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ABSTRACT

As a continuation of a preceding paper “The tragfggd” a preliminary attempt of
how to construct a spinor theory of radar scatteanradar signal-target interaction
with the gauge theories of quantum mechanics semted. This way radar signals
and radar targets may become visible macroscopectsito be put in analogy with
Standard Model particles and interactions. Thechdsia is that particles and forces
are all of electromagnetic nature, light, and appédéerent due to the size and shape
of interacting objects.

For the purpose that we propose here, you mustia with a generic radar signal
in spinor form (note: itis TEM, TE, TM or evanestd mean “radar signal” in a
wide sense, ie for ex. also into a waveguide).

This is done by deriving a spinor representatiothefTE TM through the Dirac
equation for plane wave, starting rigorously froraxwell's equations without any
use of equivalent V, | as in previous papers.

As a byproduct the representation is extendedad &M.

Then | introduce a tentative procedure to expressieflection of the field in a
different direction, and its variation in frequeneyd rest mass. This is accomplished
through the interaction witlsu(2) DU (1) gauge fields ie electroweak interactions.
Some simple but illustrative examples are given.

The ideas set out here need of course furtherndsea



INTRODUCTION

For the purpose that we propose here, you mustia with a generic radar signal
in spinor form (note: itis TEM, TE, TM or evaneste

As it is known in the theory of waveguide, the @gation for the TE and TM modes
can be represented by an appropriate equivalergrnasion line [1] and voltage and
current V, .

In previous papers ([2], [3]) has examined thigespntation with the equivalent V, |
compared with the Dirac equation.

She then demonstrated equivalence between theepwesentations.

We now want to derive a spinor representation off MEin waveguide through the
Dirac equation for plane wave, starting from Maxtgetquations rigorously, without
any use of equivalent V, I.

To show how and why the Maxwell and the Dirac equatare connected between
them, in the following Clifford algebra is usedarformulation which is essentially
that of the STA (Hestenes [4]).

When you try to do the same thing with the equatiorthe classical formalism, the
important reasons behind this correspondencefactrmasked by the different
character of Maxwell's equations than the Diracaéiqu, the latter being a matrix
equation in terms of Dirac matrices.

The STA algebra can treg} as algebraic elements (the basics of 4D spacg-tine

thus enables a much more direct correspondencesbettlie Dirac equation and
Maxwell's equations.

The Clifford algebra used here is slightly differésee Appendix 1) but is
substantially the Hestenes STA, unless the ussighdture" (+++-) with
i2=]2=k?=+1 andT? = -1 instead of " STA signature" (-—-+) Wity = -1, = +1,
v (k=123).

MAXWELL EQUATIONS

Maxwell's equations are obtained by introducindifidd number or "even number
(Appendix 1):

(1) F=(E +E)+Ti(H, +jH,)

(in MKSA units should be written witk/sE and./uH ).
The condition of analyticity foF

(2) 9F=0
(3) a*:i+ii+ji+Ti
ox o0y "0z Or



provides equaling components:

t t

i—ii iH, +iiH +iE =0
0z or

ox oy
9 4i% - +9E =0
ox oy 0z or

(4)
i—ii E +iEt+iiHt =0
ox oy 0z or

i+ii E, —iEI +iiHI =0
ox oy 0z or

where they are placeg etc. equal to:

E =E, +iE,

E =E,+iE,
(5)

H, =H, +iH,

H, =H,+iH,

The (4) are the Cauchy Riemann conditions or timelitons of analyticityo'F =0

for F. They coincide with the Maxwell equations for tlemnjugater” (basically
changing the sign of the y, z components). Notettha property corresponds
exactly to the known properties of analytic funoan the plane, to which it is
reduced in two-dimensional case: the conditionsnaflyticity 0" f =0 coincide with

the field equations for the field which has as congnts those of .

From another point of view, and are equal regasdiéshe result, we can instead say
"analyticity for F also leads to the analyticity fei ” that so contains the physical
components of andH along the axes x, v, z.

So:

(6) d'Fi =0

where:

(7) Fl=E+TjiH=Ef+E,J+Ek+Tji(H{ +H, ] +HK)



In (7) then the components y and z are not the sdr(®® but the same with a change
of sign.
In (7) | also putg, =0 andH, =0 in order to have Maxwell equations in empty

space; withg, #0 andH, # 0 terms would appear formally related to electrid an

magnetic charge and currents.

(Note: strictly speaking the true quality of aresh of "time-like bivectors"
(Hestenes, [3]), s&iT should be considered and it But to avoid too heavy
notations use (7) which is sufficient for presemtgoses).

