
On a Concatenation Problem 
 

Henry Ibstedt 
 
 
 
 
 Abstract: This article  has been inspired by questions asked by Charles 

Ashbacher in the Journal of Recreational Mathematics, vol. 29.2.  It concerns the 
Smarandache Deconstructive Sequence. This sequence is a special case of a more 
general concatenation and sequencing procedure which is the subject of this 
study. Answers are given to the above questions. The properties of this kind of 
sequences are studied with particular emphasis on the divisibility of their terms by 
primes. 

 

 
 
1. Introduction 
 
In this article the concatenation of a and b is expressed by a_b or simply ab when 
there can be no misunderstanding. Multiple concatenations like abcabcabc will be 
expressed by 3(abc). 
We consider n different elements (or n objects) arranged (concatenated) one after the 
other in the following way to form: 

A=a1a2 … an. 
Infinitely many objects A, which will be referred to as cycles,  are concatenated to 
form the chain: 

B= a1a2 … an a1a2 … an a1a2 … an… 
B contains identical elements which are at equidistant positions in the chain. Let’s 
write B as 
 B=b1b2b3, … bk…..  where bk=aj when j≡k (mod n), 1≤j≤n. 
An infinite sequence C1, C2, C3, … Ck, …. is formed by sequentially selecting 1, 2, 3, 
…k, … elements from the chain B:  
 C1=b1=a1 

 C2=b2b3=a2a3 

 C3=b4b5b6=a4a5a6 (if n≤6, if n=5 we would have C3=a4a5a1) 
The number of elements from the chain B used to form first k-1 terms of the sequence 
C is 1+2+3+ … +k-1=(k-1)k/2. Hence 
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However, what is interesting to see is how Ck is expressed in terms of a1,…,an. For 
sufficiently large values of k Ck will be composed of three parts: 
 
The first part F(k)=au…an 
The middle part  M(k)=AA…A The number of concatenated As depends on k.  
The last part L(k)=a1a2…aw 

Hence 
Ck=F(k)M(k)L(k).           (1)  
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The number of elements used to form C1, C2, … Ck-1 is (k-1)k/2. Since the number of 
elements in A is finite there will be infinitely many terms Ck which have the same 

first element au. u can be determined from )n(modu1
2

k)1k( ≡+− . There can be at 

most n2 different combinations to form F(k) and L(k). Let Cj and Ci be two different 
terms for which F(i)=F(j) and L(i)=L(j). They will then be separated by a number m 
of complete cycles of length n, i.e. 

 mn
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Let’s write j=i+p and see if p exists so that there is a solution for p which is 
independent of i. 
 
 (i+p-1)(i+p)-(i-1)i=2mn 
 i2+2ip+p2-i-p-i2+i=2mn 
 2ip+p2-p=2mn 
 p2+p(2i-1)=2mn 

If n is odd we will put p=n to obtain n+2i-1=2m, or 
2

1i2nm −+= . If n is even we  

put p=2n to obtain m=2n+2i-1. From this we see that the terms Ck have a peculiar 
periodic behavior. The periodicity is p=n for odd n and p=2n for even n. Let’s 
illustrate this for n=4 and n=5 for which the periodicity will be p=8 and p=5 
respectively. 
 

Table 1. n=4. A=abcd. B= abcdabcdabcdabcdabcd…… 
 

i Ci Period # F(i) M(i) L(i) 
1 a  a   
2 bc  bc   
3 dab 1 d  ab 
4 cdab 1 cd  ab 
5 cdabc 1 cd  abc 
6 dabcda 1 d abcd a 
7  bcdabcd 1 bcd abcd  
8 abcdabcd 1  2(abcd)  
9 abcdabcda 1  2(abcd) a 
10 bcdabcdabc 1 bcd abcd abc 
11 dabcdabcdab 2 d 2(abcd) ab 
12 cdabcdabcdab 2 cd 2(abcd) ab 
13 cdabcdabcdabc 2 cd 2(abcd) abc 
14 dabcdabcdabcda 2 d 3(abcd)  a 
15 bcdabcdabcdabcd 2 bcd 3(abcd)  
16 abcdabcdabcdabcd 2  4(abcd)  
17 abcdabcdabcdabcda 2  4(abcd) a 
18 bcdabcdabcdabcdabc 2 bcd 3(abcd) abc 
19 dabcdabcdabcdabcdab 3 d 4(abcd) ab 
20 cdabcdabcdabcdabcdab 3 cd 4(abcd) ab 
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It is seen from table 1 that the periodicity starts for i=3.  
 
