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Föhringer Ring 6, D-80805 München

Abstract

The complete density matrix for all polarization configurations in the process

B∗ → tt̄, where B∗ is an off–shell Z or photon and t is the top quark, is

calculated numerically including oneloop QCD corrections, i.e. virtual and

real gluon contributions in O(αs). The analysis is done in the framework



of the helicity formalism. The results are particularly suited for top quark

production at the Linear Collider, but may be useful in other circumstances

as well. Relations to LEP and Tevatron physics are pointed out.



1. Introduction

Since its discovery in 1995 the top quark has been an object of increasing

interest. The production process for top quarks has been analyzed in various

theoretical studies both for pp and e+e− collisions. Early references on the

lowest order cross section are [1] for pp collsions and [2] for e+e− annihilation.

Higher order corrections to the cross section (total cross section, pT distri-

bution etc.) have been calculated by several groups, [3, 4] for pp and [5, 6]

for e+e− processes. These total cross sections do not involve information on

the top quark polarization. Such spin effects only come in, if one studies

distributions of top quark decay products. In some cases, spin effects have

been studied, i.e. the distribution of the top quark spin vector, in ref. [7] for

pp and in ref. [8] for e+e− collisions, but have not been extended to higher

orders. An interesting step in this direction has been taken in ref. [6], where a

Monte Carlo progam including final state spin terms has been written. That

article is in fact concerned with higher order corrections to τ+τ− production

in e+e− annihilation at lower energies and so does not take into account axial

vector couplings. More general results, including axial vector couplings, can

be found in [9], but not in the form of a Monte Carlo program. Ref. [9] is

an alternative to the approach presented here, although we think that our

approach is more enlightening, systematic and complete.

Nothing is known about higher order spin corrections to the processes which

induce top quark production in proton collisions (light quark annihilation

qq̄ → tt̄ and gluon–gluon fusion gg → tt̄). In contrast to e+e− annihilation,

there is initial state gluon radiation and this makes those calculations very

difficult. The simplifying feature of QCD corrections to heavy quark pro-

duction in e+e− annihilation is that the problem may be reduced to QCD

corrections to the vectorboson–heavy quark vertex. Recently, a method for



calculating QCD corrections to this vertex has been developed for the case of

top quark decay t → bW [10], i.e. the tbW vertex. In the present article this

method will be applied and generalized to e+e− → B(= Z, γ)∗ → tt̄. The

method is based on the helicity formalism and allows to obtain the QCD

corrections to the full spin density matrix of the process in a straightforward

and economical way. Furthermore, the results obtained for top quark decay

[10] can be easily combined with the results of this paper by using a master

formula Eq. (4) to obtain QCD corrections for any distribution of top quark

decay products in e+e− annihilation one may be interested in.

Within the Standard Model, all couplings of the top quark to other particles

are completely fixed by its mass and by a few quantum numbers. For exam-

ple, the coupling of the top quark to gluons is a pure vector coupling with

strength gs, the coupling to a vector boson is given by vBγµ + aBγµγ5 with

vZ = 1

2
− 4

3
s2

W , aZ = 1

2
, vγ = 4

3
sW cW , aγ = 0 etc. The couplings to the Z–

boson and to the photon are particularly important for this article, because

the process under consideration proceeds with an intermediate off–shell Z or

photon where Z∗ and γ∗ arise from the annihilation of two massless fermions

(e+ and e−). As will be seen, this latter fact strongly reduces the number of

independent helicity amplitudes and makes the results quite intuitive.

2. Helicity Description

Helicity amplitudes have been considered in many applications of phenom-

enological importance in high energy physics, like jet production [11], non-

standard effects in top quark processes [12], and many others. The idea is,

first to separate a given process into simpler subprocesses and then to explic-

itly evaluate all the possible spin amplitudes for the subprocesses in special



Lorentz and Dirac frames. The results can afterwards be put together with

the help of a master formula (to be given below). For example, consider the

lowest order helicity amplitudes for top quark production in e+e− annihila-

tion through a vector boson B∗ with either vector or axialvector couplings

vB or aB to the top quark. They are given by

MV (H, h, h̄) = vBūh(pt)γµvh̄(pt̄)ε
µ
H (1)

MA(H, h, h̄) = aBūh(pt)γµγ5vh̄(pt̄)ε
µ
H (2)

where h = ±1

2
, h̄ = ±1

2
and H = 0,±1 label the spin states for the top quark

and the B–boson. Note that for off-shell photons there is a longitudinal

component with H = 0 just as for a massive vector boson. In total, there

are 24 amplitudes to be considered, which can in principle be relevant to the

process.

