
 

�1/13 

 

 

 
 

DEMO 2008/2    
 

 

ΜΙΑ ΝΕΑ ΓΕΝΙΚΗ ΚΑΤΗΓΟΡΙΑ «ΕΛΕΥΘΕΡΩΝ ∆ΥΝΑΜΕΩΝ» ΠΕ∆ΙΩΝ BELTRAMI 

MEΡΟΣ 1 : ΘΕΩΡΗΤΙΚΗ ΕΠΙΣΚΟΠΗΣΗ 

 

Θ. Ε. ΡΑΠΤΗΣ 
 

 
 

A New Generic Class of Beltrami “ForceA New Generic Class of Beltrami “ForceA New Generic Class of Beltrami “ForceA New Generic Class of Beltrami “Force----Free” Fields. Free” Fields. Free” Fields. Free” Fields.     

PartPartPartPart----I: Theoretical considerationsI: Theoretical considerationsI: Theoretical considerationsI: Theoretical considerations    
 
 

T. E. RAPTIS 

 

 

 

 

 

 

 

 

 

 

 

 

ΕΚΕΦΕ «∆ΗΜΟΚΡΙΤΟΣ» 

153 10, T.Θ. 60228, ΑΓ. ΠΑΡΑΣΚΕΥΗ ΑΤΤΙΚΗΣ, ΕΛΛΑΣ 

 

“DEMOKRITOS” 

National Centre for Scientific Research 

153 10, PO Box 60228, AG. PARASKEVI, ATTIKI, GREECE 
 
 
 
 
 
 
 
 
 
 

 

 



 

�2/13 

 

MIA NEA ΓΕΝΙΚΗ ΚΑΤΗΓΟΡΙΑ “ΕΛΕΥΘΕΡΩΝ ∆ΥΝΑΜΕΩΝ” ΠΕ∆ΙΩΝ 

BELTRAMI - MEROΣ 1: Θεωρητικό υπόβαθρο 

 
Θ. Ε. Ράπτης 

 
ΕΚΕΦΕ «∆ΗΜΟΚΡΙΤΟΣ» 

∆ιεύθυνση Τεχνολογικών Εφαρµογών 
(rtheo@dat.demokritos.gr) 

 
 

A NEW GENERIC CLASS OF BELTRAMI “FORCE-FREE” FIELDS 

PART I : Theoretical Considerations 

 
T. E. Raptis 

NCSR “DEMOKRITOS” 
Division of Applied Technology 

(rtheo@dat.demokritos.gr) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aθήνα, 29, Μαίου, 2008 

Athens, 29, May, 2008 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

�3/13 

 

DEMO 2008/2 

 

A New Generic Class of Beltrami “Force-Free” Fields.  

Part-I: Theoretical considerations 
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Abstract: We report on a new general class of solutions of the Beltrami equation, with 

special characteristics. We also provide examples of solutions that also satisfy Maxwell equations. 

A subset of these solutions can be isolated which corresponds to “gauge” fields. A special 

projective geometry of vacuum fields is also revealed and discussed. 

 

1. Introduction 

The notion of a force-free field comes directly from the work of 19
th

 century mathematician 

Eugenio Beltrami (1835 - 1899) in hydrodynamics [1], [2]. In fact Beltrami made a very important 

contribution by a direct comparison between electrodynamics and hydrodynamics probably inspired 

by Lord Kelvin’s vortex model of the atom. The central notion is that of a generalized eigenvalue of 

a rotation operator. As this is allowed to vary also with space and time it is preferable to call it the 

eigen-vorticity and we use this term for the rest of this paper. The special case of constant eigen-

vorticity is often met in the literature under the name of a Trkalian flow from the Czech physicist 

and mathematician Viktor Trkal (1888 -1955) who has done similar work independently back at 

1919 [3]. The subject is shown to be of significance in fluid mechanics, electromagnetism, 

magnetohydrodynamics and astrophysics while there is a proposition that the famous Vacuum 

Energy may be composed from such force-free fields [2]. 