Numerals are chosen as elements to illustrate the case n=5. Let’s write i=s+k+pj , 
where s is the index of the term preceding the first periodical term, k=1,2,…,p is the 
index of members of the period and j is the number of the period (for convenience the 
first period is numbered 0). The first part of  Ci is denoted B(k) and the last part E(k). 
Ci is now given by the expression below where q is the number of cycles concatenated 
between the first part B(k) and the last part E(k). 
 

Ci=B(k)_qA_E(k),  where k is determined from i-s≡k (mod p)   (2) 
 
 

Table 2. n=5. A=12345. B= 123451234512345……… 
 

i Ci k q F(i)/B(k) M(i) L(i)/E(k) 
1 1   1   

s=2 23   23   
 j=0      
3 451 1 0 45  1 
4 2345 2 0 2345   
5 12345 3 1  12345  
6 123451 4 1  12345 1 
7 2345123 5 0 2345  123 
 j=1      

3+5j 45123451 1 j 45 12345 1 
4+5j 234512345 2 j 2345 12345  
5+5j 1234512345 3 j+1  2(12345)  
6+5j 12345123451 4 j+1  2(12345) 1 
7+5j 234512345123 5 j 2345 12345 123 

 j=2      
3+5j 4512345123451 1 j 45 2(12345) 1 
4+5j 23451234512345 2 j 2345 2(12345)  
……       

 
 
 
 
2. The Smarandache Deconstructive Sequence 
 
The Smarandache Deconstructive Sequence of integers [1] is constructed by 
sequentially repeating the digits 1-9 in the following way: 
 
 1,23,456,789123,4567891,23456789,123456789,1234567891, … 
 
The sequence was studied in a booklet by Kashihara [2] and a number of questions on 
this sequence were posed by Ashbacher [3]. In thinking about these questions two 
observations lead to this study. 
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1. Why did Smarandache exclude 0 from the integers used to create the sequence? 
After all 0 is indispensable in all arithmetics most of which can be done using 0 
and 1 only. 

2. The process used to create the Deconstructive Sequence is a process that applies to 
any set of objects as has been shown in the introduction. 

 
The periodicity and the general expression for terms in the “generalized 
deconstructive sequence” shown in the introduction may be the most important results 
of this study. These results will now be used to examine the questions raised by 
Ashbacher. It is worth noting that these divisibility questions are dealt with in base 10 
although only the nine digits 1,2,3,4,5,6,7,8,9 are used to express numbers. In the last 
part of this article questions on divisibility will be posed for a deconstructive sequence 
generated from A=”0123456789”. 
 
For i>5 (s=5) any term Ci in the sequence is composed by concatenating a first part 
B(k), a number q of cycles A=”123456789” and a last part E(k), where i=5+k+9j, 
k=1,2,…9, j≥0, as expressed in (2) and q=j or j+1 as shown in table 3. 
 
Members of the Smarandache Deconstructive Sequence are now interpreted as 
decimal integers. The factorization of B(k) and  E(k) is shown in table 3. The last two 
columns of this table will be useful later in this article. 
  

