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Abstract

It is shown that under suitable compositions of systems, arbitrary
large amounts of entangled type states can easily be obtained.

1. Minimal Composite Systems

Question 1 :

Let two systems S and T have the respective state spaces X and
Y . Which are all the minimal systems Q which have S and T as
subsystems ?

�

Obviously, the crucial issue in the question above is the concept of
minimality. However, the definition of the concept of minimality re-
quires the a priori specification of the concepts of system, subsystem
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and composition of systems or subsystems.

For the time being, let us assume that by a system S we mean an
entity which can be in different states, and correspondingly, has asso-
ciated to it the set X of such all such possible states.
Further, we assume that it general every subset Y ⊆ X may possibly
correspond to a subsystem T of S.
Let us give two examples in this regard.

First, let S, T be Classical Mechanical systems and Qc be their usual
composition in Classical Mechanics, in which case the state space of
Qc will be Zc = X × Y . This Qc is obviously minimal in the sense
that every Classical Mechanical subsystem Q′ of Qc which has S, T as
subsystems must be Qc itself.

Second, let S, T be Quantum Mechanical systems and Qq be their
usual composition in Quantum Mechanics, in which case X, Y are
complex Hilbert spaces, and the state space of Qq will be Zq = X

⊗
Y .

This Qq is again obviously minimal in the sense that every Quantum
Mechanical subsystem Q′ of Qq which has S, T as subsystems must be
Qq itself.

Now in the second case, Qc can be seen as a strict subsystem of Qq

since, for nontrivial quantum systems S, T , we have the strict inclusion

(1.1) X × Y 3 (x, y) 7−→ x⊗ y ∈ X
⊗

Y

Let us denote by ©κ the composition of state spaces of type κ of two
systems, while the composition of respective states we denote by ◦κ.
Thus in the first example above we have for x ∈ X, y ∈ Y

(1.2) Qc = S©c T, x ◦c y ∈ Zc = X ©c Y = X × Y

while in the second above example we have

(1.3) Qq = S©q T, x ◦q y ∈ Zq = X ©q Y = X
⊗

Y
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2. How to Obtain More Entanglement

In (1.1), as is known, the states in

(2.1) (X
⊗

Y ) \ (X × Y )

are entangled. Also as is known, there is a major interest in entangled
states both in Quantum Mechanics as a theory, as well as in Quantum
Information. Therefore, the following

Question 2 :

Are there types κ of compositions of systems, such that the injection

(2.2) X × Y 3 (x, y) 7−→ x ◦κ y ∈ X ©κ Y

gives in

(2.3) (X ©κ Y ) \ (X × Y )

more entangled type states than in (2.1) ?
�

We note that in (2.3) it is not a necessary requirement to have

(2.4) (X
⊗

Y ) ⊂ (X ©κ Y )

An obvious significant interest in larger and/or different amounts of
entangled type states (2.3) comes from Quantum Information. And
such an interest is further increased to the extent that, in the future,
one may possibly identify corresponding effective physical realizations
which do not suffer from major disadvantages, such as for instance,
quantum decoherence.

We recall that in [1-4], a large variety of extensions of the usual tensor
product were introduced and studied. And they provide a class of an-
swers to the above question by the corresponding variety of enlarged
sets of entangled type elements in (2.3).
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Here, as a further considerable generalization of the approach in [1-4],
we address the above question of finding types κ of compositions of
systems for which one has an injection

(2.5) X
⊗

Y 3 x⊗ y 7−→ x ◦κ y ∈ X ©κ Y

For that purpose, it is useful to recall the standard way the quantum
composition given by the usual, or for that matter generalized, [1-4],
tensor product X

⊗
Y is constructed.

Namely, for two systems S and T with the respective state spaces X
and Y , we define

(2.6) FM(X, Y )

given by the free monoid generated by X × Y . Thus FM(X, Y ) is
the set of all elements which are words

(2.7) (x1, y1)(x2, y2) . . . (xn, yn)

where n ≥ 0, while x1, x2, . . . , xn ∈ X, y1, y2, . . . , yn ∈ Y , with the
case n = 0 corresponding to the empty word. Further, the monoid
operation on FM(X, Y ) is simply the concatenation of such words,
thus the empty word is the neutral element.
Obviously, if X or Y have at least two elements, then FM(X, Y ) is
noncommutative.

