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Abstract

The sensititivity of various future polarization experiments to the first mo-

ment ∆g of the polarized gluon density is elucidated in detail. It is shown

to what extent the first moment can be extracted from the future data as

compared to the higher moments. We concentrate on two processes which in

the near future will become an important source of information on the polar-

ized gluon density, namely the photoproduction of open charm to be studied

at CERN (COMPASS) and SLAC and the production of direct photons at

RHIC.



1. Introduction

One of the main issues in polarized DIS experiments is the question of how the

proton spin at high energies is composed out of the spins of its constituents,

possibly

+
1

2
=

1

2
∆Σ + ∆g + Lz (1)

where ∆Σ = ∆(u+ū)+∆(d+d̄)+∆(s+ s̄) is the contribution from the quark

spins. In the (static) constituent models, like SU(6), one has ∆Σ(SU6) = 1

but experimentally [1] it seems that this rule is violated by a large amount

(∆Σexp ≈ 0.25). This experimental fact is also in disagreement with the

Ellis-Jaffe sum rule [2] which predicts ∆ΣEJ ≈ 0.65 on the basis of the

approximation ∆s = ∆q̄ = ∆g = 0. It will probably turn out that both

the gluon and the strange quark are needed to understand the proton spin

structure [3].

In recent studies of polarized DIS phenomena [4, 5] these questions have been

superimposed by attempts to guess the full x–dependence of the polarized

gluon density, but the question of the first moment is still particularly inter-

esting because it is related to the anomaly. It is true that the first moment

is only one among an infinite set of moments. However, the first moment

∆g certainly has its significance, because it enters the fundamental spin sum

rule (1) and because it gives the contribution within the proton to the γ5

anomaly.

In lepton–nucleon DIS the gluon arises only as a higher order effect and

consequently one has difficulties to extract the polarized gluon distribution

and in particular its first moment from inclusive deep inelastic data. These

problems have been anticipated several years ago by theoretical studies [7, 8,

6], and they are in fact not surprising in view of the subtleties in determining



the unpolarized gluon density in unpolarized DIS experiments [9].

A popular way out of this dilemma is the study of semi–inclusive cross

sections, and in particular of charm production, because the production of

heavy quark hadrons is triggered in leading order by the photon–gluon fu-

sion mechanism and is therefore sensitive to the gluon density inside the

proton, whereas the heavy quark content of the proton is usually negligi-

ble at presently available Q2–values. Another possibility is to look at hard

prompt photons produced in proton–proton scattering, a process which is

well known to lead to good results for g(x) in unpolarized scattering. In

this article we shall study these two processes in some detail and examine

the question to what extent they are sensitive to the first moment ∆g as

compared to the higher moments.

Throughout the paper we are using polarized quark densities as suggested

by [4]. Likewise, we could have used densities parametrized in ref. [5]. We

stress that we make no assumptions on the form of δg(x) and that our results

depend only marginally on the quark density parametrization choosen.

2. Polarized Open Charm Photoproduction

Due to its prominent decay mechanism, J/ψ–events are the most prominent

within charm production, and this fact has led to attempts to determine the

unpolarized gluon density from the J/ψ–production cross section [10, 11, 12].

Similar ideas hold in the case of polarized J/ψ–production [13, 14]. However,

these suggestions are model dependent and depend on assumptions which

go beyond the QCD improved parton model. For example, according to

the suggestion of [11] elastic J/ψ–production should measure the square of

δg(x) and therefore be very sensitive to its magnitude. However, it is not

clear whether in the cross section formula there is a factor g(x1)g(x2) or



whether some independent 2–gluon correlation function K(x1, x2) appears.

Furthermore, it has recently been stressed [15], that color octet contributions

may appear in addition to the color singlet pieces in inelastic J/ψ–production.

If true, this would upset the inelastic J/ψ–analysis because several new free

parameters, the color octet matrix elements, would enter the game.

Therefore, from the theoretical point of view the cleanest signal for the gluon

in heavy quark production is probably open charm production, although

experimentally it has worse statistics due to the difficulties in identifying

D–mesons. Instead of the deep inelastic process one may as well look at

photoproduction, because the mass of the charm quark forces the process to

take place in the perturbative regime. The advantage of photoproduction

over DIS is its larger cross section. Two fixed target experiments, one at

SLAC and COMPASS at CERN [16] are being developed to make use of this

advantage and measure the polarized gluon distribution via photoproduction.

