INTUITIONISTIC FUZZY **F**-IDEALS OF **F**-LA-SEMIGROUPS.

MUHAMMAD ASLAM AND SALEEM ABDULLAH

ABSTRACT. We consider the intuitionistic fuzzification of the concept of several Γ -ideals in Γ -LA-semigroup S, and investigate some related properties of such Γ -ideals. We also prove in this paper the set of all intuitionistic fuzzy left(right) Γ -ideal of S is become LA-semigroup. We prove In Γ -LA band intuitionistic fuzzy right and left Γ -ideals are coincide.

1. INDRODUCTION

The notion of fuzzy set in a set theory was indroduced by L.A.Zadeh, (see [5]) and since then this concept has been applied to various algebraic structures. The idea of "Intuitionistic fuzzy set" was first introduced by K.T.Atanassov (see [1, 2]) as generalization of the notion of fuzzy set. The concept of LA-semigroup was first indroduced by Kazim and Naseerudin (see [4]). Let S be non empty set then (S, \circ) is called LA-semigroup, if S is closed and satisfies the identity $(x \circ y) \circ z =$ $(z \circ y) \circ x$ for all $x, y, z \in S$. Later, Q.Mushtaq and others have ivestigated the structure further an added many useful result to theory of LA-semigroups.T.Shah and Inayatur Rehman have introduced the concept of Γ -LA-semigroup (see [6]). Let S and Γ be any nonempty sets. If there exist a mapping $S \times \Gamma \times S \longrightarrow S$ written as (a, γ, b) by $a\gamma b$, S is called Γ -LA-semgroup if S satisfies the identity $(a\beta b)\gamma c = (c\beta b)\gamma a$ for all $a, b, c \in S$ and $\beta, \gamma \in \Gamma$. Whereas the Γ -LA-semigroups are a generalization of LA-semigroup.Tariq Shah and Inayatur Rehman introduce the notion of Γ -ideals in Γ -LA-semigroups. Whereas the Γ -ideals in Γ -LAsemigroups are infact a generalization of ideals in LA-semigroups.

In this paper, we indroduce the notion of an intuitionistic fuzzy left (right) of Γ -LA-semigroup S, and also introduce notion of intuitionistic fuzzy Γ -ideals of Γ -LA-semigroup S, then some related properties are investigated. Characterizations of intuitionistic fuzzy left (right) Γ -ideals are given. A mapping f from a Γ -LA-semigroup S to a Γ -LA-semigroup T is called a homomorphism if $f(x\gamma y) = f(x)h(\gamma)f(y)$ for all $x, y \in S$ and $\gamma \in \Gamma$, Also for homomorphism f from a Γ -LA-semigroup S to a Γ -LA-semigroup T, if $B = (\mu_B, \gamma_B)$ is an intuitionistic fuzzy Γ -ideals of Γ -LA-semigroup T, then the preimage $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ of B under f is an intuitionistic fuzzy Γ -ideals of Γ -LA-semigroup S.

2. Preliminaries

Definition 1. [6] Let $S = \{x, y, z, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two non-empty sets. Then S is called a Γ -LA-semigroup if it satisfies

Date: November-28-2010.

¹⁹⁹¹ Mathematics Subject Classification. 16D25, 03E72, 20N99, 20M99.

Key words and phrases. Γ -LA-semigroup, Γ -LA band, Intuitionistic fuzzy set, Intuitionistic fuzzy Left (Right) Γ -ideal, Intuitionistic fuzzy Γ -ideal,

1) $x\gamma y \in S$ 2) $(x\beta y)\gamma z = (z\beta y)\gamma x$ for all $x, y, z \in S$ and $\beta, \gamma \in \Gamma$.

Definition 2. [6] A non-empty set U of a Γ -LA-semigroup S is said to be a Γ -sub LA-semigroup S if $U\Gamma U \subseteq U$.

Definition 3. [6] A left (right) Γ -ideal of a Γ -LA-semigroup S is non-empty subset U of S such that $S\Gamma U \subseteq U$ ($U\Gamma S \subseteq U$) if U is both a left and a right Γ -ideal of a Γ -LA-semigroup S, then we say that U is Γ -ideal of S.

Definition 4. [1, 2] Let X be a nonempty fixed set. An intuitionistic fuzzy set (briefly, IFS) A is object having the form

$$A = \{(x, \mu_A(x), \gamma_A(x) : x \in X\}$$

where the functions $\mu_A : X \longrightarrow [0,1]$ and $\gamma_A : X \longrightarrow [1,0]$ denote the degre of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for all $x \in S$ for the sake of simplicity, we use the symbol $A = (\mu_A, \gamma_A)$ for the IFS $A = \{(x, \mu_A(x), \gamma_A(x) : x \in X\}.$

Definition 5. [9] A fuzzy set μ in a Γ -LA-semigroup S is called fuzzy Γ -subLA-semigroup of S, if $\mu_A(x\gamma y) \ge \mu_A(x) \land \mu_A(y)$ for all $x, y \in S$ and $\gamma \in \Gamma$.

Definition 6. [9] A fuzzy set μ in a Γ -LA-semigroup S is called fuzzy left(resp, right) Γ -ideal of S, if $\mu_A(x\gamma y) \ge \mu_A(y)$ (resp, $\mu_A(x\gamma y) \ge \mu_A(x)$) for all $x, y \in S$ and $\gamma \in S$. A fuzzy set μ in a Γ -LA-semigroup S is called fuzzy Γ -ideal of S, if fuzzy set μ is both fuzzy left Γ -ideal and fuzzy right Γ -ideal of Γ -LA-semigroup S.

3. Intuitionistic fuzzy Γ -ideals.

In what follows, S denote as Γ -LA-semigroup, unless otherwisespecified.

Definition 7. An IFS $A = (\mu_A, \gamma_A)$ in S is called an intuitionistic fuzzy Γ -subLA-semigroup of S if satisfies.

 $\begin{array}{ll} (\mathrm{IF1}) & \mu_A(x\gamma y) \geq \mu_A(x) \wedge \mu_A(y), \\ (\mathrm{IF2}) & \gamma_A(x\gamma y) \leq \gamma_A(x) \vee \gamma_A(y), \\ \mathrm{for \ all} \ x, y \in S. \end{array}$

Definition 8. An IFS $A = (\mu_A, \gamma_A)$ in S is called an intuitionistic fuzzy right Γ -ideal of S if satisfies.

(IF3) $\mu_A(x\gamma y) \ge \mu_A(x),$ (IF4) $\gamma_A(x\gamma y) \le \gamma_A(x),$ for all $x, y \in S.$

Definition 9. An IFS $A = (\mu_A, \gamma_A)$ in S is called an intuitionistic fuzzy left Γ -ideal of S if satisfies.

