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Abstract

Given a vector space V of dimension n and a natural number k < n, the

grassmannian Gk(V) is defined as the set of all subspaces W ⊂ V such that

dim(W) = k. In the case of V = Rn, Gk(V) is the set of k−flats in Rn and

is called real grassmannian [1]. Recently the study of these manifolds has

found applicability in several areas of mathematics, especially in Modern

Differential Geometry and Algebraic Geometry. This work will build two

differential structures on the real grassmannian, one of which is obtained as a

quotient space of a Lie group [1], [3], [2], [7].
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1 Introduction

Given a vector space V of dimension n and a natural number k < n, the grassmannian

Gk(V) is defined as the set of all subspaces W ⊂ V such that dim(W) = k. In the case of V = Rn,

Gk(V) is the set of k−flats in Rn and is called real grassmannian [1].

In this work we shall construct two differentiable structures on the real grassmannians,

where one of them is obtained as quotient space of a Lie group.

Initially we will work basics concepts, namely, the concepts of differentiable maps, dif-

ferentiable manifolds and Lie group (For more details see [1], [6], [2] or other titles).

We will assume that the reader known differential calculus, group theory, linear algebra,

a naive set theory and topology.

In the end of this paper, we will see some results involving grasmannians and Lie groups,

and we shall construct the differentiable structures promised on Gk(Rn).

2 Differentiable maps

Let f : X ⊂ Rn −→ Rm a map of an open in Rn into Rm. Given v ∈ Rn, the directional

derivative of f in a ∈ X in the direction of v is given by:

∂f

∂v
(a) = lim

t→0

f(a+ tv)− f(a)

t
(2.1)

for t ∈ R, if exists this limit.

A map f : X ⊂ Rn −→ Rm is of the form, f = (f1, f2, . . . , fm) with fi : X ⊂ Rn −→ R.

Therefore if f have directional derivative in a ∈ X, then

∂f

∂v
(a) =

(
∂f1

∂v
(a),

∂f2

∂v
(a), , · · · , ∂fm

∂v
(a)

)
(2.2)

Let X ⊂ Rn a open and f : X ⊂ Rn −→ Rm a map. We saw that the map f is

differentiable in a ∈ X, with differential T ∈ L(Rn,Rm) (T is a linear map), if ∀v ∈ R with

a+ v ∈ X, f(a+ v) = f(a) + T (v) + r(v) and lim
v→0

r(v)

‖v‖
= 0

Given a base {e1, e2, · · · , en} for Rn and {ẽ1, ẽ2, · · · , ẽm} for Rm. If f is differentiable in

a,
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∂f

∂ej
(a) = lim

t→0

f(a+ tej)− f(a)

t
:=

∂f

∂xj
(2.3)

and we still

∂f

∂xj
= T (ej) =


T1(ej)

...

Tm(ej)


m×1

(2.4)

Theorem 2.1 Let f : X ⊂ Rn −→ Rm, with X open in Rn. Are equivalents:

(a) f is differentiable in a ∈ X;

(b) Each fi is differentiable in a ∈ X;

Therefore, the map differentiation D is such that:

D : X ⊂ Rn −→ L(Rn,Rm)

a 7−→ Ta = f ′(a) : Rn −→ Rm

x 7−→ f ′(a)x

(2.5)

The matrix Tacβ that represents the transformation Ta in the base β is called Jacobian

of Ta and is given by:



∂f1

∂x1
(a) ∂f1

∂x2
(a) · · · ∂f1

∂xn
(a)

∂f2

∂x1
(a) ∂f2

∂x2
(a) · · · ∂f2

∂xn
(a)

...
...

. . .
...

∂fm
∂x1

(a) ∂fm
∂x2

(a) · · · ∂fm
∂xn

(a)


m×n

(2.6)

Some basics results.

Theorem 2.2 f : X ⊂ Rn is differentiable in a ∈ X if, and only if, each fi is differentiable in a.

Theorem 2.3 If f : X ⊂ Rn is differentiable in a ∈ X, then it is continuous in a.

Theorem 2.4 If the differential of f : X ⊂ Rn in a ∈ X exists, then it is only.
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3 Differentiable manifolds

In this section, we will see the concept of differentiable manifolds, which extends the

notion of calculus to more general spaces. The idea is cover a set M by opens in Rn so that when

there intersection between two of the open, the transition can be made smoothly.

Let M a set and F a colection of maps one-to-one xα : Uα −→ M of opens Uα ⊂ Rn

into M such that:

(1)
⋃
α∈Λ

xα(Uα) = M ;

(2) For all pair α, β ∈ Λ with xα(Uα) ∩ xβ(Uβ) = W 6= ∅ the sets x−1
α (W) e x−1

β (W) are open

in Rn and the maps x−1
β ◦ xα are differentiables;

In this case we are saw that F is a differentiable structure on M and the pair (M,F) is a differen-

tiable manifold.

For simplicity we shall write ”M is a differentiable manifold”.

