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Abstract. GRT predicts the existence of relativistic corrections to the static Newtonian 
potential, which can be calculated and verified experimentally. The idea leading to quantum 
corrections at large distances consists of the interactions of massless particles, which only 
involve their coupling energies at low energies. Using the quantum correction term of the 
potential we obtain the perturbing quantum acceleration function. Next, with the help of the 
Newton-Euler planetary equations, we calculate the time rates of changes of the orbital 
elements per revolution for three different orbits around the primary. For one solar mass 
primary and an orbit with semimajor axis and eccentricity equal to that of Mercury we obtain 
that qu = 1.51710–81 /cy, while Mqu = –1.84010–46 rev/cy. 
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1.  INTRODUCTION 

The Newtonian potential that rules the motion of two point masses pM  (primary) 

and m  (secondary) separated by a distance r  is 

 
r

mGM
rV p)(  , (1) 

where G  is the Newtonian constant of gravitation. This potential is of course only 
approximately valid (e.g., Donoghue 1994). For large masses and/or large velocities, 
GRT predicts that there exist relativistic corrections, which can be calculated and also 
verified experimentally (e.g., Bjorken and Drell 1964). In the microscopic distance 
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domain, we could expect that quantum mechanics would predict a modification in the 
gravitational potential in the same way that the radiative corrections of quantum 
electrodynamics leads to a similar modification of the Coulomb interaction (t’Hooft and 
Veltman 1974). 

Even though GRT constitutes a very well defined classical theory, it is not possible 
yet to combine it with quantum mechanics in order to create a satisfactory theory of 
quantum gravity. One of the basic obstacles that prevent this from happening is that 
general relativity does not actually fit the present paradigm for a fundamental theory, that 
of a renormalizable quantum field theory. Gravitational fields can be successfully 
quantized on smooth-enough spacetimes (Capper et al. 1973), but the form of 
gravitational interactions is such that they induce unwanted divergences which cannot be 
absorbed by the renormalization of the parameters of the minimal general relativity 
(Goroff and Sagnotti 1984). One can introduce new coupling constants and absorb the 
divergences then, but this unfortunately leads to an infinite number of free parameters. 
Despite the difficulty above, quantum gravity calculations can predict long distance 
quantum corrections. 

The main idea leading to quantum corrections at large distances is due to the 
interactions of massless particles which only involve their coupling energies at low 
energies, something that it is known from the GRT, even though at short distances the 

theory of quantum gravity differs, resulting to finite correction of order 







33rc
GO  , where 

  is Planck’s constant, and c  is the speed of light. The existence of a universal long-
distance quantum correction to the Newtonian potential should be relevant for a wide 
class of gravity theories. It is a well-known fact that the ultraviolet behaviour of 
Einstein’s pure gravity can be improved, if higher derivative contributions to the action 
are added; in four dimensions they take the form (in usual notation): 

 2RRR  
 , (2) 

where  and  are dimensionless coupling constants. What makes the difference is that 
the resulting classical and quantum corrections to gravity are expected to significantly 
alter the gravitational potential at short distances comparable to that of Planck length 

35
3P 10616.1 

c
G

 m, but it should not really affect its behaviour at long 

distances. At long distances it is the structure of the Einstein-Hilbert action that actually 
determines that. At this point we should mention that some of the calculations of the 
corrections to the Newtonian gravitational potential result in the absence of a 
cosmological constant  , which usually complicates the perturbative treatment to a 
significant degree because of the need to expand about a nonflat background. 
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In one-loop amplitude computation, one needs to calculate all first order corrections 

in G, which will include both the relativistic 









2

22

c
mGO  and the quantum mechanical 







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3c
GO   corrections to the classical Newtonian potential (Hamber and Liu 1995). 

As a short digression on this theme, we note that Gutzwiller (1971, 1973, 1977) 
defined and studied a type of anisotropic Kepler problem with an essential goal: to 
identify links between classical and quantum mechanics (see also Gutzwiller 1990). The 
same model was resumed by Devaney (1978) and Casasayas and Llibre (1984), who 
went deeper into the problem. 

The anisotropic Manev problem, tackled by Craig et al. (1999), provided results 
that seem to build a bridge between classical mechanics, relativity, and quantum 
mechanics (as regards behavior in the neighbourhood of collision). Analogous results 
were obtained by Mioc et al. (2003) for the anisotropic Schwarzschild problem. 

For important results about the links between classical and quantum physics, we 
direct the reader to the paper of DeWitt-Morette (1979).  

