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SMARANDACHE GT-ALGEBRAS

Jaedoek Kim*, Youngmi Kim**, and Eun Hwan Roh***

Abstract. We introduce the notion of Smarandache GT-algebras,
and the notion of Smarandache GT-filters of the Smarandache GT-
algebra related to the Tarski algebra, and related some properties
are investigated.

1. Introduction

The variety of Tarski algebras was introduced by J. C. Abbott in [2].
These algebras are an algebraic counterpart of the {∨,→}-fragment of
the propositional classical calculus. S. A. Celani ([5]) introduced Tarski
algebras with a modal operator as a generalization of the concept of
Boolean algebra with a modal operator which he researched into these
fragments of the algebraic viewpoint. Properties of filters in Tarski alge-
bras were treated by S. A. Celani ([5]) and the authors ([7]). Recently, J.
Kim, Y. Kim and E. H. Roh ([7]) considered decompositions and expan-
sions of filters in Tarski algebras, and also they have shown that there
is no non-trivial quadratic Tarski algebras on a field X with |X| ≥ 3.
However, we feel that the concept of Tarski algebra is relatively too
strong for filters. Kim et al. ([8]) established a new algebra, called
a GT-algebra, which is a generalization of Tarski algebra, and gave a
method to construct a GT-algebra from a quasi-ordered set. Generally,
a Smarandache Structure on a set A means a weak structure W on A
such that there exists a proper subset B of A which is embedded with
a strong structure S. In this paper, we introduce the notion of STGT-
algebras and ST

ΩGT-filters, and investigate some related properties. It’s
interesting to study the Smarandache Structure in GT-algebras.
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Let us review some definitions and results. By a Tarski algebra we
mean an algebra (X;→, 1) of type (2, 0) satisfying the following condi-
tions:
(T1) (∀a ∈ X)(1 → a = a).
(T2) (∀a ∈ X)(a → a = 1).
(T3) (∀a, b, c ∈ X)(a → (b → c) = (a → b) → (a → c)).
(T4) (∀a, b ∈ X)((a → b) → b = (b → a) → a).

Definition 1.1. [8] By a generalized Tarski algebra (GT-algebra, for
short) we mean an algebra (X;→, 1) of type (2, 0) satisfying the following
conditions: (T1), (T2), and (T3).

A reflexive and transitive relation R on a set X is called a quasi-
ordering of X, and the couple (X,R) is called a quasi-ordered set ([4]).
Note that if X is a GT-algebra, then the relation ≤ by setting x ≤ y if
and only if x → y = 1 for any a, b ∈ X is a quasi-ordering of X; with
respect to this quasi-ordering 1 is the greatest element of X.

Example 1.2. Let X := {a, b, c, 1} be a set with the following Cayley
table:

→ a b c 1
a 1 1 c 1
b 1 1 c 1
c 1 1 1 1
1 a b c 1

Then (X;→, 1) is a GT-algebra ([8]), and the relation

R := {(a, a), (a, b), (a, 1), (b, a), (b, b), (b, 1), (c, a), (c, b), (c, c), (c, 1), (1, 1)}
is a quasi-ordering of X, which is not an anti-symmetric relation of X.

Lemma 1.3. [8] Let X be a GT-algebra. Then

(p1) (∀a ∈ X)(a ≤ 1).
(p2) (∀a, b ∈ X)(a ≤ b → a).
(p3) (∀a, b ∈ X)(a → (a → b) = a → b).
(p4) (∀a, b ∈ X)(a ≤ (a → b) → b).
(p5) (∀a, b, c ∈ X)(a ≤ b ⇒ c → a ≤ c → b).

Definition 1.4. [8] Let X be a GT-algebra. A nonempty subset F
of X is called a generalized Tarski-filter (GT-filter, for short) of X if it
satisfies the following conditions:
(F1) (∀a, b ∈ X)(b ∈ F ⇒ a → b ∈ F ).
(F2) (∀a, b ∈ X)(a → b ∈ F, a ∈ F ⇒ b ∈ F ).
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Note that every GT-filter contains the element 1 by (T2) and (F1).

Theorem 1.5. [8] Let F be a nonempty subset of a GT-algebra X.
Then F is a GT-filter of X if and only if it satisfies 1 ∈ F and (F2).

2. Main Theorem

Lemma 2.1. Let (X;→, 1) be a nontrivial GT-algebra. For every
a(6= 1) ∈ X, the set {a, 1} is a Tarski algebra under the operation on X.

Proof. Straightforward.

Lemma 2.1 shows that every nontrivial GT-algebra (X;→, 1) has a
Tarski algebra of order 2. The following example shows that there is a
GT-algebra in which there are no proper Tarski algebra of order more
than equal to 3.

Example 2.2. Let X := {a, b, c, 1} be a set with the following Cayley
table:

→ a b c 1
a 1 1 1 1
b a 1 1 1
c a b 1 1
1 a b c 1

It is routine to check that (X;→, 1) is a GT-algebra which is not a Tarski
algebra, and the sets {a, b, 1}, {a, c, 1}, {b, c, 1} are not Tarski algebras.

Definition 2.3. A Smarandache GT-algebra (briefly, STGT-algebra)
is defined to be a GT-algebra X in which there exists a proper subset Ω
of X such that

(i) 1 ∈ Ω and |Ω| ≥ 3,
(ii) Ω is a Tarski algebra with respect to the same operation on X.

Note that any GT-algebra of order 3 cannot be an STGT-algebra.
Hence, if X is an STGT-algebra, then |X| ≥ 4. Notice that the GT-
algebra X in Example 2.2 is not an STGT-algebra.

