On Algebraic Multi-Group Spaces

Linfan Mao

Institute of Systems Science of Academy of Mathematics and Systems Chinese Academy of Scienceş, Beijing 100080, P.R.China E-mail: maolinfan@163.com

Abstract: A Smarandache multi-space is a union of n spaces A_1, A_2, \dots, A_n with some additional conditions holding. Combining classical of a group with Smarandache multi-spaces, the conception of a multi-group space is introduced in this paper, which is a generalization of the classical algebraic structures, such as the group, filed, body, \dots , etc.. Similar to groups, some characteristics of a multi-group space are obtained in this paper.

Key words: multi-space, group, multi-group space, theorem.

Classification: AMS(2000) 05C15, 20H15, 51D99, 51M05

1.Introduction

The notion of multi-spaces is introduced by Smarandache in [5] under his idea of hybrid mathematics: *combining different fields into a unifying field*([6]). Today, this idea is widely accepted by the world of sciences. For mathematics, definite or exact solution under a given condition is not the only object for mathematician. New creation power has emerged and new era for the mathematics has come now.

A Smarandache multi-space is defined by

Definition 1.1 For any integer $i, 1 \leq i \leq n$ let A_i be a set with ensemble of law L_i , and the intersection of k sets $A_{i_1}, A_{i_2}, \dots, A_{i_k}$ of them constrains the law $I(A_{i_1}, A_{i_2}, \dots, A_{i_k})$. Then the union of $A_i, 1 \leq i \leq n$

$$\widetilde{A} = \bigcup_{i=1}^{n} A_i$$

is called a multi-space.

The conception of multi-group space is a generalization of the classical algebraic structures, such as the group, filed, body, \cdots , etc., which is defined as follows.

Definition 1.2 Let $\tilde{G} = \bigcup_{i=1}^{n} G_i$ be a complete multi-space with a binary operation set $O(\tilde{G}) = \{ \times_i, 1 \le i \le n \}$. If for any integer $i, 1 \le i \le n$, $(G_i; \times_i)$ is a group and for $\forall x, y, z \in \tilde{G}$ and any two binary operations \times and $\circ, \times \neq \circ$, there is one operation,

for example the operation \times satisfying the distribution law to the operation \circ if their operation results exist, i.e.,

$$x \times (y \circ z) = (x \times y) \circ (x \times z),$$

$$(y \circ z) \times x = (y \times x) \circ (z \times x),$$

then \tilde{G} is called a multi-group space.

Remark: The following special cases convince us that multi-group spaces are generalization of group, field and body, \cdots , etc..

(i) If n = 1, then $\tilde{G} = (G_1; \times_1)$ is just a group.

(ii) If $n = 2, G_1 = G_2 = \tilde{G}$, Then \tilde{G} is a body. If $(G_1; \times_1)$ and $(G_2; \times_2)$ are commutative groups, then \tilde{G} is a field.

Notice that in [7][8] various bispaces, such as bigroup, bisemigroup, biquasigroup, biloop, bigroupoid, biring, bisemiring, bivector, bisemivector, binear-ring, \cdots , etc., consider two operation on two different sets are introduced.

2. Characteristics of multi-group spaces

For a multi-group space \widetilde{G} and a subset $\widetilde{G}_1 \subset \widetilde{G}$, if \widetilde{G}_1 is also a multi-group space under a subset $O(\widetilde{G}_1), O(\widetilde{G}_1) \subset O(\widetilde{G})$, then \widetilde{G} is called a *multi-group subspace*, denoted by $\widetilde{G}_1 \preceq \widetilde{G}$. We have the following criterion for the multi-group subspaces.

Theorem 2.1 For a multi-group space $\widetilde{G} = \bigcup_{i=1}^{n} G_i$ with an operation set $O(\widetilde{G}) = \{\times_i | 1 \leq i \leq n\}$, a subset $\widetilde{G}_1 \subset \widetilde{G}$ is a multi-group subspace if and only if for any integer $k, 1 \leq k \leq n$, $(\widetilde{G}_1 \cap G_k; \times_k)$ is a subgroup of $(G_k; \times_k)$ or $\widetilde{G}_1 \cap G_k = \emptyset$.

