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The New Prime theorems（791）-（840） 
Chun-Xuan Jiang 

Jiangchunxuan@vip.sohu.com 
Abstract 

Using Jiang function we are able to prove almost all prime problems in prime distribution. This 
is the Book proof. No great mathematicians study prime problems and prove Riemann 
hypothesis in AIM, CLAYMI, IAS, THES, MPIM, MSRI. In this paper using Jiang function 

2 ( )J ω  we prove that the new prime theorems (791)-（840) contain infinitely many prime 
solutions and no prime solutions. From (6) we are able to find the smallest solution 

0( , 2) 1k Nπ ≥ . This is the Book theorem. 
It will be another million years, at least, before we understand the primes.  

Paul Erdos (1913-1996) 
TATEMENT OF INTENT 

If elected. I am willing to serve the IMU and the international mathematical community as 
president of the IMU. I am willing to take on the duties and responsibilities of this function. 
These include (but are not restricted to) working with the IMU’s Executive Committee on policy 
matters and its tasks related to organizing the 2014 ICM，fostering the development of 
mathematics, in particular in developing countries and among young people worldwide, 
representing the interests of our community in contacts with other international scientific bodies, 
and helping the IMU committees in their function. 
                                             --IMU president, Ingrid Daubechies— 
Satellite conference to ICM 2010 
Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. 
The sieve methods and circle method are outdated methods which cannot prove twin prime 
conjecture and Goldbach’s conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao 
are based on the Hardy-Littlewood prime k-tuple conjecture (1923). But the Hardy-Littlewood 
prime k-tuple conjecture is false:  
(http://www.wbabin.net/math/xuan77.pdf) 
(http://vixra.org/pdf/1003.0234v1.pdf). 
The world mathematicians read Jiang’s book and papers. In 1998 Jiang disproved Riemann 
hypothesis. In 1996 Jiang proved Goldbach conjecture and twin prime conjecture. Using a new 
analytical tool Jiang invented: the Jiang function, Jiang prove almost all prime problems in 
prime distribution. Jiang established the foundations of Santilli’s isonumber theory. China 
rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress. 
China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields 
medal (Green and Tao theorem is false) to see. 
(http://www.wbabin.net/math/xuan39e.pdf) 
(http://www.vixra.org/pdf/0904.0001v1.pdf). 
There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern 
mathematical level. Therefore ICM2010 is failure congress. China rejects to review Jiang’s 
epoch-making works. For fostering the development of Jiang prime theory IMU is willing to 
take on the duty and responsibility of this function to see[new prime k-tuple theorems (1)-(20)] 
and the [new prime theorems (1)-(690)]: (http://www.wbabin.net/xuan.htm#chun-xuan) 
(http://vixra.org/numth/) 
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The New Prime theorem（791） 
 

1502, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1502jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1502, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1502

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1502jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1502 2
1

( )( , 2) : ~
(1502) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 
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                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（792） 
 

1504, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1504jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1504, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1504

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1504jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 
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We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1504 2
1

( )( , 2) : ~
(1504) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,17k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,17k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,17k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,17k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（793） 
 

1506, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1506jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1506, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1506

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1506jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1506 2
1

( )( , 2) : ~
(1506) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,503k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,503k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,503k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,503k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（794） 
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1508, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1508jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1508, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1508

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1508jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1508 2
1

( )( , 2) : ~
(1508) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,53,59k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 
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we prove that for 3,5,53,59k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,53,59k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,53,59k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（795） 
 

1510, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1510jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1510, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1510

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1510jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 
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                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1510 2
1

( )( , 2) : ~
(1510) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,11,1511k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,11,1511k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,11,1511k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,11,1511k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（796） 
 

1512, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1512jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1512, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 
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                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1512

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1512jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1512 2
1

