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Abstract

Some tools are discussed, in order to build power structures of primi-
tive roots in finite fields for any order qk; relations between distinct roots
are deduced from m- and shift-and-add- sequences. Some heuristic com-
putational techniques, where information in a m- sequence is built from
below, are proposed. Full settlement is finally viewed in a physical sce-
nario, where a path leading to the Riemann Hypothesis can be enlighted.
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1 Introduction

Finite fields arise as number-theoretical entities, from initial works by Gauss
and Euler; recent applications are in cryptography and coding theory. The main
reason for such an interest is due to a trivial additive structure and an almost
trivial multiplicative structure, together with a strongly untrivial exponential
and logarithmic structure. Characteristic 2 is preferred since it gives a straight
binary information; but quasi-randomness is shown by powers in fields F2k as
well as Fpk for any prime p and actual complexity seems to grow for higher k’s
rather than for higher p’s.

Such an uncertainty was controlled at first by means of linear recurring
sequences (see [12] for a background) and, only at a mature stage (since e.g.
Golomb’s work [13]), it has been driven to a fully informational machinery, where
ordinary tools about (quasi-)randomess have been used and a wide class of sim-
ilar objects came out: shift-register-, shift-and-add-, pseudo-random-, pseudo-
noise- sequences. In recent years (see e.g. [14]), wider extensions reach p-adic
structures and abstract vector spaces.

Main attention has been paid insofar to deduce linear sequences from generic
primitive elements; the opposite way seems to have been neglected, so a basic
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fact is hidden: maximal linear recurring sequences are built together with power
structures of primitive elements and the relation comes out to be so close that
it seems meaningless to ask what builds whatelse.

In present article, organization of m-sequences in power tables of primitive
elements is explained in complete generality and a “counting everything per-
spective” is kept throughout each section; as an intermediate goal, it is shown
that usual specifications of irreducible polynomials and primitive elements are
almost secondary, since they all can be determined top-down by m-sequences
and, when fields Fql for q = ph and h 6= 1 are not involved, equivalence of m-
and shift-and-add- definitions makes a full environment of its own.

Exposition is self-contained as much as possible and many collateral roads
(towards e.g. normal bases, autocorrelations or similar subjects) are not taken
into account. Section 2 gives basic preliminaries, recalling difficulties in exact
computation of multiplicative periods; mail tool to compute complete power
structures, Gauss’ algorithm, is presented in a matricial form where some signif-
icant properties can be easily managed; a remarkable “ferromagnetic” property
of ascending sequences is (without proof) led to attention.

In section 3, power structures for Fqk over Fq are built row by row; both m-
and shift-and-add- requirements are deduced from two properties, with elemen-
tary tools. Full counting of these structures and distinction between q prime or
prime power are left to section 5.

Section 4 presents main results: a fixed power structure is always viewed
globally as a matrix; organization of m-sequences fo a general finite field Fpk

over Fp is discussed and theoretical tools of pure linear algebra are required.
Framework for x primitive gives a complete account of power tables and their
relations, since any power table for a generic α primitive can be built from
a table with x primitive using only two tools: (1) Euler-like transformations
(usually known as decimations) and (2) base change over the whole structure
(since complete power structures are stable under such a transformation); a
combinatorial exhaustion of power tables for Fpk over Fp is given.

Section 5 takes into account subfield relations for Fpk over any Fph with h|k.
Subject needs some subtleties, since m- vs shift-and-add- properties separate,
even if power structures are built only by m-sequences that satisfy shift-and-add-
properties; an interleaving structure (as defined in [14]) comes out and special
representations, where a subfield Fph is made stable by a double reduction,
can be treated; this allows any chain of stable subfields Fp ↪→ Fpk1 ↪→ . . . ↪→
F((pk1)...)kl to be fully defined and enumerated.

Section 6 proposes some heuristic constructions of m-sequences, ex nihilo of
from linear recurring sequences of lower order. The most interesting property
that emergies is self-organizational: sequences in power structures have an upper
stability checksum, usually a shift-and-add- condition, that can be evoked als
oin any interleaving structure.

As an outcome of ideas collected from anywhere along the article, section 7
enlarges the settlement to physical considerations and proposes informal traces
leading to the Riemann Hypothesis.
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2 Arithmetic preliminaries about finite fields

2.1 Prime fields Fp

Building blocks of finite Arithmetic are rings Zn of integers mod n. Additive
structure is trivial: due to associativity law, table ti,j = i+ j mod n) is a latin
square with consecutively shifted rows and columns: ti+1,j = ti,j+1 mod n).

Table of multiplication requires no zero-divisors a, b 6= 0 such that a·b = 0, in
order to have inverses for each non-zero element; this leads to restriction n = p
a prime. Multiplication can be fully deduced from power tables, a well-known
fact shortly recalled.

Proposition 2.1 ([20], [11]) - Ring Zp for p prime is a field; multiplicative
group Z×p is cyclic, that is ∃a 6= 0, 1 such that

(
ah
)p−1

h=1
fills all values 1, . . . , p−1;

this field, unique up to isomorphisms, is denoted Fp.

The period of a non-null element a, defined as the least h such that ah = 1,
will be indicated by π(a); when π(a) = p − 1, the element is called a primitive
root. Much of regularity is given by Euler φ-function, defined as:

φ(n) = card {k < n|MCD(k;n) = 1}

and satisfying known properties [20]:

• if k - n then (n − k) - n, that is φ(n) values prime with n are located
simmetrically around n

2 ;

• if p is a prime number then φ(pm) = pm−pm−1, in particular φ(p) = p−1;

• φ is multiplicative, that is φ(hk) = φ(h)φ(k) whenever MCD(h; k) = 1;

• n =
∑
d|n

φ(d)

Following statement collects various results ([20],[11]) and shows that power
structure in Fp is fully explained by Euler φ-function:

Proposition 2.2 1. let k and k−1 be multiplicative inverses; then π(k) =
π(k−1) and powers of k−1 form the same sequence of k, in the opposite
verse;

2. multiplicative group F×p has φ(p − 1) generators; they exchange one ea-
chother in φ(p− 1) exponents relatively primes with p− 1;

3. periods of non-primitive elements are associated with divisors of p−1, for
each d|(p − 1) there are φ(d) elements with period d which exchange one
eachother in exponents relatively primes with d;

4. for k ∈ F×p with period π(k), powers kα, α < π(k) are occupied either by
other elements with period π(k) or by elements with lower periods ρ|π(k);
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5. equation n =
∑
d|n

φ(d) fills all values from 1 to p−1 with periods determined

by φ.

So one can face the main obstacle: multiplicative elements in a prime field
build up a closed power structure, ruled by characteristic p.

2.2 Location of periods in additive values

A good result would be to write down suddenly (at least) one primitive root; a
better result would be to write down all primitive elements; best result would
be to give a closed rule for the location of periods in additive values; since 1
is clearly the only element with period 1, such a rule could be reduced to a
theorem like

“if k has period α, then (k + 1) has period β”

Unfortunately, perfect combinatorics of power tables hardly matches with ad-
ditive rules and situation expressed e.g. in [18] is: “no useful formula for a
primitive root exists” and it isn’t really changed.

As soon as one tries to combine multiplicative periods and additive sequence
1, . . . , p− 1, only a few rules can be summarized.

2.2.1 Computing π(k + 1) from π(k)

Proposition 2.3 Let F×p (p 6= 2) be a a prime field; let k ∈ F×p be such that
π(k) = 3, then π(k + 1) = 6.

Proof - Let k3 = 1 (mod p) with k2 6= 1 so that k 6= ±1. One has (with all
coefficients unreduced):

(k + 1)6 = k6 + 6k5 + 15k4 + 20k3 + 15k2 + 6k5 + 1 =

= 1 + 6k2 + 15k + 20 + 15k2 + 6k + 1 =

= 21k2 + 21k + 21 + 1 = 21(k2 + k + 1) + 1

now, k3 − 1 = 0 ( mod p) implies (k − 1)(k2 + k + 1) = 0 ( mod p) that is
(k2 + k + 1) = 0 (mod p) due to integrity property; thus

21(k2 + k + 1) + 1 = 1 mod p

that is, element k + 1 has period 1, 2, 3 or 6. But 1, 2 are impossible and

(k + 1)3 = 1 + 3k2 + 3k + 1 = 3k2 + 3k + 3− 1 = 3(k2 + k + 1)− 1 = −1

is a contradiction; thus π(k) = 6. �
Complexity in higher periods is due to crossed relations between binomial

coefficients and characteristic p, so the study of these values might be a world
apart. Global location rule for elements with fixed periods undergoes combina-
toral rules but, on the surface, a substantial randomness appears.
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2.2.2 Periods of opposite additive values

A more readable property ties periods of opposite additive values ±k and it is
nothing but an easy case of periods for a primitive polynomial (see [20]).

Proposition 2.4 1. If 2 - π(k) then π(−k) = 2π(k), so π(−k) has factor 2
just once;

2. if 2|π(k) and 4 - π(k) then π(k) = 2π(−k);

3. if 4|π(k) then π(−k) = π(k).

Proof -

1. Let π(k) = α be odd; then (−k)α = (−1)αkα = −1 and, by squaring,
(−k)2α = 1 so (−k) has period 2α.

2. Let π(k) = α = 2β with β odd; then (−k)α = (−1)αkα = kα = 1 and(
kβ
)2 = 1, so kβ = −1 and (−k)β = (−1)βkβ = (−1)2 = 1.

3. let π(k) = α = 4β; then (−k)4α = (−1)4αk4α = 1 so π(−k) ≤ 4β;
but π(−k) = 2β implies (−k)2β = (−1)2βk2β = 1, a contradiction, and
π(−k) = 4γ for any γ|β implies (−k)4γ = k4γ = 1, a contradiction; thus,
π(−k) ≮ 4β and π(−k) = 4β. �

This property gives a partition of periods around p−1
2 and it is worth to note

the difference between a symmetric (opposite elements with period divisible by
4) and an anti-symmetric case (periods divisible only by 2).

2.3 Gauss’ algorithm through iterated global sums

Since no pre-defined way is known to access a primitive element, it can be
reached from below, given an initial element a 6= 0, 1. Gauss’ algorithm is the
best possible way to target such an element, starting from a random entry.

Gauss’ algorithm [24]: given a multiplicative element a 6= 0, 1 of a finite
field Zp such that π(a) 6= p− 1, choose an element b 6= ai whose period π(b) is
not a divisor of π(a); choose a decomposition mn = mcm(π(a);π(b)) such that
MCD(π(a);π(b)) = 1,m|π(a), n|π(b); then element aπ(a)/mbπ(b)/n has period
mcm(π(a);π(b)), so an higher period has been found.

Gauss’ algorithm may look a bit obscure, but it can be easily computed
through an iterated application of global sums or differences, where decomposi-
tion mn (a strange request, at a first glance) is a direct outcome of the following
algorithm.

Let a non-primitive element a be given, with period π(a) 6= (p − 1); write

6



down all its powers in column: 

1
a
a2

...
aπ(a)−1

(aπ(a) = 1)


since a is non-primitive, not all sums ai±1 give some aj ; in fact, primitivity

is equivalent to
∀i∀j∃h∃l(ai + aj = ah ∧ ai − aj = al)

Choose b = ai ± 1 6= aj and build subsequent columns, each with iterated
multiplication by a (in column) and b (in row), up to the first value bµ = aλ,
clearly satisfying MCD(λ;µ) = 1:

1 b = ai ± 1 b2 . . . bµ = aλ

a b · a b2 · a
a2 b · a2 b2 · a2

...
...

...
aπ(a)−1

(aπ(a) = 1)


Value b extends π(a) and an element with period π(a)µ can be found by

a suitable visit of this π(a) × µ matrix. In fact, last column is a copy of the
first one, maybe with some vertical shift; candidate element with higher period
belongs to second column and is of the form b · al, for some l expressing vertical
jump across consecutive columns. Actually, subsequent powers 1, (b · al), (b ·
al)2 reach last column in a value (b · al)µ = aλ+lµ and correct requirement is
relative primality with π(a), for otherwise some values in the matrix would be
excluded. Thus, higher periods π(a) · µ are associated to each value b · al such
that MCD(π(a);λ+ lµ) = 1.

