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Abstract 

We accept the statement that “carriers in graphene 

                                     are described not by the Schrödinger equation”1  as a 

                                     challenge to show that electrons in graphene can be 

                                     described by the Schrödinger equation. 
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    We begin our discussion with the wave equation in rectangular coordinates, 
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which we transform to cylindrical coordinates zr ,,θ , because we model the electron as a 
cylindrical element of mass energy that translates longitudinally along the z axis,  
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We now define the wave function as a product of four separate functions, each of which has one 
variable only, 

ZTRΘ=ψ                                                                     (3) 

Use of (3) in equation (2) provides 
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after we have taken the indicated derivatives in (2), and then divided each term by the product 
(3). This allows a separation into four separate functions. Each function is equal to a constant. 2  
We begin by isolating the time function, 
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where ordinary derivative notation is used since there is only one variable that applies. This has 
solution 

tieT ω±=                                                                        (6) 

where ω  is angular frequency. We refer to this as the time part. The equation in z is isolated 
also, 
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with solution 

ikzeZ ±=                                                                       (8) 

where z is the axis of electron translation, and k is wave number. We refer to this as the space 
part. We now insert the results of (5) and (7) into equation (4) to obtain, 
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We now revisit the psi-function (3) and insert in it the results of (6) and (8), 

ikzti eeR ±±Θ= ωψ                                                                 (10) 

We observe here that if we select 

tie ω+
                                                                      (11) 

and 
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                                                                       (12) 

we can collect the time part and the space part into one exponential expression, 3   



ikztie −ω
                                                                     (13) 

which is observed to describe a travelling wave, which can further be written as 
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and also 
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from which we deduce that 
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which reduces to a dispersion relation for electrons in graphene 
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the square of which provides 
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which now allows equation (9) to be written in the form 
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We isolate the angle function, 
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which has solution 

θie=Θ                                                                        (21) 

which indicates a cycle of 2π radians. We take this to represent the electron spin. We insert the 
integer value from (20) and insert it into equation (19) to obtain 
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We then multiply through by R  to arrive at the potential equation 
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We observe that we can factor this equation into the form 
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Since the function and its derivative are both zero at infinity, we conclude that 
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which has solution  
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where a is a constant. Electron-electron interaction is therefore 
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where a  is the square of the electrostatic charge divided by the dielectric constant, and  F  is 
force.  In graphene the dielectric constant is 2.5 4 , which means the Coulomb force between 
electrons in graphene is weak. 5  Electron motion in graphene, therefore, is not correlated by 
Coulomb repulsion, 6  a finding which coincides with experimental measurement. 

 

    We summarize by saying that we have described the electron in monolayer graphene by use of 
the Schrödinger equation. We have also discovered a dispersion relation, and we have shown that 
electrons in graphene are not correlated by Coulomb repulsion.  
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