The power for logM is carefully chosen to ensure the correct order of magnitude
with large L rendering the event 1 − IL neglible. The following lemma verifies
this fact; the bound is designed to hold after some threshold M0, which depends
on L itself. However, after the threshold we get an upper bound which goes
exponentially to zero with respect to L.

Lemma 11. Under (2) and for any L > 0, there exists a threshold M0(n, k, α, ǫ, L)
such that for all M > M0, it holds that

E[dα1,k(1− IL)|X1 ∈ S2] ≤ c(n, k, α, ǫ) log−α/2 Me−c(n,k,α,ǫ)−1Ln

for some positive constant c(n, k, α, ǫ).

Proof. The proof employs Hölder’s inequality:

E[dα1,k(1− IL)|X1 ∈ S2]

≤
√

E[d2α1,k|X1 ∈ S2]

√

P (d1,k >
L

ǫ1/n
√
logM

|X1 ∈ S2). (50)

By Lemma 4 and the definition of S2, there exists M0(n, k, α, ǫ) such that

E[d2α1,k|X1 ∈ S2] = E[E[d2α1,k|X1]|X1 ∈ S2]

≤ c1E[(p(X1)M)−2α/n|X1 ∈ S2]

≤ c1ǫ
−2α/n log−α M (51)
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for some constant c1(n, k, α) and all M > M0. We want to bound P (d1,k >

Lǫ−1/n log−1/2 M |X1 ∈ S2) in order to finish the proof. By Lemma 2, we have
for 0 < r < 1 and x ∈ S2,

ωx(r) ≥ c2p(x)r
n ≥ c2ǫr

n logn/2 M

M
(52)

for some constant c2(n). Then because ωx(r) is strictly increasing with respect
to r, using Lemma 1 we have

P (d1,k >
L

ǫ1/n
√
logM

|X1 ∈ S2)

= P (ωX1
(d1,k) > ωX1

(

L

ǫ1/n
√
logM

)

|X1 ∈ S2)

≤ P (ωX1
(d1,k) >

c2L
n

M
|X1 ∈ S2)

= k

(

M − 1

k

)
∫ 1

c2LnM−1

ωk−1(1− ω)M−k−1dω

with c2L
nM−1 < 1 (which can be imposed by taking a sufficiently large thresh-

old M0). We use
(

M − 1

k

)

≤ Mk

k!

and
(1− ω) ≤ e−ω

to obtain for M > c2L
n + 4k,

k

(

M − 1

k

)
∫ 1

c2LnM−1

ωk−1(1− ω)M−k−1dω

≤ Mk

∫ 1

c2LnM−1

ωk−1e−(M−k−1)ωdω

≤ Mk

∫ 1

c2LnM−1

ωk−1e−
1
2Mωdω.

The last integral can be solved by partial integration or alternatively, we ap-
proximate

∫ 1

c2LnM−1

ωk−1e−
1
2Mωdω ≤

∞
∑

i=0

∫ 2i+1c2L
nM−1

2ic2LnM−1

ωk−1e−
1
2Mωdω

≤
∞
∑

i=0

2(i+1)kck2L
nkM−ke−2i−1c2L

n

.
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Furthermore,

∞
∑

i=0

2(i+1)ke−2i−1c2L
n ≤

∞
∑

i=0

e−2i−1c2L
n+(i+1)k log 2

≤
∞
∑

i=0

e−2i−2c2L
n ≤ e−c3L

n

for some constant c3(n, k, ǫ) assuming without losing generality that c2L
n ≥

4k log 2 (using i+ 1 ≤ 2i). We conclude that

P (d1,k >
L

ǫ1/n
√
logM

|X1 = x) ≤ ck2L
nke−c3L

n

. (53)

In light of (50), (51) and (53) we have arrived to the conclusion

E[dα1,k(1− IL)|X1 ∈ S2] ≤ c4L
nk/2e−c−1

4 Ln

log−α/2 M

for some constant c4(n, k, α, ǫ). The term Lnk/2 can be dropped, as it is neglible
compared to the exponential decay with respect to L.

The variable Y emerged in Equation (7). It was defined by

Y =
Mp(x)

logn/2 M
. (54)

A major idea behind our proofs is the asymptotic uniformity of Y as shown by

Lemma 12. Suppose that (2) holds. Let h(y) be a measurable function [ǫ, ǫ−1] 7→
[0, 1]. Then

E[h(Y )|X1 ∈ S2] →
ǫ

1− ǫ2

∫ ǫ−1

ǫ

h(y)dy.

in the limit M → ∞.