Is immediate and very smart from (7) to derive Mexwell's equations with div and
rot. It starts with the 3D property in Clifford &igra (Appendix 1):

(8) d,a=d, «a+d, Da=d, a+ k|3, xa)
0~ 0+~ 0, =

9 —i+—j+—k=0

©) X ayJ 0z v

and therefore the operators div and rot are "eméxditic the 'Clifford algebra,
through the formula:

(10) od,a=diva+ (iA]IZ)(rota)

Then immediately derive Maxwell's equations with and rot.
In fact we can rewrite (6) as follows:

11) (5274 9%. 0
ox

Y B A
—TXYE+TjiHY=0, +—T)IE+ijkTH =0
ik J)(Var)( ki)

Developing with (10) and separating the indices €suickly:
(12) rotE = _O_H’ rotH = a—E,divE =0,divH =0
or or

which are Maxwell equations with div and rot.



DESCRIPTIONOFTETM FIELDSWITH MAXWELL FIELDSIN
WAVEGUIDE, COMPONENTSOF A TENSOR OR SPACE TIME
BIVECTOR F

Let us express the Maxwell equations for TE or TM.
| take in (4)E, =E, +iE, =0 (TE):

( ijnH|+ Et:O
oy
[—+I alet EI =0
oy
(13)
iE +— 9 iH, =0
0z or
i+|i E +— 9 iH, =0
ox oy or

Now proceed on the assumption of exponential degreree"“ as is the custom in
the IEEE conventions.

Take in the fourth (13)007 Ziw:

0 .0 .
(14) [0_+Ia_ijt = _|0JH|

X

from whichiH, to be replaced in the first:

(15) 9 _j9)9 ;9 E, '+ 90H +iaE, = -afE - +i|H +iaE, =0
ox oy )ox oy az 0z

The first and third equations thus become a TE teapusand become precisely:

aiiEt =ieH,
Z

(16)

0 : @ ..
E Ht = Ia)(l_a_(;)lEt



(Note that to obtain the field components alongxhye axes the (7) holds, ie there is
an operation () * conjugation in between).
Do now in (4)H, =H, +iH, =0 (TM):

2+ 2 <o
0z or
i+iith+iE,:O
ox oy or
(17)
0 .0 0 0

—-i— |, +—E +—iH, =0
ox oy 0z or

i+|i Et _iEI =0
ox oy 0z

| take in the the secong; =iw

(18) [iﬂijiHﬁiaEl:O
ox oy
from which ig, replacing in the third

0 .0 0 .0 -1 0 1 0
1 Ol i S o, + L —aH, = afH, + 2 E —aH, =0
(19) [ax ayj(ax 0 ja) oz ! w2t ezt !

y

and so arrive to the equations for a TM:

ith = —iaE,
0z
(20)

0

P
EEt = w(l_a_%)Ht

In summary | have the complete TE and TM equatdmrs/ed in the hypothesis

0 .
——iw.
or



Using the subscript TE or TM to recall how | leadne

0 . .
EIETE —laH =0
0. .
EIHTE +|¢«)(1—§)ETE =0
(21)
%iHTM +iak;, =0
25

0 . .
EIETM —wu(l—E)HTM =0

Emphasized again that is passed to the componkfttdoalong the x, y axes with:
(7bis) E+TjiH =Fi =(E,z + TjiH +E;,, +TjiH,, )i .

Let me give some physical interpretation.
Take the case TE.
For propagation along z I% =-ik, and from the first of the two you have:

(22) K,Ere —laH =0
To grasp the physical meaning multiply byrom right

(23) kZETE _iaj:iTE =0
This shows tha€k,.,iH,. are parallel. The meaning is this: at every paitiatever
be E., H,. is 90° with respect t&,., and precisely rotated bytowardsj .

[T

TE

v




On the x, y plane at each poiBf. is 90 ° with respect téi,. So as to give rise to a
Poynting vectorE,. x H,. different in amplitude, but always directed towérd
positive z:

i y

[
NN

TE

[T
T
3
m
[T
X
I,
in
m

TE

At this point | do a hypothesis of alternative egentation of the TE and TM fields,
namely a spinor representation relative to thd ttargy that propagates in the
waveguide (and, as we shall, rest energy or masspalarization).

ELIMINATION OF (X, Y) DEPENDENCE AND FIELD DESCRIPTION
WITH (FICTITIOUS) FIELDS E,H, COMPONENTSOF A SPINOR ¢ .

Let us now turn to an alternative representatiothefTE and TM fields, namely a
spinor representation, but subject to the conditibproperly express the value of the
energy that is propagated (and also, as we shaltise polarization).

