THE TRISECTION OF ANY ANGLE

to Euclid Geometry as the model of by the Barbaric Turks. all nature . A meter also for testing sufficiency of Geometries .

This article has been written during Markos Georgallides : Tel-00357 -99 634628 last month of 2010 and is solely for Civil Engineer(NATUA) : Fax-00357-24 653551 my own amusement and private study 38, Z.Kitieos St, 6022, Larnaca and also to all those readers that believe Expelled from Famagusta town occupied

Email < georgallides.marcos@cytanet.com.cy >

Consider the angle $\langle AOB \rangle$.

Draw circle (O, OA) with its center at the vertex O and produce side BO to D . Insert a straight line AD so point C is on the circle and point D on line BO and length DC **such that** it is equal to the radius of the circle .

Proof :

Since $CD = CO$ then triangle CDO is isosceles and angle \langle CDO = COD The external angle OCA of triangle CDO is \leq OCA = CDO + COD = 2. CDO and equal to angle ADO and since angle \langle OAC = OCA then \langle OAC = 2.0DA The external angle AOB of triangle OAD is \langle AOB = OAD + ODA = $2. ODA + ODA = 3. ODA$

2. **Pappus method** :

It is a slightly different of Archimedes method can be reduced to a neusis as follows Consider the angle $\langle AOB \rangle$.

Draw AB perpendicular to OB . Complete rectangle ABOC . Produce the side CA to E . Insert a straight line ED of given length 2 .OA between AE and AB **in such a way** that ED verges towards O . Then angle $\langle AOB = 3$. DOB 3. **The Present method :**

We extend Archimedes method as follows :

- **a**. $(F, 3-4)$ Given an angle < AOB = AOC = 90°
	- 1. Draw circle $(A, AO = OA)$ with its center at the vertex A intersecting circle $($ O $,$ OA = AO $)$ at the points A1, A2 respectively.
	- 2. Produce line AA1 at C so that $A1C = A1A = AO$ and draw $AD // OB$.
	- 3 . Draw CD perpendicular to AD and complete rectangle AOCD .
	- 4 . Point F is such that OF = 2 . OA

b . (F. 5 - 6 -7a) Given an angle < AOB < 90▫

- 1. Draw AD parallel to OB .
- 2. Draw circle $(A, AO = OA)$ with its center at the vertex A intersecting circle $($ O $,$ OA = AO $)$ at the points A1 $,$ A2 .
- 3. Produce line A A1 at D1 so that $A1D1 = A1A = OA$.
- 4. Point F is such that $OF = 2 \cdot OA = 2 \cdot OAO$.
- 5 . Draw CD perpendicular to AD and complete rectangle A΄OCD .
- 6 . Draw Ao E Parallel to A΄ C at point E (or sliding E on OC) .
- 7 . Draw AoE΄ parallel to OB and complete rectangle AoOEE΄ .
- 8 . Draw AF intersecting circle (O , OA) at point F1 and insert on AF segment F1 F2 equal to OA \rightarrow F1 F2 = OA.
- 9 . Draw AE intersecting circle (O , OA) at point E1 and insert on AE segment E1 E2 equal to OA \rightarrow E1 E2 = OA = F1 F2.

Show that :

- a) For all angles equal to $90[°]$ Points C and E are at a constant distance $OC = OA \cdot \sqrt{3}$ and $OE = OA \cdot \sqrt{3}$, from vertices O, and also A'C //AoE.
- b) The geometrical locus of points C , E is the perpendicular CD , EE΄ on AB.
- c) All equal circles with their center at the vertices O , A and radius $OA = AO$ have the same geometrical locus $EE' \perp OE$ for all points A on AD, or All radius of equal circles drawn at the points of intersection with its Centers at the vertices O , A and radius $OA = AO$ lie on CD , EE' .
- d) Angle \langle D₁OA is always equal to 90 \degree and angle AOB is created by rotation of the right-angled triangle AOD1 through vertex O .
- e) Angle $\langle AOB \rangle$ is created in two ways, By constructing circle (O, OA = OAo) and by sliding of point A΄ on line A΄ D Parallel to OB from point A΄ to A .
- f) The rotation of lines AE , AF on circle $(O, OA = OA)$ from point E to point F which lines intersect circle $(O, O A)$ at the points E1, F1 respectively , **fixes a point** G on line EF and a point G1 common to line AG and to the circle $($ O $,$ OA $)$ **such that** G G 1 = OA .