Proof. The function

s(y) =
Me−

1
2y

2

(2π)n/2 logn/2 M
(55)

is strictly decreasing on y ∈ [a, b] with a and b defined in Equations (41) and
(42). It has the inverse s−1 : [ǫ, ǫ−1] 7→ [a, b]:

s−1(y) =
√

−2 log y − n log logM + 2 logM − n log 2π

with the first derivative denoted by Ds−1. Conditionally on X1 ∈ S2, the
variable ‖X1‖ has the density

p‖X1‖(y) =
nVn

(2π)n/2P (X1 ∈ S2)
yn−1e−

1
2y

2

22



and Y has the density (on [a, b])

p‖X1‖(s
−1(y))|Ds−1(y)|

=
nVns

−1(y)n−1

(2π)n/2P (X1 ∈ S2)
|Ds−1(y)|elog y+n

2 log logM−logM+n
2 log 2π

=
nVnys

−1(y)n−1 logn/2 M

MP (X1 ∈ S2)
|Ds−1(y)|. (56)

Because y ∈ [ǫ, ǫ−1], we have in the limit M → ∞ with everything else fixed,

s−1(y)n−1 = (2 logM)n/2−1/2

(

1− log y

logM
− n log logM

2 logM
− log 2π

2 logM

)n/2−1/2

= (2 logM)n/2−1/2

(

1 +O

(

log logM

logM

))

.

(57)

Also, by Lemma 10,

P (X1 ∈ S2) =
2n/2−1nVn log

n−1 M

ǫM
(1− ǫ2)

(

1 +O

(

log2 logM

logM

))

(58)

and

|Ds−1(y)| = 1

y
√
−2 log y − n log logM + 2 logM − n log 2π

=
1

y
√
2 logM

(

1 +O

(

log logM

logM

))

. (59)

By Equations (56)-(59) we have

p‖X1‖(s
−1(y))|Ds−1(y)| = ǫ

1− ǫ2

(

1 +O

(

log2 logM

logM

))3

=
ǫ

1− ǫ2
+O

(

log2 logM

logM

)

. (60)

By this approximation,

E[h(Y )|X1 ∈ S2] =
ǫ

1− ǫ2

∫ ǫ−1

ǫ

h(y)dy +O

(

log2 logM

logM

)

→ ǫ

1− ǫ2

∫ ǫ−1

ǫ

h(y)dy

in the limit M → ∞.

Next we will find out the asymptotic behavior of E[dα1,k|X1 ∈ S2], which
together with the approximation for P (X1 ∈ S2) takes care of region S2. The
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key to the analysis is Lemma 12. The following represents the nearest neighbor
distance in terms of the small ball probability and the variable Y . We invoke
the event IL to bound d1,k; L stays fixed in this considerations the idea being
the limit L → ∞ after taking the limit M → ∞.

Lemma 13. Assume that (2) holds and α > n. Then

E[dα1,kIL|X1 ∈ S2] =
E[f−1

(

2n/2MωX1
(d1,k)

Y

)α

IL|X1 ∈ S2]

2α/2 logα/2 M
+R1,

where Y is defined in Equation (54) and

|R1| ≤ c log−α/2−1 M

for some constant c(n, α, ǫ, L).

Proof. We first collect a few useful facts. If x ∈ S2, then by Lemma 5

‖x‖nωx(r) = p(x)f(‖x‖r)− p(x)R1 (61)

or equivalently

r =
f−1

(

‖x‖nωx(r)
p(x) +R1

)

‖x‖
with

0 ≤ R1 ≤ r2f(‖x‖r).
x ∈ S2 implies √

logM

c1
≤ ‖x‖ ≤ c1

√

logM (62)

for some constant c1(n, ǫ). The indicator function IL ensures that we only need
to consider

0 < r <
L

ǫ1/n
√
logM

.

