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Abstract

Using Jiang function we prove the finite Mersenne primes and the finite repunits primes.
Theorem. Suppose the prime equation
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where P, isa given prime.
There exist infinitely many primes P such that P, is a prime.
Proof. We have Jiang function[1]
Jo(@) =TI[P-1- 7(P)], (2)
where o= 1;[ P, x(P) isthe number of solutions of congruence
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@=D"~1_4 modP), q=1--P-1. (3)
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y(P)=1, y(P)=P,-1 if P=1(modFR,), y(P)=0 otherwise.
Since J,(w)# 0, there exist infinitely many primes P suchthat P, isa prime.
We have the asymptotic formula [1]
7,(N,2) =|{P <N :P, = prime}| ~ Jzz(a))a) N2 : (4)
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where ¢(w) = I;I(P -1).
Let P =3.From (1) we have equation of Mersenne numbers [2]
P=2%-1. (5)

From (4) we have
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We prove the finite Mersenne primes.
Let P=11.From (1) we have equation of repunits numbers [2]
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From (4) we have
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7,(11,2) =

We prove the finite repunits primes.
R _ .
In the same way we are able to prove that (a %_1) with a=4,6,10,12,---, has the

finite prime solutions.
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