( )( , 2) : ~
(1512) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,19,37,43,109,127,379,757k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,19,37,43,109,127,379,757k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,19,37,43,109,127,379,757k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,19,37,43,109,127,379,757k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（797） 
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1514, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1514jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1514, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1514

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1514jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1514 2
1

( )( , 2) : ~
(1514) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
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(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（798） 
 

1516, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1516jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1516, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1516

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1516jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 
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 { }
1

1516 2
1

( )( , 2) : ~
(1516) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（799） 
 

1518, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1518jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1518, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 
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1

1518

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1518jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1518 2
1

( )( , 2) : ~
(1518) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,23,43,67,139k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,23,43,67,139k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,23,43,67,139k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,23,43,67,139k ≠ ， 

 (1) contain infinitely many prime solutions 

 
The New Prime theorem（800） 

 
1520, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 1520jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1520, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1520

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1520jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1520 2
1

( )( , 2) : ~
(1520) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,11,17,41,191k =  

. From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,11,17,41,191k = , 

(1) contain no prime solutions. 1 is not a prime.  
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Example 2. Let 3,5,11,17,41,191k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,11,17,41,191k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（801） 
 

1522, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1522jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1522, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1522

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1522jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1522 2
1

( )( , 2) : ~
(1522) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,1523k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,1523k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,1523k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,1523k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（802） 
 

1524, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1524jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1524, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 
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where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1524

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1524jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1524 2
1

( )( , 2) : ~
(1524) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,509k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,509k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,509k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,509k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（803） 
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1526, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1526jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1526, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1526

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1526jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1526 2
1

( )( , 2) : ~
(1526) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
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Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（804） 
 

1528, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1528jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1528, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1528

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1528jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 
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 { }
1

1528 2
1

( )( , 2) : ~
(1528) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,383k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,383k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,383k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,383k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（805） 
 

1530, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1530jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1530, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 
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1

1530

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1530jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1530 2
1

( )( , 2) : ~
(1530) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,11,19,31,103,307,1531k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,11,19,31,103,307,1531k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,11,19,31,103,307,1531k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,11,19,31,103,307,1531k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（806） 
 

1532, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 1532jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1532, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1532

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1532jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1532 2
1

( )( , 2) : ~
(1532) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5k = , 

(1) contain no prime solutions. 1 is not a prime.  
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Example 2. Let 3,5k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（807） 
 

1534, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1534jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1534, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1534

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1534jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1534 2
1

( )( , 2) : ~
(1534) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（808） 
 

1536, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1536jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1536, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1536

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 
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If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1536jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1536 2
1

( )( , 2) : ~
(1536) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,17,97,193,257,769k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,17,97,193,257,769k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,17,97,193,257,769k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,17,97,193,257,769k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（809） 
 

1538, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 
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Abstract 

Using Jiang function we prove that 1538jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1538, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1538

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1538jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1538 2
1

( )( , 2) : ~
(1538) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 
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We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（810） 
 

1540, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1540jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1540, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1540

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1540jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1540 2
1

( )( , 2) : ~
(1540) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 
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From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,11,23,29,71k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,11,23,29,71k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,11,23,29,71k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,11,23,29,71k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（811） 
 

1542, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1542jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1542, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1542

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 
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                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1542jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1542 2
1

( )( , 2) : ~
(1542) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,1543k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,1543k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,1543k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,1543k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（812） 
 

1544, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 
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Using Jiang function we prove that 1544jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1544, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1544

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1544jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1544 2
1

( )( , 2) : ~
(1544) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,773k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,773k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,773k ≠ .  

From (2) and (3) we have 
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                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,773k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（813） 
 

1546, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1546jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1546, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1546

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1546jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 
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 { }
1

1546 2
1

( )( , 2) : ~
(1546) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（814） 
 

1548, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1548jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1548, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1548

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 
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                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1548jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1548 2
1

( )( , 2) : ~
(1548) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,19,37,1549k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,19,37,1549k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,19,37,1549k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,19,37,1549k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（815） 
 

1550, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 
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Using Jiang function we prove that 1550jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1550, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1550

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1550jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1550 2
1

( )( , 2) : ~
(1550) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,11,311k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,11,311k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,11,311k ≠ .  

