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Abstract. As currently understood since its discovery, the bare Klein-Gordon theory consists 

of negative quantum probabilities which are considered to be physically meaningless if not 

outright obsolete. Despite this annoying setback, these negative probabilities are what led 

the great Paul Dirac in 1928 to the esoteric discovery of the Dirac equation. The Dirac 

equation led to one of the greatest advances in our understanding of the physical World. In 

this reading, we ask the seemingly senseless question, “Do negative probabilities exist in 

quantum mechanics?’’. In an effort to answer this question, we arrive at the conclusion that 

depending on the choice one makes of the quantum probability current, one will obtain 

negative probabilities. We thus propose a new quantum probability current of the Klein-

Gordon theory. This quantum probability current leads directly to positive definite quantum 

probabilities. Because these negative probabilities are in the bare Klein-Gordon theory, 

intrinsically a result of negative energies, the fact that we-here arrive at a theory with 

positive probabilities, it means that negative energy particles are not to be considered 

problematic as is the case in the bare Klein-Gordon theory. From an abstract-objective 

stand-point; in comparison with positive energy particles, the corollary is that negative 

energy particles should have equal chances to exist. As to why these negative energy 

particles do not exist, this is redolent to asking why is it that Dirac’s antimatter does not 

exist in equal proportions with matter. This problem of why negative energy particles not 

exist in equal proportions with positive energy particles is a problem that needs to be solved 

by a future theory. 
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1. Introduction 

 

If one accepts the bare Klein-Gordon theory as it is currently understood since its discovery 

in 1927 by Oskar Klein (1894-1977, of Sweden) and Walter Gordon (1893-1938, of  

Germany), then, there is no doubt that they will accept without fail that negative quantum 

mechanical probabilities do exist in the bare Klein-Gordon theory. Solemnly, by a 

combination of a deep and rare curiosity, fortune, and serendipity, than by natural design, 

the existence of these negative probabilities in the Klein-Gordon theory is what led the 



eminent British physicist Paul Maurice Adrian Dirac (1902-1984) to his landmark discovery 

of the Dirac equation (Dirac 1928a,b). Needless to say but perhaps as a way of expressing 

our deepest admiration of this great achievement, the Dirac equation ranks amongst the 

greatest and most noble equations of physics. Eighty three years on since its discovery (i.e., 

1928-2011), the Dirac equation is an equation whose wealth of knowledge cannot be said to 

have been completely deciphered but is in the process thereof. 

Like other deep-thinking physicists of his time, right from the-word-go, Dirac objected to the 

negative probabilities implied by the Klein-Gordon theory. This led him to silently embark 

on a noble journey whose final destination was to successfully solve this persistent and 

nagging problem of negative probability. Dirac had hoped that by eliminating the negative 

probabilities, he would concurrently eliminate the negative energies, alas, that did not 

happen, only the negative probabilities is what vanished. On completion of his seemingly 

divine journey, he arrived at his esoteric equation, which is thought to describe only the 

electron.  

Why do we say Dirac silently embarked on his quest for the Dirac equation? Well the 
answer is that for example, during a break at the 1927 Solvay conference attended by the 
great Danish physicist Neils Henrik David Bohr (1885-1962) and Dirac amongst others; 
Dirac was asked by Neils Bohr what he was working on, to which he replied: “I’m trying to 
take the square root of something ...” meaning the square root of the Klein-Gordon equation – 
this is strange because it meant taking the square root of an operator, this is unheard of.  
Later, Dirac recalled that he continued on by saying he was trying to find a relativistic 
quantum theory of the electron, to which Bohr commented, “But Klein has already solved that 
problem.” Dirac then tried to explain he was not satisfied with the (Klein-Gordon) solution 
because it involved a 2nd order equation in the time and space derivatives. Dirac was simple 
not open; he was a man of notoriously very few words, he meant every word he said; he was 
economic with his words. 

Further, Dirac was a man of great mathematical subtleness; it is this quality which led him 
to the Dirac equation. He believed that one must follow the mathematics to where it would 
lead and in so doing he unlocked a great wealth of ideas such as magnetic monopoles, the 
variation of the gravitational constant amongst others. In 1942; Dirac, like before; he delved 
once again into the unchartered waters of negative probability when he wrote a paper 
entitled: “The Physical Interpretation of Quantum Mechanics” where he introduced the concept 
of negative probabilities (Dirac 1942). Introduction these, he said: 

“Negative energies and probabilities should not be considered as [mere] nonsense.  
They are well-defined concepts mathematically, like a negative of money.” 

