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• ABSTRACT: We study a generalization of the zeta regularization method applied to the 

case of the regularization of divergent integrals  
0

sx dx
∞

∫  for positive ‘s’ , using the Euler 

Maclaurin summation formula, we manage to express a divergent integral in term of a 
linear combination of divergent series , these series can be regularized using the 
Riemann Zeta function  ( )sζ  s >0 , in the case of the pole at s=1 we use a property 

of the Functional determinant to obtain the regularization ( )
0

1 '

( )n

a
n a

∞

=

Γ= −
+ Γ∑ , with 

the aid of the Laurent series in one and several variables we can extend zeta 

regularization to the cases of integrals 
0

( )f x dx
∞

∫  , we believe this method can be of 

interest in the regularization of the divergent UV integrals in Quantum Field theory 
since our method would not have the problems of the Analytic regularization or 
dimensional regularization

• Keywords: =  Riemann Zeta function, Functional determinant, Zeta regularization, 
divergent series .

ZETA REGULARIZATION FOR DIVERGENT INTEGRALS:
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Sometimes in mathematics and physics , we must evaluate divergent series of the form 

1

k

n

n
∞

=
∑ , of course this series is divergent unles Re (k) >1 , however cases  like k=1 or 

k=3 appear in several calculations of string theory and Casimir effect , for the case of 

Casimir effect [3] the result  
3

1

1

120n

n
∞

=

=∑  appears to give the correct result for the 

Casimir force  
2

4240
cF c

A a

π= − h  here A is the area and ‘d’ the separation between the 2 

plates , c and  h  are the speed of ligth and the Planck’s constant. The idea behind the 
Zeta regularization method is to take for granted that for every ‘s’  the identity 

1

( )s

n

n sζ
∞

=

=∑ , follows although this formula is valid just for Re (s) > 1 , to extend the 

definition of the Riemann Zeta function to negative real numbers, one need to use the 
functional equation for the Riemann function

( )(1 ) 2 2 ( ) cos ( )
2

s s
s s s

πζ π ζ−  − = Γ   
               ( ) (1 )

sin( )
s s

s

π
π

Γ Γ − =             (1)

This gives the expressions  
0 1

2n i

n
∞

=

= −∑   ,   
1

12n i

n
∞

=

= −∑    and  
2 0

n i

n
∞

=

=∑  due to the pole 

at s=1 , the Harmonic series  
1

1n

n
∞

−

=
∑  is NOT zeta regularizable, although it can be given 

a finite value  
1

1

0.577215..
n

n γ
∞

−

=

= =∑  , this value can be justified by using the theory of 

Zeta-regularized infinite products (determinants) , as we shall see later in the paper

o Zeta regularization for divergent integrals:

Let be  ( ) m sf x x −=  with Re(m-s) < -1 , then the Euler-Maclaurin summation formula 
for this function reads

1

1

22

1

( )
2

( 1)
( 2 1 )

(2 )! ( 2 2 )

a
m s m s m s m s

ia a

m r sr

r a

m s
x dx x dx s m i a

B m s
m r s x dx

r m r s

ζ
∞ ∞

− − − − −

=

∞∞
− −

=

−= + − − +

Γ − +− − + −
Γ − + −

∑∫ ∫

∑ ∫
          a N∈        (2)

Here in formula (2) all the series and integrals are convergent, formula (2) is usually 

worthless , since it is trivial to prove that  
1

1

k
k

a

a
x dx

k

∞ −
− =

−∫  for Re(k) >1 ,and the Riemann 

zeta function  ( )
1

m s

i

m s iζ
∞

−

=

− = ∑ , so nothing new can be obtained from (2) , the idea is 

to use the Functional equation (1) for the Riemann and Zeta function to extend the 
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definition of equation (2) to the whole complex plane except s=1 , in case (m-s) is 
positive  there will be no pole at x=0 , so we can put a=0  and take the limit 0s +→  

1 22

10 0 0

!( 2 1)
( )

2 (2 )!( 2 1)!
m m m rr

r

B m m rm
x dx x dx m x dx

r m r
ζ

∞ ∞ ∞∞
− −

=

− += + − −
− +∑∫ ∫ ∫             (3)

Formula (3) is the Analytic continuation of formula (2) with a=0 and can be used to 
obtain a finite definition for otherwise divergent integrals ,apparently this recurrence 
equation has an infinite number of terms but the Gamma function has a pole at x= 0 and 
at x being some negative integer , some examples of formula (3)

( )

0
0 1

0 0

20 2
2 21 0

0

32
3 0 21 0 2 31 0

0

(0) 1     ( 1)
2
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3 1
( 1) ( 3)
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I
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I B
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B
I I a I B a I x dx

ζ ζ

ζ

ζ ζ

∞ ∞

∞

∞

= + = = + − =

 = + − − =  

 = + − − + − − =  

∫ ∫

∫

∫

   (4)   

So our method can provide finite ‘regularization’ to divergent integrals , with the Aid of 
the zeta regularization algorithm. Also our formulae (2) (3) and (4) are consistent with 

the usual summation properties , in fact if  
0

mx dx
Λ

∫  is finite for finite  Λ  and we use the 

property of the Riemann and Hurwitz Zeta  function [ ] to get the sum of the k-th 

powers of n on the interval  [0, Λ ]   
1

0

( ) ( , )m

i

i m mζ ζ
Λ−

=

= − − − Λ∑  ,  
0

( , ) ( ) s

n

s nζ
∞

−

=

Λ = + Λ∑  

defined for Re(s) >1 (of course for positive ‘s’ as  Λ → ∞  the second term goes to 0 )

1 22

10 0 0

!( 2 1)
( ) ( , )

2 (2 )!( 2 1)!
m m m rr

r

B m m rm
x dx x dx m m x dx

r m r
ζ ζ

Λ Λ Λ∞
− −

=

− += + − − − Λ −
− +∑∫ ∫ ∫     (5)

For integer ‘m’   1( )
( , )

1
m

H

B x
m x

m
ζ +− = −

+
 we find the Bernoulli Polynomials , the powers 

of  Λ  would cancel the integral 
1

0 1

m
mx dx

m

Λ +Λ=
+∫   , so in the end in formula (5) we would 

get the usual definition of Zeta regularization 1(0)
( )

