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The complete set of matrix elements for all polarization configurations in top quark

decays is presented including higher order QCD corrections. The analysis is done

in the framework of the helicity formalism. The results can be used in a variety of

circumstances, e.g. in the experimental analysis of top quark production and decay

at Tevatron, LHC and NLC. Relations to LEP1 and LEP2 physics are pointed out.

1 Introduction

Since its discovery in 1995 the top quark has been an object of increasing
interest. The production process for top quarks has been analyzed in various
theoretical studies both for proton and e+e− collisions. Early references on
the lowest order cross section are 1 for pp collsions and2 for e+e− annihilation.
Higher order corrections to the cross section (total cross section, pT distribution
etc.) have been calculated by several groups, 3,4 for pp and 5,6 for e+e−. These
total cross sections do not involve information on the top quark polarization.
Such spin effects only come in, if one studies distributions of top quark decay
products. In some cases, spin effects have been studied, i.e. the distribution
of the top quark spin vector, in ref. 7 for pp and in ref. 8 for e+e− collisions.
These latter studies have not been extended to higher orders yet. However, an
interesting step in this direction has been taken in ref. 6, where a Monte Carlo
progam including final state spin terms has been written. Unfortunately, that
paper is in fact concerned with higher order corrections to τ+τ− production
in e+e− annihilation at lower energies and does not take into account axial
vector couplings. More general results, including axial vector couplings, can
be found in 9, but not in the form of a Monte Carlo program.

Nothing is known about higher order spin corrections to the processes
which induce top quark production in proton collisions (light quark annihila-
tion qq̄ → tt̄ and gluon–gluon fusion qq̄ → tt̄). In contrast to e+e− annihilation,
there are many higher order diagrams involved in these processes, so that the
calculations are very difficult.
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Of course, in studying distributions of top quark decay products one has
to take into account the higher order top quark decay matrix elements, too.
The spin averaged matrix elements have been calculated including higher order
corrections. For example, oneloop QCD corrections are known to decrease the
total width of the top quark by about 8%. If one studies distributions of top
quark decay products with reference to the production process, one needs in
addition the spin correlations in the top quark decay matrix elements. In lowest
order, these spin correlations are known, but in higher order only rudimentary
results exist 10,11. In those calculations, higher order corrections to special
decay product distributions were calculated. This corresponds to certain linear
combinations of the polarized matrix elements. The present article describes
how all the polarized matrix elements can be obtained in a complete and
systematic way in the framework of the so–called helicity formalism.

Within the Standard Model, all couplings of the top quark to other par-
ticles are completely fixed by its mass and by a few quantum numbers. For
example, the coupling of the top quark to gluons is a pure vector coupling with
strength gs, the coupling to the W–boson is a V–A coupling etc. The coupling
to the W–boson is particularly interesting for this article, because it induces
the decay t → W+b. b–quark mass terms O(mb/mt) can very probably be
neglected in higher order corrections to the decay process, because they are
known to be small (∼ 1%) in leading order. In this approximation it can be
shown that the b–quark is always left–handed in the top quark decay process,
both in lowest order and in higher order QCD. As will be seen, this strongly
reduces the number of independent helicity amplitudes and makes the results
quite intuitive.

2 Helicity vs. Spin Vector Description

Helicity amplitudes have been considered in many applications of phenomeno-
logical importance in high energy physics, like jet production 12, nonstandard
effects in top quark processes13, and many others. The idea is, first to separate
a given process into simpler subprocesses and then to explicitly evaluate all
the possible spin amplitudes for the subprocesses in special Lorentz and Dirac
frames. The results can afterwards be put together with the help of a master
formula (to be given below). For example, consider the lowest order helicity
amplitudes for top quark decay in the Standard Model. They are given by

A(ht, hW ) =
g√
2
ū−1/2(pb)γµ

1

2
(1 − γ5)uht

(pt)ε
µ
hW

(1)

where g = e
sW

and ht and hW label the spins for the top quark and the

W–boson, ht = ± 1
2 and hW = 0,±1. The helicity of the (massless) bottom
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quark is fixed to be −1/2 by the V–A nature of the interaction. Thus, in the
Standard Model there are six amplitudes to be considered, and this number
remains the same in higher order QCD (after integrating over the gluon degrees
of freedom). The six amplitudes can be used to define the 36 elements of the
density matrix

ρ(ht, hW , h′
t, h

′
W ) := A(ht, hW )A(h′

t, h
′
W )∗ . (2)

Note that the amplitudes are only determined up to an overall phase, and
that this arbitrariness goes away when forming the density matrix elements.
Unfortunately, higher order QCD corrections cannot be fully calculated on the
level of amplitudes, but only on the level of the density matrix which contains
in principle 36 degrees of freedom. As will be discussed below, hermiticity and
CP invariance reduce this number, but still leave an appreciable set of matrix
elements.

The full density matrix is in fact needed in the ’master formula’, if one
considers some combined production and decay process for the top quark.
Namely, assume that top quarks are produced in some process ab → tt̄ and
then decay according to t → W+b and t̄ → W−b̄, where the W’s further decay
to light (massless) fermions, W+ → f1f̄2 and W− → f3f̄4. The cross section
is then given by the ’master formula’

σ =
∑

EXT

|
∑

INT

A(ha, hb, ht, ht̄)A(ht, hW+)A(ht̄, hW−)A(hW+)A(hW−)|2 (3)

where EXT = ha, hb denotes the spins of the external particles and INT =
ht, ht̄, hW+ , hW− the spins of the internal particles of the process. A(ha, hb, ht, ht̄)
are the helicity amplitudes for the production process, A(ht̄, hW−) for the de-
cay of the antitop quark, and A(hW+) and A(hW−) are the amplitudes for the
decay of the W+ and W−, respectively. Note that before Eq. (3) the W+ spin
has been denoted by hW instead of hW+ , and for simplicity it will again be
denoted by hW below. The fact that the formula makes no explicit reference
to the spins of the massless fermions fi, i=1,2,3,4, has the same reason as the
non–appearance of the b–quark spins. Namely, the hfi

are fixed by the V–A
nature of the W decays. Furthermore, if one is not interested in the decay of
the antitop or of the W’s, the corresponding amplitudes and helicities will not
appear in the above formulas. In that case, the t̄ and/or the W’s will be one of
the external (EXT) particles, whose spins have to be summed over after taking
the square in Eq. (3).