Fifty five years later after Dirac’s musings, i.e. in 1987 toward the end of his life, another 
great mind, the flamboyant and charismatic American physicist, Richard Feynman (1924-
1987), took the idea further when he argued that, no one objects to using negative numbers 
in calculations, although “minus three apples” is not a valid concept in real life [so, it should 
be reasonable to consider negative probabilities too]. Further into the shores of the 
unknown, he argued not only how negative probabilities could possibly be useful in 
probability calculations, but as well how probabilities above unity may be useful.  

The ideas of Dirac and Feynman on negative probability have not gained much support. To 
me, negative probabilities, even if they may be well defined mathematical concepts as Dirac 



believes, they are to me physically meaningless and obsolete; they signify something sinister 
about the theory in question. I like to view these ideas of negative probability as nothing 
more than highlighting and dramatising the desperation by physicists to make sense of 
nonsense all in an effort to find a natural explanation of nonsense. I think nonsense is 
nonsense and should be left that way; one should simple let the sleeping dogs lay.  

The root of negative probabilities is the Klein-Gordon theory. If it could be shown that the 
Klein-Gordon theory is devoid of these, it would render Dirac and Feynman’s effort 
worthless. This would mean the chapter of negative probabilities is closed altogether. The 
endeavour of this reading is to point out that the Klein-Gordon theory is devoid of these 
negative probabilities.  

If only physicists had extended the British-German physicist Max Born (1882-1970)’s idea 
that the magnitude of the wavefunction gives the probability; that is, extend this idea so 
that it applies to all quantum mechanical wavefunctions, then, we would never have landed 
on these rough, bizarre and uncertain shores of negative probabilities. As will be argued, 
what  physicists have done is to carry over the probability current density found in the 
Schrödinger theory directly into the Klein-Gordon theory, in which process the probability 
of the Klein-Gordon theory is constrained in a manner that allows for negative probabilities. 
Our suggestion, if correct as we would like to believe, is that instead of carrying over the 
probability current density found in the Schrödinger theory into the Klein-Gordon, we need 
to do things the other way round, that is, we have to carry over the probability of the 
Schrödinger theory into the Klein-Gordon theory. Simple, we must generalize Born’s idea, 
that is: 

“Born’s idea that the wavefunction represents the probability amplitude and its magnitude 
represents the probability; this idea must be generalized so that it is applicable to any general 

wavefunction that purports to describe material particles.” 

In this way, we constrain the resultant probability current density of the Klein-Gordon 
theory and not the probability. In the end, we obtain a Klein-Gordon theory that is devoid 
of negative probabilities; this off cause leads us to an objective World since all the 
probabilities are positive. Notice that Schrödinger’s wavefunction together with Dirac’s 
wavefunction all conform to Born’s idea but the Klein-Gordon wavefunction does not. This 
is where we believe the problem in the negative probabilities lies. 

Now, to windup this section, we shall give the synopsis of this reading; it is as follows. In 

the next section, we present the Schrödinger quantum mechanical probability theory as it is 

understood in the present day. In section (3), we also present the Klein-Gordon probability 

theory as it is understood in the present day. In section (4), we go onto the main theme of 

the present reading, where we demonstrate that if one makes an appropriate choice of the 

Klein Gordon probability current, one obtains a Klein-Gordon theory that is free from 

negative probabilities. While sections (2) and (3) may seem trivial to the quantum 

mechanically erudite reader, it is worthwhile that we mention that we have taken the 

decision to go through these sections (i.e. 2 & 3) for nothing other than instructive 

purposes. The well versed reader will obviously have to skip these and go straight to 

section (4). In section (5), we give the overall discussion and conclusions drawn thereof (if 

any). 



 

 

2. Schrödinger Theory 

 

While in search of the Schrödinger equation, Schrödinger first arrived at the Klein-Gordon 

equation but discarded it because it did not give the correct predictions for the hydrogen 

atom. This great Austrian physicist, Erwin Rudolf Josef Alexander Schrödinger (1887-

1961), was largely motivated to successfully search for the Schrödinger equation after a 

thoughtful remark by the eminent Professor, Peter Joseph William Debye (1884-1966, of 

Austria), at the end of a lecture that he delivered on de Broglie’s waves at the University of 

Vienna where he [Schrödinger] was working.  

