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Abstract: A Smarandache multi-space is a union of n spaces
A1, A2, · · · , An with some additional conditions holding. Combining clas-
sical of a group with Smarandache multi-spaces, the conception of a
multi-group space is introduced in this paper, which is a generalization
of the classical algebraic structures, such as the group, filed, body, · · ·,
etc.. Similar to groups, some characteristics of a multi-group space are
obtained in this paper.
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1.Introduction

The notion of multi-spaces is introduced by Smarandache in [5] under his idea
of hybrid mathematics: combining different fields into a unifying field([6]). Today,
this idea is widely accepted by the world of sciences. For mathematics, definite or
exact solution under a given condition is not the only object for mathematician.
New creation power has emerged and new era for the mathematics has come now.

A Smarandache multi-space is defined by

Definition 1.1 For any integer i, 1 ≤ i ≤ n let Ai be a set with ensemble of
law Li, and the intersection of k sets Ai1 , Ai2 , · · · , Aik of them constrains the law
I(Ai1, Ai2 , · · · , Aik). Then the union of Ai, 1 ≤ i ≤ n

Ã =
n⋃

i=1

Ai

is called a multi-space.

The conception of multi-group space is a generalization of the classical algebraic
structures, such as the group, filed, body, · · ·, etc., which is defined as follows.

Definition 1.2 Let G̃ =
n⋃

i=1
Gi be a complete multi-space with a binary operation set

O(G̃) = {×i, 1 ≤ i ≤ n}. If for any integer i, 1 ≤ i ≤ n, (Gi;×i) is a group and for
∀x, y, z ∈ G̃ and any two binary operations × and ◦, × 6= ◦, there is one operation,
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for example the operation × satisfying the distribution law to the operation ◦ if their
operation results exist , i.e.,

x × (y ◦ z) = (x × y) ◦ (x × z),

(y ◦ z) × x = (y × x) ◦ (z × x),

then G̃ is called a multi-group space.

Remark: The following special cases convince us that multi-group spaces are
generalization of group, field and body, · · ·, etc..

(i) If n = 1, then G̃ = (G1;×1) is just a group.
(ii) If n = 2, G1 = G2 = G̃, Then G̃ is a body. If (G1;×1) and (G2;×2) are

commutative groups, then G̃ is a field.

Notice that in [7][8] various bispaces, such as bigroup, bisemigroup, biquasigroup,
biloop, bigroupoid, biring, bisemiring, bivector, bisemivector, binear-ring, · · ·, etc.,
consider two operation on two different sets are introduced.

2. Characteristics of multi-group spaces

For a multi-group space G̃ and a subset G̃1 ⊂ G̃, if G̃1 is also a multi-group
space under a subset O(G̃1), O(G̃1) ⊂ O(G̃), then G̃ is called a multi-group subspace,
denoted by G̃1 � G̃. We have the following criterion for the multi-group subspaces.

Theorem 2.1 For a multi-group space G̃ =
n⋃

i=1
Gi with an operation set O(G̃) =

{×i|1 ≤ i ≤ n}, a subset G̃1 ⊂ G̃ is a multi-group subspace if and only if for any
integer k, 1 ≤ k ≤ n, (G̃1

⋂
Gk;×k) is a subgroup of (Gk;×k) or G̃1

⋂
Gk = ∅.

Proof If G̃1 is a multi-group space with the operation set O(G̃1) = {×ij |1 ≤ j ≤

s} ⊂ O(G̃), then

G̃1 =
n⋃

i=1

(G̃1

⋂
Gi) =

s⋃

j=1

G′

ij

where G′

ij
� Gij and (Gij ;×ij ) is a group. Whence, if G̃1

⋂
Gk 6= ∅, then there exist

an integer l, k = il such that G̃1
⋂

Gk = G′

il
, i.e., (G̃1

⋂
Gk;×k) is a subgroup of

(Gk;×k).
Now if for any integer k, (G̃1

⋂
Gk;×k) is a subgroup of (Gk;×k) or G̃1

⋂
Gk = ∅,

let N denote the index set k with G̃1
⋂

Gk 6= ∅. Then

G̃1 =
⋃

j∈N

(G̃1

⋂
Gj)
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and (G̃1
⋂

Gj ,×j) is a group. Since G̃1 ⊂ G̃ and O(G̃1) ⊂ O(G̃), the associative law

and distribute law are true for the G̃1. Therefore, G̃1 is a multi-group subspace of
G̃. ♮

For a finite multi-group subspace, we have the following criterion.

Theorem 2.2 Let G̃ be a finite multi-group space with an operation set O(G̃) =
{×i|1 ≤ i ≤ n}. A subset G̃1 of G̃ is a multi-group subspace under an operation
subset O(G̃1) ⊂ O(G̃) if and only if for each operation × in O(G̃1), (G̃1;×) is
complete.