Proof If \widetilde{G}_1 is a multi-group space with the operation set $O(\widetilde{G}_1) = \{\times_{i_j} | 1 \leq j \leq s\} \subset O(\widetilde{G})$, then

$$\widetilde{G}_1 = \bigcup_{i=1}^n (\widetilde{G}_1 \bigcap G_i) = \bigcup_{j=1}^s G'_{i_j}$$

where $G'_{i_j} \leq G_{i_j}$ and $(G_{i_j}; \times_{i_j})$ is a group. Whence, if $\widetilde{G}_1 \cap G_k \neq \emptyset$, then there exist an integer $l, k = i_l$ such that $\widetilde{G}_1 \cap G_k = G'_{i_l}$, i.e., $(\widetilde{G}_1 \cap G_k; \times_k)$ is a subgroup of $(G_k; \times_k)$.

Now if for any integer k, $(\widetilde{G}_1 \cap G_k; \times_k)$ is a subgroup of $(G_k; \times_k)$ or $\widetilde{G}_1 \cap G_k = \emptyset$, let N denote the index set k with $\widetilde{G}_1 \cap G_k \neq \emptyset$. Then

$$\widetilde{G}_1 = \bigcup_{j \in N} (\widetilde{G}_1 \bigcap G_j)$$

and $(\widetilde{G}_1 \cap G_j, \times_j)$ is a group. Since $\widetilde{G}_1 \subset \widetilde{G}$ and $O(\widetilde{G}_1) \subset O(\widetilde{G})$, the associative law and distribute law are true for the \widetilde{G}_1 . Therefore, \widetilde{G}_1 is a multi-group subspace of \widetilde{G} . \natural

For a finite multi-group subspace, we have the following criterion.

Theorem 2.2 Let \widetilde{G} be a finite multi-group space with an operation set $O(\widetilde{G}) = \{\times_i | 1 \leq i \leq n\}$. A subset \widetilde{G}_1 of \widetilde{G} is a multi-group subspace under an operation subset $O(\widetilde{G}_1) \subset O(\widetilde{G})$ if and only if for each operation \times in $O(\widetilde{G}_1)$, $(\widetilde{G}_1; \times)$ is complete.

Proof Notice that for a multi-group space \widetilde{G} , its each multi-group subspace \widetilde{G}_1 is complete.

Now if \widetilde{G}_1 is a complete set under each operation \times_i in $O(\widetilde{G}_1)$, we know that $(\widetilde{G}_1 \cap G_i; \times_i)$ is a group (see also [9]) or an empty set. Whence, we get that

$$\widetilde{G}_1 = \bigcup_{i=1}^n (\widetilde{G}_1 \bigcap G_i).$$

Therefore, \widetilde{G}_1 is a multi-group subspace of \widetilde{G} under the operation set $O(\widetilde{G}_1)$.

For a multi-group subspace \widetilde{H} of the multi-group space $\widetilde{G}, g \in \widetilde{G}$, define

$$g\widetilde{H} = \{g \times h | h \in \widetilde{H}, x \in O(\widetilde{H})\}.$$

Then for $\forall x, y \in \tilde{G}$,

$$x\widetilde{H} \bigcap y\widetilde{H} = \emptyset \text{ or } x\widetilde{H} = y\widetilde{H}.$$

In fact, if $x\widetilde{H} \cap y\widetilde{H} \neq \emptyset$, let $z \in x\widetilde{H} \cap y\widetilde{H}$, then there exist elements $h_1, h_2 \in \widetilde{H}$ and operations \times_i and \times_j such that

$$z = x \times_i h_1 = y \times_j h_2.$$

Since \widetilde{H} is a multi-group subspace, $(\widetilde{H} \cap G_i; \times_i)$ is a subgroup. Whence, there exists an inverse element h_1^{-1} in $(\widetilde{H} \cap G_i; \times_i)$. We have that

$$x \times_i h_1 \times_i h_1^{-1} = y \times_j h_2 \times_i h_1^{-1}.$$

That is,

$$x = y \times_j h_2 \times_i h_1^{-1}.$$

Whence,

 $x\widetilde{H}\subseteq y\widetilde{H}.$

Similarly, we can also get that

$$x\widetilde{H} \supseteq y\widetilde{H}.$$

Therefore, we get that

$$x\widetilde{H} = y\widetilde{H}.$$

Denote the union of two set A and B by $A \bigoplus B$ if $A \cap B = \emptyset$. Then we get the following result by the previous proof.