From (2) and (3) we have 
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                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,11,311k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（816） 
 

1552, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1552jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1552, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1552

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1552jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 
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 { }
1

1552 2
1

( )( , 2) : ~
(1552) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,17,389,1553k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,17,389,1553k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,17,389,1553k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,17,389,1553k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（817） 
 

1554, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1554jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1554, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 
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1

1554

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1554jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1554 2
1

( )( , 2) : ~
(1554) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,43,223k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,43,223k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,43,223k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7, 43,223k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（818） 
 

1556, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 1556jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1556, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1556

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1556jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1556 2
1

( )( , 2) : ~
(1556) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5k = , 

(1) contain no prime solutions. 1 is not a prime.  
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Example 2. Let 3,5k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（819） 
 

1558, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1558jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1558, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1558

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1558jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 
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If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1558 2
1

( )( , 2) : ~
(1558) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,83,1559k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,83,1559k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,83,1559k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,83,1559k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（820） 
 

1560, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1560jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1560, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 
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where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1560

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1560jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1560 2
1

( )( , 2) : ~
(1560) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,11,13,31,41,53,61,131,157k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,11,13,31,41,53,61,131,157k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,11,13,31,41,53,61,131,157k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,11,13,31,41,53,61,131,157k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（821） 
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1562, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1562jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1562, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1562

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1562jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1562 2
1

( )( , 2) : ~
(1562) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,23k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 
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we prove that for 3,23k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3, 23k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3, 23k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（822） 
 

1564, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1564jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1564, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1564

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1564jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 
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                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1564 2
1

( )( , 2) : ~
(1564) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,47k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,47k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,47k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,47k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（823） 
 

1566, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1566jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1566, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1566

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1566jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1566 2
1

( )( , 2) : ~
(1566) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,19,59,523,1567k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,19,59,523,1567k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,19,59,523,1567k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,19,59,523,1567k ≠ ， 

 (1) contain infinitely many prime solutions 
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The New Prime theorem（824） 
 

1568, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1568jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1568, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1568

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1568jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1568 2
1

( )( , 2) : ~
(1568) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,17,29,113,197k = . From (2) and(3) we have 
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                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,17,29,113,197k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,17,29,113,197k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,17,29,113,197k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（825） 
 

1570, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1570jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1570, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1570

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1570jp + k j−  is a prime. 
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Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1570 2
1

( )( , 2) : ~
(1570) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,11,1571k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,11,1571k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,11,1571k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,11,1571k ≠ ， 

(1) contain infinitely many prime solutions 
 
 

The New Prime theorem（826） 
 

1572, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1572jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1572, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 
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contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1572

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1572jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1572 2
1

( )( , 2) : ~
(1572) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,263,787k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,263,787k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,263,787k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,263,787k ≠ ， 

 (1) contain infinitely many prime solutions 
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The New Prime theorem（827） 
 

1574, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1574jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1574, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1574

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1574jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1574 2
1

( )( , 2) : ~
(1574) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 



 

 51

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（828） 
 

1576, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1576jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1576, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1576

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1576jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 
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We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1576 2
1

( )( , 2) : ~
(1576) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（829） 
 

1578, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1578jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1578, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 
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where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1578

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1578jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1578 2
1

( )( , 2) : ~
(1578) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,1579k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,1579k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,1579k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,1579k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（830） 
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1580, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1580jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1580, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1580

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1580jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1580 2
1

( )( , 2) : ~
(1580) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,11k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 
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we prove that for 3,5,11k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,11k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,11k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（831） 
 

1582, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1582jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1582, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1582

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1582jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 
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                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1582 2
1

