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Abstract.
We present the Smarandache’s Cevians Theorem in the geometry of the triangle.

Smarandache’s Cevians Theorem (I).
In a triangle A ABC let’s consider the Cevians AA', BB' and CC' that intersect in P .

Then:
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where A'c[BC], B'<[CA], C'c[AB]

Proof:
We’ll apply the theorem of Van Aubel three times for the triangle A ABC, and it results:
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If we add these three relations and we use the notation
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then we obtain:



The minimum value will be obtained when X =Yy =z =1, therefore when P will be the

gravitation center of the triangle.

When we multiply the three relations we obtain
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Open Problems related to Smarandache’s Cevians Theorem (1)

Instead of a triangle we may consider a polygon A;A;...A, and the lines AjA;’, ALA;’,
..., AnAy’ that intersect in a point P.
Calculate the minimum value of the expressions:
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Then let’s generalize the problem in the 3D space, and consider the polyhedron
AjA;...A, and the lines AjA;’, AAy, ..., AyA,’ that intersect in a point P. Similarly,
calculate the minimum of the expressions E(P) and F(P).
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