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The New Prime theorems（1041）-（1090） 
Chun-Xuan Jiang 

Jiangchunxuan@vip.sohu.com 
Abstract 

Using Jiang function we are able to prove almost all prime problems in prime distribution. This 
is the Book proof. No great mathematicians study prime problems and prove Riemann 
hypothesis in AIM, CLAYMI, IAS, THES, MPIM, MSRI. In this paper using Jiang function 

2 ( )J ω  we prove that the new prime theorems (1041)-（1090) contain infinitely many prime 
solutions and no prime solutions. From (6) we are able to find the smallest solution 

0( , 2) 1k Nπ ≥ . This is the Book theorem. 
It will be another million years, at least, before we understand the primes.  

Paul Erdos (1913-1996) 
TATEMENT OF INTENT 

If elected. I am willing to serve the IMU and the international mathematical community as 
president of the IMU. I am willing to take on the duties and responsibilities of this function. 
These include (but are not restricted to) working with the IMU’s Executive Committee on policy 
matters and its tasks related to organizing the 2014 ICM，fostering the development of 
mathematics, in particular in developing countries and among young people worldwide, 
representing the interests of our community in contacts with other international scientific bodies, 
and helping the IMU committees in their function. 
                                             --IMU president, Ingrid Daubechies— 
Satellite conference to ICM 2010 
Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. 
The sieve methods and circle method are outdated methods which cannot prove twin prime 
conjecture and Goldbach’s conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao 
are based on the Hardy-Littlewood prime k-tuple conjecture (1923). But the Hardy-Littlewood 
prime k-tuple conjecture is false:  
(http://www.wbabin.net/math/xuan77.pdf) 
(http://vixra.org/pdf/1003.0234v1.pdf). 
The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann 
hypothesis. In 1996 Jiang proved Goldbach conjecture and twin prime conjecture. Using a new 
analytical tool Jiang invented: the Jiang function, Jiang prove almost all prime problems in 
prime distribution. Jiang established the foundations of Santilli’s isonumber theory. China 
rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress. 
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields 
medal (Green and Tao theorem is false) to see. 
(http://www.wbabin.net/math/xuan39e.pdf) 
(http://www.vixra.org/pdf/0904.0001v1.pdf). 
There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern 
mathematical level. Therefore ICM2010 is failure congress. China rejects to review Jiang’s 
epoch-making works. For fostering the development of Jiang prime theory IMU is willing to 
take on the duty and responsibility of this function to see[new prime k-tuple theorems (1)-(20)] 
and [the new prime theorems (1)-(1040)]: (http://www.wbabin.net/xuan.htm#chun-xuan) 
(http://vixra.org/numth/) 
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The New Prime theorem（1041） 
 

2002, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2002jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2002, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2002

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2002jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2002 2
1

( )( , 2) : ~
(2002) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,23,2003k = . From (2) and(3) we have 
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                              2 ( ) 0J ω =                        （7） 

we prove that for 3,23,2003k =  

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3, 2003k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3, 2003k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1042） 
 

2004, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2004jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2004, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2004

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2004jp + k j−  is a prime. 
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Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2004 2
1

( )( , 2) : ~
(2004) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1043） 
 

2006, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2006jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 
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                 2006, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2006

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2006jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2006 2
1

( )( , 2) : ~
(2006) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1044） 
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2008, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2008jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2008, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2008

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2008jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2008 2
1

( )( , 2) : ~
(2008) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,503k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 
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we prove that for 3,5,503k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,503k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,503k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1045） 
 

2010, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2010jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2010, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2010

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2010jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 
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                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2010 2
1

( )( , 2) : ~
(2010) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,11,31,2011k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,11,31,2011k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,11,31,2011k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,11,31,2011k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1046） 
 

2012, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2012jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2012, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2012

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2012jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2012 2
1

( )( , 2) : ~
(2012) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1047） 
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2014, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2014jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2014, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2014

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2014jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2014 2
1

( )( , 2) : ~
(2014) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,107k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 
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we prove that for 3,107k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,107k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,107k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1048） 
 

2016, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2016jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2016, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2016

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2016jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 



 

 12

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2016 2
1

( )( , 2) : ~
(2016) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017k = . From (2) 

and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,17,19,29,37,43,73,97,113,127,337,673,1009,2017k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1049） 
 

2018, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2018jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2018, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2018

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2018jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2018 2
1

( )( , 2) : ~
(2018) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 

 
The New Prime theorem（1050） 

 
2020, ( 1, , 1)P jP k j j k+ − = −L  
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Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2020jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2020, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2020

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2020jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2020 2
1

( )( , 2) : ~
(2020) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,11k =  

. From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,11k = , 
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(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,11k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,11k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1051） 
 

2022, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2022jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2022, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2022

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2022jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2022 2
1

( )( , 2) : ~
(2022) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1052） 
 

1924, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2024jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2024, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 
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where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2024

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2024jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2024 2
1

( )( , 2) : ~
(2024) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,23,47,89k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,23,47,89k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,23,47,89k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,23,47,89k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1053） 
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2026, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2026jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2026, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2026

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2026jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2026 2
1

( )( , 2) : ~
(2026) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,2027k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 
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we prove that for 3,2027k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3, 2027k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3, 2027k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1054） 
 

2028, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2028jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2028, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2028

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2028jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 
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                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2028 2
1

( )( , 2) : ~
(2028) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,53,79,157,677,2029k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,53,79,157,677,2029k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,53,79,157,677,2029k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,53,79,157,677,2029k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1055） 
 

2030, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2030jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2030, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 



 

 21

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2030

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2030jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2030 2
1

( )( , 2) : ~
(2030) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,11,59,71k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,11,59,71k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,11,59,71k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,11,59,71k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1056） 
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2032, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2032jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2032, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2032

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2032jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2032 2
1

( )( , 2) : ~
(2032) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,17,509k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 
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we prove that for 3,5,17,509k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,17,509k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,17,509k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1057） 
 

2034, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2034jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2034, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2034

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2034jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 
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                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2034 2
1

( )( , 2) : ~
(2034) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,19,227k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,19,227k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,19,227k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,19,227k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1058） 
 

2036, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2036jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2036, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2036

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2036jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2036 2
1

( )( , 2) : ~
(2036) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,1019k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,1019k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,1019k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,1019k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1059） 
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2038, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2038jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2038, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2038

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2038jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2038 2
1

( )( , 2) : ~
(2038) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
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(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1060） 
 

2040, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2040jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2040, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2040

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2040jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 
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 { }
1

2040 2
1

( )( , 2) : ~
(2040) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,11,13,31,41,61,103,137,409k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,11,13,31,41,61,103,137,409k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,11,13,31,41,61,103,137,409k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,11,13,31,41,61,103,137,409k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1061） 
 

2042, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2042jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2042, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 
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1

2042

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2042jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2042 2
1

( )( , 2) : ~
(2042) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1062） 
 

2044, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 
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Using Jiang function we prove that 2044jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2044, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2044

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2044jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2044 2
1

( )( , 2) : ~
(2044) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,29k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,29k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,29k ≠ .  

From (2) and (3) we have 
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                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,29k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1063） 
 

2046, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2046jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2046, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2046

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2046jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 
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 { }
1

2046 2
1

( )( , 2) : ~
(2046) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,23,67,683k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,23,67,683k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,23,67,683k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,23,67,683k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1064） 
 

2048, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2048jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2048, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 
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1

2048

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2048jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2048 2
1

( )( , 2) : ~
(2048) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,17,257k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,17,257k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,17,257k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,17,257k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1065） 
 

2050, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 2050jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2050, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2050

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2050jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2050 2
1

( )( , 2) : ~
(2050) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,11,83k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,11,83k = , 

(1) contain no prime solutions. 1 is not a prime.  
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Example 2. Let 3,11,83k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,11,83k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1066） 
 

2052, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2052jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2052, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2052

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2052jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2052 2
1

( )( , 2) : ~
(2052) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,19,37,109,2053k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,19,37,109,2053k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,19,37,109,2053k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,19,37,109,2053k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1067） 
 

2054, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2054jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2054, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 
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where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2054

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2054jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2054 2
1

( )( , 2) : ~
(2054) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1068） 
 

2056, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 2056jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2056, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2056

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2056jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2056 2
1

( )( , 2) : ~
(2056) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5k ≠ .  

From (2) and (3) we have 
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                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

he New Prime theorem（1069） 
 

2058, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2058jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2058, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2058

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2058jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 
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 { }
1

2058 2
1

( )( , 2) : ~
(2058) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,43k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,43k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,43k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,43k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1070） 
 

2060, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2060jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2060, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 
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1

2060

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2060jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2060 2
1

( )( , 2) : ~
(2060) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,11,1031k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,11,1031k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,11,1031k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,11,1031k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1071） 
 

2062, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 2062jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2062, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2062

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2062jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2062 2
1

( )( , 2) : ~
(2062) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,2063k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,2063k = , 

(1) contain no prime solutions. 1 is not a prime.  
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Example 2. Let 3, 2063k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3, 2063k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1072） 
 

2064, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2064jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2064, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2064

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2064jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2064 2
1

( )( , 2) : ~
(2064) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,17,1033k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,17,1033k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,17,1033k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,17,1033k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1073） 
 

2066, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2066jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2066, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 
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where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2066

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2066jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2066 2
1

( )( , 2) : ~
(1966) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（1074） 
 

2068, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 2068jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2068, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2068

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2068jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2068 2
1

( )( , 2) : ~
(2068) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,23,2069k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,23,2069k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,23,2069k ≠ .  
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From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,23,2069k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1075） 
 

2070, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2070jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2070, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2070

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2070jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 
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 { }
1

2070 2
1

( )( , 2) : ~
(2070) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,11,19,31,139k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,11,19,31,139k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,11,19,31,139k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,11,19,31,139k ≠ ， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1076） 
 

2072, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2072jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2072, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 
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1

2072

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2072jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2072 2
1

( )( , 2) : ~
(2072) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,29,149k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,29,149k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,29,149k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,29,149k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1077） 
 

2074, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 



 

 50

Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 2074jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2074, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2074

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2074jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2074 2
1

( )( , 2) : ~
(2074) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 
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                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1078） 
 

2076, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2076jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2076, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2076

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2076jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2076 2
1

( )( , 2) : ~
(2076) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 
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where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,347,1039k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,347,1039k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,347,1039k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,347,1039k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1079） 
 

2078, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2078jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2078, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2078

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 



 

 53

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2078jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2078 2
1

( )( , 2) : ~
(2078) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1080） 
 

2080, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2080jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 
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                 2080, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2080

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2080jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2080 2
1

( )( , 2) : ~
(2080) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,11,17,41,53,131,521,2081k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,11,17,41,53,131,521,2081k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,11,17,41,53,131,521,2081k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,11,17,41,53,131,521,2081k ≠ ， 

 (1) contain infinitely many prime solutions 
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The New Prime theorem（1081） 
 

2082, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2082jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2082, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2082

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2082jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2082 2
1

( )( , 2) : ~
(2082) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 
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Example 1. Let 3,7,2083k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,2083k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,2083k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,2083k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1082） 
 

2084, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2084jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2084, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2084

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 
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many primes P  such that each of 2084jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2084 2
1

( )( , 2) : ~
(2084) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1083） 
 

2086, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2086jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 
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                 2086, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2086

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2086jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2086 2
1

( )( , 2) : ~
(2086) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,2087k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,2087k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3, 2087k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3, 2087k ≠ ， 

 (1) contain infinitely many prime solutions 
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The New Prime theorem（1084） 
 

2088, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2088jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2088, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2088

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2088jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2088 2
1

( )( , 2) : ~
(2088) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 
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Example 1. Let 3,5,7,13,19,37,59,73,233,349,523,2089k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,19,37,59,73,233,349,523,2089k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,19,37,59,73,233,349,523,2089k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,19,37,59,73,233,349,523,2089k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1085） 
 

2090, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2090jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2090, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2090

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 
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many primes P  such that each of 2090jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2090 2
1

( )( , 2) : ~
(2090) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,11,23,191,419k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,11,23,191,419k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,11,23,191,419k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,11,23,191,419k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1086） 
 

2092, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2092jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 
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                 2092, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2092

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2092jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2092 2
1

( )( , 2) : ~
(2092) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5k ≠ ， 

 (1) contain infinitely many prime solutions 
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The New Prime theorem（1087） 
 

2094, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2094jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2094, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2094

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2094jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2094 2
1

( )( , 2) : ~
(2094) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 
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Example 1. Let 3,7k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1088） 
 

2096, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2096jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2096, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2096

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 
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many primes P  such that each of 2096jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

{ }
1

2096 2
1

( )( , 2) : ~
(2096) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,17,263,1049k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,17,263,1049k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,17,263,1049k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,17,263,1049k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（1089） 
 

2098, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2098jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 
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                 2098, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2098

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2098jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2098 2
1

( )( , 2) : ~
(2098) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,2099k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,2099k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3, 2099k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3, 2099k ≠ ， 

 (1) contain infinitely many prime solutions 
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The New Prime theorem（1090） 
 

2100, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 2100jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 2100, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

2100

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 2100jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

2100 2
1

( )( , 2) : ~
(2100) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 
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Example 1. Let 3,5,7,11,13,31,61,71,151,211,1051k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,11,13,31,61,71,151,211,1051k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,11,13,31,61,71,151,211,1051k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,11,13,31,61,71,151,211,1051k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

Remark. The prime number theory is basically to count the Jiang function 1( )nJ ω+  and Jiang 

prime k -tuple singular series 
1

2 ( ) 1 ( ) 1( ) 1 (1 )
( )

k
k

k P

J PJ
P P

ω ω χσ
φ ω

−
−+⎛ ⎞= = Π − −⎜ ⎟

⎝ ⎠
[1,2], which can count 

the number of prime numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple 

singular series 
( ) 1( ) 1 (1 ) k

P

PH
P P

νσ −⎛ ⎞= Π − −⎜ ⎟
⎝ ⎠

 is false [3-17], which cannot count the number of prime 

numbers[3]. 
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Szemerédi’s theorem does not directly to the primes, because it cannot count the number of primes.  

