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Abstract. 
We present the Smarandache’s Cevians Theorem in the geometry of the triangle. 
 
Smarandache’s Cevians Theorem (I). 
In a triangle Δ ABC  let’s consider the Cevians ',  'AA BB  and 'CC  that intersect in P . 

Then: 
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where [ ] [ ] [ ]' ,  ' ,  'A BC B CA C AB∈ ∈ ∈ . 
 
Proof: 
We’ll apply the theorem of Van Aubel three times for the triangle Δ ABC , and it results: 
 

    
' '

' ' '
PA AC AB
PA C B B C

= +     
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PB BA BC
PB A C C A

= +     

    
' '
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PC CA CB
PC A B B A

= +     

 
If we add these three relations and we use the notation 
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then we obtain: 
1 1 1( ) 2 2 2 6E P x x z
y y z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + ≥ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 



The minimum value will be obtained when 1x y z= = = , therefore when P will be the 
gravitation center of the triangle. 

When we multiply the three relations we obtain 
1 1 1( ) 8F P x x z
y y z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + ⋅ + ⋅ + ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ . 

 
Open Problems related to Smarandache’s Cevians Theorem (I) 
 
1. Instead of a triangle we may consider a polygon A1A2…An and the lines A1A1’, A2A2’, 

…, AnAn’ that intersect in a point P. 
Calculate the minimum value of the expressions: 
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2. Then let’s generalize the problem in the 3D space, and consider the polyhedron 
A1A2…An and the lines A1A1’, A2A2’, …, AnAn’ that intersect in a point P.  Similarly, 
calculate the minimum of the expressions E(P) and F(P). 
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