Table 3. Factorization of Smarandache Deconstructive Sequence 
 

i k B(k) q E(k) Digit sum 3|Ci ? 
6+9j 1 789=3⋅263 j 123=3⋅41 30+j⋅45 3 
7+9j 2 456789=3⋅43⋅3541 j 1 40+j⋅45 No 
8+9j 3 23456789 j  44+j⋅45 No 
9+9j 4  j+1  (j+1)⋅45 9⋅3z * 
10+9j 5  j+1 1 1+(j+1)⋅45 No 
11+9j 6 23456789 j 123=341 50+j⋅45 No 
12+9j 7 456789=3⋅43⋅3541 j 123456=26⋅3⋅643 60+j⋅45 3 
13+9j 8 789=3⋅263 j+1 1 25+(j+1)⋅45 No 
14+9j 9 23456789 j 123456=26⋅3⋅643 65+j⋅45 No 

*) where z depends on j. 
 
Together with the factorization of the cycle A=123456789=32⋅3607⋅3803 it is now 
possible to study some divisibility properties of the sequence. We will first find 
expressions for Ci for each of the 9 values of k. In cases where E(k) exists let’s 
introduce u=1+[log10E(k)]. We also define the function δ(j) so that δ(j)=0 for j=0 and 
δ(j)=1 for j>0. It is possible to construct one algorithm to cover all the nine cases but 
more functions like δ(j) would have to be introduced to distinguish between the 
numerical values of the strings “” (empty string) and “0” which are both evaluated as 
0 in computer applications. In order to avoid this four formulas are used.  
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For k=1, 2, 6, 7 and 9: 

 C5+k+9j =E(k)+δ(j)⋅A⋅10u⋅∑
−

=

1j

0r

r910 +B(k)⋅109j+u                  (3) 

For k=3: 

 C5+k+9j =δ(j)⋅A⋅∑
−

=

1j

0r

r910 +B(k)⋅109j                   (4) 

For k=4: 

 C5+k+9j=A⋅∑
=

j

0r

r910                     (5) 

For k=5 and 8: 

 C5+k+9j =E(k)+A⋅10u⋅∑
=

j

0r

r910 +B(k)⋅109(j+1)+u       (6) 

 
Before dealing with the questions posed by Ashbacher we recall the familiar rules: An 
even number is divisible by 2; a number whose last two digit form a number which is 
divisible by 4 is divisible by 4. In general we have the following: 
 
Theorem. Let N be an n-digit integer such that N>2α then N is divisible by 2α if and 
only if the number formed by the α last digits of N is divisible by 2α. 
 
Proof. To begin with we note that 
 
 If x divides a and x divides b then x divides (a+b) 
 If x divides one but not the other of a and b then x does not divide (a+b) 
 If x does not divides neither a nor b then x may or may  not divide (a+b) 
 
Let’s write the n-digit number in the form a⋅10α+b. We then see from the following 
that a⋅10α  is divisible by 2α. 
 
 10≡0 (mod 2) 
 100 ≡0 (mod 4) 
 1000= 23⋅53≡0 (mod 23) 
 … 
 10α≡0 (mod 2α) 
and then 
 a⋅10α≡0 (mod 2α) independent of a. 
 
Now let b be the number formed by the α last digits of  N we then see from the 
introductory remark that N is divisibe by 2α if and only if the number formed by the α 
last digits is divisibele by 2α. 
 
Question 1. Does every even element of the Smarandache Deconstructive Sequence 
contain at least three instances of the prime 2 as a factor? 
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Question 2. If we form a sequence from the elements of the Smarandache 
Deconstructive Sequence that end in a 6, do the powers of 2 that divide them form a 
montonically increasing sequence? 
These two questions are realated and are dealt with together.  From the previous 
analysis we know that all even elements of the Smarandache Deconstructive Sequence 
end in a 6. For i≤ 5 they are: 
 C3=456=57⋅23 
 C5=23456=733⋅25  
For i>5 they are of the forms: 
 C12+9j and C14+9j which both end in …789123456. 
Examining the numbers formed by the 6, 7 and 8 last digits for divisibility by 26, 27 
and 28 respectively we have: 
 123456=26⋅3⋅643 
 9123456=27⋅149.4673 
 89123456 is not divisible by 28 
From this we conclude that all even Smarandache Deconstructive Sequence elements 
for i≥12 are divisible by 27 and that no elements in the sequence are divisible by 
higher powers of 2 than 7.  
 