Cramér’s random model cannot prove any prime problems. The probability of 1/ log N  of being prime 

is false. Assuming that the events “ P  is prime”, “ 2P +  is prime” and “ 4P +  is prime” are 
independent, we conclude that P , 2P + , 4P +  are simultaneously prime with probability about 

31/ log N . There are about 3/ logN N  primes less than N . Letting N →∞  we obtain the prime 

conjecture, which is false. The tool of additive prime number theory is basically the Hardy-Littlewood 
prime tuples conjecture, but cannot prove and count any prime problems[6]. 

   Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have 
every reason to believe that there are some mysteries which the human mind will never penetrate. 

                                                        Leonhard Euler(1707-1783) 
  It will be another million years, at least, before we understand the primes. 
                                                                    Paul Erdos(1913-1996) 

Jiang’s function 1( )nJ ω+  in prime distribution 
Chun-Xuan Jiang 

P. O. Box 3924, Beijing 100854, P. R. China 
jiangchunxuan@vip.sohu.com 

Dedicated to the 30-th anniversary of hadronic mechanics 
 

Abstract 
We define that prime equations 

        1 1 1( , , ), , ( , )n k nf P P f P PL L L                 （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP PL  are all 
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prime. If Jiang’s function 1( ) 0nJ ω+ =  then （5）has finite prime solutions. If 1( ) 0nJ ω+ ≠  then 
there are infinitely many primes 1, , nP PL  such that 1, kf fL  are  primes. We obtain a unite 
prime formula in prime distribution 

         primes}are,,:,,{)1,( 111 kffNPPnN knk LL ≤=++π  

            1 1

1

( )(deg ) (1 (1)).
! ( ) log

k nk
n

i k n k n
i

J Nf o
n N

ω ω
φ ω

− +
+ +

=

= × +∏           （8） 

Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime 
theorems [6]. Jiang’s function provides proofs of the prime theorems which are simple enough 
to understand and accurate enough to be useful. 
 
 
 
 
      Mathematicians have tried in vain to discover some order in the sequence of prime 
numbers but we have every reason to believe that there are some mysteries which the human 
mind will never penetrate. 
                                          Leonhard Euler 
      It will be another million years, at least, before we understand the primes. 
                                         Paul Erdös 

 
Suppose that Euler totient function 

                  
2

( ) ( 1)
P

Pφ ω
≤

= Π − = ∞  as  ω →∞，              （1） 

where 
2 P

Pω
≤

= Π  is called primorial. 

Suppose that ( , ) 1ihω = , where 1, , ( )i φ ω= L . We have prime equations 

                1 ( ) ( )1, ,P n P n hφ ω φ ωω ω= + = +L                    （2） 

where 0,1,2,n = L . 
（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many 
prime solutions. We have 

               
(mod )

( )1 (1 (1)).
( )i

i
i i

h
P N

P h

N o
ω

ππ
φ ω≤

≡

= = +∑ ,                  （3） 

where 
ihπ denotes the number of primes iP N≤  in i iP n hω= +  0,1,2,n = L , ( )Nπ  the 

number of primes less than or equal to N . 
We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime 
theorems in prime distribution. 
Let 30ω =  and (30) 8φ = . From (2) we have eight prime equations 

1 30 1P n= + , 2 30 7P n= + , 3 30 11P n= + , 4 30 13P n= + , 5 30 17P n= + ,  

6 30 19P n= + , 7 30 23P n= + , 8 30 29P n= + , 0,1,2,n = L             （4） 
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Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

        1 1 1( , , ), , ( , , )n k nf P P f P PL L L                           （5） 

are polynomials (with integer coefficients) irreducible over integers, where 1, , nP PL  are 
primes. If Jiang’s function 0)(1 =+ ωnJ  then (5) has finite prime solutions. If 0)(1 ≠+ ωnJ  then 
there exist infinitely many primes 1, , nP PL  such that each kf  is a prime. 
PROOF. Firstly, we have Jiang’s function [1-11] 

              1 3
( ) [( 1) ( )]n

n P
J P Pω χ+ ≤

= Π − − ,                       （6） 

where ( )Pχ  is called sieve constant and denotes the number of solutions for the following 
congruence 

             11
( , , ) 0 (mod )

k

i ni
f q q P

=
Π ≡L ,                      （7） 

where 1 1, , 1, , 1, , 1nq P q P= − = −L L L . 

1( )nJ ω+  denotes the number of sets of 1, , nP PL  prime equations such that 

1 1 1( , , ), , ( , , )n k nf P P f P PL L L  are prime equations. If 1( ) 0nJ ω+ =  then (5) has finite prime 
solutions. If 1( ) 0nJ ω+ ≠  using ( )Pχ  we sift out from (2) prime equations which can not be 
represented 1, , nP PL , then residual prime equations of (2) are 1, , nP PL  prime equations such 
that 1 1( , , ), ,nf P PL L  1( , , )k nf P PL  are  prime equations. Therefore we prove that there exist 
infinitely many primes 1, , nP PL  such that 1 1( , , ), ,nf P PL L  1( , , )k nf P PL  are primes.  
Secondly, we have the best asymptotic formula [2,3,4,6] 

    primes}are,,:,,{)1,( 111 kffNPPnN knk LL ≤=++π  

            1 1

1

( )(deg ) (1 (1)).
! ( ) log

k nk
n

i k n k n
i

J Nf o
n N

ω ω
φ ω

− +
+ +

=

= × +∏           （8） 

（8）is called a unite prime formula in prime distribution. Let 1, 0n k= = , 2 ( ) ( )J ω φ ω= . From 
(8) we have prime number theorem 

            { }1 1 1( , 2) : is prime (1 (1)).
log

NN P N P o
N

π = ≤ = + .        （9） 

 
 
Number theorists believe that there are infinitely many twin primes, but they do not have 
rigorous proof of this old conjecture by any method. All the prime theorems are conjectures 
except the prime number theorem, because they do not prove that prime equations have 
infinitely many prime solutions. We prove the following conjectures by this theorem. 

Example 1. Twin primes , 2P P + (300BC). 

From (6) and (7) we have Jiang’s function 

                   2 3
( ) ( 2) 0

P
J Pω

≤
= Π − ≠ . 
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Since 2 ( ) 0J ω ≠  in (2) exist infinitely many P  prime equations such that 2P +  is a prime 
equation. Therefore we prove that there are infinitely many primes P  such that 2P +  is a 
prime. 

Let 30ω =  and 2 (30) 3J = . From (4) we have three P  prime equations 

               3 5 830 11, 30 17, 30 29P n P n P n= + = + = + . 

From (8) we have the best asymptotic formula 

{ } 2
2 2 2

( )( , 2) : 2 prime (1 (1))
( ) log

J NN P N P o
N

ω ωπ
φ ω

= ≤ + = +  

          2 23

12 1 (1 (1)).
( 1) logP

N o
P N≤

⎛ ⎞
= Π − +⎜ ⎟−⎝ ⎠

 

In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J ω  denotes the number of P  prime equations, 2 2 (1 (1))
( ) log

N o
N

ω
φ ω

+  the 

number of solutions of primes for every P  prime equation. 

Example 2. Even Goldbach’s conjecture 1 2N P P= + . Every even number 6N ≥  is the sum of 

two primes. 
From (6) and (7) we have Jiang’s function 

            2 3

1( ) ( 2) 0
2P P N

PJ P
P

ω
≤

−
= Π − Π ≠

−
. 

Since 2 ( ) 0J ω ≠  as N →∞  in (2) exist infinitely many 1P  prime equations such that 1N P−  
is a prime equation. Therefore we prove that every even number 6N ≥  is the sum of two 
primes. 
From (8) we have the best asymptotic formula 

{ } 2
2 1 1 2 2

( )( , 2) , prime (1 (1)).
( ) log

J NN P N N P o
N

ω ωπ
φ ω

= ≤ − = +  

        2 23

1 12 1 (1 (1))
( 1) 2 logP P N

P N o
P P N≤

⎛ ⎞ −
= Π − Π +⎜ ⎟− −⎝ ⎠

. 

In 1996 we proved even Goldbach’s conjecture [1] 

Example 3. Prime equations , 2, 6P P P+ + . 

From (6) and (7) we have Jiang’s function 

             2 5
( ) ( 3) 0

P
J Pω

≤
= Π − ≠ , 

2 ( )J ω  is denotes the number of P  prime equations such that 2P +  and 6P +  are  prime 
equations. Since 2 ( ) 0J ω ≠  in (2) exist infinitely many P  prime equations such that 2P +  
and 6P +  are  prime equations. Therefore  we prove that there are infinitely many primes 
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P  such that 2P +  and 6P +  are  primes. 
Let 230, (30) 2Jω = = . From (4) we have two P  prime equations 

           3 530 11, 30 17P n P n= + = + . 

From (8) we have the best asymptotic formula 

)).1(1(
log)(

)(primes}are6,2:{)2,( 33

2
2

3 o
N

NJPPNPN +=++≤=
ωφ
ωω

π  

Example 4. Odd Goldbach’s conjecture 1 2 3N P P P= + + . Every odd number 9N ≥  is the sum 
of three primes. 
From (6) and (7) we have Jiang’s function 

      ( )2
3 23

1( ) 3 3) 1 0
3 3P P N

J P P
P P

ω
≤

⎛ ⎞= Π − + Π − ≠⎜ ⎟− +⎝ ⎠
. 

Since 3( ) 0J ω ≠  as N →∞  in (2) exist infinitely many pairs of 1P  and 2P  prime equations 
such that 1 2N P P− −  is a prime equation. Therefore we prove that every odd number 9N ≥  is 
the sum of three primes. 
From (8) we have the best asymptotic formula 

{ }
2

3
2 1 2 1 2 3 3

( )( ,3) , : prime (1 (1))
2 ( ) log
J NN P P N N P P o

N
ω ωπ

φ ω
= ≤ − − = + . 

        
2

3 3 33

1 11 1 (1 (1))
( 1) 3 3 logP P N

N o
P P P N≤

⎛ ⎞ ⎛ ⎞= Π + Π − +⎜ ⎟ ⎜ ⎟− − +⎝ ⎠⎝ ⎠
. 

Example 5. Prime equation 3 1 2 2P PP= + . 
From (6) and (7) we have Jiang’s function 

                 ( )2
3 3
( ) 3 2 0

P
J P Pω

≤
= Π − + ≠  

3 ( )J ω  denotes the number of pairs of 1P  and 2P  prime equations such that 3P  is a prime 
equation. Since 3( ) 0J ω ≠  in (2) exist infinitely many pairs of 1P  and 2P  prime equations 
such that 3P  is a prime equation. Therefore we prove that there are infinitely many pairs of 
primes 1P  and 2P  such that 3P  is a prime. 
From (8) we have the best asymptotic formula 

{ }
2

3
2 1 2 1 2 3 3

( )( ,3) , : 2 prime (1 (1)).
4 ( ) log
J NN P P N PP o

N
ω ωπ

φ ω
= ≤ + = +  

Note. deg 1 2( ) 2PP = . 

Example 6 [12].  Prime equation 3 3
3 1 22P P P= + . 

From (6) and (7) we have Jiang’s function 

              2
3 3
( ) ( 1) ( ) 0

P
J P Pω χ

≤
⎡ ⎤= Π − − ≠⎣ ⎦ , 
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where ( ) 3( 1)P Pχ = −  if 
1

32 1(mod )
P

P
−

≡ ; ( ) 0Pχ =  if 
1

32 1(mod )
P

P
−

≡/ ; ( ) 1P Pχ = −  
otherwise. 
Since 3( ) 0J ω ≠  in (2) there are infinitely many pairs of 1P  and 2P  prime equations such that 

3P  is a prime equation. Therefore we prove that there are infinitely many pairs of primes 1P  
and 2P  such that 3P  is a prime. 
From (8) we have the best asymptotic formula 

)).1(1(
log)(6

)(
prime}2:,{)3,( 3

2

3
33

2
3

1212 o
N

NJ
PPNPPN +=+≤=

ωφ
ωω

π  

Example 7 [13].  Prime equation 4 2
3 1 2( 1)P P P= + + . 