(IF5) $\mu_A(x\gamma y) \ge \mu_A(y),$ (IF6) $\gamma_A(x\gamma y) \le \gamma_A(y),$ for all $x, y \in S.$ **Example 1.** Let $S = \{-i, 0, i\}$ and $\Gamma = S$. Then by defining $S \times \Gamma \times S \to S$ as $a\gamma b = a.\gamma.b$ for all $a, b \in S$ and $\gamma \in \Gamma$. It can be easily verified that S is a Γ -LA-semigroup under complex number multiplication while S is not an LAsemigroup. Let $A = \langle \mu_A, \gamma_A \rangle$ be IFS on S. $\mu_A : S \longrightarrow [1,0]$ by $\mu_A(0) = 0.7, \mu_A(i) =$ $\mu_A(-i) = 0.5$ and $\gamma_A(0) = 0.2, \gamma_A(i) = \gamma_A(-i) = 0.4$, Then by routine calculation $A = \langle \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy Γ -ideal of S.

Theorem 1. Let S be Γ -LA-semigroup with left identity. Then every intuitionistic fuzzy right Γ - ideal of S is an intuitionistic fuzzy left Γ -ideal,

Proof. Let $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy right Γ - ideal of S and let $x, y \in S$ and $\alpha, \beta \in \Gamma$. Then

$$\begin{array}{lll} \mu_A(x\alpha y) &=& \mu_A((e\beta x)\alpha y) = \mu_A((y\beta x)\alpha e) \\ &\geq& \mu_A(y\beta x) \geq \mu_A(y) \\ \mu_A(x\alpha y) &\geq& \mu_A(y) \end{array}$$

and

$$\begin{array}{lll} \gamma_A(x\alpha y) &=& \gamma_A((e\beta x)\alpha y) = \gamma_A((y\beta x)\alpha e) \\ &\leq& \gamma_A(y\beta x) \leq \gamma_A(y) \\ \gamma_A(x\alpha y) &\leq& \gamma_A(y) \end{array}$$

Hence $A = \langle \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy left Γ - ideal of S.

Corollary 1. In Γ -LA-semigroup S with left identity, every intuitionistic fuzzy right Γ - ideal of S is intuitionistic fuzzy Γ - ideal of S.

Theorem 2. Let $\{A_i\}_{i \in \Lambda}$ be family of intuitionistic fuzzy Γ -ideals of Γ -LAsemigroup S. Then $\cap A_i$ is also an intuitionistic fuzzy Γ -ideals of S, where

$$\begin{array}{lll} \cap A_i &=& \langle \wedge \mu_{A_i}, \vee \gamma_{A_i} \rangle \ and \\ \wedge \mu_{A_i}(x) &=& \inf\{\mu_{A_i}(x) \ / \ i \in \Lambda, \ x \in S\} \\ \vee \gamma_{A_i}(x) &=& \sup\{\gamma_{A_i}(x) \ / \ i \in \Lambda, \ x \in S\} \end{array}$$

Proof. Let $\{A_i\}_{i \in \Lambda}$ intuitionistic fuzzy Γ -ideals of Γ -LA-semigroup S and let for any $x, y \in S$ and $\gamma \in \Gamma$. Then

and

$$\begin{array}{lll} \wedge \mu_{A_i}(x\gamma y) & \geq & \wedge \mu_{A_i}(y) \\ \vee \gamma_{A_i}(x\gamma y) & \leq & \vee \gamma_{A_i}(y) \end{array}$$

Hence $\cap A_i = \langle \wedge \mu_{A_i}, \vee \gamma_{A_i} \rangle$ is an intuitionistic fuzzy Γ -ideals of Γ -LA-semigroup S,

Theorem 3. Let $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy left(resp, right) Γ -ideal of Γ -LA-semigroup S. Then $\Box A = \langle \mu_A, \overline{\mu_A} \rangle$ is an intuitionistic fuzzy left(resp, right) Γ - ideal of S, where $\overline{\mu_A} = 1 - \mu_A$.

Proof. Let $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy left Γ - ideal of Γ -LA-semigroup S and let for any $x, y \in S$ and $\gamma \in \Gamma$. Then

$$\begin{array}{rcl} \mu_A(x\gamma y) &\geq & \mu_A(y) \\ -\mu_A(x\gamma y) &\leq & -\mu_A(y) \\ 1 - \mu_A(x\gamma y) &\leq & 1 - \mu_A(y) \\ \bar{\mu_A}(x\gamma y) &\leq & \bar{\mu_A}(y) \end{array}$$

Hence $\Box A = \langle \mu_A, \overline{\mu_A} \rangle$ is an intuitionistic fuzzy left Γ - ideal of Γ -LA-semigroup S

Definition 10. Let $A = \langle \mu_A, \gamma_A \rangle$ be an IFS in S and $\alpha \in [0, 1]$. Then sets

$$\boldsymbol{\mu}_{A,\alpha}^{\geq} := \{ x \in S \ / \ \boldsymbol{\mu}_A(x) \geq \alpha \}, \boldsymbol{\gamma}_{A,\alpha}^{\leq} := \{ x \in S \ / \ \boldsymbol{\gamma}_A(x) \leq \alpha \}$$

are called a μ -level α -cut and γ -level α -cut of A respectively.

Theorem 4. Let $A = \langle \mu_A, \gamma_A \rangle$ be an IFS in Γ -LA-semigroup S. Then $A = \langle \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy left(resp,right) Γ - ideal of Γ -LA-semigroup S if and only if μ -level α -cut and γ -level α -cut of A are left(resp,right) Γ - ideal of S.

Proof. Let $\alpha \in [0,1]$. Suppose $\mu_{\overline{A},\alpha}^{\geq}(=\Phi)$, and $\gamma_{\overline{A},\alpha}^{\leq}(=\Phi)$, are left Γ - ideal of Γ -LA-semigroup S.We must show that $A = \langle \mu_A, \gamma_A \rangle$ an intuitionistic fuzzy left Γ - ideal of S. Suppose $A = \langle \mu_A, \gamma_A \rangle$ is not an intuitionistic fuzzy left Γ - ideal of S, then there exit x_{\circ}, y_{\circ} in S and $\gamma \in \Gamma$ such that

$$\mu_A(x_\circ\gamma y_\circ) < \ \mu_A(y_\circ).$$

Taking

$$\alpha_{\circ} = \frac{1}{2} \{ \mu_A(x_{\circ}\gamma y_{\circ}) + \mu_A(y_{\circ}) \}$$

we have $\mu_A(x_\circ \gamma y_\circ) < \alpha_\circ < \mu_A(y_\circ)$. It follows that $y_\circ \in \mu_{A,\alpha}^{\geq}$ and $x_\circ \in S$ and $\gamma \in \Gamma$ but $x_\circ \gamma y_\circ \notin \mu_{A,\alpha}^{\geq}$, which is a contradication. Thus