Answer to Qn 1. Yes 
Answer to Qn 2. The sequence is monotonically increasing for i≤≤12. For i≥≥12 the 
powers of 2 that divide even elements remain constant=27. 
 
Question 3. Let x be the largest integer such that 3x|i and y the largest integer such 
that 3y|Ci. Is it true that x is always equal to y? 
 
From table 3 we se that the only elements Ci of the Smarandache Deconstructive 
Sequence which are divisible by powers of 3 correspond to i=6+9j, 9+9j, or 12+9j. 
Furthermore, we see that i=6+9j and C6+9j are divisible by 3 no more no less. The 
same is true for i=12+9j and C12+9j. So the statement holds in these cases. 
From the conguences 
 9+9j≡0 (mod 3x) for the index of the element 
and 
 45(1+j)≡0 (mod 3y) for the corresponding element 
we conclude that x=y.  

Answer: The statement is true. It is interesting to note that, for example the 729 
digit number C729 is divisible by 729. 
 
Question 4. Are there other patterns of divisibility in this sequence? 
 
A search for other patterns would continue by examining divisibility by the next lower 
primes 5, 7, 11, … It is obvious from table 3 and the periodicity of the sequence that 
there are no elements divisible by 5. The algorithms will prove very useful. For each 
value of k the value of Ci depends on j only. The divisibility by a prime p is therefore 
determined by finding out for which values of j and k the congruence Ci≡0 (mod p) 
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holds. We evaluate ∑
−

=

1j

0r

r910 =
110
110

9

j9

−
−  and introduce G=109-1. We note that 

G=34⋅37⋅333667. From formulas (3) to (6) we now obtain: 
 
For k=1,2,6,7 and 9: 
 
 Ci⋅G=10u⋅(δ(j)⋅A+B(k)⋅G)⋅109j+E(k)⋅G-10u⋅δ(j)⋅A     (3’) 
 
For k=3: 

Ci⋅G=((δ(j)⋅A+B(k)⋅G)⋅109j-δ(j)⋅A       (4’) 
  

For k=4: 
 Ci⋅G=A⋅109j-A                     (5’) 
 
For k=5 and 8: 
 
 Ci⋅G=10u+9(A+B(k) ⋅G)⋅109j+E(k)⋅G-10u⋅A      (6’) 
 
The divisibility of Ci by a prime p other than 3, 37 and 333667 is therefore determined 
by solutions for j to the congruences CiG≡0 (mod p) which are of the form  
 

a⋅(109)j+b≡0 (mod p)        (7) 
 

Table 4 shows the results from computer implementation of the congruences. The 
appearance of elements divisible by a prime p is periodic, the periodicity is given by 
j=j1+m⋅d, m=1, 2, 3, … .  The first element divisible by p appears for i1 corresponding 
to j1. In general the terms Ci divisible by p are  )mdj(9k5 1

C +++  where d is specific to the 
prime p and m=1, 2, 3,… .We note from table 4 that d is either equal to p-1 or a 
divisor of p-1 except for the case p=37 which as we have noted is a factor of A.  
Indeed this periodicity follows from Euler’s extension of Fermat’s little theorem 
because if we write (mod p): 
 
 a⋅(109)j+b= a⋅(109)j1+md+b≡ a⋅(109)j1+b for d=p-1 or a divisor of p-1. 
 
Finally we note that the periodicity for p=37 is d=37. 
 
Question: Table 4 indicates some interesting patterns. For instance, the primes 19, 43 
and 53 only divides elements corresponding to k=1, 4 or 7 for j<150 which was set as 
an upper limit for this study. Similarly, the primes 41, 73, 79 and 91 only divides 
elements corresponding to  k=4. Is 5 the only prime that cannot divide an element of 
the Smarandache Deconstructive Sequence? 
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Table 4.Smarandache Deconstructive Sequence elements divisible by p: 
 