1
m

H

B
m

m
ζ +− = −

+
 for integer ‘m’. Of 

course one could argue that a ‘simpler’ regularization of the divergent integrals should 

be  
1

0

( ) ( )
1

s
s a

I s dx x a
s

∞ +

= + = −
+∫  and 

1

0

( 1) ( ) logI dx x a a
∞

−− = + = −∫   , this is just dropping 

out the term proportional to log ∞  or 1s+∞  inside the integral to make it finite, however 
if wi plugged this result into the Euler-Maclaurin summation formulae (2) (3) or (5) the 
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terms involving ‘a’ would cancel  and we would finally find that ( ) 0H mζ − =  for every 
‘m’ which clearly is against the definition of zeta regularization of a series, for the case 
of the logarihmic divergence , obtained from differentiation with respect to the external 
parameter ‘a’ this is a result of taking the finite part of the integral ,which apparently 

works. For the case of the integrals  log ( )m s k

a

x x dx
∞

−∫  , we can simply differentiate k-

times with respect to regulator ‘s’ in order to obtain finite values in terms of  ( )sζ −  and 
'( )sζ −  for negative values of ‘s’ unless m=-1 (for other negative values of m we can 

make a change of variable 1xq =  )  , this is treated in the next section

o Zeta-regularized determinants and the Harmonic series:

Given an operator A with an infinite set of nonzero Eigenvalues  { } 0n n
λ ∞

=  we can define 

a Zeta function and a Zeta-regularized determinant , Voros [10] 

{ }
0

( )s s
A n

n

Tr A sζ λ
∞

− −

=

= = ∑       
0

(0)
det( ) exp A

n
n

d
A

ds

ζλ
∞

=

 = = −  
∏             (6)

The proof of the second formula inside (6) is pretty easy, the derivative of the 

Generalized zeta function will be 
0

log
'( ) n

A s
n n

s
λζ

λ

∞

=

= −∑  now let s=0 , use the property of 

the logarithm log( . ) log loga b a b= +  and take the exponential on both sides.

For the case of the Eigenvalues of a simple Quantum Harmonic oscillator in one 
dimension [ 10]   n n aλ = +  , the Zeta function is just the Hurwitz Zeta function, so we 
can define a zeta-regularized infinite product in the form

0

(0, )
( ) exp H

n

d a
n a

ds

ζ∞

=

 + = −  
∏               ( )(0, )

log ( ) log 2Hd a
a

ds

ζ π= Γ −       (7)

In case we put a=1 we find the zeta-regularized product of all the natural numbers 

0

( 1) 2
n

n π
∞

=

+ =∏  ,see [5] if we take the derivative with respect to ‘a’ , we would find 

the same regularized Value Ramanujan did [2]  precisely  
0

1 '
( )

( )n

a
n a

∞

=

Γ= −
+ Γ∑   a > 0 

Harmonic series appear due to a logarithmic divergence of  the integral 
0 ( )

dx

n a

∞

+∫  , if we 

put m= -1 inside formula (2) , using a regulator ‘s’ ,  0s +→  we have the Euler 
Maclaurin summation formula

2 1
2

1 1 2 1 1
0 10 0

1 1 1

( ) 2 ( ) (2 )! ( )

r
r

s s r s
n r x

Bdx

n a a n a r u x a

∞ −∞ ∞

+ + − +
= = =

 ∂= − + +  + + ∂ + 
∑ ∑∫       (8)
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Since s >0 the integral and the series inside (8) will be convergent, now we can integrate 

over ‘a’ inside (8) and use the definition of the logarithm  
0

1
lim log

s

s

x
x

s+→

− =  , to 

regularize the integral  1
0 ( )s

dx

n a

∞

++∫  as  0s +→  in terms of the function 
'
( )a

Γ−
Γ

  plus 

some finite corrections due to the Euler-Maclaurin summation formula.

A faster method is just simple differentiate with respect to ‘a’ inside the integral 

2
0 ( )

dx dI

n a da

∞

= −
+∫  , now this integral is convergent for every ‘a’ and equal to 

1

a
 , 

integration over ‘a’ again gives the value log a c− +  plus a constant ‘c’ that will not 
depend on the value of a inside the integral in question , the proof that ‘c’ is unique no 

matter what a is comes from the fact that the difference  
0

1 1
log

b
dx

x a x b a

∞    − =   + +   ∫ . 

For the case a=0 , the derivative of the Hurwitz Zeta is  ( )(0,0)
log 2Hd

ds

ζ π= −  so if 

we approximate the divergent integral by a series, then we can get the regularized result 

00

1
0

n

dx

x n

∞ ∞

=

≈ =∑∫  . Apparently it seems that using two different regularizations we get 

some different results , the idea is that if we use the Stiriling asymptotic formula 
approximation for the logarithm of the Zeta function 

( ) ( )
1 2

2

1

1 1
log ( ) log log 2

2 2 2 2 1

n
r

r

B z
z z z z

r r
π

−∞

=

 Γ = − − + +  − 
∑      (9)

If we take the derivative with respect to ‘z’  inside (9) , is now more apparent that for 

the logarithmic derivative  
0

log
dx

x a a

µ∞  ≈  +  ∫  here  logc µ=  is a constant obtained from 

differentiation with respect to ‘a’ to regularize the divergent  integral , this constant ‘c’ 
must be related to some physical constant or in case the quantity ‘a’ has dimension of 
Energy then µ  must have also dimensions of energy so the logarithm is dimensionless, 
this constant ‘c’ would be the only free adjustable parameter that would appear inside 
our calculations to regularize integrals. If ‘a’ is negative there is an extra term due to the 
value log( 1) iπ− = , for more complex logarithmic integral one can use the definition 

1

0

log ( ) 1
log

1

k
kx a dx

x a k a

µ∞
++  ≈  + +  ∫  with the same energy scale  logc µ=

o Regularization of divergent integrals 
0

( )dxf x
∞

∫  :

In general, the divergent integrals that appear in Quantum Field Theory [ ] are invariant 

under rotations, for example  ( )
4

22 2

d p

p m+
∫   or  ( )

4

22 2

1

( )

d p

pp q m− +∫  , if we use 4-
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dimesional polar coordinates we can reduce these integrals to the case 

( )
/ 2

1

0

2
( )

/ 2

d
ddrf r r

d

π ∞
−

Γ ∫  then the UV divergences appear when  r → ∞ , here d=4 is the 

dimension of the spacetime, depending on the value of ‘d’ we can have several types of 

divergences  
1 1

0

( ) logd mdrf r r a b
Λ

− +≈ Λ + Λ∫  , if b =0 for m =2 the UV divergences are 

quadratic if m =0 the divergences are linear , in case a = 0 and b =1 the divergences are 

of logarithmic type , for example  ( )
4

22 2

d p

p m+
∫  has only a logarithmic divergence in 

dimension 4 , for a lower value of the dimension  (d=3 ) this integral exists.