From (6) and (7) we have Jiang’s function 

         2
3 3
( ) ( 1) ( ) 0

P
J P Pω χ

≤
⎡ ⎤= Π − − ≠⎣ ⎦  

where ( ) 2( 1)P Pχ = −  if 1(mod 4)P ≡ ; ( ) 2( 3)P Pχ = −  if 1(mod8)P ≡ ; ( ) 0Pχ =  
otherwise. 
Since 3( ) 0J ω ≠  in (2) there are infinitely many pairs of 1P  and 2P  prime equations such that 

3P  is a prime equation. Therefore we prove that there are infinitely many pairs of primes 1P  
and 2P  such that 3P  is a prime. 
From (8) we have the best asymptotic formula 

{ }
2

3
2 1 2 3 3 3

( )( ,3) , : prime (1 (1)).
8 ( ) log
J NN P P N P o

N
ω ωπ

φ ω
= ≤ = +  

Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic 
progressions of length k . 

   1 2 1 3 1 1 1, , 2 , , ( 1) , ( , ) 1kP P P d P P d P P k d P d= + = + = + − =L .      （10） 

From (8) we have the best asymptotic formula 

       primes}are)1(,,,:{)2,( 11112 dkPdPPNPN −++≤= Lπ  

                     
1

2 ( ) (1 (1)).
( ) log

k

k k

J N o
N

ω ω
φ ω

−

= + . 

If 2 ( ) 0J ω =  then (10) has finite prime solutions. If 2 ( ) 0J ω ≠  then there are infinitely many 
primes 1P  such that  2 , , kP PL  are  primes.  
To eliminate d  from (10) we have 

     3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j k= − = − − − ≤ ≤ . 

From (6) and (7) we have Jiang’s function 

             3 3
( ) ( 1) ( 1)( 1) 0

P k k P
J P P P kω

≤ < ≤
= Π − Π − − + ≠  

Since 3( ) 0J ω ≠  in (2) there are infinitely many pairs of 1P  and 2P  prime equations such that 

3, , kP PL  are prime equations. Therefore we prove that there are infinitely many pairs of primes 
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1P  and 2P  such that 3, , kP PL  are primes. 
From (8) we have the best asymptotic formula 

{ }1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P j kπ − = ≤ − − − ≤ ≤     

2 2
3 ( ) (1 (1))
2 ( ) log

k

k k

J N o
N

ω ω
φ ω

−

= +      

2 2 2

1 12

1 ( 1) (1 (1))
2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N o
P P N

− −

− −≤ < ≤

− +
= Π Π +

− −
. 

Example 9. It is a well-known conjecture that one of 2, 2, 2P P P+ +  is always divisible by 3. 
To generalize above to the k − primes, we prove the following conjectures. Let n  be a 
square-free even number. 
1. 2, ,P P n P n+ + , 
where 3 ( 1)n + . 
From (6) and (7) we have 2 (3) 0J = , hence one of 2, ,P P n P n+ +  is always divisible by 3. 
2. 2 4, , , ,P P n P n P n+ + +L , 
where 5 ( ), 2,3.n b b+ =  
From (6) and (7) we have 2 (5) 0J = , hence one of 2 4, , , ,P P n P n P n+ + +L  is always 
divisible by 5. 
3. 2 6, , , ,P P n P n P n+ + +L , 
where 7 ( ), 2, 4.n b b+ =  
From (6) and (7) we have 2 (7) 0J = , hence one of 2 6, , , ,P P n P n P n+ + +L  is always 
divisible by 7. 
4. 2 10, , , ,P P n P n P n+ + +L , 
where 11 ( ), 3, 4,5,9.n b b+ =  
From (6) and (7) we have 2 (11) 0J = , hence one of 2 10, , , ,P P n P n P n+ + +L  is always 
divisible by 11. 
5. 2 12, , , ,P P n P n P n+ + +L , 
where 13 ( ), 2,6,7,11.n b b+ =  
From (6) and (7) we have 2 (13) 0J = , hence one of 2 12, , , ,P P n P n P n+ + +L  is always 
divisible by 13. 
6. 2 16, , , ,P P n P n P n+ + +L , 
where 17 ( ), 3,5,6,7,10,11,12,14,15.n b b+ =  
From (6) and (7) we have 2 (17) 0J = , hence one of 2 16, , , ,P P n P n P n+ + +L  is always 
divisible by 17. 
7. 2 18, , , ,P P n P n P n+ + +L , 
where 19 ( ), 4,5,6,9,16.17.n b b+ =  
From (6) and (7) we have 2 (19) 0J = , hence one of 2 18, , , ,P P n P n P n+ + +L  is always 
divisible by 19. 
Example 10. Let n  be an even number. 
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1. , , 1,3,5, , 2 1iP P n i k+ = +L , 
From (6) and (7) we have 2 ( ) 0J ω ≠ . Therefore we prove that there exist infinitely many 
primes P  such that , iP P n+  are  primes for any k . 
2. , , 2, 4,6, , 2iP P n i k+ = L . 
From (6) and (7) we have 2 ( ) 0J ω ≠ . Therefore we prove that there exist infinitely many 
primes P  such that , iP P n+  are  primes for any k . 

Example 11. Prime equation 2 1 32P P P= +  

From (6) and (7) we have Jiang’s function 

               2
3 3
( ) ( 3 2) 0

P
J P Pω

≤
= Π − + ≠ . 

Since 3( ) 0J ω ≠  in (2) there are infinitely many pairs of 1P  and 2P  prime equations such that 

3P  is prime equations. Therefore we prove that there are infinitely many pairs of primes 1P  
and 2P  such that 3P  is a prime. 
From (8) we have the best asymptotic formula 

{ }
2

3
2 1 2 3 3 3

( )( ,3) , : prime (1 (1)).
2 ( ) log
J NN P P N P o

N
ω ωπ

φ ω
= ≤ = +            

In the same way we can prove 2
2 3 12P P P= +  which has the same Jiang’s function. 

Jiang’s function is accurate sieve function. Using it we can prove any irreducible prime 
equations in prime distribution. There are infinitely many twin primes but we do not have 
rigorous proof of this old conjecture by any method [20]. As strong as the numerical evidence 
may be, we still do not even know whether there are infinitely many pairs of twin primes [21]. 
All the prime theorems are conjectures except the prime number theorem, because they do not 
prove the simplest twin primes. They conjecture that the prime distribution is randomness 
[12-26], because they do not understand theory of prime numbers. 
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The Hardy-Littlewood prime k-tuple conjecture is false 
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Abstract 
 

Using Jiang function we prove Jiang prime k -tuple theorem. We prove that the 

Hardy-Littlewood prime k -tuple conjecture is false. Jiang prime k -tuple theorem can replace 

the Hardy-Littlewood prime k -tuple conjecture. 

 

(A) Jiang prime k -tuple theorem [1, 2]. 

We define the prime k -tuple equation 

                      , ip p n+ ,                          （1） 

where 2 , 1, 1in i k= −L . 

we have Jiang function [1, 2] 

                  2 ( ) ( 1 ( ))
P

J P Pω χ= Π − − ,                    （2） 

where 
P

Pω = Π , ( )Pχ  is the number of solutions of congruence 

 
1

1
( ) 0 (mod )

k

ii
q n P

−

=
Π + ≡ , 1, , 1q p= −L .                    （3） 

If ( ) 1P Pχ < −  then 2 ( ) 0J ω ≠ . There exist infinitely many primes P  such that each of 

iP n+  is prime. If ( ) 1P Pχ = −  then 2 ( ) 0J ω = . There exist finitely many primes P  such 

that each of iP n+  is prime. 2 ( )J ω  is a subset of Euler function ( )φ ω [2]. 

 If 2 ( ) 0J ω ≠ , then we hae the best asymptotic formula of the number of prime P [1, 2] 

{ }
1

2 ( )( , 2) : ~ ( )
( ) log log

k

k i k k k

J N NN P N P n prime C k
N N

ω ωπ
φ ω

−

= ≤ + = =      （4） 

( ) ( 1)
P

Pφ ω = Π − ， 

1 ( ) 1( ) 1 1
k

P

PC k
P P
χ −+⎛ ⎞⎛ ⎞= Π − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                                  （5） 

Example 1. Let 2, , 2k P P= + , twin primes theorem. 

From (3) we have 
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                (2) 0, ( ) 1Pχ χ= =  if 2P > ,                  （6） 

Substituting (6) into (2) we have 

                 2 3
( ) ( 2) 0

P
J Pω

≥
= Π − ≠                           （7） 

There exist infinitely many primes P  such that 2P +  is prime. Substituting (7) into (4) we 
have the best asymptotic pormula  

{ } 2 23

1( , 2) : 2 ~ 2 (1 ) .
( 1) logk P

NN P N P prime
P N

π
≥

= ≤ + = Π −
−

    （8） 

Example 2. Let 3, , 2, 4k P P P= + + . 

From (3) we have 

              (2) 0, (3) 2χ χ= =                       （9） 

From (2) we have 

                          2 ( ) 0J ω = .                          （10） 

It has only a solution 3P = , 2 5P + = , 4 7P + = . One of , 2, 4P P P+ +  is always divisible 

by 3. 

Example 3. Let 4, ,k P P n= + , where 2,6,8n = . 

From (3) we have 

(2) 0, (3) 1, ( ) 3Pχ χ χ= = =  if 3P > .                （11） 

Substituting (11) into (2) we have 

                  2 5
( ) ( 4) 0

P
J Pω

≥
= Π − ≠ ,                            （12） 

There exist infinitely many primes P  such that each of P n+  is prime. 

Substituting (12) into (4) we have the best asymptotic formula 

    { }
3

4 4 45

27 ( 4)( , 2) : ~
3 ( 1) logP

P P NN P N P n prime
P N

π
≥

−
= ≤ + = Π

−
         （13） 

Example 4. Let 5k = , P , P n+ , where 2,6,8,12n = . 
From (3) we have 

            (2) 0, (3) 1, (5) 3, ( ) 4Pχ χ χ χ= = = =  if 5P >            （14） 

Substituting (14) into (2) we have  

               2 7
( ) ( 5) 0

P
J Pω

≥
= Π − ≠                            （15） 

There exist infinitely many primes P  such that each of P n+  is prime. Substituting (15) into 
(4) we have the best asymptotic formula 
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{ }
4 4

5 11 5 57

15 ( 5)( , 2) : ~
2 ( 1) logP

P P NN P N P n prime
P N

π
≥

−
= ≤ + = Π

−
    （16） 

Example 5. Let 6k = ，P , P n+ , where 2,6,8,12,14n = . 

From (3) and (2) we have 

                   2(2) 0, (3) 1, (5) 4, (5) 0Jχ χ χ= = = =            （17） 

It has only a  solution 5P = , 2 7P + = , 6 11P + = , 8 13P + = , 12 17P + = , 14 19P + = . 

One of P n+  is always divisible by 5. 

（B）The Hardy-Littlewood prime k -tuple conjecture[3-14]. 

This conjecture is generally believed to be true,but has not been proved(Odlyzko 

et al.1999). 

We define the prime k -tuple equation 

                 , iP P n+                                （18） 

where 2 , 1, , 1in i k= −L . 

In 1923 Hardy and Littlewood conjectured the asymptotic formula 

      { }( , 2) : ~ ( )
logk i k

NN P N P n prime H k
N

π = ≤ + = ,              （19） 

where  

         ( ) 1( ) 1 1
k

P

PH k
P P

ν −
⎛ ⎞⎛ ⎞= Π − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

                   （20） 

( )Pν  is the number of solutions of congruence 

             
1

1
( ) 0 (mod )

k

ii
q n P

−

=
Π + ≡ ，  1, ,q P= L .               （21） 

From (21) we have ( )P Pν <  and ( ) 0H k ≠ . For any prime k -tuple equation there exist 

infinitely many primes P  such that each of iP n+  is prime, which is false. 

Conjectore 1. Let 2, , 2k P P= + , twin primes theorem  

Frome (21) we have 

        ( ) 1Pν =                        （22） 

Substituting (22) into (20) we have 

               (2)
1P

PH
P

= Π
−

                   （23） 

Substituting (23) into (19) we have the asymptotic formula 

           { }2 2( , 2) : 2 ~
1 logP

P NN P N P prime
P N

π = ≤ + = Π
−

       （24） 
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which is false see example 1. 

Conjecture 2. Let 3, , 2, 4k P P P= + + . 

From (21) we have 

                 (2) 1, ( ) 2Pν ν= =  if 2P >                  （25） 

Substituting (25) into (20) we have 

                     
2

33

( 2)(3) 4
( 1)P

P PH
P≥

−
= Π

−
                     （26） 

Substituting (26) into (19) we have asymptotic formula 

{ }
2

3 3 33

( 2)( , 2) : 2 , 4 ~ 4
( 1) logP

P P NN P N P prime P prim
P N

π
≥

−
= ≤ + = + = Π

−
 （27） 

which is false see example 2. 

Conjecutre 3. Let 4k = , ,P P n+ , where 2,6,8n = . 

From (21) we have 

               (2) 1, (3) 2, ( ) 3Pν ν ν= = =  if 3P >               （28） 

Substituting (28) into (20) we have 

                      
3

43

27 ( 3)(4)
2 ( 1)P

P PH
P>

−
= Π

−
                  （29） 

Substituting (29) into (19) we have asymptotic formula  

{ }
3

4 4 43

27 ( 3)( , 2) : ~
2 ( 1) logP

P P NN P N P n prime
P N

π
>

−
= ≤ + = Π

−
  （30） 

Which is false see example 3. 

