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Sum of Power had gathered interest of many classical mathematicians for more than two thousand
years ago. The quests of finding sum of power or discrete sum of numerical power can be traced back
from the time of Archimedes in third BC then to Faulhaber in the sixteen century. Until today there is
no closed form sums of power formulation for an arithmetic progression has been found. Many
mathematicians were involved in this research and many approaches have been introduced but none is
found to be conclusive. The generalized equation for sums of power discovered in this research has
been compared to Faulhaber’s sums of power for integers and it is found that this new generalized
equation can be used for both integers and arithmetic progression, thus offering a new frontier in
studying symmetric function, Fermat’s last theorem, Riemman’s Zeta function etc.
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1 Introduction.

The sums of power has gathered the interest of many mathematicians since the ancient time until today.

The sum of integers for n term was formulated by Pythagoras [1] (570-500BC) and the formulation is

given as follows:

nin+1
o) "

While the sum of square for integers formulation was discovered by Archimedes [2] (287-212BC), his

formulation is given as follows:

1°+2°+3 +--+n° =

1+24+3+---+n=

n(n+1)2n+1) 2]
6

The sum of cubes was first formulated by Indian mathematician by the name of Aryabhata who was born
in 476 [3] his sum of cube formulation is given as follows:

2
13+23+33+---+n3:[@} 3]

Other mathematicians studied this formulation were Abu Bakr Al-Karaji [3] (953-1029) and Levi ben
Gerson [4] (1288-1344) .

The sums of fourth power of integers was formulated by Abu Ali Al-Hassan ibn Al-Hassan ibn Al-

Haytham [5] (965-1039) while he was in Egypt, his formulation can be seen as follows:
5 4 3
142443 = 0 [4]
5 2 3 30

Sum of power was first introduced into westerm world by Thomas Harriot [6] (1560-1621). His work
concentrated on the sums of squares, cubes and fourth powers. The sums of power for integers for higher
powers were formulated by Faulhaber [7] in 1617. He worked up equations for sums of power for integers

up to17™ power. However, D.E. Knuth [8] has reported that, in Academia Algebra, Faulhaber managed to
formulate equations for sums of power up to 23" power.

The general formulation of sums of power for arithmetic progression mainly for integers was formulated
by Blaise Pascal [9] and it was written in words in his book Traite du Triangle. The relationship of this
equation is given as follows:

(n+1)m+1_(1+n+(m2+1jzn‘,kml{m;ljikm2*"'+(m+1)zn“ ’“] 5

k=1 k=1 k=1
=(M+1)f1" +2" +3" +--+1n")
This formula can be further written as follows:
m+1\& m+1)\& n
(n+1)™ —(n +1):[ N Jka‘l +[ N Jka‘z +oe+(M+1)Y k™ [6]
2 k=1 3 k=1 k=1
In 1713 Jakob Bernoulli in his book Ars Conjectandi which was published posthumously, derived the

symbolic general formulation for sums of power for integers which makes the computation using
generalizable formulation possible [10]. The generalize formulation is given as follows:

L
k=1 :

p+153\ J

By adopting Faulhaber’s theorem. William et al [11] discovered the formulas for sums of odd powers by
considering an arithmetic progression of the form as follows:

(x+1),(x+2)...(x+n) [7]



Let the sum of arithmetic series in equation [7] as follows:

A=n(n+2x+1) .
The sum of power for this progression is gives as follows:
SZm—l = (X + :I-)ZWl + (X + 2)2m—1 +...+ (X + n)Zm—l [9]

For some odd p (i.e. p=2m-1), the formulas for sums of power are given as follows:

S, = (A + (x2 + xJ4] [10]
4 2
1 3 1 2 2 1 4 3 2

5= [4] +E(6x +6x+1J4] +E(3x +6x° +2x2 - x ] [11]
lra 1 2 3 1 4 3 2 2

S, =[] +=(3x? +3x —1JAT +—(9x* +18x° + 3x* —6x +1J 4]
8 6 12 (2]

+%(3x6 +9X° +6x* —3x° = 2x° + )

Adopting Yoshinari Inaba’s matrix method [12] for computing the m-th sum of power for the first n terms
of arithmetic progression, N. Gauthier [13] derived a formula for computing the sum of m-th power of n
successive terms of an arithmetic sequence. The formulation is given as follows:

Let the sum of power or an arithmetic terms as follows:

S, =b"+(@a+b)" +(2a+b)" +--+((n-1)a+b)" [13]
His result for m=2 is given as follows:
S, :%[a2n3 +3a[1—%ajn2 +[3—3a+%a2jn} [14]

The search of a simpler general formulation for sum of power for arithmetic progression had attracted
many mathematicians and different methods had been proposed to represent the summation for years [1]-
[13]. This paper is to present an elegant method for the sum of power of p-th for first n term of arithmetic
progression. The purpose of this method is to construct a simpler equation.

2 An Alternative Derivation and Formulation of the Sum of Power for p-th Arithmetic
Progression.

i=1
repetitious coefficients. The generalized equation is proposed to be in the form as follows:

The idea of this paper is to expand the sum of power term into basic symmetric function [Z xi} with

n p—2m

Where: p-(2m+1)>-1 if piseven, p-(2m+1)>0 if pisodd,s =X, — X;, ¢, 1S a coefficient and ¢y =1

p-1 for _odd p
andu={ 2 [16]

p
— for even
5 _ _p

By expanding the general equation [15] for first p=10, yields
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2.1 Data Analysis Method.

This method is about data analysis and using the result to construct the equation needed for each of p-th
term. Let this equation below applies:

zn:xiz =a[i X; } +b [21]

i=1
Tabulating some values of n for 2 and 3 yields:

Table 1 Data for n=2

X1 X sum(x) | x,° X Sum(x)_n=2
1 2 3 1 4 5
2 3 5 4 9 13
3 4 7 9 16 25
4 5 9 16 25 41
5 6 11 25 36 61
6 7 13 36 49 85
7 8 15 49 64 113
8 9 17 64 81 145
9 10 19 81 100 181

10 11 21 100 121 221
11 12 23 121 144 265
12 13 25 144 169 313
13 14 27 169 196 365
14 15 29 196 225 421
15 16 31 225 256 481

Table 2 Data for n=3

X1 Xo X3 Sum(x;) X, Xo° Xa° Sum(xiz)_n:3
1 2 3 6 1 4 9 14
2 3 4 9 4 9 16 29
3 4 5 12 9 16 25 50
4 5 6 15 16 25 36 77
5 6 7 18 25 36 49 110
6 7 8 21 36 49 64 149
7 8 9 24 49 64 81 194
8 9 10 27 64 81 100 245
9 10 11 30 81 100 121 302

10 11 12 33 100 121 144 365
11 12 13 36 121 144 169 434
12 13 14 39 144 169 196 509
13 14 15 42 169 196 225 590
14 15 16 45 196 225 256 677
15 16 17 48 225 256 289 770

By considering several values of n and plotting Sum(x) versus Sum(x?) for these values of “n” yields the
graph as follows:
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Figure 1.0 The curve for Sum(x"2) versus sum(x).




By collecting the coefficients of a and b for each n and tabulating them and plotting them, yields Figure
2.0 and Figure 3.0.
Table 3 Coefficient for a and b at various n

Coefficient "a" versus "n"
n a b
0.6 - §
a=n
0.5 - ) 1 1
2 2
0.4 -
J 1
0.2 -
J 1
0.1 4 1 5
I:I T T 4
1] ] 10 1
n 5 g 10
Figure 2.0 Curve for a versus n. 1 35
6 — -
6 2
Coefficient "b™ versus "n”™
1
120 ! - 28
3 7
b=n" -m
100 4 12
1
ag 8 g 42
= B0 4
40
20 4
n 1 n(n®-1)
0 - n 12
0 5 10
n

Figure 3.0 Curve for b versus n.