To study the rate of divergence , we can expand the function into a Laurent series valid 

for  z → ∞   , ( ) ( )
n k

n
n

n

f x c x a
=

=−∞

= +∑  ‘k’ is a finite number and means that the function 

( )f x  has a power law divergence for big ‘x’ , then the idea to compute a divergent 
integral would be this, we add and substract a Polynomial plus a term proportional to 

1

x a+
 to split the integral into a finite part and another divergent integral, in both cases 

we must also introduce a regulator ( ) sx a −+  for natural number ‘a’ so we make the 
integrals converget for some Re(s) >0 

1
1 1

0 00 0 0

( ) ( ) ( )
( ) ( )

k k
n n s

n ns s
n n

bdx dx
f x b x a b x a dx b

x a x a x a

∞ ∞ ∞
−−

− +
= =

 − + − + + + + + + 
∑ ∑∫ ∫ ∫         (10) 

Also we can use the change of variable ( )x a x+ →  , so the new limits of integration 
would be  ( , )a ∞   , since ‘a’ is a natural number , then the following indentity 

1

0 0

( ) ( )
a

m s m s m s

n n a n

n a n m s nζ
∞ ∞ −

− − −

= = =

+ = = − +∑ ∑ ∑  holds for every positive ‘a’ and ‘m’ in the 

sense of a zeta regularized series.   Of course inside (10) in our substraction we can 
include non-integer powers of ‘x’ since the recursion formula (2) is still valid for them. 

The number of terms ‘k’ is chosen so the first integral is FINITE , this first integral can 
be computed by Numerical or exact methods and yields to a finite value , the rest of the 
integrals are just the logarithmic and power-law divergences, they can be regularized 
with the aid of formulae  (2) (3) (4) (6) (8) to get a finite value involving a linear 

combination of   ( )mζ −  m=0,1,2,....,k  and  another value proportional to  
( ,0)H a

s a

ζ∂∂
∂ ∂

 

or  
0

log
dx

x a a

µ∞  ≈  +  ∫  for example we can analyze this simple divergent integral a > 0
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2 2 2

2 1
2

2 1
1 0

1 (0) 1
1

1 1 2 2 2

' 1 1
( ) ( 1)

(2 )! 2

a a

r
r

r
r x

x dx x a
dx x a

x x x a

B
a

r u x a

ζ

ζ

∞ ∞

−∞

−
= =

 
= − + + + − + + + + + 

Γ ∂  − − − + Γ ∂ + 

∫ ∫

∑
    (11)

The first integral in (11) is convergent and have an exact value of  
1

log
a

a

+ 
  

 , in order 

to regularize the logarithmic integarl we have used the result  
0

1 '
( )

( )n

a
n a

∞

=

Γ= −
+ Γ∑  plus 

the Euler-Maclaurin summation formula . The mathematical justification of this is the 

following, given a divergent integral  ( )
a

dxf x
∞

∫  we introduce a regulator 

( ) ( )
s

a

dx
F s f x

x

∞

= ∫  so the integral F(s) exists for some big ‘s’ , if we add and substract 

powers of the form k sx − for integer k and ( ) 1s
x a

++  , we can split F(s) into a convergent 

integral I (s) valid for  0s +→  and some divergent integrals of the form 
m s

a

x dx
∞

−∫  and 

( ) 1
0

s

dx

x a

∞

++∫  , using formulae (2) (3) (4) and (8) we can express these integrals in terms 

of the series  1
0

1

( )s
n n a

∞

+
= +∑   and  

0

1

( )s m
n n a

∞

−
= +∑  , which will be convergent for 

Re( ) 1s m− >   and Re( 1) 1s + >  , now using the Functional equation for the Hurwitz 
and Riemann Zeta function we can make the analytic continuation of both series to 

0s +→  avoiding the pole at  s=1  by the use of Riemann Zeta function at negative 

integers  ( )nζ −  plus some corrections involving  
'
( )a

Γ−
Γ

 of course the rules for change 

of variable and still valid so  
0

( ) ( )
a

dxf x a duf u
∞ ∞

+ =∫ ∫  this can be used to avoid some IR 

divergences at x = 0 by splitting the integral into an IR divergent part and an UV 

divergent part  
0 0

a

a

du du du
∞ ∞

= +∫ ∫ ∫ . For other types of divergent integrals like 

log ( )
a

dx x xβ α
∞

∫  for positive  α  and β  one could differentiate with respect to ‘m’ or ‘s’ 

inside formula (2) in order to obtain a recurrence equation for the integrals 

log ( )
a

dx x xβ α
∞

∫ , this recurrence equation is finite (approximately) since for ( )Re 1p >  

log ( )
p

a

x
dx

x

β∞

∫  is finite and do not need to be regularized provided a > 0 . Other useful 

identities can be ( )
2

1/ 2
1 1

2 2.4

x x
x+ ≈ + −   or the expansion of the logarithm valid for any 
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x > 0  
2 1

0

1 1
log 2

2 1 1

n

n

x
x

n x

+∞

=

− =  + + 
∑ to make logarithms more tractable , also we could 

use Laurent expansions to handle complicate non-Polynomial expressions like 

( ) kn nx µ+  by expanding it for big ‘x’ into asymptotic (inverse) power series.

o Regularization of integrals in the form 
0

m

dx

x

∞

∫  and  ( ) ( )0

( )
m m

f x dx

x a x b

∞

− −∫  :

Until now, we have only considered the UV divergent integrals, the integrals whose 
integrand  ( )f x → ∞  as  x → ∞  , from the definition of an improper integral

1

( )
1

m

regm

dx
F m

x mε

ε∞ −

= =
−∫              

1/ ( 1)
2

0

(2 )
1

m
m

regx dx F m
m

ε ε − −
− = = −

−∫        
1

N
ε =           (12)

As N → ∞ , this imply that in our regularization producedure  ( ) (2 )reg regF s F s= − , for 
the case s > 0 we can use formulae (2) and (3) to regularize the divergent integral , and 
by the formula relating s and (2-s) one could also regularize IR (infrared) divergent 

integrals  
0

m s

dx

x

∞

−∫  in a similar way we did for 
2

0

m sx dx
∞

− −∫ , except for the case m = 1 

(logarithmic integral) ,for the case of this integral  
0

dx

x

∞

∫  one could split it into

0

a

a

dx dx

x x

∞

+∫ ∫  now we make the change of variables, x x a→ +  1x x a−→ +  and  
1

x
x

→

to rewrite this as   
0 0 1/

dx dx

x a x a

∞ ∞

+
+ +∫ ∫  , these are again logarithmic divergent integrals 

and can be regularized  with the aid of the zeta regularized product ( ) ' (0, )

0

H b

n

n b e ζ
∞

−

=

+ =∏  

plus the Euler-Maclaurin summation formula, and the identity 0

1 '
( )

( ) reg
n

a
n a

∞

=

Γ= −
+ Γ∑

   .