Then by (62)

‖x‖r ≤ Lc1
ǫ1/n

. (63)

By a Taylor expansion, for any real number β ∈ ℜ and x ∈ S2,

|‖x‖β − (2 logM)β/2| ≤ c2 log
β/2−1 M (64)

for some constant c2(n, ǫ, β). Moreover, f is an increasing continuous function
allowing a bound on R1:

R1 ≤ r2f(‖x‖r) ≤
L2f( Lc1

ǫ1/n
)

ǫ2/n logM
≤ c3

logM
(65)
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for

c3 =
L2f( Lc1

ǫ1/n
)

ǫ2/n
.

Having made the preliminary observations, we are ready for the first step to-
wards completing of the proof. We have for x ∈ S2 by Equation (61)

E[dα1,kIL|X1 = x] = E[
f−1

(

‖X1‖nωX1
(d1,k)

p(X1)
+R2

)α

‖X1‖α
IL|X1 = x]

with
0 ≤ R2 ≤ c3

logM
(66)

(R2 is R1 with d1,k instead of r multiplied by IL). The challenging part is to
modify the argument for f−1. We first tackle the easier task of replacing ‖x‖α
with a function of M . To this end, we observe that

E[dα1,kIL|X1 = x] = E[
f−1

(

‖X1‖nωX1
(d1,k)

p(X1)
+R2

)α

2α/2 logα/2 M
IL|X1 = x] +R3 (67)

with

R3 = E[f−1

(‖X1‖nωX1
(d1,k)

p(X1)
+R2

)α

(‖X1‖−α−2−α/2 log−α/2 M)IL|X1 = x].

By Lemma 5 and Equations (61), (63) and (65) we find a constant c4(n, ǫ, L)
such that

‖x‖nωx(r)

p(x)
+

c3
logM

≤ f(‖x‖r) + c3
logM

≤ f

(

Lc1
ǫ1/n

)

+
c3

logM
≤ c4 (68)

for x ∈ S2 and 0 < r < Lǫ−1/n log−1/2 M . Using the previous inequality and
the fact that f−1 is an increasing function together with Equation (64) allows
us to bound

|R3| ≤ c2(n, ǫ,−α)f−1(c4) log
−α/2−1 M . (69)

We move to the argument for f−1. Again, it would be useful to get rid of the
norm ‖x‖n. This is facilitated by modifying the argument appearing in (67)
(due to conditionalization, we may use x instead of X1 in the expressions):

‖x‖nωx(d1,k)

p(x)
IL =

2n/2ωx(d1,k) log
n/2 M

p(x)
IL +R4,

where by Equation (64) (to bound ωx(d1,k), we use Equations (68) and (62))

|R4| =
|‖x‖n − 2n/2 logn/2 M |ωx(d1,k)

p(x)
IL ≤ c5

logM
(70)

25



for some constant c5(n, ǫ, L).
In summary, this far we have shown that

E[dα1,kIL|X1 = x]

= E[
f−1

(

2n/2ωX1
(d1,k) log

n/2 M

p(X1)
+R2 +R4

)α

2α/2 logα/2 M
IL|X1 = x] +R3, (71)

where (66), (69) and (70) bound the three correction terms.
While the correction terms R2 and R4 are small, they appear inside the

argument for f−1. The best we can say about their effect is

E[|f−1

(

2n/2ωX1
(d1,k) log

n/2 M

p(X1)
+R2 +R4

)α

− f−1

(

2n/2ωX1
(d1,k) log

n/2 M

p(X1)

)α

|IL|X1 = x]

≤ (R2 +R4) sup
t∈[0,f−1(2n/2+1c4)]

|D(f−1(t)α)| (72)

assuming without losing generality that |R2 + R4| ≤ c4. So, we need to bound
the derivative of the function f−1(t)α on bounded intervals. We observe that

D(f−1(t)α) =
αf−1(t)α−1

Df(f−1(t))
. (73)

Furthermore,

Df(t) = ntn−1

∫

B(0,1)

ety
(1)

dy + tn
∫

B(0,1)

y(1)ety
(1)

dy

≥ ntn−1

∫

B(0,1)

ety
(1)

dy ≥ 1

2
nVnt

n−1, (74)

because
∫

B(0,1)

y(1)ety
(1)

dy =

∫ t

0

∫

B(0,1)

(y(1))2ety
(1)

dydt ≥ 0.