$$\mu_A(x\gamma y) \ge \ \mu_A(y)$$

for all $x, y \in S$ and $\gamma \in \Gamma$, and now

$$\gamma_A(x_\circ\gamma y_\circ) > \gamma_A(y_\circ).$$

Taking

$$\alpha_{\circ} = \frac{1}{2} \{ \gamma_A(x_{\circ} \gamma y_{\circ}) + \gamma_A(y_{\circ}) \}$$

we have $\gamma_A(x_\circ\gamma y_\circ) < \alpha_\circ < \gamma_A(y_\circ)$. It follows that $y_\circ \in \gamma_{A,\alpha}^{\geq}$ and $x_\circ \in S, \gamma \in \Gamma$ but $x_\circ\gamma y_\circ \notin \gamma_{A,\alpha}^{\geq}$, which is again a contradiction. Thus

$$\gamma_A(x_\circ\gamma y_\circ) \le \gamma_A(y_\circ)$$

Hence $A = \langle \mu_A, \gamma_A \rangle$ an intuitionistic fuzzy Γ - ideal of Γ -LA-semigroup S.

Conversely, suppose $A = \langle \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy left Γ - ideal of Γ -LA-semigroup S, and let $\alpha \in [0, 1]$ and for any $x \in S$, $\gamma \in \Gamma$ and $y \in \mu_{A,\alpha}^{\geq}$. Then

$$\begin{array}{lll} \mu_A(x\gamma y) & \geq & \mu_A(y) \geq \alpha \\ \mu_A(x\gamma y) & \geq & \alpha \end{array}$$

 $x\gamma y \in \mu_{A,\alpha}^{\geq}$ for all $x \in S$, $\gamma \in \Gamma$ and $y \in S$. Hence $\mu_{A,\alpha}^{\geq}$ is left Γ - ideal of Γ -LA-semigroup. Now $x \in S$, $\gamma \in \Gamma$ and $y \in \gamma_{A,\alpha}^{\geq}$. Then

$$\gamma_A(x\gamma y) \le \gamma_A(y) \le \alpha$$

 $x\gamma y \in \gamma_{A,\alpha}^{\geq}$ for all $x \in S, \gamma \in \Gamma$ and $y \in S$. Hence $\gamma_{A,\alpha}^{\geq}$ is left Γ - ideal of Γ -LA-semigroup S.

Example 2. Let $S = \{1, 2, 3, 4, 5\}$ with binary operation "*". Then (S, *) is an LA-semigroup by the following table

	*	1	2	3	4	5
ĺ	1	2	2	2	2	2
ĺ	2	2	2	2	2	2
Ì	3	2	2	2	2	2
Ì	4	2	2	2	2	2
ĺ	5	2	3	3	2	2

Now let $S = \{1, 2, 3, 4, 5\}$ and $\Gamma = \{1\}$ and define a mapping $S \times \Gamma \times S \longrightarrow S$, by a1b = a * b for all $a, b \in S$. Then it is easy to see that S is a Γ -LA-semigroup. Let $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set defined by $\mu_A(1) = \mu_A(2) = \mu_A(3) = 0.7$, $\mu_A(4) = 0.5$, $\mu_A(5) = 0.2$. and $\gamma_A(1) = \gamma_A(2) = \gamma_A(3) = 0.2$, $\gamma_A(4) = 0.4$, $\gamma_A(1) = 0.7$. Now we find its level sets $\mu_{A,\alpha}^{\geq}$ and $\gamma_{A,\alpha}^{\leq}$ of A.

$$\begin{split} \mu_{A,\alpha}^{\geq}(x) &= \begin{cases} S & \text{If } \alpha \in (0,0.2] \\ \{1,2,3,4\} & \text{If } \alpha \in (0.2,0.5] \\ \{1,2,3\} & \text{If } \alpha \in (0.5,0.7] \\ \Phi & \text{If } \alpha \in (0.7,1] \end{cases} \\ \gamma_A(x) &= \begin{cases} \Phi & \text{If } \alpha \in [0,0.2) \\ \{1,2,3,4\} & \text{If } \alpha \in [0.2,0.5) \\ \{1,2,3,4\} & \text{If } \alpha \in [0.4,0.7) \\ S & \text{If } \alpha \in [0.7,1) \end{cases}$$

By using Theorem ??, $A = \langle \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy Γ -ideal of Γ -LAsemigroup S. By routine calculation $A = \langle \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy bi- Γ -ideal of Γ -LA-semigroup S.

Theorem 5. Every intuitionistic fuzzy left(right), Γ -ideals of Γ -LA-semigroup S is an intuitonistic fuzzy bi- Γ -ideals of Γ -LA-semigroup S.

Proof. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy left, Γ -ideals of Γ -LA-semigroup S. And $w, x, y \in S$ and $\alpha, \gamma \in \Gamma$ then

$$\begin{array}{lll} \mu_A((x\alpha w)\gamma y) &\geq & \mu_A(y) \\ \mu_A((x\alpha w)\gamma y) &= & \mu_A((y\alpha w)\gamma x) \geq \mu_A(y) \\ \mu_A((x\alpha w)\gamma y) &\geq & \min\{\mu_A(z), \mu_A(y) \end{array}$$

and

$$\begin{array}{lcl} \gamma_A((x\alpha w)\gamma y) &\leq & \gamma_A(y) \\ \gamma_A((x\alpha w)\gamma y) &= & \gamma_A((y\alpha w)\gamma x) \leq \gamma_A(x) \\ \gamma_A((x\alpha w)\gamma y) &\leq & \max\{\gamma_A(x),\gamma_A(y) \end{array}$$

for all $x, w, y \in S$. Hence $A = (\mu_A, \gamma_A)$ is an intuitonistic fuzzy bi- Γ -ideals of Γ -LA-semigroup S.

Theorem 6. Let IF(S) denote the set of all intuitionistic fuzzy left(right) Γ -ideal of Γ -LA-semigroup S. Then $(IF(S), \subseteq, U, \cap)$ is lattice.