For the case of a more general divergent integral like

( )
( )

0 0 0

( ) ( )( )
( ) ( )

( ) ( ) ( )

k k
a a a k

k
m m m k

k

f x f c x c
f x dx f c dx

dx
x c x c x c −

− −
→ +

− − −

∑
∑∫ ∫ ∫        a > c > 0         (13)

First integral inside (13) is finite and after several manipulations the other divergent 

integrals can be written as  2 2
0 ( ( ) )

r

m k

x dx

x c iε

∞

−− +∫  for some real and positive parameters 

‘r’ ‘c’ ‘m’ and ‘k’, by multiplying both numerator and denominator by   ( )m rx c −+
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Another possibility is to avoid the pole at a certain point x = a by using the Analytic 
continuation of the integral involving several parameters

( ) ( )
( )1 2

2 2
00 0 0 1 2

( )
,

)

m m i im

m mm m
i

mdx dx x a x a dx
F

ix x x a x
α α

α α

∞ ∞ ∞ −

=

 += = = 
+   − +

∑∫ ∫ ∫       (14)

The main idea is to calculate the integral (14) that will depend on two parameters iα  

i =1,2 and finally set  1 2

aα = −  ,  2 2

aiα = ±  if  ,
2 2

a ai
F

± −  
 exists , this can be 

regarded as the regularized value of the integral, of course (14) may be divergent as 
x → ∞  so we may need to add and substract terms to make it convergent in a similar 

way we did in (10) , another form to regularize (14) is defining 2,
2

a
F α −  

 and then 

calculate this integral for a general value of 2α , in the end we would put  2 2

aiα = ± . 

Another useful identity to regularize infrared divergences whenever x = a is (tables of 
integrals by Amabrowitz and Stegun [1]  )

( ) 1 21

2 2
0

1
( 1) 2

( , , )
1( ( ) ) 2sin ( 1)!

2 3

m rrm

r

m
iax dx

I a m r
m mx a i r

r

π
π πε

+ −−∞
+ Γ − −  = =

+ +− +    − Γ   −   

∫          0ε →          (15)

Integral inside (14) will be convergent whenever 2r-m >1 if this is not the case we could 
use the Euclidean algorithm to split this integral into a convergent term defined as (14) 

and some divergent integrals  ( )
0

m
dx x a

∞

+∫  m= -1 ,0,1,2,....  the main idea to justify why 

the infrared divergences are easier to regularize than ultraviolet ones , is that for the 
infrared, you could insert an small complex term  iε  to regularize it and make it 
convergent , so there are some complex values of ‘a’ that make (14) to be well-defined , 
however for the ultraviolet divergences this is not the case since there is no value of ‘a’ 

that makes 
4

2
0 ( )

x dx

x a

∞

+∫  convergent , unless we use some kind of regularization

REGULARIZATION OF MULTIPLE INTEGRALS:

Until now, we have only considered integrals in one variable (after change to polar 
coordinates) , then it arises the question if one can apply our method of zeta 
regularization to more complicate integrals like

( ) ( )( )4 4 4
1 2 1 2 1 22

1

1
( ) .......... ( , ,....., ) , ,.....,

1

s

n n n
i i

I s d q d q d q F q q q R q q q
q

∞ −

=

=
+∏∫ ∫ ∫       (16)
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Here we have introduced a regulator depending on an external parameter ‘s’ in order the 
integral (16) to converge for big ‘s’ and then use the analytic regularization to take the 
limit 0s +→  , this regulator must be chosen with care in order not  to spoil any 
symmetries of the Physical system this regulator may be of the form  

( ) 2
1 2

1

, ,....., 1
n

n i
i

R q q q q
=

= + ∑               ( ) ( )1 2
1

, ,....., 1
n

n i
i

R q q q q
=

= +∏      (17)

Our first ansatz would be to define n-dimensional polar coordinates so we can rewrite 

(16) as a multiple integral depending on ‘r’ 2

1

n

i
i

q r
=

=∑  and several angles iθ  i= 

1,2,3,4,..., n-1 in the form 

  ( )1

0

( ) ( , ) ( , )
sn

i iI s d drG r r R rθ θ
∞

−−

Ω

= Ω∫ ∫      ( )
1

1

1

sin
n

n i
i i

i

d dθ θ
−

− −

=

Ω = ∏   (18)

We may choose the first regulator inside (17) so it does not depend on the angular 
coordinates, the idea is that in case (16) has an ultraviolet divergence this divergence 
will appear whenever r → ∞ , so if we perform the integral over the angular variables 

( )
1

1

1

sin
n

n i
i i

i

d dθ θ
−

− −

=

Ω = ∏  we are left with an integral  ( )1

0

( ) ( ) 1
snI s drU r r r

∞
−−= +∫ , in 

order to regularize this we define a convergent integral (by substraction) plus some 
divergent terms  

( ) ( )1

1 10 0

( ) 1 ( ) (1 ) 1
k k

s i sn i
i i

i i

I s dr r U r r a r a r dr
∞ ∞

− −−

=− =−

 = + − + + +  
∑ ∑∫ ∫      (19)

U (r) is the function obtained after integration over the angles , and ‘k’ is a finite 
number to perform the minimal substraction of terms in order the first integral to be 
convergent even for s = 0 , if the integral over the angles is too complicate to have an 
exact form we could replace this integral over the angles by an approximate finite sum 

i

dΩ → ∑ (sum over all the angular variables ) in order to make the integral easier to 

calculate , this can be using Montercarlo methods of integration.