Proof :

 $a)$.. (F3, F4)

Let OA be one-dimentional Unit perpendicular to OB such that angle $<$ AOB = AOC = 90 ^o Draw the equal circles $(O, O A)$, $(A, A O)$ and let points A1, A2 be the points of intersection . Produce AA1 to C . Since triangle AOA1 has all sides equal to OA ($AA1 = AO = OA1$) then it is an equilateral triangle and angle $\langle A1AO = 60 \rangle$ Since Angle \langle CAO = 60 \circ and AC = 2. OA then triangle ACO is right-angled and angle $\langle AOC = 90\degree$, and so the angle $ACO = 30\degree$. Complete rectangle AOCD

Angle \langle ADO = 180 – 90 – 60 = 30 \degree = ACO = 90 \degree / 3 = 30 \degree From Pythagoras theorem $AC^2 = AO^2 + OC^2$ or $OC^2 = 4.0A^2 - OA^2 = 3.0A^2$

and $OC = OA \cdot \sqrt{3}$. For $OA = OAO$ then $AoE = 2$. OAo and $OE = OAO$. $\sqrt{3}$. Since $OC/OE = OA/OA₀ \rightarrow$ then line CA' is parallel to EA₀

 $b)$.. (F5, F6)

Triangle OAA1 is isosceles, therefore angle $\langle A1AO = 60 \rangle$. Since A1D 1 = A1O, triangle D1A1O is isosceles and since angle $\langle O A1 A = 60 \rangle$, therefore angle $\langle O D1 A$ $= 30$ • or, Since A1A = A1D 1 and angle < A1AO = 60 • then triangle AOD1 is also right-angle triangle and angles \langle D 1OA = 90 \degree , angle \langle OD 1A = 30 \degree .

Since the circle of diameter D1A passes through point O and also through the foot of the perpendicular from point D1 to AD, and since also $ODA = ODA' = 30$ \degree . then this foot point coincides with point D , therefore the locus of point C is the perpendicular CD1 on OC. For $AA1 > A1D1$, D'1 is on the perpendicular D'1E on OC.

c $)$.. (F5, F6)

Since the Parallel from point A 1 to OA passes through the middle of OD 1 , *and in case where* $AOB = AOC = 90$ *• through the middle of AD*, then the circle with diameter D1A passes through point D which is the base of the perpendicular , **i.e.** *The geometrical locus of points C or E is the perpendicular CD , EE΄ on OB .*

d $)$... (F5, F6)

Since $A1A = A1D1$ and angle $\lt A1A0 = 60$ \cdot then triangle AOD 1 is right-angle triangle and *angle < D 10A = 90* \circ .

Since angle < AD1O is always equal to 30 ▫ and angle D1OA is always equal to 90▫ , therefore angle < AOB is created by the rotation of the right - angled triangle AOD1 through vertex O .

Since tangent through Ao to circle $(O, O A')$ lies on the circle of half radius OA then this is perpendicular to OA and equal to A΄A .

e) .. (F5 , F6 , F.7a)

Let point **G** be sliding on OB between points **E** and **F** where lines AE , AG , AF intersect circle $($ O $,$ OA $)$ at the points E₁, G₁, F₁ respectively where then exists $FF1 > OA$, $GG1 = OA$, $EE1 < OA$.

Points E , F are the limiting points of rotation of lines AE , AF (because then for angle $\langle AOB = 90 \rangle$ \rightarrow A1C = A1A = OA, A1Ao = A1E = OAo and for angle $\langle AOB = 0$ ^{\Box} \rightarrow OF = 2.0A). Exists also E1E2 = OA, F1F2 = OA and point G1 common to circle $(0, 0A)$ and on line AG such that $GG1 = OA$.

AE2 oscillating to AF2 passes through AG so that $GG1 = OA$ and point G on EF. When point G1 of line AG is moving (rotated) *on circle* (E_2 , $E_2E_1 = OA$) and Point G1 of GIG is stretched on circle (O, OA) then $GIG \neq OA$.