Besides neglecting the b–quark mass, it is also a good approximation in
Eq. (3) to take the internal particles on–shell, because off-shell contributions
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are suppressed by powers of the width Γt and ΓW . More precisely, one has

1

(P 2 − M2)2 + M2Γ2
=

π

MΓ
δ(P 2 − M2) + O(

Γ

M
) (4)

for a particle of mass M and 4–momentum P . For a top quark of mass 175
GeV, the width is about 1.5 GeV, so that terms of order Γ

M can be neglected, in

particular in higher orders where O(αs
Γ
M ) is of the order of a permille. Similar

considerations apply to the W–boson.
In higher order the narrow width approximation Eq. (4) is of particular

use in reducing the number of diagrams to be calculated. The reason is that
all diagrams where a gluon runs from the production part of the process to the
decay part, and also the corresponding interference diagrams, give contribu-
tions which are suppressed by powers of Γ

M . Therefore, in this approximation
the process can be really decomposed into a number of building blocks, the
production block, the t–decay blocks and the W–decay blocks. In the narrow
width approximation, these blocks are interrelated by spin–indices, but not by
gluon exchange.

When one carries out the modulus squared in Eq. (3), it becomes appar-
ent that in general the full density matrix A(ht, hW )A(h′

t, h
′
W )∗ is needed to

calculate the cross section of the decay products.
I have calculated the six amplitudes A(ht, hW ) using the ’chiral represen-

tation’ of γ matrices, in which γ5 =diag(−1,−1, 1, 1) etc. This representation
makes calculations with massless fermions (the b–quark in the case at hand)
quite transparent. Furthermore, I shall present results in two different Lorentz
frames, in the rest frame of the top quark and the rest frame of the W–boson.
Both frames have special virtues, so it is worthwhile to study them both. The
top quark rest frame is of course the natural frame to study top decays, and
to look at distributions in the energies of the decay products etc. The W rest
frame has the particular virtue that the amount of longitudinal W’s can be
read off most easily in this frame. I am quite sure there is a (complicated)
transformation between the amplitudes in both frames. However, I was not
able to derive it and, furthermore, found it reasonably convenient to do the
calculations in both frames separately.

There is a popular alternative to the helicity formalism, where use is made
by the fact that the spin of a fermion with 4–momentum P can be described by
a ’spin vector’ S, a pseudo 4–vector which fulfills S2 = −1 and S ·P = 0. In this
formalism one does not calculate amplitudes but (squared) matrixelements.
The matrix element for the production of a tt̄ pair with spin vectors st and st̄

has the generic form

|M |2P ∼ tr(p/t + mt)(1 + γ5s/t) . . . . . . (p/t̄ + mt)(1 + γ5s/t̄) . . . . . .
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= a + bst + cst̄ + dstst̄ (5)

where, for example, d is a tensor with two Lorentz indices and b and d are
4–vectors. Similarly, the matrix elements for the decay of the top quarks have
the form

|M |2D = e + fst |M |2D̄ = ē + f̄st̄ (6)

and the full matrix element for production and decay is then given by

|M | = aeē − bf ē − cef̄ + df f̄ . (7)

According to this formula, the cross section will not be just a product of a
production and of a decay piece, but is given by a sum of such products. In
fact, Eq. (7) can be shown to be equivalent to Eq. (3) 14.

3 The Method

The results to be presented were obtained in the helicity formalism. Further-
more, they concern the oneloop QCD corrections to the lowest order matrix
elements. The lowest order expressions are usually simple, whereas the oneloop
expressions, in particular for the case of hard gluons are quite lenghty for ar-
bitrary spin orientations. Furthermore, the hard gluon contributions cannot
be treated on the level of amplitudes, because they have to be integrated over
the gluon’s energy and angles. One really has to go to the level of the (spin)
density matrix, Eq. (2), to do the phase space integrations. There is, however,
one circumstance which simplifies the task. This is related to the fact, that the
oneloop QCD corrections to the total (spin–averaged) width of the top quark
are known 15. This allows to get rid of the infrared and collinear singularities
present in the matrix elements, by forming suitable singularity–free combina-
tions of the spin–dependent and the spin–averaged expressions. The point is
that the infrared and collinear singularities are ’universal’, i.e. independent
of the spin direction, so that they will drop out in suitable differences. We
shall discuss our procedure in more detail in the next section, where QCD
corrections to W → qq̄′ are considered as a rather simple warming up exercise.

4 QCD Corrections to W → qq̄′

This process is simpler because both outgoing quarks can be considered to be
massless particles, so that their helicities are fixed by the V −A nature of the
decay. Therefore, the decay amplitudes depend only on the W–spin and in
lowest order are given by

A(0) = sin θ A(±1) =
1 ± cos θ√

2
e±iφ (8)
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where θ and φ are the (polar and azimuthal) angles between the z–direction
(defined as the direction of the outgoing quark q) and the direction of the
W as given in some LAB frame (it may also be considered as the direction
to which the W–spin points). These formulae hold in the rest frame of the
W–boson. An overall factor emW

2
√

2sW
has been left out in the amplitudes. Note

that the integrated W–width ΓW =
e2m2

W

48πs2
W

can be obtained from the trace of

the density matrix
∑

hW
A(hW )A(hW )∗ by multiplying with the square of the

factor emW

2
√

2sW
and by dividing by the well–known 16πmW

16.