In the following, we briefly introduce the subject of Beltrami fields and their general 

significance in section 2. In section 3, we present a general theorem for the construction of a class of 

solutions of the Beltrami equation. In section 4, we discuss the problem of the independent 

existence of such electric and magnetic fields either in vacuum or through appropriate sources and 

boundary conditions. In section 5, we further analyze the consequences of the previous abstract 

observations in the effort to develop a concrete algorithmic condition for constructing similar 

solutions of Maxwell equations. In section 6, we conclude on the possibility of a new class of 

devices that may lead to new applications in engineering electromagnetics as we intend to show in 

the second part of this article. This also provides strong indications that a new area of high energy 

physics is possible with macroscopic instruments effecting truly macroscopic results. 

 

2. Geometry of Force-Free Fields 

A Beltrami field is one that satisfies the equation  

 

( , )B t Bλ∇× = r  (1) 

λ(r,t) is the eigen-vorticity, which is a generalization of the eigenvalue of the rotation operator. The 

possibility of different orientations has been absorbed in the scalar coefficient. Such fields have 

been initially introduced in hydrodynamics to express vortex-like structures or in connection with 

the stability of solutions of the Euler equation. It has also been extensively used in the study of bi-

anisotropic media especially by A. Lakhtakia [2], [4] and others. The later author has also shown 

that there exists a reformulation of Maxwell postulates in a purely covariant form in terms of two 

complementary complex Beltrami electromagnetic fields of the form 

 

[ ]BiEQ Z±=±
2

1
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where Z stand for the scalar vacuum impendance. 

In the case of electrodynamics and particularly Magneto-hydrodynamics we usually start 

from the magnetic B field which can be derived through (1) and through Maxwell equations we can 

deduce the sources. On the other hand the second Maxwell equation demands that  

 

( , ) 0, 0t Bλ∇ = ∇ =B r  (2) 

 

which restricts possible solutions of Beltrami equation (1). Not many general solutions of (1) are 

known in the literature (see [9] - [17]). A comprehensive review has been given by G. Marsh [5]. As 

is immediately obvious, application of rot operator into (1) turns it to a non-linear scalar and vector 

wave or Helmholtz equation, which has been solved in some cases for constant λ with appropriate 

boundary conditions. Trkalian fields with λ = ±2 are known in the mathematical literature as Left 

Invariant Fields with the simplest cases given by }{ iix e . Non-constant eigen-vorticity is much more 

difficult and it has been known for decades in solar physics and astrophysics through the Grad-

Shafranov equation [5] for which several special solutions have been studied extensively. Recent 

extensions of previous solutions have also been proposed [13] - [17] including the so-called 

Kugelblitz or Ball-like Force-Free fields [13], [14]. 

A nice approach on non-constant solutions is based on the decomposition of solenoidal 

(divergence-free) vector fields in R
3
 in the form  

 

3 3( ) ( )B ϕ ψ= ∇× +∇×∇×e e  (3) 

 

where φ and ψ are called the Debye-Hertz potentials. This method has been employed by Benn and 

Kress in [10] to find solutions of equation (1) in terms of these potentials. One may also introduce 

Hertz potentials in a similar fashion. There is also an orthogonal basis of complex curl 

eigenfunction modes and the relevant complex helical wave decomposition first introduced by 

Lesieur [23] who defined helical waves through 

 

[ ] ( )ikxkiakbkxV exp)()()( m=±  (4) 

 

for which ±± ±=×∇ vkv || . 

A deeper treatment by Kravchenko in [24] based on differential forms calculus, has 

resulted in an equivalent set of three Schrödinger equations with a non-constant complex eigen-

vorticity. It is a notable fact that both Benn and Kress and especially Pantilie and Wood in [25] who 

have made a covariant treatment of (1) agree that the case of non-constant eigen-vorticity is 

inherently connected with curved metrics and the construction of self-dual metrics of the form 

 
2( )g rh r dr A= + +   (4) 

 

In fact, there exists a linear morphism which maps solutions of the wave equation to solutions of a 

generalized Beltrami equation given as 

 

*dA cA= ±    (5) 

 

where * stands for the Hodge dual operator. Furthermore, Kassandrov and Trishin show in [26] that 

there exist spinorial generalizations of the Beltrami operator that occur in the theory of Shear-Free 