Therefore, simplifying all the coefficients for sum of power for p=2 yields:

n

{Z Xi } 2
o2 LT n(n® -1)
;Xi T [26]

This equation is only applicable for the integers. The equation for sum of power for arbitrary arithmetic
progression for p=2 can be obtained by tabulating the data of the arithmetic progression x; with

difference s.




Now consider this equations:

zn‘,xizza[nxi} +Uu [27]

i=1

By varying the values of s and making the value n fixed (i.e. n=2) and tabulating the data for various
values of s yield Table 4 to Table 6.

Table 4 Tabulated data for s=1.

X1 X2 Sum(x) x12 x22 Sum(xiz)_n=2_s:1
1 2 3 1 4 5
2 3 5 4 9 13
3 4 7 9 16 25
4 5 9 16 25 41
5 6 11 25 36 61
6 7 13 36 49 85
7 8 15 49 64 113
8 9 17 64 81 145
9 10 19 81 100 181
10 11 21 100 121 221
11 12 23 121 144 265
12 13 25 144 169 313
13 14 27 169 196 365
14 15 29 196 225 421
15 16 31 225 256 481
Table 5 Tabulated data with s=10
X1 X Sum(x) | x,° X Sum(x)_n=2_ s=11
1 12 13 1 144 145
2 13 15 4 169 173
3 14 17 9 196 205
4 15 19 16 225 241
5 16 21 25 256 281
6 17 23 36 289 325
7 18 25 49 324 373
8 19 27 64 361 425
9 20 29 81 400 481
10 21 31 100 441 541
11 22 33 121 484 605
12 23 35 144 529 673
13 24 37 169 576 745
14 25 39 196 625 821
15 26 41 225 676 901
Table 6 Tabulated data with s=26
X1 X5 Sum(x) | xi2 X,” Sum(x?)_n=2_s=26
1 27 28 1 729 730
2 28 30 4 784 788
3 29 32 9 841 850
4 30 34 16 900 916
5 31 36 25 961 986
6 32 38 36 1024 1060
7 33 40 49 1089 1138
8 34 42 64 1156 1220




9 35 44 81 1225 1306
10 36 46 100 1296 1396
11 37 48 121 1369 1490
12 38 50 144 1444 1588
13 39 52 169 1521 1690
14 40 54 196 1600 1796
15 41 56 225 1681 1906

By plotting the data from the Table 4 to Table 6, yields the curves as in Figure 4 for various values of s.

Sum(Xi*2) Vs Sum(Xi) With Various Values Of s And n=2
7000 -
6000 -
5000 -
y = 0.5Sum(X)"2+ 1568
E\T 4000 -
X & Sum(X"2)_n=2_s=1
€ N = =
2 3000 - m Sum(X"2) n=2_s=11
A SUM(X"2)_n=2_s=26
= Sum(X"2) _n=2_s=56
2000 - y = 0.5Sum(X)"2+ 338
1000 1 y =0.5Sum(X)2 + 60.5
y = 0.55um(Xi)"2+ 0.5
O ; : v A\ T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100
Sum(Xi)

Figure 4.0 The curve for Sum( x?) versus Sum(x) for various values of s and n=2.

Table 7 Coefficients “a” and “u” at various value of “s” with n=2.

2
s a u C= n(n” -1 u u_g2
12 c c
1 0.5 0.5 0.5 1 1
2 0.5 2 0.5 4 4
3 0.5 4.5 0.5 9 9
4 0.5 8 0.5 16 16
5 0.5 12.5 0.5 25 25
6 0.5 18 0.5 36 36
7 0.5 24.5 0.5 49 49
11 0.5 60.5 0.5 121 121
26 0.5 338 0.5 676 676
56 0.5 1568 0.5 3136 3136




Sinceu=cs? and substituting this value into equation [27] yields:

{Zn: Xi :| 2 2
oo L n(n“ -1)s
25" T

This data analysis method can be expressed in a matrix form given as follows:

For even p

n n P n p-2 n P-4
inp:al[inJ +a2(2xij sz+a2(2xij st 4tag,,s?

i=1 i=1 i=1 Ty

2
n n p n p-2 n P-4
p_ 2 4 p
in+l_al(2xi+1) +052(in+1) s +“2(in+1J ST+,
2

n n p n p-2 n P-4

p_ 2 4 p
2 Xi —%[anz) +0‘2(zxi+2j S +0‘2[zxi+2j S ...+ apS
i-1 i i i

2

p N p-4
2 4 p
3 %P (Zx,) s (inj S (Zx,j ]
il i=1 i=1 i=1
LN n P of & p-2 4 p—4 p a,
ZXHI _ in+l S ZXHl S ZXHl S a
i=L = i i=1 i=1 2
n ~p . . . p_2 . p_4 .
X n n n an,o
. 2 4 Pte
ia il {Zx_ p] s [Zx_ pJ s [Zx_ pJ sP 2
2 i=1 o I i i+
2 2 2

Solving for the coefficients yields:
-1

n P n p-2 p-4
szi) SZ[ZXJ 54[2&} e8P Zn:x.P
i=1 i=1 i=1 ] !
o n P (D p-2 A8 p-4 n o
a _ [Z Xi+1j S (Z Xi+1J S (Z Xi+1j o8P . in+1
'2 i=1 . i=1 . i=1 . . i=1 X
. . . : b2 . b . N .
o2} n n n xP
% (ZX p} SZ(ZX p} SA[ZX p} o8P E D
i1 i i i i i 2
2 2 2
By varying the values of n we get various values of coefficients «;,a,,....a,,, inthe forms of n.
2
For odd p
n n P n p-2 n p—4 n
inp:al[inj +a2(2xij 52+a2(2xij s4+...+ap+2[2xi Jspl
i=1 i=1 i=1 i=1 o i=1

n n P n p-2 n P-4 n

po_ 2 4 p-1
me—a{meJ +az(2><mj S +az(mej ) +"'+ap+2EZXi+ljS
i-1 i i i i

2

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]



p p-2 p—4
m o m m ) m 4 m b1
YxPo=a Xx | tag Xx s tap 21X, STt XX [38]
i=1 i=1 i=1 i=1 i=l I+

In the matrix form:

N p-2 p-4
e (6] ) el
Bt (Bra) o) ] E || )
n N p-2 N TR :
éxl’ig [éprj sz[éxnp] s{éprJ sp‘l[éxwp] a%z

Solving for the coefficients yields:
s p‘l(%xi) z”: xP

n p n p-2 n p-4
B (5] B

o o] e e )
X S X S X e S X; .
a.z — = i+1 = .|+1 = ‘|+1 i?l i+l 15 ‘|+1 [40]

n

i n L n : b2 n : p—4 n TP
p+2 _
- >X s’ Yx sy, e sPHYX o il
i=1 i=1 i=1 i= 2

Again by varying the values of n we get various values of coefficients «,,a,,...,a ., in the forms of n.
2

This method can be used to generate arithmetic p-th terms for any value of p. However, the larger the
value of p the more tedious the calculation would be. Since Microsoft Excel having maximum precision of
15 digits, the error in calculation will occurs for numbers more than 15 digits. In order to overcome this
problem an “addon” should be installed on the Microsoft Excel, this research was done using Xnumbers
[14] which leads to precession of up to 200 digits.