Conjecture 4. Let 5, ,k P P n= + , where 2,6,8,12n =  

From (21) we have 

      (2) 1, (3) 2, (5) 3, ( ) 4Pν ν ν ν= = = =  if 5P >                （31） 

Substituting (31) into (20) we have 

                      
4 4

5 55

15 ( 4)(5)
4 ( 1)P

P PH
P>

−
= Π

−
                  （32） 

Substituting (32) into (19) we have asymptotic formula  

{ }
4 4

5 5 5 55

15 ( 4)( , 2) : ~
4 ( 1) logP

P P NN P N P n prime
P N

π
>

−
= ≤ + = Π

−
  （33） 

Which is false see example 4. 
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Conjecutre 5. Let 6k = , P , P n+ , where 2,6,8,12,14n = . 

From (21) we have 

            (2) 1, (3) 2, (5) 4, ( ) 5Pν ν ν ν= = = =  if 5P >          （34） 

Substituting (34) into (20) we have 

                      
5 5

13 65

15 ( 5)(6)
2 ( 1)P

P PH
P>

−
= Π

−
                  （35） 

Substituting (35) into (19) we have asymptotic formula 

{ }
5 5

6 13 6 65

15 ( 5)( , 2) : ~
2 ( 1) logP

P P NN P N P n prime
P N

π
>

−
= ≤ + = Π

−
   （36） 

which is false see example 5. 
 

Conclusion. The Hardy-Littlewood prime k -tuple conjecture is false. The tool of addive prime 
number theory is basically the Hardy-Littlewood prime tuples conjecture. Jiang prime k -tuple 
theorem can replace Hardy-Littlewood prime k -tuple Conjecture. There cannot be really 
modern prime theory without Jiang function. 
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                                Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two 

biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a 
truly marvelous proof, which this margin is too small to contain.” 

This means: ( 2)n n nx y z n+ = >  has no integer solutions, all different from 0(i.e., it has only the 

trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It 

suffices to prove FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler 

proved FLT for exponent 3. 
In this paper using automorphic functions we prove FLT for exponents 3P  and P , where P  is an 

odd prime. The proof of FLT must be direct. But indirect proof of FLT is disbelieving. 
 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 
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1

1

1 1

exp
n n

i i
i i

i i
t J S J

−
−

= =

⎛ ⎞ =⎜ ⎟
⎝ ⎠
∑ ∑                           （1） 

where J  denotes a n th root of unity, 1nJ = , n  is an odd number, it  are the real numbers. 

iS  is called the automorphic functions(complex hyperbolic functions) of order n  with 1n −  
variables [1-7]. 

                

1
2

( 1)

1

1 ( 1)[ 2 ( 1) cos( ( 1) )]j

n

BA i j j
i j

j

i jS e e
n n

πθ

−

−

=

−
= + − + −∑       （2） 

where i=1,2,…,n; 

      
1

1

n

A tα
α

−

−

=∑ ,      
1

1
( 1) cos

n
j

j
jB t
n

α
α

α

α π−

=

= −∑ ,                        （3） 

1
1

1
( 1) ( 1) sin

n
j j

j
jt
n

α
α

α

α πθ
−

+

=

= − −∑ ,     

1
2

1
2 0

n

j
j

A B

−

=

+ =∑  

(2) may be written in the matrix form 
 

1

2

3

2

1 1 0 0
( 1)1 cos sin sin

2
2 2 ( 1)1 1 cos sin sin

( 1) ( 1) ( 1)1 cos sin sin
2

n

nS
n n nS

nS
n n nn

S n n n
n n n

π π π

π π π

π π π

⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎢ ⎥− − −

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ −= ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ − − −⎢ ⎥−⎢ ⎥⎣ ⎦

L

L

L

L
L L L L L

L

 

1

1

1

1

1 1
2 2

2 cos
2 sin

2exp sin

A

B

B

n n

e
e
e

B

θ
θ

θ− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L
(4) 

where ( 1) / 2n −  is an even number. 

From (4) we have its inverse transformation 

1

1

1

1

1 1 2
2 2

1 1 1 1
2 ( 1)1 cos cos cos

cos
2 ( 1)sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)0 sin sin sin

2 2

A

B

B

n n

e n
n n ne

ne
n n n

B
n n n

n n n

π π π
θ

π π πθ

θ
π π π

− −

⎡ ⎤
⎢ ⎥⎡ ⎤ −⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ −= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − − −⎣ ⎦ ⎢ ⎥− − −⎢ ⎥⎣ ⎦

L

L

L
L

L L L L L

L

 

1

2

3

n

S
S
S

S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

 (5) 

From (5) we have 

     
1

n
A

i
i

e S
=

=∑ ,   
1

1 1
1

cos ( 1) cosj
n

B ij
j i

i

ije S S
n
πθ

−

+
=

= + −∑  

     
1

1
1

1
sin ( 1) ( 1) sinj

n
B j ij

j i
i

ije S
n
πθ

−
+

+
=

= − −∑ ,                                   （6） 
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In (3) and (6) it  and iS  have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT. 

Using (4) and (5) in 1991 Jiang invented that every factor of exponent n  has the Fermat equation and 
proved FLT [1-7] Substituting (4) into (5) we prove (5). 
 

1

1

1

1

1 1 2
2 2

1 1 1 1
2 ( 1)1 cos cos cos

cos
2 ( 1)1sin 0 sin sin sin

exp( )sin( )
( 1) ( 1) ( 1)0 sin sin sin

2 2

A

B

B

n n

e n
n n ne

ne
n n nn

B
n n n

n n n

π π π
θ

π π πθ

θ
π π π

− −

⎡ ⎤
⎢ ⎥⎡ ⎤ −⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ −= ×⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − − −⎣ ⎦ ⎢ ⎥− − −⎢ ⎥⎣ ⎦

L

L

L
L

L L L L L

L

 

1

1

1

1

1 12
2 2

1 1 0 0
( 1)1 cos sin sin

2 2 cos
2 2 ( 1) 2 sin1 cos sin sin

2exp( )sin( )
( 1) ( 1) ( 1)1 cos sin sin

2

A

B

B

n n

en
n n n e

n e
n n n

B
n n n

n n n

π π π
θ

π π π θ

θ
π π π

− −

⎡ ⎤
⎢ ⎥ ⎡ ⎤−⎢ ⎥− − − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎢ ⎥−⎢ ⎥⎣ ⎦

L

L

L
L

L L L L L

L

               

1

1

1

1

1 1
2 2

0 0 0

0 0 0
2 2 cos

1 2 sin0 0 0
2

2exp( )sin( )
0 0 0

2

A

B

B

n n

n
en

e
n e

n

B
n

θ
θ

θ− −

⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L
L

K L L L L

L

 

1

1

1

1

1 1
2 2

cos
sin

exp( )sin( )

A

B

B

n n

e
e
e

B

θ
θ

θ− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L
,                                            （7） 

where 
1

2

1

1 (cos )
2

n

j

j n
n
π−

=

+ =∑ ,   
1

2

1

(sin )
2

n

j

j n
n
π−

=

=∑ . 

From (3) we have  

                

1
2

1

exp( 2 ) 1

n

j
j

A B

−

=

+ =∑ .                             （8） 
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From (6) we have 

         

1 2 1 1 1 1 11
2

2 1 3 2 2 1 2 1

1

1 1 1 1

( ) ( )
( ) ( )

exp( 2 )

( ) ( )

n nn

n
j

j

n n n n n n

S S S S S S
S S S S S S

A B

S S S S S S

−−

−

=

− −

+ = =∑

L L

L L

L L L L L L L L

L L

,          

（9） 

where   ( ) i
i j

j

SS
t
∂

=
∂

[7]. 

From (8) and (9) we have the circulant determinant 

            

1 21
2

2 1 3

1

1 1

exp( 2 ) 1

nn

j
j

n n

S S S
S S S

A B

S S S

−

=

−

+ = =∑

L

L

L L L M

L

            （10） 

If 0iS ≠ , where 1, 2, ,i n= L , then (10) has infinitely many rational solutions. 

Assume 1 0S ≠ , 2 0S ≠ , 0iS =  where 3, 4, , . 0ii n S= =L  are 2n −  indeterminate equations with 

1n −  variables. From (6) we have 

       1 2
Ae S S= + , 2 2 2

1 2 1 22 ( 1) cosjB j je S S S S
n
π

= + + − .          （11） 

From (10) and (11) we have the Fermat equation 
1 1

2 2
2 2

1 2 1 2 1 2 1 211

exp( 2 ) ( ) ( 2 ( 1) cos ) 1

n n

j n n
j jj

jA B S S S S S S S S
n
π

− −

=
=

+ = + Π + + − = + =∑    （12） 

Example[1]. Let 15n = . From (3) we have 

1 14 2 13 3 12 4 11 5 10 6 9 7 8( ) ( ) ( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t t t t= + + + + + + + + + + + + +  

1 1 14 2 13 3 12 4 11
2 3 4( ) cos ( ) cos ( ) cos ( ) cos

15 15 15 15
B t t t t t t t tπ π π π
= − + + + − + + +  

      5 10 6 9 7 8
5 6 7( ) cos ( ) cos ( ) cos
15 15 15

t t t t t tπ π π
− + + + − + , 

2 1 14 2 13 3 12 4 11
2 4 6 8( )cos ( )cos ( ) cos ( )cos
15 15 15 15

B t t t t t t t tπ π π π
= + + + + + + +  

      5 10 6 9 7 8
10 12 14( )cos ( ) cos ( ) cos
15 15 15

t t t t t tπ π π
+ + + + + + , 

3 1 14 2 13 3 12 4 11
3 6 9 12( )cos ( )cos ( ) cos ( ) cos
15 15 15 15

B t t t t t t t tπ π π π
= − + + + − + + +  

      5 10 6 9 7 8
15 18 21( )cos ( )cos ( )cos
15 15 15

t t t t t tπ π π
− + + + − + , 

4 1 14 2 13 3 12 4 11
4 8 12 16( )cos ( )cos ( ) cos ( ) cos
15 15 15 15

B t t t t t t t tπ π π π
= + + + + + + +  
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      5 10 6 9 7 8
20 24 28( )cos ( ) cos ( ) cos
15 15 15

t t t t t tπ π π
+ + + + + + , 

5 1 14 2 13 3 12 4 11
5 10 15 20( )cos ( ) cos ( ) cos ( ) cos
15 15 15 15

B t t t t t t t tπ π π π
= − + + + − + + +  

      5 10 6 9 7 8
25 30 35( )cos ( ) cos ( ) cos
15 15 15

t t t t t tπ π π
− + + + − + , 

6 1 14 2 13 3 12 4 11
6 12 18 24( )cos ( ) cos ( )cos ( )cos
15 15 15 15

B t t t t t t t tπ π π π
= + + + + + + +  

      5 10 6 9 7 8
30 36 42( )cos ( )cos ( ) cos
15 15 15

t t t t t tπ π π
+ + + + + + , 

7 1 14 2 13 3 12 4 11
7 14 21 28( )cos ( ) cos ( )cos ( ) cos
15 15 15 15

B t t t t t t t tπ π π π
= − + + + − + + +  

      5 10 6 9 7 8
35 42 49( )cos ( ) cos ( ) cos
15 15 15

t t t t t tπ π π
− + + + − + , 

       
7

3 6 5 10
1

2 0, 2 2 5( )j
j

A B A B B t t
=

+ = + + = +∑ .                         (13) 

Form (12) we have the Fermat equation 

           
7

15 15 5 3 5 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1j
j

A B S S S S
=

+ = + = + =∑ .                     (14) 

From (13) we have 

                    5
3 6 5 10exp( 2 2 ) [exp( )]A B B t t+ + = + .                   （15） 

From (11) we have 

                       5 5
3 6 1 2exp( 2 2 )A B B S S+ + = + .                       (16) 

From (15) and (16) we have the Fermat equation 

          5 5 5
3 6 1 2 5 10exp( 2 2 ) [exp( )]A B B S S t t+ + = + = + .                    （17） 

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17) has no rational 
solutions for exponent 5[1]. 
Theorem 1. [1-7]. Let 3n P= ,where 3P >  is odd prime. From (12) we have the Fermat’s equation 

          
3 1

3 3 3 3
1 2 1 2

1

exp( 2 ) ( ) ( ) 1
P

P P P P
j

j

A B S S S S
−

=

+ = + = + =∑ .                  (18) 

From (3) we have 

                  

1
2

3 2
1

exp( 2 ) [exp( )]

P

P
j P P

j

A B t t

−

=

+ = +∑ .                       (19) 

From (11) we have 

                

1
2

3 1 2
1

exp( 2 )

P

P P
j

j

A B S S

−

=

+ = +∑ .                          (20) 

From (19) and (20) we have the Fermat equation 
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1
2

3 1 2 2
1

exp( 2 ) [exp( )]

P

P P P
j P P

j

A B S S t t

−

=

+ = + = +∑ .             （21） 

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21) has no rational 
solutions for 3P >  [1, 3-7]. 
Theorem 2. In 1847 Kummer write the Fermat’s equation 

                      P P Px y z+ =                              （22） 

in the form 

         2 1( )( )( ) ( )P Px y x ry x r y x r y z−+ + + + =L                        （23） 

where P  is odd prime, 
2 2cos sinr i
P P
π π

= + . 