o Substraction method: 

Once we have made the change of variable to spherical coordinates inside our integral 

1 2( , ,......, )nI q q q  one could substract some terms to render the integral finite

( ) ( )1

1 10 0

( ) ( , ) ( ) 1 ( ) 1
k k

j s j sn
i j i j i

j j

I s d dr G r r f r f d dr rθ θ θ
∞ ∞

− −−

=− =−Ω Ω

 
= Ω − + + Ω + 

 
∑ ∑∫ ∫ ∫ ∫  (20)
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We chose the number ‘k’ and the functions  ( )j if θ  so the first integral inside (20) is 
convergent , for the second integral we could perform integration over the angular 

variables and then use formulae (2) and (3) to regularize 
0

(1 )mr dr
∞

+∫ .

o Iterated integration on several variables:

Another method is to consider the multiple integral as an interate integral and then make 
the substraction for every variable for example

1, 2 1 1 1 1 1
1 10

( ,......, ) ( ,....., )(1 ) ( ,....., )(1 )
k k

i i
n n i n n n i n n

i i

q F q q q a q q q q a q q q
∞

− − −
=− =−

 ∂ − + + ∂ +  
∑ ∑∫ ∫   

                                                                                                                                     (21)

The symbol  nq∂  means that the integral is made over the variable nq  keeping the other 
variables constant , the number ‘k’ is chosen so the first integral is finite , this integral 
will depend on  1( ,........, )nI q q  , the divergent integrals (even for the logarithmic case 
i=-1) can be regularized.

Now we have regularized the first integral, we have reduced in one variable  the 
multiple integral, repeating the iterative process for the functions  1 2 1( , ,........, )i na q q q −

1 1 2 1 2 2 1 1 1 2 1
1 10

( , ......, ) ( ,....., )(1 ) ( ,....., )(1 )
k k

i j
n i n j n n n i n n

j j

q a q q q b q q q q b q q q
∞

− − − − − − −
=− =−

 
∂ − + + ∂ + 

 
∑ ∑∫ ∫  

(22)
Using (21) and (22) for every step we can reduce the dimension of the integral until we 
reach to the one dimensional case, which is easier to handle. As an example

( )
1 2

1 2

0 0 0 0 0 0 0 0

( )

1 1 1 1

s
s s s

s s s

xy dy dx xy x x dx dy
dy dx x x dx y dy x x y

x y y x x y y x y

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞−
− − − += − + + − + + + + + + + 

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
 (23)

In the limit 0s →  we can regularize the divernget integrals over variable ‘y’ , keeping 
‘x’ constant , so from (23) we get 

( )2

0

( ) ( )dx f x bx a b x
∞

− + −∫      ( )
3 2

0

( )
( 1) 1

dy x x
f x

y x y

∞ +=
+ + +∫       (24)

With  
0

s

reg

a x dx
∞

− 
=  

 
∫  

0 1

s

reg

dyy
b

y

∞ − 
=  + 

∫ so for an initial given integral with an 

overlapping divergence as  x → ∞   y → ∞  we have made a substraction to get a finite 
integral over ‘y’ (23) repeating the same process we can regularize the integral over ‘x’ , 

11



In order to integrate the finite part of the integral we can use several numerical methods. 

For example , the integral  ( )
3 2

0

( )
( 1) 1

dy x x
f x

y x y

∞ +=
+ + +∫  can be calculated numerically to 

give ( )
3 21

( )
( 1) 1j j j

x x
f x

y x y

+≈
+ + +∑  in order to avoid terms with log( )x ,  tan( )ar x  or 

similar ones inside (23) and (24)  , another method to calculate (23) would be to 

introduce a regulator in the form  ( )2 21 ( , , )
s

x y R s x y
−

+ + =  , that will make (23) to 

converge for certain values of ‘s’ , if we use polar coordinates in (x,y) this becomes

( )
( )

2/ 2

1
0 0 0 0

sin(2 ) 1( , , )
( )

1 2 cos( ) sin( )

s
r u rR x y s

dx dy xy dr du
x y u u r

π −∞ ∞ ∞

−

+
=

+ + + +∫ ∫ ∫ ∫    (25)

Integration over the angular variable ‘u’ can be carried by numerical methods, to 
produce some new divergent integrals, that will only depend on the value of ‘r’ 

( )
0

( ) 1
s

idrg r r
∞

−+∫ , this integrals can be regularized with the same methods we used to 

give a finite meaning to 1-D integrals, unlike the dimensional regularitzation, the 
‘regulator’ is not the dimension of space-time , so we have no problem whenever 
changing to spherical coordinates in d=4 to overcome the UV divergencies.

If the integrand  1 2( , ,......., )nF q q q  had no singularities for every 0jq >  , we may 
expand this integrand into a multiple Laurent series of several variables, and then 

perform the substraction  ( ) ( ) ( )
1, 2,...,

1 2

1, 2,...., 1 1 2 2
1, 2,....., 1

......
s s sn

m m mn

m m mn n n
m m mn

C q b q b q b
=−

+ + +∑  in 

order to define a finite part of the integral

( ) ( ) ( )
1, 2,...,

1 24 4 4
1 2 1, 2,...., 1 1 2 2

1, 2,....., 1

.......... ......
s s sn

m m mn

n m m mn n n
m m mn

d q d q d q F C q b q b q b
=−

 
− + + + 

 
∑∫ ∫ ∫  

(26)

Plus some corrections due to divergent integrals 
0

( )m
i i iq b dq

∞

+∫  m=-1,0,1,..... .