Real gluon emission cannot be treated on the amplitude level, but only on

the level of the density matrix

ρIJ(H, h, h̄, H ′, h′, h̄′) := MI(H, h, h̄)M∗
J (H ′, h′, h̄′) (3)

where I and J denote either V (=vector) or A (=axialvector). The gluons

are supposed to be unpolarized. After hermiticity one has 78 independent

density matrix elements each for the V V , V A and AA case, a total of 234

amplitudes. As will be shown below, only 60 of these are relevant for e+e−

annihilation. Note that the amplitudes are only determined up to an overall

phase, and that this arbitrariness goes away when forming the density matrix

elements.

The full density matrix is in fact needed in the ’master formula’, if one

considers the combined production and decay process for the top quark.



Assume the general case, that top quarks are produced in some process ab →
tt̄ and then decay according to t → W+b and t̄ → W−b̄, where the W’s further

decay to light (massless) fermions, W+ → f1f̄2 and W− → f3f̄4. The cross

section is then given by the ’master formula’

σ =
∑

EXT

|
∑

INT

M(ha, hb, h, h̄)M(h, hW+)M(h̄, hW−)M(hW+)M(hW−)|2

(4)

where EXT = ha, hb denotes the spins of the external particles and INT =

h, h̄, hW+, hW− the spins of the internal particles of the process. M(ha, hb, h, h̄)

are the helicity amplitudes for the production process, M(h̄, hW−) for the de-

cay of the antitop quark, and M(hW+) and M(hW−) are the amplitudes for

the decay of the W+ and W−, respectively. The fact that the formula makes

no explicit reference to the spins of the massless fermions fi, i=1,2,3,4, has

the same reason as the non–appearance of the b–quark spins. Namely, the

hfi
are fixed by the V–A nature of the W decays, just as hb is fixed by the

V–A nature of the top decays (assuming massless b–quarks). Furthermore,

if one is not interested in the decay of the antitop or of the W’s, the corre-

sponding amplitudes and helicities will not appear in the above formulas. In

that case, the t̄ and/or the W’s will be one of the external (EXT) particles,

whose spins have to be summed over after taking the square in Eq. (4). Be-

sides neglecting the b–quark mass, it is also a good approximation in Eq. (4)

to take the internal particles (top quarks and W’s) on–shell, because off-shell

contributions are suppressed by powers of the width Γt and ΓW .

3. Deconstruction of the e+e− Production Cross Section

In contrast, the intermediate vector boson Z and γ must not be taken on–

shell. The general spin amplitude for the production part of the process
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Figure 1: Definition of the couplings

is

M(hp, he, h, h̄) =
MZ(hp, he, h, h̄)

Q2 − m2
Z

+
Mγ(hp, he, h, h̄)

Q2
(5)

where hp,e are the e± spins and Q2 is the square of the e+e− energy. These

amplitudes are now to be decomposed into the elementary amplitudes Eqs.

(1) and (2). The decompostion will be on the algebraic level only, and no

numerical analysis will be presented in this section, because we just want to

show how the elementary amplitudes enter the e+e− cross section. Afterwards

the complete oneloop QCD corrections to all the elementary amplitudes resp.

spin density matrix elements will be given (sections 5 and 6).

The two amplitudes MZ and Mγ in Eq. (5) have a decomposition of the form

MB(hp, he, h, h̄) =
∑

H

MB(hp, he, H)
1

Q2 − m2
B

MB(H, h, h̄) (6)

where the sum is over the Spins H = 0,±1 of the off-shell B–boson. In this

way the Btt̄ vertex amplitudes Eqs. (1) and (2) enter the cross section (4).