If such an element is not primitive, another extension can be performed, and
so on.

This tabular algorithm makes clear that any sequence of powers of a non-
primitive element has a weak inner stability and reaches a stronger (maybe
maximum) stability when it is perturbed by a global sum/difference and mixed
with such a perturbation. Thus, global property of primitive elements can also
be viewed as a complete stability of their power sequence under global additive
operations, a fact that gives some relevance to the following property, maybe
elementary but proper of a primitive element:

∀i∀k∃h, h′
(
ai+k + ai = ai+h, ai+k − ai = ai+h′

)
Previous realization of Gauss’ algorithm, together with considerations about

stability under global sum oeprations, will be widely applied to higher fields in
subsequent chapters.
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2.4 Finite fields Fpk for k > 1

If a finite field with cardinality not a prime is required, only cardinalities pk,
powers of a prime, can be accepted. Euler φ-function is yet important. General
properties about orders pk for k > 1 are collected in the following statement.

Proposition 2.5 [20]

• A finite product Fp×. . .×Fp = Fpk (k times) is a field under multiplication
modulo an irreducible polynomial Pk(x) = xk+ak−1x

k−1+. . .+a0 of degree
k.

• both additive and multiplicative structures are unique up to isomorphisms,
so this field can be referred to as Fpk

• multiplicative group F×
pk has φ(pk − 1) generators; they exchange one ea-

chother in φ(pk − 1) exponents relatively primes with pk − 1;

• periods of non-primitive elements are associated with divisors of pk − 1
and follow the same rules as for Fp

• Fph is a subfield of Fpk if and only if h|k.

Following property, absolutely non-trivial (note that e.g. k - (pk−1) happens
very often) holds:

Proposition 2.6 One has k|φ(pk − 1) ∀p prime, ∀k > 1.

Proof A, enumerative - Powers pi, 0 ≤ i ≤ k − 1, are all relatively prime
with pk − 1 and values d counted by φ

(
pk − 1

)
are partitioned in equivalence

classes by relation d ∼ d′ ↔ d′ = dph for some h.
Proof B, combinatorial - Values counted by φ(pk − 1) are equally dis-

tributed in intervals

Ih =
[
h− 1
k

(pk − 1) . . .
h

k
(pk − 1)

[
for h = 1, . . . , k. Once one has some care of boundaries, this is a deep appli-
cation of Inclusion-Exclusion Principle (see [28]). Given ordinary factorization(
pk − 1

)
= pα1

1 . . . pαl

l , build sets

Aj,h = {ipj |i ∈ N} ∩ Ih , j = 1..l

and follow standard notation

T ⊆ {1..l} , AT,h = ∩i∈TAi,h , Sm =
∑
|T |=m

|AT,h| ;

then, distinct countings

]
(
A1,h ∩ . . . ∩Al,h

)
= S0 − S1 + . . .+ (−1l)Sl

cancel the same number of naturals in each interval. �
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2.5 An extra-property: number of ascending sequences

A remarkable property, that seems yet unproved, comes from counting sequences
of monotone values, a phœnonenon that shows an extreme regularity.

Definition 2.1 An ascending sequence is a maximal sequence of monotone
powers βi < βi+1 < . . . < βi+j (in usual ordering of N) such that βi−1 > βi

and βi+j+1 < βi+j.

Location of value 1 seems ambiguous but, without contradiction, it could be
placed either at the beginning (then, initial 1 means power a0) or at the end
(then, final 1 has to be discarded). Following regularity appears:

Proposition 2.7 Let any list of powers (1); k; k2; . . . ; (kπ(k) = 1) be segmented
in ascending sequences; then, from known examples,

• powers of primitive elements in Fp tend to be organized in p−1
2 monotone

sequences;

• if k is not primitive and a(k) is the number of monotone sequences in its
power structure, one has

π(k) = a(k) + a(k−1) = π(k−1)

as it is shown in table 1 for F13.

1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1 1̂2
1 (1)
2 2 4 8 3 6 12 11 9 5 10 7 (1)
3 3 9 (1)
4 4 3 12 9 10 (1)
5 5 12 10 (1)
6 6 10 8 9 2 12 7 3 5 4 11 (1)
7 7 10 5 9 11 12 6 3 8 4 2 (1)
8 8 12 5 1
9 9 3 (1)
10 10 9 12 3 4 (1)
11 11 4 5 3 7 12 2 9 8 10 6 (1)
12 12 (1)

Table 1: ascending sequences mod 13

Ascending sequences give an addictional regularity, since this counting could
be afforded by means of strict combinatorial considerations: find a partition
of values 1, . . . , p − 1 satisfying above combinatorics, together with all sub-
sequences derived from Euler φ-function.
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3 Power structures for Fqk over Fq: row-by-row
construction

In present section, full details for power structures in fields Fq2 and Fq3 are
given, together with an effective generalization to Fqk generic. As a remarkable
feature, machinery of linear recurring sequences is not needed to prove two
general properties, always satisfied by any complete power structure.

3.1 General properties: non-nullity and permanence

Given a non-null element α ∈ F×
qk , multiplication by α can be performed in a

matricial form αh+1 = αhB(α) whose entries αi,j satisfy a recursive rule where
a given irreducible polynomial xk ≡ a0 + a1x+ . . .+ ak−1x

k−1, irreducible over
Fqk , appears:

α0,j = α1
j

αi,j = αi−1,j−1 + αi−1,k−1ai

Any power structure satisfies properties focused in following lemmas, where
cases k = 2, 3 and k > 3 are distinguished for practical reasons.

3.1.1 Fields Fq2

Lemma 3.1 (Non-nullity) - With notation as above, let αh = αh
0 +αh

1x be h-
th power of α and

(
αh

j

)
h

be the sequence of values for a fixed component j = 0, 1;
if αh+i

j = 0 for two consecutive values i = 0, 1 then initial assumptions fail (that
is, choosen polynomial is reducible or α has a null power) or the sequence

(
αh

j

)
h

is everywhere null.

Proof - Assume αh+i
0 = 0 for i = 0, 1; then αh+1

0 =
(
αh

0 ;αh
1

)
· (α0,0;α1,0) =

αh
1α

1
1a0 = 0 means either αh

1 = 0 and αh ≡ 0, a contradiction, or α1
1 = 0

and α ∈ Fq, a contradiction, or a0 = 0 and choosen polynomial is reducible, a
contradiction.

Assume αh+i
1 = 0 for i = 0, 1; then αh+1

1 =
(
αh

0 ;αh
1

)
· (α0,1;α1,1) = αh

0α
1
1

means either αh
0 = 0 and αh ≡ 0, a contradiction, or α1

1 = 0 and α ∈ Fq, a
contradiction. �

Nullity of whole sequence
(
αh

j

)
h

for k > 2 seems to be the deepest property,
even if for k = 2 it is obvious:

• for j = 0:

αh+2
0 =

(
αh+1

0 ;αh+1
1

)
· (α0,0;α1,0) =

(
αh

1α0,1a0

)
α0,1a0 = 0

since αh
1α0,1a0 = αh+1

0 = 0;
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• for j = 1:

αh+2
1 =

(
αh+1

0 ;αh+1
1

)
· (α0,1;α1,1) =

(
αh

0α0,0

)
α0,1 = 0

since αh
0α0,1 = αh+1

1 = 0.

A sequence everywhere null occurs in special conditions, namely it is impos-
sible when both q is prime and no subfield representation is stabilized. This
case will be examined in chapter 5

Lemma 3.2 Permanence - With notation as above, let αh, αh′ be distinct
powers such that αh+i

0 = αh′+i
1 for i = 0, 1; then αh+2

0 = αh′+2
1 .

Proof - Condition αh+1
0 = αh′+1

1 , rewritten with substitution αh
0 = αh′

1 ,
means (

αh′

1 ;αh
1

)
· (α0,0;α1,0) =

(
αh′

0 ;αh′

1

)
· (α0,1;α1,1)

and term αh′

1 α0,0 can be reduced:(
αh′

1 ;αh
1

)
· (0;α1,0) =

(
αh′

0 ;αh′

1

)
· (α0,1;α0,1a1) ;

value

αh+2
0 =

(
αh+1

0 ;αh+1
1

)
· (α0,0;α1,0) =

(
αh′+1

1 ;αh+1
1

)
· (α0,0;α1,0)

can be further developed as

(
αh

0 ;αh
1

)
·B (α)

(
α0,0

α1,0

)
=
(
αh′

1 ;αh
1

)
·B (α)

(
α0,0

α1,0

)
Now, comparison

αh+2
0 =

(
αh+1

0 ;αh+1
1

)
· (α0,0;α1,0) ?↔

(
αh′+1

0 ;αh′+1
1

)
· (α0,1;α1,1) = αh′+2

1

can be reduced:

(
αh′+1

1 ;αh+1
1

)
· (0;α1,0) ?↔

(
αh′+1

0 ;αh′+1
1

)
· (α0,1;α0,1a1)(

αh
0 ;αh

1

)
· (α0,1;α1,1)α1,0

?↔
(
αh′+1

0 ;αh′+1
1

)
· (α0,1;α0,1a1)(

αh′

1 ;αh
1

)
· (α0,1;α1,1)α1,0

?↔
(
αh′+1

0 ;αh′+1
1

)
· (α0,1;α0,1a1)

and αh
1α1,0 can be translated:

(
αh′

1 α1,0;
(
αh′

0 ;αh′

1

)
· (α0,1;α0,1a1)

)
(α0,1;α1,1)α1,0

?↔
(
αh′

0 ;αh′

1

)
·B (α)·(α0,1;α0,1a1)

where two members are the same, since

αh′

0 α0,1α1,1 = αh′

0 α0,1 (α0,0 + α0,1a1) �
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3.1.2 Fields Fq3

Computations for fields Fq3 make a wider structure to appear.

Lemma 3.3 (Non-nullity) - With notation as above, let αh = αh
0+αh

1x+αh
2x

2

be h-th power of α and
(
αh

0

)
h

be the sequence of values for fixed component j = 0;
if αh+i

j = 0 for a fixed j = 0, 1, 2 and three consecutive values i = 0, 1, 2 then
αh+3

j = 0 and the sequence
(
αh

j

)
h

is everywhere null.

Proof

• Fix j = 0; then αh+1
0 = 0 means a reduction

α̂h+1
0 = αh

1α1,0 + αh
2α2,0 = 0

and analogous αh+2
0 = 0 means

α̂h+2
0 = αh

1 (α1,1α1,0 + α1,2α2,0) + αh
2 (α2,1α1,0 + α2,2α2,0) = 0

that is, first index 0 can always be omitted. Each of these reductions can
be used to rewrite αh+3

0 as a combination αh
1β1,0 + αh

2β2,0 where

βl,0 =
∑

m1,m2 6=0

αl,m1αm1,m2αm2,0

now, top-down from α̂h+2
0 , following combinations can be cancelled:

α̂h+2
0 α1,1 = αh

1 (α1,1α1,0α1,1 + α1,2α2,0α1,1) +

+ αh
2 (α2,1α1,0α1,1 + α2,2α2,0α1,1)

α̂h+2
0 α2,2 = αh

1 (α1,1α1,0α2,2 + α1,2α2,0α2,2) +

+ αh
2 (α2,1α1,0α2,2 + α2,2α2,0α2,2)

α̂h+1
0 (α1,2α2,1) = αh

1 (α1,0α1,2α2,1) + αh
2 (α2,0α1,2α2,1)

α̂h+1
0 (−α1,1α2,2) = αh

1 (−α1,0α1,1α2,2) + αh
2 (−α2,0α1,1α2,2)

and all terms reduce one each other, giving

αh+3
0 = α̂h+2

0 (α1,1 + α2,2) + α̂h+1
0 (α1,2α2,1 − α1,1α2,2) = 0

• Fix j = 1 to obtain analogous reduction

αh+3
1 = α̂h+2

1 (α0,0 + α2,2) + α̂h+1
1 (α0,2α2,0 − α0,0α2,2)

• Fix j = 2 to obtain analogous reduction

αh+3
2 = α̂h+2

2 (α0,0 + α1,1) + α̂h+1
0 (α0,1α1,0 − α0,0α1,1) = 0 �

The same machinery can be applied to permanence property.
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Lemma 3.4 Permanence - With notation as above, let αh, αh′ be distinct
powers such that αh+i

j = αh′+i
j′ for i = 0, 1, 2; then αh+3

j = αh′+3
j′ .