2.0  Algebraic Manipulation Method.

For small p the sum of power can be derived using simple algebraic manipulation of arithmetic terms.
The formulation for some small p can be obtained as follows:

For p=2 and n=2

Let (X, +X,)° =X +X2+2X,X, [41]
and (X, — %)% = X2+ X2 —2X,X, [42]
Since the series is an arithmetic progression, thus

(X, =X%)=s [43]
Substituting [42] into [41], yields

2%, X, = X2 + X, —s° [44]
Substituting [44] into [41] yields

(X, +X,)" =2(x +x2)—s° [45]
Rearranging [45], yields

2
o+ xt) = Lot ), S [46]

2 2



or

2
xf=-—"— 4 = 47
El i > > [47]
Now consider p=2 and n=3,
(X, + X, +X3)% = (X7 + X2 +X5) + 2%, X, + 2X5X, + 2X,X, [48]

Since s =(X; —X,) =(X, —X,)
repeating for term (x; — X, ), yields

(Xs - X2)2 = Xs2 + Xz2 - 2X3X2 [49]
Therefore, — 2x,X, = X +x; —s° [50]
Since s =(X; —X,) = (X, —x,) then

(X; —X,)=s and [51]
adding [51] and [43], yields

(X —X,) =25 [52]
squaring both sides [52] and rearranging it, yields

2X,X, = X2 + X7 —4s? [53]
Substituting [53], [50] and [44] into [48], yields

(X, + X, +%5)? =3(X7 + X5 +xZ) — 687 [54]

rearranging [54], yields
(X, + X, +X5)°
3

(X2 +XxZ+x2) = +2s? [55]

or

;s T2
3 {in }
xF =H= 062 [56]

i=1
repeating the same procedure for terms from 2 to n, and by considering a general formulation for p = 2 of
this form

n

2
Xi ] +bs? [57]
1

and then calculating for some n and tabulating the data in a table, the table can be seen as table [8]. The
curves constructed from the tabulated data can be seen as in figure [5] and figure [6].



Table 8 Coefficient for a and b at various n.

Coefficiant "a" versus "n"
n a b
0.6 §
4=n
0.5 - ) 1 1
2 2
0.4
i 1
0.2 ~
i 1
0.1 4 1 5
I:I T T 4
0 a 10 1
n 5 g 10
Figure 5.0 Curve for a versus n. 1 35
° 1 % 2
Coefficient "b” versus "n”
1
120 - ! = 28
3 7
b=(n" -nl
100 - 12
1
oo 8 3 42
= B0 1
40
20 4
n 1 n(n®-1)
0 - n 12
0 5 10
n
Figure 6.0 Curve for b versus n.
Consequently,
2
n [Z Xi } 2 _q
—y n 12
Now consider p=3 and n=2, thus:
(Xl +X2)3 :(X13 +X3)+3X1X2(X1+X2) [59]
since (y—x)=s, then
2%, X, = X2 + X2 —s° [60]

multiplying both sides [60] with (x, +x,) , yields,



2X1X2 (Xl + Xz) = (X12 + Xzz)(xl + Xz) - 52(X1 + Xz)

multiplying both sides [59] with 2 and substituting [61] into the equation, yields
2(%, +%,)% =5(x7 + X3) +3x,X, (X, + X,) —3s%(X, + X,)

subtracting equation [62] with equation [59], yields
(Xl + X2)3 = 4(X13 + X;) _352()(1 + Xz)

rearranging [63], yields

(X +%,)° 3% (¥ +X,)

4 " 4

4

(X +%) =

For p=3 and n—3,
(X + X, +X;)° = (X + X5 + X3+ 3%, (X2 +X5) + 3%, (X5 + X2) +3X5 (X + X5 ) + 6X,X, Xs
Since, Xg —X, =8

X, =X, =§
Adding [67] to [68], yields:
Xy — X, =28

Squaring both sides of equations [67] to [69] and rearrange their terms, yields:
(xg2 + xzz): $% +2X;X,
(x22 + xf): $% +2X, X,
(x32 + xf): 4s% + 22X, X,
Substituting equations [70] to [72] into [66] and simplifying it, yields
(X, + X, +X3)% = (X2 + X3+ X3) + 357 (4%, + X, + X5) + 24X, X, X,
Manipulating equation [73], yields
(X, + X, +%5)% = (X + X5 +X5) +357 (3%, + (X, + X, + X3)) + 24X, X, X,
Since,
_ (Xl + X, + Xa)
2 3
Substituting equation [75] into [74] and simplifying it, yields:
(X, + X, +X3)% = (X0 + X3+ X3) + 65 (X, + X, + X5) + 24X, X, X,

Now consider Product Identity for arithmetic progression for n=3 and it is given as follows:
3
1
HX‘ = X, X, Xy = 3—3(xl + X, + X3 (X, + X, + %, ) =38 )(X, + X, + X, )+33)
Substituting equation [77] into [76] and rearranging the terms, yields
(X, + X, +X5)°

9 +28% (X, + X, + X,)

(X0 + %5 +%3) =

or Zslx {ZX} +2322x

[61]
[62]

[63]

[64]

[65]

[66]
[67]
[68]
[69]

[70]
[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]



repeating the same procedure for terms from 2 to n, and by considering a general formulation for p =3 of
this form

and then calculating for some n terms yields:
Table 9 Coefficient for a and b at various n

Coefficient "a” versus "n”
n a b
0.3 - 3
1
0.25 2 4 4
0.2 4
1
3 — 2
= 015 - 9
0.1 4 1 1
1K
0.05 16
1
0 5 — 6
0 25
" s | L | 3
Figure 7.0 Curve for a versus n. 36 4
1
Coefficient "b” versus "n” 7 4_9 12
35 - 1 63
_ 2 8 A T
30 - 3“-”4'1 64 4
25 4 1
-~ 9 8_1 20
BT
10 4
5 _
1 (n2 —1)
I:I T T n 2
0 5 10 n 4
n

Figure 8.0 Curve for b versus n.

As a result,

S0 {ZX } (0 -1)¢ [in } -



For p=4 and n=2,

Let (%, + %, ) =X +4x,x7 +6X2X2 + 4X, X3 + X5 [82]
and rearranging [82] into symmetric function form, yields:

4 _( 4 4) 4 ( 2 2) 6 2 83

(X1+X2) - Xl +X2 + XlXZ Xl +X2 + (XlXZ) [ ]

From equation [58] when n=2, it gives

Zzle:(xf+x§): "2 +— [84]

Using product identity for arithmetic progression yields:

Substituting equation [85] into [83] and expressing them in a summation notations yields:

PRI (P R AR (R R

Simplifying and rearranging the equation [86], yields:
S N S R P O B LS
X == D> X | +—| ) X | +— 87
|53 520 §

i=1

Calculating the other terms and simplifying for term n, yields:

{ n 14 G

Xi} [ Xi]

n : : 2 2 4

4| li=1 2 2 Li=l n@Bn -7)(n“ -1)s

[.:Elxi }_ 3 +(n“-1s o + 240 [88]

Calculating the coefficients for the rest of the equations yields

h P h P
L Sl i
ZX'S _Li=l +5(n2 _1)52 =1 J Bnc-7)(n“-Ds in [89]
! 4 2 48
i-1 | " 6n li=1 ]
- n 6 r n —14 - n -2
TEREPR 2% 2% 4 o2 2 .6
zx_s _Li=l +5(n2 _1)52 Li=1 | +(3n2 —7)(n2 —1)54 li=1 | N n(3n~ —18n“ +31)(n“ -1)s [90]
: nd an3 16n 1344
=1 |
n no P R n
S ZXi ZXi Xj in
Z:xi7 _H=1 +7(n? —1)s2 b=t J +73n2 —7)(n? —1s? b=t J +@3n? —18n2 +31)(n2 —1)sb b=t J
li=1 n® an* 48n2 192