Theorem 2.3 For any multi-group subspace \widetilde{H} of a multi-group space \widetilde{G} , there is a representation set $T, T \subset \widetilde{G}$, such that

$$\widetilde{G} = \bigoplus_{x \in T} x \widetilde{H}$$

For the case of finite groups, since there is only one binary operation \times and $|x\widetilde{H}| = |y\widetilde{H}|$ for any $x, y \in \widetilde{G}$, We get the following corollary, which is just Lagrange theorem for finite groups.

Corollary 2.1(Lagrange theorem) For any finite group G, if H is a subgroup of G, then |H| is a divisor of |G|.

For a multi-group space \widetilde{G} and $g \in \widetilde{G}$, denote by $\overrightarrow{O(g)}$ all the binary operations associative with g and by $\widetilde{G}(\times)$ the elements associative with the binary operation \times . For a multi-group subspace \widetilde{H} of \widetilde{G} , $\times \in O(\widetilde{H})$ and $\forall g \in \widetilde{G}(\times)$, if $\forall h \in \widetilde{H}$,

$$g \times h \times g^{-1} \in \widetilde{H},$$

then call \widetilde{H} a normal multi-group subspace of \widetilde{G} , denoted by $\widetilde{H} \triangleleft \widetilde{G}$. If \widetilde{H} is a normal multi-group subspace of \widetilde{G} , similar to the normal subgroup of a group, it can be shown that $g \times \widetilde{H} = \widetilde{H} \times g$, where $g \in \widetilde{G}(\times)$. We have the following result.

Theorem 2.4 Let $\tilde{G} = \bigcup_{i=1}^{n} G_i$ be a multi-group space with an operation set $O(\tilde{G}) = \{\times_i | 1 \le i \le n\}$. Then a multi-group subspace \widetilde{H} of \widetilde{G} is normal if and only if for any integer $i, 1 \le i \le n$, $(\widetilde{H} \cap G_i; \times_i)$ is a normal subgroup of $(G_i; \times_i)$ or $\widetilde{H} \cap G_i = \emptyset$.

Proof We have known that

$$\widetilde{H} = \bigcup_{i=1}^{n} (\widetilde{H} \bigcap G_i).$$

If for any integer $i, 1 \leq i \leq n$, $(\widetilde{H} \cap G_i; \times_i)$ is a normal subgroup of $(G_i; \times_i)$, then we know that for $\forall g \in G_i, 1 \leq i \leq n$,

$$g \times_i (\widetilde{H} \bigcap G_i) \times_i g^{-1} = \widetilde{H} \bigcap G_i.$$

Whence, for $\forall \circ \in O(\widetilde{H})$ and $\forall g \in \overrightarrow{\widetilde{G}(\circ)}$,

$$g \circ \widetilde{H} \circ g^{-1} = \widetilde{H}.$$

That is, \widetilde{H} is a normal multi-group subspace of \widetilde{G} .

Now if \tilde{H} is a normal multi-group subspace of \tilde{G} , then by definition, we know that for $\forall \circ \in O(\widetilde{H})$ and $\forall g \in \tilde{G}(\circ)$,

$$g \circ \widetilde{H} \circ g^{-1} = \widetilde{H}$$

Not loss of generality, we assume that $\circ = \times_k$, then we get that

$$g \times_k (\widetilde{H} \bigcap G_k) \times_k g^{-1} = \widetilde{H} \bigcap G_k$$

Therefore, $(\widetilde{H} \cap G_k; \times_k)$ is a normal subgroup of (G_k, \times_k) . For operation \circ is chosen arbitrarily, we know that for any integer $i, 1 \leq i \leq n, (\widetilde{H} \cap G_i; \times_i)$ is a normal subgroup of $(G_i; \times_i)$ or an empty set. \natural