MB(hp, he, H) are the spin amplitudes for e+e− → B∗ and have a very simple



structure due to the approximate masslessness of e±. Namely, one has

MB(hp, he, H) =



























gB
−√
2

for (hp, he, H) = (+1

2
,−1

2
,−1)

gB
+√
2

for (hp, he, H) = (−1

2
, +1

2
, +1)

0 otherwise

(7)

where gB
± = vB

e ± aB
e are the left– and right–handed part of the lepton cou-

plings to the B, with vZ
e = −1

2
+ 2s2

W , aZ
e = −1

2
, vγ

e = −2sW cW , aγ
e = 0.

Furthermore, the spin quantization axis has been chosen to be the +z di-

rection. According to Eq. (7) not all of the amplitudes MB(H, h, h̄) are

picked up in Eq. (6) to give a nonzero contribution to the e+e− amplitudes

MB(hp, he, h, h̄). Fig. 1 gives a graphic view about what notations are used

for the couplings of the lowest order process. From this figure it becomes clear

that the amplitudes MB(H, h, h̄) are a linear combination ∼ vBMV + aBMA.

Altogether one gets:

MB(hp, he, h, h̄) =



























+
gB
−√
2
[vBMV (−1, h, h̄) + aBMA(−1, h, h̄)] hp = +1

2
, he = −1

2

− gB
+√
2
[vBMV (+1, h, h̄) + aBMA(+1, h, h̄)] hp = −1

2
, he = +1

2

0 otherwise (8)

One can now combine the contributions from γ and Z (cf. Eq. (5)):

M(hp, he, h, h̄) =



























v−MV (−1, h, h̄) + a−MA(−1, h, h̄) hp = +1

2
, he = −1

2

v+MV (+1, h, h̄) + a+MA(+1, h, h̄) hp = −1

2
, he = +1

2

0 otherwise (9)

where we have used the abbreviations v± = ∓ 1√
2
(

gZ
±

vZ

Q2−m2
Z

+
gγ
±

vγ

Q2 ) and a± =

∓ 1√
2

gZ
±

aZ

Q2−m2
Z

. According to Eqs. (4) and (9), if the e± beams are unpolarized,

the cross section is a sum of two terms, σ = σ− + σ+, where the first term is



due to e+e− helicities hp = +1

2
, he = −1

2
and the second term is due to e+e−

helicities hp = −1

2
, he = +1

2
. One has

σ± = |
∑

h,h̄

[v±MV (±1, h, h̄) + a±MA(±1, h, h̄)]D(h, h̄)|2 (10)

where the contributions from the decay amplitudes have been summarized

as D(h, h̄). When one carries out the modulus squared in Eq. (10), it

becomes apparent that in general all the density matrix elements of the

form MI(+1, h, h̄)MJ(+1, h′, h̄′)∗ and MI(−1, h, h̄)MJ (−1, h′, h̄′)∗ for IJ =

V V, V A + AV and AA are needed to calculate the cross section of the decay

products. Note that instead of V A we are using the explicitly hermitean

combination V A + AV . This is no restriction because to all orders in QCD

one has MV M∗
A = MAM∗

V . As will become explicit in section 5, the matrix

elements of H = +1 and H = −1 are related, so that only the first set

MI(+1, h, h̄)MJ(+1, h′, h̄′)∗ has to be calculated. For each combination IJ =

V V, V A + AV and AA there are 10 independent matrix elements in this set.

4. The Method

The results to be presented were obtained in the helicity formalism. Fur-

thermore, they concern the oneloop QCD corrections to the lowest order

matrix elements. The lowest order expressions are usually simple, whereas

the oneloop expressions, in particular for the case of hard gluons are quite

lenghty for arbitrary spin orientations of B, t and t̄ (the gluons are assumed

to be unpolarized) 1. Furthermore, the hard gluon contributions cannot be

treated on the level of amplitudes, because they have to be integrated over

the gluon’s energy and angles. One really has to go to the level of the (spin)

1see however ref. [13] for rather compact formulae



density matrix,

ρ(H, h, h̄, H ′, h′, h̄′) := M(H, h, h̄)M∗(H ′, h′, h̄′) (11)

to do the phase space integrations. There is, however, one circumstance

which simplifies the task. This is related to the fact, that the oneloop QCD

corrections to the total (spin–averaged) cross section for top quark produc-

tion are known [5, 14]. This allows to get rid of the infrared and collinear

singularities present in the matrix elements, by forming suitable singularity–

free combinations of the spin–dependent and the spin–averaged expressions.