p k i1 j1 d p k i1 j1 d 
7 4 18 1 2 47 1 150 16 46 

11 4 18 1 2 47 2 250 27 46 
13 4 18 1 2 47 3 368 40 46 
13 8 22 1 2 47 4 414 45 46 
13 9 14 0 2 47 5 46 4 46 
17 1 6 0 16 47 6 164 17 46 
17 2 43 4 16 47 7 264 28 46 
17 3 44 4 16 47 8 400 43 46 
17 4 144 15 16 47 9 14 0 46 
17 5 100 10 16 53 1 24 2 13 
17 6 101 10 16 53 4 117 12 13 
17 7 138 14 16 53 7 93 9 13 
17 8 49 4 16 59 1 267 29 58 
17 9 95 9 16 59 3 413 45 58 
19 1 15 1 2 59 5 109 11 58 
19 4 18 1 2 59 6 11 0 58 
19 7 21 1 2 59 7 255 27 58 
23 1 186 20 22 59 8 256 27 58 
23 2 196 21 22 59 9 266 28 58 
23 3 80 8 22 61 2 79 8 20 
23 4 198 21 22 61 4 180 19 20 
23 5 118 12 22 61 6 101 10 20 
23 6 200 21 22 67 4 99 10 11 
23 7 12 0 22 67 8 67 6 11 
23 8 184 19 22 67 9 32 2 11 
23 9 14 0 22 71 1 114 12 35 
29 1 24 2 28 71 3 53 5 35 
29 2 115 12 28 71 4 315 34 35 
29 3 197 21 28 71 5 262 28 35 
29 4 252 27 28 71 7 201 21 35 
29 5 55 5 28 73 4 72 7 8 
29 6 137 14 28 79 4 117 12 13 
29 7 228 24 28 83 1 348 38 41 
29 8 139 14 28 83 2 133 14 41 
29 9 113 11 28 83 4 369 40 41 
31 3 26 2 5 83 6 236 25 41 
31 4 45 4 5 83 7 21 1 41 
31 5 19 1 5 83 8 112 11 41 
37 1 222 24 37 83 9 257 27 41 
37 2 124 13 37 89 2 97 10 44 
37 3 98 10 37 89 4 396 43 44 
37 4 333 36 37 89 6 299 32 44 
37 5 235 25 37 97 1 87 9 32 
37 6 209 22 37 97 2 115 12 32 
37 7 111 11 37 97 3 107 11 32 
37 8 13 0 37 97 4 288 31 32 
37 9 320 34 37 97 5 181 19 32 
41 4 45 4 5 97 6 173 18 32 
43 1 33 3 7 97 7 201 21 32 
43 4 63 6 7 97 8 202 21 32 
43 7 30 2 7 97 9 86 8 32 
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3. A Deconstructive Sequence generated by the cycle A=0123456789. 
 
Instead of sequentially repeating the digits 1-9 as in the case of the Smarandache 
Deconstructive Sequence we will use the digits 0-9 to form the corresponding 
sequence: 
 
 0,12,345,6789,01234,567890,1234567,89012345,678901234, 5678901234, 
56789012345,678901234567, … 
 
In this case the cycle has n=10 elements. As we have seen in the introduction the 
sequence then has a period =2n=20. The periodicity starts for i=8. Table 5 shows how 
for i>7  any term Ci in the sequence is composed by concatenating a first part B(k), a 
number q of cycles A=”0123456789” and a last part E(k), where i=7+k+20j, 
k=1,2,…20, j≥0, as expressed in (2) and q=2j, 2j+1 or 2j+2. In the analysis of the 
sequence it is important to distinguish between the cases where E(k)=0, k=6,11,14,19 
and cases where E(k) does not exist, i.e. k=8,12,13,14. In order to cope with this 
problem we introduce a function u(k) which will at the same time replace the 
functions δ(j) and u=1+[log10E(k)] used previously.  u(k) is defined as shown in table 
5. It is now possible to express Ci  in a single formula 
 

 Ci= )k(uj2)k(q10
1j2)k(q

0r

r10
j20k7 10))10()k(B)10(A()k(EC ⋅⋅+⋅+= +

−+

=
++ ∑     (8) 