In leading order the inclusive polarized deep inelastic open charm production

cross section is given by [17, 18]

dσc

dQ2dy
=

4πα2

Q2

2 − y

yS
gc
1(
Q2

yS
,Q2) (2)

where S is the Mandelstam–S for the lepton–nucleon scattering process and

gc
1(x,Q

2) =
αs

9π

∫ 1

(1+
4m2

c
Q2 )x

dw

w
δg(w,Q2)hec(

x

w
) (3)

is the charm contribution to the polarized structure function g1 and where

hec(z) = (2z − 1) ln
1 + β

1 − β
+ (3 − 4z)β (4)

is the parton level matrix element. One has β =
√

1 − 4m2
c

ŝ
where the Man-

delstam variable ŝ is defined by ŝ = (p + q)2 = Q2 1−z
z

. By combining these



formulae with the unpolarized cross section one can obtain the polarization

asymmetries. If one plugs in the relatively large gluon contribution of ref-

erences [7, 4, 5], one gets asymmetries of the order 0.1 in a fixed target

experiment which would operate well above charm threshold.

It is straightforward to obtain from the above expressions (2) – (4) the in-

clusive open charm photoproduction cross section by taking the simultaneous

limits Q2 → 0 and z → 0 while keeping Q2

z
≈ ŝ fixed [19, 20]:

σc
γp(Sγ) =

8πααs

9Sγ

∫ 1

4m2
c

Sγ

dw

w
δg(w, Sγ)(3v − ln

1 + v

1 − v
) (5)

where v =
√

1 − 4m2
c

ŝ
and ŝ = wSγ. This integrated cross section depends

only on the total proton–photon energy Sγ = (P + q)2 which for a fixed

target experiment is given by Sγ = 2MEγ where Eγ is the photon energy.

By varying the photon energy it is in principle possible to explore the x–

dependence of δg. Very high photon energies correspond to small values of

x. However, as we shall see later, it is not trivial to obtain the first moment

of δg(x) from the cross section Eq. (5) even if the full energy dependence is

known.

It should be noted that the second argument of δg in Eqs. (3) and (5) is not

certain. It might as well be 4m2
c or any number in between. This uncertainty

reflects our ignorance about the magnitude of the higher order correction

and could be resolved if a higher order calculation of these cross sections

would be performed. The same statement holds true for the argument of αs.

Therefore, in the equations presented below the energy arguments of δg and

αs will be chosen to be more general, µS and µR respectively.

Eq. (5) was obtained after integration over the charm quark production angle

(θ̂ in the gluon photon cms). If one is interested in the pT distribution or



wants to introduce a pT –cut, it is appropriate to keep the θ̂ dependence in

the matrix element

ME =
t̂2 + û2 − 2m2

c ŝ

t̂û
+ 2m2

c

t̂3 + û3

t̂2û2
(6)

where ŝ = wSγ, t̂ = − ŝ
2
(1− v cos θ̂) and û = − ŝ

2
(1+ v cos θ̂). It is possible to

make a transformation to the transverse charm quark momentum by using

p2
T = ( ŝ

4
−m2

c) sin2 θ̂ and to obtain the cross section for all processes with pT

greater than a given pTcut :

σ(pTcut) =
πααs(µ

2
R)

9Sγ

∫ 1

4(m2
c+p2

Tcut
)

Sγ

dw

w
δg(w, µ2

S)
v

ŝ
4
−m2

c

∫ ŝ
4
−m2

c

p2
Tcut

dp2
T

√

1 − p2
T

ŝ
4
−m2

c

{

2m2
c

ŝ

t̂û
− t̂

û
− û

t̂
− 2m2

c(
t̂

û2
+
û

t̂2
)

}

(7)

There are several good reasons to study the pT distribution. First of all and in

general, it gives more information than the inclusive cross section. Secondly

and in particular, it can be shown that the integrated photoproduction cross

section Eq. (5) as well as the corresponding DIS charm production cross

section are not sensitive to the first moment of δg(x). The sensitivity is

increased, however, if a pT –cut of the order of pT ≈ 1 GeV is introduced

(see below). Last but not least, it is experimentally reasonable to introduce

a pT –cut.