Using (74) in (73) yields

D(f−1(t)α) ≤ 2α

nVn
f−1(t)α−n.

n > α and f−1 is an increasing function implying that

sup
t∈[0,f−1(2n/2+1c4)]

f−1(t)n−α ≤ f−1(2n/2+1c4)
n−α.
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Using the upper bound in (72) shows that for x ∈ S2,

E[
f−1

(

2n/2ωX1
(d1,k) log

n/2 M

p(X1)
+R2 +R4

)α

2α/2 logα/2 M
IL|X1 = x]

= E[
f−1

(

2n/2ωX1
(d1,k) log

n/2 M

p(X1)

)α

2α/2 logα/2 M
IL|X1 = x] +R5

= E[
f−1

(

2n/2MωX1
(d1,k)

Y

)α

2α/2 logα/2 M
IL|X1 = x] +R5

with |R5| ≤ c6 log
−α/2−1 M for some constant c6(n, α, ǫ, L). The proof is fin-

ished by recalling the earlier observation (71). The final form of the claim is
achieved via the tower rule E[. . . |X1 ∈ S2] = E[E[. . . |X1]X1 ∈ S2].

In Lemma 13, we find the term Y , which has the asymptotic uniformity
property as proven in Lemma 12. Connecting the two results mainly involves
removing the truncation IL, but takes some technical effort. The function g was
defined in Equation (26).

Lemma 14. Assume that (2) holds and α > n. Then

(2 logM)α/2E[dα1,k|X1 ∈ S2] →
ǫ

(k − 1)!(1− ǫ2)

∫ ǫ−1

ǫ

g

(

2n/2

y

)

dy

in the limit M → ∞.

Proof. By Lemma 13, we know that

(2 logM)α/2E[dα1,kIL|X1 ∈ S2]

− E[f−1

(

2n/2MωX1
(d1,k)

Y

)α

IL|X1 ∈ S2] → 0

in the limit M → ∞ with (n, k, α, ǫ, L) fixed. We write

E[f−1

(

2n/2MωX1
(d1,k)

Y

)α

IL|X1 ∈ S2]

=

∫

S2
E[f−1

(

2n/2MωX1
(d1,k)

Y

)α

IL|X1 = x]p(x)dx

P (X1 ∈ S2)
.

Using Equation (55) and Lemma 1 (recall that Y depends only on X1),

E[f−1

(

2n/2MωX1
(d1,k)

Y

)α

IL|X1 = x]

= k

(

M − 1

k

)
∫ ωx(Lǫ−1/n log−1/2 M)

0

ωk−1

× (1− ω)M−k−1f−1

(

2n/2Mω

s(‖x‖)

)α

dω.
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Now

k

(

M − 1

k

)

=
(M − 1)!

(k − 1)!(M − 1− k)!
=

Mk

(k − 1)!
+R1 (75)

with |R1| ≤ c1M
k−1 for some constant c1(k). Also, because ‖x‖ behaves asym-

potically as
√
2 logM and p(x) > logn/2 M

ǫM on S2, Equation (68) shows that

ωx(
L

ǫ1/n
√
logM

) ≤ c2
M

(76)

for some constant c2(n, ǫ, L). This implies that for ω < ωx(Lǫ
−1/n log−1/2 M),

(1− ω)M−k−1 = e−(M−k−1)ω +R2 = e−Mω +R2 +R3 (77)

with

|R2| ≤ |(1− ω)M−k−1 − e−(M−k−1)ω| = e(M−k−1)(log(1−ω)+ω) − 1

≤ c3
M

and

|R3| ≤ e−Mω(e(k−1)ω − 1) ≤ c3
M

for some constant c3(n, k, α, ǫ, L). By Equations (75)-(77) together with the fact
that f−1 is an increasing function,

k

(

M − 1

k

)
∫ ωx(Lǫ−1/n log−1/2 M)

0

ωk−1(1− ω)M−k−1f−1

(

2n/2Mω

s(‖x‖)

)α

dω

=
Mk

(k − 1)!

∫ ωx(Lǫ−1/n log−1/2 M)

0

ωk−1e−Mωf−1

(

2n/2Mω

s(‖x‖)

)α

dω

+R4 +R5

with

|R4| ≤ |k
(

M − 1

k

)

− Mk

(k − 1)!
|
∫ ωx(Lǫ−1/n log−1/2 M)

0

ωk−1

× (1− ω)M−k−1f−1

(

2n/2Mω

ǫ

)α

dω

≤ c1M
k−1

∫ c2M
−1

0

ωk−1f−1

(

2n/2Mω

ǫ

)α

dω

≤ c1c
k
2f

−1( 2
n/2c2
ǫ )α

kM
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and

|R5| ≤
Mk

(k − 1)!