Proof. For all $A, B, C \in IF(S)$ then we have satisfied the foolowing conditions 1) Reflexive: Since

$$\mu_A(x) \le \mu_A(x) and \gamma_A(x) \ge \gamma_A(x)$$

always then $A \subseteq B$

2) Antisymmetric: For all $A, B \in IF(S)$ we have $A \subseteq B$ and $B \subseteq A$ then

 $\mu_A(x) \leq \mu_B(x), \gamma_A(x) \geq \gamma_B(x)$

and

$$\mu_B(x) \le \mu_A(x), \gamma_B(x) \ge \gamma A(x)$$

for all $x \in S$. Thus A = B

3) Transitive For all $A, B, C \in IF(S)$ Such that

$$A \subseteq B$$
 and $B \subseteq C$

then

$$\begin{array}{lll} \mu_A(x) & \leq & \mu_B(x), \gamma_A(x) \geq \gamma_B(x) \\ \mu_B(x) & \leq & \mu_C(x), \gamma_B(x) \geq \gamma_C(x) \end{array}$$

it follows that

$$\mu_A(x) \le \mu_C(x), \gamma_A(x) \ge \gamma_C(x)$$

Thus $A \subseteq C$ Hence $(IF(S), \subseteq)$ is Poset.Now for lattice we have see that sup and inf of any two intuitionistic fuzzy set $A, B \in (IF(S))$

Inf: For any two $A, B \in (IF(S) \operatorname{Inf} \{A, B\} = A \cap B$

$$A \cap B = \{\mu_A \land \mu_B, \gamma_A \lor \gamma_B$$

Now we show that $A \cap B$ is an intuitionistic fuzzy right Γ -ideal of Γ -LA-semigroup S. For any $x, y \in S$ and $\alpha \in \Gamma$

$$\begin{array}{lll} (\mu_A \wedge \mu_B)(x\alpha y) &=& \mu_A(x\alpha y) \wedge \mu_A(x\alpha y) \\ &\geq& \mu_A(x) \wedge \mu_A(x) = (\mu_A \wedge \mu_B)(x) \\ (\mu_A \wedge \mu_B)(x\alpha y) &\geq& (\mu_A \wedge \mu_B)(x) \end{array}$$

and

$$\begin{array}{lll} (\gamma_A \lor \gamma_B)(x\alpha y) &=& \gamma_A(x\alpha y) \lor \gamma_A(x\alpha y) \\ &\leq& \gamma_A(x) \lor \gamma_A(x) = (\gamma_A \lor \gamma_B)(x) \\ (\gamma_A \lor \gamma_B)(x\alpha y) &\leq& (\gamma_A \lor \gamma_B)(x) \end{array}$$

 $A \cap B$ is intuitionistic fuzzy right Γ -ideal of Γ -LA-semigroup S. This mean $A \cap B \in IF(S)$, $\inf\{A, B\}$ exist in IF(S).

Inf For any two $A, B \in (IF(S) \text{ Sup } \{A, B\} = A \cup B$

$$\begin{array}{rcl} A \cup B &=& \{\mu_A \lor \mu_B, \gamma_A \land \gamma_B\} \\ (\mu_A \lor \mu_B)(x \alpha y) &=& \mu_A(x \alpha y) \lor \mu_A(x \alpha y) \\ &\geq& \mu_A(x) \lor \mu_A(x) = (\mu_A \lor \mu_B)(x) \\ (\mu_A \lor \mu_B)(x \alpha y) &\geq& (\mu_A \lor \mu_B)(x) \end{array}$$

and

$$\begin{array}{lll} (\gamma_A \wedge \gamma_B)(x \alpha y) &=& \gamma_A(x \alpha y) \wedge \gamma_A(x \alpha y) \\ &\leq& \gamma_A(x) \wedge \gamma_A(x) = (\gamma_A \wedge \gamma_B)(x) \\ (\gamma_A \wedge \gamma_B)(x \alpha y) &\leq& (\gamma_A \wedge \gamma_B)(x) \end{array}$$

 $A \cup B$ is intuitionistic fuzzy right Γ -ideal of Γ -LA-semigroup S. This mean $A \cup B \in IF(S)$, $Sup\{A, B\}$ exist in IF(S). Hence $(IF(S), \subseteq, U, \cap)$ is lattice. \Box

Definition 11. Let f be mapping from a set X to Y and μ be fuzzy set in Y, then the pre-image of μ under f denoted by $f^{-1}(\mu)$ and define as

$$f^{-1}(\mu(x)) = \mu(f(x))$$
 for all $x \in S$

Definition 12. Let $f: S \longrightarrow S_1$ be homomorphism from Γ -LA-semigroup S to Γ -LA-semigroup S_1 and $h: \Gamma \longrightarrow \Gamma_1$. If $A = \langle \mu_A, \gamma_A \rangle$ an intuitionistic fuzzy set in S_1 then the preimage of $A = \langle \mu_A, \gamma_A \rangle$ is denoted by $f^{-1}(A) = \langle f^{-1}(\mu_A), f^{-1}(\gamma_A) \rangle$ and define as $f^{-1}(\mu_A(x)) = (\mu_A(f(x)))$ and $f^{-1}(\gamma_A(x)) = (\gamma_A(f(x)))$

Theorem 7. Let the pair of mappings $f: S \longrightarrow S_1, h: \Gamma \longrightarrow \Gamma_1$ be homomorphism of Γ -LA-semigroup. $A = \langle \mu_A, \gamma_A \rangle$ is an intuitonistic fuzzy left(resp, right) Γ -ideal of Γ -LA-semigroup S_1 . Then $f^{-1}(A) = \langle f^{-1}(\mu_A), f^{-1}(\gamma_A) \rangle$ is an intuitonistic fuzzy left(resp, right) Γ -ideal of Γ -LA-semigroup S.

Proof. Let $x, y \in S$ and $\alpha \in \Gamma$ and let $A = \langle \mu_A, \gamma_A \rangle$ is an intuitonistic fuzzy left Γ -ideal of Γ -LA-semigroup S_1 . Then

$$f^{-1}(\mu_A(x\alpha y) = (\mu_A(f(x\alpha y))) = (\mu_A(f(x)h(\alpha)f(y))) f^{-1}(\mu_A(x\alpha y) \ge \mu_A(f(y)) = f^{-1}\mu_A(y)$$

and

$$\begin{aligned} f^{-1}(\gamma_A(x\alpha y)) &= (\gamma_A(f(x\alpha y))) = (\gamma_A(f(x)h(\alpha)f(y))) \\ f^{-1}(\gamma_A(x\alpha y)) &\leq \gamma_A(f(y)) = f^{-1}(\gamma_A(y)) \end{aligned}$$

for all $x, y \in S$ and $\alpha \in \Gamma$. Hence $f^{-1}(A) = \langle f^{-1}(\mu_A), f^{-1}(\gamma_A) \rangle$ is an intuitonistic fuzzy left Γ -ideal of Γ -LA-semigroup S. And similarly for an intuitonistic fuzzy right Γ -ideal of Γ -LA-semigroup S.

Definition 13. Let $f : [1,0] \longrightarrow [1,0]$ is an increasing function and $A = (\mu_A, \gamma_A)$ be an IFS of Γ -LA-semigroup S. Then $A_f = (\mu_{A_f}, \gamma_{A_f})$ be an IFS of Γ -LA-semigroup S, define as $\mu_{A_f}(x) = f(\mu_A(x))$ and $\gamma_{A_f}(x) = f(\gamma_A(x))$ for all $x \in S$.

Proposition 1. Let S be Γ -LA-semigroup. If $A = (\mu_A, \gamma_A)$ is an intuitonistic fuzzy left(resp, right) Γ -ideal of S, then $A_f = (\mu_{A_f}, \gamma_{A_f})$ an intuitonistic fuzzy left(resp, right) Γ -ideal of S.