( )( , 2) : ~
(1582) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,227,1583k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,227,1583k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,227,1583k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3, 227,1583k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（832） 
 

1584, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1584jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1584, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
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Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1584

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1584jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1584 2
1

( )( , 2) : ~
(1584) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,17,19,23,37,67,73,89,199k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,17,19,23,37,67,73,89,199k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,17,19,23,37,67,73,89,199k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,17,19,23,37,67,73,89,199k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 



 

 58

The New Prime theorem（833） 
 

1586, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1586jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1586, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1586

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1586jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1586 2
1

( )( , 2) : ~
(1586) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 
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                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（834） 
 

1588, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1588jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1588, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1588

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1588jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 
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We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1588 2
1

( )( , 2) : ~
(1588) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（835） 
 

1590, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1590jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1590, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 
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where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1590

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1590jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1590 2
1

( )( , 2) : ~
(1590) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,7,11,31,107k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,7,11,31,107k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,7,11,31,107k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,7,11,31,107k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（836） 
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1592, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1592jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1592, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1592

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1592jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1592 2
1

( )( , 2) : ~
(1592) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,797k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 
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we prove that for 3,5,797k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,797k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,797k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 
 

The New Prime theorem（837） 
 

1594, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1594jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1594, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1594

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1594jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 
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                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1594 2
1

( )( , 2) : ~
(1594) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（838） 
 

1596, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1596jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1596, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 
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1

1596

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1596jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1596 2
1

( )( , 2) : ~
(1596) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,7,13,29,43,229,1597k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,7,13,29,43,229,1597k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,7,13,29,43,229,1597k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,7,13,29,43,229,1597k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

The New Prime theorem（839） 
 

1598, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
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Jiangchunxuan@vip.sohu.com 
 

Abstract 

Using Jiang function we prove that 1598jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1598, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1598

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1598jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 

 { }
1

1598 2
1

( )( , 2) : ~
(1598) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3k = , 
(1) contain no prime solutions. 1 is not a prime.  
Example 2. Let 3k ≠ .  
From (2) and (3) we have 
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                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3k ≠ ， 
 (1) contain infinitely many prime solutions 

 
 

The New Prime theorem（840） 
 

1600, ( 1, , 1)P jP k j j k+ − = −L  

Chun-Xuan Jiang 
Jiangchunxuan@vip.sohu.com 

 
Abstract 

Using Jiang function we prove that 1600jP k j+ −  contain infinitely many prime solutions and 

no prime solutions. 
Theorem. Let k  be a given odd prime. 

                 1600, ( 1, , 1)P jP k j j k+ − = −L .                 （1） 

contain infinitely many prime solutions and no prime solutions. 
Proof. We have Jiang function [1,2] 

                     2 2
( ) [ 1 ( )]

P
J P Pω χ

>
= Π − −                       （2） 

where 
P

Pω = Π ， ( )Pχ  is the number of solutions of congruence 

           
1

1600

1
0 (mod ), 1, , 1

k

j
jq k j P q P

−

=
⎡ ⎤Π + − ≡ = −⎣ ⎦ L            （3） 

If ( ) 2P Pχ ≤ −  then from (2) and (3) we have 

                            2 ( ) 0J ω ≠                           （4） 

We prove that (1) contain infinitely many prime solutions that is for any k  there are infinitely 

many primes P  such that each of 1600jp + k j−  is a prime. 

Using Fermat’s little theorem from (3) we have ( ) 1P Pχ = − . Substituting it into (2) we have 

                   2 ( ) 0J ω =                         （5） 

We prove that (1) contain no prime solutions [1,2] 

If 2 ( ) 0J ω ≠  then we have asymptotic formula [1,2] 
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 { }
1

1600 2
1

( )( , 2) : ~
(1600) ( ) log

k

k k k k

J NN P N jP k j prime
N

ω ωπ
φ ω

−

−= ≤ + − =     （6） 

where ( ) ( 1)
P

Pφ ω = Π − . 