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime exponent p<100 
[8].. 
We consider the Fermat’s equation  

                         3 3 3P P Px y z+ =                           （24） 

we rewrite (24) 

                     3 3 3( ) ( ) ( )P P Px y z+ =                         (25) 

From (24) we have 

                   2 3( )( )( )P P P P P P Px y x ry x r y z+ + + =                 （26） 

where 
2 2cos sin
3 3

r iπ π
= +  

We assume the divisor of each factor is a P th power. 

Let 1
xS
z

= , 2
yS
z

= . From (20) and (26) we have the Fermat’s equation 

          2[ exp( )]P P P
P Px y z t t+ = × +                    (27) 

Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has no integer 
solutions for prime exponent P . 
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24) 

                    3 3 3( ) ( ) ( )P P Px y z+ =                     (28) 

Euler proved that（25）has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has no integer 
solutions for all prime exponent P [1-7]. 
We consider Fermat equation 

                              4 4 4P P Px y z+ =                       (29) 

We rewrite (29)  

                         4 4 4( ) (( ) ( )P P Px y z+ =                   （30） 

                         4 4 4( ) ( ) ( )P P Px y z+ =                    （31） 
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Fermat proved that (30) has no integer solutions for exponent 4 [8]. Therefore we prove that (31) has no 
integer solutions for all prime exponent P  [2,5,7].This is the proof that Fermat thought to have had. 
Remark. It suffices to prove FLT for exponent 4. Let 4n P= , where P  is an odd prime. We have the 
Fermat’s equation for exponent 4P  and the Fermat’s equation for exponent P [2,5,7]. This is the proof that 
Fermat thought to have had. In complex hyperbolic functions let exponent n  be n P= Π , 2n P= Π  and 

4n P= Π . Every factor of exponent n  has the Fermat’s equation [1-7]. In complex trigonometric functions 
let exponent n  be n P= Π , 2n P= Π  and 4n P= Π . Every factor of exponent n  has Fermat’s 
equation [1-7].Using modular elliptic curves Wiles and Taylor prove FLT[9,10].This is not the proof that 
Fermat thought to have had. The classical theory of automorphic functions, created by Klein and Poincare, 
was concerned with the study of analytic functions in the unit circle that are invariant under a discrete group 
of transformations. Automorphic functions are generalization of the trigonometric,hyperbolic,elliptic, and 
certain other functions of elementary analysis. The complex trigonometric functions and complex hyperbolic 
functions have a wide application in mathematics and physics. 
Acknowledgments.We thank Chenny and Moshe Klein for their help and suggestion. 
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In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two 
biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a 
truly marvelous proof, which this margin is too small to contain.” 

This means: ( 2)n n nx y z n+ = >  has no integer solutions, all different from 0(i.e., it has only the 

trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It 

suffices to prove FLT for exponent 4. and every prime exponent P . Fermat proved FLT for exponent 4. Euler 

proved FLT for exponent 3. 
In this paper using automorphic functions we prove FLT for exponents 6P  and P , where P  is an 

odd prime. The proof of FLT must be direct .But indirect proof of FLT is disbelieving. 
 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 
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where J  denotes a 2n th root of unity, 2 1nJ = , n is an odd number, it  are the real numbers. 

iS  is called the automorphic functions(complex hyperbolic functions) of order 2n  with 2 1n −  
variables [5,7]. 
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where   1,..., 2i n= ; 
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From (2) we have its inverse transformation[5,7] 
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(3) and (4) have the same form. 
From (3) we have 
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From (4) we have 
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where   ( ) i
i j

j

SS
t
∂

=
∂

[7].. 

From (5) and (6) we have circulant determinant 
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If 0≠iS ，where ni 2,...,3,2,1= , then (7) have infinitely many rational solutions. 

Let 1=n . From (3) we have 11 tA =  and 12 tA −= . From (2) we have 

                  11 ch tS =       12 sh tS =                    （8） 

we have Pythagorean theorem 

               1shch 1
2

1
2 =− tt                                     （9） 

(9) has infinitely many rational solutions. 
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Assume 0,0,0 21 ≠≠≠ iSSS , where ni 2,...,3= . 0=iS  are )22( −n  indeterminate equations with 

)12( −n  variables. From (4) we have 
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Example. Let 15=n . From (3) and (10) we have Fermat’s equation  
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From (3) we have 
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From (10) we have 
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From (12) and (13) we have Fermat’s equation 
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Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has no rational 
solutions for exponent 5. 
Theorem. Let Pn 3=  where P  is an odd prime. From (7) and (8) we have Fermat’s equation 
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From (3) we have 
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From (10) we have 
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From (16) and (17) we have Fermat’s equation 
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Euler prove that (15) has no rational solutions for exponent 3[8]. Therefore we prove that (18) has no rational 
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solutions for prime exponent P [5,7]. 
 
Remark. It suffices to prove FLT for exponent 4. Let Pn 4= , where P  is an odd prime. We have the 
Fermat’s equation for exponent P4  and the Fermat’s equation for exponent P [2,5,7]. This is the proof that 
Fermat thought to have had. In complex hyperbolic functions let exponent n  be Pn Π= , Pn Π= 2  and 

Pn Π= 4 . Every factor of exponent n  has the Fermat’s equation [1-7]. In complex trigonometric functions 
let exponent n  be Pn Π= , Pn Π= 2  and Pn Π= 4 . Every factor of exponent n  has Fermat’s 
equation [1-7]. Using modular elliptic curves Wiles and Taylor prove FLT [9, 10]. This is not the proof that 
Fermat thought to have had. The classical theory of automorphic functions, created by Klein and Poincare, 
was concerned with the study of analytic functions in the unit circle that are invariant under a discrete group 
of transformation. Automorphic functions are the generalization of trigonometric, hyperbolic, elliptic, and 
certain other functions of elementary analysis. The complex trigonometric functions and complex hyperbolic 
functions have a wide application in mathematics and physics. 
Acknowledgments. We thank Chenny and Moshe Klein for their help and suggestion. 
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                                Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two 

biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a 
truly marvelous proof, which this margin is too small to contain.” 

This means: ( 2)n n nx y z n+ = >  has no integer solutions, all different from 0(i.e., it has only the 

trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It 

suffices to prove FLT for exponent 4 and every prime exponent P . Fermat proved FLT for exponent 4. Euler 

proved FLT for exponent 3. 
In this paper using automorphic functions we prove FLT for exponents 4P  and P , where P  is an 

odd prime. We rediscover the Fermat proof. The proof of FLT must be direct. But indirect proof of  FLT is 
disbelieving. 

 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic fields 
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where J  denotes a 4m th root of unity, 4 1mJ = , m=1,2,3,…, it  are the real numbers. 

iS  is called the automorphic functions(complex hyperbolic functions) of order 4m  with 4 1m −  
variables [2,5,7]. 
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From (2) we have its inverse transformation[5,7] 
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(3) and (4) have the same form. 
From (3) we have 

                     
1

1 2
1

exp 2 2 ( ) 1
m

j j
j

A A H B D
−

=

⎡ ⎤
+ + + + =⎢ ⎥

⎣ ⎦
∑                   （5） 

From (4) we have 

1 4 2

1
2 1 3

1 2
1

4 4 1 1

exp 2 2 ( )

m

m

j j
j

m m

S S S
S S S

A A H B D

S S S

−

=

−

⎡ ⎤
+ + + + =⎢ ⎥

⎣ ⎦
∑

L

L

L L L L

L

 

1 1 1 1 4 1

2 2 1 2 4 1

4 4 1 4 4 1

( ) ( )
( ) ( )

( ) ( )

m

m

m m m m

S S S
S S S

S S S

−

−

−

=

L

L

L L L L

L

      (6) 
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From (5) and (6) we have circulant determinant 
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Assume 1 20, 0, 0iS S S≠ ≠ = , where 3,..., 4 .i m=  0iS =  are (4 2)m −  indeterminate equations with 

(4 1)m −  variables. From (4) we have 
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                     1 2 2 2 2
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Example [2]. Let 4 12m = . From (3) we have 

 1 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t= + + + + + + + + + + , 

 2 1 11 2 10 3 9 4 8 5 7 6( ) ( ) ( ) ( ) ( )A t t t t t t t t t t t= − + + + − + + + − + + , 

2 10 4 8 6( ) ( )H t t t t t= − + + + − , 
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2 3 4 5( )cos ( )cos ( )cos ( ) cos ( ) cos ,
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From (8) and (9) we have 
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From (9) we have 

                  3
2 2 3 6 9exp( 2 ) [exp( )]A B t t t+ = − + − .                    (11) 

From (8) we have 

             2 2 3 3
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From (11) and (12) we have Fermat’s equation 

               3 3 3
2 2 1 2 3 6 9exp( 2 ) [exp( )]A B S S t t t+ = − = − + − .                  (13) 

Fermat proved that (10) has no rational solutions for exponent 4 [8]. 
Therefore we prove we prove that (13) has no rational solutions for exponent 3. [2] 
Theorem . Let 4 4m P= , where P  is an odd prime, ( 1) / 2P −  is an even number. 
From (3) and (8) we have 
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From (15) and (16) we have Fermat’s equation 
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Fermat proved that (14) has no rational solutions for exponent 4 [8]. Therefor we prove that (17) has no 
rational solutions for prime exponent P . 
 
Remark. Mathematicians said Fermat could not possibly had a proof, because they do not understand FLT.In 
complex hyperbolic functions let exponent n  be n P= Π ， 2n P= Π  and 4n P= Π . Every factor of 
exponent n  has Fermat’s equation [1-7]. Using modular elliptic curves Wiles and Taylor prove FLT [9,10]. 
This is not the proof that Fermat thought to have had. The classical theory of automorphic functions,created 
by Klein and Poincare, was concerned with the study of analytic functions in the unit circle that are invariant 
under a discrete group of transformation. Automorphic functions are the generalization of trigonometric, 
hyperbolic elliptic, and certain other functions of elementary analysis. The complex trigonometric functions 
and complex hyperbolic functions have a wide application in mathematics and physics. 
Acknowledgments. We thank Chenny and Moshe Klein for their help and suggestion. 
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Fermat's Last Theorem 
Fermat's last Theorem: There is no positive integers x, y, z, and n > 2 such that x n+ yn = zn  
was broadcast on 15 January 1996 
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At the age of ten, browsing through his public library, Andrew Wiles stumbled across the world's greatest 
mathematical puzzle. Fermat's Last Theorem had baffled mathematicians for over 300 years. But from that 
day, little Andrew dreamed of solving it. Tonight's HORIZON tells the story of his obsession, and how, 
thirty years later, he gave up everything to achieve his childhood dream.  

Deep in our classroom memories lies the enduring notion that "the square of the hypotenuse is equal to the 
sum of the squares of the other two sides": Pythagoras's Theorem for right-angled triangles. Written down, 
it is also the simplest of mathematical equations: x 2+ y2 = z2  

In 1637, a French mathematician, Pierre de Fermat said that this equation could not be true for x3 + y3 = z3 or 
for any equation xn + yn = zn where n is greater than 2. Tantalisingly, he wrote on his Greek text: "I have 
discovered a truly marvellous proof, which this margin is too narrow to contain." No one has found the 
proof, and for 350 years attempts to prove "F.L.T." attracted huge prizes, mistaken and eccentric claims, 
but met with failure.  

Simon Singh and John Lynch's film tells the enthralling and emotional story of Andrew Wiles. A quiet English 
mathematician, he was drawn into maths by Fermat's puzzle, but at Cambridge in the '70s, FLT was 
considered a joke, so he set it aside. Then, in 1986, an extraordinary idea linked this irritating problem 
with one of the most profound ideas of modern mathematics: the Taniyama-Shimura Conjecture, named 
after a young Japanese mathematician who tragically committed suicide. The link meant that if Taniyama 
was true then so must be FLT. When he heard, Wiles went after his childhood dream again. "I knew that 
the course of my life was changing." For seven years, he worked in his attic study at Princeton, telling 
no one but his family. "My wife has only known me while I was working on Fermat", says Andrew. In 
June 1993 he reached his goal. At a three-day lecture at Cambridge, he outlined a proof of Taniyama - and 
with it Fermat's Last Theorem. Wiles' retiring life-style was shattered. Mathematics hit the front pages of 
the world's press.  

Then disaster struck. His colleague, Dr Nick Katz, made a tiny request for clarification. It turned into a gaping 
hole in the proof. As Andrew struggled to repair the damage, pressure mounted for him to release the 
manuscript - to give up his dream. So Andrew Wiles retired back to his attic. He shut out everything, but 
Fermat.  

A year later, at the point of defeat, he had a revelation. "It was the most important moment in my working 
life. Nothing I ever do again will be the same." The very flaw was the key to a strategy he had 
abandoned years before. In an instant Fermat was proved; a life's ambition achieved; the greatest puzzle of 
maths was no more.  
 