Proof. Let $A = (\mu_A, \gamma_A)$ is an intuitonistic fuzzy left Γ -ideal of S. Let for any $x, y \in S$ and $\alpha \in \Gamma$ and $A_f = (\mu_{A_f}, \gamma_{A_f})$ be IFS of S. then

$$\mu_{A_f}(x\alpha y) = f(\mu_A(x\alpha y)) \ge f(\mu_A(y))$$

and

$$\begin{array}{lll} \gamma_{A_f}(x\alpha y) &=& f(\gamma_A(x\alpha y)) \leq f(\gamma_A(y)) \\ \mu_{A_f}(x\alpha y) &\geq& f(\mu_A(y)) \mbox{ and } \gamma_{A_f}(x\alpha y) \leq f(\gamma_A(y)) \end{array}$$

for all $x, y \in S$. Hence $A_f = (\mu_{A_f}, \gamma_{A_f})$ is an intuitonistic fuzzy left Γ -ideal of S.

Proposition 2. Let $A = (\mu_A, \gamma_A)$ be an intutionistic fuzzy left Γ -ideal of left zero Γ -LA-semigroup S. Then A(x) = A(z) for all $x, z \in S$.

Proof. Let $x, z \in S$ and $\alpha \in \Gamma$. Since S is left zero Γ -LA-semigroup S then $x\alpha z = x$ and $z\alpha x = z$ then we have

$$\begin{array}{lll} \mu_A(x) &=& \mu_A(x\alpha z) \geq \mu_A(z) \Longrightarrow \mu_A(x) \geq \mu_A(z) \\ \mu_A(z) &=& \mu_A(z\alpha x) \geq \mu_A(x) \Longrightarrow \mu_A(z) \geq \mu_A(x) \\ \mu_A(x) &=& \mu_A(z) \end{array}$$

and

$$\begin{array}{lll} \gamma_A(x) &=& \gamma_A(x\alpha z) \leq \gamma_A(z) \Longrightarrow \gamma_A(x) \leq \gamma_A(z) \\ \gamma_A(z) &=& \gamma_A(z\alpha x) \leq \gamma_A(x) \Longrightarrow \gamma_A(z) \leq \gamma_A(x) \\ \gamma_A(x) &=& \gamma_A(z) \end{array}$$

For all $x, z \in S$. Hence A(x) = A(z) for all $x, z \in S$.

Proposition 3. Let I be left Γ -ideal of Γ -LA-semigroup S. Then $A = (x_I, \bar{x_I})$ is an intuitonistic fuzzy left Γ -ideal of Γ -La-semigroup S. Where x_I is characteristic functions.and $\bar{x_I} = 1 - x_I$

Proof. Let $y, z \in S$ and $\alpha \in \Gamma$ and $A = (x_I, \overline{x_I})$ be IFS of S. Since I left Γ -ideal of Γ -LA-semigroup S, then we have two case's i) if $y \in I$ and ii) $y \notin I$

case i) if $y \in I$ then $y \alpha z \in I$ then

$$x_I(y) = 1$$
 and $x_I(y\alpha z) = 1$

and also

$$x_I(y\alpha z) = 1 = x_I(y)$$

ii) if $y \notin I$ then

$$x_I(y) = 0 \text{ and } x_I(y\alpha z) \ge 0$$

 $x_I(y\alpha z) \ge 0 = x_I(y) \Longrightarrow x_I(y\alpha z) \ge x_I(y)$

if $y \in I$

$$1 - x_I(y) = 1 - 1 = 0$$
 and $1 - x_I(y\alpha z) = 1 - 1 = 0$
 $\bar{x_I}(y\alpha z) = \bar{x_I}(y)$

if $y \notin I$ then

$$\bar{x_I}(x) = 1 - x_I(y) = 1 - 0 = 1$$

$$\bar{x_I}(y\alpha z) \leq \bar{x_I}(x)$$

Hence $A = (x_I, \overline{x_I})$ is an nutritonistic fuzzy left Γ -ideal of Γ -La-semigroup S. \Box

Definition 14. Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ two an intuitonistic fuzzy left(resp, right) Γ -ideal of Γ -LA-semigroup S. then product of $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ is denoted by $A\Gamma B$ and defined as

$$\begin{aligned} \mu_{A\Gamma B}(x) &= & \lor_{x=y\alpha z} \{ \mu_A(y) \land \mu_B(x) \} \\ \gamma_{A\Gamma B}(x) &= & \land_{x=y\alpha z} \{ \gamma_A(y) \lor \gamma_A(z) \end{aligned}$$

Lemma 1. $A = (\mu_A, \gamma_A) B = (\mu_B, \gamma_B)$ be any two intuitionistic fuzzy right(left) ideal of Γ -LA-semigroup S with left identity. Then $A\Gamma B$ is also intuitionistic fuzzy right(left) ideal of S

Theorem 8. Let IF(S) denote the set of all intuitionistic fuzzy left(right) ideal of Γ -LA-semigroup S with left identity. Then $(IF(S), \Gamma)$ is Γ -LA-semigroup

Proof. let IF(S) denote the set of all intuitionistic fuzzy left(right) ideal of S then clearly $(IF(S), \Gamma)$ is closed by Lemma 1. Now for any $A = (\mu_A, \gamma_A) B = (\mu_B, \gamma_B)$ $C = (\mu_{C,\gamma_{C}}) \in S$, then

$$\begin{split} \mu_{(A\Gamma B)\Gamma C}(x) &= & \lor_{x=y\alpha z} \{ \mu_{A\Gamma B}(y) \land \mu_{C}(z) \} \\ &= & \lor_{x=y\alpha z} \{ \lor_{y=p\beta q} \{ \mu_{A}(p) \land \mu_{B}(q) \} \land \mu_{C}(z) \} \\ &= & \lor_{x=(p\beta q)\alpha z} \{ \mu_{A}(p) \land \mu_{B}(q) \land \mu_{C}(z) \} \\ &= & \lor_{x=(z\beta q)\alpha p} \{ \mu_{C}(z) \land \mu_{B}(q) \land \mu_{A}(p) \} \\ &\leq & \lor_{x=w\alpha p} \{ \lor_{w=z\beta q} \{ \mu_{C}(z) \land \mu_{B}(q) \} \land \mu_{C}(p) \} \\ &= & \lor_{x=w\alpha p} \{ \bigvee_{w=z\beta q} \{ \mu_{C}(z) \land \mu_{B}(q) \} \land \mu_{C}(p) \} \\ &= & \lor_{x=w\alpha p} \{ \mu_{C\Gamma B}(w) \land \mu_{A}(p) \} = \mu_{(C\Gamma B)\Gamma A}(x) \end{split}$$
This implies $\mu_{(A\Gamma B)\Gamma C}(x) \leq \mu_{(C\Gamma B)\Gamma A}(x)$
Similarly $\mu_{(C\Gamma B)\Gamma A}(x) \leq \mu_{(A\Gamma B)\Gamma C}(x)$ and thus $\mu_{(A\Gamma B)\Gamma C}(x) = \mu_{(C\Gamma B)\Gamma A}(x)$

