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Abstract

In this paper we establish the existance of S-idempotents in case of loop rings
ZyLp(m) for a special class of loops Ly (m); over the ring of modulo integers
Z,; for a specific value of t.These loops satisfy the conditions 91'2 = 1 for every
9i € Lp(m). We prove Z;L,(m) has an S-idempotent when ¢ is a perfect number
or when t is of the form 2¢p or 3'p (where p is an odd prime) or in general when
t = pilpg (p1 and py are distinct odd primes). It is important to note that we
are able to prove only the existance of a single S-idempotent ; however we leave
it as an open problem wheather such loop rings have more than one S-idempotent.

This paper has three sections. In section one, we give the basic notions about
the loops Ly (m) and recall the definition of S-idempotents in rings. In section
two, we establish the existance of S-idempotents in the loop ring Z;L,(m). In
the final section, we suggest some interesting problems based on our study.

§1: Basic Results

Here we just give the basic notions about the loops L,(m) and the definition of S-

idempotents in rings.

Definition 1.1 [4]: Let R be a ring. An element x € R\ {0} is said to be a

Smarandache idempotent (S-idempotent) of R if % = x and there exist a € R\ {z,0}

such that

1. a°=1x
. ra=x Oor ar = a.

For more about S-idempotent please refer [4].

Definition 1.2 [2]: A positive integer n is said to be a perfect number if n is equal

to the sum of all its positive divisors, excluding n itself. e.g. 6 is a perfect number. As



6=1+2+3.

Definition 1.3 [1]: A non-empty set L is said to form a loop, if in L is defined a
binary operation, called product and denoted by ’.” such that

1. For a,b € L we have a.b € L. (closure property.)

2. There exists an element e € L such that a.e = e.a = a for all a € L. (e is called
the identity element of L.)

3. For every ordered pair (a,b) € L x L there exists a unique pair (z,y) € L x L
such that axr = b and ya = b.

Definition 1.4 [3]: Let L,(m) = {e,1,2,3...,n} be a set where n > 3,n is odd and
m is a positive integer such that (m,n) =1 and (m —1,n) = 1 with m < n. Define on
L,(m), a binary operation '.” as follows:

i. ei=1de=1 forall i€ L,(m)\{e}
ii. i*.=e forall i € L,(m)
iii. i.j =t, where t = (mj—(m—1)i)(modn) foralli,j € L,(m),

1#eand j #e.

Then L, (m) is a loop. This loop is always of even order; further for varying m, we
get a class of loops of order n + 1 which we denote by

L, =A{L,(m)| n>3,nisodd and (m,n) =1,(m —1,n) =1 with m < n}.

Example 1.1 [3]: Consider L5(2) = {e,1,2,3,4,5}. The composition table for
L5(2) is given below:

e 1 2 3 4 5
ele 1 2 3 4 5
111 e 3 5 2 4
212 5 e 4 1 3
313 4 1 e 5 2
414 3 5 2 e 1
515 2 4 1 3 e




This loop is non-commutative and non-associative and of order 6.

§ 2. Existance of S-idempotents in the Loop Rings Z; L, (m):

In this section we will prove the existence of an S-idempotent for the loop ring
ZiL,(m) when t is an even perfect number. Also we will prove that the loop ring
Z;L,(m) has an S-idempotent when ¢ is of the form 2‘p or 3'p (where p is an odd
prime) or in general when ¢ = pip, (p; and py are distinct odd primes).

Theorem 2.1: Let Z,L,,(m) be aloop ring, where ¢ is an even perfect number of the
form ¢ = 25(2571—1) for some s > 1, then o = 2°+2%g; € Z;L,,(m) is an S-idempotent.

Proof: As t is an even perfect number, ¢t must be of the form
t =252 — 1), for some s > 1

where 27! — 1 is a prime.

Consider
a=2°4+2%; € ZyL,(m).
Choose
B=(t—2°)+(t—2°)g; € ZiLn(m).
Clearly
o = (2" +2°g;)’
=2.2%(1+ g;)
=2°(14+g) [.2°.2°" = 2%(mod t)]
= a.
Now
B =t =2) + (t — 2%)g;]”
— 2.t — 2)2(1 + )
=2"(1+a)
= a.
Also

aff =[2°+2°gi][(t = 2°) + (¢ — 2°)g.]
=22(1+g:)(t = 2°)(1 + 1)
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= —2.25.28(1 + gi)
=(t-2")(1+g)
= 4.

So we get
al=a, [FP=a and af=70.

Therefore o = 2° + 2%¢g; is an S-idempotent.

Example:2.1 Take the loop ring ZgsL, (m). Here 6 is an even perfect number. As
6 =2.(22 — 1), so a = 2 + 2g; is an S-idempotent.
For
o = (24 2g;)?
=24 2g;
=a.

Choose now
B=(6-2)+(6—2)g

then
3 = (4 +4g,)°
=24 2¢g;
= a.
And

af = (24 2¢;)(4 + 4g:)
=8+ 8¢, +8g; +8
=4+ 4g;
— 8.
So a = 2+ 2g; is an S-idempotent.

Theorem 2.2: Let Zy,L,(m) be a loop ring where p is an odd prime such that
p|2tot! — 1 for some ty > 1, then o = 2% + 2Pog, € Zy,L,(m) is an S-idempotent.