Using Eq. (8), the corresponding density matrix DhW ,h′

W
≡ A(hW )A(h′

W )∗

can easily be calculated in lowest order to yield

Dlo(0, 0) = sin2 θ

Dlo(±1,±1) =
1

2
(1 + cos2 θ)± cos θ

Dlo(+1,−1) =
1

2
sin2 θe2iφ

Dlo(±1, 0) = (± cos θ sin θ− sin θ)
e±iφ

√
2

. (9)

The underlined terms refer to parity violating effects and cannot be measured
in hadronic W decays, because the outgoing quark is detected in the form of a
jet and its flavor and charge cannot be identified. The functions D(hW , h′

W )
are sometimes called the decay functions of the W. An upper index lo has
been introduced in Eq. (9) in order to make clear that these are the Born level
contributions to the density matrix. The aim is then to calculate higher order
corrections to the decay functions/density matrix, in the form

D(hW , h′
W ) = Dlo(hW , h′

W ) +
αs

π
Dho(hW , h′

W ) (10)

To accomplish this calculation, use was made of the well–known higher or-
der result for the spin averaged decay function, the ’trace of the spin density
matrix’, which in our normalization is given by

Dtotal = Dlo
total +

αs

π
Dho

total = 2(1 +
αs

π
) . (11)

The point to notice is that one has

D(hW , h′
W )

Dtotal
=

Dlo(hW , h′
W )

Dlo
total

+
αs

π

Dho(hW , h′
W )Dlo

total − Dlo(hW , h′
W )Dho

total

(Dlo
total)

2

(12)
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where the difference Dho(hW , h′
W )Dlo

total − Dlo(hW , h′
W )Dho

total is completely
free of singularities separately for hard and virtual gluons. In fact, the diagrams

with virtual gluon exchange contribute nothing to the ratio
D(hW ,h′

W )
Dtotal

. (In top
decay, where we shall proceed similarly, the virtual diagrams will contribute,
but only a finite amount.) The real gluon processes W → qq̄′g can be explicitly
seen to give a finite contribution to the above difference, i.e. the result is finite
for Eg → 0 and θg → 0, where Eg and θg are the gluon energy and angle with
respect to the quark direction 17. The integration over Eg and θg is therefore
straightforward and one obtains the corrections to the W decay functions in a
very compact form 17

D(hW , h′
W ) = (1 +

αs

π
)(1 − 0.975

αs

π
)[Dlo(hW , h′

W ) + 0.653
αs

π
δhW ,h′

W
] . (13)

This representation can only be obtained after neglecting the irrelevant parity
violating terms. Furthermore, in higher orders the angles θ and φ have been
defined as to refer to the thrust– instead of the quark–momentum direction.

These results have been applied to W–pair production at LEP2 17 and
NLC 18. According to a master formula similar to (3), the cross section for
W–pair production and decay in e+e− annihilation was calculated including
the higher order corrections Eq. (13) and nonstandard contributions. Our
main motivation in studying this cross section was twofold:

• first of all we wanted to know how QCD corrections to angular correla-
tions of W decay products differ from the naive expection of a constant
K–factor ∼ 1 + αs

π . We found that depending on the kinematic point,
the deviations from a constant K–factor can be appreciable (of the or-
der of a few percent). Unfortunately, at LEP2 with its few thousand W
events these effects are just at the edge to become visible. The situation
is different at NLC with its larger statistics, where the QCD corrections
really become relevant.

• secondly we have proven that QCD correction can mimic the presence
of nonstandard physics. As has been shown by Monte Carlo studies 19,
NLC is sensitive to nonstandard couplings as small as 10−3. This is well
below the magnitude of the QCD effects induced by Eq. (13) 18.

In addition to the QCD corrections presented above, there are off-shell W
corrections (with and without QCD 20) which are particularly important at
LEP2, i.e. near threshold. Unfortunately, there is no space here to discuss
them in detail.
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5 Complete Lowest Order Analysis of the Spin Density Matrix for

t → bW

The decay of the top quark has some extremely interesting physics features,
which are related to the spin decomposition of the matrix element. In partic-
ular, it is well known that, due to the large top quark mass value, t–decay is
dominated by longitudinal W’s. In fact, the total width of the W is given by

Γt = ΓL + ΓT =
GF m3

t

8
√

2π
(1 − m2

W

m2
t

)2(1 + 2
m2

W

m2
t

) (14)

and the ratio of the number of longitudinal over transverse W’s is given by

ΓL/ΓT =
m2

t

2m2
W

. Note that the QCD corrections to Γt, ΓL and ΓT are known
15,11 to be about -9% resp. 5%, and that all other correction effects like
electroweak, b–mass and finite width effects contribute roughly 1%. Note
further that ΓL is the most interesting source of loop corrections to the famous
Rb value [the partial width Γ(Z → bb̄) measured at LEP1]. The point is
that the exchange of longitudinal W’s between the b-quarks gives rise to the

celebrated corrections of order O(GF m2
t ) ∼

m2
t

m2
W

. Unfortunately, at LEP1 this

is only a small loop effect which is of the order of 1%, because it is suppressed
by a factor 1

16π2 . In contrast, in t–decays the longitudinal W’s enter as the
most dominant leading order effect, so that they can be studied much clearer.