and

Simila

$$\begin{split} \gamma_{(A\Gamma B)\Gamma C}(x) &= & \wedge_{x=y\alpha z} \{ \gamma_{A\Gamma B}(y) \lor \gamma_{C}(z) \} \\ &= & \wedge_{x=y\alpha z} \{ \wedge_{y=m\beta n} \{ \gamma_{A}(m) \lor \gamma_{B}(n) \} \lor \gamma_{C}(z) \} \\ &= & \wedge_{x=(m\beta n)\alpha z} \{ \gamma_{A}(m) \lor \gamma_{B}(n) \lor \gamma_{C}(z) \} \\ &= & \wedge_{x=(z\beta n)\alpha m} \{ \gamma_{C}(z) \lor \gamma_{B}(n) \lor \gamma_{A}(m) \} \\ &\geq & \wedge_{x=l\alpha m} \{ \wedge_{x=z\beta n} \{ \gamma_{C}(z) \lor \gamma_{B}(n) \} \lor \gamma_{A}(m) \} \\ &= & \wedge_{x=l\alpha m} \{ \gamma_{A\Gamma B}(l) \lor \gamma_{C}(m) \} = \gamma_{(C\Gamma B)\Gamma A}(x) \\ \gamma_{(A\Gamma B)\Gamma C}(x) &\geq & \gamma_{(C\Gamma B)\Gamma A}(x) \\ \end{split}$$
Similarly $\gamma_{(C\Gamma B)\Gamma A}(x) \geq & \gamma_{(A\Gamma B)\Gamma C}(x) \text{ and thus } \gamma_{(A\Gamma B)\Gamma C}(x) = \gamma_{(C\Gamma B)\Gamma A}(x) \end{split}$

Hence

$(A\Gamma B)\Gamma C = (C\Gamma B)\Gamma A$

Thus $(IF(S), \Gamma)$ is Γ -LA-semigroup S.

Proposition 4. Let S be a Γ -LA-semigroup with left identity, if $A = \langle \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy right Γ -ideal of Γ -LA-semigroup S. Then $A\Gamma A$ is an intuitionistic fuzzy Γ -ideal of S.

Proof. Since $A = \langle \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy right Γ -ideal of S, then A = $\langle \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy left Γ -ideal of S. Let for all $a, b \in S$ and $\alpha, \gamma \in \Gamma$ if $a \neq x\gamma y$ then

$$\mu_{A\Gamma A}(a) = 0 \text{ and } \mu_{A\Gamma A}(a\alpha b) \ge \mu_{A\Gamma A}(a)$$

and

$$\gamma_{A\Gamma A}(a) = 0 \text{ and } \gamma_{A\Gamma A}(a\alpha b) \leq \gamma_{A\Gamma A}(a)$$

otherwise

 \mathbf{SO}

$$\begin{split} \mu_{A\Gamma A}(a) &= \bigvee_{a=x\gamma y} \{\mu_A(x) \land \mu_A(y)\} \\ &\text{if } a &= x\gamma y \text{ then } a\alpha b = (x\gamma y)\alpha b = (b\gamma y)\alpha x \text{ by left invertible law.} \\ \mu_{A\Gamma A}(a) &= \bigvee_{a=x\gamma y} \{\mu_A(y) \land \mu_A(x)\} \\ \mu_{A\Gamma A}(a) &\leq \bigvee_{a=x\gamma y} \{\mu_A(b\gamma y) \land \mu_A(x)\} \text{ since } A \text{ is IF left } \Gamma - \text{ideal} \\ &\leq \bigvee_{a\alpha b = (b\gamma y)\alpha x} \{\mu_A(b\gamma y) \land \mu_A(x)\} = \mu_{A\Gamma A}(a\alpha b) \\ \mu_{A\Gamma A}(a\alpha b) &\geq \mu_{A\Gamma A}(a) \\ &\text{and } \gamma_{A\Gamma A}(a) &= \bigwedge_{a=x\gamma y} \{\gamma_A(x) \lor \gamma_A(y)\} \\ \gamma_{A\Gamma A}(a) &= \bigwedge_{a=x\gamma y} \{\gamma_A(b\gamma y) \lor \gamma_A(x)\} \\ \gamma_{A\Gamma A}(a) &\geq \bigwedge_{a=x\gamma y} \{\gamma_A(b\gamma y) \lor \gamma_A(x)\} \text{ since } A \text{ is IF left } \Gamma - \text{ideal} \\ &\geq \bigwedge_{a\alpha b = (b\gamma y)\alpha x} \{\gamma_A(b\gamma y) \lor \gamma_A(x)\} = \gamma_{A\Gamma A}(a\alpha b) \\ \gamma_{A\Gamma A}(a\alpha b) &\leq \gamma_{A\Gamma A}(a) \end{split}$$

Hence $A\Gamma A = \langle \mu_{A\Gamma A}, \gamma_{A\Gamma A} \rangle$ is an intuitionistic fuzzy right Γ -ideal of S, and by Theorem 1 $A\Gamma A = \langle \mu_{A\Gamma A}, \gamma_{A\Gamma A} \rangle$ is an intuitionistic fuzzy left Γ -ideal of S. \Box

Theorem 9. Let S be a Γ -LA-semigroup with left identity. Then for any A, B, C IFS of S. $A\Gamma(B\Gamma C) = B\Gamma(A\Gamma C)$

 $\textit{Proof. Let } x \in S \textit{ and } A = \langle \mu_A, \gamma_A \rangle, B = \langle \mu_B, \gamma_B \rangle, C = \langle \mu_C, \gamma_C \rangle \textit{ be any IFS of } S.$ Then