∫ c2M
−1

0

ωk−1|e−Mω − (1− ω)M−k−1|f−1

(

2n/2Mω

ǫ

)α

dω

≤
ck2c3f

−1
(

2n/2c2
ǫ

)α

M
.

Observe that the bounds for R4 and R5 hold for any x ∈ S2. By a change of
variables,

Mk

(k − 1)!

∫ ωx(Lǫ−1/2 log−1/2 M)

0

ωk−1e−Mωf−1

(

2n/2Mω

s(‖x‖)

)α

dω

=
1

(k − 1)!

∫ ∞

0

ωk−1e−ωf−1

(

2n/2ω

s(‖x‖)

)α

dω

− 1

(k − 1)!

∫ ∞

Mωx(Lǫ−1/n log−1/2 M)

ωk−1e−ωf−1

(

2n/2ω

s(‖x‖)

)α

dω

=
1

(k − 1)!

∫ ∞

0

ωk−1e−ωf−1

(

2n/2ω

s(‖x‖)

)α

dω +R6.

We would like to show that

lim
L→∞

lim sup
M→∞

sup
x∈S2

R6

= lim
L→∞

lim sup
M→∞

sup
x∈S2

∫ ∞

Mωx(Lǫ−1/n log−1/2 M)

ωk−1e−ωf−1

(

2n/2ω

s(‖x‖)

)α

dω = 0.

(78)

To see that this is true, we observe that by Lemma 6, for some constant
c4(n, k, α, ǫ) there is the bound

ωk−1e−ωf−1

(

2n/2ω

s(‖x‖)

)α

≤ ωk−1e−ωf−1

(

2n/2ω

ǫ

)α

≤ c4ω
k−1(1 + ω)e−ω

with the upper bound integrable on [0,∞) and independent of x ∈ S2. Moreover,
by Equation (52)

lim
L→∞

lim inf
M→∞

sup
x∈S2

Mωx(
L

ǫ1/n
√
logM

) = ∞

showing that (78) indeed holds.
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In summary, we have shown that

lim
L→∞

lim sup
M→∞

E[f−1

(

2n/2MωX1
(d1,k)

Y

)α

IL|X1 ∈ S2]

= lim
L→∞

lim sup
M→∞

1
(k−1)!

∫

S2

∫∞
0

ωk−1e−ωf−1
(

2n/2ω
s(‖x‖)

)α

p(x)dωdx

P (X1 ∈ S2)

+

∫

S2
(R4 +R5 +R6)p(x)dx

P (X1 ∈ S2)

= lim
M→∞

1

(k − 1)!
E[g

(

2n/2

Y

)

|X1 ∈ S2]

and similarly with lim inf instead of lim sup; the last limit exists by Lemma 12,
which shows that

E[g

(

2n/2

Y

)

|X1 ∈ S2] →
ǫ

1− ǫ2

∫ ǫ−1

ǫ

g

(

2n/2

y

)

dy

in the limit M → ∞. We have established that

lim
L→∞

lim sup
M→∞

(2 logM)α/2E[dα1,kIL|X1 ∈ S2] =
ǫ

(k − 1)!(1− ǫ2)

∫ ǫ−1

ǫ

g

(

2n/2

y

)

dy.

On the other hand, Lemma 11 shows that

lim
L→∞

lim sup
M→∞

(2 logM)α/2|E[dα1,kIL|X1 ∈ S2]− E[dα1,k|X1 ∈ S2]| = 0

finalizing the proof.

Now we are able to put everything together to conclude region S2:

Lemma 15. Assume that (2) holds and α > n. Then

lim
ǫ→0

lim
M→∞

M logα/2+1−n M

∫

S2

E[dα1,k|X1 = x]p(x)dx

=
2n−α/2−1nVn

(k − 1)!

∫ ∞

0

g

(

1

y

)

dy < ∞.