Top quark decay may be looked at in different frames; particularly inter-
esting are the rest frames of the t–quark or that of the W. In the W rest frame,
for example, there is a very simple way to experimentally determine the ratio
ΓL/ΓT and other spin–dependent observables 11. Of course, the two systems
are related just by a simple boost. However, the transformation formula be-
tween the spin–amplitudes in the two systems is quite complicated, so that I
prefer to give results in the two systems separately. Let’s start with the t rest
system. In order to calculate the amplitudes (1), I have choosen the follow-
ing parametrization of momenta, polarization vectors and spinors. First, the
momenta:

pt = (mt,~0) pW =
mt

2
(f+, 0, 0, f−) pb = pt − pW (15)

where f± = 1 ± f and f =
m2

W

m2
t

and the W–boson has been chosen to define

the z–direction. The most general top quark spinor is given by

u+1/2(pt) =
√

mt(cos
θ

2
, sin

θ

2
eiφ, cos

θ

2
, sin

θ

2
eiφ)

u−1/2(pt) =
√

mt(− sin
θ

2
e−iφ, cos

θ

2
,− sin

θ

2
e−iφ, cos

θ

2
) (16)
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where θ and φ refer to some direction, e.g. to the direction of the top quark
in some lab–system. One may put φ = 0 without restriction, because this
corresponds to defining the y–direction. The possible b– and W–polarizations
are fixed to be

ū−1/2(pb) =
√

mt(0, 0,
√

f−, 0) (17)

and

ε∓1 = − 1√
2
(0,±1, i, 0) ε0 = − 1

2
√

f
(f−, 0, 0, f+) . (18)

This leads to the following amplitudes for t–decays in the top quark rest frame:

Alo
t (− 1

2 , 0) = 1√
f

sin θ
2e−iφ Alo

t (+
1

2
, 0) = − 1√

f
cos

θ

2

Alo
t (− 1

2 , +1) = 0 Alo
t (+

1

2
, +1) = 0

Alo
t (− 1

2 ,−1) = −
√

2 cos θ
2 Alo

t (+
1

2
,−1) = −

√
2 sin

θ

2
eiφ (19)

where the upper index refers to ’lowest order’ and the lower index to top
quark decay in the t rest frame. A universal spin independent coefficient
c0 = emt

2sW

√

f− has been left out in all the amplitudes. Note that the amplitudes
are only determined up to an overall phase, and that this arbitrariness goes
away when forming the density matrix elements. Since the amplitudes are
explicitly given, it is straightforward to obtain the density matrix in lowest
order. Its trace is easily obtained from the above expressions to be

∑

ht,hW

Alo
t (ht, hW )Alo

t (ht, hW )∗ = c2
0

1 + 2f

f
(20)

and one can reproduce from this the total width of the top quark, Eq. (14) by

dividing by the phase space factor f−

16πmt

16.
There are lots of other combinations of density matrix elements to describe

interesting physics. For example, the above mentioned ratio ΓL

ΓT
is obtained as

ΓL

ΓT
=

∑

ht=± 1
2 ,hW =0 |Alo

t (ht, hW )|2
∑

ht=± 1
2 ,hW =±1 |Alo

t (ht, hW )|2 =
1

2f
. (21)

Let us now repeat the same analysis in the W rest frame. This time I
chose to define the z–direction by the direction of the top quark, i.e.

pW = (mW ,~0) pt =
mt

2
√

f
(f+, 0, 0, f−) pb = pt − pW . (22)

9



The top and bottom quark spinors are then fixed as

u+1/2(pt) =
√

mt(f
1/4, 0, f−1/4, 0) u−1/2(pt) =

√
mt(0, f−1/4, 0, f1/4)

(23)
and

ū−1/2(pb) =
√

mt(0, 0, 0,

√

f−√
f

) (24)

whereas the W polarization direction is arbitrary:

ε−1 = − eiφ

√
2
(0, cosφ cos θ − i sinφ, sin φ cos θ + i cosφ,− sin θ)

ε+1 = −ε∗−1

ε0 = −(0, sin θ cosφ, sin θ sinφ, cos θ) . (25)

The angles θ and φ refer to some arbitrary direction, e.g. to the direction of
the W–boson in some lab–system. Note that although I am using the same
symbols θ and φ as in Eqs. (19) and (8), the meaning of these angles is
completely different in the three cases. As before, one may in principle put
φ = 0 without restriction, because this corresponds to defining the y–direction.
One is lead to the following amplitudes for t–decays in the W rest frame:

Alo
W (−1

2
, 0) =

1√
f

cos θ Alo
W (+

1

2
, 0) = − sin θeiφ

Alo
W (−1

2
, +1) =

1√
2f

sin θe−iφ Alo
W (+

1

2
, +1) =

1√
2
(1 + cos θ)

Alo
W (−1

2
,−1) = − 1√

2f
sin θeiφ Alo

W (+
1

2
,−1) =

1√
2
(1 − cos θ)e2iφ (26)

Again, the universal coefficient c0 = emt

2sW

√

f− has been left out in all the ampli-
tudes. From the trace of the corresponding density matrix one can reconstruct
the total width of the top quark, just as in (20). However, the ratio (20) can
only be obtained for θ = 0, because otherwise the notion of ’longitudinal’ does
not refer to the heavy quark direction.

6 QCD Corrections to the Spin Density Matrix of t → bW from the

Exchange of Virtual Gluons

The oneloop QCD Corrections to t–decay are somewhat more complicated
than to W–decay because even neglecting the b–mass there is one more mass
parameter involved. This is despite the fact that the Feynman diagrams needed
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are exactly the same as for W–decay (with the directions of the W and one
of the quarks interchanged). Namely, there are the ’virtual gluon’ vertex and
self–energy diagrams and two ’real’ diagrams with gluon emission from one of
the quark legs. As discussed in the introduction, there are 36 density matrix
elements (2) which will be considered in the normalized form

ρnorm(ht, hW , h′
t, h

′
W ) =

ρ(ht, hW , h′
t, h

′
W )

ρtotal
(27)

because this helps to cancel universal contributions, in analogy to the case of
W decay, Eq. (12). ρtotal ≡ ∑

ht,hW
|ρ(ht, hW , ht, hW )| is defined to be the

trace of the density matrix and related to the total width Γt of the top quark
as discussed above.

