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Abstract

I discuss one-loop QCD corrections to the forward backward asymmetry of the b-

quark in a way appropriate to the present experimental procedure. I try to give

insight into the structure of the corrections and elucidate some questions which

have been raised by experimental experts. Furthermore, I complete and comment

on results given in the literature.



The forward backward asymmetry of the b quark is one of the most interesting

quantities which has been measured at LEP. It is defined as the ratio

AFB =
σF−B

σF+B

and in lowest order is given by ABorn
FB = 3 vbab

v2

b
+a2

b

veae

v2
e+a2

e

and therefore sensitive to

the couplings of electron and b quark to the Z. Even more interesting might be

the measurement of the combined left right forward backward asymmetry ALR
FB =

(σF−B)L−(σF−B)R

σtotal

projected by SLC because in lowest order it involves the b quark

couplings vb and ab only [1].

For a precision measurement of these quantities the understanding of higher order

corrections is very important. Oneloop (electroweak and QCD) corrections have

been reviewed in [1] and [2] and twoloop QCD corrections have been calculated

in [3]. Usually, these results are presented under the assumption that the b-quark

direction can be experimentally precisely determined. However, with the existing

detectors this is not the case. Instead, the LEP experiments apply the following

procedure [4]:

• Events in which the b (or the b̄) decays semileptonically, b → cµ−ν̄(b̄ → c̄µ+ν)

are selected.

• For these events the thrust axis T is determined as the max~n

∑

i |~pi~ni| where

the sum is over all charged momenta ~pi in the event.

• The orientation of the thrust axis is chosen in such a way that ~T~µ− is positive

(resp. ~T~µ+ is negative). Then the event is counted forward if ~T points in

the forward direction (~T~e− > 0) and backward if ~T points in the backward

direction (~T~e− < 0).

This procedure will be called the “T procedure” in the following (in contrast to

the “b procedure” where the b quark is used to determine the asymmetry). The T

procedure has several deficiencies:

First, due to the missing momentum of the neutrino, ~T is not the “true” thrust axis.

Secondly, due to the nature and kinematics of the b decay, there are events where

the µ− goes forward while the b goes backward (and vice versa).

Thirdly, gluon emission may spoil the connection between thrust axis and b-quark

direction.



These deficiencies must all be corrected for. They can be corrected for separately.

In this note we concentrate on point 3. The corrections to items no. 1 and 2 can be

made using existing Monte Carlo programs. Note that in this procedure the muon is

only used to determine the hemisphere in which its parent quark is to be expected.

One may ask why not determine the asymmetry of the muon (“µ procedure”). The

answer is that the muon asymmetry will be notably smaller than the b asymmetry,

because there is a loss of the original information through the missing neutrino. The

µ procedure is therefore worse than the T procedure.

Before I address item no. 3 I will consider the structure of oneloop QCD corrections

to AFB in general. For simplicity, I will neglect mass terms O(mb/mZ) in the

following. In addition to e+e− → bb̄ one has processes e+e− → bb̄g. When they are

included the QCD effect can be written as an overall correction factor

AFB = ABorn
FB · (1 + c

αs

π
)

which we decompose as

1 + c
αs

π
=

1 + αs

π
(p2 + p3)

1 + αs

π
(q2 + q3)

i.e. we write it as a correction factor p to σF−B defined by a correction factor q to

σF+B = σtotal. Both p and q can be split into a 2 jet and a 3 jet piece in the sense

that one can split σF±B in a 2 jet and a 3 jet piece,

σF±B = σ2
F±B(y) + σ3

F±B(y),

with an invariant mass cut y to define the jets. p2,3(y) are defined by

σ2
F−B(y) = σBorn

F−B(1 +
αs

π
p2)

σ3
F−B(y) =

αs

π
p3σ

Born
F−B

σ2
F+B(y) = σBorn

F+B(1 +
αs

π
q2)

σ3
F+B(y) =

αs

π
q3σ

Born
F+B

Note that the sums p2 + p3 and q2 + q3 are independent of y. One could define a

forward backward asymmetry based on 2 jet resp. 3 jet events only

A2
FB(y) =

σ2
F−B

σ2
F+B

= ABorn
FB (1 +

αs

π
(p2 − q2))

A3
FB(y) =

σ3
F−B

σ3
F+B

=
p3

q3

ABorn
FB



but we shall not consider these quantities in the following. No simple relation holds

between AFB, A2
FB and A3

FB.