For a multi-group space \tilde{G} with an operation set $O(\tilde{G}) = \{\times_i | 1 \leq i \leq n\}$, an order of operations in $O(\tilde{G})$ is said an *oriented operation sequence*, denoted by $\vec{O}(\tilde{G})$. For example, if $O(\tilde{G}) = \{\times_1, \times_2 \times_3\}$, then $\times_1 \succ \times_2 \succ \times_3$ is an oriented operation sequence and $\times_2 \succ \times_1 \succ \times_3$ is also an oriented operation sequence.

For an oriented operation sequence $\overrightarrow{O}(\widetilde{G})$, we construct a series of normal multigroup subspaces

$$\widetilde{G} \triangleright \widetilde{G}_1 \triangleright \widetilde{G}_2 \triangleright \dots \triangleright \widetilde{G}_m = \{1_{\times_n}\}$$

by the following programming.

STEP 1: Construct a series

$$\widetilde{G} \triangleright \widetilde{G}_{11} \triangleright \widetilde{G}_{12} \triangleright \cdots \triangleright \widetilde{G}_{1l_1}$$

under the operation \times_1 .

STEP 2: If a series

$$\widetilde{G}_{(k-1)l_1} \triangleright \widetilde{G}_{k1} \triangleright \widetilde{G}_{k2} \triangleright \cdots \triangleright \widetilde{G}_{kl_k}$$

has be constructed under the operation \times_k and $\tilde{G}_{kl_k} \neq \{1_{\times_n}\}$, then construct a series

$$\widetilde{G}_{kl_1} \triangleright \widetilde{G}_{(k+1)1} \triangleright \widetilde{G}_{(k+1)2} \triangleright \cdots \triangleright \widetilde{G}_{(k+1)l_{k+1}}$$

under the operation \times_{k+1} .

This programming is terminated until the series

$$\widetilde{G}_{(n-1)l_1} \triangleright \widetilde{G}_{n1} \triangleright \widetilde{G}_{n2} \triangleright \dots \triangleright \widetilde{G}_{nl_n} = \{1_{\times_n}\}$$

has be constructed under the operation \times_n .

The number m is called the length of the series of normal multi-group subspaces. For a series

$$\widetilde{G} \triangleright \widetilde{G}_1 \triangleright \widetilde{G}_2 \triangleright \dots \triangleright \widetilde{G}_n = \{1_{\times_n}\}$$

of normal multi-group subspaces, if for any integer $k, s, 1 \le k \le n, 1 \le s \le l_k$, there exists a normal multi-group subspace \widetilde{H} such that

$$\widetilde{G}_{ks} \triangleright \widetilde{H} \triangleright \widetilde{G}_{k(s+1)},$$

then $\widetilde{H} = \widetilde{G}_{ks}$ or $\widetilde{H} = \widetilde{G}_{k(s+1)}$, we call this series is *maximal*. For a maximal series of finite normal multi-group subspaces, we have the following result.

Theorem 2.5 For a finite multi-group space $\tilde{G} = \bigcup_{i=1}^{n} G_i$ and an oriented operation sequence $\vec{O}(\tilde{G})$, the length of maximal series of normal multi-group subspaces is a constant, only dependent on \tilde{G} itself.

Proof The proof is by induction on the integer n.

For n = 1, the maximal series of normal multi-group subspaces is just a composition series of a finite group. By Jordan-Hölder theorem (see [1] or [3]), we know the length of a composition series is a constant, only dependent on \tilde{G} . Whence, the assertion is true in the case of n = 1.