Congruencies in which every Maxwell-like field becomes self-quantized. There is also an associated 

work by H. Marmanis [28] who brought afore the old and forgotten subject of the analogy between 

hydrodynamics and electrodynamics in the effort to impose quantization conditions in turbulent 

flows. This direction of research was soon assimilated after 2000 in the new area called Meta-fluid 

Dynamics which is a form of Gauge field theory [29]. Similar in concept are the findings of Saygili 
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[27] in his attempt to construct a topologically massive abelian gauge field theory. In this construct 

abelian gauge potentials on Riemannian manifolds are Trkalian fields which define contact 

structures. The deep relation between contact structures and Beltrami fields has also arisen in the 

mathematical literature especially from the study of the “ABC” flows with unstable hyperbolic 

orbits by Arnold [28]. These works also have an intrinsically deep connection with some old and 

recent electromagnetic mass theories like the geons hypothesis first proposed by Wheeler and later 

elaborated by Melvin as well as with the primary attempts by George Reinich for a unified field 

theory.  

Based on this evidence we find reasons to believe that the opposite route is also possible 

through which an understanding of both Maxwell and Yang-Mills fields could be reduced to an 

appropriate generalization of Navier-Stokes equations describing a self-quantizing, relativistic 

superfluid structure of a primordial, non-linear vacuum. Moreover, as far as a relativistic, covariant 

description of hydrodynamics exists it seems possible to include all Maxwell-like fields into a 

unified description where such forces will turn out to be “inertial” in nature. We provide evidence 

for such an opposite mapping in a forthcoming article through the introduction of generalized Euler 

– Clebsch vector potentials. In the next section we treat the problem of general solutions of (1) in 

the light of a new algebraic transform of vector fields. Applied to Maxwell fields this appears to be 

inherently related with an underlying projective geometry characteristic of the undisturbed vacuum. 

 

3. A new class of Beltrami fields 

 

 In the following we will need to introduce some definitions in order to facilitate the 

exposition of the main results in both their generality and rigor. We first show that a set of special 

eigen-functions of the rotation operator can be constructed from arbitrary vector functions. In order 

to do that we will first need to construct a special transformation of vector fields which is defined by 

the following lemma. 

 

Field Equlibration Lemma 3.1 : Let F a real valued vector field in R
3
 and M(n;x,y) a set of 

matrices defining a 1-parameter group of continuous  transformations FMF )()( nn =  such that 

∑
=

N

n

n

1

)(
F = ( ) ],,[, 302010 eeeddR =•φ  where R(x), a continuous “frame” transformation. Then,  

);()(),;( ykxryxM nn ⊗= is a trivial dyadic  kernel with ∑
=

=
3

1j

i Rijr . 

 

Proof:  From the defining equation we have 

 

∑ ∑ ∑∑∑
= = ===

=
N

n

N

n j

jj

j

jj

j

jj FMFMFMn
1 1

3

1

3

3

1

2

3

1

1 ],,[),;( FyxM  

 

As the initial field elements get mixed we may equate terms by allowing the matrix elements to be 

factorised as );()( yx nKrM ijiij =  in which case we get 

∑
=

3

1

303202101 ])(,)(,)()[();(
j

jj rrrFnk exexexxy  

only if 

∑∑∑∑
====

===
3

1

3

1

3

3

1

2

3

1

1 );();();();(
j

jj

j

jj

j

jj

j

jj FnkFnKFnKFnK yyyy  

 

In order to have T],,[]',','[ 302010321 eeeReee = we must also identify ri(x) with the sum over 

columns of the transformation matrix R.  
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 Other non-trivial kernels for the same transform can be produced that cannot be 

expressed as dyadics by recognising that the main factorisation condition can be also satisfied in the 

more general form 

∑∑∑∑∑∑
======

==
3

1

3

1

3

1

2

1

3

1

1

1

);();();(
j

jj

N

nj

jj

N

nj

jj

N

n

FnKFnKFnK yyy  

Assuming that );(1 ynK j forms a large random orbit of maximum period N, then all other elements 

in the group can be identified with arbitrary permutations of K1j. 