Let us start the discussion with the virtual contributions, because they can
easily be obtained from the corrections to the V–A vertex calculated a long
time ago 21

Γµ(t → bW ) = − ie√
2sW

{

Hγµ
1

2
(1 − γ5) + αdH+

iσµνpν
W

2mt

1

2
(1 + γ5)

}

(28)

where the known function H = 1 + O(αs) ’renormalizes’ the V–A structure,
and contains all the ultraviolet, infrared and collinear singularities, and

H+ = − ln f−
f

(29)

is a regular function of f = m2
W /m2

t . Note that the appropriate expansion
parameter in the case of top quark decay is αd = −CF

αs

2π . It should further
be noted that the contribution of H to the normalized density matrix ρnorm

vanishes because it cancels between the numerator and denominator in Eq.
(27). The argument works in the same way as was discussed in the case of the
W–boson. The only difference is that now a finite contribution ∼ H+ from the
σµν term survives due the nonvanishing (top–)quark mass. In turn, one may
conclude that the contribution from real gluon emission to the normalized
density matrix is finite, too, because of the Lee Nauenberg theorem, which
says that any such singularity cancels between real and virtual corrections.
One may write down the contribution ∼ H+ to the amplitudes in the form

At(ht, hW ) = Alo
t (ht, hW ) + αdA

+
t (ht, hW )H+ (30)

where the lowest order amplitudes Alo
t were given in (19) and the higher order

amplitudes A+
t originating from the σµν term are given by

A+
t (− 1

2 , 0) = −
√

f

2 sin θ
2e−iφ A+

t (+
1

2
, 0) =

√
f

2
cos

θ

2
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A+
t (− 1

2 , +1) = 0 A+
t (+

1

2
, +1) = 0

A+
t (− 1

2 ,−1) = 1√
2

cos θ
2 A+

t (+
1

2
,−1) =

1√
2

sin
θ

2
eiφ (31)

Again, the universal coefficient c0 = emt

2sW

√

f− has been left out in all the
amplitudes. These results imply a higher order contribution due to the σµν

term on the level of the density matrix ρ(ht, hW , h′
t, h

′
W ). Including the lowest

order piece it will be of the form

Alo
t (ht, hW )Alo

t (h′
t, h

′
W )∗ + αdH+

[

Alo
t (ht, hW )A+

t (h′
t, h

′
W )∗

+A+
t (ht, hW )Alo

t (h′
t, h

′
W )∗

]

(32)

Note that to calculate ρnorm, one has to divide afterwards by ρtotal, whose
contribution from the σµν term (including lo) can be calculated to be

∑

ht,hW

|Alo
t (ht, hW )|2 +

αs

2π
H+

∑

ht,hW

[

Alo
t (ht, hW )A+

t (ht, hW )∗

+A+
t (ht, hW )Alo

t (ht, hW )∗
]

= c2
0

{1 + 2f

f
− 3αdH+

}

(33)

This result was obtained by summing over all spin configurations and using
the explicit representation of the amplitudes given above. It shows explicitly
that the contribution from virtual gluon exchange to ρnorm is completely under
control.

The amplitudes corresponding to the σµν term in the vertex may also be
evaluated in the W–rest frame

A+
W (− 1

2 , 0) = −
√

f

2 cos θ A+
W (+

1

2
, 0) =

1

2
sin θeiφ (34)

A+
W (− 1

2 , +1) = −
√

f

2
√

2
sin θe−iφ A+

W (+
1

2
, +1) = − 1

2
√

2
(1 + cos θ)

A+
W (− 1

2 ,−1) =

√
f

2
√

2
sin θeiφ A+

W (+
1

2
,−1) = − 1

2
√

2
(1 − cos θ)e2iφ

and analgous relations as (32) and (33) apply. As discussed before, the angles
θ and φ have completely different meanings in the t and W rest frames.

7 QCD Corrections to the Spin Density Matrix of t → bW from

Real Gluon Emission

The amplitudes and density matrix for real gluon emission are the most difficult
part of the higher order calculation and are also the most difficult to document.
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The point is not only that the amplitudes are quite complicated expressions,
but also that one has to deal with the phase space integration over the real
gluon’s degrees of freedom on the level of the spin density matrix. Furthermore,
the cancellations of the singularities in ρnorm in Eq. (27) require a subtle
understanding of the interplay between lowest order and first order QCD. All
this enforces the use of an algebraic computer program like FORM, REDUCE
or MATHEMATICA to handle the long and complicated expressions. After
calculating the spin density matrix, the real gluon’s degrees of freedom have
to be integrated over. This integration can be done without regularization,
because according to the last section the correction to ρnorm from real gluons
is finite and of the generic form, cf. Eq. (12),

ρnorm(ht, hW , h′
t, h

′
W ) = ρlo

norm + αd
ρhoρlo

total − ρloρho
total

(ρlo
total)

2
(35)

where αd = −CF
αs

2π . The dependence on the gluon spin is not considered,
because it cannot be determined experimentally. Accordingly, the gluon po-
larizations have been summed in the standard fashion.