A position of point G1 is such that , when GG1 = OA point G lies on line EF. When point G1 of line AG is moving (rotated) *on circle (F2 , F2F1 = OA*) and point G1 of GIG is stretched on circle (O, OA) then $GIG \neq OA$.

A position of point G1 is such that , when GG1 = OA point G lies on line EF. For both opposite motions there is only one position where point G lies on line OB and is not needed point G1 of GA to be stretched on circle $(0, OA)$.

 This position happens at the common point P of the two circles which is their point of intersection . *At this point P exists only rotation and is not needed G1 of GA to be stretched on circle (O , OA) so that point G to lie on line EF. This means that point P lies on the circle (G,* GG *_{<i>1*} = OA), or $GP = OA$.

Point A of angle < BOA is verged through two different and opposite motions , i.e.

1 . From point A΄ to point Ao where *is done a parallel translation* of CA΄ to the new position EAo , *this is for all angles equal to 90* ▫ , and from this position to the new position EA by rotating EAo to the new position EA having always the distance $E1 E2 = OA$.

This motion is taking place on a circle of centre E1 and radius E1 E2 .

- 2. From point F , *where OF = 2. OA , is done a parallel translation of A΄F" to FAo,* and from this position to the new position FA by rotating FAo to FA having always the distance $F1 F2 = OA$. The two motions coexist again on a point **P** which is the point of intersection of the circles ($E2$, $E2E1 = OA$) and ($F2$, $F2F1 = OA$).
- f)... $(F5, F6, F.7a)$ Remarks Conclusions.
- 1 . Point E1 is common of line AE and circle (O, OA) and point E2 is on line AE such that E1 E2 = OA and exists E E1 < E2 E1 **.** E1 E2 = OA is stretched *,moves* on EA so that point E2 is on EF. Circle $(E, EE1 < E2 E1 = OA)$ cuts circle $(E2, E2 E1 = OA)$ at point E1. There is a point G1 on circle (O,OA) such that G1G = OA , *where point G is on EF* , *and is not needed G1G to be stretched* on GA where then , circle (G , GG1= OA) cuts circle (E_2 , $E_2 E_1 = OA$) at a point P.
- 2. Point F1 is common of line AF and circle (O,OA) and point F2 is on line AF such that F1 F2 = OA and exists F F1 > F2 F1 **.** F1 F2 = OA is stretched *,moves* on FA so that point F2 is on F. Circle $(F, FF1 > F2 F1 = OA)$ cuts circle $(F2, F2 F1 = OA)$ at point F1. There is a point G1 on circle (O, OA) such that G1G = OA , *where point G is on FE* , *and is not needed G1G to be stretched* on OB where then, circle (G, GG1= OA) cuts circle (F_2 , F_2 $F_1 = OA$) at a point.
- 3. *When point G is at such position on EF that GG1= OA , then point G must be at* **A COMMON** *, to the three lines EE1 , FF1 , GG1 , and also to the three circles* $(E2, E2 E1 = OA)$, $(G, GG1 = OA)$, $(F2, F2 F1 = OA)$. This is possible at the *common point P of Intersection of circle (E2, E2E1 = OA)* and (F2, $F2F1 = OA$) *and since GG1 is equal to OA without G1G be stretched on GA , then also GP= OA*
- 4. On the contrary , for point G1 :
- **a**. Point G1 *,from point E1*, moving on circle (E2, E2 E1 = OA) formulates GG1 < OA on line GA. There is a point on circle (E2, E2 E1 = OA) such that $GG1 = OA$.
- **b**. Point G1 *,from point F1*, moving on circle (F_2 , $F_2F_1 = OA$) formulates $GG1 > OA$ on line GA. There is a point on circle (F_2 , F_2 , $F_1 = OA$) such that $GG_1 = OA$
- **c**. Since for both opposite motions there is a point on the two circles that makes $GG1 = OA$ then this point say P, is common to the two circles.
- **d**. Since for both motions at point P exists $GG1 = OA$ then circle $(G, GG1 = OA)$ passes through point P , and since point P is common to the three circles , then fixing point P as common to the two circles (E2, E2 E1 = OA), $(F2, F2 F1 = OA)$, point G is found as the point of intersection of circle $(P, PG = OA)$ and line EF. This means that the common point P of the three circles is constant to this motion