 
PROF. ANDREW WILES: 
Perhaps I could best describe my experience of doing mathematics in terms of entering a dark mansion. 
One goes into the first room and it's dark, completely dark, one stumbles around bumping into the 
furniture and then gradually you learn where each piece of furniture is, and finally after six months or so 
you find the light switch, you turn it on suddenly it's all illuminated, you can see exactly where you were.  

At the beginning of September I was sitting here at this desk when suddenly, totally unexpectedly, I had this 
incredible revelation. It was the most, the most important moment of my working life. Nothing I ever do 
again will... I'm sorry.  

NARRATOR:  
This is the story of one man's obsession with the world's greatest mathematical problem. For seven years 
Professor Andrew Wiles worked in complete secrecy, creating the calculation of the century. It was a 
calculation which brought him fame, and regret.  

ANDREW WILES:  



 

 99

So I came to this. I was a 10-year-old and one day I happened to be looking in my local public library and 
I found a book on math and it, it told a bit about the history of this problem that someone had resolved this 
problem 300 years ago, but no-one had ever seen the proof, no-one knew if there was a proof, and people 
ever since have looked for the proof and here was a problem that I, a 10-year-old, could understand, but 
none of the great mathematicians in the past had been able to resolve, and from that moment of course I 
just, just tried to solve it myself. It was such a challenge, such a beautiful problem.  

This problem was Fermat's last theorem.  
NARRATOR:  

Pierre de Fermat was a 17th-century French mathematician who made some of the greatest breakthroughs 
in the history of numbers. His inspiration came from studying the Arithmetica, that Ancient Greek text.  

PROF. JOHN CONWAY:  
Fermat owned a copy of this book, which is a book about numbers with lots of problems, which 
presumably Fermat tried to solve. He studied it, he, he wrote notes in the margins.  

NARRATOR:  
Fermat's original notes were lost, but they can still be read in a book published by his son. It was one of 
these notes that was Fermat's greatest legacy.  

JOHN CONWAY:  
And this is the fantastic observation of Master Pierre de Fermat which caused all the trouble. "Cubum 
autem in duos cubos"  

NARRATOR:  
This tiny note is the world's hardest mathematical problem. It's been unsolved for centuries, yet it begins 
with an equation so simple that children know it off by heart.  

CHILDREN: 
The square of the hypotenuse is equal to the sum of the squares of the other two sides.  

JOHN CONWAY:  
Yes well that's Pythagoras's theorem isn't it, that's what we all did at school. So Pythagoras's theorem, the 
clever thing about it is that it tells us when three numbers are the sides of a right-angle triangle. That 
happens just when x squared plus y squared equals z squared.  

ANDREW WILES:  
X squared plus y squared equals zee squared, and you can ask: well what are the whole numbers solutions 
of this equation? And you quickly find there's a solution 3 squared plus 4 squared equals 5 squared. 
Another one is 5 squared plus 12 squared is 13 squared, and you go on looking and you find more and 
more. So then a natural question is, the question Fermat raised: supposing you change from squares, 
supposing you replace the two by three, by four, by five, by six, by any whole number 'n', and Fermat said 
simply that you'll never find any solutions, however, however far you look you'll never find a solution.  

NARRATOR:  
You will never find numbers that fit this equation, if n is greater than 2. That's what Fermat said, and 
what's more, he said he could prove it. In a moment of brilliance, he scribbled the following mysterious 
note.  

JOHN CONWAY:  
Written in Latin, he says he has a truly wonderful proof "Demonstrationem mirabilem" of this fact, and 
then the last words are: "Hanc marginis exigiutas non caperet" - this margin is too small to contain this.  

NARRATOR:  
So Fermat said he had a proof, but he never said what it was.  

JOHN CONWAY:  
Fermat made lots of marginal notes. People took them as challenges and over the centuries every single 
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one of them has been disposed of, and the last one to be disposed of is this one. That's why it's called the 
last theorem.  

NARRATOR:  
Rediscovering Fermat's proof became the ultimate challenge, a challenge which would baffle 
mathematicians for the next 300 years.  

JOHN CONWAY:  
Gauss, the greatest mathematician in the world...  

BARRY MAZUR:  
Oh yes, Galois...  

JOHN COATES:  
Kummer of course...  

KEN RIBET:  
Well in the 18th-century Euler didn't prove it.  

JOHN CONWAY:  
Well you know there's only been the one woman really...  

KEN RIBET:  
Sophie Germain  

BARRY MAZUR:  
Oh there are millions, there are lots of people  

PETER SARNAK: 
But nobody had any idea where to start.  

ANDREW WILES:  
Well mathematicians just love a challenge and this problem, this particular problem just looked so simple, 
it just looked as if it had to have a solution, and of course it's very special because Fermat said he had a 
solution.  

NARRATOR:  
Mathematicians had to prove that no numbers fitted this equation but with the advent of computers, 
couldn't they check each number one by one and show that none of them fitted?  

JOHN CONWAY:  
Well how many numbers are there to beat that with? You've got to do it for infinitely many numbers. So 
after you've done it for one, how much closer have you got? Well there's still infinitely many left. After 
you've done it for 1,000 numbers, how many, how much closer have you got? Well there's still infinitely 
many left. After you've done a few million, there's still infinitely many left. In fact, you haven't done very 
many have you?  

NARRATOR:  
A computer can never check every number. Instead, what's needed is a mathematical proof.  

PETER SARNAK: 
A mathematician is not happy until the proof is complete and considered complete by the standards of 
mathematics.  

NICK KATZ:  
In mathematics there's the concept of proving something, of knowing it with absolute certainty.  

PETER SARNAK: 
Which, well it's called rigorous proof.  

KEN RIBET:  
Well rigorous proof is a series of arguments...  

PETER SARNAK: 



 

 101

...based on logical deductions.  
KEN RIBET:  

...which just builds one upon another.  
PETER SARNAK: 

Step by step.  
KEN RIBET:  

Until you get to...  
PETER SARNAK: 

A complete proof.  
NICK KATZ:  

That's what mathematics is about.  
NARRATOR:  

A proof is a sort of reason. It explains why no numbers fit the equation without haaving to check every 
number. After centuries of failing to find a proof, mathematicians began to abandon Fermat in favour of 
more serious maths.  

In the 70s Fermat was no longer in fashion. At the same time Andrew Wiles was just beginning his career as a 
mathematician. He went to Cambridge as a research student under the supervision of Professor John 
Coates.  

JOHN COATES:  
I've been very fortunate to have Andrew as a student, and even as a research student he, he was a 
wonderful person to work with. He had very deep ideas then and it, it was always clear he was a 
mathematician who would do great things.  

NARRATOR:  
But not with Fermat. Everyone thought Fermat's last theorem was impossible, so Professor Coates 
encouraged Andrew to forget his childhood dream and work on more mainstream maths.  

ANDREW WILES:  
The problem with working on Fermat is that you could spend years getting nothing so when I went to 
Cambridge my advisor, John Coates, was working on Iwasawa theory and elliptic curves and I started 
working with him.  

NARRATOR:  
Elliptic curves were the in thing to study, but perversely, elliptic curves are neither ellipses nor curves.  

BARRY MAZUR:  
You may never have heard of elliptic curves, but they're extremely important.  

JOHN CONWAY:  
OK, so what's an elliptic curve?  

BARRY MAZUR:  
Elliptic curves - they're not ellipses, they're cubic curves whose solution have a shape that looks like a 
doughnut.  

PETER SARNAK: 
It looks so simple yet the complexity, especially arithmetic complexity, is immense.  

NARRATOR:  
Every point on the doughnut is the solution to an equation. Andrew Wiles now studied these elliptic 
equations and set aside his dream. What he didn't realise was that on the other side of the world elliptic 
curves and Fermat's last theorem were becoming inextricably linked.  

GORO SHIMURA: 
I entered the University of Tokyo in 1949 and that was four years after the War, but almost all professors 
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were tired and the lectures were not inspiring.  
NARRATOR:  

Goro Shimura and his fellow students had to rely on each other for inspiration. In particular, he formed a 
remarkable partnership with a young man by the name of Utaka Taniyama.  

GORO SHIMURA:  
That was when I became very close to Taniyama. Taniyama was not a very careful person as a 
mathematician. He made a lot of mistakes, but he, he made mistakes in a good direction and so eventually 
he got right answers and I tried to imitate him, but I found out that it is very difficult to make good 
mistakes.  

NARRATOR:  
Together, Taniyama and Shimura worked on the complex mathematics of modular functions.  

NICK KATZ:  
I really can't explain what a modular function is in one sentence. I can try and give you a few sentences to 
explain it.  

PETER SARNAK: 
LAUGHS  

NICK KATZ:  
I really can't put it in one sentence.  

PETER SARNAK: 
Oh it's impossible.  

ANDREW WILES:  
There's a saying attributed to Eichler that there are five fundamental operations of arithmetic: addition, 
subtraction, multiplication, division and modular forms.  

BARRY MAZUR:  
Modular forms are functions on the complex plane that are inordinately symmetric. They satisfy so many 
internal symmetries that their mere existence seem like accidents, but they do exist.  

NARRATOR:  
This image is merely a shadow of a modular form. To see one properly your TV screen would have to be 
stretched into something called hyperbolic space. Bizarre modular forms seem to have nothing whatsoever 
to do with the humdrum world of elliptic curves. But what Taniyama and Shimura suggested shocked 
everyone.  

GORO SHIMURA:  
In 1955 there was an international symposium and Taniyama posed two or three problems.  

NARRATOR:  
The problems posed by Taniyama led to the extraordinary claim that every elliptic curve was really a 
modular form in disguise. It became known as the Taniyama-Shimura conjecture.  

JOHN CONWAY:  
The Taniyama-Shimura conjecture says, it says that every rational elliptic curve is modular and that's so 
hard to explain.  

BARRY MAZUR:  
So let me explain. Over here you have the elliptic world the elliptic curve, these doughnuts, and over here 
you have the modular world, modular forms with their many, many symmetries. The Shirmura-Taniyama 
conjecture makes a bridge between these two worlds. These worlds live on different planets.  

It's a bridge, it's more than a bridge, it's really a dictionary, a dictionary where questions, intuitions, insights, 
theorems in the one world get translated to questions, intuitions in the other world.  

KEN RIBET:  
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I think that when Shirmura and Taniyama first started talking about the relationship between elliptic 
curves and modular forms people were very incredulous. I wasn't studying mathematics yet. By the time I 
was a graduate student in 1969 or 1970 people were coming to believe the conjecture.  

NARRATOR:  
In fact, Taniyama-Shimura became a foundation for other theories which all came to depend on it. But 
Taniyama-Shimura was only a conjecture, an unproven idea, and until it could be proved, all the maths 
which relied on it was under threat.  

ANDREW WILES:  
Built more and more conjectures stretched further and further into the future but they would all be 
completely ridiculous if Taniyama-Shimura was not true.  

NARRATOR:  
Proving the conjecture became crucial, but tragically, the man whose idea inspired it didn't live to see the 
enormous impact of his work. In 1958, Taniyama committed suicide.  

GORO SHIMURA:  
I was very much puzzled. Puzzlement may be the best word. Of course I was sad that, see it was so sudden 
and I was unable to make sense out of this.  

NARRATOR:  
Taniyama-Shimura went on to become one of the great unproven conjectures. But what did it have to do 
with Fermat's last theorem?  

ANDREW WILES:  
At that time no-one had any idea that Taniyama-Shimura could have anything to do with Fermat. Of 
course in the 80s that all changed completely.  

NARRATOR:  
Taniyama-Shimura says: every elliptic curve is modular and Fermat says: no numbers fit this equation. 
What was the connection?  

KEN RIBET:  
Well, on the face of it the Shimura-Taniyama conjecture which is about elliptic curves, and Fermat's last 
theorem have nothing to do with each other because there's no connection between Fermat and elliptic 
curves. But in 1985 Gerhard Frey had this amazing idea.  

NARRATOR:  
Frey, a German mathematician, considered the unthinkable: what would happen if Fermat was wrong and 
there was a solution to this equation after all?  

PETER SARNAK: 
Frey showed how starting with a fictitious solution to Fermat's last equation if such a horrible, beast 
existed, he could make an elliptic curve with some very weird properties.  

KEN RIBET:  
That elliptic curve seems to be not modular, but Shimura-Taniyama says that every elliptic curve is 
modular.  

NARRATOR:  
So if there is a solution to this equation it creates such a weird elliptic curve it defies Taniyama-Shimura.  

KEN RIBET:  
So in other words, if Fermat is false, so is Shimura-Taniyama, or said differently, if Shimura-Taniyama is 
correct, so is Fermat's last theorem.  

NARRATOR:  
Fermat and Taniyama-Shimura were now linked, apart from just one thing.  

KEN RIBET:  
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The problem is that Frey didn't really prove that his elliptic curve was not modular. He gave a plausibility 
argument which he hoped could be filled in by experts, and then the experts started working on it.  

NARRATOR:  
In theory, you could prove Fermat by proving Taniyama, but only if Frey was right. Frey's idea became 
known as the epsilon conjecture and everyone tried to check it. One year later, in San Francisco, there was 
a breakthrough.  