Proof - Fix e.g. αh+i
0 = αh′+i

2 . As for non-nullity, αh
0 = αh′

2 can be directly
used in αh+1

0 = αh′+1
2 , giving a translation of

αh
0α0,0 + αh

2α2,0 = αh′

0 α0,2 + αh′

1 α1,2 + αh′

2 (α2,2 − α0,0)

where the main ratio of permanence appears: linear combinations, as for non-
nullity, are used not to be put = 0, but to transfer combination of coefficients
αl,m from i = 0 to i′ = 2; indeed, αh+2

0 = αh′+2
2 , after reduction of previously

translated terms, gives a translation of αh
1β1,0 + αh

2β2,0 above. Since α̂h+1
0 and

α̂h+2
0 can be translated, one can write down all terms of αh+3

0 and look at a
translation

αh+3
0 = α̂h+2

0 (α0,0 + α1,1 + α2,2)+α̂h+1
0

(
α2

0,0 + α0,1α1,0 + α0,2α2,0 + α1,2α2,1 − α1,1α2,2

)
where, by direct computation (details omitted), terms in index h′ can be exactly
ricomposed to have αh′+3

2 . A purely combinatorial rule appears, to be discussed
in next subsection; direct computations for all cases in Fq3 give a general rule
for translation:

αh+3
j = α̂h+2

j (α0,0 + α1,1 + α2,2) +

+αh+1
j

(
α2

j,j + α0,1α1,0 + α0,2α2,0 + α1,2α2,1 − αl 6=j,l 6=jαm/∈{j,l},m/∈{j,l}
)

so permanence holds. �
One can note following properties:

• rule for translation αh+i
j → αh′+i

j′ relies only upon initial index j, since
nested translations adjust dependence upon j′;

• no distiction between j <> j′ matters, since translation depends on middle
indexes of terms αl,m;

• non-nullity rule uses the same operations amongst αl,m, but l,m = j are
canceled.

3.1.3 Extension to general Fqk

Non-nullity and permanence are low-level properties and can be treated by
means of a pure combinatorics of indexes, often an application of inclusion-
exclusion principle.

Theorem 3.1 Let α ∈ F×
qk be a non-null element of period π (α) > k; then,

with notation as above, non-nullity and permanence hold:

• for any h, j fixed, αh+i
j = 0 for 0 ≤ i ≤ k − 1 implies αh+k

j = 0;

13



• for any h, h′, j, j′ fixed, αh+i
j = αh′+i

j′ for 0 ≤ i ≤ k − 1 implies αh+k
j =

αh′+k
j′

Proof, sketch - About non-nullity. Let αh+i
j = 0 for 0 ≤ i ≤ k − 1; then a

linear decomposition αh+i
j =

∑
l 6=j α

h
l β

(i)
l,j holds, where

β
(i)
l,j =

∑
l1,...li−1 6=j

αl,l1αl1,l2...αli−1,j
.

Now, αh+k
j =

∑
l 6=j α

h
l β

(k)
l,j can be written as a linear combination

αh+k
j = αh+k−1

j γk−1,j + . . .+ αh
j γ0,j

where coefficients γl,j are top-down determined as follows:

step 1.1 - terms αk−1
l,l αl,j can be canceled, as a first choice, with αl,l

(
αk−2

l,l αl,j

)
belonging to αh+k−2

j , so γk−1,j =
∑

l 6=j αl,l is applied;

steps 1.2 . . . 1.k − 1 - for decreasing i’s, each αh+i
j cancels a maximum term

given by cyclic indexes

γi,j =
∑

l1,...,lk−i 6=j,
lmall distinct

αl1,l2αl2,l3 . . . αlk−i,l1

up to αh+1
j , when initial αh+k

j is canceled; e.g. all terms in αh+4
1 are

canceled by

−αh+3
1 (α0,0 + α2,2 + α3,3)− αh+2

1 (α0,2α2,0 + α0,3α3,0 + α2,3α3,2) +
−αh+1

1 (α0,2α2,3α3,0 + α0,3α3,2α2,0)

steps 2.1 . . . 2.k − 2 - terms with minus sign appear, from αh+k−1
j downto αh+1

j ,
and terms remaining in αh+k−1

j can be canceled by terms with opposite
sign, from αh+k−2

j downto αh+1
j ; e.g. terms remaining in αh+3

1 can be
canceled by

αh+2
1 (α0,0α2,2 + α0,0α3,3 + α2,2α3,3) +

+αh+1
1 (α0,2α2,0α3,3 + α0,3α3,0α2,2 + α2,3α3,2α0,0)

where indexes are partitioned in two disjoint sets;

step i.j at each step, a larger partition of indexes is applied; this is a purely
combinatorial property and reduces each term to lower ones, with alternate
signs;
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step k − 1.1 last cancelation involves (−1)k−1
αh+1

j

(∏
l 6=j αl,l

)
, e.g. in previ-

ous example −αh+1
1 (α0,0α2,2α3,3)

About permanence. Each condition αh+i
j = αh′+i

j′ for 0 ≤ i ≤ k−1 translates
components from h to h′; translation actually gives the same effect as non-nullity
and has a combinatorial nature, so its rule depends only upon initial index j.

3.2 Passing to m- and shift-and-add- sequences

Previous results show that main properties about power structures have to be
red in sequences of components and in relations between them; this leads in
a natural way to ordinary treatement of linear sequences, discussed in next
section. It can be useful to remark that basic properties of m- and shift-and-
add-sequences follow in a natural way from non-nullity and permanence.

Theorem 3.2 Let α ∈ Fqk for be a generic non-null element and let S =
[
αh

j

]
i,j

be the matrix of its power structure, where each column is viewed as a closed
sequence; then

1. if α is not primitive, each column of S is made of π(α) concatenated non-
null k-tuples that form either equal (but shifted) or disjoint sequences,
according to the existence (or not) of a fixed k-tuple in different columns;

2. if α is primitive, columns of S are equal but shifted and are made of one
and the same concatenation of all qk − 1 non-null k-tuples; in this case,
the sequence s corresponding to one (thus all) of the columns is a shift-
and-add- sequence.

Proof

1. follows directly from previous results;

2. shift-and-add- or shift-and-subtract- properties

∀i∀k∃h∃h′
(
αi+k + αi = αi+h, αi+k − αi = αi+h′

)
are implied by primitivity: qk − 1 concatenated places must be occupied
by all qk − 1 non-null k-tuples since, otherwise, two locations of the same
k-tuple starting from αh

j , α
h′

j would give an element αl = αh−αh′ (which
surely exists) where null k-tuple starts, a contradiction �

Symmetries in power structures can be deduced by basic properties of irre-
ducible polynomials.
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3.3 Some enumerations

Complete power structures show four obvious symmetries, combined by inver-
sion of components and inversion of recyprocal polynomials

(x0; . . . ;xk−1)←→ (tk−1; . . . ; t0)

xk ≡ a0 + a1x+ . . .+ ak−1x
k−1

1 ≡ a0t
k + a1t

k−1 + . . .+ ak−1t

tk ≡ a−1
0 − a1a

−1
0 t− . . .− ak−1a

−1
0 tk−1

with substitutions

a′0 = a−1
0

a′l = −ak−la
−1
0 for 1 ≤ l ≤ k − 1

One may ask whether enumeration of relative shifts amongst maximal se-
quences equals counting of irreducible polynomials times number of primitive
elements in a field representation, that is

Nq (k)φ
(
qk − 1

)
=
φ
(
qk − 1

)
k

∑
d|q

µ (d) qk/d

Without deeper considerations, a trivial result can be stated for qk = p2,
since all possible choices for 1 are p and possible choices for 0 are p − 1; thus,
power structures for Fp2 simply come out from each relative shift between two
instances of the same shift-and-add-sequence, giving element “10” in some place:

1
2
[
µ(1)p2 + µ(2)p

]
φ(p2 − 1) =

p2 − p
2

(p2 − 1)

Exact counting will be proved in section 4 to hold for a general Fpk over Fp

and only in section 5 it will be sketched for a general subfield relation.
Note that, for a choosen relative shift amongst maximal sequences, a squaring

condition can always be tested, since tuples (1; 0; . . . ; 0), . . . , (0; 0; . . . 1) must be
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equi-distant to coefficients of reciprocal irreducible polynomials:

a′k−1 . . . a
′
0yd

[1 0 . . . 0]yd

[0 . . . 0 1]yd

a0 . . . ak−1

Now, direct approach by means of linear sequences can be undertaken.

4 Power structures in Fpk over Fp for k > 2

4.1 Background on linear sequences and general formal-
ism

Two properties previously described (non-nullity and invariance under iterated
global sums) are basic for objects widely known as specializations of linear
recurring sequences. Three of them are relevant in power structures.

Definition 4.1 [14] A linear feedback shift register (or LFSR) sequence is a
closed sequence s = (si)

l
i=1 of length l, with si ∈ Fp is defined by an iterative

rule
si+k = ak−1si+k−1 + . . .+ a0si

where initial tuple (s0; . . . ; sk−1) is non-null and xk ≡ ak−1x
k−1 + . . .+ a0 is a

fixed polynomial of degree k.

Definition 4.2 [14] A m-sequence (where m- stands for maximal) is a LFSR
sequence of length pk − 1 where all nonnull k−tuples of (Fp)k are concatenated.

Definition 4.3 [14] A shift-and-add (or shift-and-subtract) sequence is a closed
sequence s = (si)

l
i=1 where operations si+1 + si (or si+1 − si) give either the

same sequence s, shifted with cyclic indexes, or the null sequence.

Present chapter uses linear and combinatorial tools to give a complete overview
of such sequences, as they come out in power structures of fields Fpk for any
k. Presented results are essentially known, but relation with power structures
seems to be natural and shows a basic fact: any power structure in any finite
field is a linear structure with some additional properties.

As soon as one tries to manage sequences listed above, definitions and prop-
erties often overlap, or have different levels of easiness or hardness, depending on
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the point of view: e.g., shift-and-add definition is trivially an ultimate property
of sequences of components of primitive elements and, for a given non-primitive
element, Gauss’ algorithm makes a proper mixing of these properties, up to a
primitive element.