Proof: Suppose p|2et! — 1 for some tq > 1. Take a = 2% + 2og; € Z,,L,(m) and
B=(2p—2°)+(2p — 2°)gi € ZypLn(m).
Clearly
a? = (2 + 2'g;)*



=2.2% (14 g;)
= 2t°+1.2t0(1 + gz)
=21+ g)

= .

2" 2ot = 2% (mod 2p).

Since
2t = 1(mod p)

& 2t 2ltl = glo(mod 2p) for ged (2°,2p) =2, ¢, > 1.

Also
32 =1(2p — 2) + (2p — 2°)g:]?

=2(2p - 2")*(1 + ;)
=2.2%0(1 4 g;)
= 202"(1 + g;)
=2"(1+g)
= Q.
And
af = [2° +2%gi].[(2p — 2) + (2p — 2)gi]?

= —2(1 4 g;)2°(1 + ;)
= —2.2%0(1+g,)

= (2p - 2")(1 + g:)

3.

So we get
al=a, [FP=a and af=70.

Hence o = 2% 4 2'¢, is an S-idempotent.

Example:2.2 Consider the loop ring Zy9L,(m). Here 52371 — 1, so ty = 3.

Take
a=224+2% and [B=2+2g.

Now
a? = (8 + 8gi)2
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= 64 + 128¢; + 64
=8+ 8g;
=a.
And

52 = (2+2¢:)
=4+8¢g, +4
=8+ 8g;
= Q.

Also
af = (8+8¢;)(2+ 2¢;)

= 16 + 16g; + 16g; + 16
=2+ 2g
— 8.

So o = 8 + 8¢; is an S-idempotent.

Theorem 2.3: Let Zyi,L,(m) be the loop ring where p is an odd prime such that
p|2tott — 1 for some ¢y > 4, then v = 20 + 2g; € Zyi, L, (m) is an S-idempotent.

Proof: Note that p|2%™! — 1 for some ¢y > i.
Therefore
20t = 1(mod p) for some tq > i

& 2 2t = glo(mod 2°p)  as ged (2,2p) =2°, ty > .
Now take «a = 2" +2g; € Zyi,L,(m) and 3 = (2'p—2) 4 (2'p—2)g; € Zyi, L, (m).

Then it is easy to see that
2 _ 2 _ _
a“=a, [°=a and af=7.

Hence a = 2% + 2%g; is an S-idempotent.

Example:2.3 Take the loop ring Zss 7L, (m). Here 7|2°t1 — 1, so to = 5.
Take
a=2"+2% and B=(2°.7-2°)+(2°.7—2%g.

Now
o® = (32 + 32¢;)?
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— 1024 + 2048¢; + 1024
= Q.

And
(% = (24 + 24¢;)*

= 576 + 1152g; + 576
= .

Also

= ﬁ
So a = 32 + 32g; is an S-idempotent.

Theorem 2.4: Let Z3i,L,(m) be the loop ring where p is an odd prime such that
p|2.3"% — 1 for some ¢y > i, then o = 3% + 3*g, € Z3i,L,(m) is an S-idempotent.

Proof: Suppose p|2.3" — 1 for some to > i.
Take a = 3" + 3'°g; € Zzi, L,(m) and 3 = (3'p — 30) + (3'p — 30)g; € Zzi, L, (m).
Then
o’ = (3 + 3"g;)"
= 2.32t0(1 + gl)
=2.3"3"%(1 + g;)

=3"(1+g)
= qa.
As
2.3" = 1(mod p) for some ty > i.
& 2.303% = 3%(mod 3'%p) asged (3",3'p) =3, to >
Similarly

B =a andaf =p.
So o = 30 + 3o g; is an S-idempotent.



Example:2.4 Take the loop ring Zs2 5L, (m). Here 5/2.3° — 1, so to = 5.

Take
a=3+3 and B=(3°5-3")+(325-3"g

Now
o? = (18 + 18¢;)?
= 18 + 18y,
= Q.
And
(% = (27 + 27¢;)*
= 18 + 18y,
= Q.
Also
af=p

So o = 3% + 3%¢; is an S-idempotent.
We can generalize Theorem 2.3 and Theorem 2.4 as follows:

Theorem 2.5: Let Zpian(m) be a loop ring where p; and py are distinct odd
primes and py|2.p%® — 1 for some t, > i, then a = p* + pl°g; € sziszn(m) is an S-
idempotent.

Proof: Suppose p|2.p%° — 1 for some ty > i.

Take a = pi* +pi°g; € Zyip, Lu(m) and = (pip2 — 1) + (0ip2 = 1’) € Zyip, Ln(m).
Then

o’ = (pY + prg:)”
=2p7"(1 + g;)
= 2.pp"(1 + 9:)
=p°(1+ )

= Q.

2.0 = 1(mod p,) for some ty > i.
& 2.p§°.p§° = ptlo(mod pipe) as ged (pﬁo,p’in) = p’i, to > 1.

Similarly
B*=a and afB = 0.
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So o = ptlo + ptlo go is an S-idempotent.

§3: Conclusions:

We see in all the 5 cases described in the Theorem 2.1 to 2.5 we are able to establish
the existence of one non-trivial S-idempotent. However we are not able to prove the

uniqueness of this S-idempotent. Hence we suggest the following problems:

e Does the loop rings described in the Theorems 2.1 to 2.5 can have more than

one S-idempotent ?

e Does the loop rings Z;L,(m) have S-idempotents when ¢ is of the form ¢ =
P1P2...ps where py, pa, ...ps are distinct odd primes 7.
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