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Abstract

In this paper we establish the existance of S-idempotents in case of loop rings

ZtLn(m) for a special class of loops Ln(m); over the ring of modulo integers

Zt for a specific value of t.These loops satisfy the conditions g2
i = 1 for every

gi ∈ Ln(m). We prove ZtLn(m) has an S-idempotent when t is a perfect number

or when t is of the form 2ip or 3ip (where p is an odd prime) or in general when

t = pi
1p2 (p1 and p2 are distinct odd primes). It is important to note that we

are able to prove only the existance of a single S-idempotent ; however we leave

it as an open problem wheather such loop rings have more than one S-idempotent.

This paper has three sections. In section one, we give the basic notions about

the loops Ln(m) and recall the definition of S-idempotents in rings. In section

two, we establish the existance of S-idempotents in the loop ring ZtLn(m). In

the final section, we suggest some interesting problems based on our study.

§ 1 : Basic Results

Here we just give the basic notions about the loops Ln(m) and the definition of S-

idempotents in rings.

Definition 1.1 [4]: Let R be a ring. An element x ∈ R \ {0} is said to be a

Smarandache idempotent (S-idempotent) of R if x2 = x and there exist a ∈ R \ {x, 0}

such that

i. a2 = x

ii. xa = x or ax = a.

For more about S-idempotent please refer [4].

Definition 1.2 [2]: A positive integer n is said to be a perfect number if n is equal

to the sum of all its positive divisors, excluding n itself. e.g. 6 is a perfect number. As
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6 = 1 + 2 + 3.

Definition 1.3 [1]: A non-empty set L is said to form a loop, if in L is defined a

binary operation, called product and denoted by ′.′ such that

1. For a, b ∈ L we have a.b ∈ L. (closure property.)

2. There exists an element e ∈ L such that a.e = e.a = a for all a ∈ L. (e is called

the identity element of L.)

3. For every ordered pair (a, b) ∈ L × L there exists a unique pair (x, y) ∈ L × L

such that ax = b and ya = b.

Definition 1.4 [3]: Let Ln(m) = {e, 1, 2, 3..., n} be a set where n > 3, n is odd and

m is a positive integer such that (m,n) = 1 and (m− 1, n) = 1 with m < n. Define on

Ln(m), a binary operation ′.′ as follows:

i. e.i = i.e = i for all i ∈ Ln(m)\{e}

ii. i2. = e for all i ∈ Ln(m)

iii. i.j = t, where t ≡ (mj−(m−1)i)(mod n) for all i, j ∈ Ln(m),

i 6= e and j 6= e.

Then Ln(m) is a loop. This loop is always of even order; further for varying m, we

get a class of loops of order n + 1 which we denote by

Ln = {Ln(m)| n > 3, n is odd and (m,n) = 1, (m − 1, n) = 1 with m < n}.

Example 1.1 [3]: Consider L5(2) = {e, 1, 2, 3, 4, 5}. The composition table for

L5(2) is given below:

. e 1 2 3 4 5

e e 1 2 3 4 5

1 1 e 3 5 2 4

2 2 5 e 4 1 3

3 3 4 1 e 5 2

4 4 3 5 2 e 1

5 5 2 4 1 3 e
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This loop is non-commutative and non-associative and of order 6.

§ 2 : Existance of S-idempotents in the Loop Rings ZtLn(m):

In this section we will prove the existence of an S-idempotent for the loop ring

ZtLn(m) when t is an even perfect number. Also we will prove that the loop ring

ZtLn(m) has an S-idempotent when t is of the form 2ip or 3ip (where p is an odd

prime) or in general when t = pi
1p2 (p1 and p2 are distinct odd primes).

Theorem 2.1: Let ZtLn(m) be a loop ring, where t is an even perfect number of the

form t = 2s(2s+1−1) for some s > 1, then α = 2s+2sgi ∈ ZtLn(m) is an S-idempotent.

Proof: As t is an even perfect number, t must be of the form

t = 2s(2s+1 − 1), for some s > 1

where 2s+1 − 1 is a prime.

Consider

α = 2s + 2sgi ∈ ZtLn(m).

Choose

β = (t − 2s) + (t − 2s)gi ∈ ZtLn(m).