Field Alignment Lemma 3.1 : Let F a real valued vector field in R
3
, M(n;x,x) a set of dyadics  

defining a 1-parameter group of continuous transformations FMF )()( nn = , )()( nn rotFJ =  and 

∑
=

=
N

n

n

1

)(
FG . Then G is an eigenfunction of rot operator with eigen-vorticity 

( )( ) 1

111 ......
−++++=Λ NNN FkFkJJ iff FMFM rotrot nn )()( )( = . 

 

Proof:  By definition 

 

)0(

1

)(

1 1

)()(

1

)( )( JMFMFMJG 
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=== ∑∑ ∑∑

== ==

N

n

n
N

n

N

n

nn
N

n

n rotrotrot  (6) 

 

It is evident that if the transformations commute with the rotation operator then the set of { })(nJ  

transforms the same way as the original field F. By Lemma 3.1, )};({ xM n   transform as 

 

)(]',',')[)()()(( 321332211 dReeexxxG •=++= φFkFkFk   (7) 

 

In the above, {Fi} are the elements of the initial vector field F and d stands for the “diagonal” vector 

at every point of space in the specific coordinate system used. By construction, if the rotations of 

{ })(nF  transform the same way then we must also have  

)(
1

)(
RdJG ϕ==∑

=

N

n

nrot  (8) 

 

Then 0=× GG rot must hold true everywhere so that condition (1) is automatically 

satisfied. The eigenvorticity is simply taken as the local scaling factor φϕ . It is now possible to 

define solutions of this class for the Beltrami equation as follows.  

Theorem 3.1 : For every real valued vector field F in R
3
, ∑

=

=
D

n

n

1

)(
FG is a Beltrami field iff 

0)( =∇ n
F  . 

   

Proof : Condition (2) is separately satisfied iff { 0)( =∇ n
F }. It then follows that  

 

∑ =Λ∇=∇=∇=∇ 0,0)(,0 )(nrotFϕφ  

 

The above guarantees also that  0=Λ∇ G  so that G becomes a full solution of the Beltrami 

equation. We emphasize here the fact that 0)0( =∇F  does not automatically imply the solenoidal 

character of the rest of the initial field transformations due to the fact that the divergence does not 

necessarily commutes with the transformation operator. Another important property of these 

solutions in contrast with the field transformations is that the “equilibrated” character of G is 

coordinate free. This is a straightforward result of the fact that whatever the transformation matrix 

from one coordinate system to another it does not gets mixed with the multiplying scalar.  

We now note that  



 

�7/13 

 

 

( )RdRdRd ×∇+×∇= φφφ )()(rot   (9) 

 

If we were to choose the initial field so that ))(( Rdxκφ =∇  then, (9) would simplify to the 

condition 

)(RdRd ϕ=×∇  (10) 

 

For arbitrary curvilinear coordinates (9) and (10) results in highly nonlinear equations that should be 

solved in order to define the classes of continuous groups of transformations of a single parameter 

(n) corresponding to the “moving frame” Rd. One may also see this frame motion associated with 

the so called vielbeins in relativistic theories. R could also stand for a more general rotation and 

boost matrix corresponding to the general Lorentz group. From this point of view it is much more 

preferable to interpret the above as a generic coordinate 

transformation Rddd =→→ ':)}({}{ iii xux  where we identify R with the jacobian of the 

transformation. In the new coordinate system we will always have   

 

( ) )'()'(')(
1

fddRd φφφφ +×∇=→
−

grotrot  (11) 

 

The additional field f is obtained from the generic expression of the rotation in curvilinear systems 

as 

jkkjif ee ∂−∂=  (12) 

 

Both (9) and (11) are mostly useful for they allow associating the rotation operator with an exterior 

algebra. Most of all, its application into the complete set of Maxwell equations will reveal a very 

interesting underlying geometrical structure associated with a not so obvious projective line bundle 

geometry. These observations are utilized in the next section. 