Some authors plus the definition with the following axiom: F is maximal with respect

to the postulates (1) and (2). However it is dispensable because given a differentiable structure F

on a set M , we can makes it maximal doing

F′ := {x′α : U ′α −→M ;U ′α ∈ Rnis open and x′α satisfies (2) and does not belong F},

and F′ is maximal with respect the axioms (1) and (2), and (M,F′) is a differentiable manifold.

The elements in F are called (local) parameterization of M . In some moments we will

identify the pair (xα, Uα) as a elemnt in F.

4 Lie groups

A Lie group is a algebraic group that has structure differentiable manifold.

For example, the set Gl(n,R) of the invertible matrices of order n with entries in R,

with the usual matrices multiplication is a Lie group.

4.1 Group actions
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We saw that a group G acts on a differentiable manifolds M if exists a map φ : G×M −→

M , given by (g,m) 7−→ φ(g,m) such that:

(i) For each g ∈ G the map φg : M −→M is a diffeomorphism, ie, is differentiable, has inverse

φ−1 and φ−1 is differentiable;

(ii) If g1, g2 ∈ G, then φg1g2
= φg1

◦ φg2
;

4.2 Properly discontinuous action

An action G −→ M is called properly discontinuous if all point p ∈ M has a neighbor-

hood U ⊂M such that U ∩ g(U) = ∅,∀g ∈ G.

When G acts so that properly discontinuous in M , the action determines an equivalence

relation in M , given by p ∼ q ⇔ q = gp for some g ∈ G.

We shall defined the set M/G as the quocient space of M by the relation ∼ above

defined. we shall defined too the map

π : M −→M/G

p 7−→ π(p) = [p] = Gp = {gp; g ∈ G}

M/G has an estructure of differential manifold such that π is a local diffeomorphism

(when restricted in a neighborhood of the point).

For each p ∈ M , choice a parametrization x : V −→ M such that x(V ) ⊂ U , U ⊂ M is

a neighborhood of p such that U ∩ g(U) is empty for all g 6= 1.

As U ∩ g(U) = ∅, π|U is injective. Hence y = π ◦ x : V −→M/G too is injective.

The family {(V, y)} cover M/G, becouse {(V, x)} cover M and π is surjective.

It remains to show that given two maps y1 = π ◦ x1 : V1 −→ M/G and y2 = π ◦ x2 :

V2 −→ M/G with y1(V ) ∩ y2(V2) 6= ∅ have that y−1
1 ◦ y2 is differentiable. Denote by πi the

restriction of π in xi(Vi), i = 1, 2. Take q ∈ y1(V1) ∩ y2(V2) and let r = x−1
2 ◦

−1
2 (q).

Consider also W ⊂ V2 a neighborhood of r such that π2 ◦ x2(W ) ⊂ y1(V1) ∩ y2(V2).

Thus restricting for W have

y−1
1 |W = x−1

1 ◦ π
−1
1 ◦ π2 ◦ x2

We shall show that π−1
1 ◦ π2 is differentiable in p2 = π1(q). Let p−1

1 ◦ π2(p2), then p1

and p2 are equivalents in M . Thus ∃g ∈ G such that p1 = gp2.
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Note that π−1
1 ◦ π2|x2(W ). Hence π−1

1 ◦ π2 is differentiable in p2.

The construction above ensure that π is a local diffeomorphism (y = π ◦ x).

4.3 Transitive actions and Isotropy

We saw that an action φ : G ×M −→ M is transitive when for all pair x, y ∈ M exist

g ∈ G such that x = gy.

If G acts on a manifold M , the isotropy of G in the point x ∈M , IsoG(x) is the set of

all g ∈ G such that gx = x.

The proposition below is easily verified.

Proposition 4.1 IsoG(x) is a subgroup of G.

Theorem 4.1 Let G a group that acts transitively on a differentiable manifold M and x ∈M .

Then G/Iso(x) is a differentiable manifold diffeomorphic to M .

The last theorem can be found in [1].

5 Differentiable structures on real grassmannians

Given a vector space V os dimension n finite and a natural number k < n, the grass-

mannian Gk(Rn) is the set of all subspaces W ⊆ V such that dimW = k. If V = Rn, then Gk(Rn)

represent the k−planes in Rn contained the origin and is called real grassmannian.

We known that a set of linearly independent vectors define a vector space of dimension

equal to the cardinality of that set. Too known that all vector space has base, and it is not unique.

5.1 Construction of local letters and association with Rkn

Let Mk,n(R) the set of the (k × n) matrices with real entries and Fk(R) the subset of

Mk,n(R) compossed for matrices whose rows are linearly independent, ie, the set of the (k × n)

matrices whose rows is not linear combination (by real coefficients!) of the other rows, ie, the

matrices of rank k.
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For each matrix A corresponds a vector space on the field R os dimension k, ie, a element

W in Gk(Rn), namely, the subspace spanned by rows vectors of the matrixA, span{A1, A2, · · · , Ak}.