Clearly

α2 = (2s + 2sgi)
2

= 2.22s(1 + gi)

≡ 2s(1 + gi) [∵ 2s.2s+1 ≡ 2s(mod t)]

= α.

Now

β2 = [(t − 2s) + (t − 2s)gi]
2

= 2.(t − 2s)2(1 + gi)

≡ 2s(1 + gi)

= α.

Also

αβ = [2s + 2sgi][(t − 2s) + (t − 2s)gi]

= 2s(1 + gi)(t − 2s)(1 + gi)
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≡ −2.2s.2s(1 + gi)

≡ (t − 2s)(1 + gi)

= β.

So we get

α2 = α, β2 = α and αβ = β.

Therefore α = 2s + 2sgi is an S-idempotent.

Example:2.1 Take the loop ring Z6Ln(m). Here 6 is an even perfect number. As

6 = 2.(22 − 1), so α = 2 + 2gi is an S-idempotent.

For

α2 = (2 + 2gi)
2

≡ 2 + 2gi

= α.

Choose now

β = (6 − 2) + (6 − 2)gi

then

β2 = (4 + 4gi)
2

≡ 2 + 2gi

= α.

And

αβ = (2 + 2gi)(4 + 4gi)

= 8 + 8gi + 8gi + 8

≡ 4 + 4gi

= β.

So α = 2 + 2gi is an S-idempotent.

Theorem 2.2: Let Z2pLn(m) be a loop ring where p is an odd prime such that

p|2t0+1 − 1 for some t0 ≥ 1, then α = 2t0 + 2togi ∈ Z2pLn(m) is an S-idempotent.

Proof: Suppose p|2t0+1 − 1 for some t0 ≥ 1. Take α = 2t0 + 2togi ∈ Z2pLn(m) and

β = (2p − 2t0) + (2p − 2t0)gi ∈ Z2pLn(m).

Clearly

α2 = (2t0 + 2togi)
2
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= 2.22to(1 + gi)

= 2to+1.2t0(1 + gi)

≡ 2t0(1 + gi)

= α.

As

2t0 .2tn0+1 ≡ 2t0(mod 2p).

Since

2t0+1 ≡ 1(mod p)

⇔ 2t0 .2t0+1 ≡ 2t0(mod 2p) for gcd (2t0 , 2p) = 2, t0 ≥ 1.

Also

β2 = [(2p − 2t0) + (2p − 2t0)gi]
2

= 2(2p − 2t0)2(1 + gi)

≡ 2.22t0(1 + gi)

= 2t0+12t0(1 + gi)

≡ 2t0(1 + gi)

= α.

And

αβ = [2t0 + 2t0gi].[(2p − 2t0) + (2p − 2t0)gi]
2

≡ −2t0(1 + gi)2
t0(1 + gi)

= −2.22t0(1 + gi)

≡ (2p − 2t0)(1 + gi)

= β.

So we get

α2 = α, β2 = α and αβ = β.

Hence α = 2t0 + 2t0gi is an S-idempotent.

Example:2.2 Consider the loop ring Z10Ln(m). Here 5|23+1 − 1, so t0 = 3.

Take

α = 23 + 23gi and β = 2 + 2gi.

Now

α2 = (8 + 8gi)
2
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= 64 + 128gi + 64

≡ 8 + 8gi

= α.

And

β2 = (2 + 2gi)
2

= 4 + 8gi + 4

≡ 8 + 8gi

= α.

Also

αβ = (8 + 8gi)(2 + 2gi)

= 16 + 16gi + 16gi + 16

≡ 2 + 2gi

= β.

So α = 8 + 8gi is an S-idempotent.

Theorem 2.3: Let Z2ipLn(m) be the loop ring where p is an odd prime such that

p|2t0+1 − 1 for some t0 ≥ i, then α = 2t0 + 2togi ∈ Z2ipLn(m) is an S-idempotent.

Proof: Note that p|2t0+1 − 1 for some t0 ≥ i.

Therefore

2t0+1 ≡ 1(mod p) for some t0 ≥ i

⇔ 2t0 .2t0+1 ≡ 2t0(mod 2ip) as gcd (2t0 , 2ip) = 2i, t0 ≥ i.