Now we want to follow the question what the contribution of the first moment

∆g to the cross sections (3), (5) and (7) is. In massless DIS this question

is easy to answer. One can apply the convolution theorem on Eq. (3) (with

mc = 0) to see that the contribution of ∆g is given by the first moment of

the parton matrix element. If masses are involved, like mc, the answer to this

question is somewhat more subtle. Since the cross section is not any more a

convolution of the standard form, one can not directly apply the convolution



theorem, but has to write it artificially as

σ(a) =
∫ 1

a

dw

w
δg(w)H(

a

w
) (8)

where H is some function (to be given below) and a = aγc = 4m2
c

Sγ
for photopro-

duction and a = aec = (1+ 4m2
c

Q2 )x for DIS charm production. Now one can ap-

ply the convolution theorem to prove that the first moment H(1) =
∫ 1
0 dzH(z)

gives the contribution from ∆g to the cross section [and in general for the

n–th moment : σ(n) = H(n)δg(n)]. Note that the moments σ(n) are taken

with respect to a. In DIS charm production, the function H is given by

Hec(z) ∼ hec(
z

1+
4m2

c
Q2

), Eq. (4), and in open charm photoproduction without

cuts it is given by Hγc(z) = 8πααs(µR)
9Sγ

hγc(z) with

hγc(z) = 3
√

1 − z − ln
1 +

√
1 − z

1 −
√

1 − z
(9)

where z = aγc

w
. After some algebra one can see that both for the inclusive

charm photoproduction and DIS the relevant quantities
∫ 1
0 dzH(z) identically

vanish. For example, for the photoproduction case the moment function h(n)
γc

is given by

h(n)
γc = (n−1 − n−2)

∫ 1

0
(1 − t2)ndt (10)

On physical grounds the result H(1) = 0 can be traced back to the small–pT

behaviour of the matrixelement for γg → cc̄ which cancels the contribution

of the large–pT region in
∫ 1
0 dzH(z) [21]. It is not really a surprise in view of

the structure of the anomaly in massive QCD (cf. the appendix of ref. [22]).

Eq. (10) allows to calculate h(n)
γc for arbitrary complex n. For example, there

is an expansion h(1+ε)
γc = 2

3
ε + O(ε2) (and similarly for H(1+ε)

ec ) which shows

that the H(n) keep being small in the neighbourhood of n=1. From this one



may conclude that the cross sections are not suited for determining the first

moment of δg.

Fortunately, the situation changes if one includes a pT –cut of greater than

1 GeV. In that case, some sensitivity to ∆g is re–established because the

small–pT behaviour of the matrix element for γg → cc̄ does not cancel the

contribution of the large–pT region any more. Let us discuss this issue in some

more detail for the photoproduction case. One can put the cross section (7)

in the form (8) with Hγc(z, pTcut) = 8πααs(µR)
9Sγ

hγc(z, pTcut) and

hγc(z, pTcut) =
v

8

1
ŝ
4
−m2

c

∫ ŝ
4
−m2

c

p2
Tcut

dp2
T

√

1 − p2
T

ŝ
4
−m2

c

{

2m2
c

ŝ

t̂û
− t̂

û

− û
t̂
− 2m2

c(
t̂

û2
+
û

t̂2
)

}

(11)

z is defined by z = 4m2
c

ŝ
. All other relevant quantities have been defined before

and after (7). Note that for pTcut → 0 one recovers hγc(z, pTcut) = hγc(z), Eq.

(9). The integral Eq. (11) will be the starting point for several important

observations, cf. Figs. 1–6 below. The point is, that one can use the moments

H(n)
γc (pTcut) of Hγc(z, pTcut) to reconstruct the cross section according to the

Mellin formula

σ(pTcut) =
1

2πi

∫ k+i∞

k−i∞
dna−n

γc H
(n)
γc (pTcut)δg

(n) (12)

This is because the cross section has the form Eq. (8) withH(z) = Hγc(z, pTcut).

Since the integral in Eq. (12) extends along the imaginary axis, one has to

consider complex values of n. We have studied the behavior of H(n)
γc (pTcut)

as a function of n = 1 + iy, n = 2 + iy, n = 3 + iy etc. for real values

of y and several values of pTcut. In this way we are able to determine the

circumstances under which the first moment H(1)
γc (pTcut) dominates in the in-



Figure 1: The behavior of the n–th moment of hγc in the imaginary neigh-

bourhood of n = 1 at pTcut = 0. It is shown that there is no sensitivity to

the first moment at all.

tegral Eq. (12) over the higher moments. For definiteness, we have choosen

a photon energy of 30 GeV (Sγ = 60 GeV2) and mc = 1.3 GeV.