Assume the assertion is true for cases of $n \leq k$. We prove it is true in the case of n = k + 1. Not loss of generality, assume the order of binary operations in $\overrightarrow{O}(\widetilde{G})$ being $\times_1 \succ \times_2 \succ \cdots \succ \times_n$ and the composition series of the group (G_1, \times_1) being

$$G_1 \triangleright G_2 \triangleright \cdots \triangleright G_s = \{1_{\times_1}\}.$$

By Jordan-Hölder theorem, we know the length of this composition series is a constant, dependent only on $(G_1; \times_1)$. According to Theorem 3.6, we know a maximal series of normal multi-group subspace of \tilde{G} gotten by the STEP 1 under the operation \times_1 is

$$\widetilde{G} \triangleright \widetilde{G} \setminus (G_1 \setminus G_2) \triangleright \widetilde{G} \setminus (G_1 \setminus G_3) \triangleright \cdots \triangleright \widetilde{G} \setminus (G_1 \setminus \{1_{\times_1}\}).$$

Notice that $\tilde{G} \setminus (G_1 \setminus \{1_{\times_1}\})$ is still a multi-group space with less or equal to k operations. By the induction assumption, we know the length of its maximal series of normal multi-group subspaces is only dependent on $\tilde{G} \setminus (G_1 \setminus \{1_{\times_1}\})$, is a constant. Therefore, the length of a maximal series of normal multi-group subspaces is also a constant, only dependent on \tilde{G} .

Applying the induction principle, we know that the length of a maximal series of normal multi-group subspaces of \tilde{G} is a constant under an oriented operations $\vec{O}(\tilde{G})$, only dependent on \tilde{G} itself. \natural

As a special case, we get the following corollary.

Corollary 2.2(Jordan-Hölder theorem) For a finite group G, the length of the composition series is a constant, only dependent on G.

3. Open Problems on Multi-group Spaces

Problem 3.1 Establish a decomposition theory for multi-group spaces.

In group theory, we know the following decomposition results([1][3]) for a group.

Let G be a finite Ω -group. Then G can be uniquely decomposed as a direct product of finite non-decomposition Ω -subgroups.

Each finite Abelian group is a direct product of its Sylow p-subgroups.

Then Problem 3.1 can be restated as follows.

Whether can we establish a decomposition theory for multi-group spaces similar to above two results in group theory, especially, for finite multi-group spaces?

Problem 3.2 Define the conception of simple multi-group spaces for multi-group spaces. For finite multi-group spaces, whether can we find all simple multi-group spaces?

For finite groups, we know that there are four simple group classes ([9]):

Class 1: the cyclic groups of prime order;

Class 2:the alternating groups $A_n, n \ge 5$;

Class 3: the 16 groups of Lie types;

Class 4: the 26 sporadic simple groups.

Problem 2.3 Determine the structure properties of a multi-group space generated by finite elements.

For a subset A of a multi-group space \tilde{G} , define its spanning set by

$$\langle A \rangle = \{ a \circ b | a, b \in A \text{ and } \circ \in O(\tilde{G}) \}.$$

If there exists a subset $A \subset \tilde{G}$ such that $\tilde{G} = \langle A \rangle$, then call \tilde{G} is generated by A. Call \tilde{G} is *finitely generated* if there exist a finite set A such that $\tilde{G} = \langle A \rangle$. Then Problem 2.3 can be restated by

Can we establish a finite generated multi-group theory similar to the finite generated group theory?

References

 G.Birkhoff and S.Mac Lane, A Survey of Modern Algebra, Macmillan Publishing Co., Inc, 1977.

- [2] Daniel Deleanu, A Dictionary of Smarandache Mathematics, Buxton University Press, London & New York, 2004.
- [3] Lingzhao Nie and Shishun Ding, Introduction to Algebra, Higher Education Publishing Press, 1994.
- [4] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
- [5] F.Smarandache, Mixed noneuclidean geometries, *eprint arXiv: math/0010119*, 10/2000.
- [6] F.Smarandache, A Unifying Field in Logics. Neutrosopy: Netwosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999.
- 7]] W.B.Vasantha Kandasamy, *Bialgebraic structures and Smarandache bialgebraic structures*, American Research Press, 2003.
- [8] W.B.Vasantha Kandasamy and F.Smarandache, Basic Neutrosophic Algebraic Structures and Their Applications to Fuzzy and Neutrosophic Models, HEXIS, Church Rock, 2004.
- [9] Mingyao Xu, Introduction to Group Theory(I)(II), Science Publish Press, Beijing ,1999.