$$\begin{split} \mu_{A\Gamma(B\Gamma C)}(x) &= \bigvee_{x=y\alpha z} \{\mu_A(y) \land \mu_{B\Gamma C}(z)\} \\ &= \bigvee_{x=y\alpha z} \{\mu_A(y) \land [\bigvee_{z=s\beta t} \{\mu_B(s) \land \mu_C(t)\}]\} \\ &= \bigvee_{x=y\alpha(s\beta t)} \{\mu_A(y) \land \mu_B(s) \land \mu_C(t)\} \\ &= \bigvee_{x=s\alpha(y\beta t)} \{\mu_B(s) \land \mu_A(y) \land \mu_C(t)\} \\ \text{since } \mu_A(y) \land \mu_C(t) &\leq \bigvee_{y\alpha t=a\gamma b} \{\mu_A(a) \land \mu_C(b)\} \\ \text{so} &\leq \bigvee_{x=s\alpha(y\beta t)} \{\mu_B(s) \land [\bigvee_{y\beta t=a\gamma b} \{\mu_A(a) \land \mu_C(b)\}]\} \\ &= \bigvee_{x=s\alpha(y\beta t)} \{\mu_B(s) \land \mu_{A\Gamma C}(y\beta t)\} \\ &\leq \bigvee_{x=p\alpha q} \{\mu_B(p) \land \mu_{A\Gamma C}(q)\} = \mu_{B\Gamma(A\Gamma C)}(x) \\ &\mu_{A\Gamma(B\Gamma C)}(x) &\leq \mu_{B\Gamma(A\Gamma C)}(x) \Longrightarrow \mu_{A\Gamma(B\Gamma C)} \leq \mu_{B\Gamma(A\Gamma C)} \\ \text{Similarly } \gamma_{A\Gamma(B\Gamma C)}(x) &\geq \gamma_{B\Gamma(A\Gamma C)}(x) \Longrightarrow \gamma_{A\Gamma(B\Gamma C)} \geq \gamma_{B\Gamma(A\Gamma C)} \end{split}$$

and

$$\begin{split} \gamma_{A\Gamma(B\Gamma C)}(x) &= & \bigwedge_{x=y\alpha z} \{\gamma_A(y) \lor \gamma_{B\Gamma C}(z)\} \\ &= & \bigwedge_{x=y\alpha z} \{\gamma_A(y) \lor [\bigwedge_{z=s\beta t} \{\gamma_B(s) \lor \gamma_C(t)\}]\} \\ &= & \bigwedge_{x=y\alpha(s\beta t)} \{\gamma_A(y) \lor \gamma_B(s) \lor \gamma_C(t)\} \\ &= & \bigwedge_{x=s\alpha(y\beta t)} \{\gamma_B(s) \lor \gamma_A(y) \lor \gamma_C(t)\} \\ &= & \bigwedge_{x=s\alpha(y\beta t)} \{\gamma_A(a) \land \gamma_C(b)\} \\ &\geq & \bigwedge_{x=s\alpha(y\beta t)} \{\gamma_B(s) \lor [\bigwedge_{y\beta t=a\gamma b} \{\gamma_A(a) \lor \gamma_C(b)\}]\} \\ &= & \bigwedge_{x=s\alpha(y\beta t)} \{\gamma_B(s) \lor \gamma_{A\Gamma C}(y\beta t)\} \\ &\geq & \bigwedge_{x=p\alpha q} \{\gamma_B(p) \lor \gamma_{A\Gamma C}(q)\} = \gamma_{B\Gamma(A\Gamma C)}(x) \end{split}$$

Thus $A\Gamma(B\Gamma C) \leq B\Gamma(A\Gamma C)$ and similarly $A\Gamma(B\Gamma C) \geq B\Gamma(A\Gamma C)$. Hence $A\Gamma(B\Gamma C) = B\Gamma(A\Gamma C)$.

Lemma 2. Let S be Γ -LA-semigroup and $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy right Γ -ideal of S and $B = \langle \mu_B, \gamma_B \rangle$ be an intuitionistic fuzzy left Γ -ideal of S. Then $A\Gamma B \subseteq A \cap B$

Proof. Let for any $x \in S$ and $\alpha \in \Gamma$. If $x \neq y\alpha z$ for any $y, z \in S$, then

$$\mu_{A\Gamma B}(x) = 0 \le \mu_{A\cap B}(x) = \mu_A \wedge \mu_B(x)$$

otherwise

 \mathbf{SO}

$$\mu_{A\Gamma B}(x) = \bigvee_{x=y\alpha z} \{\mu_A(y) \land \mu_B(z)\}$$

$$\leq \bigvee_{x=y\alpha z} \{\mu_A(y\alpha z) \land \mu_B(y\alpha z)\}$$

$$= \bigvee_{x=y\alpha z} \{\mu_A(x) \land \mu_B(x)\}$$

 $\mu_{A\Gamma B}(x) \leq (\mu_A \wedge \mu_B)(x) \Longrightarrow \mu_{A\Gamma B} \leq (\mu_A \wedge \mu_B)$

and If $x \neq y\alpha z$ for any $y, z \in S$, then

$$\gamma_{A\Gamma B}(x) = 0 \ge \gamma_{A\cap B}(x) = \gamma_A \lor \gamma_B(x)$$

otherwise

$$\begin{array}{lll} \mu_{A\Gamma B}(x) &=& \bigwedge_{x=y\alpha z} \{\gamma_A(y) \vee \gamma_B(z)\} \\ &\leq& \bigwedge_{x=y\alpha z} \{\gamma_A(y\alpha z) \vee \gamma_B(y\alpha z)\} \\ &=& \bigwedge_{x=y\alpha z} \{\gamma_A(x) \vee \gamma_B(x)\} \\ \gamma_{A\Gamma B}(x) &\leq& (\gamma_A \vee \gamma_B)(x) \Longrightarrow \gamma_{A\Gamma B} \leq (\gamma_A \vee \gamma_B) \\ & \text{Hence } A\Gamma B = \langle \mu_{A\Gamma B}, \gamma_{A\Gamma B} \rangle \subseteq \langle \mu_A \wedge \mu_B, \gamma_A \vee \gamma_B \rangle = A \cap B. \end{array}$$

Corollary 2. Let S be Γ -LA-semigroup and $A = \langle \mu_A, \gamma_A \rangle, B = \langle \mu_B, \gamma_B \rangle$ be any intuitionistic fuzzy Γ -ideal of S. Then $A\Gamma B \subseteq A \cap B$

Remark 1. If S is a Γ -LA-semigroup with left identity e and $A = \langle \mu_A, \gamma_A \rangle$ and $B = \langle \mu_B, \gamma_B \rangle$ are intuitionistic fuzzy right Γ -ideal of S. Then $A\Gamma B \subseteq A \cap B$

Remark 2. If S is a Γ -LA-semigroup and $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy Γ -ideal of S. Then $A\Gamma A \subseteq A$

Definition 15. A Γ -LA-semigroup S is called regular if for every $a \in S$, there exists x in S and $\alpha, \beta \in \Gamma$ such that $a = (a\alpha x)\beta a$, or equivalently, $a \in (a\Gamma S)\Gamma a$.

For regular Γ -LA-semigroup it is easy to see that $S\Gamma S = S$

Proposition 5. Every intuitionistic fuzzy right Γ -ideal of regular Γ -LA-semigroup S is an intuitionistic fuzzy left Γ -ideal of S.