[91]



n 8 n 6 n 4 n 2
[z x8] _L+7(n2 —1)s2 %+7(3n2 —7)(n2 —1)s4 ':l—3+(3n4 —18n% +31)(n2 —l)s6 b=t J

n' 3n 24n 48n

N n(5n6 _55n% 4 239n2 —381)(n2 —1)s8

11520
[92]
n P n n T n P
i DX DX D% DX
9 i=1 2 2=l 2 2 41i=1 4 2 2 6 Li=l
X |==—5=—+3(n“ -1s* =————+21(3n“ -7)(n“ -)s”" =————+(3n" -18n“ +3Y(n“ -5~ =————
{E I} n® n® 4on* 16n2

n
2%
+(5n8 —55n% + 23902 —381)(n?% —1)s8 LI=L

3 |

1280
8
X0 | = L +15(n? —1s? L= 1 7(3n2 - 7)(n? —1)st L L
{Z. pe (n” =1 Lo+ 730" - ) - Dst -

)

i=1

+5(3n* —18n% +31)(n* -1)s®

— n° 32n®
n 2
{z Xi} n(3n'® —55n® + 462n°® — 2046n* + 4191n? — 2555)s'°
+(5n® —55n* +239n% —381)(n% —1)sB L=
256n 33792
[94]
3 Expressing Product of Arithmetic Terms in Form of the Most Basic Elementary Symmetric
n
Function (i.e. D x; ).
i=1
From the Newton’s formulas, Girard and Waring [15] formulated sums of power in the form of
elementary symmetric functions a,,a,,a,---. The function is given as follows:
f(x)=x"+ax"" +a,x"? +---+a,,x*+a, x+a, [95]
Factorizing [83] yields
F(x) = (x=x x =%, )+ (x = x,) [96]
The elementary symmetric functions a,,a,,a,--- of the roots are defined as follows:
DX =X+ Xy e X, =4 [97]
1<i<n
DX X = XXy + XXy + XXy XpXg e = =8, [98]
I<i<j<n
DX X X = X XpXg + X, XXy + X XpXg + o0 = —8 [99]
I<i<j<k<n

XX, %, X, =(-1)"a, [100]



. The p™ power sums of the roots of above function is given as follows:

= > X7 =X+ x] +x] e xp [101]
1<i<n
Where

S, +a, =0 [102]
S,+a5S,+2a,=0 [103]
S,+4a,S,+a,S, +2a,=0 [104]
S,+aS,,+a,5,,+--+na, =0 [105]
Spu+aS, +a,S, ,+--+na,,; =0 [106]

These equations are expressed in the terms of monomials. In this research, it is found that when an
arithmetic terms involved, the monomials can be expressed using the most basic elementary symmetric
function or sums of an arithmetic term. A theorem has been found and its proof is given as follows:

Theorem 1.0
n-2
n 2 n
Let P =x XX =]]x :%H[[Zx,j ( (1+2t) sj } for even n. [107]
i=1 n" oo | Ui
n-1
n n 1 2 n
and Po=x %X =[x =2%—=]1] ( x, | —(nts)* | for odd n. [108]
i=1 R R N
Proof: By considering an arithmetic summation of n terms (i.e Z X; n(2x +;n 1)s))), and by
i=1
rearranging it, we get:
2% (n-1)s
X, =| A —— 109
. . > [109]
Since x, = (x, — (n=1)s) [110]
Substituting [109] into [110] yields:
anxi
x == (n=Ds [111]
! n 2
Also
Zn:Xi Zn:xi
X, = =l (n—l)S —g=|4d% +M [112]

n 2 n 2

By taking product of x to x, for even n yields:



[113]

e S5 2) 5,555 5

Simplifying [114], yields:

n

-2

2 n 2 2

P =X X, X, :%H[[Zx,j —(2(1+ 2t)sj ] for even n. [115]
n o\ Ui

and product of x, to x, for odd n yields:

[116]

X; X; X; X; X,
| s || 25 as| 12N as|| &0 aons
noTt T e n 2 n 2 n n 2 n 2

Pn =X Xy X, :n_];[nZXi _@j.(ixi _@j . .ani .. .(ani +n(n—;3)sj.{nZXi +n(n—2—1)5] [117]

i=1 i=1 i=1 i=1

Simplifying [117], yields:

P =X X, X, = in iﬂﬁ{(i Xij —(nts)2] for odd n. [118]

3.1 Elementary Symmetric Function for Alternating Permutation of Arithmetic Terms Through
Quantitative Method.

Since Sum of Power is the basic building blocks for symmetric polynomials, therefore it can always be
expressed as product and sum of symmetric functions with rational coefficients. Consider a set of
symmetric functions of arbitrary arithmetic terms as follows:

(Xy) Xgsmoy Xy g0 X, )

n-1'"*n

The elementary symmetric polynomials of n variables in form of n and symmetric function z X; are given
i=1

as follows:

1st Order

O, (X Xy X X ) = Xy + X o0 X + X, = DX, [119]
i=1

The second order can be calculated using quantitative method as follows:

Let the second order be

n
O, (Xys Xp0e ey X Xy ) = X Xg + Xy Xg +oo0 XX = Y XX,

n-11"*n
i<j



Consider an arithmetic term with s=1 and n=2, the tabulated data is given as follows:

2
Table 10 The values of inXj when n=2

1<i<j

2 2
X X; Z Xi z XiXj _n=2
i=1 I<i<j

1 2 3 2
2 3 5 6
3 4 7 12
4 5 9 20
5 6 11 30
6 7 13 42
7 8 15 56
8 9 17 72
9 10 19 90
10 11 21 110
11 12 23 132
12 13 25 156
13 14 27 182
14 15 29 210
15 16 31 240
16 17 33 272
17 18 35 306
18 19 37 342
19 20 39 380

Plotting the data for some values of n yields graph as in Figure 9.

3000 -

2500 +

2000 "5 m(xixj)_n=4 = 0.375Sum(xi)? - 2.5

+ Sum(xixj)_n=4
A Sum(xixj)_n=3

Sum(xixj)
o
8

m Sum(xixj)_n=2

1000 -

Sum(xixj)_n=3 = 0.3333Sum(xi)? - 1

Sum(xixj)_n=2 = 0.25Sum(xi)? - 0.25

0 20 40 60 80 100

Sum(xi)

n n
Figure 9 Graph of z xixjversusti for some values of n
i<j i=1



Let the 2"Order be as follows:

OZ(XI'XZ' REY n ZX (n ij _¢2

i<j i

Collecting the coefficients of Z x;x; for some values of n yields Table 11.

i<j

Table 11 The values of ¢, and ¢, at various values of n.

n ¢1 ¢2
) 1 1
4 4
1 1
3 —_ —_
9 3
4 1 S
16 12
1 1
5 _ —_
25 2
6 1 7
36 12
; 1 2
49 3
1 (n+1)
n —
n 12

Therefore the 2" Order for s=1 can be written as follows:

n ? (n+1)
O, (Xy, Xp 0+ Xy 0, X, ) ZX —_[ZX'] 12

i<j =1

Repeating the same process for various “s” yields:
Table 12 The value of coefficient ¢, with various value of “s”.

n # (s=1) $,(s=2) #,(s=3) ¢, (s=4)
, 1 1 1 1
4 4 4 4
1 1 1 1
> 9 9 9 9
. T T T T
16 16 16 16
.| 1 1 1 1
25 25 25 25
A Y 1 1 1
36 36 36 36
Y 1 i 1
49 49 49 49
Y i i i
n? n? n? n?