 

4. Geometry of the Electromagnetic Vacuum 

 

We will now show that the result of the previous section extends even in the case where the 

arbitrary transformations do not commute with the rot operator! We first start with an important 

observation that can be summarized in the following Lemma 

 

Lemma 4.1 : A real vector field ( ) ],,[, 302010 eeeddI =•φ  is a gauge field iff there is a function ψ 

such that ψψψφ 321 ∂=∂=∂= .  

 

Proof : Gauge fields are defined by the transformation of the vector potential ψ∇+→ AA  where 

the last term is irrotational. A trivially equilibrated field with IR ≡  is always irrotational if  it is a 

divergence of some scalar function. The only way this can happen is to have a complete symmetry 

such that all derivatives of ψ are equal. This, due to (12) also implies the special case d)( 2

1ψφ ∂=∇  

so that 0=×∇ dφ . 

This also means that the dyadic transformation described in the previous section turns 

everything into a “gauge” field in an appropriately “shaped” space. In order to fully grasp its 

significance we have to analyze Maxwell equations in the light of the observations made in the 

previous section and in particular of equations (9) and (11). Specifically, given two abstract vector 

fields BE φφ ∇=∇= ba ,  and using (11), Maxwell equations in vacuum can be written in arbitrary 

curvilinear coordinates as 

 

0'' =•=• dbda  (12a) 

 



 

�8/13 

 

)'(' fdda EBg φφω +−=×  (12b) 

 

fddb BEg φφω −=× ''  (12c) 

 

This is a purely geometrical statement of which the abstract meaning is difficult to grasp without 

separating its content from the usual tensorial treatment. In fact, what we believe that happens is 

that there must exist two entirely different mathematical formulations that only happen to coincide 

in a 3-dimensional space. We will show that the second one which is now revealed can easily be 

generalized in any dimension in contrast with the usual pseudo-vector which demands the extension 

to higher rank tensors. This becomes obvious when we realize that any exterior product can be 

interpreted as a projective space of rays. Specifically, we start by recognizing the simple fact that 

the null space of any 3-dimensional exterior product represents a set of geometrical proportionalities 

over a line bundle that together constitute an affine space. To show this we simply analyze the 

components of an arbitrary exterior product with recourse to Fig. 1.  

 Let for example O be the cross section of a line bundle (point ad infinitum) and let the 

projective point ]0::[ ii yx correspond to the elements of two abstract vectors such that 0=× yx . 

By a simple rearrangement of terms we have 









±=≅








±=≅=−

k

k

j

j

k

j

k

j

jkkj
y

x

y

x

y

y

x

x
yxyx

mm
0  (13) 

 

Note here that the notion of a “line bundle” is generic and can be transferred to arbitrary geometries. 

We now recognize that the same structure can be transferred to an arbitrary local orthogonal frame 

given an atlas over an arbitrary manifold. Hence, any local values of two arbitrary vector fields E 

and B can be assigned to these local frames as in fig. 2 to represent the projective point 

0:]0::[ =×BEii BE . In the same spirit, the “force-free” condition 0=×BJ : ]0::[ ii BJ   also 

represents a projective point. Thus, absence of radiation or absence of forces becomes isomorphic 

with the existence of a projective point. On the other hand, presence of radiation can be interpreted 

through equations (12a-c) as follows.  

Both vectors a, b belong to a local tangent plane normal to d’ in the transformed 

manifold as implied by (12a). Equations (12b-c) also denote the degree of loss of projectivity of the 

vacuum through a mixing of both characteristic scalars Eφ  and Bφ . Combining these two we derive 

 

( ) ( ) )')(()|'||(|'' 22
dfdfdbda •−+−=×•× EBBE gg φφωωφφ  (14) 

 

( ) ( ) )')(('' 22 fddbda ×−=××× EB φφω    (14) 

 

From the last expression (14) we immediately see that a sufficient condition for the existence of 

Beltrami fields is given by BE φφ ±=  and/or ijkkj eee κ∝∂−∂ . It is possible in principle to 

incorporate “source” or current terms in the above as long as they can be expressed in a similar 

form, that is FxMJ );()( mE

m = .  