Proof Notice that for a multi-group space G̃, its each multi-group subspace G̃1

is complete.
Now if G̃1 is a complete set under each operation ×i in O(G̃1), we know that

(G̃1
⋂

Gi;×i) is a group (see also [9]) or an empty set. Whence, we get that

G̃1 =
n⋃

i=1

(G̃1

⋂
Gi).

Therefore, G̃1 is a multi-group subspace of G̃ under the operation set O(G̃1). ♮

For a multi-group subspace H̃ of the multi-group space G̃, g ∈ G̃, define

gH̃ = {g × h|h ∈ H̃,× ∈ O(H̃)}.

Then for ∀x, y ∈ G̃,

xH̃
⋂

yH̃ = ∅ or xH̃ = yH̃.

In fact, if xH̃
⋂

yH̃ 6= ∅, let z ∈ xH̃
⋂

yH̃, then there exist elements h1, h2 ∈ H̃ and
operations ×i and ×j such that

z = x ×i h1 = y ×j h2.

Since H̃ is a multi-group subspace, (H̃
⋂

Gi;×i) is a subgroup. Whence, there
exists an inverse element h−1

1 in (H̃
⋂

Gi;×i). We have that

x ×i h1 ×i h−1
1 = y ×j h2 ×i h−1

1 .

That is,

x = y ×j h2 ×i h−1
1 .

Whence,

xH̃ ⊆ yH̃.

Similarly, we can also get that
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xH̃ ⊇ yH̃.

Therefore, we get that

xH̃ = yH̃.

Denote the union of two set A and B by A
⊕

B if A
⋂

B = ∅. Then we get the
following result by the previous proof.

Theorem 2.3 For any multi-group subspace H̃ of a multi-group space G̃, there is
a representation set T , T ⊂ G̃, such that

G̃ =
⊕

x∈T

xH̃.

For the case of finite groups, since there is only one binary operation × and
|xH̃| = |yH̃| for any x, y ∈ G̃, We get the following corollary, which is just Lagrange
theorem for finite groups.

Corollary 2.1(Lagrange theorem) For any finite group G, if H is a subgroup of G,
then |H| is a divisor of |G|.

For a multi-group space G̃ and g ∈ G̃, denote by
−−→
O(g) all the binary operations

associative with g and by G̃(×) the elements associative with the binary operation
×. For a multi-group subspace H̃ of G̃, × ∈ O(H̃) and ∀g ∈ G̃(×), if ∀h ∈ H̃,

g × h × g−1 ∈ H̃,

then call H̃ a normal multi-group subspace of G̃, denoted by H̃ ⊳ G̃. If H̃ is a normal
multi-group subspace of G̃, similar to the normal subgroup of a group, it can be
shown that g × H̃ = H̃ × g, where g ∈ G̃(×). We have the following result.

Theorem 2.4 Let G̃ =
n⋃

i=1
Gi be a multi-group space with an operation set O(G̃) =

{×i|1 ≤ i ≤ n}. Then a multi-group subspace H̃ of G̃ is normal if and only if for any
integer i, 1 ≤ i ≤ n, (H̃

⋂
Gi;×i) is a normal subgroup of (Gi;×i) or H̃

⋂
Gi = ∅.

Proof We have known that

H̃ =
n⋃

i=1

(H̃
⋂

Gi).

If for any integer i, 1 ≤ i ≤ n, (H̃
⋂

Gi;×i) is a normal subgroup of (Gi;×i),
then we know that for ∀g ∈ Gi, 1 ≤ i ≤ n,

g ×i (H̃
⋂

Gi) ×i g−1 = H̃
⋂

Gi.
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Whence, for ∀◦ ∈ O(H̃) and ∀g ∈
−−→
G̃(◦),

g ◦ H̃ ◦ g−1 = H̃.

That is, H̃ is a normal multi-group subspace of G̃.
Now if H̃ is a normal multi-group subspace of G̃, then by definition, we know

that for ∀◦ ∈ O(H̃) and ∀g ∈ G̃(◦),

g ◦ H̃ ◦ g−1 = H̃.

Not loss of generality, we assume that ◦ = ×k, then we get that

g ×k (H̃
⋂

Gk) ×k g−1 = H̃
⋂

Gk.

Therefore, (H̃
⋂

Gk;×k) is a normal subgroup of (Gk,×k). For operation ◦ is chosen
arbitrarily, we know that for any integer i, 1 ≤ i ≤ n, (H̃

⋂
Gi;×i) is a normal

subgroup of (Gi;×i) or an empty set. ♮

For a multi-group space G̃ with an operation set O(G̃) = {×i| 1 ≤ i ≤ n},
an order of operations in O(G̃) is said an oriented operation sequence, denoted by
−→
O (G̃). For example, if O(G̃) = {×1,×2×3}, then ×1 ≻ ×2 ≻ ×3 is an oriented
operation sequence and ×2 ≻ ×1 ≻ ×3 is also an oriented operation sequence.

For an oriented operation sequence
−→
O (G̃), we construct a series of normal multi-

group subspaces

G̃ ⊲ G̃1 ⊲ G̃2 ⊲ · · · ⊲ G̃m = {1×n
}

by the following programming.