5. The steps of Trisection of any angle $\langle AOB = 90 \rangle$ \rightarrow 0 \sim (F6, F7, F8)

- 1. Draw circle $(0, 0A)$ and line AD parallel to OB .
- 2. Draw $OAo \perp OB$ where point Ao is on the circle (O, OA) and the circle $($ Ao , AoE = 2.OA) which intersects line OB at the point E.
- 3. Fix point F on line OB such that $OF = 2$. OA
- 4. Draw lines AF , AE intersecting circle (O , OA) at points F1 , E1 respectively .
- 5. On lines F₁A, E₁A fix points F₂, E₂ such that F₂F₁ = O_A and E₂ E₁ = O_A
- 6. Draw circles (F2, F2 F1 = OA), (E2, E2 E1 = OA) and fix point P as the common point of intersection .
- 7. Draw circle $(P, PG = OA)$ intersecting line OB at point G and draw line GA intersecting circle $($ O $,$ OA $)$ at point G₁ \cdot *Segment GG₁ = OA* \cdot

Proof :

- 1. Since point P is common to circles (F_2 , $F_2F_1 = OA$), $(E_2, E_2E_1 = OA)$, then $PG = PF_2 = PE_2 = OA$ and line AG between AE, AF intersects circle $($ O,OA) at the point G1 such that GG1 = OA $($ **e** - **f.3** - **f.4**)
- 2. Since point G1 is on the circle $(O, O A)$ and since GG1 = OA then triangle $GG1O$ is isosceles and angle $\langle AGO = G1OG \rangle$.
- 3 . The external angle of triangle GG1O is \langle AG1O = AGO + G1OG = 2. AGO.
- 4. The external angle of triangle GOA is $\langle AOB \rangle = AGO + OAG = 3.AGO$. **Therefore angle < AGB =** $(1/3)$ **.** (AOB) **…………..** $(0.2.5)$ **.**

Conclusions:

- 1. Following the dialectic logic of ancient Greeks (Αναξίμανδρος) « τό μή Ον , Ον Γίγνεσθαι » ' The Non-existent , Exists when is done ' , ' The Non - existent becomes and never is ' and the Structure of Euclidean geometry [6] in a Compact Logic Space Layer , as this exists in a known Unit (*case of 90* \circ *angle*), then we may find a new machine that produces the 1/3 of angles . Since Non-Existent is found everywhere , then Existence is found and is done everywhere . In Euclidean geometry points do not exist , but their position and correlation is doing geometry . The universe cannot be created , because becomes and never is . According to Euclidean geometry , and since the position of points (*empty Space*) creates geometry and Spaces , the trisection of any angle exists in this Space & way.
- 2. It has been proved [5] that two equal and perpendicular one-dimentional Units OA , OB formulate a machine which produces squares and one of them is equal to the area of the circle $($ O $)$, OA = OB $)$
- 3. It has been proved [6] that three points formulate a Plane and from the one point passes only one Parallel to the other straight line (three points only) .
- 4. It has been proved [7] that all Subspaces in a unit circle of radius the one- Dimensional unit OA are the Regular Polygons in the unit circle .
- 5. Now is proved [8] that one-dimentional Unit OA lying on two parallel lines OB, AD formulate all angles $\langle AOB = 90 \rangle$ \rightarrow 0 and a new geometrical machine exists which divides angle \langle AOB to three equal angles.

References :

- [1] EUCLID'S ELEMENTS IN GREEK
- [2] The great text of J . L .Heiberg (1883-1886) and the English translation by Richard Fitzpatrick .
- [3] ELEMENTS BOOK 1.
- [4] GREEK MATHEMATICS by, Sir Thomas L .Heath Dover Publications, Inc ,New York.63-3571.

[5] A SIMPLIFIED APPROACH OF SQUARING THE CIRCLE . (MELAN.doc)

[6] THE PARALLEL POSTULATE IS DEPENDED ON THE OTHER AXIOMS (EUCLID.doc)

[7] THE MEASURING OF THE REGULAR POLYGONS IN THE CIRCLE (REGULAR.doc)

[8] THE TRISECTION OF ANY ANGLE . (TRISECTION.doc) by

Markos Georgallides .