An example with low complexity can be examined: let F33 be represented
by x3 ≡ 1 + x+ x2 irreducible over F3; power structure for x is:

x1 → (0; 1; 0) x8 → (1; 2; 0)
x2 → (0; 0; 1) x9 → (0; 1; 2)
x3 → (1; 1; 1) x10 → (2; 2; 0)
x4 → (1; 2; 2) x11 → (0; 2; 2)
x5 → (2; 0; 1) x12 → (2; 2; 1)
x6 → (1; 0; 1) x13 → (1; 0; 0)

sequences
(
xi

0

)i
,
(
xi

2

)i = σ are the same,
(
xi

1

)
= τ is both their shift-and-add

and shift-and-subtract counterpart; Gauss’ algorithm applied to xi−xi−1 gives:

(0;1;0) → x2 − x1 ≡ (0; 2; 1) →
(
x2 − x1

)2 ≡ (1; 2; 2)

(0; 0; 1) → x3 − x2 ≡ (1; 1; 0)
... (2; 0; 1)

(1; 1; 1)
... (0; 1; 1)

... (1; 0; 1)

(1; 2; 2) (1; 1; 2)
... (1; 2; 1)

(2; 0; 1) (2; 0; 0) (1; 2; 0)
(1; 0; 1) (0; 2; 0) (0; 1; 2)
(1; 2; 1) (0; 0; 2) (2; 2; 0)
(1; 2; 0) (2; 2; 2) (0; 2; 2)
(0; 1; 2) (2; 1; 1) (2; 2; 1)
(2; 2; 0) (1; 0; 2) (1; 0; 0)
(0; 2; 2) (2; 0; 2) (0;1;0)
(2; 2; 1) (2; 1; 2) (0; 0; 1)
(1; 0; 0) (2; 1; 0) (1; 1; 1)

with notations as in chapter 2, choose b2 = a3 and l = 0 so a primitive
element is built up with its power table and the same sequence comes out in all
components:

Stability under global sums or differences is an inner property of the se-
quence, not strictly related to a fixed primitive element; so, the most important
step is to change point of view inside a power table and to look at sequences
along components. Defining the order of a polynomial p(x) as lowest e such
that f(x)|xe − 1, following known results are extracted from [14] and [20]:

Theorem 4.1 1. Any irreducible polynomial p(x) of degree k and order e
over Fp outcomes a LFSR sequence of length e;

2. nonnull k−tuples over Fp are partitioned in classes, each with cardinality
e;
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↓α ↓β ↓γ ↓δ ↓ε ↓ζ
0 1 0 0 2 0
0 2 1 0 1 2
1 2 2 2 1 1
1 1 2 2 2 1
1 2 1 2 1 2
0 0 2 0 0 1
2 2 0 1 1 0
1 0 2 2 0 1
1 0 0 2 0 0
2 1 0 1 2 0
1 1 1 2 2 2
0 1 1 0 2 2
1 0 1 2 0 2
↓δ ↓ε ↓ζ ↓α ↓β ↓γ

3. if q(x) is primitive, resulting sequence is a m-sequence;

4. each m-sequence is a shift-and-add sequence.

Remark 4.1 - Counting irreducible polynomials of degree k can be performed
by two different formulas, namely∑

d|k

µ (d) pk/d =
∑

e|(pk−1)
e-(ph−1),h|k

φ (e)

where φ (e) /k counts irreducible polynomials of degree k and order e. Relation
above is a simple application of inclusion-exclusion principle for k = k1 · . . . · kn

and elementary property pk − 1 =
∑

e|(pk−1) φ (d) and it is relevant since, for k
fixed, orders e avoid values e|

(
ph − 1

)
for h|k and this happens if and only if a

given power structure entirely falls in subfield Fph , so a lower degree polynomial
and a LFSR subsequence are involved. This situation is fully studied in chapter
5.

Results from previous chapter show that these properties can be as well
deduced if initial requirements are restricted to non-nullity and permanence;
any further completion using Gauss’ algorithm gives a proper shift-and-add
sequence. But non-nullity and permanence for α generic have shown to be awful
properties, so a purely combinatorial generalization from x to any α primitive
is available:

1. non-nullity and permanence for x primitive follow from linear recurrence;

2. sequences in components of power tables for xpl

(these elements are usually
called Galois conjugates) are the same as for x, ∀1 ≤ h ≤ k − 1;

19



3. whenever
{
xid
}k−1

i=1
are linearly independent, base change

{
xi
}k−1

i=1
→{

xid
}k−1

i=1
gives a power table with the same sequence;

4. previous steps fulfill enumeration of primitive roots for Fph over Fp.

Matricial notation is as in chapter 3 and special case α = x allows easier
tools.

• Matrix B(x), performing product a · x = a · B(x), is usual companion
matrix for polinomial p(x) (see [20]) with changed signs:

B(x) =



0 1 0 . . . 0
0 0 1 0 . . . 0
...

...
. . .

0 0 . . . 1
a0 a1 . . . ak−1


where (bi,j)k−1

j=0 contains coefficients of xi as as vector and last row gives
xk ≡ a0 + . . .+ ak−1x

k−1;

• global matrix M(x) =
[
xi

j

](π(x);k−1)

(i;j)=(1;0)
of order π(x) × k, containing all

powers of x as rows, has B(x) as first block.

Properties of M(x) are:

1. (Reduction to previous row)

xi
j = xi−1

j−1 + xk−1
j−1aj (1)(

xi
j

)k−1

j=0
=
(
xi−1

j

)k−1

j=0
·B(x) (2)

(3)

2. (Reduction up to first row) - Each element xi
j or α(h)

i,j can be written as

a row-column product where row shifts from
(
xi−1

j

)k−1

j=0
to lower powers(

xi−l
j

)k−1

j=0
while column shifts from

(
x1+l

j

)k−1

l=0
to higher powers

(
xi

j

)k−1

j=0
,

as far as row
(
xk

j

)k−1

j=0
and element xi−1

j in column are reached:

xi
j =

(
xi−1

0 ; . . . ;xi−1
k−1

)
·
(
x1

j ; . . . ;xk
j

)
=

=
(
xi−2

0 ; . . . ;xi−2
k−1

)
·
(
x2

j ; . . . ;xk+1
j

)
=

=
(
xk

0 ; . . . ;xk
k−1

)
·
(
xi−k

j ; . . . ;xi−1
j

)
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last equality simply means a restatement of recurrence relation, shifted
along rows and columns:

xi
j = a0x

i−k
j + . . .+ ak−1x

i−1
j

3. linear independence
∣∣(xh+i

j

)∣∣ 6= 0 for each continuous block with h fixed
and i, j = 0 . . . k − 1 follows since∣∣(xh+i

j

)∣∣k−1

i,j=0
=
∣∣(xi

j

)∣∣k−1

i,j=0
·
∣∣Bh(x)

∣∣ = 1 · |B(x)|h =
(

(−1)k
a0

)h

6= 0

Matrix B (α) performing product by any α and higher powers Bh (α) can be
viewed as layers of a 3D-matrix where B (x) = B0 (α) is front layer B0(α)∀α;
following usual notation αh

i,j for a general entry of Bh (α), reductions and prop-
erties similar to M (x) may be useful:

1. (Reduction to previous row)[
αh

i,j

]
j

=
[
αh

i−1,j−1

]
j

+ αh
i−1,k−1 [aj ]j

2. (Reduction up to first row)

αh
i,j =

(
αh

i−1,0; . . . ;αh
i−1,k−1

)
·
(
x1

j ; . . . ;xk
j

)
=

=
(
αh

i−2,0; . . . ;αh
i−2,k−1

)
·
(
x2

j ; . . . ;xk+1
j

)
=
...

=
(
αh

0,0; . . . ;αh
0,k−1

)
·
(
xi

j ; . . . ;xi+k−1
j

)
3. linear independence

∣∣(αh+i
j

)∣∣ 6= 0 is a special quest, often superseded by
enumerations to be explained.

According to this notation, power αh is in 0-th row of Bh (α) and power
table for α is upper face of the parallepiped.

4.2 Power structures for x

Information in power structure of element x can be easily deduced from non-
nullity and permanence.

Lemma 4.1 Let B (x) ,M (x) be power structures for x ∈ Fph ; then:

1. (Non-nullity) - for any fixed component 0 ≤ j ≤ k− 1 and any 1 ≤ h ≤
π(x), system of conditions{

xh+l
j = 0 for 0 ≤ l ≤ k − 1

implies xh+k
j = 0, impossible for given assumptions;
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2. (Permanence) - for any fixed components 0 ≤ j, j′ ≤ k− 1, if h, h′ exist
such that {

xh+l
j = xh′+l

j′ for 0 ≤ l ≤ k − 1

then xh+k
j = xh′+k

j′ .

Proof - About non-nullity, if xh+l
j = 0 for 0 ≤ l ≤ k − 1, then

xh+k
j =

(
xh+k−1

0 ; . . . ;xh+k−1
k−1

)
·
(
x1

j ; . . . ;xk
j

)
= . . .

=
(
xk

0 ; . . . ;xk
k−1

)
·
(
xh

j ; . . . ;xh+k−1
j

)
= 0

and whole sequence
(
xh

j

)pk−1

h=1
would be null.

About permanence, if xh+l
j = xh′+l

j′ for 0 ≤ l ≤ k − 1 then

xh+k
j =

(
xh+k−1

0 ; . . . ;xh+k−1
k−1

)
·
(
x1

j ; . . . ;xk
j

)
= . . .

=
(
xk

0 ; . . . ;xk
k−1

)
·
(
xh

j ; . . . ;xh+k−1
j

)
=

=
(
xk

0 ; . . . ;xk
k−1

)
·
(
xh′

j′ ; . . . ;x
h′+k−1
j′

)
= . . .

=
(
xh′+k−1

0 ; . . . ;xh′+k−1
k−1

)
·
(
x1

j′ ; . . . ;x
k
j′
)

= xh′+k
j′ . �

Relation between irreducible polynomials and full power structures can thus
be stated.

Theorem 4.2 Let Fph be represented by p(x) of order e, so that x has period
π (x) = e; then

1. columns
(
xi

j

)π(x)

i=1
in power table for x are LFSR sequences generated by

p(x) and either are equal but shifted or have no common concatenated
k-tuples;

2. if p is primitive (thus x is a primitive root), columns
(
xi

j

)pk−1

i=1
are equal

but shifted and are built of the m-sequence generated by p.

Proof - Follows directly from previous lemmas. �

Enumeration of primitive polynomials is
φ
(
pk − 1

)
k

and recyprocal polyno-
mials can be put together, so a complete example with low complexity can be

F34 over F3, to have
φ(80)

4
= 4 distinct m-sequences listed in tables 2 to 5, each

with its own couple of primitive polynomials.

4.3 Reduction of sequences for xpl
and decimations

Any α primitive is often considered together with what are called its Galois
conjugates αpl

, 2 ≤ l ≤ k − 1, which are also primitive. It can be shown that
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→ε 1 0 0 0 1 0 0 2 1 0 1 1 1 2 0 0 →α

→α 2 2 0 1 0 2 2 1 1 0 1 0 1 2 1 2 →β

→β 2 1 2 0 1 2 2 2 2 0 0 0 2 0 0 1 →γ

→γ 2 0 2 2 2 1 0 0 1 1 0 2 0 1 1 2 →δ

→δ 2 0 2 0 2 1 2 1 1 2 1 0 2 1 1 1 →ε

Table 2: sequence s1, x4 ≡ 1 + 2x⇔ x4 ≡ 1 + x3

→ε 1 0 0 0 1 0 0 1 1 0 1 2 1 1 0 0 →α

→α 2 1 0 2 0 1 2 2 1 0 1 0 1 1 1 1 →β

→β 2 2 2 0 1 1 2 1 2 0 0 0 2 0 0 2 →γ

→γ 2 0 2 1 2 2 0 0 1 2 0 1 0 2 1 1 →δ

→δ 2 0 2 0 2 2 2 2 1 1 1 0 2 2 1 2 →ε

Table 3: sequence s2, x4 ≡ 1 + x⇔ x4 ≡ 1 + 2x3

→ε 1 0 0 0 1 2 2 1 1 1 0 0 2 2 0 1 →α

→α 0 0 1 0 1 0 2 2 1 0 2 1 2 1 1 0 →β

→β 1 1 1 1 2 1 0 1 2 0 0 0 2 1 1 2 →γ

→γ 2 2 0 0 1 1 0 2 0 0 2 0 2 0 1 1 →δ

→δ 2 0 1 2 1 2 2 0 2 2 2 2 1 2 0 2 →ε

Table 4: sequence s3, x4 ≡ 1 + x+ x2 + 2x3 ⇔ x4 ≡ 1 + x+ 2x2 + 2x3

→ε 1 0 0 0 1 1 2 2 1 2 0 0 2 1 0 2 →α

→α 0 0 1 0 1 0 2 1 1 0 2 2 2 2 1 0 →β

→β 1 2 1 2 2 2 0 2 2 0 0 0 2 2 1 1 →γ

→γ 2 1 0 0 1 2 0 1 0 0 2 0 2 0 1 2 →δ

→δ 2 0 1 1 1 1 2 0 2 1 2 1 1 1 0 1 →ε

Table 5: sequence s4, x4 ≡ 1 + 2x+ x2 + x3 ⇔ x4 ≡ 1 + 2x+ 2x2 + x3
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they share the same m-sequence as α. Due to a basic property of characteristic
p:

(a+ b)p = ap + bp in any Fpk

This leads to a general reduction of p-powers as vectors:

xhpl

=
(
xh

0 + xh
1x+ . . .+ xh

k−1x
k−1
)pl

= xh
0x

0 + xh
1x

pl

+ . . .+ xh
k−1x

(k−1)pl

where exponents cannot be further reduced since they refer to rows of matrix
M(x). So, for x primitive, defining properties of a primitive sequence may be
proved for sequences of xpl

:
Non-nullity: previous condition, written on compontents, means

xhpl

j =
(
xh

0 ; . . . ;xh
k−1

)
·
(
x0

j ;xpl

j ; . . . ;x(k−1)pl

j

)
thus

{
x

(h+i)pl

j = 0 for 0 ≤ i ≤ (k − 1) becomes a system in xipl

j ’s:{(
xh+i

m

)
m
·
(
xmpl

j

)
m

= 0 i = 0, . . . , k − 1

whose determinant∣∣∣∣∣∣∣
xh

0 . . . xh
k−1

...
. . .