In many cases although the integrals given in (21) and (22) are finite they will have no 
exact expression or the exact expression will be too complicate, in this case we can use 
the Gauss-Laguerre Quadrature formula (in case the interval is  [0, )∞  ) to approximate 

the integral by a sum over the zeros of Laguerre Polynomials  1 2 1
0

( , ,....., , )
n

i n i
i

w f q q q x−
=
∑  

with the weigth expressed in terms of Laguerre Polynomials and their roots 

( ) 22
1( 1) ( )

i
i

n i

x
w

n L x+

=
+     , ( ) 0n iL x =    
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FRACTIONAL DERIVATIVES FOR IR AND UV DIVERGENCES:

Another form to deal with IR divergences using our Zeta regularization algorithm (2) 

and (3) is the following, the term ( ) 1/ 22 2p i mε
−

+ −   0ε →   can be regarded as the 

derivative with respect to 2m−  of the UV divergent expression 2 2p i mε+ −  , so if we 

wish to calculate the following integral  
2

2 2
0

( , )
kx

dx J k m
x i mε

∞

= −
+ −∫  we must use our 

zeta-regularization algorithm in order to give a finite meaning to 
2 2

0

kx dx x i mε
∞

+ −∫  , 

we split the integrand into 
1

0 1

m

m

+ ∞

+

+∫ ∫ the first integral is no longer problematic at x = m 

the second integral may be written as  
2

2
1

2

1

1k

m

i m
x dx

x

ε∞
+

+

−+∫  , now we can use the 

Binomial theorem to expand the square root in powers of  
2

2

i m

x

ε −
 
 

 and valid for 

x m>  and use formulae  (2) and (3) to regularize the divergent integrals 
1

1

k i s

m

x dx
∞

+ + −

+
∫

 .For other non-integer exponent  ( )2 2p i m
α

ε
−

+ −  we may simply use the formula of 

fractional calculus  
( )

( )
1/ 2

1/ 2

3 / 2

1

d x
x

dx

α
α

αα

+
−

+

Γ
=

Γ −
 with this method we turn an UV 

divergence into an IR one by formal differentiation-integration, for the case of ‘n’ 

integer ( )2 2 n
p i mε

−
+ − , we only have to study the case n =1 since by differentiation 

with respect to 2m−  other cases can be obtained, we use partial fraction descomposition 
and division of Polynomials to set the following identities

( ) 12 2 1 1 1

2
p m

m p m p m

−  
− = − − + 

           ( )
k Cp

F p
p m p m

±
±= +

± ±
       (27)

with F a polynomial on ‘p’ and C a constant , now in the sense of  Principal value

0

log
dx

i
x a a

µ π
∞  = + −  ∫         

0

log
dx

x a a

µ∞  =  +  ∫       (28)

Here  logc µ= (Energy or UV scale )  is a divergent constant obtained in the 
regularization of the logarithmic divergent integral, due to the pole at s =1 we must 
recall the definition of Functional determinant to define a zeta-regularized product 

( )'(0, )

0

H a

n

e n aζ
∞

−

=

= +∏  and take the logarithmic derivative with respect to ‘a’ and apply 
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the expansion of the Digamma function 
'
( )a

Γ
Γ

 plus the Euler-Maclaurin formula that 

relates series and integrals.

If we wished to calculate an integral involving the term ( ) 12 2p m
−

−  we would have a 

problem since  ( )
3/ 2

12 2 2 2
2 3/ 2

( )

(3 / 2) ( )
p m p i m

m

ε ε

ε
ε ε

− − +

−

Γ ∂ − = + −
Γ ∂ −

 become singular as ‘ 

0ε +→ , if we expand the Gamma function ( ) ( 1)x x xΓ = Γ +  near its poles in the form 
1

( ) ( )Oε γ γ
ε

Γ ≈ − +  and  introduce an IR cut-off  IRε ε=  , then we will be able to 

define a ‘regularized’ fractional derivative as 
3/ 2

3/ 2

2 1
reg

d x

dx x

γ
π

− =  so we can turn UV 

divergent quantities such as 2 2p m iε− +  into IR divergent quantities at p=m 

( ) 12 2p m iε
−

− +  , this would explain a certain relationship we conjectured before 

involving an IR divergent integral with another UV divergent integral by using formal 
fractional differentiation with respect to external parameters.

o Multiple integrals:

For the case of multiple integrals, we can make use of Polar coordinates in any integer 

dimension n and then replace the integral over the angles dΩ∫  by a multiple sum

( ) ( ) ( )1 2
1

00

,.., , 1 ( ) ( , ( )
i

n
sn

n i i i
i

dV F q q r dr r r b m f r cϕ
∞

−−

Ω =

≈ Ω + Ω − Ω∑ ∏∫ ∫     (29)

The functions ‘a’ ‘b’ and ‘c’ depend only on the ANGLES but not on the variable ‘r’, 
for multiple integrals we can not always obtain exact results for the integration over the 
angles so we should settle for approximations.

For the case of the logarithmic divergent integral , we can still apply another trick we 

use the identities 
1 1 1

.
x x x

=  and  ( ) ( )1 1 1x x x+ − = −  in order to obtain a 

Rational approximation (Padé approximant) for the square root of ‘x’ 
( )
( )

1 P x

Q xx
≈  with 

P(x) and Q(x) Polynomials of degree ‘m’ and ‘n’ respectively so the logarithmic 
integral becomes a more tractable integral that can be regularized by using (2)

( )
( )1/ 2 1/ 2

1 1

s m n m n
j j

j js s
j jc c c

P xdx x dx dx
c x c x

x Q x xx x

∞ ∞ ∞− − −

+ +
=− =−

   
≈ − +       

∑ ∑∫ ∫ ∫             (30)
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Due to the factor  x  , the Riemann the zeta function terms 
1

2
jζ  −  

 with j=-1,0,1,... 

will not include the pole at s=1 when we use the formule (2) and (3) to regularize the 

divergent integrals 
1/ 2m s

c

x dx
∞

− −∫ , the set of  { }jc  is chosen so the first integral inside (30) 

is finite for every Re (s) > 0 , in order to regularize the second divergent integral we will 
need formula (2) , ‘c’ is chosen in order the Polynomial Q(x) has no roots on  [ , )c ∞  . 

For other kind of logarithmic divergent integrals like 
( )2 2logk

c

p m
dp

p

∞ −
∫ , differentiation 

with respect  2m−  will make it convergent at the expense of introducing a new 
parameter  (constant) ‘u’ , see [12] Zeidler for further details on the calculation of UV 
integrals and Zeta regularization.