The functions p2,3(y) and q2,3(y) have been given in the literature [3] and I do not

want to repeat them here because I am only interested in the inclusive correction

factor c. Within the b procedure one has c = −1 (for mb = 0) and c ≈ −0.8 (for

mb = 4.7 GeV). It is a question of some interest to know the value of c for the

T procedure, too. To determine this value we shall work on the parton level and

mimic the T procedure on the parton level. On the parton level the role of the

muon direction is played by the b quark direction and the thrust dirction ~t is given

by the parton with the maximum energy. In lowest order and in the exact 2 jet

limit (y → 0) the thrust direction and the b quark direction are identical so that no

correction needs to be applied (as compared to the b procedure). A difference arises,

however, in the 3 jet region, where ~t can be either ~b, b̄ or ~g. In O(αs) the T and b

procedure are equivalent only in the strict 2 jet limit y → 0. An event is forward

if either ~t~b > 0 and ~t~e− > 0 or ~t~b < 0 and ~t~e− < 0, and backward otherwise. We

have used this procedure and applied it to the QCD matrix element for the process

e+e− → bb̄g. One obtains the following results:

c(T procedure, mb = 0) = −0.893

This number can be decomposed into a 2 jet and 3 jet contribution.

c = (k2 + k3)
CF

2
with

CF

2
k2,3 = (p − q)2,3

The colour factor CF = 4/3 has been introduced for convenience. The results for k3

are given in the table, both for the b and the T procedure for several values of y,

assuming mb = 0. k2 = 3
2
c − k3 vanishes for y → 0 because in the mb = 0 theory

there is no contribution from the virtual gluon exchange diagram e+e− → bb̄. Of

course it is desirable to have the 0(mb) dependence of c in the T procedure. This is

done in a forthcoming publication.

In summary one may state: when going from the b procedure (c = −1) to the T

procedure (c = −0.893) one gets a correction of about 10% to the correction, i.e.

the effect is small and irrelevant on the basis of the present experimental accuracy

and only important for some future precision experiment. This statement remains

true if 0(mb) corrections are included.



y k3 (b procedure) k3(T procedure)

0 -1.500 -1.340

0.001 -1.474 -1.328

0.005 -1.393 -1.283

0.01 -1.313 -1.225

0.02 -1.183 -1.148

0.04 -0.974 -0.996

0.06 -0.811 -0.875

0.08 -0.671 -0.753

0.10 -0.553 -0.653

0.12 -0.451 -0.557

0.14 -0.363 -0.472

0.16 -0.288 -0.388

0.20 -0.165 -0.244

1 0 0
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Appendix:Some Details of the Calculation

We start with 3 different representations of the cross section

dσ

d cos θb

= σb
V cos θb +

3

4
σb

L sin2 θb +
3

8
σb

U (1 + cos2 θb)

+ aximuthal terms (φb);

dσ

d cos θb̄

= σb̄
V cos θb̄ +

3

4
σb̄

L sin2 θb̄ +
3

8
σb̄

U (1 + cos2 θb̄)

+ aximuthal terms (φb̄);

dσ

d cos θg

= σg
V cos θg +

3

4
σg

L sin2 θg +
3

8
σg

U (1 + cos2 θg)

+ aximuthal terms (φg); where

σi
V =

3

8
Jσo

αs

2π
CF Bi

V

σi
U+L = Rσo

αs

2π
CF BUL

and

BUL =
x2

1 + x2
2

y13y23

Bi
V =

x2
1 cos θ1i − x2

2 cos θ2i

y13y23

cos θij = 1 for i=j and

cos θij = 1 +
2

xixj

−
2

xi

−
2

xj

for i 6= j. The xi are the normalized energies of partons i, x1 + x2 + x3 = 2,

y13 = 1 − x2 etc. as usual. σo is the tree level cross section for e+e− → µ+µ−

(photon exchange only). Note that at leading order e+e− → bb̄

A0
FB =

3J

8R
.

Expressions for J and R can be found, for instance, in Nachtmann’s book. In [3] it

was shown that in the b procedure the QCD correction factor can be written as

1 +
αs

2π
CF (Bb

V − BUL)all = 1 −
3

2

αs

2π
CF

where ( )all denotes
∫ 1
0 dx1

∫ 1
0 dx2θ(x1 + x2 − 1) and the singularities of Bb

V and BUL

for y13 → 0, y23 → 0 drop out in the difference Bb
V − BUL.

In the T procedure the QCD correction factor is given by

1 +
αs

2π
CF

{

(Bb
V − BUL)x1> + (−B b̄

V − BUL)x2> + (−Bg
V − BUL)x3>

}



where ( )x1> denotes
1
∫

0
dx1

1
∫

0
dx2θ(x1 + x2 − 1)θ(x1 − x2)θ(x1 − x3) etc.

Numerically one finds

(Bb
V − BUL)x1> = (−B b̄

V − BUL)x2> = −0.21

(−Bg
V − BUL)x3> = −BUL

∣

∣

∣

∣

x3>

= −0.92

For comparison we also give here

(Bb
V − BUL)x2> = −0.74

(Bb
V − BUL)x3> = −0.55

The difference between b and T procedure is given by

αs

2π
CF [(Bb

V + B b̄
V )x2> + Bb

V

∣

∣

∣

∣

x3>

] =
αs

2π
CF (−0.5273 + 0.3675)

= (−0.160 ± 0.003)
αs

2π
CF
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