The point is that the infrared and collinear singularities are ’universal’, i.e.

independent of the spin direction, so that they will drop out in suitable ratios

and differences. To be more explicit, consider the ratio

R(H, h, h̄, H ′, h′, h̄′) :=
ρ(H, h, h̄, H ′, h′, h̄′)

trρ
(12)

where the trace of the density matrix is given by

trρ =
∑

H,h,h̄

|M(H, h, h̄)|2 (13)

Now assume that each matrix element has the generic form ρ = T + αK

where T stands for the tree level term, K for the higher order correction and

α = CF
αs

2π
is the QCD coupling constant and CF = 4

3
. Assume similarly, that

trρ has the form trρ = Tall + αKall. Then the ratio ρ/trρ is given by

R =
ρ

trρ
=

T

Tall

+ α
KTall − TKall

T 2
all

+ O(α2) = LO + α HO (14)

It turns out that the difference KTall − TKall is free of infrared and collinear

(and ultraviolet) singularities. If calculated, it gives an elegant means to

determine higher order corrections to the density matrix [15]. In the formulas

and figures presented below, R will be written as R = LO + α HO where LO

and HO will be plotted as a function of mt/Q.



Finally note that the considerations in this section should in principle be

done for the three matrices ρV V , ρV A(= ρAV ) and ρAA separately. In the

case of V A it turns out that the trace of the density matrix vanishes (in

leading order and in higher order). It is therefore convenient to consider a

different linear combination, e.g. V A + AV + AA with a nonvanishing trρ,

and to apply the method Eq. (14) on that. Results for V A can afterwards

be reconstructed by taking the difference of V A+AV +AA and AA (see Eq.

(31) in the summary section).

5. Lowest Order Amplitudes and Virtual Corrections

I have calculated the eight needed amplitudes MI(+1, h, h̄), I = V, A as

defined in Eqs. (1) and (2) using the ’chiral representation’ of γ matrices, in

which γ5 =diag(−1,−1, 1, 1) etc. The results are presented in the rest frame

of the virtual B–boson where the momenta are given by

pB = (Q, 0, 0, 0) pt =
Q

2
(1, 0, 0, β) pt̄ =

Q

2
(1, 0, 0,−β)

(15)

with β2 = 1− 4m2
t

Q2 . An independent set of spinors for the top quarks is then

given by

ū+
1

2

(pt) = (a+, 0, a−, 0) ū− 1

2

(pt) = (0, a−, 0, a+)

v+
1

2

(pt̄) = (−a+, 0, a−, 0) v− 1

2

(pt̄) = (0,−a−, 0, a+)

where a2
± = Q

2
(1 ± β). The quantization axis of the B–boson spin is chosen

to be at an angle θ w.r.t. the top quark momentum, i.e. the polarization

vector for H = +1 is given by

ε+1 =
1√
2
(0, cos θ,−i,− sin θ) . (16)



The most general parametrization of polarization vectors would be

ε−1 = − eiφ

√
2
(0, cos φ cos θ − i sin φ, sinφ cos θ + i cos φ,− sin θ)

ε+1 = −ε∗−1

ε0 = −(0, sin θ cos φ, sin θ sin φ, cos θ) . (17)

but for the problem at hand one may choose φ = 0 without restriction. Note

further that although the off–shell B–boson has a longitudinal polarization

component, there is no contribution from longitudinal B′s to the e+e− cross

section, as has been shown in section 3. Nevertheless, for completeness and

curiosity, all the lowest order amplitudes are given here:

MV (0,−1

2
,−1

2
) = −2mt

Q
cos θ MA(0,−1

2
,−1

2
) = 0

MV (−1,−1

2
,−1

2
) =

√
2mt

Q
sin θeiφ MA(−1,−1

2
,−1

2
) = 0

MV (+1,−1

2
,−1

2
) = −

√
2mt

Q
sin θe−iφ MA(+1,−1

2
,−1

2
) = 0

MV (0,−1

2
, +1

2
) = sin θeiφ MA(0,−1

2
, +

1

2
) = β sin θeiφ

MV (−1,−1

2
, +1

2
) = −e2iφ 1−cos θ√

2
MA(−1,−1

2
, +

1

2
) = −βe2iφ 1 − cos θ√

2

MV (+1,−1

2
, +1

2
) = −1+cos θ√

2
MA(+1,−1

2
, +

1

2
) = −β

1 + cos θ√
2

MV (0, +1

2
,−1

2
) = sin θe−iφ MA(0, +

1

2
,−1

2
) = −β sin θe−iφ

MV (−1, +1

2
,−1

2
) = 1+cos θ√

2
MA(−1, +

1

2
,−1

2
) = −β

1 + cos θ√
2

MV (+1, +1

2
,−1

2
) = e−2iφ 1−cos θ√

2
MA(+1, +

1

2
,−1

2
) = −βe−2iφ 1 − cos θ√

2

MV (0, +1

2
, +1

2
) = 2mt

Q
cos θ MA(0, +

1

2
, +

1

2
) = 0

MV (−1, +1

2
, +1

2
) = −

√
2mt

Q
sin θeiφ MA(−1, +

1

2
, +

1

2
) = 0

MV (+1, +1

2
, +1

2
) =

√
2mt

Q
sin θe−iφ MA(+1, +

1

2
, +

1

2
) = 0 (18)



These amplitudes show a lot of symmetry. The most important for us

arises from interchanging the role of particle and antiparticle. For φ =

0 this amounts to θ ↔ θ + π and interchanges amplitudes of the form

MI(+1, h, h̄) ↔ MI(−1, h, h̄), I = V, A. In fact this relation is induced

by CP invariance and it holds including higher order QCD corrections. It

reduces the number of independent density matrix elements to be calculated

by half from 60 to 30.

Using Eq. (18) one may calculate the trace of the corresponding density

matrix Eq. (13):

trρV V = 4 + 8
m2

t

Q2
trρV A = trρAV = 0 trρAA = 4β2 (19)

These expressions should take the role of Tall in Eq. (12). However, it ap-

pears that for the VA interference term the ratio RV A ≡ ρV A/trρV A becomes

infinite. Instead of RV A the following combination will be considered in the

following RV AAV AA := (ρV A + ρAV + ρAA)/trρAA.

The next step is to incorporate the corrections from virtual gluon exchange.

This can be done on the amplitude level and is quite straightforward, because

virtual gluons do not modify the kinematics of the lowest order process.

The effect can be condensed to effectively change the vector and axialvector

interactions according to

γµ → γµ(1 + αf1) +
i

2mt

σµνp
ν
Bαf2 γµγ5 → γµγ5(1 + αfA)

(20)

where α = CF
αs

2π
as before and f1, f2 and fA are functions of β and can be

found in [5]. It turns out that f2 = f1 − fA. Therefore, the amplitudes Eq.

(18) can be easily extended to contain effects from virtual gluon exchange.



We here give the result only for the relevant cases φ = 0 and H = +1:

MV (+1,−1

2
,−1

2
) = −

√
2mt

Q
sin θ(1 + αf+) MA(+1,−1

2
,−1

2
) = 0

MV (+1,−1

2
, +1

2
) = −1+cos θ√

2
(1 + αf−) MA(+1,−1

2
, +

1

2
) = −β

1 + cos θ√
2

(1 + αf−)

MV (+1, +1

2
,−1

2
) = 1−cos θ√

2
(1 + αf−) MA(+1, +

1

2
,−1

2
) = −β

1 − cos θ√
2

(1 + αf−)

MV (+1, +1

2
, +1

2
) =

√
2mt

Q
sin θ(1 + αf+) MA(+1, +

1

2
, +

1

2
) = 0 (21)

where f+ = f1 − Q2

4m2
t

f2 and f− = fA = f1 − f2.

It should be noted that the functions f1 and fA merely ’renormalize’ the

form of the lowest order interactions, cf. Eq. (20), and accordingly they do

not contribute in the ratios RIJ = ρIJ/trρIJ , IJ = V V, V AAV AA and AA.

The interesting point is that the infrared and collinear singularities are solely

contained in the functions f1 and fA whereas f2 is completely finite and given

by

f2 =
1 − β2

2β
ln

1 − β

1 + β
(22)

The normalized density matrix elements RV V (+1, h, h̄, +1, h′, h̄′) are given

in the table where λ =
1−2m2

t /Q2

mt/Q
, st = sin θ and ct = cos θ and the ?’s follow

hh̄ ↓ |h′h̄′ → (−1

2
,−1

2
) (−1

2
, +1

2
) (+1

2
,−1

2
) (+1

2
, +1

2
)

(−1

2
,−1

2
) −4β2s2

tαf2 ? ? ?