To be more explicit, let us write the 4–momenta relevant for the process
t → Wbg in the rest system of the top quark as

pt = (mt,~0) pW =
mt

2
f+xW (1, 0, 0, βW ) pb = pt − pW − pg

pg =
mt

2
f−xg(1, sin θg cosφg, sin θg sin φg, cos θg) (36)

where

β2
W = 1 − 4f

f2
+x2

W

(37)

and where θg is given in terms of the other variables according to

f−xg − f+(1 − xW ) =
1

2
f+xW f−xg(1 − βW cos θg) (38)

Note that the meaning of f , f−, f+ etc is as in lowest order. The integrations
over the gluon’s degrees of freedom then have to be done with the phase space

dPS3(t → Wbg) =
m2

t π
2

4
f+f−

∫ 1

0

dxg

∫

f2
−

xg(1−xg )

f+(1−f
−

xg)

0

d(1 − xW )

∫ 2π

0

dφg

2π
(39)

The top quark spinors may be taken as in Eq. (16), with φ = 0 because
the y–z plane has not yet been specified. However, the W polarization vectors

13



are different from the lowest order expressions, Eq. (18), because the W–
momentum has changed. More precisely, the transverse polarization vectors
are left unchanged, but the longitudinal polarization vector now reads

ε0 = − 1

2
√

f
(f+xW βW , 0, 0, f+xW ) (40)

The hb = −1/2 spinor for the b–quark changes, too, but for the density matrix
one needs only the combination u−1/2ū−1/2 = 1

2 (1 − γ5)b/.
I have calculated all the 6 × 6 = 36 spin density matrix elements using

these parametrizations

(1 + 2f)ρnorm(−1

2
, 0,−1

2
, 0) = c− (1 + 0.188 αd) − 0.0246 c+ αd (41)

(1 + 2f)ρnorm(+
1

2
, 0, +

1

2
, 0) = c+ (1 + 0.188 αd) − 0.0246 c− αd (42)

(1 + 2f)ρnorm(−1

2
, 0, +

1

2
, 0) = −s0 (1 + 0.212 αd) (43)

(1 + 2f)ρnorm(+
1

2
, 0,−1

2
, 0) = −s0 (1 + 0.212 αd) (44)

(1 + 2f)ρnorm(−1

2
,−1,−1

2
,−1) = 2fc+ (1 − 0.236 αd) − 0.00751 c−αd(45)

(1 + 2f)ρnorm(+
1

2
,−1, +

1

2
,−1) = 2fc− (1 − 0.236 αd) − 0.00751 c+ αd(46)

(1 + 2f)ρnorm(−1

2
,−1, +

1

2
,−1) = 2f s0 (1 − 0.216 αd) (47)

(1 + 2f)ρnorm(+
1

2
,−1,−1

2
,−1) = 2f s0 (1 − 0.216 αd) (48)

(1 + 2f)ρnorm(−1

2
, +1,−1

2
, +1) = −0.00587 c+ αd − 0.0518 c− αd (49)

(1 + 2f)ρnorm(+
1

2
, +1, +

1

2
, +1) = −0.00587 c−αd − 0.0518 c+ αd (50)

(1 + 2f)ρnorm(−1

2
, +1, +

1

2
, +1) = 0.0460 s0 αd (51)

(1 + 2f)ρnorm(+
1

2
, +1,−1

2
, +1) = 0.0460 s0 αd (52)

(1 + 2f)ρnorm(−1

2
, 0,−1

2
, +1) = −0.0150 s0 αd (53)

(1 + 2f)ρnorm(−1

2
, +1,−1

2
, 0) = −0.0150 s0 αd (54)

(1 + 2f)ρnorm(+
1

2
, 0, +

1

2
, +1) = +0.0150 s0 αd (55)

14



(1 + 2f)ρnorm(+
1

2
, +1, +

1

2
, 0) = +0.0150 s0 αd (56)

(1 + 2f)ρnorm(−1

2
, 0, +

1

2
, +1) = 0.0150 c+ αd (57)

(1 + 2f)ρnorm(+
1

2
, +1,−1

2
, 0) = 0.0150 c+ αd (58)

(1 + 2f)ρnorm(+
1

2
, 0,−1

2
, +1) = −0.0150 c− αd (59)

(1 + 2f)ρnorm(−1

2
, +1, +

1

2
, 0) = −0.0150 c− αd (60)

(1 + 2f)ρnorm(−1

2
, 0,−1

2
,−1) = −s0

√

2f (1 + 0.00600 αd) (61)

(1 + 2f)ρnorm(−1

2
,−1,−1

2
, 0) = −s0

√

2f (1 + 0.00600 αd) (62)

(1 + 2f)ρnorm(+
1

2
, 0, +

1

2
,−1) = +s0

√

2f (1 + 0.00600 αd) (63)

(1 + 2f)ρnorm(+
1

2
,−1, +

1

2
, 0) = +s0

√

2f (1 + 0.00600 αd) (64)

(1 + 2f)ρnorm(−1

2
, 0, +

1

2
,−1) = −c−

√

2f (1 + 0.00600 αd) (65)

(1 + 2f)ρnorm(+
1

2
,−1,−1

2
, 0) = −c−

√

2f (1 + 0.00600 αd) (66)

(1 + 2f)ρnorm(+
1

2
, 0,−1

2
,−1) = +c+

√

2f (1 + 0.00600 αd) (67)

(1 + 2f)ρnorm(−1

2
,−1, +

1

2
, 0) = +c+

√

2f (1 + 0.00600 αd) (68)

(1 + 2f)ρnorm(−1

2
, +1,−1

2
,−1) ≡ 0 (69)

(1 + 2f)ρnorm(−1

2
,−1,−1

2
, +1) ≡ 0 (70)

(1 + 2f)ρnorm(+
1

2
, +1, +

1

2
,−1) ≡ 0 (71)

(1 + 2f)ρnorm(+
1

2
,−1, +

1

2
, +1) ≡ 0 (72)

(1 + 2f)ρnorm(+
1

2
, +1,−1

2
,−1) ≡ 0 (73)