More precisely, in Figs. 1–6 the quantity Re[a−k−iyh(k+iy)
γc (pTcut)] is presented

for −1.5 ≤ y ≤ +1.5, k = 1, 2 and pTcut = 0., 0.75, 1.5 GeV. The curves for

pTcut = 0 (Figs. 1 and 4 ) can be obtained directly from Eq. (10). The

insensitivity at pTcut = 0 as to the first moment is displayed by the zero of

the curve k = 1 (Fig. 1). If one compares Figs. 1 and 4, one sees that the

sensitivity to the second moment is much larger for pTcut = 0. The situation

changes as the pTcut is increased. This can be seen in Figs. 2, 3, 5 and 6,

but also in Fig. 7 where h(1)
γc (pTcut) and h(2)

γc (pTcut) are given as a function of

pTcut. h
(1)
γc (pTcut) has an extremum at some point pTcut ≈ 1GeV which should

be suspected to be the most optimal value for a measurement of ∆g. That

this is really the case, can be deducted from a closer study of Figs. 2 and



Figure 2: The behavior of the n–th moment of hγc in the imaginary neigh-

bourhood of n = 1 at pTcut = 0.75 GeV. An increasing sensitivity as to the

first moment is visible.

3. We suggest to associate an ”observational significance” R1 to any cross

section sensitive to ∆g by means of the following procedure : It should be

defined as the ratio of the ”signal” over the squareroot of the ”background”,

R1 =
Nsignal√

Nbackground

which in the ideal situation of a Gaussian corresponds

to R1 =
√

height
width

. In the case at hand one has R1 ≈ |H(1)|
√

∫ ≈+1

≈−1
dya−1−iy |H(1+iy)|

.

Similarly, one can define a significance R2 for the determination of the second

moment and so on. For simplicity, R3, R4 etc. are not considered in this

paper because qualitatively they behave not much different than R2. From

Figs. 1–6, the ”observational significances” R1 and R2 can be deducted as

a function of pTcut. If one makes a more thorough analysis by taking other

values of pTcut into account, one finds thatR1 has a maximum near pTcut ≈ mc

whereas R2 goes down for increasing values of pTcut. Unfortunately, R3, R4

etc do not decrease as strongly as R2 at higher values of pTcut. One may also



Figure 3: The behavior of the n–th moment of hγc in the imaginary neigh-

bourhood of n = 1 at pTcut = 1.5 GeV. The first moment dominates the

higher moment contributions which are comprised at values y 6= 0.

determine the ”12–significance” R12 = R1

R2
. This ratio is important, because

it does not depend on the overall cross section. For example, at pTcut = 0.75

GeV one has R12 = 0.67. It will be shown later that the ”12–significance”

is much larger for the RHIC process than this value obtained for charm

photoproduction!

4. Polarized Production of Direct Photons in PP Collisions

In unpolarized hadron scattering hard photons are known to be a clean probe

of the gluon distribution, because they can be directly detected, without

undergoing fragmentation. Similarly, the most interesting prospect for po-

larized high energetic proton experiments is the possibilitity to determine

δg(x) from the process pp → γX with a high energetic photon in the final

state. Consequently several groups have studied this process theoretically



Figure 4: The behavior of the n–th moment of hγc in the imaginary neigh-

bourhood of n = 2 at pTcut = 0. A sensitivity of the second moment (y = 0)

as compared to the other moments (y 6= 0) is visible. The decrease at large

values of y > 1.5 is due to moments n ≥ 3.

Figure 5: The behavior of the n–th moment of hγc in the imaginary neigh-

bourhood of n = 2 at pTcut = 0.75 GeV. The sensitivity of the cross section

as regards the second moment is going down.



Figure 6: The behavior of the n–th moment of hγc in the imaginary neigh-

bourhood of n = 2 at pTcut = 1.5 GeV. The sensitivity of the cross section

as regards the second moment has gone down further.

[23, 24, 25, 26] and even higher order QCD corrections are completely known

[27, 28]. On the experimental side, there is the upcoming very promising ex-

perimental spin program of the Relativistic Heavy Ion Collider (RHIC) Spin

Collaboration [29] at the Brookhaven National Laboratory. At RHIC both

proton beams, with an average energy of 250 GeV each, will be polarized,

using ’Siberian snakes’ , to an expected polarization of about 70%. Due to

the high luminosity of the order of ∼ 1032cm−2s−2 (corresponding to an inte-

grated luminosity of about 800 pb−1) the polarized RHIC pp collisions will

play a decisive role for measuring the polarized gluon density.