KEN RIBET:  
I saw Barry Mazur on the campus and I said let's go for a cup of coffee and we sat down for cappuccinos 
at this caf 頡 nd I looked at Barry and I said you know, I'm trying to generalise what I've done so that we 
can prove the full strength of Serre's epsillon conjecture and Barry looked at me and said well you've done 
it already, all you have to do is add on some extra gamma zero of m structure and run through your 
argument and it still works, and that gives everything you need, and this had never occurred to me as 
simple as it sounds. I looked at Barry, I looked to my cappuccino, I looked back at Barry and said my God, 
you're absolutely right.  

BARRY MAZUR:  
Ken's idea was brilliant.  

ANDREW WILES:  
I was at a friend's house sipping iced tea early in the evening and he just mentioned casually in the middle 
of a conversation: by the way, do you hear that Ken has proved the epsilon conjecture? And I was just 
electrified. I, I knew that moment the course of my life was changing because this meant that to prove 
Fermat's last theorem I just had to prove Taniyama-Shimura conjecture. From that moment that was what I 
was working on. I just knew I would go home and work on the Taniyama-Shimura conjecture.  

NARRATOR:  
Andrew abandoned all his other research. He cut himself off from the rest of the world and for the next 
seven years he concentrated solely on his childhood passion.  

ANDREW WILES:  
I never use a computer. I sometimes might scribble, I do doodles I start trying to, to find patterns really, so 
I'm doing calculations which try to explain some little piece of mathematics and I'm trying to fit it in with 
some previous broad conceptual understanding of some branch of mathematics. Sometimes that'll involve 
going and looking up in a book to see how it's done there, sometimes it's a question of modifying things a 
bit, sometimes doing a little extra calculation, and sometimes you realise that nothing that's ever been 
done before is any use at all, and you, you just have to find something completely new and it's a mystery 
where it comes from.  

JOHN COATES:  
I must confess I did not think that the Shimura-Taniyama conjecture was accessible to proof at present. I 
thought I probably wouldn't see a proof in my lifetime.  

KEN RIBET:  
I was one of the vast majority of people who believe that the Shimura-Taniyama conjecture was just 
completely inaccessible, and I didn't bother to prove it, even think about trying to prove it. Andrew Wiles 
is probably one of the few people on earth who had the audacity to dream that you can actually go and 
prove this conjecture.  

ANDREW WILES:  
In this case certainly for the first several years I had no fear of competition. I simply didn't think I or any 
one else had any real idea how to do it. But I realised after a while that talking to people casually about 
Fermat was, was impossible because it just generates too much interest and you can't really focus yourself 
for years unless you have this kind of undivided concentration which too many spectators will have 



 

 105

destroyed.  
NARRATOR:  

Andrew decided that he would work in secrecy and isolation.  
PETER SARNAK: 

I often wondered myself what he was working on.  
NICK KATZ:  

Didn't have an inkling.  
JOHN CONWAY:  

No, I suspected nothing.  
KEN RIBET:  

This is probably the only case I know where someone worked for such a long time without divulging what 
he was doing, without talking about the progress he had made. It's just unprecedented.  

NARRATOR:  
Andrew was embarking on one of the most complex calculations in history. For the first two years, he did 
nothing but immerse himself in the problem, trying to find a strategy which might work.  

ANDREW WILES:  
So it was now known that Taniyama-Shimura implied Fermat's last theorem. What does 
Taniyama-Shimura say? It, it says that all elliptic curves should be modular. Well this was an old problem 
been around for 20 years and lots of people would try to solve it.  

KEN RIBET:  
Now one way of looking at it is that you have all elliptic curves and then you have the modular elliptic 
curves and you want to prove that there are the same number of each. Now of course you're talking about 
infinite sets, so you can't just can't count them per say, but you can divide them into packets and you could 
try to count each packet and see how things go, and this proves to be a very attractive idea for about 30 
seconds, but you can't really get much further than that, and the big question on the subject was how you 
could possibly count, and in effect, Wiles introduced the correct technique.  

NARRATOR:  
Andrew's trick was to transform the elliptic curves into something called Galois representations which 
would make counting easier. Now it was a question of comparing modular forms with Galois 
representations, not elliptic curves.  

ANDREW WILES:  
Now you might ask and it's an obvious question, why can't you do this with elliptic curves and modular 
forms, why couldn't you count elliptic curves, count modular forms, show they're the same number? Well, 
the answer is people tried and they never found a way of counting, and this was why this is the key 
breakthrough, that I found a way to count not the original problem, but the modified problem. I found a 
way to count modular forms and Galois representations.  

NARRATOR:  
This was only the first step, and already it had taken three years of Andrew's life.  

ANDREW WILES:  
My wife's only known me while I've been working on Fermat. I told her a few days after we got married. I 
decided that I really only had time for my problem and my family and when I was concentrating very hard 
and I found that with young children that's the best possible way to relax. When you're talking to young 
children they simply aren't interested in Fermat, at least at this age, they want to hear a children's story and 
they're not going to let you do anything else.  

So I'd found this wonderful counting mechanism and I started thinking about this concrete problem in terms of 
Iwasawa theory. Iwasawa theory was the subject I'd studied as a graduate student and in fact with my 
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advisor, John Coates, I'd used it to analyse elliptic curves.  
NARRATOR:  

Andrew hopes that Iwasawa theory would complete his counting strategy.  
ANDREW WILES:  

Now I tried to use Iwasawa theory in this context, but I ran into trouble. I seemed to be up against a wall. I 
just didn't seem to be able to get past it. Well sometimes when I can't see what to do next I often come here 
by the lake. Walking has a very good effect in that you're in this state of concentration, but at the same 
time you're relaxing, you're allowing the subconscious to work on you.  

NARRATOR:  
Iwasawa theory was supposed to help create something called a class number formula, but several months 
passed and the class number formula remained out of reach.  

ANDREW WILES:  
So at the end of the summer of '91 I was at a conference. John Coates told me about a wonderful new 
paper of Matthias Flach, a student of his, in which he had tackled a class number formula, in fact exactly 
the class number formula I needed, so Flach using ideas of Kolyvagin had made a very significant first 
step in actually producing the class number formula. So at that point I thought this is just what I need, this 
is tailor-made for the problem. I put aside completely the old approach I'd been trying and I devoted 
myself day and night to extending his result.  

NARRATOR:  
Andrew was almost there, but this breakthrough was risky and complicated. After six years of secrecy, he 
needed to confide in someone.  

NICK KATZ:  
January of 1993 Andrew came up to me one day at tea, asked me if I could come up to his office, there 
was something he wanted to talk to me about. I had no idea what, what this could be. Went up to his office. 
He closed the door, he said he thought he would be able to prove Taniyama-Shimura. I was just amazed, 
this was fantastic.  

ANDREW WILES:  
It involved a kind of mathematics that Nick Katz is an expert in.  

NICK KATZ:  
I think another reason he asked me was that he was sure I would not tell other people, I would keep my 
mouth shut, which I did.  

JOHN CONWAY:  
Andrew Wiles and Nick Katz had been spending rather a lot of time huddled over a coffee table at the far 
end of the common room working on some problem or other. We never knew what it was.  

NARRATOR:  
In order not to arouse any more suspicion, Andrew decided to check his proof by disguising it in a course 
of lectures which Nick Katz could then attend.  

ANDREW WILES:  
Well I explained at the beginning of the course that Flach had written this beautiful paper and I wanted to 
try to extend it to prove the full class number formula. The only thing I didn't explain was that proving the 
class number formula was most of the way to Fermat's last theorem.  

NICK KATZ:  
So this course was announced. It said calculations on elliptic curves, which could mean anything. Didn't 
mention Fermat, didn't mention Taniyama-Shimura, there was no way in the world anyone could have 
guessed that it was about that, if you didn't already know. None of the graduate students knew and in a few 
weeks they just drifted off because it's impossible to follow stuff if you don't know what it's for, pretty 
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much. It's pretty hard even if you do know what's it for, but after a few weeks I was the only guy in the 
audience.  

NARRATOR:  
The lectures revealed no errors and still none of his colleagues suspected why Andrew was being so 
secretive.  

PETER SARNAK: 
Maybe he's run out of ideas. That's why he's quiet, you never know why they're quiet.  

NARRATOR:  
The proof was still missing a vital ingredient, but Andrew now felt confident. It was time to tell one more 
person.  

ANDREW WILES:  
So I called up Peter and asked him if I could come round and talk to him about something.  

PETER SARNAK: 
I got a phone call from Andrew saying that he had something very important he wanted to chat to me 
about, and sure enough he had some very exciting news.  

ANDREW WILES:  
Said I, I think you better sit down for this. He sat down. I said I think I'm about to prove Fermat's last 
theorem.  

PETER SARNAK: 
I was flabbergasted, excited, disturbed. I mean I remember that night finding it quite difficult to sleep.  

ANDREW WILES:  
But there was still a problem. Late in the spring of '93 I was in this very awkward position and I thought 
I'd got most of the curves to be modular, so that was nearly enough to be content to have Fermat's last 
theorem, but there was this, these few families of elliptic curves that had escaped the net and I was sitting 
here at my desk in May of '93 still wondering about this problem and I was casually glancing at a paper of 
Barry Mazur's and there was just one sentence which made a reference to actually what's a 19th-century 
construction and I just instantly realised that there was a trick that I could use, that I could switch from the 
families of elliptic curves I'd been using, I'd been studying them using the prime three, I could switch and 
study them using the prime five. It looked more complicated, but I could switch from these awkward 
curves that I couldn't prove were modular to a different set of curves which I'd already proved were 
modular and use that information to just go that one last step and I just kept working out the details and 
time went by and I forgot to go down to lunch and it got to about teatime and I went down and Nada was 
very surprised that I'd arrived so late and then, then she, I told her that I, I believed I'd solved Fermat's last 
theorem.  

I was convinced that I had Fermat in my hands and there was a conference in Cambridge organised by my 
advisor, John Coates. I thought that would be a wonderful place. It's my old home town, I'd been a 
graduate student there, be a wonderful place to talk about it if I could get it in good shape.  

JOHN COATES:  
The name of the lectures that he announced was simply 'Elliptic curves and modular forms' There was no 
mention of Fermat's last theorem.  

KEN RIBET:  
Well I was at this conference on L functions and elliptic curves and it was kind of a standard conference 
and all of the people were there, didn't seem to be anything out of the ordinary, until people started telling 
me that they'd been hearing weird rumours about Andrew Wiles's proposed series of lectures.  

I started talking to people and I got more and more precise information. I've no idea how it was spread.  
PETER SARNAK: 
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Not from me, not from me.  
JOHN CONWAY:  

Whenever any piece of mathematical news had been in the air, Peter would say oh that's nothing, wait 
until you hear the big news, there's something big going to break.  

PETER SARNAK: 
Maybe some hints, yeah.  

ANDREW WILES:  
People would ask me leading up to my lectures what exactly I was going to say and I said well, come to 
my lecture and see.  

KEN RIBET:  
It's a very charged atmosphere a lot of the major figures of arithmetical, algebraic geometry were there. 
Richard Taylor and John Coates, Barry Mazur.  

BARRY MAZUR:  
Well I'd never seen a lecture series in mathematics like that before. What was unique about those lectures 
were the glorious ideas how many new ideas were presented, and the constancy of his dramatic build-up 
that was suspenseful until the end.  

KEN RIBET:  
There was this marvellous moment when we were coming close to a proof of Fermat's last theorem, the 
tension had built up and there was only one possible punchline.  

ANDREW WILES:  
So after I'd explained the 3/5 switch on the blackboard, I then just wrote up a statement of Fermat's last 
theorem, said I'd proved it, said I think I'll stop there.  

JOHN COATES:  
The next day what was totally unexpected was that we were deluged by enquiries from newspapers, 
journalists from all around the world.  

ANDREW WILES:  
It was a wonderful feeling after seven years to have really solved my problem, I've finally done it. Only 
later did it come out that there was a, a problem at the end.  

NICK KATZ:  
Now it was time for it to be refereed which is to say for people appointed by the journal to go through and 
make sure that the thing was really correct.  

So for, for two months, July and August, I literally did nothing but go through this manuscript, line by line and 
what, what this meant concretely was that essentially every day, sometimes twice a day, I would E-mail 
Andrew with a question: I don't understand what you say on this page on this line. It seems to be wrong or 
I just don't understand.  

ANDREW WILES:  
So Nick was sending me E-mails and at the end of the summer he sent one that seemed innocent at first. I 
tried to resolve it.  

NICK KATZ:  
It's a little bit complicated so he sends me a fax, but the fax doesn't seem to answer the question, so I 
E-mail him back and I get another fax which I'm still not satisfied with, and this in fact turned into the 
error that turned out to be a fundamental error and that we had completely missed when he was lecturing 
in the spring.  

ANDREW WILES:  
That's where the problem was in the method of Flach and Kolyvagin that I'd extended, so once I realised 
that at the end of September, that there was really a, a problem with the way I'd made the construction I 
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spent the fall trying to think what kind of modifications could be made to the construction. There, are lots 
of simple and rather natural modifications that any one of which might work.  

PETER SARNAK: 
And every time he would try and fix it in one corner it would sort of some other difficulty would add up in 
another corner. It was like he was trying to put a carpet in a room where the carpet had more size than the 
room, but he could put it in in any corner and then when he ran to the other corner it would pop up in this 
corner and whether you could not put the carpet in the room was not something that he was able to decide.  