...
xh+k−1

0 . . . xh+k−1
k−1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
(
xh

j

)
j

...(
xh+k−1

j

)
j

∣∣∣∣∣∣∣∣
is 6= 0 since rows are a continuous block of M(x); then xipl

j = 0 ∀i is the

only solution, a contradiction since above formula for xhpl

j would imply
(
xhpl

j

)
j

to be a null sequence.

Pulling down to xi
j : since

(
xhpl

j

)pk−1

h=1
satisfies non-nullity, any of its seg-

ments of length k has one and only one location in
(
xi

j

)pk−1

i=1
; fixed initial segment(

x0
j ;xpl

j ; . . . ;x(k−1)pl

j

)
, ∃! hl such that(

xipl

j

)k−1

i=0
=
(
xhl+i

j

)k−1

i=0

Thus, for each subsequent xhpl

j one can apply usual reduction rules for M(x):

xhpl

j =
(
xh

0 ; . . . ;xh
k−1

)
·
(
x0

j ; . . . ;x(k−1)pl

j

)
=

=
(
xh

0 ; . . . ;xh
k−1

)
·
(
xhl

j ; . . . ;xhl+k−1
j

)
= xh+hl

j �

Non-nullity holds in a more general situation, where the question about any
power structure can be put and answered.
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Corollary 4.1 In power table M(x) for x primitive, let α be a generic element
such that αd(h+i) for i = 0, . . . , k − 1 are linearly independent; then, for any
l = 1, . . . , k − 1 and j fixed, system{

0≤i≤(k−1)α
d(h+i)pl

j = 0

is incompatible with initial assumptions.

Proof - Explicitation of
(
α

d(h+i)
0 + α

d(h+i
1 x+ . . .+ α

d(h+i)
k−1 xk−1

)pl

gives sys-
tem {

0≤i≤(k−1)

(
α

d(h+i)
0 ; . . . ;αd(h+i)

k−1

)
·
(
x0

j ;xpl

j . . . ;x(k−1)pl

j

)
= 0

whose determinant ∣∣∣∣∣∣∣
αdh

...
αd(h+k−1)

∣∣∣∣∣∣∣
is 6= 0, implying impossibility. �
Now, one can partition exponents 1 ≤ d ≤ pk − 1 in four classes:

1. d = pl, thus counted by φ(pk − 1);

2. remaining d 6= pl counted by φ(pk − 1);

3. d = l
∑k|h

i=0 p
k−ih for 1 ≤ l ≤ ph − 1 and h|k;

4. d out of previous cases.

Power structures show to be strongly sensible to previous classification of
d’s and each power structure can be defined in a suitable way, starting from
structures for x primitive. As a basic fact of finite fields, rows of M(x) can be
permuted according to exponents d counted by φ(pk−1); a purely combinatorial
operation on rows in M(x) is frequently appled to sequences of components.

Definition 4.4 Let s be a given m-sequence of length pk−1 and d = 1 . . . pk−2
fixed; then, let MCD(d; pk−1) = e so that d = ef , pk−1 = eg for f, g relatively
primes; then, a decimation φd is the map defined componentwise as

φd(s) =
{

(si+hd)g−1
h=0 for 0 ≤ i ≤ (e− 1)

}
If a decimation φd is applied on a whole k−tuple, cyclic groups properties

seem to have a role superimposed to algebraic structure, but applications to a
m-sequence are interesting: they simply pick out of s values sh whose indices
lie at distance d and, for d and pk − 1 relatively primes, φd gives a new power
structure. Main properties of φd are collected in a result quite obvious, that
enlights the ratio for such a definition:
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Lemma 4.2 Image of φd is made of

• one sequence of length pk−1 if and only if MCD(d; pk−1) = 1 and index
i is indifferent;

• d sequences of length
pk − 1
d

otherwise;

each φd can be extended in an obvious way to rows of a whole power table,

say
[
αh
]pk−1

h=1
with α primitive, application from initial value αpk−1 = 1 and

d - (pk−1) gives all φ(pk−1) primitive elements for the choosen representation.

Transformations φd when d|(pk − 1) are of special interest, since they may
collapse in a primitive sequence for a subfield; for a while only φd’s that keep
united a sequence are considered and this means first d = p, p2, . . . , pk−1, then
other values.

Theorem 4.3 Let M(x) be a power structure for x primitive; then decimations
φd for d counted by φ(pk − 1) give power structures M

(
xd
)

which (i) satisfy
non-nullity and permanence (ii) are partitioned in classes

[
dpl
]

and (iii) power
structures in each class are built upon one and the same m-sequence.

Proof - Permanence is valid due to application of the same φd in each
component; if s is a m-sequence, then application of φd’s that bring together
the sequence clearly commute:

φdpl(s) = φd(φpl(s)) = φd(s)�

General results due to Zierler and Blackburn (see [14]), together with special
results for characteristic 2 in [13], exactly count m-sequences and allow reduction
of Galois conjugates to hold in complete generality.

Theorem 4.4 [14] Sequences of length pk − 1 over a prime field Fp are equiv-
alently m-sequences or shift-and-add sequences.

Theorem 4.5 [14] There exist exactly φ(pk−1)
k shift-and-add sequences of length

pk − 1 over Fp.

Corollary 4.2 Let α be primitive, so that αpl

for l = 1, . . . , k− 1 are too; then
any power structure for αpl

holds the same m-sequence.

As a general case, global linear transformations amongst primitive elements
can be formulated as base changes; this exhaustes all possible power structures.
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4.4 Base change over a whole power structure

Power structure in a finite field is always defined by means of a linear trans-
formation, so ultimate representation is by means of base changes. Following
result shows that primitive elements and irreducible polynomials are different
views of one and the same structure built up by a fixed m-sequence.

Lemma 4.3 Let x be primitive and 1 ≤ d ≤ pk − 1 be fixed; then:

1. any system of vectors
{
xid
}k−1

i=0
is a base if and only if xid’s don’t belong

to a subfield Fph ;

2. xid’s belong to a subfield if and only if d = l
∑k|h

i=0 p
k−ih for some l and

h|k;

3. number of distinct linearly idndependent systems
{
xid
}

is exactly counted
by

kNp(k) =
∑
h|k

µ(h)pk/h

Proof

1. Let
(
xid
)k−1

i=0
be a base; then linear indipendence implies

∑k−1
i=0 cix

id = 0
if and only if ci = 0 ∀i, but for d = l

(
ph − 1

)
one has cyclic vectors, since

xd is a root of a polynomial of degree h|k, ∃co, . . . ch−1 not all = 0 such
that xhd =

∑h−1
i=0 cix

id and ch = . . . ck−1 = 0 can be added, contradicting
previous indipendence. Argument is clearly invertible, due to the same
definition of subfield.

2. values d = l p
k−1

ph−1
lie cyclically in exponents satisfying basic rule h|k needed

for subfield relation.

3. Let k = kα1
1 . . . kαl

l be prime decomposition of exponent k non-prime; each
h|k gives values

d = l
(
pk−h + pk−2h + . . .+ p+ 1

)
, 1 ≤ l ≤ ph − 1

that have to be treated according to inclusion exclusion rules, so their
coefficient in global counting is µ

(
k
h

)
and∑

h|k

µ

(
k

h

)(
ph − 1

)
=
∑
h|k

µ

(
k

h

)
ph −

∑
h|k

µ

(
k

h

)
=
∑
h|k

µ(h)pk/h �

Recurrence relation and ordinary base change give biggest set of transfor-
mations that leave a m-sequence unchanged. Any power structure S for x
primitive can be simply viewed as a (pk − 1) × k matrix where a base change(
xi
)k−1

i=0
7→
(
xid
)k−1

i=0
is applied; matrix A =

[
(xo,j) ; (xd,j) ; . . . ;

(
x(k−1)d,j

)]
has

columns related to inverse base change, so one can compute A−1, transpose it
and look at S ×

(
A−1

)t as a new power structure, obtained by means of purely
linear tools.
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Theorem 4.6 Let x be primitive, with S associated global power structure; let
T (xi) = xid, 0 ≤ i ≤ k − 1 be any base change amongst linearly independent,
regularly located powers of x and T−1(xi) = xti be inverse base change; then

1. matrix products S′ = S × T (xi) and S′′ = S × T−1(xi) give other power
structures;

2. resulting power structures are different from those derived by cyclicity
properties, except for base change T (xi) = xip, which gives the same result
as for transformation φd;

3. S′ and S′′ are built upon the same primitive sequence as S.

Proof

1. Completeness of power structures S′, S′′ is given by two facts: T, T−1 are
bijections over F×

pk and they correspond to a reduction

xkd ≡ a0 + a1x
d + . . .+ ak−1x

(k−1)d

always valid since p(x) is irreducible.

2. Definition of T for
{
xi
}
7→
{
xip
}

is the same as φp over x0, . . . , xk−1:

T
(
xi
)
j

=
(
xi

0; . . . ;xi
k−1

)
·
(
x0

j ; . . . ;x(k−1)p
j

)
= φp

(
xi
)

and φp is linear since (λa+ µb)p = λap + µbp.

3. Let T (xi) = xid, 0 ≤ i ≤ k−1 be a fixed base change as above; by linearity,
one has

T
(
xh
)

= xh
0 + xh

1x
d + . . .+ xh

k−1x
(k−1)d

or, in components,

T
(
xh
)
j

=
(
xh

0 ; . . . xh
k−1

)
·
(
x0

j ;xd
j ; . . . ;x(k−1)d

j

)
.

First, non-nullity holds: condition T
(
xh+h

)
= 0 for 0 ≤ h ≤ (k−1), that

is (
xh+h

0 ; . . . xh+h
k−1

)
·
(
x0

j ;xd
j ; . . . ;x(k−1)d

j

)
= 0, 0 ≤ h ≤ (k − 1)

this is a system in x0
j , x

d
j , . . . , x

(k−1)d
j whose matrix, a sequence of h consec-

utive powers of x, cannot have null determinant; so xid
j = 0, 0 ≤ h ≤ (k−1)

is the only solution, a contradiction since it is a column of matrix with
xid’s, that is a base.