(1 + 2f)ρnorm(−1

2
,−1, +

1

2
, +1) ≡ 0 (74)

(1 + 2f)ρnorm(−1

2
, +1, +

1

2
,−1) ≡ 0 (75)
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(1 + 2f)ρnorm(+
1

2
,−1,−1

2
, +1) ≡ 0 (76)

where c± = 1
2 (1 ± cos θ) and s0 = 1

2 sin θ and where the numerical coefficients
in order αd = −CF

αs

2π have been obtained with mt = 175 GeV, for which
f = 0.21. With the help of my intergation programs I have shown that the
mt dependence of these coefficients is in all cases moderate. For example,
the coefficient 0.188 in Eq. (41) depends on mt

mW
= 1√

f
in the way depicted

in Figure 1. The mt dependence of the other independent QCD coefficients
(denoted by −0.0246, 0.0212, −0.0150, 0.00600, −0.0518, −0.00587, 0.0460,
−0.216, −0.236 and −0.00751, i.e. by their values at mt = 175 GeV) are given
in the figures that follow. Note that only lowest order and real gluons are
incorporated in Eqs. (41)–(76). The virtual corrections Eqs. (32) and (31)
from the σµν term have to be added. The factors 1 + 2f appearing on the
left hand side are a relic of the fact that I am presenting the density matrix
’normalized’ to the total width/trace. There are several possibilities to make
checks on this list. For example, I have checked that

∑

ht,hW

ρnorm(ht, hW , ht, hW ) ≡ 1 (77)

is true including the oneloop QCD corrections. Furthermore, I have also
checked that the ratio

∑

ht
ρnorm(ht, 0, ht, 0)

∑

ht
[ρnorm(ht, +1, ht, +1) + ρnorm(ht,−1, ht,−1)]

=
ΓL

ΓT
=

1

2f
(1 + αs · · ·)

(78)
reproduces the ratio of longitudinal over transverse W’s as calculated in 11 in-

cluding higher order QCD corrections. Finally, there is the check as to the her-
miticity of the density matrix, ρnorm(ht, hW , h′

t, h
′
W ) = ρnorm(h′

t, h
′
W , ht, hW )∗.

Note that the density matrix is real in the present case, because in the consid-
ered frame there is not azimuthal dependence.

I have carried through a second analogous calculation in the rest system
of the W and obtained the real gluon QCD corrections to the density matrix
ρnorm(ht, hW , h′

t, h
′
W ) also in that system. The momenta are now parametrized

as follows

pW = (mt,~0) pt =
mt

2
√

f
f+xt(1, 0, 0, βt) pg = pt − pW − pb

pb =
mt

2
√

f
f−xb(1, sin θb cosφb, sin θb sin φb, cos θb) (79)
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where

β2
t = 1 − 4f

f2
+x2

t

(80)

and where θb is given in terms of the other variables according to

f−xb + f+(1 − xt) =
1

2f
f+xtf−xb(1 − βt cos θb) . (81)

The integrations over the gluon’s degrees of freedom are encoded as integrations
over xt, xb and φb and have to be done with the phase space

dPS3(t → Wbg) =
m2

t π
2

32
f+f−

∫ 1

0

d(1−xb)

∫

f2
−

xb(1−xb)

f+(1−f
−

(1−xg))

0

d(1−xt)

∫ 2π

0

dφb

2π
.

(82)
About the effects of gluon emission on polarization: Since the W–momentum
is unchanged as compared to lowest order, the form of the W polarization
vectors remains as in (25). However, the top and bottom spinors are modified.
They now read

u+1/2(pt) =
√

mt(a−, 0, a+, 0) u−1/2(pt) =
√

mt(0, a−, 0, a+) (83)
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with

a± =

√

xtf+

2
√

f

√

1 ± βt (84)

and
ū−1/2(pb) =

√
mt(0, 0, b∗1, b

∗
2) (85)

where b∗1 and b∗2 are given indirectly by u−1/2(pb)ū−1/2(pb) = 1
2 (1 − γ5)b/. The

36 elements of the normalized density matrix obtained in this frame are given
by

(1 + 2f)ρnorm(−1

2
, 0,−1

2
, 0) = cos2 θ + (−0.248 z− + 0.188 z+)αd (86)

(1 + 2f)ρnorm(+
1

2
, 0, +

1

2
, 0) = f sin2 θ + (−0.080 z− − 0.0246 z+)αd (87)

(1 + 2f)ρnorm(−1

2
, 0, +

1

2
, 0) = −

√

f sin θ cos θ (1 − 0.0171 αd) (88)

(1 + 2f)ρnorm(+
1

2
, 0,−1

2
, 0) = −

√

f sin θ cos θ (1 − 0.0171 αd) (89)

(1 + 2f)ρnorm(−1

2
,−1,−1

2
,−1) =

1

2
sin2 θ (90)

+(0.188 z− − 0.0296 z+ − 0.0222 cos θ)αd (91)

(1 + 2f)ρnorm(+
1

2
,−1, +

1

2
,−1) =

f

2
(1 − cos θ)2 (92)

+(−0.0246 z− − 0.0522 z+ + 0.0464 cos θ)αd (93)

(1 + 2f)ρnorm(+
1

2
,−1,−1

2
,−1) = (1 + 2f)ρnorm(−1

2
,−1, +

1

2
,−1) (94)

=

√
f

2
[− sin θ (1 + 0.0640 αd) + sin θ cos θ (1 − 0.0374 αd)] (95)

(1 + 2f)ρnorm(−1

2
, +1,−1

2
, +1) =

1

2
sin2 θ (96)

+(0.188 z− − 0.0296 z+ + 0.0222 cos θ)αd (97)

