
[Pdf] submitted on 19, Mar, 2011.

Probability distribution function of the particle number in a sys-

tem with concurrent existence of temperature T and potential Φ

Authors: Xianzhao Zhong.

Comments: 7 pages.

abstract: In a system, coupling between the large number of charged particles

will induce potential Φ. When temperature T and potential Φ concurrently

exist in the system, the particle potential energy and kinetic energy would

satisfy the probabilistic statistical distribution. Based on such consideration,

we established the quantum statistical distribution for the particle. When

temperature T → 0, and the potential is extremely low, all the particles in

the system would approach the ground-state-level distribution.

Category: Classical Physics.

1



Probability distribution function of the

particle number in a system with concurrent

existence of temperature T and potential Φ

Xianzhao Zhong∗

Meteorological College of Yunnan Province,

Kunming, 650228, China

Abstract

In a system, coupling between the large number of charged par-

ticles will induce potential Φ. When temperature T and potential

Φ concurrently exist in the system, the particle potential energy and

kinetic energy would satisfy the probabilistic statistical distribution.

Based on such consideration, we established the quantum statistical

distribution for the particle. When temperature T → 0, and the po-

tential is extremely low, all the particles in the system would approach

the ground-state-level distribution.
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1 introduction

Starting from the existing quantum statistics method, the author of this

paper found that when ith particle simultaneously carry thermodynamical

kinetic energy p2
i /2m and coupling-induced potential energy pic = qϕi, the

energy of these particles would satisfy the quantum statistical probability

W . When temperature T and potential Φ concurrently exist in the system,

and by using the Lagrange’s method of multiplication, we get the particle

numbers statistical distribution function N
i
, respectively in spin condition

s=0, s=1/2 and s=1. When potential Φ = 0, the particle distribution would

show general statistical distribution jointly defined by Boltzmann, Bose and

Fermi. When the system is exposed to extremely low temperature T → 0 and

the potential Φ → 0, all the particles in the system would approach the same

statistical distribution state, namely, the ground-state-level distribution.

2 The Distribution Function of Particles num-

ber in Temperature T and Potential Φ

In a system ith charged particle couples with others of large amount parti-

cles, the particle would produce potential ϕi [1], the particle carries energy

pic = qϕi [2] and this particle would have other kinetic energy p2
i /(2m) in

temperature T . Owing to that the system has a total number of N particles

that carry the afore-mentioned energy, when particle number Ni of energy,

we get

E1 = ΣiNip
2
i /(2m), E2 = ΣiNipic, N = ΣiNi. (1)
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If the Ni particles distribute cell Gi in the phase space, the first particle

would have Gi distribution patterns, the second particle would have Gi − a

distribution patterns and so forth, the final term [Gi−(Ni−1)a], a is constant.

Therefore, the Ni particles would have the following distribution probability

in Gi. We have probability W [3, 4] ,

W = Πi[Gi(Gi − a)...(Gi − (Ni − 1)a)]/Ni!

= Πi[Gi(Gi − a)...(Gi − (Ni − 1)a)](Gi −Nia)!/[Ni!(Gi −Nia)!]

= ΠiGi!/[Ni!(Gi −Nia)!],

(2)

by Stirling’s approximate formula [5] lnN ! ≈ (N + 1/2) ln N − N +

1/2 ln (2π), when N À 1, so as to calculate.

By multiplying (1) and (2) by the Lagrangian multipliers [6] α, β and γ.

Behind make their variation, we have

Σi[ln(Gi/Ni − a)− βp2
i /(2m)− αpic + γ]δNi = 0, (3)

set β = 1/(kT ), and α = 1/(qΦ) [2], then (3) becomes

Ni = Gi/[exp(
p2

i

2mkT
+

pic

qΦ
− γ) + a]. (4)

So as make a = 1,−1, we have

Ni = Gi/[exp(
p2

i

2mkT
+

pic

qΦ
− γ)± 1], (5)

in a system there are concurrent temperature T and potential Φ, formula

(5) are Bose and Fermi statistical distributions functions.

When make a = 0 we have
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Ni = Gi/ exp(
p2

i

2mkT
+

pic

qΦ
− γ), (6)

formula (6) is Boltzmann statistical distribution function, in a system

there are temperature and potential.

When temperature T and potential Φ simultaneously exist in the system,

the charged particle numbers would satisfy the Bose, Fermi or Boltzmann

distribution function as expressed in (5) or (6). If the system is at high tem-

perature T and low density of particles number, at p2
i /(2mkT ) À pic/(qΦ),

the (5) two kinds of statistical distributions would approach (6) the Boltz-

mann statistics. When the particles would be at the temperature T and have

the potential Φ, we only use (5) to study the particles’ distribution. Now let

us to set the phase space Ωi = 4πvip
2
i , and let the volume of individual phase

cells be h3, in which h is the Planck constant, then the number of phase cells

Gi = 4πvip
2
i /h

3 [3]. For (5), Bose and Fermi distributions become

Ni dpi =
4πvip

2
i

h3
/[exp(

p2
i

2mkT
+

pic

qΦ
− γ)± 1]dpi, (7)

the (7) we have particle numbers

N =

∫ ∞

0

Nidp =

∫ ∞

0

4πvp2

h3

1

exp(
p2

2mkT
+

p c

qΦ
− γ)± 1

dp. (8)

From (6), Bltzmann distribution function become

Nidpi =
4πvp2

h3

1

exp(
p2

2mkT
+

p c

qΦ
− γ)

dpi, (9)

for (9) have particle numbers

5



N =

∫ ∞

0

Nidp =

∫ ∞

0

4πvp2

h3

1

exp(
p2

2mkT
+

p c

qΦ
− γ)

dp. (10)

When the system’s temperature T → 0, these particles disordered thermal

motions would also approach zero, and the system’s potential Φ → 0, these

particles produce ordered motion, namely, the particles would stay in the

ground state. The particles at spin 1 would locate in the identical phase cell,

and such particles would show the following particle number:

N =
1

exp (
p2

2mkT
+

p c

qΦ
)− 1

+

∫ ∞

0

4πvp2

h3

1

exp(
p2

2mkT
+

p c

qΦ
− γ)− 1

dp.

(11)

In the potential Φ the particles produce ordered motion. For concurrent

existence of temperature T and potential Φ, and the particles at spin 1/2,

hence we have the following particle number:

N =

∫ ∞

0

4πvp2

h3

1

exp(
p2

2mkT
+

p c

qΦ
− γ) + 1

dp. (12)

It is not difficult to see that in a system made up by charged particles, in

the potential Φ there is the probability distribution of the particles ordered

motion. However, if the system’s particles do not carry any charges or the

particles at Φ = 0 would show a distribution pattern that normally exists

only when temperature T exists, there is they are general Boltzmann, Bose

and Fermi probability distribution functions [7], these particles only there

are kinetic energy and particle numbers are
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gv/h3

∫ ∞

0

d3p(p2/2m)/[exp(βp2/2m− γ) + a] (a = 0,−1, 1). (13)
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