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Abstract: In the paper given generalisation inequalities using

Lagrange identity.

The inequality proposed for I.M.O.2008 Madrid:

i If x,y and z are three real numbers,all different from 1,such that xyz=1, then
prove that :

x2

x−12
+

y2

y−12
+ z2

z−12
≥ 1 1

ii Proof that egality achieved for infinitely many triples of rational numbers x,y and z
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For xk ∈ R and λk ∈ R+ following the Lagrange identity :
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The identity (2) imply the inequality :
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In the inequality 4 for λk =
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The inequality 5 write∑
k=1

n xk
xk+1

2

xk
xk+1

−1
2
≥ 1 let

xk
xk+1
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The inequality proposed India-International Mathematical

Olympiad Training Camp 2010:

Let ABC be a triangle.Let Ω be the brocard point.Proof that:
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2 ≥ 1 6
In the paper generalisation the inequality:

Let A1A2...An be a convex polygon andM ∈ IntA1A2...An then:
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where p ∈ 1,2, ...,nand An+k = Ak, k = 1,2, ...,n
Following Lagrange relation in geometry;
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for permutation λ1 → λσ1;λ2 → λσ2; ......λn → λσn
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for σk = p + k − 1, to obtain:λσk = λp+k−1 = 1

Ap+k−1Ap+k2



and proved the inequality 7
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