STEP 1: Construct a series

G̃ ⊲ G̃11 ⊲ G̃12 ⊲ · · · ⊲ G̃1l1

under the operation ×1.

STEP 2: If a series

G̃(k−1)l1 ⊲ G̃k1 ⊲ G̃k2 ⊲ · · · ⊲ G̃klk

has be constructed under the operation ×k and G̃klk 6= {1×n
}, then construct a series

G̃kl1 ⊲ G̃(k+1)1 ⊲ G̃(k+1)2 ⊲ · · · ⊲ G̃(k+1)lk+1

under the operation ×k+1.
This programming is terminated until the series

G̃(n−1)l1 ⊲ G̃n1 ⊲ G̃n2 ⊲ · · · ⊲ G̃nln = {1×n
}

has be constructed under the operation ×n.
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The number m is called the length of the series of normal multi-group subspaces.
For a series

G̃ ⊲ G̃1 ⊲ G̃2 ⊲ · · · ⊲ G̃n = {1×n
}

of normal multi-group subspaces, if for any integer k, s, 1 ≤ k ≤ n, 1 ≤ s ≤ lk, there
exists a normal multi-group subspace H̃ such that

G̃ks ⊲ H̃ ⊲ G̃k(s+1),

then H̃ = G̃ks or H̃ = G̃k(s+1), we call this series is maximal. For a maximal series
of finite normal multi-group subspaces, we have the following result.

Theorem 2.5 For a finite multi-group space G̃ =
n⋃

i=1
Gi and an oriented operation

sequence
−→
O (G̃), the length of maximal series of normal multi-group subspaces is a

constant, only dependent on G̃ itself.

Proof The proof is by induction on the integer n.
For n = 1, the maximal series of normal multi-group subspaces is just a compo-

sition series of a finite group. By Jordan-Hölder theorem (see [1] or [3]), we know
the length of a composition series is a constant, only dependent on G̃. Whence, the
assertion is true in the case of n = 1.

Assume the assertion is true for cases of n ≤ k. We prove it is true in the case
of n = k + 1. Not loss of generality, assume the order of binary operations in

−→
O (G̃)

being ×1 ≻ ×2 ≻ · · · ≻ ×n and the composition series of the group (G1,×1) being

G1 ⊲ G2 ⊲ · · · ⊲ Gs = {1×1
}.

By Jordan-Hölder theorem, we know the length of this composition series is
a constant, dependent only on (G1;×1). According to Theorem 3.6, we know a
maximal series of normal multi-group subspace of G̃ gotten by the STEP 1 under
the operation ×1 is

G̃ ⊲ G̃ \ (G1 \ G2) ⊲ G̃ \ (G1 \ G3) ⊲ · · · ⊲ G̃ \ (G1 \ {1×1
}).

Notice that G̃ \ (G1 \ {1×1
}) is still a multi-group space with less or equal to k

operations. By the induction assumption, we know the length of its maximal series
of normal multi-group subspaces is only dependent on G̃\(G1\{1×1

}), is a constant.
Therefore, the length of a maximal series of normal multi-group subspaces is also a
constant, only dependent on G̃.

Applying the induction principle, we know that the length of a maximal series
of normal multi-group subspaces of G̃ is a constant under an oriented operations
−→
O (G̃), only dependent on G̃ itself. ♮

As a special case, we get the following corollary.
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Corollary 2.2(Jordan-Hölder theorem) For a finite group G, the length of the
composition series is a constant, only dependent on G.

3. Open Problems on Multi-group Spaces

Problem 3.1 Establish a decomposition theory for multi-group spaces.

In group theory, we know the following decomposition results([1][3]) for a group.

Let G be a finite Ω-group. Then G can be uniquely decomposed as a direct product
of finite non-decomposition Ω-subgroups.

Each finite Abelian group is a direct product of its Sylow p-subgroups.

Then Problem 3.1 can be restated as follows.

Whether can we establish a decomposition theory for multi-group spaces similar
to above two results in group theory, especially, for finite multi-group spaces?

Problem 3.2 Define the conception of simple multi-group spaces for multi-group
spaces. For finite multi-group spaces, whether can we find all simple multi-group
spaces?

For finite groups, we know that there are four simple group classes ([9]):

Class 1: the cyclic groups of prime order;

Class 2:the alternating groups An, n ≥ 5;

Class 3: the 16 groups of Lie types;

Class 4: the 26 sporadic simple groups.

Problem 2.3 Determine the structure properties of a multi-group space generated
by finite elements.

For a subset A of a multi-group space G̃, define its spanning set by

〈A〉 = {a ◦ b|a, b ∈ A and ◦ ∈ O(G̃)}.

If there exists a subset A ⊂ G̃ such that G̃ = 〈A〉, then call G̃ is generated by A.
Call G̃ is finitely generated if there exist a finite set A such that G̃ = 〈A〉. Then
Problem 2.3 can be restated by

Can we establish a finite generated multi-group theory similar to the finite gen-
erated group theory?
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