  
The formula for Ci was implemented modulus prime numbers less then 100. The 
result is shown in table 6. Again we note that the divisibility by a prime p is periodic 
with a period d which is equal to p- 1 or a divisor of p-1, except of  p=11 and p=41 
which are factors of 1010-1.  The cases p=3 and 5 have very simple answers and are 
not included in table 6. 
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Table 5. n=10, A=0123456789 

 
i k B(k) q E(k) u(k) 

8+20j 1 89 2j 012345=3⋅5⋅823 6 
9+20j 2 6789=3⋅31⋅73 2j 01234=2⋅617 5 
10+20j 3 56789=109⋅521 2j 01234=2⋅617 5 
11+20j 4 56789=109⋅521 2j 012345=3⋅5⋅823 6 
12+20j 5 6789=3⋅31⋅73 2j 01234567=127⋅9721 8 
13+20j 6 89 2j+1 0 1 
14+20j 7 123456789=32⋅3607⋅3803 2j 01234=2⋅617 5 
15+20j 8 56789=109⋅521 2j+1  0 
16+20j 9  2j+1 012345=3⋅5⋅823 6 
17+20j 10 6789=3⋅31⋅73 2j+1 012=22⋅3 3 
18+20j 11 3456789=3⋅7⋅97⋅1697 2j+1 0 1 
19+20j 12 123456789=32⋅3607⋅3803 2j+1  0 
20+20j 13  2j+2  0 
21+20j 14  2j+2 0 1 
22+20j 15 123456789=32⋅3607⋅3803 2j+1 012=22⋅3 3 
23+20j 16 3456789=3⋅7⋅97⋅1697 2j+1 012345=3⋅5⋅823 6 
24+20j 17 6789=3⋅31⋅73 2j+2  0 
25+ 20j 18  2j+2 01234=2⋅617 5 
26+20j 19 56789=109⋅521 2j+2 0 1 
27+20j 20 123456789=32⋅3607⋅3803 2j+1 01234567=127⋅9721 8 

 



 11 

Table 6a. Divisibility of the 10-cycle destructive sequence by primes 7≤p≤37 
 

p k i1
 j1 d p k i1

 j1 d 
7 3 30 1 3 19 1 128 6 9 
7 6 13 0 3 19 2 149 7 9 
7 7 14 0 3 19 3 90 4 9 
7 8 15 0 3 19 4 31 1 9 
7 11 38 1 3 19 5 52 2 9 
7 12 59 2 3 19 10 117 5 9 
7 13 60 2 3 19 12 179 8 9 
7 14 61 2 3 19 13 180 8 9 
7 15 22 0 3 19 14 181 8 9 
7 18 45 1 3 19 16 63 2 9 
7 19 46 1 3 23 1 168 8 11 
7 20 47 1 3 23 2 149 7 11 

11 1 88 4 11 23 3 110 5 11 
11 2 9 0 11 23 4 71 3 11 
11 3 110 5 11 23 5 52 2 11 
11 4 211 10 11 23 10 217 10 11 
11 5 132 6 11 23 12 219 10 11 
11 6 133 6 11 23 13 220 10 11 
11 7 74 3 11 23 14 221 10 11 
11 8 35 1 11 23 16 223 10 11 
11 9 176 8 11 29 2 129 6 7 
11 10 137 6 11 29 4 11 0 7 
11 11 18 0 11 29 10 97 4 7 
11 12 219 10 11 29 12 139 6 7 
11 13 220 10 11 29 13 140 6 7 
11 14 221 10 11 29 14 141 6 7 
11 15 202 9 11 29 16 43 1 7 
11 16 83 3 11 31 3 30 1 3 
11 17 44 1 11 31 9 56 2 3 
11 18 185 8 11 31 12 59 2 3 
11 19 146 6 11 31 13 60 2 3 
11 20 87 3 11 31 14 61 2 3 
13 2 49 2 3 31 17 64 2 3 
13 3 30 1 3 37 2 9 0 3 
13 4 11 0 3 37 3 30 1 3 
13 12 59 2 3 37 4 51 2 3 
13 13 60 2 3 37 12 59 2 3 
13 14 61 2 3 37 13 60 2 3 
17 1 48 2 4 37 14 61 2 3 
17 5 32 1 4      
17 10 37 1 4      
17 12 79 3 4      
17 13 80 3 4      
17 14 81 3 4      
17 16 43 1 4      
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Table 6b. Divisibility of the 10-cycle destructive sequence by primes 41≤p≤67 
 