CONCLUSIONS AND FINAL REMARKS:

We have extended the definition of the zeta regularization of a series to apply it to the 

Zeta regularization of a divergent integral  
0

mx dx
∞

∫   m >0 by using the Zeta 

regularization technique combined with the Euler Maclaurin summation formula. For a 
good introduction to the Zeta regularization techniques , there is the book by Elizalde 
[4] or the Book by Brendt based on the mathematical discoveries of Ramanujan and its 
method of summation equivalent to the Zeta regularization algorithm [2] , another good 
reference (but a bit more advanced) is Zeidler [12] , for the case of Zeta-regularized 
determinants [7] is a good online reference describing also the process of Zeta 
regularization via analytic continuation and how it can be applied to prove the identity 

0

( 1) log 2
n

n π
∞

=

+ =∏  . Apparently there is a contradiction, since the Riemann Zeta 

funciton has a pole at s=1 so the Harmonic series could not be regularized, however 

using the definition of a functional determinant 
0

n

n

E

µ

∞

=
∏    nE n a= + one gets the finite 

result for the Harmonic (generalized) series  
0

1 '( )

( )n

a

n a a

∞

=

Γ= −
+ Γ∑ , with the aid of the 

Euler-maclaurin summation formula  this result for the Harmonic series can be used to 

give an approximate regularized value of the logarithmic integral  
0

1
dx

x a

∞

+∫  , for the 

case of other types of divergent integrals ( )
0

m
dx x a

∞

+∫  we can use again Euler-

Maclaurin summatio formula to express this divergent integrals in terms of the negative 
values of the Hurwitz or Riemann Zeta function   ( ,1) ( )H s sζ ζ=    ( ,1)H mζ −   (UV) 
m= 0,1,2,3,4,..........and the  value of the derivative of Hurwitz zeta function along s =0 

(0, )s H aζ∂ (logarithmic UV), these values encode the UV divergences [11] .  For the 

15



case of the IR (infrared ) divergences in the form 
0

m s

dx

x

∞

−∫  one could make a change of 

variable   
1

x
q

→  to re-interpretate these integrals as  
2

0

m sq dq
∞

− −∫  for the case m=1 we 

have a logarithmic divergence both at x= 0 an as x → ∞  so we must split the integral 

into a IR and an UV divergent part  
1/

0 0 1/

a

a

dx dx dx

x x x

∞ ∞

= +∫ ∫ ∫  after a few simple calculations 

this integral will be equal to 
0

2log
dx

x
µ

∞

=∫  , since we can simply introduce a formal UV 

and IR regulator so   ( )
1

lim 2log UV

dx

x−

Λ

Λ→∞
Λ

= Λ∫ , an UV regulator is introduced to ensure 

that the integral will be convergent .We also believe that a similar procedure can be 
applied to extend our Zeta regularization algorithm to multiple (multi-loop)  integrals 

4 4 4
1 2 1 2......... ( , ,......., )n nd q d q d q F q q q∫ ∫ ∫ , one of the main advantages of this algorithm 

is that the dimension of the space does not appear explicitly so our method does not 
have the same problems as dimensional regularization, and can be used when the Dirac 
matrices 5 0 1 2 3iγ γ γ γ γ=  appear . The imposition in formula (2) that ‘a’ must be a natural 
number is in order to avoid oddities in the process of Zeta regularization with the Zeta 
and Hurwitz Zeta function, since unless ‘a’ is a positive integer the equality 

0 0 0

1
( 1, ) ( )

12 2n n n

a
a n a n aζ

∞ ∞ ∞

= = =

−− = + ≠ + = −∑ ∑ ∑  does not hold

APPENDIX A: REGULARIZATION METHODS AND EXPANSIONS

In order to calculate a divergent integral ( ) kdxf x
Λ

≈ Λ∫  , for any real and postive ‘k’ we 

must expand the integrand into a Laurent series of positive and negative terms

( )
1 0

( ) ( )
( )

s j m s
mj s

j m

c
x a f x c x a

x a

∞
− −

+
= ≥

+ = + +
+∑ ∑     1

1
( )

2 ( )n n
C

dz
c f z

i z aπ +=
+∫     (A.1)

For this purpose the Binomial theorem and the expansion of the logarithm should be 
useful, in order to find this Laurent expansion (in general for our divergent integrals 
there will be only a finite number of terms since the integrals will diverge at most as a 
power of the regulator  Λ .

( )
0

r u r u

u

r
a x x a

u

∞
−

=

 
+ =  

 
∑              ( )

2
2 2

2
1

( 1)
log 2log 1

n n

n
n

m
p m p

p

∞

=

−+ ≈ + + ∑        (A.2)

Once we have expanded the function f(x) we may use formula (2) to regularize the 

divergent integrals 
m s

a

x dx
∞

−∫  for ‘m’ integer or real , the case m =-1 is just the 
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logarithmic integral, and can be regularize by using the defintion of Functional 

determinant (infinite products of all the positive integers) so 
0

1 '
( )

n

a
n a

∞

=

Γ= −
+ Γ∑  , in any 

case if the integral is only logarithmic divergent  ( , ) logdxf x a
Λ

≈ Λ∫ , formal 

differentiation with respect to external parameter ‘a’ will make it convergent , in this 
case we must introduce a new parameter inside our theory ac . 

This regularization model can be applied to almost any divergent integral that appears in 
Quantum Field theory, using the trick of ‘ Wick rotation’ for example with the integral

( ) ( ) ( )3 3

3 3 4

2 2 22 2 2 2 4 2 2 2 2 4 2 2| | | |

i

iR R

d p d p d q
dE dE i

E p c m c E p c m c q m

∞ ∞ ∞

−∞ − ∞ −∞

→ =
− − − − +

∫ ∫ ∫ ∫ ∫     (A.3)

The main idea of this Wick rotation is to change to ‘imaginary’ energies by replacing 
the real axis by the imaginary one and then make the substitution  0E iq=  and i icp q=  
with i=1,2,3  ,( for more explanation see Zeidler [12] ) the last integral in (A.3) is 
divergent but using a simple change to polar coordinates , it can be turned into the one 

dimensional (divergent) integral  ( )
3

22 2
0

x dx
i

x m

∞

+
∫  , this is still divergent, but can be 

regularized using the technique of zeta regularization for integrals introduced in this 
paper.

For multiple integrals 1 2( , ,........, )nF q q q  we can make a change of variable to n-
dimensional polar (spherical ) coordinates , and replace the integral over the angular 

variables  dΩ∫  by a sum 
1

1 2 1

0

( , , ,.........., )n
ndr r F r θ θ θ

∞
−

−
Ω
∑∫ , this sum will clearly 

depend only in the variable ‘r’ , expanding each term into a Laurent series on powers of 
(r+a) for some positive ‘a’ we can regularize multiple integrals in an approximate way, 
(note that replacing an integral by a sum is legitimate and there are many Numerical 
Quadrature methods for this purpose) even in the case that the integrand is not invariant 
under rotations (unlike the dimensional regularization method or other methods).