Proof. The claim follows from Lemmas 10 and 14:

M logα/2+1−n M

∫

S2

E[dα1,k|X1 = x]p(x)dx

= E[dα1,k|X1 ∈ S2]P (X1 ∈ S2)

→ 2n/2−α/2−1nVn

(k − 1)!(1− ǫ2)

∫ ǫ−1

ǫ

g

(

2n/2

y

)

dy

=
2n−α/2−1nVn

(k − 1)!(1− ǫ2)

∫ 2−n/2ǫ−1

2−n/2ǫ

g

(

1

y

)

dy
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in the limit M → ∞. We would like to show that

∫ 2−n/2ǫ−1

2−n/2ǫ

g

(

1

y

)

dy →
∫ ∞

0

g

(

1

y

)

dy

in the limit ǫ → 0, which amounts to showing that g(y−1) is an integrable
function. This is best done using Lemma 6, which shows that

∫ ∞

0

g

(

1

y

)

dy =

∫ 1

0

g

(

1

y

)

dy +

∫ ∞

1

g

(

1

y

)

dy

≤ c

∫ 1

0

(1 + logα y−1)dy + c

∫ ∞

1

y−α/ndy

for some constant c(n, k, α). Both terms in the right side are finite (the second
one because α > n) verifying the integrability requirement.

8 Region S3

S3 consists of points, where the density p takes small values:

S3 = {x ∈ ℜn : p(x) <
ǫ logn/2 M

M
}.

To bound nearest neighbor distances on S3, we need similar tools as for S2, but
only upper bounds are needed providing some more flexibility. The sets S̃3,i are
defined analogously to (32):

S̃3,i = {x ∈ ℜn : 2−i−1 ǫ log
n/2 M

M
< p(x) < 2−i ǫ log

n/2 M

M
}

for 0 ≤ i ≤ i∗ with

i∗ = [
(α+ 1)

log 2
log logM ] + 1.

Moreover, S̃3,C = S3 \ ∪i∗

i=0S̃3,i. Then we have

Lemma 16. Under (2), it holds that for some threshold M0(n, ǫ), we have for
M > M0 and 0 ≤ i ≤ i∗ that

P (X1 ∈ S̃3,i) ≤ 2−ic
ǫ logn−1 M

M

for some constant c(n).

Proof. The set S̃3,i consists of points x ∈ ℜn with

‖x‖ ∈ [a, b]

a =
√

2 logM − n log logM − 2 log ǫ+ i log 4− n log(2π)

b =
√

2 logM − n log logM − 2 log ǫ+ (i+ 1) log 4− n log(2π). (79)
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Moreover,

p(x) ≤ 2−i ǫ log
n/2 M

M
(80)

for x ∈ S̃3,i. Using the mean value theorem for a and b we have for 0 ≤ i ≤ i∗,

b− a ≤ 4√
logM

(81)

after some threshold M0(n, ǫ). Also, we may take ‖x‖ ≤
√
3 logM for 0 ≤ i ≤ i∗

as the term 2 logM inside the square root (79) grows faster than the other terms.
Then

λ(S̃3,i) = nVn

∫ b

a

xn−1dx ≤ 3n/2−1/2nVn(b− a) logn/2−1/2 M

≤ 3n/2+3/2nVn log
n/2−1 M . (82)

Combining Equations (80)-(82), we have

P (X1 ∈ S̃3,i) =

∫

S̃3,i

p(x)dx ≤ 2−iλ(S̃3,i)
ǫ logn/2 M

M

≤ 2−i3n/2+3/2nVn
ǫ logn−1 M

M
.

Assessing the contributions from S̃3,i is convenient by using the function f
together with the small ball probability. The proof idea is essentially similar to
that used for S2 in Section 7, but because we need only an upper bound, the
proof is easier.

Lemma 17. Suppose that (2) holds and α > n. Then for some threshold
M0(n, α, k, ǫ), we have for M > M0 and 0 ≤ i ≤ i∗ that

∫

S̃3,i

E[dα1,k|X1 = x]p(x)dx ≤ c2−iǫ(log ǫ−1 + i+ 1)
logn−α/2−1 M

M

for some constant c(n, k, α).

Proof. We decompose

∫

S̃3,i

E[dα1,k|X1 = x]p(x)dx =

∫

S̃3,i

E[dα1,kI(d1,k ≤ 1)|X1 = x]p(x)dx

+

∫

S̃3,i

E[dα1,kI(d1,k > 1)|X1 = x]p(x)dx

= (I1 + I2)P (X1 ∈ S̃3,i)
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with

I1 = E[dα1,kI(d1,k ≤ 1)|X1 ∈ S̃3,i]

I2 = E[dα1,kI(d1,k > 1)|X1 ∈ S̃3,i].