Table 13 The value of coefficient ¢, with various values of “s

n $, (s=1) ¢, (s=2) $, (s=3) ¢2 (s=4)
2 E 1 g 4
4 4
1 4 1
3 = — 3 16
3 3 3
. 5 5 15 20
12 3 4 3
5 1 2 S 8
2 2
6 7 7 2 2
12 3 4 3
; 2 8 6 EZ
3 3 3
i (n+1) (n+1)2? (n+1)32 (n+1)4°
12 12 12 12
From the Table 13, it can be deduced that¢, can be written as follows
n+1)s?
9, = ( )
12
Therefore, the second order can be written as follows:
2" Order
n 2
n n 2% (n+1)s?
O, (Xys Xp0 ) X Xy ) = X Xg + Xy Xg +ooe+ XX = D XX, = =L - [120]
= 2 n 12
3" Order
ZX' l
Oy (X Xy, X g0 X ) = XX Xg + X Xp X, 0 X X, X Zx ( j S I U e [121]
i<j<k n 4 n
4" Order
> >
n\|l< (n+Ds*| & (n+D)(Bn+7)s*
O, (X, Xy, X, XX X X = = - = + 122
4( 1 2 n—l n |<]<Zk<| kM ( J n 2 n 240 [ ]



5" Order

05(X11X2v = K X

6" Order

Oa(xlvxzv Xy X

7" Order

Oy (X %5

8" Order

QX %15 %4 X)) =

X0 %)=

ZX XX X

i<j<k<l<m

L

n
Zx XX XX (6

i<j<k<l<m<n

n
Zxx X X XX, X —(

i<j<k<d<mxn<p

n
Z&X XXX XXX, —(

i<j<k<l<m<n<o<p

;Xi 5(n+1)s? ;X' _(0+)En+ 7" ;X‘
n 6 n 48 n
n [ n 74 n
25| gnigst| 25| epEnenst| &
n 4 n ' 16 n
(n+1)@35n° +112n+93s°
4032
[ n 7 n n
21:‘ T +Ds° Zl:)“ TGS’ Zl:)“
n 4 n - 48 n
(n+D)B5n° +112n+93s° ;’*
576 n
n n 6 n
zl" 2n+1s° Zl)‘ 7(n+D)En+7)s* Zl)‘
n 3 n 24 n
(n+)B5n* +112n+93s° ;K
144 n

(n+1)BN+9)B5 n* +126n+127s°

34560

2

4

[123]

[124]

[125]

[126]



9™ Order can be calculated by using the same coefficients used in Order 8th, it is given as follows:

n 9

n 7 n 5
2% 2% 2%
e ~Q(n+1)s’ S| Q)G+

n ixi
Og (X, %" X1, % ) = D XX X4 XX Xo X Xg _[; ~-Qy(n+1)(35-n% +112:n+93s° % + [127]

i<j<k<l<m<n<o<p<q

N

Q,(nN+1)Bn+9)(35-n% +126-n+127)s% =

Coefficients [Q--Q] can be calculated by using product identity of an arithmetic progression when n=9,
the calculation is given as follows:

R I IR

P, =X (lej 1O(gxijsz ° gxijs“ 82o(ixijse

X XX, = — + - +64 n x. |s® [129
P77 387420489 1594323 19683 729 (Zl ] [129]
Comparing the coefficients yieIdS'
21 1
:3’ =—), d
Q=3.Q =70 Q= Q= 3am0
Basically,

SR



The 10" Order can be calculated as follows:

>X X X
=2 —Q+D)s? 2| +Q(n+)En+7)s L
n n n

n >X
QX %0 X3 X, ) = D XX XX, =[n —Q(n+)@B5n*+112n+93s° 1T + [131]

i<j<k<l<m<n<o<p<q<r 10

n 2
DX

Q(n+1)Bn+9)35 P +126n+127° ),

The Generalised Equation can be written as follows:

n o p-2m)
d n\k m 2m %:XI
Oyt s)= Z&[ )z (a2 [132]
i<j<-<z Pm=0 n
o Pt for _odd _p
Where coefficient Q,=1and k={ 2 [133]

— for even
5 _ _p

The last coefficient T, can be calculated by performing least square method analysis on various values of

n”.
Let the last coefficient in this form:

T(n)= iajnk‘j [134]

The value of T, at various values of n can be calculated as follows:

o2 no\(p-2m)
R 2%
[V MC R BN [ S

1B

T.(n)=
k(n) Q5"

for even m [135]




p-3
TR 2%
Z M 2m| i=0 _ OP
mz=:0 ( 1) QmeS n [nj
T (n)= : P for odd m [136]
2. Xi
QsPY =0

Where n>p and Q, is a coefficient given as follows:

%= (Z%J(ﬁ)(%luj[zpk]

For some value of n, we can construct the matrix to get the coefficients a, for solving T,(n) below:

Tk(n):(aonk +a1nk‘1+a2nk‘2-~ak_1n+ak) [137]

Let the equations at various values of n arranged in a matrix form as follows:

T(n) n‘ n? n 1 a
T (n+1) (n+1)* (h+1* . (n+1) 1| a
I . : S [138]
T (n+k=1)| [(n+k-1)f (n+k-2" - (h+k-1) 1| |a_,
Te(n+k) (n+k)* (n+kt o (n+k) 1)
Where,
) O T "
T (n+12) (n+1)* (h+)* . (h+1) 1 a
T= : , N= : : and a=| : [139]
T (n+k-1) (n+k-1¢ (n+k-1f* - (n+k-1) 1 a,
T (n+k) (n+k)~ (+k)f* o (h+k) 1 ay
Therefore,
T(n)=N-a [140]
Thus,
a=N"1.T [141]

These orders are useful to construct sums of power for the arithmetic progression, as the sums of power
for the arithmetic progression can always be expressed into elementary symmetric polynomials.



3.2.1 Using Multinomial Theorem and Product Arithmetic Terms in Generating Sums of Power
for an Arbitrary Arithmetic term.

The Multinomial Theorem states that if p is nonnegative integers then

p nyh Iy
(X, + %, +---+%)° =Z(r . JXsz Xy [142]
12Tk

In this research it is proposed that The Multinomial Theorem for arbitrary arithmetic progression can be
expressed as the power of arithmetic sum descending by 2 for each subsequent term (i.e p-2j). The

equation is given as follows:

(2j+1)

P oyt :
(X1+X2+W+Xk)p:Z(rl,rz...rijllxzz“.X:,Z—:? hs n®" [143]

This relationship is actually the building block for sum of power of arbitrary arithmetic progression. The
sum of powers can be calculated directly from this relationship; however for larger p the calculation

would be tedious. Every monomial term in the multinomial can also be expressed as follows:

n p-2j ]
bl
_ inlsz---xn" :Z ¢kS W [144]

Where: p—-(2j+1)>-1 if p is even, p—(2j+1) >0 if p is odd,s=x,,, — X, ¢, is a coefficient,

p-1 for _odd _p N
k=1 2 and p=>_r, [145]

P for _even_p =
Therefore let’s consider the equation below for p=2,
n n 2
D oXX, :aI(ZXi] +a,s’ [146]
i=1

i<j

Solving the coefficients yields,



-1

n 2 n
(Z xiJ s? D XX,
o | o i<j
= M -
n 2 zxi+lxj+1

i<j

VR
M

X

E

:
N—

N
w

Calculating for some values of n and the tabulated data is given as follows:

Table 14 The values of ¢,and «, at various values of n.

n a, a,
; 1 1
4
3 1 1
3
4 3 _3
8 2
2
5 — -5
5
. (n-1) ~ n(n2 -1
2n 24

Therefore, for all n the equation is given as follows:
ZXIXJ_( 1)(2)('} _n(n 1)52
i<j 2n i=1 24

When p=3, consider the equation below,

i<j

Solving the coefficients yields,

[147]

[148]

[149]

[150]



-1

ERENAE

i=1 i<j

n 3 n . 0 2
Sna) (Sxalr| (2t
i=1

i=1

(ﬁlj _
Ba),
Whenn = 2, the solution is given as follows:

R

i<j =1

Calculating for some values of n and the tabulated data is given as follows:

Table 15 The values of g and g, at various values of n.

n By B,
, 1 1
4
3 2 0
9
3
4 T 1.25
4
5 2 4
_ 2 _1Yn_
: (n 21) (n2 —1)n-3)
n 12

Therefore, for all n the equation is given as follows:

Zx,xJ _(n P(inj +W(ixijsz

i<j i=1 i=1
Applying the same procedures, we get equations as follows:

i<j i=1 i=1

(n-1) L -nn-2) (< ). n(n-)@En*-7) ,
lexJ =" (inj +T[injs —~ 220 S

[151]

[152]

[153]

[154]



anxaxj—(n 1)(2 j (n ~1)@3n- 5)(Z j (n -1)@n?-7)(n- 5)(2)(‘}54 [155]

i<] =) 6n’ 240 =

Zn_:xix?:(nn_sl)[ixij +W[z j NGRS/ 3)[2 j
(

i=1l

[156]
n*—1)@3n* —18n° +3J) ¢
1344
7 2 n 5 2 2 _ n 3
ZX.X, s_(n 61)[Zxaj L —1)(?n—7)(zxij ¢, (" =1@En 27)(3n n[ZXij oy
i<j i=1 4n i=1 48n i=1 [157]
n(n*-1)(3n* -18n* +3)(n-7) ix X
1344 =il
Combining the results for all n yields
For odd q,
“ (-0(& N7 b (et S Ve, 4 [ axl
X X1 X e X | s n—-——
g" nq(g' e Q—lg' e q3§' ;
p [158]
g-1

n . s ¢j32j 1 n a+(1-2j) »
inxj ;Z;{nqzj (n— -ECE;—;DJ[ZXi] }—n%ﬂs [159]

2

Or
For even q,
\ n-( g e P e )7
n- q+ 2 q+ 4
X x§ = X, | +——|n-—= X | sP+—2-|n-—= X | s
R O P =

[160]

+- +¢q(n (q+1){2x]sq

i=1
q

S 3o 5

Where, ¢;is a function of Bernoulli numbers and (q +(1- 2j)) # 0 (i.e. the denominator of (q+1) is not

zero) and if denominator is zero, the expansion of the term takes the last forms of ng,,,s%* or
2

¢q (n—(q +1){Zx qu for odd and even q respectively.

=1
Con5|der when p=2,



ij (X 4% 44X, +X ) =(xf+x22+--~+xn2_1+xn2)+[121j(x1x2+x1x3+---+xn_lxn)

inj = (X Xy o X +X,) Zn:x,2+(l JZX,XJ [162]

i=1 i<j

Rearranging the equation [162], yields

I D I I

i=1 i i<j

Zn: X2 = (Zn: X | - Zzn: XiX; [163]

i=1 i=1 i<j

[164]

i=1

Since, ZX = nl)(zxiJ _¥sz,then

: 165
= n 12 [165]
Consider when p=3,

[zl X‘ja :ixf +[1 32); ( J [166]

I<J<k

n _ n 3 _
Since, > x,x? :(n—zl)(inj +w( l]s and Zx ;X is the elementary symmetric
i< n i i-1

i=1 i<j<k
function of 3™ order, then

(0] -5 oS5 B o
6(3J(n%(z T <“1£S 5
PR RS

i=1




Rearranging equation [167], yields

n

g 2L,

The multinomial also can be expressed as follows:

n p n
(Zx‘j Z(in"j+z{ p jxiﬁx? +Z( p JXFXFXEW--*Z[ p JXF"'XE [169]
i=1 i=1 n n n n n o I

Rearranging equation [169], yields

noo) (L) P \onon p fonen o p o un
BB (=, ool e ez P | o

The proposed conjecture reiterates that for all monomials for an arbitrary arithmetic progression can
always be expanded as follows:

n p n p-2 n
2 P XEXE =ag| DX | +ay D x| S +---+ap_1(zxijsp_l for odd p [171]
n rn i=1 i=1 2 \i=l
p o (e )
3 Xix2 =ag| S | +ay| Y x| s?+-+a,s? forevenp [172]
n rn i=1 i=1 2

Z[r rp r]x XX :ﬁo(ixi] Jﬁ@(ixij _ 32+---+,Bp_1(zn:xiJsp‘l for odd p [173]

2 i=1

n P n p-2
1 3 i i=1

2

n p n p-2 n
Z(r P rJXF“‘Xﬁ:%(ZXiJ n[3x) st Sn e orodap 7
. T - i 2

2 i=1

sP forevenp [176]

7~ N\
S
<
ey
N—
x
>
|
<
o
VR
’l__\" M >
=
N—
-
+
<
=
VR
T s
[N
x
N—
k=]
o
wn
N
+
[N \'c

Collecting the coefficients yields:

(ZX] 1 (g + By ++7) Zn:xij —(al+ﬂl+---+;/l Zn:xiJ_SZ_...

_[ap—l +ﬂp—l +'“+7/p—1J(zxijsp_l
2 2 2 J\i=l

foroddp [177]



[n le] 1 (ag+ By +-+7,) ij al+ﬂl+ 7 ZXJ_SZ_'”

_ P
[ap+,6’p+ +;/pjs
2 2 2

Which is in the form of equation [15] when simplified.

forevenp [178]

4.0 Formulating the Generalize Equation for Sums of Power.

The coefficients ¢, involved in the polynomials up to p=12 can be simplified as follows

do =1 [179]
b = |o(g4 D n2 -1 [180]
g2 PP= 1)(p 2(P=3) 372 _7yn2 _1) [181]
242 (10)
43 = P(P-D(P—-2)(P-3)(P—-4)(P-5) (3n% —18n2 +31)(n2 -1) [182]
243(70)
b4 = P(P=1)(P=2)(P=3)(P=H(P=5)P=6)(P=7) 56 _55,4 . 93902 _381)(n2 —1) [183]
24% (1400)
b = P(P-D(P-2)(P-3)(P—4)(p-5)(P-6)(P-7)(P-8)(P-9) (310 _55n8 + 462n6 — 204604 + 419102 — 2555) or
24° (15400)
s P(P-1)(P-2)(P-3)(P-4)(P-5)(P-6)(P-7)(P-8)(P- 9)( n6 —37n% + 22502 —511)(n2 = 5)(n? —1) [184]
24° (15400)
4 = P(P-1)(p-2)(p-3)(p-4)(p-5)(p-6)(p—T7)(p—8)(p—9)(p—10)(p—11) (105n%2 — 2730n™° +
245 (400400) [185]

35035n® — 265980 n® +1144143 n* — 2325050 n? +1414477)
or in binomial expansion forms

h=7 (2m1+ 1) [zlcr)nj(n2 - [186]
p2- jwm—il)(mj(sn _7(n2-1) [187]
3 = 1;@(2”1](%4 ~18n2 +31)(n? - 1) [188]
44 = 1218 0(2m—1+1)(2mJ(5n6 _55n* 4 239n2 —381)(n2 1) [189]
b = 30172 (2m1+ ) [ZmJ(Bn —37n* +225n° —=511)(n* —=5)(n* —1) [190]
¢, = 4301080 (2m1+ 5 (zmja%n10 2625n° +32410n° — 233570n* + 910573n? —1414477)(n? —1) [191]

The generalize form of ¢, can be written as follows

_ 1 1 2(m-t)
by = o —(2m+1)( chmn ) [192]



Or

b = —

1

22" (2m+1)(2m) "

[193]

where (m—t) > 0. The polynomials can be expressed as P, = Zcmnz(”"” (=1)". In order to identify how
t=0

the coefficients are formed, each term in the polynomial is tabulated in a table. The tabulated data is gives
as in the Table 15.

Table 15 The terms values for P, .