On the parton level, direct photon production is induced in lowest order by

the annihilation of light quarks qq̄ → γg and by the Compton scattering

qg → γq. Among the two, the contribution from the annihilation process

is small because it is a valence–sea scattering process. Since the Compton

scattering dominates, the cross section is strongly dependent on the mag-

nitude of δg(x). Assuming the above luminosity at RHIC, a sensitivity of

about 5% is expected for δg(x)
g(x)

[30]. If δg(x) is large, one encounters large



Figure 7: The pTcut–dependence of of h(n)
γc for n = 1 and n = 2. The

sensitivity as regards the second moment is strongly reduced as the pTcut

is switched on. Unfortunately, the decrease of h(1)
γc is not as strong as one

might hope.



positive values of the spin asymmetry up to 50 percent. The form of δg(x)

can largely be reconstructed from the kT–distribution of the direct photons

which is given by the simple formula

dσ(PP → γX)

da
=

∑

qg,gq

∫ 1

a
dwδg(w)

∫ 1

a
w

dx
dσ̂(qg/gq → γq)

da

∑

q

Q2
qδq(x)

(13)

where a = app =
4k2

T

S
is the rescaled transverse momentum and the parton

level kT –distribution dσ̂
da

= 1
2|c|xw

dσ̂
d|c|

is given by

dσ̂(qg(gq) → γq)

dc
=
πααs

6xwS
[

1
1
2
(1 ± c)

− 1

2
(1 ± c)] (14)

The upper and lower sign stand for the processes qg → γq and gq → γq,

respectively. c is the cosine of the parton–parton scattering angle in the

parton cms. Note that the photon transverse momentum k2
T = 1

4
ŝ(1 − c2) =

1
4
xwS(1 − c2) is identical for parton and proton level.

The question then arises, how sensitive this measurement is to the first mo-

ment of δg(x) as compared to the higher moments. This question can be

answered in a similar fashion than for charm photoproduction. The main in-

gredient is again the Mellin theorem which can be applied to the photon kT –

distribution Eq. (13) because dσ(PP→γX)
dapp

is of the form
∫ 1
app

dw
w
δg(w)Hpp(

app

w
)

whereHpp(z) = H+
pp(z)+H

−
pp(z) is the sum of contributions from the processes

qg → γq and gq → γq.

H±
pp(z) =

πααs

12appS

∫ 1

z

dx

x
[Q2

uδu(x) +Q2
dδd(x)]

z

x|c| [
1

1
2
(1 ± c)

− 1

2
(1 ± c)]

(15)

where c = ±
√

1 − z
x
. Therefore, according to the convolution theorem, the

contribution of ∆g to the cross section is given by the first moment of Hpp(z).



Figure 8: The behavior of the n–th moment of Hpp in the imaginary neigh-

bourhood of n = 1 and n = 2. The dominance of the first moment over the

higher moment is clearly visible. It is much more pronounced than in any of

the photoproduction cases considered before. Numbers for Hpp are given in

units of πααs

6appS
.



Introducing u = z
x
, it can be seen that the moments of Hpp(z) factorize in a

very simple way

H(n)
pp =

πααs

6appS

∫ 1

0
duun−1(

u

2
+ 2)

∫ 1

0
dxxn−1[Q2

uδu(x) +Q2
dδd(x)]

(16)

Just as in the case of charm photoproduction we can now study the behavior

of H(n)
pp in the imaginary neighbourhood of n = 1 and n = 2, and in principle

also for higher moments. The results are shown in Fig. 8 and exhibit a

distinct peak at n = 1 whereas the sensitivity to the second moment is much

weaker (almost flat). The peak is in fact much more pronounced than any of

the peaks which were found in the last section for charm photoproduction.

From the figure we calculate the 12–sensitivity defined in the last section to

be R12 = 0.175
0.042

= 4.2. Similar large values arise for R13 = R1

R3
, R14 = R1

R4
etc.

Therefore one concludes that this process is much more sensitive to ∆g than

polarized charm photoproduction.

Higher order QCD corrections to the process pp → γX involving polarized

proton beams have been calculated in refs. [27, 28]. It is possible to extend

our method to include the higher order effects because the results of the

calculation are given in the form of a K–factor to the kT distribution. The

higher order corrections turn out to be positive and quite large. Neverthe-

less, the ”12–significance” is hardly modified because the higher order effects

cancel between the numerator R1 and denominator R2 (cf. the end of section

3).

There is another RHIC process which will serve to give information about

δg(x), namely the production of heavy quarks in the collision of polarized

protons [29]. Using our method it is possible to determine its sensitivity

to ∆g. At low and intermediate values of the heavy quark pT , the cross

section is dominated by the subprocess gg → QQ̄. Correspondingly, the



moments of the cross section are generically of the form σ(n) = [δg(n)]2σ̂(n).