For the case of integrals that have also an IR divergence , we can define several 

parameters 2 0µ >  2 0α > , in this case the expressions  2 2 2
1 2

1

p pα+   ,  2

1

1mp α+ +   and 

( )( ) 12 2
1 2p p µ

−
− +  are free of IR divergencies, after regularizing the integral to cure the 

UV divergencies, we can make the analytic continuation in our parameters to the cases 
2 2i mµ ε= −  and  2 1 iα ε= − +  for an small parameter 0ε → , so the IR divergencies 

appear.  Another useful formula is ( ) 1 2 22 2
0

1

2 ( 1) ( )

s

s s

dp i

s m mp i m

π
ε

∞

+

 ∂=  Γ + ∂+ −  
∫   , for 
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example by division of Polynomials integrals of the form 2 2
0

kp dp

p m

∞

−∫  can be reduced to 

the above integrals plus som UV divergent integrals like 
0

dp

p m

∞

+∫  . Another brute force 

alternative is to consider the general propagator  ( )( )2 2
1 2p p m

λ
− − , whenever lambda 

takes the value -1 this integral has an IR divergence at 1 2p p m= ±  but for lambda 

positive this integral has no IR divergences, the same would hod for  ( )2p i
λ

ε+  that is 

IR divergent for negative values of parameter lambda, we can use our zeta 

regularization algorithm , by expanding the quantities  ( )2p i
λ

ε+   ( )( )2 2
1 2p p m

λ
− −  

with  ( )2,2λ ∈ −  into a convergent Laurent series of powers  
( )

( )
m

m
m

c

x a

λ∞

=−∞ +∑  and then set 

1λ = −  after having regularized the divergent integrals by means of the zeta function 
( 2 )s mζ λ− −  in order to obtain finite UV results.

For the case of fractional derivatives and IR divergences , we can always define a 3/2 
fractional derivative relating UV and IR divergences in the form 

3/ 2

03/ 2 1

2 1 1d

d

ε

λε ε
λγ

ε λπ

−

=− −

∆ + − =  ∆ 
  with  ( )1 2, ,.........., nq q q∆  a function of n-

variables whose zeros are precisely the IR divergences in our theory.

For a more complicate IR divergent integral , if we could use the ‘sector method’ so we 
can isolate the divergences in the form 

( ) ( )
( ) ( )1 1

1 1 1 1
1 1

1 1 1

0 0 0 01 1

( ,.... ) ( ,.... )
.... .... ............

( ,.... ) ( ,.... )
n na ba bn n

n n n

n n

f x x g y y
dx dx dy dy y y

K x x C P y y

εε
α βε α βε

− +− +
+ +→

+∫ ∫ ∫ ∫
 (A.4)

With K and P polynomials of several variables ‘C’ is a constant and f and g are smooth 

functions near the origin, the coefficients { } 0i ia bε+ ≥  so we can factorize the IR 

divergences as 0ε → , with a simple change of variable 
1

1i
i

y
q

=
+   for i =1,2,3,4,..n 

the last integral in (A.4) becomes an UV divergent integral

  
( ) ( )

( )
221 1

1 1
1

1 1
1 1

0 0 1

((1 ) ,....(1 ) )
.... (1 ) .....(1 )

((1 ) ,....(1 ) )

a ba b n n n
n n

n

g q q
dq dq q q

C P q q

εε

α βε

+ −+ −
∞ ∞ − −

+− −

+ ++ +
+ + +

∫ ∫    (A.5)      

Although we have only studied multiple integrals, the same can be applied to Fourier 
transform, for example if the function inside the Fourier transform depends only on the 
modulus of position vector ( )f r

r
 then we can  make a change of variable to polar 

coordinates to get  
cos. 1

0

( ) ( ) ( ) i

n

ikrik r n
i

iR

dr f r e drf r r g e θθ
∞

−≈ ∑∫ ∫
r rr

, here the angle is 
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introduced by the scalar product . . .cosk r k r θ=
r r , the function ‘g’ will depend only on 

the angle  θ  , so we may replace a multiple fourier transform by an approximate sums 
of Fourier transform in one dimension for the function 1( ) nf r r −

APPENDIX B: HOW TO OVERCOME THE POLE  (1)ζ = ∞

In this paper we have seen how due to the pole of the Riemann zeta at the point s = 1 we 

could not regularize the integral 
0

dx

x

∞

∫  unless we use the result for the Harmonic series 

( )
0

1 '

( ) reg
n

a
n a

∞

=

Γ= −
+ Γ∑  fro a > 0 and finite, then if we introduce this result inside the 

Euler-Maclaurin summation formula we can get finite results for 
0

dx

x

∞

∫ .

Another alternative is to use the identity

0

( )
1

!

n
x

n

x
e

n

∞

=

−= ∑       1
0

( )
log ( )

!

n
n

na a

dx dx
x

x n x α
α∞ ∞∞

−
=

−= ∑∫ ∫    (B.1)

In this case we can evaluate the integrals inside (B.1) by 

( )
2 1

( ) 2
1 1 1 2 1 1

1 1 0

log ( ) log ( ) log ( ) log ( )
1 (1 )

(2 )! ( )

n n n r na
n n r

r s
i ra x

Bdx x a i x a

x a i r u x aα α αζ α
∞ −∞

− − − − +
= = =

 ∂ += + − − − +  ∂ + 
∑ ∑∫

 (B.2)
Here α  is an small non integer so the zeta function and its derivatives ( ) (1 )nζ α−  are 
FINITE

Another alternative is to look for a Pade or Rational approximation for the square root 
of ‘x’ for example.

( )

( )

P x
x

Q x
≈         

1

2
2

0

( 1) (2 )!
1    1

(1 2 )( !) 4

n n

n
n

n
x x x

n n

∞ − +

=

−+ = >
−∑     (B.3)

In this case (B.3) we have the approximation  3/ 2

( )

( )a a

dx P x dx

x Q x x

∞ ∞

≈∫ ∫ , now if we apply the 

formula

3/ 20
03/ 2 5/ 2

( )

( )
i i

i i
i ia a a

cdx P x dx
c x c x dx c

x Q x x x

∞ ∞ ∞
− 

− − + + 
 

∑ ∑∫ ∫ ∫      (B.4)

Inside (B.4) now there are no logarithmic-divergent integrals , so the pole (1)ζ  will not 
now apper
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