NICK KATZ:  
I think he externally appeared normal but at this point he was keeping a secret from the world and I think 
he must have been in fact pretty uncomfortable about it.  

JOHN CONWAY:  
Well you know we were behaving a little bit like Kremlinologists. Nobody actually liked to come out and 
ask him how he's getting on with, with the proof, so somebody would say I saw Andrew this morning. Did 
he smile? Well yes, but he didn't look too happy.  

ANDREW WILES:  
The first seven years I'd worked on this problem. I loved every minute of it. However hard it had been 
there'd been, there'd been setbacks often, there'd been things that had seemed insurmountable but it was a 
kind of private and very personal battle I was engaged in.  

And then after there was a problem with it doing mathematics in that kind of rather over-exposed way is 
certainly not my style and I have no wish to repeat it.  

NARRATOR:  
Other mathematicians, including his former student Richard Taylor, tried to help fix the mistake. But after 
a year of failure, Andrew was ready to abandon his flawed proof.  

ANDREW WILES:  
In September, I decided to go back and look one more time at the original structure of Flach and 
Kolyvagin to try and pinpoint exactly why it wasn't working, try and formulate it precisely. One can never 
really do that in mathematics but I just wanted to set my mind at rest that it really couldn't be made to 
work. And I was sitting here at this desk. It was a Monday morning, September 19th and I was trying 
convincing myself that it didn't work, just seeing exactly what the problem was when suddenly, totally 
unexpectedly, I had this incredible revelation. I, I realised what was holding me up was exactly what 
would resolve the problem I'd had in my Iwasawa theory attempt three years earlier was, it was the most, 
the most important moment of my working life. It was so indescribably beautiful, it was so simple and so 
elegant and I just stared in disbelief for twenty minutes. Then during the day I walked round the 
department, I'd keep coming back to my desk and looking to see it was still there, it was still there. Almost 
what seemed to be stopping the method of Flach and Kolyvagin was exactly what would make 
horizontally Iwasawa theory. My original approach to the problem from three years before would make 
exactly that work, so out of the ashes seemed to rise the true answer to the problem. So the first night I 
went back and slept on it, I checked through it again the next morning and by 11 o'clock I satisfied and I 
went down, told my wife I've got it, I think I've got it, I've found it, and it was so unexpected, she, I think 
she thought I was talking about a children's toy or something and said got what? and I said I've fixed my 
proof, I, I've got it.  

JOHN COATES:  
I think it will always stand as, as one of the high achievements of number theory.  

BARRY MAZUR:  
It was magnificent.  

JOHN CONWAY:  
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It's not every day that you hear the proof of the century.  
GORO SHIMURA:  

Well my first reaction was: I told you so.  
NARRATOR:  

The Taniyama-Shimura conjecture is no longer a conjecture, and as a result Fermat's last theorem has been 
proved. But is Andrew's proof the same as Fermat's?  

ANDREW WILES:  
Fermat couldn't possibly have had this proof. It's a 20th-century proof. There's no way this could have 
been done before the 20th-century.  

JOHN CONWAY:  
I'm relieved that this result is now settled. But I'm sad in some ways because Fermat's last theorem has 
been responsible for so much. What will we find to take its place?  

ANDREW WILES:  
There's no other problem that will mean the same to me. I had this very rare privilege of being able to 
pursue in my adult life what had been my childhood dream. I know it's a rare privilege but if, if one can do 
this it's more rewarding than anything I could imagine.  

BARRY MAZUR:  
One of the great things about this work is it embraces the ideas of so many mathematicians. I've made a 
partial list: Klein, Fricke, Hurwitz, Hecke, Dirichlet, Dedekind...  

KEN RIBET:  
The proof by Langlands and Tunnell...  

JOHN COATES:  
Deligne, Rapoport, Katz...  

NICK KATZ:  
Mazur's idea of using the deformation theory of Galois representations...  

BARRY MAZUR:  
Igusa, Eichler, Shimura, Taniyama...  

PETER SARNACK: 
Frey's reduction...  

NICK KATZ:  
The list goes on and on...  

BARRY MAZUR:  
Bloch, Kato, Selmer, Frey, Fermat.  
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In 1859 Riemann defined the zeta function ( )sζ . From Gamma function he derived the zeta function 
with Gamma function ( )sζ . ( )sζ  and ( )sζ are the two different functions. It is false that ( )sζ  
replaces ( )sζ . After him later mathematicians put forward Riemann hypothesis(RH) which is false. The 
Jiang function ( )nJ ω  can replace RH.  
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In 1859 Riemann defined the Riemann zeta function (RZF)[1]  

1
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where , 1s ti iσ= + = − ，σ  and t  are real, P ranges over all primes. RZF is the function of the 
complex variable s  in 0, 0tσ ≥ ≠ ，which is absolutely convergent. 
In 1896 J. Hadamard and de la Vallee Poussin proved independently [2] 

(1 ) 0tiζ + ≠ .                     （2） 

In 1998 Jiang proved [3] 

                                ( ) 0sζ ≠ ,                         （3） 

where  0 1σ≤ ≤ . 
Riemann paper (1859) is false [1]  We define Gamma function [1, 2] 
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For 0σ > . On setting 2t n xπ= , we observe that 
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Hence, with some care on exchanging summation and integration, for 1σ > , 
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where ( )sζ  is called Riemann zeta function with gamma function rather than ( )sζ , 
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is the Jacobi theta function. The functional equation for ( )xϑ  is  
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and is valid for 0x > . 

Finally, using the functional equation of ( )xϑ , we obtain 
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From (9) we obtain the functional equation 
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The function ( )sζ  satisfies the following 
1. ( )sζ  has no zero for 1σ > ; 
2. The only pole of ( )sζ  is at 1s = ; it has residue 1 and is simple; 
3. ( )sζ  has trivial zeros at 2, 4, ...s = − −  but ( )sζ  has no zeros; 
4. The nontrivial zeros lie inside the region 0 1σ≤ ≤  and are symmetric about both the vertical line 

1/ 2σ = . 
The strip 0 1σ≤ ≤  is called the critical strip and the vertical line 1/ 2σ =  is called the critical line. 

Conjecture  (The Riemann Hypothesis). All nontrivial zeros of ( )sζ  lie on the critical line 1/ 2σ = , 
which is false. [3] 

( )sζ  and ( )sζ  are the two different functions. It is false that ( )sζ  replaces ( )sζ , Pati proved that is 
not all complex zeros of ( )sζ  lie on the critical line: 1/ 2σ =  [4]. 
Schadeck pointed out that the falsity of RH implies the falsity of RH for finite fields [5, 6]. RH is not directly 
related to prime theory. Using RH mathematicians prove many prime theorems which is false. In 1994 Jiang 
discovered Jiang function ( )nJ ω  which can replace RH, Riemann zeta function and L-function in view of 
its proved feature: if ( ) 0nJ ω ≠  then the prime equation has infinitely many prime solutions; and if 

( ) 0nJ ω = , then the prime equation has finitely many prime solutions. By using ( )nJ ω  Jiang proves about 
600 prime theorems including the Goldbach’s theorem, twin prime theorem and theorem on arithmetic 
progressions in primes[7,8]. 
In the same way we have a general formula involving ( )sζ  
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where ( )F y  is arbitrary. 
From (11) we obtain many zeta functions ( )sζ  which are not directly related to the number theory. 
The prime distributions are order rather than random. The arithmetic progressions in primes are not directly 
related to ergodic theory ,harmonic analysis, discrete geometry, and combinatories. Using the ergodic theory 
Green and Tao prove that there exist infinitely many arithmetic progressions of length k  consisting only of 
primes which is false [9, 10, 11]. Fermat’s last theorem (FLT) is not directly related to elliptic curves. In 1994 
using elliptic curves Wiles proved FLT which is false [12]. There are Pythagorean theorem and FLT in the 
complex hyperbolic functions and complex trigonometric functions. In 1991 without using any number theory 
Jiang proved FLT  which is Fermat’s marvelous proof[7, 13].  

Primes Represented by 1 2
n nP mP+ [14] 

（1）Let 3n =  and 2m = . We have 

                         3 3
3 1 22P P P= + . 

We have Jiang function  
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Since ( ) 0nJ ω ≠ , there exist infinitely many primes 1P  and 2P  such that 3P  is a prime. 
We have the best asymptotic formula  
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It is the simplest theorem which is called the Heath-Brown problem [15].  

（2）Let 0n P=  be an odd prime, 2 m  and 0Pm b≠ ± . 
we have 
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( ) 2P Pχ = − +  if 0

1

1
P
Pm
−

≡ (mod P ); ( ) 1Pχ =  otherwise. 

Since ( ) 0nJ ω ≠ , there exist infinitely many primes 1P  and 2P  such that 3P  is a prime. 
We have 
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The Polynomial 2
1 2( 1)nP P+ +  Captures Its Primes [14] 

（1）Let 4n = , We have 

                         4 2
3 1 2( 1)P P P= + + , 

We have Jiang function  
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Where ( )P Pχ =  if 1P ≡  (mod 4); ( ) 4P Pχ = −  if 1P ≡ （mod 8）; ( ) 2P Pχ = − +  otherwise. 
Since ( ) 0nJ ω ≠ , there exist infinitely many primes 1P  and 2P  such that 3P  is a prime. 
We have the best asymptotic formula  
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It is the simplest theorem which is called Friedlander-Iwaniec problem [16].  
（2）Let 4n m= , We have 

                         4 2
3 1 2( 1)mP P P= + + , 

where 1, 2,3,m = L . 
We have Jiang function  
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where ( ) 4P P mχ = −  if 8 ( 1); ( ) 4m P P Pχ− = −  if 8 ( 1)P − ; ( )P Pχ = if 4 ( 1)P − ; 
( ) 2P Pχ = − +  otherwise. 

Since 3( ) 0J ω ≠ , there exist infinitely many primes 1P  and 2P  such that 3P  is a prime. It is a 
generalization of Euler proof for the existence of infinitely many primes. 
We have the best asymptotic formula  
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（3）Let 2n b= .  We have 

                         2 2
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where b  is an odd. 
We have Jiang function  
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Where ( ) 2P P bχ = −  if 4 ( 1); ( ) 2b P P Pχ− = −  if 4 ( 1)P − ; ( ) 2P Pχ = − +  otherwise.  
We have the best asymptotic formula  
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（4）Let 0n P= , We have 
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where 0P  is an odd. Prime. 
we have Jiang function  
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where 0( ) 1P Pχ = +  if 0 ( 1); ( ) 0P P Pχ− =  otherwise. 
Since 3( ) 0J ω ≠ , there exist infinitely many primes 1P  and 2P  such that 3P  is also a prime.  
We have the best asymptotic formula  
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The Jiang function ( )nJ ω  is closely related to the prime distribution. Using ( )nJ ω  we are able to tackle 
almost all prime problems in the prime distributions. 
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From: Moshe Klein  
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Subject: To Prof. Wang Yuan 
 
 
Dear Prof Yuan, 
 

My name is Moshe Klein and I am expert in mathematic education in Kindergarden. 
During the last 4 month I study cheerfully the work of Jiang on Fermat Last Theorem 

I find it very interesting and promising direction. 
 

 I think that he need help of  great mathematician like you  

to improve his paper so it will accepted in respective journal 
I ask you please spent some of your  time to look on his paper  

and give us ( I work with him) some helpful hints to improve the presentation 

Please visit my web-site and look on the last version of his paper: 
 

 http://www.omath.org.il/112431/FLT 
 

Best regards 

Moshe Klein 
王元主编<数学大辞典>2010 年 8 月由科学出版出版, 华罗庚接班人王元代表中科院中国政府在<数学

大辞典>中宣布费马大定理最后是美国怀尔斯解决的, 不承认中国蒋春暄 1991 年证明费马大定理。蒋

春暄因首先证明费马大定理荣获特勒肖-伽利略科学院 2009 年度金奖, 但中国不承认这个金奖, 连蒋

春暄母校北京航空航天大学不承认蒋春暄是北航的校友, 蒋春暄成果献给母校被拒绝。怀尔斯因证明

费马大定理获国际十五个大奖包括中国邵逸夫 2005 年百万美元数学大奖。如中国支持蒋春暄这些大奖

都应该属于中国的。费马大定理证明是 20 世纪最大数学成就。怀尔斯证明费马大定理是西方一大批数

学家研究成果。他们 
看不起中国人, 他们大多数数学家都看到蒋春暄证明费马大定理比怀尔斯早三年, 但他们仍是支持怀
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尔斯。 丘成桐就是坚决支持怀尔斯, 不承认中国人证明费马大定理。王元对蒋春暄成果态度;Dear 
Prof.Tsang. I don't approach Jiang and also don't care of any of his result.  Wang Yuan。王元关心是怀尔斯

费马大定理怀尔斯证明, 他是在中国宣传怀尔斯干将。www.baidu.com 点蒋春暄和费马大定理有 13100
条, 点蒋春暄和哥德巴赫猜想有 10900 条, 点蒋春暄和黎曼假设有 7160 条,这三大数学难题都被蒋春暄

彻底解决而且都己发表。 
 
 
 
 
 
 