 A preliminary examination reveals that given the freedom we have to choose the two basic 

functional components of the dyadics, it seems reasonable that for every set of vacuum solutions we 

should be able to define an appropriate set of functional equations defining the dyadic in such a way 

that there will always be a maximal period N at which equilibration in the sense of Lemma 3.1 and 

the condition (14) takes place.  

We also see that a crucial difference between trivial gauge fields and the rest lies in the 

existence of a frame transformation. This implies a deep relationship between gauge field theories 

and the way a field may manifest itself out of a vacuum as a result of a transformation more general 

than the one implied by simple observer motion (relativity). In order to further examine this issue, 
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we need to clarify any relationship between the vector potential and the equilibrated fields that may 

form vacuum solutions of Maxwell equations. In case MB is a dyadic, then by Lemma 3.1, A is an 

equilibrated field itself and it will be aligned with the electric and magnetic components as well. 

Simple examples of such fields exist in the literature [5]. It is natural to ask then, for an appropriate 

reformulation of the electromagnetic tensor in the generic form 
ν

µνµν AMF =  (15) 

 

The above approach could also suggest the real, physical existence of the vector potential as already 

suggested by certain phenomena like the Aharonov-Bohm effect. It is possible to show that an 

appropriate dyadic can always be constructed by a simple inversion so that an arbitrary set of 

arbitrary fields { }BE,  can always be written as a functional transform of its associated vector 

potential. By definition we have 

 

( ) },{)()( , BEAxkxr =⊗ BE  (16) 

 

By the symmetry of the dyadic the above can be inverted as  

 

( ) },{, BEkAr =⊗ BE    

 

so that  

( ) { }BEkrk ,
1

,

−⊗=BE   (17) 

 

Then an algorithm for the construction of generic Beltrami fields satisfying condition (13b) can be 

stated as follows. We start by taking a set of TE and TM eigenfunctions { })()( , nn BE for a certain set 

of boundary conditions. We then define the associated set of dyadics { })(

,

n

BEk . By an appropriate 

“clipping” procedure we try to isolate a specific subset of eigenfunctions  { })() , mm BE  for which  

 

∑ ∑∑ ∑
= == =

±=
N

mm

m

i

m

iB

i

N

mm

m

i

m

iE

i

BkEk
0

)()(

,

3

10

)()(

,

3

1

 (18) 

 

Such a “clipping” procedure corresponds to a successive breaking of the symmetry of an initial set 

of boundary conditions. Current sources could also be transformed accordingly. 

 

   5. Application in Maxwell Fields 

 

We will give below some simple examples of constructions that result into Beltrami-like 

electric and magnetic fields. We first show on very general grounds that if one of these components 

separately satisfies the Beltrami equation, then so does the other. Indeed if both E and B are 

Beltrami fields then the problem is automatically reduced into (1) and (2). Given the electric and 

magnetic eigen-vorticities α and β respectively we have  

 

EBBE

BE

ωω =−=

=∇=∇

ba ,

0
 

From the last two we easily deduce that  

 

02 =+ωab  (19) 

 

Starting from the original equations and assuming that B is a Beltrami field with eigen-vorticity β, 

we derive the relations 
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EBE )()(
2

β
ω

β
ω

−=−= rotrot  

which again justifies (19). 

The simplest example of a coordinate transformation capable of producing locally a 

Beltrami-like pair of fields can be given with the aid of three linearly polarized plane waves 

specially rotated. Let then  

 

]0,0)),'([cos())],'(sin(0,0[

))]'(cos(,0,0[],0)),'(sin(,0[

]0)),'(cos(,0[],0,0),'([sin(

0303

0202

0101

yykByykE

xxkBxxkE

zzkBzzkE

−=−=

−=−=

−=−=

BE

BE

BE

 

 

(we assume the same time dependence given as )exp( tωi± ). These are emitted from three different 

sources at (0,0,z’), (x’,0,0) and, (0,y’,0). With the aid of Fig. 2, by simple geometrical reasoning we 

see that the total fields are locally parallelized )( BE κ=  at a periodic set of points at which (13) 

holds true. This in turn only depends on the relative positions of the source (emission) points. For 

''' zyx ==  we have a Beltrami field.  