Pu 1tterm | 2"term | 3™ term 4" term 51 term 6" term 7" term
P, n’ -1
P, 3n* -10n? 7
P; 3n° -21n* 49n? 31
P, 5n® -60n® 294n* -620n? 381
Ps 3n* -55n° 462n° -2046n* 4191n? -2555
Ps 105n* | -2730n'° | 35035n® | -265980n° | 1144143n* | -2325050n* | 1414477
Pm Canm C2n2m-2 C3n2m-4 C4n2m-6 C5n2m-8 C6n2m-l9 C7n2m-12 Cm
m
z Ct+1
By tabulating the value of *>— yields new data and it is given as in the Table 16.
1
Table 16 The terms normalized values for P, .
Pu 1tterm | 2"term | 3™ term 4" term 51 term 6" term 7" term
P: 1 1
10 7
P2 ! B 3
49 31
P, 1 7 5 5
294 381
P, 1 12 = 124 =
P, 1 % 154 682 1397 25%
1001 17732 54483 66430 1414477
Ps 1 26 3 7 5 3 3
5 . L Y G Cs Ce o Cn
m G G G G C, G G




Plotting the P, curves for some m yields,

2nd_term

70
B0
&0 H
40
30
20
10
a T T T

2nd_termws m

80 1 2nd_term = 0.6667m? + 0.3333m

a 2 4 b

Figure 10 Graph of 2" term versus m.

From this curve we can deduce that

2nd _term = %(Zm +1)
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Figure 11 Graph of 3" term versus m.

From this curve we can deduce that
m
3%x10
The term can be rewrittenas T, =y, - f(m)

3nd _term=

(m-)(2m+1)(2m-1)

[194]

[195]

where f(m) is a function of mand y,, is a coefficient which depends on the Bernoulli number and

(22m—1 _1)'
Analyzing y,, for some terms yields:



Table 17 The values of y and B, at various values of m.

m Y B, yo =2 -1)B,
0 1 -1 —(2-1)-28,
1 % % (2t -1)-28,
7 1 B
: % "% 23
: 5o @ s
4 381 1 _(27 _1). B,
113400 30 1260
; 2555 5 (2° -1) Bs
3742200 66 56700
: 1414477 691 (1) s
3° - 35400400 2730 3742200
7 860055 7 (213 _ 1)' B,
3" -35-400400 6 340540200
: 118518239 3617 o q)_ B
37 -35.400400 - 680 510 40864824000
5 5749691557 43867 7 1) B,
3° -35.18088 - 400400 798 6252318072000
0 1922471824497 174611 o) By
3% .35. 400400 - 9948400 330 1187940433680000
" 8960213962315 854513 0= 1) B,
3 .35. 400400 - 228813200 138 274414240180080000
3 1982765468311237 286364091 [ (o ) B,
3% . 35.400400-19752096 -12650 2730 75738330289702080000

From the Table 17, apparently P can be formulated as follows:

t

i . __1(2m—2j+1)
f(m)=-23 (2t+1)[tJn2<m-t“t°— [196]
=1 (2t-2j+1)
j=0
Since 1% term is n®™ then,
Py = 0" +T(m) [197]

Therefore, P, is given as follows:




t-1

[1@+2(m-j)
P, =|n*" 22 (2t +1)2%" - 1)( jBtnz(m“) = [198]
. t+2(t-j)

j=0

Where, B, is the Bernoulli’s number and m>1.

When m=1
t-1
[T@+2@-j)
P =|n®® 22 (2t +1)2%* - 1)( JB 20t =0
t
= [T@+2-j)
j=0
0
A 3 2]
=n?® —2(2(1) +1)(2°®* —1)@|31n2<1 b2
(3-2j)
j=0
0
o 113-2) @
=n? —G(EJ — =n®— 3.0 =n*-1 [199]
(38-2j)
j=0
When m=2
t-1
[T@+2(2-1j)
P, =|n?® 22 (2t +1)2%* - 1)( ]B 2 10
t
= [T@+2(-j)
j=0
- . _
) [T@+2(2- j))
-2(2(1) +1)2°®* —1)(1]31n2<2 12
H1+2t i)
— j=
- 1
) [T@+2(2- )
2(2(2) +1)(22@* —1)@52#‘2 212
[T@+2(2- )
L =0 _
[ O - 1 -
. [16-2i) . [16-2i)
= n“—lZ(Ejn2 = . —70[—%%0—‘? .
(3-2j) (5-2j)
j=0 j=0

i 2 B T OO |6 10 2 7 1 o
g Lt 3(5)(3)(1)} nt =St g 3(3n 10n? +7) [200]




Therefore,
1 1 p
= P
I =5 (2m +1)(2m] "
t-1
[1@+2(m-j))

:;L_;L_(Pj 2 2z(m+mftln(JB¥m°li—————— [201]
22" (am+1) 2m & [T+ 26 )

j=0

4.1 The Derivation of Bernoulli Number for the Generalized Equation for Sums of Power.

It is known that the generalized equation P, is zero when n=1. Therefore, the coefficients P, can be used
to find Bernoulli’s number. Few Bernoulli’s numbers calculation can be seen as follows:

Consider,
t-1

, [[@+2(m-j))
Y

P, =|n’"-2>[(2t+1)2** -1) T B2 12

m t
t=1

[ [@+2(- )
j=0
Since P, =0 when n=1.

t-1

m [1a+2m- )
(7]

12m — Zz (2t +1)(22171 ) T Bl (l) 2(m-t) j=t0 ~0
N [T 26 )

j=0

t-1

3

=) ﬁ

J:

H (2+2(m
-2) | (2t+1)2*" - 1)(t]|3t 10 =0 [202]
1+2t—j
0

Rewritting the equation [202] yields

il m
)=t +1)2% " - 1)(JBt ‘t L o forallmen [203]

t=1

When m =1,

L 1
)=>1 (2t +1) 2% 1)

t=1




|_.

-1

(1+20-j))

(2) +1)(2° —1)(1]51 = )
: H1+2 -j)
[16-2j)
3B, -==0
163-2))
3 1
3B, ———~—-—-=0
By 2
351—1_0
2
1
Bi=% [204]
When m =2
, ) 1 1+2 —J
(2t +1)2** -1)| © B, 2 —==0
-
E [[+2(- )
[10+2@- ) T@+22-j)
(2(1) +1)(220 1)( jBl 2 (2(2) +1)(2%® l—1)( sz = ~==0
[Ta+20-1) [10+22-1)
[16-2j) [16-2j)
6B, 12° +35B, 12 -5=0
[16-2i) [16-2i)
1) 5 (5)3) 1
6 358, AL =
( )(3)(1) " b)) 2
> +35B, L,
3 2
1
B, 30 [205]

The Bernoulli’s number for when m >1can be calculated by rewriting the equation [203]. The derivation
is given as follows:

Expanding equation [203] yields:



ﬁ1+2m J
0

m ﬁ 1+2(m-j))
f(m)=(2(1) +1)22»* —1)( . ]Bl =

+(2(2) +1)(22 -1)(“;} B, -

1 2
[T0+2®- 1) [Te+2-1)
j=0 j=0
m-1
o H @+2(m-j)) .
+ --+(2(m)+1)(22<"‘>-1—1)[ jB 120 ~==0
m H (@+2((m) - j))
j=0
[206]
Rewritting equation [206] yields:
t-1 m-1
ni [T@+2m-j) [1a+2m- i)
(2t+1)2*" 1)(':)& = +(2(m) +1)(2%™ —1)( ]B = ~==0
[T@+2( [T@+2(m)- )
j=0 j=0
m-1 t-1
[Ta+2(m- ) e  T]@+2m-5)
(2m+1)2*"* -1)B, L =5 -2 (@) —1)( jBt =
1+2(m- =t t (1+2(t
Ta+2(m- )
j=0 j=0
m-1 -

fieomy

(1+ 2(m J)) (Zm +l)(22m71 —l)
Slnce_

m-1

1
52

t=1

(1+ 2(m- j))

_ (2m+1)2m-1)2m-3)---(3)
(1+ 2Am— ) ~ (2m+1)2m-1)2m-3)---(3)1)

T 3
(=] iR

o

J:

Therefore,

m-1

1

B:
(2m+1)22"* -1

m

1
2

t=1

H1+2

j=0

ﬁ 1+2 m j
(2t +1)2%* - 1)(JBt = [207]



5.0 Derivation of Sums of Power for Integers using Generalized Equation for Sums of Power.
Setting x, =1 and s=1, this equation [15] reduces into classical Faulhaber’s Sum of Power for integers.