Example 2.4. Let X := {a, b, c, 1} be a set with the following Cayley
table:

→ a b c 1
a 1 b 1 1
b a 1 1 1
c a b 1 1
1 a b c 1
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It is easy to check that (X;→, 1) is an STGT-algebra since Ω := {a, b, 1}
is a Tarski algebra which is properly contained in X.

In what follows, let X and Ω denote an STGT-algebra and a nontrivial
proper Tarski algebra of order more than 2, respectively, unless specified.

Definition 2.5. A nonempty subset F of X is called a Smarandache
GT-filter of X related to Ω (briefly, ST

ΩGT-filter of X) if it satisfies the
following conditions:

(SF1) 1 ∈ F ,
(SF2) (∀x ∈ Ω)(∀a ∈ F )(a → x ∈ F ⇒ x ∈ F ).

Example 2.6. Let X := {a, b, c, 1} be the STGT-algebra with Ω :=
{a, b, 1} in Example 2.4. Then the sets F1 := {a, 1}, F2 := {c, 1}, F3 :=
{a, c, 1}, F4 := {b, c, 1} are ST

ΩGT-filters of X.

Example 2.7. Let X := {a, b, c, d, 1} be a set with the following
Cayley table:

→ a b c d 1
a 1 1 1 d 1
b 1 1 1 d 1
c 1 1 1 d 1
d a b c 1 1
1 a b c d 1

It can be readily check that (X;→, 1) is an STGT-algebra with Ω :=
{a, d, 1}. Then the set F1 := {b, d, 1} is an ST

ΩGT-filters of X. But
F2 := {c, 1} is not an ST

ΩGT-filter of X since c → a = 1 ∈ F2 and
a 6∈ F2.

Theorem 2.8. Let Ω1 and Ω2 be Tarski algebras contained in a
Smarandache GT-algebra X and Ω1 ⊂ Ω2. Then every ST

Ω2
GT-filter of

X is an ST
Ω1

GT-filter of X, but the converse is not true.

Proof. Straightforward.



Smarandache GT-algebras 127

Example 2.9. Let X := {a, b, c, d, e, 1} be a set with the following
Cayley table:

→ a b c d e 1
a 1 1 1 d 1 1
b a 1 c d 1 1
c a b 1 d 1 1
d a b c 1 1 1
e a b c d 1 1
1 a b c d e 1

Then (X;→, 1) is a GT-algebra, Ω1 := {a, d, 1} and Ω2 : {a, b, c, d, 1}
are Tarski algebras. Hence we know that X is a Smarandache GT-
algebra, and the subset F := {a, c, 1} is an ST

Ω1
GT-filter of X, but not

an ST
Ω2

GT-filter of X since a → b = 1 ∈ F and a ∈ F but b 6∈ F .

Example 2.9 shows that there exists a Tarski algebra Ω contained in
a Smarandache GT-algebra X such that an ST

ΩGT-filter of X is not a
GT-filter of X.

Theorem 2.10. For any a ∈ X, the set [a) := {x ∈ X|a ≤ x} is an
ST

ΩGT-filter of X.

Proof. Obviously, 1 ∈ [a). Let z ∈ Ω and x ∈ [a) and x → z ∈ [a).
Then we have

a → z = 1 → (a → z) = a → (x → z) = 1.

Hence z ∈ [a). Therefore, [a) is an ST
ΩGT-filter of X.

Lemma 2.11. Every ST
ΩGT-filter F of X satisfies the following inclu-

sion:

Ω → F ⊆ F,

where Ω → F := {x → a|x ∈ Ω, a ∈ F}.
Proof. Let z ∈ Ω → F . Then z = x → a for some x ∈ Ω and a ∈ F .

Thus we have z ∈ F since a → z = a → (x → a) = 1 ∈ F .

Lemma 2.11 shows that every ST
ΩGT-filter F of X satisfies the con-

ditions
Ω → F ⊆ F, and (SF2).

The following example shows that the converse is not true in general.
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Example 2.12. Let X := {a, b, c, 1} be a set with the following Cay-
ley table:

→ a b c 1
a 1 b c 1
b a 1 c 1
c a b 1 1
1 a b c 1

It is ready to check that (X;→, 1) is an STGT-algebra with Ω :=
{a, c, 1}. Let F := {b}. Then F satisfies the conditions Ω → F ⊆ F and
(SF2). But 1 6∈ F .

If F is an ST
ΩGT-filter of X satisfies Ω∩F 6= ∅ and Ω → F ⊆ F , then

there exists a ∈ Ω∩F , and so we have 1 = a → a ∈ F . Hence we obtain
the following theorem.

Theorem 2.13. Let F be a nonempty subset of X that satisfies
Ω ∩ F 6= ∅. Then F is an ST

ΩGT-filter of X if and only if Ω → F ⊆ F
and (SF2).

For any GT-algebra X and x, y ∈ X, we denote

A(x, y) := {z ∈ X|x ≤ y → z}.
Theorem 2.14. For any x, y ∈ X, the set A(x, y) is an ST

ΩGT-filter
of X.

Proof. Straightforward.

Now, we give a characterization of ST
ΩGT-filters.

Theorem 2.15. Let F be a nonempty subset of X. Then F is an
ST

ΩGT-filter of X if and only if for any x, y ∈ F , either A(x, y) ⊆ F or
A(y, x) ⊆ F .

Proof. The necessity is straightforward. Suppose that either A(x, y) ⊆
F or A(y, x) ⊆ F for every x, y ∈ F . Then we have 1 ∈ A(x, x) ⊆ F . Let
x ∈ Ω and y ∈ F satisfy y → x ∈ F . Then we have x ∈ A(y → x, y) ⊆ F .
Hence F is an ST

ΩGT-filter of X.
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