Proof. Let $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy right Γ -ideal of S and $a, b \in S$ and $\gamma \in \Gamma$. Since S is regular, there exist $x \in S$, and $\alpha, \beta \in \Gamma$ such that $a = (a\alpha x)\beta a$. Then

$$\begin{split} \mu_A(a\gamma b) &= \mu_A(((a\alpha x)\beta a)\gamma b) \\ &= \mu_A((b\beta a)\gamma(a\alpha x)) \geq \mu_A(b\beta a) \\ \mu_A(a\gamma b) &\geq \mu_A(b) \end{split}$$

and

$$\begin{array}{lll} \gamma_A(a\gamma b) &=& \gamma_A(((a\alpha x)\beta a)\gamma b) \\ &=& \gamma_A((b\beta a)\gamma(a\alpha x)) \geq \gamma_A(b\beta a) \\ \gamma_A(a\gamma b) &\geq& \gamma_A(b) \end{array}$$

Hence $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy left Γ -ideal of S.

Corollary 3. In a regular Γ -LA-semigroup S, every intuitionistic fuzzy right Γ -ideal of S is an intuitionistic fuzzy Γ -ideal of S.

Proposition 6. If $A = \langle \mu_A, \gamma_A \rangle$ and $B = \langle \mu_B, \gamma_B \rangle$ be any intuitionistic fuzzy right Γ -ideal of regular Γ -LA-semigroup S, then $A\Gamma B = A \cap B$

Proof. Since S regular, by proposition 5, Every intuitionistic fuzzy right Γ -ideal of regular Γ -LA-semigroup S is an intuitionistic fuzzy left Γ -ideal of S. By Lemma 2 $A\Gamma B \subseteq A \cap B$.

On the other hand, let $a \in S$, then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = (a\alpha x)\beta a$. Thus

$$\begin{array}{lll} (\mu_A \wedge \mu_B)(a) &=& \mu_A(a) \wedge \mu_B(a) \\ &\leq& \mu_A(a\alpha x) \wedge \mu_B(a) \\ &\leq& \bigvee_{a=(a\alpha x)\beta a} \mu_A(a\alpha x) \wedge \mu_B(a) \\ (\mu_A \wedge \mu_B)(a) &\leq& \mu_{A\Gamma B}(a) \Longrightarrow \mu_A \wedge \mu_B \leq \mu_{A\Gamma B} \end{array}$$

and

$$\begin{array}{lll} (\gamma_A \lor \gamma_B)(a) &=& \gamma_A(a) \lor \gamma_B(a) \\ &\geq& \gamma_A(a\alpha x) \lor \gamma_B(a) \\ &\geq& \bigwedge_{a=(a\alpha x)\beta a} \gamma_A(a\alpha x) \lor \gamma_B(a) \\ (\gamma_A \lor \gamma_B)(a) &\geq& \gamma_{A\Gamma B}(a) \Longrightarrow \gamma_A \lor \gamma_B \ge \gamma_{A\Gamma B} \end{array}$$

Thus $A \cap B \subseteq A\Gamma B$, therefore

$$A\Gamma B \subseteq A \cap B$$
 and $A \cap B \subseteq A\Gamma B \Longrightarrow A \cap B = A\Gamma B$.

Definition 16. A Γ -LA-semigroup S is called Γ -LA band if all of its elements are idempotent i.e for all $x \in S$, there exist $\alpha \in \Gamma$, such that $x\alpha x = x$.

Theorem 10. The concept of intuitionistic fuzzy right and left Γ -ideal in a Γ -LA band are coincide.

Proof. Let $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy right Γ -ideal in a Γ -LA band S and $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$. Then

$$\begin{array}{lll} \mu_A(x\alpha y) &=& \mu_A((x\beta x)\alpha y) \\ &=& \mu_A((y\beta x)\alpha x) \text{ by left invertible law} \\ &\geq& \mu_A(y\beta x) \geq \mu_A(y) \\ \mu_A(x\alpha y) &\geq& \mu_A(y) \end{array}$$

and

$$\begin{array}{lll} \gamma_A(x\alpha y) &=& \gamma_A((x\beta x)\alpha y) \\ &=& \gamma_A((y\beta x)\alpha x) \text{ by left invertible law} \\ &\leq& \gamma_A(y\beta x) \leq \gamma_A(y) \\ \mu_A(x\alpha y) &\leq& \mu_A(y) \end{array}$$

Therefore $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy left Γ -ideal in a Γ -LA band S Conversely suppose that $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy left Γ -ideal in

a Γ -LA band S and $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$. Then

$$\begin{array}{lll} \mu_A(x\alpha y) & = & \mu_A((x\beta x)\alpha y) \\ & = & \mu_A((y\beta x)\alpha y)) \geq \mu_A(y\beta x) \\ & \Longrightarrow & \mu_A(x\alpha y) \geq \mu_A(x) \end{array}$$

and

$$\begin{array}{lll} \gamma_{_{A}}(x\alpha y) & = & \gamma_{_{A}}((x\beta x)\alpha y) \\ & = & \gamma_{_{A}}((y\beta x)\alpha y) \geq \gamma_{_{A}}(y\beta x) \\ & \Longrightarrow & \gamma_{_{A}}(x\alpha y) \geq \gamma_{_{A}}(x) \end{array}$$

Therefore $A = \langle \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy right Γ -ideal in a Γ -LA band. S

References

- [1] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems 20 (1986), no,1,87-96.
- [2] K.T. Atanassov, New operations defined over the intuitionistic fuzzysets, Fuzzy Sets and Systems 61 (1994), 2,137-142.
- [3] K.H.Kim and Y.B.Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math. Sci. 27 (2001), no. 5, 261-142.
- [4] M.A. Kazim and M. Naseerudin, On almost semigroups, Alig.Bull.Math. 2 (1972), 1-7.
- [5] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
- [6] T. Shah and I. Rehman, On Γ-ideals and Γ-Bi-ideals in Γ-AG-groupoid, Int. J. Algebra, 4 (2010), no. 267-276.
- [7] , Intuitionistic fuzzy Ideal of semigroups, Indian. J. Pure Appl. Math. 33 (2002), no. 4, 443-449.

MUHAMMAD ASLAM AND SALEEM ABDULLAH

- [8] M. Uckun, M. A. Ozturk and Y. B. Jun, Intuitionistic fuzzy sets in Γ-semigroups, Bull. Korean. Math. Soc. 44 (2007), no. pp. 359-367.
- [9] T. Shah, I. Rehman and A.Khan, Fuzzy Γ -ideals in Γ -AG groupoids, (Submitted).
- [10] N. Palaniappan, P.S. Veerappan and M. Ramachandran, Characterizations of Intuitionistic fuzzy ideals of Γ-Rings, Appl. Math. Sciences, 4 (2019), no.23, 1107-1117.

Department of mathematic Quaid 1 Azam University Islamabad Pakistan $E\text{-}mail \ address: draslamqau@yahoo.com$

Department of mathematic Quaid 1 Azam University Islamabad Pakistan $E\text{-}mail \ address:$ saleemabdullah81@yahoo.com