p k i1
 j1 d p k i1

 j1 d 
41 1 788 39 41 53 3 130 6 13 
41 2 589 29 41 53 12 259 12 13 
41 3 410 20 41 53 13 260 12 13 
41 4 231 11 41 53 14 261 12 13 
41 5 32 1 41 59 2 269 13 29 
41 6 353 17 41 59 3 290 14 29 
41 7 614 30 41 59 4 311 15 29 
41 8 615 30 41 59 7 474 23 29 
41 9 436 21 41 59 8 395 19 29 
41 10 117 5 41 59 9 496 24 29 
41 11 678 33 41 59 10 297 14 29 
41 12 819 40 41 59 11 78 3 29 
41 13 820 40 41 59 12 579 28 29 
41 14 821 40 41 59 13 580 28 29 
41 15 142 6 41 59 14 581 28 29 
41 16 703 34 41 59 15 502 24 29 
41 17 384 18 41 59 16 283 13 29 
41 18 205 9 41 59 17 84 3 29 
41 19 206 9 41 59 18 185 8 29 
41 20 467 22 41 59 19 106 4 29 
43 2 109 5 21 61 12 59 2 3 
43 3 210 10 21 61 13 60 2 3 
43 4 311 15 21 61 14 61 2 3 
43 6 173 8 21 67 1 328 16 33 
43 10 217 10 21 67 2 509 25 33 
43 12 419 20 21 67 3 330 16 33 
43 13 420 20 21 67 4 151 7 33 
43 14 421 20 21 67 5 332 16 33 
43 16 203 9 21 67 6 273 13 33 
43 20 247 11 21 67 7 234 11 33 
47 1 28 1 23 67 8 95 4 33 
47 2 69 3 23 67 9 56 2 33 
47 3 230 11 23 67 10 557 27 33 
47 4 391 19 23 67 11 378 18 33 
47 5 432 21 23 67 12 659 32 33 
47 6 113 5 23 67 13 660 32 33 
47 7 214 10 23 67 14 661 32 33 
47 8 15 0 23 67 15 282 13 33 
47 9 376 18 23 67 16 103 4 33 
47 12 459 22 23 67 17 604 29 33 
47 13 460 22 23 67 18 565 27 33 
47 14 461 22 23 67 19 426 20 33 
47 17 84 3 23 67 20 387 18 33 
47 18 445 21 23      
47 19 246 11 23      
47 20 347 16 23      
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Table 6c. Divisibility of the 10-cycle destructive sequence by primes 71≤p≤97 
 

p k i1
 j1 d p k i1

 j1 d 
71 1 8 0 7 79 1 228 11 13 
71 3 70 3 7 79 3 130 6 13 
71 5 132 6 7 79 5 32 1 13 
71 7 114 5 7 79 12 259 12 13 
71 8 95 4 7 79 13 260 12 13 
71 12 139 6 7 79 14 261 12 13 
71 13 140 6 7 83 3 410 20 41 
71 14 141 6 7 83 9 476 23 41 
71 18 45 1 7 83 12 819 40 41 
71 19 26 0 7 83 13 820 40 41 
73 7 14 0 2 83 14 821 40 41 
73 9 36 1 2 83 17 344 16 41 
73 12 39 1 2 89 12 219 10 11 
73 13 40 1 2 89 13 220 10 11 
73 14 41 1 2 89 14 221 10 11 
73 17 44 1 2 97 8 455 22 24 
73 19 26 0 2 97 12 479 23 24 

     97 13 480 23 24 
     97 14 481 23 24 
     97 18 25 0 24 
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