Professor Debye who was the head of the physics research group, on hearing of the de 

Broglie waves, he asked Schrödinger to explain these to the rest of the research group. So 

Schrödinger weighed up to the task. At the end of the lecture, Professor Debye remarked 

that it seemed childish to talk of waves without a corresponding wave equation for these 

waves. This proved to be Schrödinger’s great moment of inspiration that would immortalize 

his name in the annals of human history.  

In his 1924 doctoral thesis, which was nearly turned down [thanks to the prominent French 

physicist Paul Langevin (1872-1946)’s wisdom and Einstein’s influence and stature], Louis 

de Broglie only proposed that there is a duality between waves and matter; he gave a 

formula for the matter waves which stated that the wavelength of material particles is 

inversely proportional to the momentum of the matter particle in question. However, in his 

proposal, he did not propose the corresponding wave equation for these matter waves. Logic 

dictates that every wave must be described by a corresponding wave equation. The deep-

and-agile Schrödinger saw immediately the depth of Professor Debye’s question and it is 

said he went into “hiding” for about six months in search of the Schrödinger equation which 

he successfully found at the end of his esoteric sojourn which was not without tribulation 

and trials. The equation he found is: 
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where the symbols have their usual meaning. In presenting his equation in 1926, 

Schrödinger interpreted the magnitude of the wavefunction as giving the density of the 

electronic charge of the atom. Born (1927) gave a radically different interpretation, where 

this quantity [magnitude of the wavefunction] is assumed to represent the probability that 

the atom is in a given state. In this way, Born ushered physics into the depth and realm of 

probability calculus, and to this day, physicists do not agree on how to interpret this 

wavefunction but the general consensus is that, it is a probability function. 



 

2.1. Schrödinger Probability Current Density 

 

For instructive purposes, we present here the usual way in which one arrives at the 

expression of the Schrödinger probability current density. To do this, we have to take the 

Schrödinger equation, divide it throughout by – �h  and then multiply the resultant by the 

complex conjugate of the wavefunction, that is: 
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Further, taking the complex conjugate of this same equation and then multiplying it by the 

wavefunction, one arrives at: 
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and now adding these two equations, one obtains: 
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where S

ρJ  is the Schrödinger probability current. The left hand side of this equation gives 

the rate of change of the probability, i.e.: 
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where � = ΨΨ*   is the probability function. Combining these results, one is lead to the 

continuity equation: 
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This is not the only continuity equation that can be written out of the Schrödinger equation. 

In the next section, we shall write another continuity equation out of the Schrödinger 

equation not in terms of the probability but in terms of the probability amplitude. 

 

2.2. Schrödinger Probability Amplitude Current 

 

To write down the Schrödinger equation in terms of the probability amplitude, we know 

that, for any general smooth and differentiable time varying function (or field) ),( trΨ=Ψ ,  

the following holds: 
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where v is the velocity of the field (function) and  dr=dxi+dyj+dzk    is line element of the 

position vector, where the i, j, k‘s are the usual orthogonal unit vectors along the x,y and z-

axis respectively. Using this, one can recast after a few basic algebraic operations, the 

Schrödinger equation into the continuity equation: 
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where: 
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What this means is that there is a corresponding conserved probability amplitude current 

for the probability current. Though this is a very trivial result, if it is correct (as we believe) 

and acceptable, it will be a new result. 

 

3.0. Klein-Gordon Quantum Mechanical Probability 

 

For a particle of rest mass �� and wavefunction ᴪ, the Klein-Gordon equation describing 

this particle is given by: 
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This equation is named after the physicists Oskar Klein and Walter Gordon, who in 1927 

proposed that it describes relativistic electrons. The Klein–Gordon equation was first 

considered as a quantum mechanical wave equation by Schrödinger in his search for an 

equation describing de Broglie waves. In his final presentation in January 1926 where he 

proposed the Schrödinger equation, Schrödinger discarded this equation because it did not 

give the correct predictions for the hydrogen atom.  

