The New Prime theorem (17)

$$P_n = 2P_1P_2\cdots P_{n-1} \pm 1$$

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China

jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that such that $P_n = 2P_1P_2\cdots P_{n-1}\pm 1$ has infinitely many prime solutions.

Theorem. The prime equation

$$P_{n} = 2P_{1}P_{2}\cdots P_{n-1} + 1 \tag{1}$$

has infinitely many prime soultions

Proof. We have Jiang function[1]

$$J_n(\omega) = \prod_{p} [(P-1)^{n-1} - \chi(P)], \tag{2}$$

where $\omega = \prod_{P} P$, $\chi(P)$ is the number of solutions of congruence

$$2q_1q_2\cdots q_{n-1}+1\equiv 0\pmod{P}, \quad q_i=1,\cdots,P-1, i=1,\cdots,n-1,$$
 (3)

From (3) we have

$$\chi(P) = (P-1)^{n-2} \tag{4}$$

Substituting (4) into (2) we have

$$J_n(\omega) = \prod_{3 < P} [(P-1)^{n-2} (P-2)] \neq 0.$$
 (5)

We prove that (1) has infinitely many prime soultions. $J_n(\omega) \subset \phi^{n-1}(\omega)$.

We have the best asymptotic formula [1]

$$\pi_2(N,n) = \left| \left\{ P_1, \dots, P_{n-1} \le N : P_n = prime \right\} \right| \sim \frac{J_n(\omega)\omega}{(n-1)!\phi^n(\omega)} \frac{N^{n-1}}{\log^n N}. \tag{6}$$

Example 1. Let n = 2. From (1) we have

$$P_2 = 2P_1 + 1 \tag{7}$$

From (5) we have

$$J_2(\omega) = \prod_{3 \le P} (P - 2) \ne 0$$
 (8)

Example 2. Let n = 3. From (1) we have

$$P_3 = 2P_1P_2 + 1. (9)$$

From (5) we have

$$J_3(\omega) = \prod_{3 \le P} [(P-1)(P-2)] \ne 0. \tag{10}$$

In the same way we are able to prove that

$$P_m = 2P_1 P_2 \cdots P_{n-1} - 1 \tag{11}$$

has infinitely many prime solutions.

Note. The prime numbers theory is to count the Jiang function $J_{n+1}(\omega)$ and Jiang singular series

$$\sigma(J) = \frac{J_2(\omega)\omega^{k-1}}{\phi^k(\omega)} = \prod_P \left(1 - \frac{1 + \chi(P)}{P}\right) (1 - \frac{1}{P})^{-k} [1], \text{ which can count the number of prime number. The } I = \frac{J_2(\omega)\omega^{k-1}}{\phi^k(\omega)} = \frac{1}{P} \left(1 - \frac{1 + \chi(P)}{P}\right) (1 - \frac{1}{P})^{-k} [1], \text{ which can count the number of prime number.}$$

prime number is not random. But Hardy singular series $\sigma(H) = \prod_{P} \left(1 - \frac{v(P)}{P}\right) (1 - \frac{1}{P})^{-k}$ is false [2-5], which can not count the number of prime numbers.

References

- [1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math /xuan2. pdf. http://wbabin.net/xuan.htm#chun0xuan.
- [2] G. H. Hardy and J. E. Littlewood, Some problems of "Partitio Numerorum", III: On the expression of a number as a sum of primes. Acta Math., 44(1923)-70.
- [4] B. Green and T. Tao, Linear equations in primes. To appear, Ann. Math.
- [5] D. Goldston, J. Pintz and C. Y. Yildirim, Primes in tuples I. Ann. Math., 170(2009) 819-862.