Of course that two matrices A and B can span be the same element of Gk(Rn), but this occurs

if, and only if, A = ΓB for one Γ ∈ Gl(n,R) a (k × k) invertible matrix.

This observation motivates the following equivalence relation: we shall saw that X and

Y in Fk(R) are equivalents (X ∼ Y ) is exists a invertible matrix Γ ∈ Gl(n,R) such that X = ΓY .

Of course that ∼ makes a partition of the set Fk(R). Let F = Fk(R)/ ∼ the elements of F are

equivalences class by the relation ∼. Thus, each element of the grassmannian is identified by only

one element of F.

For each ordered set α = {α1, α2, · · · , αk} of k integer such that 1 ≤ k ≤ n and for each

element in F we defines the maps α : F −→Mk,k(R) and α∗ : F −→Mk,n−k(R), where α(A) is the

matrix whose i−th column is the αi−th column of A and α∗(A) is the matrix composed (neatly)

the columns that do not appear in α(A).

Let Uα the subset of F, formed by the matrices A for which α(A) is invertible. Is easily

that the set Uα is a open set in F.

Defines the following maps:

φα : Uα −→ Gk(Rn)

A 7−→ span{A1, A2, · · · , Ak}

that associate to each matrix A the subspace spanned by himself rows vectors.

We going now to verify that the colection {(Uα, φα)} provide a differentiable structure

on grassmannian.

Note that, becaus e the partition made by the relation ∼ given above, each element in

F represents one, and only one, point in Gk(Rn), ie, the map φα are one-to-one (the reader may

wonder if the maps are well defined, ie, if no depends of the class representative for the relao ∼,

the proof od this fact will be omitted, but does not present great difficulties).

Note that all element in Gk(Rn) has a base, and thus there is a corresponding matrix

in F, and reciprocally, each element in F generates a subspace k−dimensional of Rn. Thus⋃
α∈Λ

φα(Uα) = Gk(Rn)

It remains now to see that if two of the applications above, say φα and φβ , cover the

same subset of Gk(Rn), then its inverse images (in this set) are open and the composition is

smooth, ie, φ−1
β ◦ φα is differentiable.
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Clearly the inverse images of the maps are open, because they are images of the function

det−1 that is a continuous function (note that according to the equivalence relation that we did

above, det−1 is well defined, ie, is really a function).

We analyze the maps φ−1
β ◦ φα. We have φα leads to a matrix A and subspaces in φ−1

β

subspace that takes a matrix equivalent to the A. In view of the relation ∼, the composition is

the identity and is therefore differentiable.

The construction above ensures that the grassmannian Gk(Rn) has a structure of dif-

ferentiable manifold.

5.2 Quotient of a Lie group

In this subsection we shall identify the real grassmannian as the quotient space of a Lie

group by a isotropy.

Let O(n) := {A ∈ Gl(n,R); AAt = I} the set of the (n × n) orthogonal matrices.

Defines the map

φ : O(n)×Gk(Rn) −→ Gk(Rn)

(A,H) 7−→ AH

that associate each pair (A,H) the subspace spanned by rows os the matrix AH, with H a (k×n)

matrix whose rows are vectors of the base of a point in Gk(Rn).

Lemma 5.1 O(n) is a Lie group.

Lemma 5.2 The map φ is a transitive action.

Proof. Fist we shall see that φ is a action of G into M . Let A ∈ O(n), then φA(H) = AH for

all matrix H that represents a point in Gk(Rn). φA is defined to multiplication of matrices, that

is differentiable. As O(n) is a subgroup of Gl(n,R), the matrix A is invertible hence φA is too

invertible and given by φ−1
A (X) = A−1X, that is too differentiable.

LetA andB two elements inO(n), have that φAB(H) = (AB)H = A(BH) = φA(BH) =

φA ◦ φB(H), showing that φ is a actions of G into the real grassmannian.

Now we shall see that φ is transitive. Let Π and Γ elements in Gk(Rn), takes βΠ =

{x1, · · · , xk} a orthonormal base for Π and βΓ = {y1, · · · , yk} a orthonormal base for Γ. We can

to complete βΠ for obtainer a orthonormal base β∗Π for Rn, of equal form we obtained other base

β∗Γ for Rn. Defines the map T : Rn −→ Rn given by T (xi) = yi. We can see easily the linearity
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of T and T (Π) = Γ. Let T cβ∗
Π

= A the matricial representation of T in the base β∗Π, have that

AΠ = Γ, and the action is transitive action.

Let Π0 the subspace spanned by vectors e1, · · · , ek, the fist k canonical vectors of Rn. It

is not difficult to verify that the isotropy of Π0 is given by

Iso(Π0) =


 A 0

0 B

 ; A ∈ O(k), B ∈ O(n− k)

 .

that is clearly diffeomorphic to O(k)×O(n− k).

Therefore the grassmannian Gk(Rn) is identify with O(n)/O(k)×O(n− k).
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