Now, we would like to develop for the Klein-Gordon equation the usual expressions for 
probability and probability current similar to the Schrödinger case. This is a task that is 
considered a bit tricky as compared to the Schrödinger case because the Klein-Golden is 

second differential equation. If we take the probability � = ΨΨ*  and then differentiate it 
with respect to time, what we get is: 
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and if we are to follow the Schrödinger prescription, we should be able to arrive at a 
continuity equation containing the probability and the corresponding probability current by 
substituting the time derivatives of the wavefunction. Now, most textbooks will tell you 
that one is not able to proceed to find the continuity equation for the above equation from 
the Schrödinger prescription simple because the Klein-Gordon equation does not have a 
first-order derivative that would enable a straight substitution. So what is typically done is 
to work backwards, that is start from the known Schrödinger probability current density 
S

ρJ  and proceed from there to see if one can find a corresponding probability density. As we 

all know, one does arrive at a continuity equation, namely: 
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where the Klein-Gordon probability is given by: 
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There is no need for us to go through the full derivation of the Klein-Gordon probability 

continuity equation as this can readily be found in most textbooks of quantum mechanics. 

Further, there is no need to demonstrate that this probability leads to negative probabilities 

for particles of negative energy as this is well anchored in most quantum mechanics 

textbooks.  What we shall do is to point out that there is a loophole in this derivation and 

this loophole is deeply embedded in the fact that: 

 

“The Klein-Gordon equation is not a first order differential equation which would allow for a 

smooth and straight forward substitution of the time derivative of the magnitude of the Klein-

Gordon wave function into equation (11) directly from the Klein-Gordon equation, so as to derive the 

probability continuity equation; because of this,  one has to seek other alternative means.”  

Why not force the Klein-Gordon equation to produce a probability current under these 

conditions? The legitimate rules of mathematics allow for this, why not go for it?! This is 

our borne-of-contention.  

It is perhaps important that we mention here that in 1934, the Austrians, Wolfgang Pauli 

(1904-1982)  and Victor Frederick Weisskopf (1908-2002) discovered what is hailed as a 

suitable interpretation of  the Klein-Gordon equation within the scope of quantum field 

theory. Treating it [Klein-Gordon equation] like a field equation analogous to Maxwell’s 

equations for an electromagnetic field, they quantized it, so that ψ became an operator 

(Pauli & Weisskopf 1934). This made the Klein-Gordon more acceptable.

 
As will be seen latter in section (4), if the main reason for adopting the Klein-Gordon 

probability function that leads to negative probabilities is that it emerges from the 

continuity equation constructed out of the second order differential Klein-Gordon equation; 



then, this way of arriving at the probability function can be challenged as there is another 

way to arrive at a continuity equation from the Klein-Gordon equation, this equation 

involves the magnitude of the Klein-Gordon wavefunction. After all, no one has made a 

direct measurement to test the correctness or lack thereof the Klein-Gordon probability and 

the Klein-Gordon probability current, it is just but a working interpretation. 

 

3.1. Klein-Gordon Probability Amplitude Current 

 

Just as we have done in the Schrödinger case, we will write down the continuity equation of 

the Klein-Gordon equation which involves the probability amplitude and not the 

probability. By integrating it with respect to time throughout, we recast the Klein-Gordon 

equation in to the form: 
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and once in this form, we construct a continuity equation. It is not difficult to deduce that 

this equation can be written as: 
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Thus setting: 
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It is easy to see that:
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This is our desired equation. What this means is that the probability amplitude has a 

corresponding current. In the language of Einstein’s Special Theory of Relativity, it means 

we can talk of a four probability amplitude comprising the probability amplitude and the 

probability amplitude current.  

 

4. New Klein-Gordon Quantum Mechanical Probability 

 

Now we come to the main theme of this reading. First things first, we need to state one 

thing which is clear to all; which is that, the Klein-Gordon equation is not cast in stone, the 



meaning of which is that it can be written in different but mathematically equivalent forms 

provided one applies permissible and legitimate mathematical operations to it. We want to 

have this equation written with the time derivate to first order. This can be achieved by 

integrating this equation throughout with respect to time as has been done in equation (14). 