Then ∃!h1 such that T (x0)j = xh1
j , T (x1)j = xh1+1

j , . . . , T (xk−1)j =
xh1+k−1

j and subsequent power k is
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T (xk)j =
(
xk

0 ; . . . xk
k−1

)
·
(
x0

j ;xd
j ; . . . ;x(k−1)d

j

)
=

=
(
xk

0 ; . . . xk
k−1

)
·
(
T (x0)j ;T (x1)j ; . . . ;T (xk−1)j

)
=

=
(
xk

0 ; . . . xk
k−1

)
·
(
xh1)j ;xh1+1

j ; . . . ;xh1+k−1
j

)
= xh1+k

j

and T (xh)j = xh1+h
j can be extended to any higher h, so for the whole

sequence one has S = S′. Inverse linear transformation can also be
applied, so that T−1(1) = 1, T−1(x) = α1 = xt1 , T−1(x2) = α2 =
xt2 , . . . , T−1(xk−1) = αk−1 = xtk−1 where exponents ti have no known
relation with i. General definition is, by linearity, T−1(xh) = xh

0 +xh
1x

t1 +
. . .+ xh

k−1x
tk−1 and non-nullity is

T−1(xh+h)j = xh
0x

0
j + xh

1x
t1
j + . . .+ xh

k−1x
tk−1
j =

=
(
xh

0 ; . . . xh
k−1

)
·
(
x0

j ;xt1
j ; . . . ;xtk−1

j

)
= 0, 0 ≤ h ≤ (k − 1)

and x0
j = xt1

j = . . . = x
tk−1
j = 0 is a contradiction, since it is a column

of a base change. Then ∃!h1 such that T−1(xh)j = xh1+h
j and subsequent

power k is

T−1(xk)j =
(
xk

0 ; . . . xk
k−1

)
·
(
x0

j ;xt1
j ; . . . ;xtk−1

j

)
=

=
(
xk

0 ; . . . xk
k−1

)
·
(
T−1(x0)j ;T−1(x1)j ; . . . ;T−1(xk−1)j

)
=

=
(
xk

0 ; . . . xk
k−1

)
·
(
xh1)j ;xh1+1

j ; . . . ;xh1+k−1
j

)
= xh1+k

j �

One can iterate base changes αi 7→ αid′ for α = xd but enumeration gives
fewer acceptable values d′; instead, linearity gives the same properties for a
general α.

Corollary 4.3 Let α ∈ F×
pk be primitive with

{
αi
}k−1

i=0
lineary independent; for

any fixed d 6= l(pk−1)(ph−1), h|k base change αi 7→ αdi gives a power structure
built upon the same m-sequence as α.

Proof - Reduction rule

αk ≡ a0 + a1α+ . . .+ ak−1α
k−1

is effective and, together with base change T
(
αi
)

= αdi, gives the same
result as for x; coherence of power structure is again implied by surjectivity and
linearity. �

It can be thus proved that any complete power structure is definitely turned
into a recurrence relation, applied to k components.
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Corollary 4.4 For a fixed m-sequence, relative shifts amongst k instances giv-
ing an effective power structure are determined by a location of elements αi = xdi

(from an initial configuration where x is primitive) and prosecuted component-
wise by recurrence relation.

Proof - Once k rows αi = xdi are choosen, for each component an initial
state (si,j)j is fixed and recurrence relation sh = ak−1sh−1 + . . . + a0sh−k can
be started; linearity assumes, in each component, the same outcome as for a
base change. �

As a final step, a complete enumeration can be collected.

4.5 Concluding enumeration of power structures

Previous results can be collected in an enumeration to fullfill total number

φ
(
pk − 1

)
k

∑
d|k

µ (d) pk/d

of power structures for Fpk over Fp; enumeration can be made shortly upon
decimations and, at least, partitioned in different m-sequences.

Theorem 4.7 Each of
φ(pk − 1)

k
primitive sequences of length pk−1 can build

Np(k) · k =
∑
d|k
µ(d)pk/d correct power structures for Fpk over Fp; thus, global

counting φ(pk − 1)Np(k) always holds.

Proof - Enumeration
∑
d|k
µ(d)pk/d can be applied to transformations φd for any

1 ≤ d ≤ (pk − 1), since any fixed φd falls into one and only one of following
cases:

1. if d 6= ph − 1 for all h|k, image of φd has cardinality MCD(d; pk − 1) and
fragments form a partition of non-null k-tuples;

2. if d = ph−1 for some h|k, image of φd collapses in fragments made of either
one (and the same) primitive sequence for a representation of subfield Fph ,
or the null sequence (0i)i.

Transformations of type (1) correctly count all acceptable φd’s, but they
are used only to localize squaring conditions and they are not really applied;
instead, transformations of type (2) have to be discarded, since they cannot
build a structure of order (pk − 1).

Now, factorization of k = pα1
1 . . . pαn

n gives values of d that have to be dis-
carded and product of pαi

i ’s exactly matches requests for µ-function:
factorization (pk − 1) = (ppi − 1) · (pp

αi−1
i + . . .+ 1) gives (ppi − 1) transfor-

mations φ
l(pp

αi−1
i +...+1)

that have to be discarded; further exponents of pi are
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indifferent, since they are included in previous counting; indifference of αi’s is
the same condition as µ(n) = 0 when n contains almost a square. So, only values
d|k that are products of distinct pi’s count, with usual sums or subtractions in
order to balance multiple countings; a direct application of Inclusion-Exclusion
Principle gives total counting of acceptable φd’s:

(pk−1)−
∑

|T |=n−1

(
p

∏
i∈T pi − 1

)
+

∑
|T |=n−2

(
p

∏
i∈T pi − 1

)
−. . .+(−1)n

n∑
i=1

(ppi − 1)

where (−1)’s can be collected and cancelled, since their total number is

n∑
l=0

(
n

l

)
(−1)l = 0

for a basic property of bynomials. Thus, previous counting gives same terms as∑
d|k
µ(d)pk/d. �

Corollary 4.5 For any fixed m-sequence of length pk − 1, following complete
power structures can be built:

• Build an m-sequence s1 of length pk − 1 over Fp; checksum of elements(
δi
j

)k−1

j=0
at distance 1 gives basic structure for x primitive and identifies

primitive recyprocal polynomials p(x), p(x).

• Transformations φpl for 1 ≤ l ≤ (k− 1) hold the same sequence s1; check-

sum of elements
(
δi
j

)k−1

j=0
at distances pl give power structures for xpl

.

• Transformations φd for d counted by φ(pk−1) give power structures parti-
tioned in m-sequences s2, . . . , sφ(pk−1)/k according to classes

[
dpl
]
; check-

sum of elements
(
δi
j

)k−1

j=0
at distance d is locked since primitive polynomials

p(x), p(x) don’t change under these operations.

• Transformations in previous step can be cyclically applied (e.g. to images
of φd(s) or by means of base changes

{
xdi
}
→
{
xi
}
); a set of power

structures of cardinality
(
φ(pk − 1)

)2
/k is defined; the same cardinality

is given by checksums of elements
(
δi
j

)k−1

j=0
at distances d along all m-

sequences; irreducible polynomials involved are all primitive.

• For d not counted by φ(pk − 1) and d 6= l p
k−1

ph−1
with h|k, base changes{

xdi
}
→
{
xi
}

hold the same initial m-sequence si and fulfill remaining

φ(pk − 1)
k

∑
d|k

µ(d)pk/d − φ(pk − 1)
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power structures; the same cardinality is given by checksums of elements(
δi
j

)k−1

j=0
at distances d along all m-sequences; all irreducible polynomials

involved have order e < (pk − 1).

5 Subfield relation Fph ↪→ Fpk for h|k
Distinct representations of a subfield Fph ↪→ Fpk are all isomorphic and, after
a theorem of Blackburn (see [14]), quest for shift-and-add- or m- properties
implies that m-sequences over ground field Fp have always to be considered.
But any Fpk can also be built upon a fixed Fph , required to be stable; this may
give chains of subfields, for a fixed decomposition k = h1 . . . kl. Stability of a
subfield is proved to give specific relative shifts amongst blocks of m-sequences.

5.1 General construction of power sub-structures

Following result collects basic results.

Lemma 5.1 Let α ∈ Fpk be a primitive element, M (α) be the matrix of its
power structure, with m-sequence s and k = hl, e =

(
pk − 1

)
/
(
ph − 1

)
; then

1. matrix M
(
αei
)

for 1 ≤ i ≤ ph−1 is a power structure for (a representation
of) a subfield Fph ;

2. columns of M
(
αei
)

are made of either one and the same m-sequence t of
length ph − 1 or the null sequence;

3. equally shifted rows M
(
αei+r

)
are made of either the same sequence t or

the null sequence, thus s is uniquely determined as an extension of t.

Proof

1. Elements αei satisfy
(
αei
)ph−1 = 1, that is a basic property defining Fph ,

both for additive and multiplicative structure.

2. Property ∀i1∀i2∃i3
(
αei1 + αei2 = αei3

)
implies that components of add-

shift, placed e.g. in position αe + 1 = αei, thus they are made of either
one and the same recurrence relation

ti = b0ti−h + . . .+ bh−1ti−1

or everywhere null values. It is worth noting that this recurrence is defined
in h values but holds in k components (apart from everywhere null ones).

3. Segmentation of s at distances e means that a decimation φe has been
applied, so proof of this part can be given for α = x, that is for a primitive

polynomial. Fix 1 ≤ r ≤ e− 1 and extract rows
(
xei+r

)ph−1

i=1
from M(x);

recurrence relation holds for xei
j , that is

xei
j = bh−1x

e(i−1)
j + . . .+ b0x

e(i−h)
j ;
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let
(
xr

j ; . . . ;x(h−1)e+r
j

)
be an initial segment, assumed to be 6= 0; then ∃!

position ir,j such that x(ir,j+l)e)
j = xle+r

j for 0 ≤ l ≤ h − 1. Subsequent
value xhe+r

j can be computed for xhe+r = xhl ·Br(x), where

xhe+r
j =

(
h−1∑
i=0

bix
ie
0 ; . . . ;

h−1∑
i=0

bix
ie
k−1

)
·
(
xr

j ; . . . ;xr+k−1
j

)
=

=
h−1∑
i=0

bi
(
xie

0 ; . . . ;xie
k−1

)
·
(
xr

j ; . . . ;xr+k−1
j

)
=

= b0x
r
j + . . .+ bh−1x

(h−1)e+r
j =

= b0x
ir,je
j + . . .+ bh−1x

(ir,j+h−1)e
j = x

(ir,j+h)e
j

and recurrence relation can be extended along the whole component. If
initial segment is null, last equivalence means x(ir,j+h)e

j = 0. �

Decimations φd for d = l
(
pk − 1

) (
ph − 1

)
were left aside in previous chap-

ters, so full information for any d is now explained.

5.2 Power structures for Fpk with a stabilized subfield Fph

Special structures for Fpk can be built upon an exact representation of Fph ;
this happens together with a precise phoenomenology: power structure of Fph

is surrounded by everywhere null components; algebraic equivalent is a system
of (almost) two reductions

xh ≡ a0 + . . .+ ah−1x
h−1, ai ∈ Fp

yl ≡ b0 + . . .+ bl−1y
l−1, bi ∈ Fph

...

that can be studied in detail.

5.2.1 Representations of Fpk with a Fph stable

When a power structure for Fpk is built upon a power structure for a standard
Fph , elements of the latter appear in l copies and are everywhere surrounded
by null components. One may say that these structures stabilize subfield Fph .
Since shift-and-add properties and maximal linear recurring properties on h-
tuples hold also in each component, stabilization of a subfield implies a stronger
regularity between m-sequences.

When Fpk is built upon Fp, relative shifts between components have been
previously related to alighment of block

(
δi
j

)
at equal distances; this makes

relative shifts everywhere different and shift-and-add property does not hold
between h-tuples. But if a subfield Fph has to be stabilized, one and the same
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shift-and-add property must hold between h-tuples; this implies a specific sim-
metry in relative shifts inside h-tuples: they are obtained by a power structure
for Fpk blowing at distance

(
pk − 1

)
/
(
ph − 1

)
.