The main goal of this contribution is to use the acceleration resulting from the 
quantum correction to the potential into the Newton-Euler planetary equations, and 
calculate the changes in the orbital elements for various two-body scenarios, and, given 
their magnitude, to determine if such corrections are detectable with today’s satellite 
technology. 

2.  CORRECTIONS  TO  GRAVITATIONAL  POTENTIAL 

Our goal is not to present the details of the one-loop treatment that leads to the 
corrections of the Newtonian gravitational potential, but rather state the result and then 
use it in our calculations. Valid to order 2G , we have that the corrected potential now 
becomes (Hamber and Liu 1995): 
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Perusing (3), we see that in the correction of the static Newtonian potential two 

different length scales are involved. First, the Planck length 35
3P 10

c
G

 m, and 

second, the Schwarzschild radius of the massive source 2
p

Sch
2

c
GM

r  . Furthermore, 
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there are two independent dimensionless parameters that appear in the correction term, 
and involve the ratio of these two scales with respect to the distance r . Presumably for 
meaningful results the two length scales are much smaller than r . 

3.  GENERAL  PERTURBING  FACTORS  AND  NEWTON–EULER  EQUATIONS 

In a two-body orbital motion the secondary body moves under the dominant force 
of the primary one. However, other bodies exert forces, which change with the relative 
positions of the objects and perturb the two-body motion. The resulting deviations from 
the actual orbit are usually very small, and given the well-known Keplerian orbital 
elements },,,,,{ Meai   at any instant, we can calculate the perturbations or changes 
of these elements as functions of time. Recall that these parameters are: inclination, 
longitude of the ascending node, argument of pericenter, semimajor axis, eccentricity and 
mean anomaly, respectively. They completely feature the relative orbit of the secondary 
body. 

Some of the most important effects responsible for these perturbations are: (a) 
gravitational forces exerted by other celestial bodies; (b) gravitational forces resulting 
from the nonspherical character and nonuniform mass repartition of the central primary 
body; (c) surface forces resulting from radiation pressure; (d) surface forces resulting 
from atmospheric drag. 

In classical celestial mechanics, the most general system of ODE describing the 
perturbed motion consists of Lagrange’s planetary equations (see any classical textbook 
of celestial mechanics). These equations are valid no matter which the nature of the 
perturbing force is, or whether this force derives from a potential or not. 

But, if the perturbing force derives from a potential (or a perturbing function), it is 
much more convenient to resort to the Newton-Euler equations (also called sometimes 
Gauss’ equations). They use the well-known components of the perturbing acceleration 
(perturbing force per unit mass): R  (radial), S  (transverse), and W  (binormal). This is 
the way we will tackle our problem. 

The Newton-Euler equations were largely used by one of the authors of the present 
paper, especially to study the artificial Earth satellite dynamics under the most various 
perturbations. We quote arbitrarily: Mioc (1980, 1991), Mioc and Radu (1977, 1979, 
1982, 1991a, b),  

To emphasize the usefulness of these equations, they were also used by the 
respective author to the study of other dynamical problems. We also quote arbitrarily: 
Blaga and Mioc (1992), Delgado et al. (1996), Diacu et al. (1995), Mioc (1994), Mioc 
and Radu (1991c), Mioc et al. (1991, 1992).  

In general, when the components of the perturbing acceleration do not depend 
explicitly on time, it is more convenient to resort to other independent variables (angular), 



5 Quantum Corrections to Potential and Orbital Motion  

e.g.: the true anomaly )( f , the eccentric anomaly )(E , the mean anomaly )(M , or the 
argument of latitude )(u . The above quoted papers used such independent variables, 
especially the argument of latitude. 

However, in our present approach, we shall use for the first step the time as 
independent variable. The general Newton-Euler equations in this case (no matter which 
the nature of the perturbation is) read (e.g., Blanco and McCuskey 1961): 
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Here n  is the daily mean motion ( 2/3
p //2 aGMPn  ), P  is the orbital period of 

the secondary, all other notations being already specified. Of course, in order to use the 
equations (4)–(9), the components of the perturbing acceleration must be expressed in 
terms of the osculating orbital elements at some particular epoch. 