What should be noted here is that the construction of the tensor
product of two Hilbert complex spaces, groups, or in general of two
arbitrary sets, [1-4], starts with the same first step in (2.6), (2.7).
However, immediately next, a considerable reduction of the state space
FM(X, Y ) is implemented by replacing it with various quotient spaces
obtained through certain equivalence relations defined on FM(X, Y ).
For the time being let us set aside any such equivalence relations and
the corresponding quotients, and instead consider FM(X, Y ) itself.

And then here one can note that there may as well be other ways to
start than in (2.6), (2.7). Indeed, for the purpose of finding further
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types of compositions, we note that (2.6), (2.7) can also be seen in the
following manner. Let

(2.8) N

be the set of all subsets of N = {1, 2, 3, . . .} of the form I = {1, 2, . . . , n},
where n ≥ 1. Then, as a set, FM(X, Y ) can be identified with the
set of all the mappings

(2.9) s : I 7−→ X × Y, I ∈ N

to which the empty mapping from φ to X × Y is added. Clearly, the
set FM(X, Y ) need not necessarily be endowed with any particular
structure, although it naturally has the above free monoid structure
which is defined as follows. Given s : {1, 2, . . . , n} −→ X × Y and
t : {1, 2, . . . ,m} −→ X × Y , then st : {1, 2, . . . , n+m} −→ X × Y is
defined by

(2.10) st(i) =
s(i) if 1 ≤ i ≤ n

t(i− n) if n+ 1 ≤ i ≤ n+m

And now, in view of the above, a considerable variety of compositions
of state spaces, larger than FM(X, Y ), are suggested by the above.
For instance, Let I be a set of nonvoid index sets I, and denote by

(2.11) MI (X, Y )

the set of all the mappings

(2.12) s : I −→ X × Y, I ∈ I

to which again the empty mapping from φ to X × Y is added.

If in particular, we consider I, such that

(2.13) N ⊆ I
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then obviously FM(X, Y ) ⊆MI (X, Y ).

Furthermore, unlike with FM(X, Y ), the setsMI (X, Y ) can contain
infinite families of pairs (x, y) ∈ X×Y , which correspond to mappings
s in (2.12) that have as domains infinite index sets I, where I ∈ I.

However, even if the set I only contains finite index sets I, the corre-
sponding setMI (X, Y ) can be arbitrarily larger than FM(X, Y ), in
view of (2.13).

We note that, unlike FM(X, Y ), the more general compositionMI (X, Y )
does in general no longer have a natural monoid structure, such as for
instance in (2.10).

And now, a yet more involved type of composition can be obtained
as follows. Let I be as above, and for i ∈ I ∈ I, let Ji be a finite
graph with the vertices (j1, j2, . . . , jpi

) ∈ {0, 1}pi . For convenience, let
us denote by J the set of all such graphs Ji, with i ∈ I ∈ I.

Now, we denote by

(2.14) MI,J (X, Y )

the set of all mappings

(2.15) s : I 3 i 7−→ s(i) ∈ (X, Y )Ji

where for J = (j1, j2, . . . , jp) ∈ {0, 1}p, we have

(2.16) (X, Y )J =
∏

1≤q≤p Z
q

with

(2.17) Zq =
X if jq = 0

Y if jq = 1

3. Arbitrary Large Amounts of Entanglement

6



As seen already with the composition of systems which give above
state spaces MI (X, Y ), such state spaces can be arbitrarily large,
provided that the sets I of index sets I are suitably chosen. And in
case (2.13) holds for such sets I of index sets, then clearly, the amount

(3.1) MI (X, Y ) \ (X × Y )

of entangled type states in such systems can also be arbitrarily large.

Obviously, a similar situation happens with compositions of systems
whose state spaces are given by (2.14).
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