Relative shifts σ1, . . . σh−1 referred to e.g. first column are related to shifts
τ1, . . . τh−1 by rule

σi = τi
(
pk − 1

)
/
(
ph − 1

)
and each m-sequence for Fph seems to blow in

φ
(
pk − 1

)
h

kφ (ph − 1)
m-sequences for

Fpk .
A phœnomenology of stabilized subfields takes into account partitioned pe-

riods [mpn] for 1 ≤ m ≤ pk − 1 and n|k, where n is least integer such that
mpn ≡ m mod pk − 1.

Number an of classes with period n is given by empirical rule[
a1 = pk − p

ad = 1
d

(
pd − p−

∑
n|d nan

)
∀ d|k

this enumeration is however superseded by a more complete one, where a power
structure for Fpk can be blowed from a power structure for some Fph .

5.2.2 Enumeration of sub-structures for Fpk with a Fph stable

If a complete enumeration of power structures for Fpk with a stable Fph is
required, exact number

φ
(
pk − 1

)
Np(h)Nph(l)

can be reached with following steps:

1. power structures for Fph are

φ
(
ph − 1

)
Np(h) =

φ
(
ph − 1

)
h

(hNp(h))

2. each m-sequence t of length ph − 1 blows in
φ
(
pk − 1

)
lφ (ph − 1)

m-sequences s of

length pk − 1 and the same happens for a whole power structure;

3. relative shifts amongst l blocks of h instances of s follow the same rule as
described in section 4, with lNph(l) acceptable relative shifts; this gives
total number

φ
(
pk − 1

)
lφ (ph − 1)

φ
(
ph − 1

)
Np(h)lNph(l)

same as above.
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Corollary 5.1 For each decomposition k = k1 . . . kl, total number of power
structures with a stabilized subfield for each ki is

φ
(
pk − 1

) l∏
i=1

Npk1...ki−1 (ki)

Proof - Repeat iteratively previous steps for each ki. �
It is worth noting that primitivity of polynomials holds in a weak sense,

since it depends upon representation of lower fields, but suitable relative shifts
amongst m-sequences can hold information for any chain of subfields.

6 Self-organization of m-sequences

Historical results by d’Ocagne and Perrin (see [12]) show that any (2k−1)-tuple
of consecutive values in a m-sequence forms a set of indipendent k-tuples:∣∣∣∣∣∣∣∣∣

s1 . . . sk

s2 . . . sk+1

...
. . .

...
sk . . . s2k−1

∣∣∣∣∣∣∣∣∣ 6= 0

This fact can be easily proved if si’s are initial segment of components 0
or k − 1 in a power structure, but one may thus ask whether any (2k − 1)-
tuple satisfying this condition can be extended to a m-sequence by rule sn =
ak−1sn−1+. . .+a0sn−k, where polynomial xk ≡ a0+. . .+ak−1x

k−1 is a solution
of

{a0si + . . .+ ak−1si+k−1 = si+k, 1 ≤ i ≤ k

for a fixed s2k ∈ Fp.
This method happens to be really weak. An exhaustive method to build

m-sequences ex nihilo, by means of lateral classes, is presented in [13]; but max-
imality properties lead to ask whether pure self-organization rules are enough,
with no previously available information about irreducible polynomials or prim-
itive roots. A few heuristic rules can be pointed out; computational aspects
are left aside, since main attention is paid to what could be “random” deep
meaning. One can focus two goals:

1. build up a m-sequence from a random fragment of length d;

2. build up a m-sequence from a m-subsequence.
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6.1 Starting from random fragments

6.1.1 Gauss’ algorithm applied to random d-tuples

Let a random non-null d-tuple (si)
d
i=0, si ∈ Fp be given; one may ask whether it

is the sequence of any component in any power structure and whether an appli-
cation of Gauss’ algorithm may give a full m-sequence. Following preliminary
requests are necessary:

• p - d;

• converge occurs at lowest e such that d| (pe − 1)

• d-tuples too much regular (e.g. constant) are forbidden;

• cyclicity may be closed with second d-tuple, since any global sum is defined
modulo (a1; . . . ; ad) ≈ (a1 + c; . . . ; ad + c);

• as soon as an iteration breaks requirements of cardinality for some value
0 . . . p− 1, computation cannot give an acceptable result.

Indeed, Gauss’ algorithm always works when full information is available,
but in a random situation it simply computes power-like values

l∑
n=0

(−1)n

(
l

n

)
ai+nh

at step l and for a fixed h, as far as a cyclicity is closed. The only interesting
remark is as follows.

Proposition 6.1 Let (si)
d
i=1 be a random d-tuple in Fp and let k be the least

exponent (if any) such that d|(pk− 1); if a representation for Fpk over Fp exists
such that (si)

d
i=1 is associated to a component in power table of an element with

period d, then Gauss’ algorithm gives a linear sequence of higher order or maybe
a m-sequence; this surely happens when initial tuple itself is a LFSR sequence.

Some examples with d prime can be given.

• Choose d = 5 and pick at random (1; 2; 2; 0; 1) over (F3), put it in column
and apply ai−ai−1 in subsequent columns; after 16 iterations the original
comes back, so 5 · 16 = 80 = 34 − 1 elements have been generated, that
are a m-sequences for F34 . This example works in an optimal way, due to
factorization.

• In F33 one has 33 − 1 = 2 · 13, factor 2 isn’t enough and factor 13 is too
much, so random 13-tuples give an unpredictable result, if randomness
does not give a 13-tuple linearly recurring.

• If (si)
d
i=1 is a random tuple, d|(pk − 1) and exactly

(
pk − 1

)
iterations are

needed to give back (si) it’s a bad new, since (si ± si+l)
pk−1 = si ± si+l

is a basic property of arithmetic modp and every iterated sum ends like
that. This may happen e.g. in F35 , with 35 − 1 = 2 · 112, if a 11-tuple is
choosen.
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6.1.2 Effective algorithm with backtracking

Shift-and-add condition on k-tuples makes any m-sequence constructible with a
step-by-step algorithm, that roughly searches for the first stability point under
any cyclic sum; such a point may be for a non maximal linear sequence.

Definition 6.1 A (k+l)-tuple (s1; . . . ; sk+l) ∈ (Fp)k+l is acceptable if it verifies
no conditions contradicting global stability, that means:

• k-tuples (s1; . . . ; sk) , (s2; . . . ; sk+1) , . . . , (s1+l; . . . ; sk+l) are all non-null
and distinct;

• any fixed arbitrary cyclic sum (si ± si+j1 ± . . .± si+jm
) between values

(not necessarily consecutive) gives k-tuples either everywhere null, or non-
null and distinct.

An algorithm may simply backtrack acceptable tuples:

1. fix a non-null k-tuple (s1; . . . ; sk);

2. given an acceptable segment of length (k+ l− 1), entail a new value sk+l

and verify segment (si)
k+l
i=1 be also acceptable;

3. as soon as a configuration is reached, where a segment (si)
k+l
i=1 or any of its

cyclic sums share a common tuple, segment (si)
k+l
i=1 has one and only one

completion to a candidate linear sequence, maximal or not; each further
entailed value must give an acceptable segment;

4. as soon as a non acceptable segment is reached, change last value entailed
or backtrack to change more than one;

At step (s1; . . . ; sk+l), possible global sums are:

(±si ± δ1si+1 ± . . .± δlsi+l)
k
i=1

where δj = 0, 1 is a Kroneker-like symbol; so, there are 2l+1 possible signs
and

(
2l − 1

)
acceptable δj (since δj = 0 ∀j returns initial segment and is

discarded), so there are 2l+1
(
2l − 1

)
possible iterated sums of length at least k:

indeed too much, but this algorithm only needs to reach a stable configuration as
near as possible. Factors of pk−1 have some relevance, so Mersenne primesMk =
2k − 1 for k prime are worst examples and no subsequence can be reached; this
is perhaps the main reason why such structures are best used in criptography.

6.2 Starting from m-subsequences

Known results about decimation [14] take into account subfield relation Fph ↪→
Fpk for k = hl, with a given primitive element α ∈ Fpk and any ω ∈ Fpk ,
along trace considerations; a m-sequence s of length pk − 1 is thus written as a(
pk−h + . . .+ 1

)
×
(
ph − 1

)
matrix whose columns are either a m-sequence t of
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length ph − 1 or a null sequence (pk−2h + . . . + 1 total occurrences). But one
may try to tuild s by a checksum involving t, using no upward knoledge. Shift-
and-add/-subtract properties are yet the cornerstone and a special empirical
structure comes out.

Definition 6.2 For k, h, l as above, a l-skeleton is a configuration of pk−2h +
. . .+ ph + 1 positions in a closed sequence of length pk−h + . . .+ 1 such that:

1. there is one and only one largest block of l − 1 consecutive positions;

2. number of positions at distance d is the same ∀1 ≤ d ≤
(
pk−h + . . .+ ph

)
,

where distances need not to be counted in the same block.

A l-skeleton can be computed by an independent task and, as a relevant fact,
m-subsequence t seems to occupy positions around a l-skeleton; moreover, let ψd

be a trasformation that exchanges columns of s for MCD(d; pk−h + . . .+1) = 1,
that is nothing but a decimation on columns; obviously, property (2) of a l-
skeleton is invariant under ψd and, for p, k low, property (1) is invariant too.
As the most relevant fact, the shape of a l-skeleton is invariant under some ψd’s
and empirical counting gives unproved formula

φ
(
pk − 1

)
k

≈
φ
(
ph − 1

)
h

φ
(
pk−h + . . .+ 1

)
φ (l)

where
(
pk−h + . . .+ 1

)
/φ (l) is candidate total number of l-skeletons.

Given a l-skeleton and a m-sequence t as above, following heuristic tool is
effective for add/subtract checksum:

• fix a block of order
(
ph − 1

)
× l

0 . . . 0 s1
...

...
...

0
. . . 0 sph−1


with only one non-null column;

• choose a checksum block of order
(
ph − 1

)
× (l + 1)

B(i, j) =


si . . . si sj

si+1 . . . si+1 sj+1

...
...

...

si−1
. . . si−1 sj−1


where first row is aligned with (0; . . . ; 0; s1) in previous block;

• each admissible location for B(i, j), where 1 ≤ i 6= j ≤ (l − 1), gives one
and only one completion in full matrix, as far as either s is completed or
a wrong values occurs.
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Exact control occurs at nearest boundary around empty colums where check-
sum block is placed inside l-skeleton; dimension of this computation has been
no further investigated and it can be surely optimized.

6.3 Other combinatorial regularities

Remark 6.1 Fix a m-sequence for Fq2 and a matricial representation

→ 1 · · · 0 →
→ α 0 →

...
. . .

...
→ α−1 · · · 0 →

with α primitive for Fq, columns from 1 (second index) to p − 1 are made of
transversal shifts of the first column (considered as cyclic) satysfing the condi-
tions:

• tk + tp−k = q

• τ q−1
2

= q+1
2 , τ q−1

2 −k − τ q−1
2 +k = ±k where the sign is uniform for all k.

Such a regularity property allows to break down the number of combinations
for transversal shifts and, since a regular location of 1 values implies a regularity
for all the others, an equivalent formulation for this property is: given two

consecutive zeroes 0i

p+1
− 0i+1, for each value a one has:

0i
d←→ a

p+1−d←→ 0i+1 ⇔ 0(i− p+1
2 +d)

p+1−d←→ a
d←→ 0(i− p−1

2 +d)

7 A path towards the Riemann Hypothesis

Since shift-and-add- properties are intrinsic in power structures modulo deci-
mations, some concluding remarks open a glimpse on a physical scenario; basic
elements for such a transition are:

• additive structure in Zn is a low-level interaction (“thermodynamical”)
and allows to built an upper structure if and only if n is a prime;

• non-nullity and permanence are global self-organizational properties and
allow iterative construction of m-sequences of order pk for any k;

• structural relation of m-sequences is invariance under global cyclic sums,
that tend to be dissipative, but cannot change any m-sequence, due to
shift-and-add- properties.