Due to the quadratic dependence on δg(n) one concludes that this process

is very sensitive to ∆g if ∆g is large and not very sensitive to ∆g if ∆g is

small. The ’weight’ σ(1) can be calculated to be relatively large. However, a

quantitative comparison to the results obtained above is not possible, because

direct photon production is linear in δg(x) and heavy quark production is

quadratic in δg(x) and because the magnitude of ∆g is not known.

5. Summary

Present experimental data do not really give good information about the

polarized gluon density δg(x), 1 because in DIS the gluon is a higher order

effect. However, in the near future several experiments at BNL, CERN and

SLAC will directly test for δg(x). In this paper we have examined the ques-

tion of how sensitive these experiments will be to ∆g as compared to the

higher moments. We have found that for the determination of ∆g the RHIC

experiment is suited much better than the charm photoproduction process.

This arises due to the property of the matrix elements and is not just because

RHIC allows to study smaller values of x, but because the full cross section

gets a relatively larger contribution from the first (as compared to the higher)

moments. Using our method it is in principle possible to separately analyze

the sensitivity to any moment, but we have restricted ourselves to the first

moment because of its outstanding importance. For comparative reasons we

have included in our analysis the second moment as well.

1It has been attempted to determine the magnitude of the first moment ∆g [31] from

the DIS data. As an essential input the presently known Q2–dependence of the data (both

theoretically and experimentally) was used, in which the polarized gluon plays some role.

On the basis of this, a value ∆g ≈ 1.3±0.5 was quoted. Our opinion is that the error here

is underestimated but the order of magnitude of ∆g looks reasonable. Note there are also

attempts to determine ∆g from meson properties, e.g. recently ref. [32].



In principle, to determine the first moment ∆g precisely it is necessary to

know the small–x behaviour δg(x). In reality, all processes allow to deter-

mine δg(x) only down to some lower limit x ≥ a. For example, in charm

photoproduction one has x ≥ 4m2
c

Sγ
for kinematical reasons. Thus, increasing

the photon energy from 30 (x ≥ 0.12) to 300 GeV (x ≥ 0.012), one can pen-

etrate deeper into the small–x region, and so on. Clearly, working at a fixed

photon energy (fixed a), one will not get any information on δg(x ≤ a). As

a consequence, the moments determined from δg(x) will be ”cut moments”.

For example, the first cut moment will be ∆ag :=
∫ 1
a dxδg(x). We want to

make clear that the whole analysis presented in this article refers to the first

cut moment. One has a = 4m2
c

Sγ
and a = 4

m2
c+p2

Tcut

Sγ
for charm photoproduction

with and without pTcut, respectively. Thus, application of the pT –cut effec-

tively increases a and shrinks the x–region which can be studied. However,

we have seen in Sect. 3 that one has to apply a pT –cut because otherwise

there would be no sensitivity to the first moment at all. On the other hand,

our results apply to cut moments only up to terms of order O(a) because

the convolution formula is true strictly speaking for moments and not for cut

moments. In charm photoproduction we studied the case a = 0.12 (cf. Figs.

1–6), so that we expect corrections of about 10% to our results.

The situation is much better for the production of direct photons at RHIC.

First of all, as shown in Sect. 4, there is a stronger sensitivity to the first

moment as in charm photoproduction, and secondly, it will be possible to

penetrate deeper into the small–x region, because in this case a =
4k2

T

S
. It

is true that hard photons with transverse energies less than a few GeV are

difficult to identify, but even if one considers only photons with kT ≥ 10

GeV, one still has a ≥ 0.0016, and the first cut moment ∆0.0016g will contain

a lot of contributions from the small–x regime.



Recently, the small–x behavior of the polarized parton densities have at-

tracted some attention. We think that it can safely be stated that the polar-

ized gluon density behaves much more moderate than the unpolarized one. It

can be shown on rather general grounds that δg(x) is one power of x less sin-

gular than g(x). Some results in the literature [33] indicate that logarithms

of x may be present and consequently predict a relatively strong rise of δg(x)

as x → 0. These results are not really indicative for the first moment, be-

cause they neglect certain contributions at very small x which are assumed

to compensate those logarithms [34]. In fact, the first moment of g1 would

not exist if one would take the results of [33] literally. They are, however, a

good starting point for measurements of g1(x) in the small–x regime feasibale

at HERA. Maybe, they will already be seen at RHIC.
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