Now take α = 2t0 +2togi ∈ Z2ipLn(m) and β = (2ip−2t0)+(2ip−2t0)gi ∈ Z2ipLn(m).

Then it is easy to see that

α2 = α, β2 = α and αβ = β.

Hence α = 2t0 + 2t0gi is an S-idempotent.

Example:2.3 Take the loop ring Z23.7Ln(m). Here 7|25+1 − 1, so t0 = 5.

Take

α = 25 + 25gi and β = (23.7 − 25) + (23.7 − 25)gi.

Now

α2 = (32 + 32gi)
2
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= 1024 + 2048gi + 1024

≡ 32 + 32gi

= α.

And

β2 = (24 + 24gi)
2

= 576 + 1152gi + 576

≡ 24 + 24gi

= α.

Also

αβ = (32 + 32gi)(24 + 24gi)

≡ 24 + 24gi

= β.

So α = 32 + 32gi is an S-idempotent.

Theorem 2.4: Let Z3ipLn(m) be the loop ring where p is an odd prime such that

p|2.3t0 − 1 for some t0 ≥ i, then α = 3t0 + 3togi ∈ Z3ipLn(m) is an S-idempotent.

Proof: Suppose p|2.3t0 − 1 for some t0 ≥ i.

Take α = 3t0 + 3togi ∈ Z3ipLn(m) and β = (3ip − 3t0) + (3ip − 3t0)gi ∈ Z3ipLn(m).

Then

α2 = (3t0 + 3togi)
2

= 2.32to(1 + gi)

= 2.3t03t0(1 + gi)

≡ 3t0(1 + gi)

= α.

As

2.3t0 ≡ 1(mod p) for some t0 ≥ i.

⇔ 2.3t0 .3t0 ≡ 3t0(mod 3ip) as gcd (3t0 , 3ip) = 3i, t0 ≥ i.

Similarly

β2 = α and αβ = β.

So α = 3t0 + 3t0gi is an S-idempotent.
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Example:2.4 Take the loop ring Z32.5Ln(m). Here 5|2.35 − 1, so t0 = 5.

Take

α = 35 + 35gi and β = (32.5 − 35) + (32.5 − 35)gi

Now

α2 = (18 + 18gi)
2

≡ 18 + 18gi

= α.

And

β2 = (27 + 27gi)
2

≡ 18 + 18gi

= α.

Also

αβ = β

So α = 35 + 35gi is an S-idempotent.

We can generalize Theorem 2.3 and Theorem 2.4 as follows:

Theorem 2.5: Let Zpi

1
p2

Ln(m) be a loop ring where p1 and p2 are distinct odd

primes and p2|2.p
t0
1 − 1 for some t0 ≥ i, then α = pt0

1 + pto
1 gi ∈ Zpi

1
p2

Ln(m) is an S-

idempotent.

Proof: Suppose p2|2.p
t0
1 − 1 for some t0 ≥ i.

Take α = pt0
1 +pto

1 gi ∈ Zpi

1
p2

Ln(m) and β = (pi
1p2−pt0

1 )+(pi
1p2−pt0

1 ) ∈ Zpi

1
p2

Ln(m).

Then

α2 = (pt0
1 + pto

1 gi)
2

= 2.p2to
1 (1 + gi)

= 2.pt0
1 pt0

1 (1 + gi)

≡ pt0
1 (1 + gi)

= α.

As

2.pt0
1 ≡ 1(mod p2) for some t0 ≥ i.

⇔ 2.pt0
1 .pt0

1 ≡ pt0
1 (mod pi

1p2) as gcd (pt0
1 , pi

1p2) = pi
1, t0 ≥ i.

Similarly

β2 = α and αβ = β.
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So α = pt0
1 + pt0

1 g2 is an S-idempotent.

§ 3 : Conclusions:

We see in all the 5 cases described in the Theorem 2.1 to 2.5 we are able to establish

the existence of one non-trivial S-idempotent. However we are not able to prove the

uniqueness of this S-idempotent. Hence we suggest the following problems:

• Does the loop rings described in the Theorems 2.1 to 2.5 can have more than

one S-idempotent ?

• Does the loop rings ZtLn(m) have S-idempotents when t is of the form t =

p1p2...ps where p1, p2, ...ps are distinct odd primes ?.
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