Wherever considerations about self-organization and stability can be carried
out, a way is open towards an operative definition where primes p, prime powers
pk and composite integers n =

∏
i p

αi
i are distinguished by means of a physical
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dictionary, and processes of interaction (thus dynamics) between primes can be
considered.

Such an opportunity is already written in elementary number theory itself:
where is a prime number located ? and what does “where” means ? It means
something about additive location, but it is driven by multiplicative structure,
so this property seems a bit frustrating: a prime is located in a position at the
same time fixed but undetermined (up to present knoledge) and this property
involves a clear relation amongst primes: a prime falls wherever no lower prime
(or any of its multiples) falls; one can try to write down such a rule as an
interaction (a dynamics) between primes that compute altogether theire relative
(as an outcome of interaction) or absolute (because they are fixed) positions and
Riemann’s ζ-function may have its place in such a frame.

7.1 Hilbert-Polya conjecture and its environement

In never-too-much-famous 8-pages Riemann’s paper [25] defined complex func-
tion ζ(s) and posed known hypothesis (RH from now on) about location of
prime numbers; a great amount of theoretical work succeded, in order to attack
that conjecture on many battlefields. A deep suggestion was born from informal
communications between Hilbert and Polya (see Odlyzko home page [23]) and
the outcome has been an idea fully immersed in Physics: RH would be true if
non-trivial zeros are related to eigenvalues of some hermitian matrix.

Further research enlighted a strong similarity between statistics of zeroes and
GUE eigenvalues (see [26]) and went on enough to give many expected properties
(see [3]), together with a deep confirmation of GUE statistics for ζ-functions
over finite fields (see [17]). As a very relevant fact, physical analogies have
been correctly posed in many aspects of Number Theory and, since scientific
research often makes large amounts of analogies to become reality, some areas
have grown, that can just be listed: Unified Field Theory, linked toRH via Non-
commutative Geometry; black hole analogies, used to describe arithmeticity in
gravitation theory; string theory and tools from p-adic and adelic Analysis.

The most prominent adherence is however in p-adic analysis (an important
overview is [5]; original Hilbert-Polya conjecture suggested a matrix to describe
such a dynamics and a p-adic matrix, as reported by [26], was Paul Cohen’s line
to approach RH. But p-adic Analysis has been focused also for purely physical
suggestions by Volovic et alii in a monography [30] and by Volovic alone in a
seminal paper [29]. Two deep insights are sketched in the latter:

1. suggestion to abandon the Archimedean axiom at Planck scale, since
(cited) ‘this is a physical axiom which concerns the process of measure-
ment’, leads the author to think about Physics over p-adic fields (a road
eventually taken by the author itself and by many others, see [2]);

2. suggestion to think about fluctuations of ground field, since (cited) ‘all
physical parameters undergo quantum fluctuations’, leads the author to
invoke use of automorphic functions (apart from cited report, this road
has many confluences, mainly following Langlands program, see [21]).
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Physical propositions are shifted into the kernel of Number Theory, a neo-
pythagorism calling from a new order of phœnomena (see e.g. Seminar [22]); but
also mathematical propositions come out from some intial phœnomenology (reg-
ularities observed in mathematical objects), fully satisfied by proved theorems.
An arrow opposite to ordinary Mathematical Physics leads to a framework of
Physical Mathematics.

7.2 A Physics of Mathematics

Deepest question only hinted in [29] is: build a physical theory upon finite fields;
even if some suggestions are listed, the author seems to omit farest boundaries
of this new horizon: ground fields can be subjected, like any other “object”, to
physical considerations.

Recent developments by He [15] move along this road.
Arguments collected in present article suggest to study whether numerical

objects can have some evolution in some space-time or, equivalently, what does
move, or happen, and where. Available materials can be collected in a (random)
path along Number Theory, in order to find some arguments for a Physics in
finite fields.

7.2.1 Characteristic p, thermodynamics and information

Basic property of Fpk as an additive structure, a+ . . .+ a = 0 (p times) defines
characteristic for a = 1 and 1+ . . .+1 = 0 (p times) means that any incremental
operation goes back to 0. It is a remarkable fact that characteristic is always a
prime p, since this allows cyclicity of F× as a group and irreducibility of polyno-
mial needed to build F×

pk . Now, +1 is an elementary increment in any algebraic
structure and skill to hold information is a basic property of m-sequences, so
one can push on the analogy and look at characteristic as a quantity related to
entropy ; this implies usual equivalences between time arrow, information and
similar concepts; but this implies that thermodynamics in finite fields violates
second principle of thermodynamics, that means: some structures in finite fields
have non-dissipative properties.

Thermodynamical-like properties indeed already came out in previous sec-
tions: primitive roots are fully determined by their relative global location (rules
given by Euler φ) but their additive location has no known rule, a hint of max-
imum entropy principle, since they tend to occupy additive positions as ran-
dom as possible. Difficulties in proving properties about primitive roots are
well known (see [24]) and show some analogies between additive/multiplicative
properties and thermodynamics:

• study statistical location of primitive roots for Fp (where p is big enough)
and for Fpk ;

• study whether primitive roots satisfy any maximality condition, in order
to occupy maximum space available;
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• compare it with some statistics of prime numbers in N, since primitive
roots for Fp resemble primes in N.

7.2.2 p-adic numbers, locality and globality

Attempts to put p-adic numbers as the main wall separating RH and Physics
opened some advanced lines of attack by means of p-adic strings or by a dy-
namical system defined ad hoc by Bost and Connes ([4]). Little attention has
yet been put to a strong analogy: a particle is localized, a wave is global; equiv-
alently, a prime p is localized, its p−-adic space balls is everywhere dense in
N.

Uncertainty conditions hold in following sense: prime numbers show global
regularity (the whole structure of a prime p) and local randomness (additive
location of a prime); in fact, additive +1 scale is of the same size as additive
location. This may seem just another formulation of Heisenberg principle.

7.2.3 Singularities, space and time

Hilbert-Polya conjecture evokes a quantum-dynamical system but it is rele-
vant that some advanced physical lines of research come instead from a non-
commutative geometric setting (see [10]) with a short-circuit between Unified
Field Theory and RH.

Objects more often recalled in such a frame are black holes )considered in an
abstract setting as singular solutions of space-time-like equations) and strings.

Black holes are often requested to fill in arithmetical properties of string
theory ([10]) or come out in compactification techniques (from celebrated [6]).
Yet stronger words can be cited from [19] about 2 + 1 gravitation theory: ‘black
holes make universe arithmetic’. Recent results ([16]) hint another bridge to
type II strings.

It is indeed quite immediate to look at a finite field as a black hole: a
singularity, a clear separation of an inner horizon (p-adic or in characteristic p)
where some space-time collapses, but such a setting is only propedeutic.

Such an amount of analogies leads to an overall scenario, that one can try
to sketch.

7.3 Dynamics of numbers and the Riemann ζ-function

Fix Zn as a set of values where global random additive exchanges happen; for
n composite, all of these processes either fall in 0 or are incomplete or don’t go
back to 1 and no stable line of universe can be started; but for n = p prime, non-
null values find a self-organization stable under iterated global sums and each
prime defines a singular universe, held together by stability properties, with a
great amount of indeterminism, due to purely combinatorial rules: generators
of multiplicative structure are exactly enumerated but indistinct and exchange
one eachother by Euler φ-function.
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Concatenation of non-null values, as performed in m-sequences, makes ef-
fective proximity relation and stability effective; one can represent central sin-
gularity of a prime field Fp by means of a choosen m-sequence or, equivalently,
a choosen sequence of (ai)

p−1
i=1 of non-null p-digits where a is primitive, central

0 means collapse of information and values have an almost spatial closeness by
means of consecutive powers; this structure satisfies many invariance properties
to be used as a primordial space structure: first of all, it comes out as a relation
amongst objects.

Thus m-sequences (or, more generally, linear and algebraic sequences) may
have relevant links to random matrices and GUE statistics, since they both show
randomness properties.

Construction of primordial space properties could take into account two
landscapes: Grothendieck’s topoi (see [7]), where functions necessary to define
space come from truth tables, and  Lukasiewicz’s logics  Ln, that are functionally
pre-complete if and only if n−1 is a prime; these give, together, Grothendieck’s
topoi with basic truth values choosen in  Ln. Another perspective is to look at
prime fields Fp as quantum processors, where each higher Fpk is needed as a
computing device.

While more than one theoretical setting can be applied to give a primitive
definition of space inside a finite field, possible definition of time seems to be
just one: arrow time as a thermodynamical quantity, that is arrow of increasing
information (entropy).

One can study some topology (maybe algebraic) relating consecutive values
+1 as additive or exponential increment; one can also extend, by means of some
product (maybe topological), sequence (ai)i to any higher degree sequence for
Fpk ; properties defining a m-sequence of length pk−1 have much in common with
properties of a space texture: global relation amongst elements, stability under
global additive exchanges and under base change, dimension k (since k copies
are needed); the most relevant property is localization: each value 1 ≤ n ≤ pk−1
is uniquely located in each copy of s, a sort of cohordinate system.

Evolution of Fpk ’s is thus an effective self-evolution and both structures
(additive and multiplicative, where additive is sequential in k and multiplicative
is by relation Fph ↪→ Fpk when h|k) keep the same basic proximity properties.

Whole structure ruled by Fp is Fp =
⋃

k≥1 Fpk : this is world or universe
in characteristic p, with its closed inner (physical) rules. Its outer limit can
be made of p-adic numbers, that are no more in characteristic p, but are built
upon it according to sub-mersions Fpk ↪→ Fpk+1 , due to limit definition of Qp,
or even by enormous completion Ωp (see [1]); but one can speak about an outer
limit if and only if any out can be focused, and possible interactions between
structures in different characteristic have to be considered, since out of a world
in characteristic p there are worlds in other characteristics.

7.4 Conflict between characteristics

It is reasonable to say that, if one passes from Fpk to either Fpk+1 or Fpkh , infor-
mation increases, between either linear spaces or super-fields; but this happens
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only in a strict sense: due to characteristic p, information in
⋃

k≥1 Fpk increases
only in a multiplicative sense.

Attempts to describe formally any sort of interaction between different char-
acteristics gives unstable situations, but it is arguable that any attempt to put
side-by-side different characteristics leads to an effective superposition of states,
and two research lines start here:

• distinct characteristics p and p
′

build a world outer to both (the first world
really outer to both), with some tensorial properties;

• multiplications in different characteristics (and, in general, factorization
of composite integers) cohexist in superposed (maybe entangled) states.

Quantum-mechanical considerations would exactly come out, as quantum
information, from computational properties and additive values begin to find a
relative location, when spaces homogenize.

As a relevant property, factorization can be polynomially computed by quan-
tum registers, as Shor’s algorithm ([27]) proves.

7.5 Commesuration of primes and Riemann’s ζ

If any representation of merged characteristics is possible, then multiplicative
structure built up together by different primes leads step-by-step to a higher
entropy and to a greater exchange of information; apply some thermodynamic
limit and last object appears: a dynamics (in a global sense of inner evolution)
that makes all primes com-mensurable, that is equally measured each one by
the other.

One can at least argue that any dynamical system formalizing previous sce-
nario implies some relation with function ζ, since reciprocal location (that is,
interaction) of all primes gives monoid N.

Where could any confirmation or confutation of RH be looked for? Accord-
ing to path traced insofar, its truth seems to follow from some global regular-
ization leading to σ = 1

2 as a shared exponent where primes recognize, compute
and put aligned one eachother.

Indeed, absolute primality of a given n, proved if relative primality of n with
any prime p ≤ n1/2 holds, is a property not exactly marginal but intrinsic: as
soon as n = pipj , value 1

2 is central exponent for any possible decomposition
from below (note that relative primality with any prime between n1/2 and n−1
is unuseful) and a correct, shared arrow from-below-to-above can be created by
a complete exchange of information between prime fields.
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