(−1

2
, +1

2
) −λβ2st(1 + ct)αf2 2β2(1 − ct)

2αf2 ? ?

(+1

2
,−1

2
) λβ2st(1 − ct)αf2 −2β2s2

t αf2 2β2(1 − ct)
2αf2 ?

(+1

2
, +1

2
) 4β2s2

tαf2 λβ2st(1 + ct)αf2 −λβ2st(1 − ct)αf2 −4β2s2
tαf2



from the symmetry of the matrix. It is thereby explicit that all corrections

are ∼ f2 as anticipated.

The density matrix elements of RAA and RV AAV AA do not get any corrections

at all from virtual gluon exchange because according to Eq. (21) there are

two factors of 1+αf− both in the numerator and denominator of ρAA/trρAA

and similarly for RV AAV AA.

6. Real Gluon Emission and Numerical Results for the Correc-

tions to the Normalized Density Matrix

Next we come to the two Feynman diagrams with real gluon emission B∗ →
tt̄g. The higher order corrections are calculated in such a way that all gluon

d.o.f. are summed and integrated over. This means, for example, the gluon is

assumed to be unpolarized. Furthermore, a rather complicated phase space

integrattion has to be performed. In contrast to the tree level process B∗ → tt̄

where the phase space is trivial, one has here two highly nontrivial integra-

tions which I have choosen to perform numerically. This is then straight-

forward because, as pointed out before, the integrand corresponding to Eq.

(14) is completely finite.

The trivial phase space for the lowest order kinematics (15) is given by

PS(B∗ → tt̄) =
∫

∏ d3pi

2Ei
δ4(pt + pt̄ − pB) = π

2
β. With an additional gluon

the 4–momenta of the particles become more complicated. First, the ener-

gies of t and t̄ are not fixed as in lowest order – in fact they are to become

the integration variables – and secondly, there is now an angle ω between the



top quark and antitop direction.

pB = (Q, 0, 0, 0) pt =
Q

2
x1(1, 0, 0, β1) pt̄ =

Q

2
x2(1, β2 sin ω, 0, β2 cos ω)

(23)

Here x1 and x2 are the (normalized) energies of t and t̄ and β2
i := 1 − 4m2

t

x2
i
Q2 ,

i = 1, 2. ω is not an independent variable but can be related to x1 and x2

through the gluon’s on–shell condition p2
g = 0 and 4–momentum conservation

pg = pB − pt − pt̄. One obtains:

0 = 1 + 2
m2

t

Q2
− x1 − x2 +

1

2
x1x2(1 − β1β2 cos ω) (24)

The 2–dimensional phase space integral is given by

PS(B∗ → tt̄g) =
π2Q2

4

∫

1−2mt/Q

0

dy
∫ z+

z−
dz (25)

where

y :=
2t̄g

Q2
= 1 − x1 z :=

2tg

Q2
= 1 − x2 (26)

and

z± =
1

2

y

y + m2

Q2

[x1(1 ± β1) − 2
m2

Q2
] (27)

The polarization vectors Eqs. (16) and (17) of the B–boson are not modified

in higher orders, because pB has not changed. In contrast, the spinors for

the fermions become more complicated than in lowest order:

ū+
1

2

(pt) = (a1+, 0, a1−, 0) ū− 1

2

(pt) = (0, a1−, 0, a1+)

v+
1

2

(pt̄) = (a2+s2,−a2+c2,−a2−s2, a2−c2) v− 1

2

(pt̄) = (a2−c2, a2−s2,−a2+c2,−a2+s2)

where s2 = sin ω
2
, c2 = cos ω

2
and a2

i± = Q
2
xi(1 ± βi), i = 1, 2.