From (6) we are able to find the smallest solution 0( , 2) 1k Nπ ≥ . 

Example 1. Let 3,5,11,17,41,101,401,1601k = . From (2) and(3) we have 

                              2 ( ) 0J ω =                        （7） 

we prove that for 3,5,11,17,41,101,401,1601k = , 

(1) contain no prime solutions. 1 is not a prime.  

Example 2. Let 3,5,11,17,41,101,401,1601k ≠ .  

From (2) and (3) we have 

                              2 ( ) 0J ω ≠                        （8） 

We prove that for 3,5,11,17,41,101,401,1601k ≠ ， 

 (1) contain infinitely many prime solutions 
 
 

Remark. The prime number theory is basically to count the Jiang function 1( )nJ ω+  and Jiang 

prime k -tuple singular series 
1

2 ( ) 1 ( ) 1( ) 1 (1 )
( )

k
k

k P

J PJ
P P

ω ω χσ
φ ω

−
−+⎛ ⎞= = Π − −⎜ ⎟

⎝ ⎠
[1,2], which can count 

the number of prime numbers. The prime distribution is not random. But Hardy-Littlewood prime k -tuple 

singular series 
( ) 1( ) 1 (1 ) k

P

PH
P P

νσ −⎛ ⎞= Π − −⎜ ⎟
⎝ ⎠

 is false [3-17], which cannot count the number of prime 

numbers[3]. 
References 

[1]  Chun-Xuan Jiang, Foundations of Santilli’s isonumber theory with applications to new cryptograms, 

Fermat’s theorem and Goldbach’s conjecture. Inter. Acad. Press, 2002, MR2004c:11001, 

(http://www.i-b-r.org/docs/jiang.pdf) (http://www.wbabin.net/math/xuan13.pdf)(http://vixra.org/numth/). 

[2] Chun-Xuan Jiang, Jiang’s function 1( )nJ ω+ in prime distribution.(http://www. wbabin.net/math /xuan2. 

pdf.) (http://wbabin.net/xuan.htm#chun-xuan.)(http://vixra.org/numth/) 

[3] Chun-Xuan Jiang, The Hardy-Littlewood prime k -tuple conjectnre is false.(http://wbabin.net/xuan.htm# 

chun-xuan)(http://vixra.org/numth/) 

[4] G. H. Hardy and J. E. Littlewood, Some problems of “Partitio Numerorum”, III: On the expression of a 



 

 69

number as a sum of primes. Acta Math., 44(1923)1-70. 

[5] W. Narkiewicz, The development of prime number theory. From Euclid to Hardy and Littlewood. 

Springer-Verlag, New York, NY. 2000, 333-353. 

[6] B. Green and T. Tao, Linear equations in primes. Ann. Math, 171(2010) 1753-1850. 

[7] D. Goldston, J. Pintz and C. Y. Yildirim, Primes in tuples I. Ann. Math., 170(2009) 819-862. 
[8] T. Tao. Recent progress in additive prime number theory, preprint. 2009. http://terrytao.files.wordpress. 

com/2009/08/prime-number-theory 1.pdf 
[9] J. Bourgain, A. Gamburd, P. Sarnak, Affine linear sieve, expanders, and sum-product, Invent math, 179 

(2010)559-644. 
[10] K. Soundararajan, The distribution of prime numbers, In: A. Granville and Z. Rudnik (eds), 

Equidistribution in number theory, an Introduction, 59-83, 2007 Springer. 
[11] B. Kra, The Green-Tao theorem on arithmetic progressions in the primes: an ergodic point of view, Bull. 

Amer. Math. Soc., 43(2006)3-23. 
[12] K. Soundararajan, Small gaps between prime numbers: The work of Goldston-Pintz-Yildirim, Bull. Amer. 