For convenience, we shall rewrite equation (14) here, that is: 
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Now, multiplying this equation throughout by the complex conjugate of the wavefunction, 

that is: 
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Further, taking the complex conjugate of this same equation and then multiplying it by the 

wavefunction, one arrives at: 
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and now adding these two equations, one obtains: 
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The left hand side is obviously equal to the time derivative of the probably density function 

� = �∗� i.e. d�/�� = �(�∗�)/��. To simplify the right hand side, we have to make use of 

the identity in equation (7); doing so, we will have: 
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where v is the velocity of the probability wave packet and: 
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is what we shall call the probability charge density and ��
�� is the new Klein-Gordon 

probability current density which leads us to positive definite probabilities. All our efforts 

lead us to recast the Klein-Gordon equation into the continuity equation: 
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In this manner, just as in the Schrödinger case, the magnitude of the wavefunction gives the 

positive definite probability. We feel and believe this approach is the correct approach to 

understanding the Klein-Gordon equation. It contains no negative probabilities but real and 

objective probabilities just as in the Schrödinger case. It is our opinion that it is much easier 

to try and understand ��
�� as the new Klein-Gordon probability current density, than to try 

and justify negative probabilities as Dirac, Feynman and many others have done (with great 

pain). 

 

5. Discussion and Conclusions 

 

We are of the view that the reader will concur with us that -- from the rather trivial 

presentation made herein; the existence of negative quantum mechanical probabilities 

depends on the choice of the probability current that one has made. In moving from 

Schrödinger’s theory (which officially was first to be discovered)  to the Klein-Gordon 

theory, it is the probability current that is held sacrosanct, the meaning or suggestion of 

which is that it must be the important quantity, otherwise there would no reason to 

preserve it. We have suggested otherwise, that it is the probability function in the 

Schrödinger theory that must be held sacrosanct when we move over to the Klein-Gordon 

theory. This way of looking at the Klein-Gordon theory solves the negative probabilities 

faced by the Klein-Gordon theory; because of this, we believe this reading is a significant 

contribution in physics insofar as deciphering and fathoming the meaning of Klein-Gordon’s 

negative probabilities. 

It is important to note that no single experiment has been performed to date to directly 

measure the probability and the probability current. For example, the wavefunction of the 

hydrogen atom as deduced from the Schrödinger equation is known. No one has measured 

directly that the electron in the hydrogen atom is found at the position that it is expected 

with the predicted frequency. The probability interpretation is an interpretation that 

appears to work, especially when dealing with ensembles. What this means is that the 

currently accepted Klein-Gordon probability can be revised as we have done. If what is 

required of this probability is that it satisfies the continuity equation, then we have shown 

that there exists such a positive definite probability satisfying the continuity equation. 

If our suggestion is correct and acceptable (as we believe it to be), then, one is lead to 

wonder what trajectory physics might have taken if what we have just presented were 

known to Dirac and his contemporaries. This is so especially given that Dirac was largely 

motivated by the desire to get reed of the negative probabilities that appear in the Klein-

Gordon theory. There is nothing exotic or new about the ideas that we have presented, it is 

just a different way of looking at things. The only thing that appears to the make this of 

importance is that it allows us to settle the nagging problem of negative probabilities. 



Clearly, if the present presentation was available and acceptable to Dirac before the advent 

of his equation; then, if he [Dirac] was to discover the Dirac equation as he did, he would 

have arrived at it from a different point of departure altogether; I wonder what his 

motivation would have been. Trying to fathom what his point of departure would have 

been, leads me into the oblivious -- redolent to chasing after the rainbow. Perhaps, out of 

the desiderata of mathematical curiosity, beauty and elegance, he could have simple sought 

for an equation linear in both the time and space derivatives. 

On the other hand, since negative probabilities are intrinsically tied to negative energy-

mass particles, the non-existence of negative probabilities would mean that negative 

energy-mass particles have no problem in principle.  This invariably means that negative 

energy-mass particles must be considered without any prejudice whatsoever as they have 

equal legitimacy to exist. Our only worry would be what these negative energy-mass 

particles are; are they Dirac’s antimatter, or Dirac’s sea of invisible energy-mass particles? 

Current thinking is that negative energy-mass particles are antiparticles. These 

antiparticles have positive energy and the reason for this is that they are thought to be 

negative energy-mass particles moving back in time, in which case they would appear to 

have positive energy-mass. The perfect symmetry of Dirac’s theory allows a negative 

energy-mass particle that is moving forward in time to look identical to a positive energy-

mass particle moving back in time. 
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