(1 + 2f)ρnorm(+
1

2
, +1, +

1

2
, +1) =

f

2
(1 + cos θ)2 (98)

+(−0.0246 z− − 0.0522 z+ − 0.0464 cos θ)αd (99)

(1 + 2f)ρnorm(+
1

2
, +1,−1

2
, +1) = (1 + 2f)ρnorm(−1

2
, +1, +

1

2
, +1) (100)

=

√
f

2
[ sin θ (1 + 0.0293 αd) + sin θ cos θ (1 − 0.0171 αd)] (101)

(1 + 2f)ρnorm(−1

2
, 0,−1

2
, +1) = (1 + 2f)ρnorm(−1

2
, +1,−1

2
, 0) (102)
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=
1√
2

sin θ cos θ(1 + 0.218 αd) − 0.0157 αd sin θ (103)

(1 + 2f)ρnorm(+
1

2
, 0, +

1

2
, +1) = (1 + 2f)ρnorm(+

1

2
, +1, +

1

2
, 0) (104)

= − f√
2

[ sin θ (1 − 0.222 αd) + sin θ cos θ (1 − 0.1325 αd)] (105)

(1 + 2f)ρnorm(−1

2
, 0, +

1

2
, +1) = (1 + 2f)ρnorm(+

1

2
, +1,−1

2
, 0) (106)

=

√

f

2
cos θ (1 + cos θ) + (0.0130 z− + 0.00196 z+ − 0.00196 cos θ)αd(107)

(1 + 2f)ρnorm(+
1

2
, 0,−1

2
, +1) = (1 + 2f)ρnorm(−1

2
, +1, +

1

2
, 0) (108)

= −
√

f

2
sin2 θ + (0.00358 z− − 0.00750 z+ + 0.00750 cos θ)αd (109)

(1 + 2f)ρnorm(−1

2
, 0,−1

2
,−1) = (1 + 2f)ρnorm(−1

2
,−1,−1

2
, 0) (110)

= − 1√
2

sin θ cos θ (1 + 0.218 αd) − 0.0157 αd sin θ (111)

(1 + 2f)ρnorm(+
1

2
, 0, +

1

2
,−1) = (1 + 2f)ρnorm(+

1

2
,−1, +

1

2
, 0) (112)

= − f√
2

[ sin θ (1 − 0.222 αd) − sin θ cos θ (1 − 0.1325 αd)] (113)

(1 + 2f)ρnorm(−1

2
, 0, +

1

2
,−1) = (1 + 2f)ρnorm(+

1

2
,−1,−1

2
, 0) (114)

=

√

f

2
cos θ (1 − cos θ) + (−0.0130 z− − 0.00196 z+ + 0.00196 cos θ)αd(115)

(1 + 2f)ρnorm(+
1

2
, 0,−1

2
,−1) = (1 + 2f)ρnorm(−1

2
,−1, +

1

2
, 0) (116)

=

√

f

2
sin2 θ + (−0.00358 z− + 0.00750 z+ + 0.00750 cos θ)αd (117)

(1 + 2f)ρnorm(−1

2
, +1,−1

2
,−1) = (1 + 2f)ρnorm(−1

2
,−1,−1

2
, +1) (118)

= −z− (1 + 0.218 αd) (119)

(1 + 2f)ρnorm(+
1

2
, +1, +

1

2
,−1) = (1 + 2f)ρnorm(+

1

2
,−1, +

1

2
, +1) (120)

= f z− (1 − 0.1325 αd) (121)

(1 + 2f)ρnorm(−1

2
, +1, +

1

2
,−1) = (1 + 2f)ρnorm(+

1

2
,−1,−1

2
, +1) (122)
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=

√
f

2
sin θ ( 1 − cos θ ) (1 − 0.0171 αd) (123)

(1 + 2f)ρnorm(+
1

2
, +1,−1

2
,−1) = (1 + 2f)ρnorm(−1

2
,−1, +

1

2
, +1) (124)

= −
√

f

2
sin θ ( 1 + cos θ ) (1 − 0.0171 αd) (125)

where z± = 1
2 (1 ± cos2 θ). The QCD coefficients have again been obtained

by numerical integration with mt = 175 GeV. The mt dependence of these
coefficients is again moderate. In fact, it can be shown that the coefficients
in the rest frame of the top quark, Eqs. (41)–(76), and of the W boson,
Eqs. (86)–(125), are related. I was not able to derive a general formula, but
I have found, for example, that −0.0518[Eq.(49)]= −0.0296[Eq.(91)]−0.0222
[Eq.(91)] and −0.00587[Eq.(49)]= −0.0522[Eq.(93)]+0.0464 [Eq.(93)]. Corre-
sponding equalities are true for all other values of mt, i.e. they hold for the
coefficients in general. There are some other relations which I do not want to
quote here.

8 Summary

In this report I have summarized a recent new calculation of a complete spin
analysis of the Standard Model top quark decay including higher order QCD
corrections. The QCD corrections to the ’normalized’ density matrix are in
general quite small, of the order of 1%, in particular for the real gluon con-
tribution in the rest frame of the top quark, cf. Eqs. (41)–(76) and of the
W, cf. Eqs. (86)–(125). The contribution from virtual gluons is somewhat
larger, cf. Eq. (29). Note that the relative magnitude of the QCD corrections
can be very large – in all cases, where the lowest order contribution vanishes,
like Eqs. (49)–(60). In other cases, the symmetry requirement of CP gives
vanishing matrix elements beyond the leading order, cf. Eqs. (69)–(76).

Complete results including azimuthal dependence, numerical analysis and
physical applications have not been included here. However, I plan to write a
long article with J. Körner and his group 22, in which not only this, but also
analytical formulae for all the QCD coefficients will be given.
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