P (X1 ∈ S̃3,i) was computed in Lemma 16.

1. The term I1

If 0 < r < 1, we have

‖x‖nωx(r) = (2π)−n/2‖x‖n
∫

B(x,r)

e−
1
2‖y‖

2

dy

= (2π)−n/2‖x‖n
∫

B(x,r)

e−
1
2‖y−x‖2− 1

2‖x‖
2−xT (y−x)dy

≥ e−
1
2 ‖x‖np(x)

∫

B(0,r)

e−xT ydy = e−
1
2 p(x)f(‖x‖r), (83)

where the function f was defined in Lemma 5. This implies that

d1,k ≤
f−1

(

e
1
2 ‖X1‖nωX1

(d1,k)

p(X1)

)

‖X1‖
. (84)

By taking M0 large enough, we may ensure that
√

logM ≤ ‖x‖ ≤
√

3 logM (85)

on x ∈ S̃3,i for 0 ≤ i ≤ i∗. Then by Lemma 6 and Equations (84)-(85),

E[dα1,kI(d1,k ≤ 1)|X1 = x] ≤ E[
f−1

(

e1/2‖X1‖nωX1
(d1,k)

p(X1)

)α

logα/2 M
|X1 = x]

≤ c1E[
1 + logα

(

1 +
2i+n+2MωX1

(d1,k)

ǫ

)

logα/2 M
|X1 = x]

for some constant c1(n, α). Now

log(1 + 2i+n+2ǫ−1MωX1
(d1,k)) ≤ (i+ n+ 2) log 2 + log ǫ−1 + log(2−i−n−2ǫ

+MωX1
(d1,k))

≤ (i+ n+ 2) log 2 + log ǫ−1 + log(1 +MωX1
(d1,k))

≤ (i+ n+ 2) log 2 + log ǫ−1 +MωX1
(d1,k)

recalling that 0 < ǫ < 1. The α-moment of the conditional expectation of the
last expression is bounded by c2(log ǫ

−1+ i+1) for some constant c2(n, k, α) by
Lemma 1 and Equation (13).
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2. The term I2
By Hölder’s inequality, Lemma 3 and Equation (85),

I2 ≤
√

E[d2α1,k|X1 ∈ S̃3,i]

√

P (d1,k > 1|X1 ∈ S̃3,i)

≤ c4 log
α/2 M

√

P (d1,k > 1|X1 ∈ S̃3,i)

for some constant c4(n, k, α). Equation (18) applies here: for x ∈ S̃3,i,

P (d1,k > 1|X1 = x) ≤
(

M

M − k − 1

)k ∫ M−k−1

(M−k−1)ωx(1)

e−y+(k−1) log ydy

≤ c5(n, k)e
−c5(n,k)

−1M

for some constant c5(n, k). It would be sufficient to show that for any j > 0,

sup
0≤i≤i∗,x∈S̃3,i

ωx(1)M log−j M → ∞ (86)

in the limit M → ∞. By Equations (83) and (85) taking into account that on
S̃3,i,

p(x) ≥ 2−i∗ ǫ log
n/2 M

M
≥ ǫ logn/2−α−1 M

2M
,

we have

ωx(1) ≥ e−
1
2
p(x)f(‖x‖)

‖x‖n ≥ e−
1
2

ǫ

4M logα+1 M
f(
√

logM)

≥ e−
1
2

ǫ

4M logα+1−n/2 M

∫

B(0,1)

e
√
logMy(1)

dy

≥ e−
1
2

ǫ

4M logα+1−n/2 M
λ(B(0, 1) ∩ {y ∈ ℜn : y(1) >

1

2
})e 1

2

√
logM .

The term e
1
2

√
logM approaches infinity faster than logj M for any j > 0. This

shows (86) and we conclude that I2 approaches ∞ faster than logj M (for any
j > 0) in the limit M → ∞.

The region S̃3,C is easier, because by taking i∗ as a large number, we are
able to control the probability of this set.

Lemma 18. Suppose that (2) holds and α > n. Then for some threshold
M0(n, k, α, ǫ) we have for M > M0, that

∫

S̃3,C

E[dα1,k|X1 = x]p(x)dx ≤ cǫ
logn−α/2−1 M

M

for some constant c(n, k, α).
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Proof. On S̃3,C we have

p(x) ≤ 2−i∗ ǫ log
n/2 M

M
≤ ǫ logn/2−α−1 M

M
.