Using these parametrizations, the real gluon amplitudes MI(B
∗ → tt̄g)(H, h, h̄),

I = V, A and h, h̄ = ±1

2
, must be calculated. As in lowest order, it is sufficient

to know the case H = +1. Before performing the phase space integrations,

the density matrix must be formed. More precisely, we have calculated the

normalized density matrices RIJ(+1, h, h̄, +1, h′, h̄′), IJ = V V, V AAV AA

and AA, Eq. (12), corresponding to the finite combination Eq. (14). Nu-

merical results for all the 30 independent matrix elements are shown in Fig-

ures 2–61 as a function of the e+e− energy Q and for a top quark mass of

mt = 170 GeV. The results are shown in the following form: each density

matrix element has a decomposition of the form

RIJ(+1, h, h̄, +1, h′, h̄′) = C1

1

2
(1 + c2

t ) + C2s
2

t + C3ct + C4st + C5ctst

(28)

where ct = cos θ, st = sin θ and of course the coefficients Cj depend on

the spin quantum numbers h, h̄, h′ and h̄′. Each coefficient Cj has a lowest

order contribution, which however vanishes in many cases, and a higher order

correction, i.e.

Cj = LO + α HO (29)

where α = CF
αs

2π
as before. In Figures 2–61 there is always one figure display-

ing the lowest order term (LO) for each j = 1, 2, 3, 4, 5 followed by the corre-

sponding figure for the higher order term (HO); and these pairs of figures are

successively presented for each combination (+1, h, h̄, +1, h′, h̄′). Note that

only the following combinations of (h, h̄, h′, h̄′) are shown: (− − −−), (− −
−+), (−−+−), (−−++), (−+−+), (−+ +−), (+−+−), (+ +−+), (+ +

+−), (++++). The rest follows from the symmetry of the density matrix, i.e.

RIJ(+1, h, h̄, +1, h′, h̄′) = RIJ(+1, h′, h̄′, +1, h, h̄). Some of the curves seem

to increase rather strongly with increasing Q2. However, it can be shown

that all HO corrections converge to a constant at Q → ∞. Corrections are



typically at the percent level. This is not astonishing, because by forming

the normalized density matrix, the bulk of the higher order correction due

to the known overall K–factors [14] drops out. The odd figure numbers 3–61

really contain the main results of our paper, from which higher order QCD

corrections to any angular distribution of top quark spins or top quark decay

products can in principle be determined (for the latter one needs in addition

the QCD corrections to the top quark decay amplitudes calculated in [10]).

For convenience, we present in figures 62–91 the θ dependence of the ma-

trix elements RIJ(+1, h, h̄, +1, h′, h̄′). More precisely, the matrix elements

are written as RIJ(+1, h, h̄, +1, h′, h̄′) = LO + α HO and LO and HO are

displayed as a function of θ for a fixed total energy Q = 400 GeV. Again,

the corrections are relatively small because the normalized density matrix is

considered, in which the correction to the trace of the density matrix drops

out.

7. Summary

In this article a complete decomposition into spin contributions of the pro-

duction of top quarks in e+e− annihilation has been given including higher

order QCD corrections. The corrections are relatively small (on the percent

level) because the normalized density matrix was considered, in which the

correction to the trace of the density matrix drops out. This means in turn

that twoloop calculations are at most necessary for the trace of the density

matrix (corrections of up to 10% [14]), but not for any of the normalized

density matrix elements, because these O(α2
s) corrections are most probably

below the permille level.



Our results can be applied to calculate distributions for any decay product

of top quarks at a future linear collider. I have not attempted to work out

these applications, but have merely given in section 3 the necessary reduction

formulae. To prove that the applications are rather straightforward, I would

like to finish this work by making the QCD corrections to the e+e− cross

section Eq. (10) explicit. Eq. (10) can be rewritten as

σ± =
∑

h,h̄,h′,h̄′

D(h, h̄)D∗(h′, h̄′)

{

v2

±RV V (±1, h, h̄,±1, h′, h̄′)(4 + 8
m2

t

Q2
)(1 + αKV V (β)) + 4β2(1 + αKAA(β))(30)

[v±a±RV AAV AA(±1, h, h̄,±1, h′, h̄′) + a±(a± − v±)RAA(±1, h, h̄,±1, h′, h̄′)]
}

(31)

where KV V (β) and KAA(β) are the known corrections to the trace of the

density matrix [14], cf. Eq. (19). Note that KV A = KAV = 0, so that there

is an overall factor of 1 + αKAA in the second line of Eq. (31). Using Eq.

(31) one can directly insert the corrections (figures 2–61) to obtain the cross

sections including higher order QCD.
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