Power sums for Integers generalize equation is given as follows:

n n m {ii}pj
I N [208]

n p—(2j+1)

_ ni|:¢j {@} 7 [209]

(n+1j2 [nz—lﬂ

=n|—=| +

| 2 12

~n*(n+1)° n(n*-1) n(n+1) ~
=Tt LT (B(n+1) +(n-1))
n(n+1) n(n+1)f2n+1) 1

== (4n+2):fzg(2n3+3n2+n)

or

n ili| 2
Ziz _ L_ N n(n®-1) [210]



Since Zn:i = n(n +1)
= 2

Equation [210] reduces to:

2D n+1) n(n®-1) n(n+1) ~
Z T R T B(n+1)+(n-1)

_n(n +1)(4n+2) n(n+1f2n+1)

12

é(Zn +3n% + n) [211]

6.0 The Verification of Sums of Power General Formulation and the Derivation of the Sums of
Power Through Binomials Expansion of Elementary Arithmetic Terms.

By taking sums of power of elementary arithmetic terms fromx;to x, for even and odd n yields:
For evenn

n p n p n p n p

b_ i (Ds| fig (3s) 1T S| |iT .S

Eﬂ AT n 2 i n 2 n 2 n +2 i
[212]
[ p

A= 2 0-9s| | & (s

n 2 n 2
For odd n

p n P n n p n P
S 2% 2% 2% 2%

_ iz (n-Ds iz (-3s| || & s i S

Ex,x++xn_ 2+n 2+n+n2+n+2+
[213]

n [ p
+ g—Xi+7(n_3)S + igl:—Xi+7(n_])S

n 2 n 2
By considering Binomial expansion of (x+y)"which is given as follows:
(x+y)p=xp+(§)]xp‘ly+@jxp‘2y2+--~+yp [214]

» (- . - - -
and substituting x = *n and y = into both equations above, where q is an odd numbers, yields the:
Evenn
n p n pl n p-2 n p3
ix.—p= gﬁ 4P g [_(”—])sj [P gxi [_(n—l)sszr p E’* [ (n—J)sJ3+H+( (n—])sjp
iq n 1) n 2 2/ n 2 3/ n 2 2
n P pd 0 \P2 n \P3
2%

+E iC %& ((n_s)sj+ p E ((n 3)SJ oM (—“‘_3)5}3+.-+( (n—s)sjp
n 1] n 2 2]l n 2 3] n 2 2



n p n pl n P2 n -3
> & g (o3 & (e (o g [ow], (o
n 1/ n 2 2) n 2 3/ n 2 2
n p n pl n p-2 . n p3
JE {p & ((n—f»sj{p 2 [(n—@sjﬁ(p & [(n—s)sj3+..+(<n-5)8j"
n 1) n 2 2/ n 2 3/ n 2 2
n P n Pl n p2 n p-3
Pﬁ {p g ((n—S)sHp o [(n—a)sjz{p o ((n—@sﬁ,{(n—sos)p
n 1) n 2 2/ n 2 3/ n 2 2
n p n pl n P2 n p-3
+ 3 +[p 3 ((n_:l)sj_,’_(p 3 ((n_])SJZ +[p 3 [(n_])s)s) +”+((n_:l)sjp
n 1/ n 2 2f n 2 3/ n 2 2
Simplifying [215], yields:
n p n p2
ia n 2/ n 2 2 2 2
n \P4
%) [y o]
4] n i 2 2 2 2
n \Po
6] n i 2 2 2 2 |
(e 2 e
2 2 2 2
Oddn
n P n pl n P2 n p-3
e 5 (o) (oo o]
iq 1) n 2 2] n 2 3] n 2 2
n p n pl n P2 n p3
& {p g ((n—asj{p g ((n—@s}i(p 2 (_(n—@s}i..{ <ﬂ—3>3jp
n 1/ n 2 2/ n 2 3/ n 2 2
n P n pl n p-2 n p-3
+§ {P & [(n—S)sHp Z [_(n—s)sf{p 2 (_(n—S)sJﬂ..{_(n—@Sj"
n 1) n 2 2] n 2 3/ n 2 2
N

[215]

[216]

[217]



n
N
n p n p1 n p2 .n p-3
) 2 [P & ((n—S)s}r p| & ((n—5)5j2+ p| & ((n_@sj3+”+((n_5)sjp
n 1/ n 2 2 n 2 3/ n 2 2
n p n pl n p2 n p-3
| 3 [P 3 ((n—s')sj+ p 3 [(n_g)SJ2+ P 3 K(n_S)ST*'*[(n_%)p
n 1/ n 2 2l n 2 3] n 2 2
n p n pl n P2 n p-3
n 1/ n 2 2/ n 2 3/ n 2 2
Simplifying both equations, yields:
n p n p2
ia n 2 n 2 2 2 2
n P4
) [ ey o2
4f n | U2 2 2 2 )|
n \Po
6f n| | 2 2 2 2 )|
: [218]
e oy ez e
2 2 2 2
For even p simplifying [215], yields:
n P n p-2 n p4
; 2% X% 3 . X% 3 : : :
S =i +z[g £ i‘{m—(zlj)zsz}{z 5 i‘{(”—(?;m“s“}.+2§i(”—(221j)"ﬂ [219]
i [ I [
For odd p simplifying [215], yields:
n P n p2 n p4
P - E AP E 4 (-@i-ys® | fp E 2 -@j-0)'s* |
i1 n 2} n iz 2 4] n i 23
[220]

P 3 : (-@j-9)"*s"*
-l n 3 2r?



It is found through Mathcad Symbolic Operation that,

t-1

n 1 . (L+2(m- j)
z{(n (21p n" } 2% " = zlm 1 n2m %" (2t+1)(22t1_1)( JB 2(m-0 Jt0 [221]
=1 2 =1 22" (2m +1) t=1 1_[0(1+2( i)

j=
Thus,
For odd p
n P n P2 n P4
Sx Sl 2 ) s o2 [

Sy o it | 42 PliE o Pliz o P lid P 222

gx, . +25 (2 . E] +25 (4 . le‘J + - +25 [p—l E] [222]

And For odd p

n P n p-2 n P4

0o g)(' a7 P lexl tzl-2 22| P g)(l %1-2 gsptzl-p [223]

bt ) el B

Simplifying both equations [222] and [22] yields

n p-2m
2= X s [224]
p-1 for _odd _p
where u=1 2 [225]

p
— for even
5 _ _Pb

Which is identical to equation [15].

Conclusion.

The general equation for Sum of Power presented in this paper can be extended on many other uses due to
its simplicity and elegant formulation. This formula includes Faulhaber’s sum of power and most of other
formulae derived for sum of power because of its expression in form of the most basic elementary
symmetric function of an arithmetic progression. Since integer is part of arithmetic progression, it offers
new form of sum of power as an alternative to Faulhaber formulation. Apart from that, this generalized
equation can be extended to real number powers which are useful for extending the sums of power to
Riemann’s Zeta function and numerical analysis of summation for rational and irrational power. When n
IS set to 2, the generalized equation reduces to Fermat’s Last Theorem and expressing Fermat’s Last
Theorem in a polynomial form of symmetric function. Thus offering new insight in the Fermat’s Last
Theorem studies. The rest of papers related to this research can be found at the references [16]-[20].
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