Math. Soc., 44(2007)1-18. 
[13] D. A. Goldston, S. W. Graham, J. Pintz and C. Y. Yildirim, Small gaps between products of two primes, 

Proc. London Math. Soc., 98(2009)741-774. 
[14] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math., 167(2008) 

481-547. 
[15] D. A. Goldston, J. Pintz and C. Y. Yildirim, Primes in tuples II, Acta Math.,204(2010),1-47. 
[16] B. Green, Generalising the Hardy-Littlewood method for primes, International congress of 

mathematicians, Vol, II, 373-399, Eur. Math. Soc., Zurich, 2006. 
[17] T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes, 

International congress of mathematicians Vol. I, 581-608, Eur. Math. Soc., Zurich 2006. 
Szemerédi’s theorem does not directly to the primes, because it cannot count the number of primes.  

Cramér’s random model cannot prove any prime problems. The probability of 1/ log N  of being prime 

is false. Assuming that the events “ P  is prime”, “ 2P +  is prime” and “ 4P +  is prime” are 
independent, we conclude that P , 2P + , 4P +  are simultaneously prime with probability about 

31/ log N . There are about 3/ logN N  primes less than N . Letting N →∞  we obtain the prime 

conjecture, which is false. The tool of additive prime number theory is basically the Hardy-Littlewood 
prime tuples conjecture, but cannot prove and count any prime problems[6]. 

   Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have 
every reason to believe that there are some mysteries which the human mind will never penetrate. 

                                                        Leonhard Euler(1707-1783) 
  It will be another million years, at least, before we understand the primes. 
           
                                                          Paul Erdos(1913-1996) 

Of course, the primes are a deterministic set of integers, not a random one, so the predictions 
given by random models are not rigorous (Terence Tao, Structure and randomness in the prime 
numbers, preprint). Erdos and Turán(1936) contributed to probabilistic number theory, where 
the primes are treated as if they were random, which generates Szemerédi’s theorem (1975) and 
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Green-Tao theorem(2004). But they cannot actually prove and count any simplest prime 
examples: twin primes and Goldbach’s conjecture. They don’t know what prime theory means, 
only conjectures. 
 

1991 年 10 月 25 日蒋春暄用他发明新数学证明费马大定理。设指数 3n P= ，其中 3P > 是素数，

有三个费马方程 

       3 3
1 2 1P PS S+ =                                       （1） 

       
31

3 3
1 2 31

exp
P

jj
S S t

−

=

⎡ ⎤⎛ ⎞+ = Σ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                             （2） 

       ( )1 2 2exp
PP P

P PS S t t+ = +⎡ ⎤⎣ ⎦                            （3） 

欧拉证明 3n = 。（1）和（2）无有理数解，因此，蒋春暄证明（3）无有理数解，对于 3P > ，

这样就全部证明费马大定理，证明 3n = 或 4n = 就全部证明费马大定理。1637 年费马证明

4n = ，因此，1637 年费马证明他的最后定理。 
1994 年 2 月 23 日中国著名数论家乐茂华给蒋春暄来信“……Wiles 承认失败情况实

际上对您是有利的。”当时中国仍在宣传 Wiles，无人理睬蒋春暄的工作。2009 年蒋春暄

因首先证明费马大定理获国外金奖，中国不承认这个金奖。 
 

The Formula of the Particle Radii 
 

In 1996 we found the formula of the particle radii[1-3] 

                          1/31.55[ ( )]r m Gev= jn,                          (1) 

where 1 jn 1510−= cm and m (Gev) is the mass of the particles. 

From (1) we have that the proton and neutron radii are 1.5jn. 
Pohl et al measure the proton diameter 3 jn[4]. 
We have the formula of the nuclear radii 

                           1/31.2( )r A= fm,                             (2) 

where 1 fm 1310−= cm and A  is its mass number. 

It is shows that (1) and (2) have the same form. The particle radii 5r < jn and the nuclear radii 
7r < fm. 
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