We define
Ri = 2i+1S̃3,C \ 2iS̃3,C ,

where
2iS̃3,C = {x ∈ ℜn : 2−ix ∈ S̃3,C}.

We may assume that ‖x‖ ≤ 2
√
logM on R1 and consequently

‖x‖ ≤ 2i
√

logM

on Ri for any i > 0. Now by Lemma 3,
∫

Ri

E[dα1,k|X1 = x]p(x)dx ≤ c1

∫

Ri

(‖x‖α + 1)p(x)dx

≤ c1(2
iα logα/2 M + 1)

∫

Ri

p(x)dx

≤ 2iαc2 log
α/2 M

(

(2π)n/2ǫ logn/2−α−1 M

M

)22i

λ(Ri), (87)

where c1(n) is some constant, and to be exact,

c2 = 2(2π)−n/2c1.

The factor 2 comes from the fact that logα/2 M > 1 for M > 3 (which trivially
can be assumed without losing generality). λ(Ri) is roughly bounded by

λ(Ri) ≤ Vn sup
x∈Ri

‖x‖n ≤ 2niVn log
n/2 M .

By substitution into (87), we find out that

∫

S̃3,C

E[dα1,k|X1 = x]p(x)dx ≤
∞
∑

i=0

∫

Ri

E[dα1,k|X1 = x]p(x)dx

≤ c2Vnǫ
logn−α/2−1 M

M

∞
∑

i=0

2(n+α)i

(

(2π)n/2ǫ logn/2−α−1 M

M

)22i−1

and now it is rather obvious that the sum does not pose problems.

Lemma 19. Assume that (2) holds, α > n and ǫ < 1/2 (only small values of
ǫ matter in any case). Then there exists a threshold M0(n, k, α, ǫ) such that for
any M > M0(n, k, α, ǫ), we have

∫

S3

E[dα1,k|X1 = x]p(x)dx ≤ cǫ log ǫ−1 log
n−α/2−1 M

M

for some constant c(n, k, α).
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Proof. We decompose

∫

S3

E[dα1,k|X1 = x]p(x)dx =

i∗
∑

i=0

∫

S̃3,i

E[dα1,k|X1 = x]p(x)dx

+

∫

S̃3,C

E[dα1,k|X1 = x]p(x)dx.

By Lemma 17,

i∗
∑

i=0

∫

S̃3,i

E[dα1,k|X1 = x]p(x)dx ≤ cǫ
logn−α/2−1 M

M

∞
∑

i=0

2−i(log ǫ−1 + i+ 1).

Lemma 18 finalizes the proof.

9 Proof of Theorem 2

Previously we have examined the regions S1, S2 and S3, which were defined in
terms of ǫ and M . We decompose

(M logα/2+1−n M)E[dα1,k] = M logα/2+1−n M(

∫

S1

E[dα1,k|X1 = x]p(x)dx

+

∫

S2

E[dα1,k|X1 = x]p(x)dx+

∫

S3

E[dα1,k|X1 = x]p(x)dx)

= I1,ǫ,M + I2,ǫ,M + I3,ǫ,M .

with

I1,ǫ,M = M logα/2+1−n M

∫

S1

E[dα1,k|X1 = x]p(x)dx

I2,ǫ,M = M logα/2+1−n M

∫

S2

E[dα1,k|X1 = x]p(x)dx

I3,ǫ,M = M logα/2+1−n M

∫

S3

E[dα1,k|X1 = x]p(x)dx.

Lemmas 9 and 19 show that

lim
ǫ→0

lim sup
M→∞

I1,ǫ,M + I3,ǫ,M = 0.

Also by Lemma 15,

lim
ǫ→0

lim sup
M→∞

I2,ǫ,M =
2n−α/2−1nVn

(k − 1)!

∫ ∞

0

g

(

1

y

)

dy.

We conclude that

lim
M→∞

(M logα/2+1−n M)E[dα1,k] = lim
ǫ→0

lim
M→∞

(I1,ǫ,M + I2,ǫ,M + I3,ǫ,M )

=
2n−α/2−1nVn

(k − 1)!

∫ ∞

0

g

(

1

y

)

dy.
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