 The above example represents also a simple scheme for a spatial helicity modulation 

which we will explore further in the second part of this presentation. We note that the helicity of a 

simple plane wave is zero. The local helicity density of an arbitrary field is usually given by the 

quantity BA • which becomes maximal for parallel electric and magnetic components [5]. A 

helicity modulator could then be constructed by varying the relative phase or the positions of the 

sources. 

We note that the permutation above corresponds to a special case of rotations. In general, there will 

be different choices for the transformation parameters such that when combined with the symmetry 

of the two last Maxwell equations will result in a type of interference fields  

 

∑∑
==

==
N

n

n
N

n

n ba
1

)(

1

)( ),...)((',),...)((' xRBBxREE  

such that 

)'()'()'(

)'(')'(')'('

'

3

'

2

'

1

321

XBXBXB

XEXEXE

≡≡

≡≡
 

 

This type of field equilibration guarantees that (13) will be satisfied everywhere. For a given set of 

boundary conditions, a pair of Maxwell fields can always be written as a combination of TE and TM 

eigenfunctions reflecting the symmetry of the sources. The above construction implies that given a 

certain set of symmetries, we may always construct an associated pair of separate Beltrami-like 

electric and magnetic components by just rotating and scaling multiple copies of the initial sources. 

Feasibility of such a construction should be checked separately for each type of field as some 

constructions may be unrealistic from an engineering viewpoint.  

 

 

 6. Conclusions 

 

The interpretation of the vacuum as a hidden projective space is a non-trivial result 

when applied to electrodynamics for the simple reason that till now we have no justification 

whatsoever for the particular reason that nature has chosen the particular differential operators for 

the laws of the electromagnetic field. Moreover, even the expression that attributes any “choice” to 

nature –which is not a subject-is obviously fallacious! Any such underlying geometry would permit 

us to enlarge our understanding on the inner workings of nature by submitting its contents into the 

much deeper necessities of a purely geometrical origin.  
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Let us now remind that the essence behind relativistic treatments of electromagnetism 

and other forces can be summarized effectively in the equivalence of all frames, of which the 

geometrical content is simply that any point of space is equally valid for being the zero of the axis O 

of any local frame. The analysis of the exterior algebra involved in electromagnetism from the point 

of view of projective affine spaces is by itself suggestive of an additional and complementary axiom 

that could be stated as “Every point of an empty space is equally valid as a point ad infinitum”.  

Radiation in this context would appear as a deviation from a perfect “projectivity” of empty space. 

This also suggests an additional and complementary equivalence principle rather different than 

ordinary covariance. In a sense, it could also be interpreted as saying that every point of our “real” 

space can be seeing as a special projection from a much larger universe!  

A special geometric construction that could show this is inevitably associated with the 

fact that “time” as we understand it, does not appear as a completely separate component of the 

electric and magnetic components but as a multiplicative factor wherever separation of variables is 

possible. In a sense this is similar with the way the additional coordinate of a projective plane or a 

Riemann Sphere in a (n+1)-dimensional projective space appears as a divisor over the rest of the 

coordinates of the n-dimensional subspace. Hence, our “physical” time would be no more than an 

abstract “inverse time” over the projective plane or the projective sphere of a 4-dimensional 

Riemannian manifold. The fact that our universe has been made so as to obey the Lorentz group can 

be given a meaning in a purely geometrical content as the result of a fundamental selection rule 

acting upon the projective plane or the projective sphere in such a way that any orbits will have the 

topology of a hyperbolic tiling (e.g. Teichmuller Theory) [32], [33].  

In the second part of this presentation we will deal with more complex constructions 

based on special types of magnetization that can imitate some of the existing solutions and we will 

try to extend them using the general scheme adopted here. Our effort is towards macroscopic 

devices which could prove their ability to exert a direct macroscopic influence on the assumed non-

linear vacuum field structure operating in a high power regime. Specifically we intend to develop 

methods for direct Helicity Modulation, both spatial and temporal. As any such influence on the 

helicity content of vacuum fields appears equivalent to metric distortions of a kind, such devices 

could prove the electromagnetic analogue of macroscopic Warp Engines. 
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