4.  NEWTON–EULER  EQUATIONS  FOR  QUANTUM  EFFECTS 

Given the corrections to the Newtonian potential in (3), we have that the 
corresponding force acting in the radial direction is 
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Considering only the radial component of the perturbing acceleration due to the 
quantum effects needed in the Newton-Euler equations, we obtain that: 

 43
p

2

qu
15

 366
:)(

rc

MG
RrX





. (11) 

The two perturbing terms in (3) are radial terms. Hence we can use the equations 
(4)–(9) with WS  0 . In this case the equations corresponding to the quantum effect 
become 
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One can easily see that the quantum effect does not influence the position of the 
orbital plane ( i  and  ). 

In order to simplify and explicit the remaining equations (12), (13), (14), and (17), 
we consider that the perturbations due to the quantum corrections (and relativistic, as 
well) are very small. So we may safely affirm that, to a certain extent, the orbit will be 
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more or less Keplerian, but within a good approximation. 

5.  QUANTUM  EFFECTS  OVER  ONE  ANOMALISTIC  PERIOD 

For our purposes, we shall consider that the orbit is of elliptic type. In order to 
estimate the quantum effects in the motion of the secondary over one anomalistic period 
of this one, we shall use the orbit equation in polar coordinates 
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and the fact that 32
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Also, we choose the true anomaly as independent variable via the change 
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Now, introducing (18) and (19) into equations (12)–(13), then integrating the 
resulting equations between the limits 0 and 2 , one easily obtains 

 0qu a , (20) 

 0qu e , (21) 

This means that, after one anomalistic period (from 0f  to  2f ), the semimajor 
axis and the eccentricity come back to their initial values. In other words, the shape and 
the dimensions of the orbit do not experience secular changes. 

For the argument of pericenter, (14), (18) and (19) lead to 
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where we took into account (11). Integrating (22) between 0 and 2 , we get 
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For the mean anomaly we proceed exactly in the same way. The relations (11), 
(17), (18) and (19) provide an ODE, whose integration from 0f  to  2f , gives 
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For a last step before numerical estimations, we recall that the Planck length is 

given by 3P c
G

  . Using this, (23) and (24) respectively turn to 
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We see that both changes due to the quantum correction of the Newtonian potential 
in the argument of the perigee and mean anomaly over one revolution are independent of 
the mass of the primary body and scales as the square of the ratio of the Planck length 
over the semimajor axis of the orbiting body 

To estimate numerically the magnitude of such changes, we have chosen some 
concrete cases belonging to our solar system. Using appropriate values for semimajor 
axes and eccentricities of the orbiting bodies, we found:  

– Moon/lunar orbiter: 39
qu

74
qu 10180.2;10800.1   M ; 

– Jupiter/Europa: 46
qu

81
qu 10506.8;10873.6   M ; 

– Sun/Mercury: 46
qu

81
qu 10840.1;10517.1   M , 

where the changes of the argument of periastron   are measured in °/cy, while those of 
the mean anomaly M  in rev/cy. 

6.  COMMENTS  AND  SUMMARY 

The presence of the Planck length indicates that quantum effects will be extremely 
small but not identically zero. From formulae (25) and (26) one observes that quantum 
effects should “relatively increase” when the semimajor axis a  becomes smaller, but, 
given the size of real orbits, they still remain extremely small, and impossible to measure 
with today’s technology. Mathematically speaking, the expressions (25) and (26) 
maximize when aP , but this by no means constitutes a valid orbit in celestial 
mechanics. 
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In the case where the idea of quantized redshifts proves to be valid, somebody 
might have to introduce a new cosmic quantum of action 67

g 10322.6  J s (see 

Haranas and Harney 2009), and therefore a new cosmic Planck length 
163

g
2

cos P, 10315.1/  cG m. If this new quantum of action operates in the large-

scale universe, it might affect distant orbital phenomena. Lastly, verifying the quantum 
corrections to the potential resulting from today’s quantum gravity theories associated 
with solar-system orbital phenomena, we say that satellite orbits are definitely not a 
“viable tool” since they are limited by today’s technology. 

We considered the idea of a possible correction to the Newtonian gravitational 
potential predicted by the theory of general relativity along with the idea that leads to 
quantum corrections at large distances. Using the radial perturbing acceleration that 
corresponds to quantum correction of the Newtonian gravitational potential over large 
distances, we derived and solved the Newton-Euler planetary equations for the time rate 
of change of the orbital elements. From the six orbital elements that define the orbit, 
quantum effects only affect the argument of the periastron and the mean anomaly. Both 
these changes per anomalistic period do not depend on the mass of the primary body, and 
scale as the Planck length over the semimajor axis of the orbit square. Quantum 
correction effects are extremely small and cannot be detected using satellites in orbit and 
today’s technology. 
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