We go into more detail.

The electromagnetic fields in waveguide, respeltiV& and TM, we have so far
dealt with the Maxwell equations.



This means that they are described as follows:

- As regards the fields, through the componenisE, H, andH,;

- As regards energy, the energy and momentum tapsor

- As regards the momentum or energy that propagatée waveguide in the z
direction, at any point in the plane (x, y) frone tRoynting vectoE, xH, .

| intend to show that this description can be regdawith another equivalent, in
which the energy that propagates in the waveguidleda z direction is given by a
energy momentum vectaer=¢Ty* through the spinog associated t® (see
Appendix 2).

In this second mode so the TE and TM modes areibdedmverall by a energy
momentum vectogTy * . In other words, the TE and TM modes are physicall
described only by the total energy that propagatése waveguide in the z direction
that is byyTy* while the Maxwell field components,, H, (andE, andH,), are
effectively ignored.

I intend to show that with the only condition fbetspinory to satisfy the Dirac
equation (see Appendix 3) follows for the electrgmetic field a double opportunity
of state TE / TM and a double state of circulaapahtion.

Let us now eliminate the dependence on x, y inramebtain an overall description
of the field as a whole.

Consider the case TE.

Equations for the TE
21 LiE,. -iaH, =0
62 TE TE —

o

0. .

EIHTE +IC«)(1—E)ETE =0
ie
(24) K,Ere —iaH =0

WP
kHre +iw(1_a_%)ETE =0

Rewrite multiplyingi’ from right:
(25) kZETE _iaj:iTE =0
K,H e +iw(1—%)ETE =0

The first of these two shows th&t. andiH,. are parallel.



Separate the dependence on x, y in the form

Ere =Ere(21)8(x.Y) = Ere (z.)e(x, y)i = E&
(26)
H.e =H.(z)h(x y) =H. (z,t)h(x, y)i =Hh

Note: you can alter at will the scale of amplitubeswveenE . & andH ~ h while
maintaining the values d,. andH,..
By the TE equations (21)

0.- . -~
EIETE—IQHTE:O

0.~ . . =
EIHTE +|a)(1_a—(;)ETE :O
we obtain

%iEé—iaHﬁ:o — k,Ee-iaHh=0
(27)

iiHH+ia;(1—ﬁg)Eé =0
0z G

The first of twok,Ee —iawHh =0 shows thaEg andiHh are parallel.
In the hypothesis, but it will be trug,0iH ie Ef OiHi ie still EQiH, | can write:

(28) é=Ah
which:
i EA+iaH =0
0z
(29)

iH +ia)(1—£‘;)EA =0
0z @

Choose A is equivalent to implicitly defireH (See Appendix 4).
Choosing:

(30) A=—%

10



obtained:

%ETE +(iw+ic,)iHy, =0
(31)

%iHTE +(lw-iw,)E =0

and then the equations directly in the requireda®form".
With appropriate variants can repeat the proceftur&M and you have the complete
equations

%ETE +(iw+ic,)iHy, =0

iiHTE +(w-iw,)E; =0
0z
(32)

%iHTM +t(w+iw)E;, =0
%ETM +(lw-iw))iH;, =0

: o N :
Recalling foric its meanlnga =iw we arrive at

d 0 . .\
EETE-'-(E-'-IOJO)IHTE:O
0. 0 .

EIHTE +(a_z__|w0)ETE =0

(33)

0. 0 .

EIHTM + (E +IwO)ETM =0
0 0 . .
EETM +(E_Iw0)IHTM =0
Observe separately the equations for the TE andithe
The equations for the TE now appear in a partiulmmetrical shape.
They can be seen as providing, at rest, the propgalation "electric"e"«".
(That is, consistent with the initial assumptioas,exponential dependence "electric”
with positive ).
However, the same equations also provide, ataesi|ution "magneticé™,
exponential dependence with negative

Symmetric equations for the TM shall provide, &t réhe proposed solution
"magnetic"e" .

11



(That is consistent with the initial assumptionspéution "magnetic” with
exponential dependence with positixég.

However, the same equations also provide, ataesilution "electric’e™*", with
exponential dependence with negatiwweln summary, the equations in this
symmetrical form should no longer have to subnetghbscript TE or TM, but rather
provide a complete set of solutions "electric" &mégnetic" in the double possibility
of exponential dependene&* . This double possibility of exponential dependence
means, given the significance of the 'imaginanyhich is nothing buij =i, the
bivector operator of rotations in the x, y planeual state of polarization.

That said, we can now compare these equationstwae of Dirac for a plane wave.
The Dirac equation for plane wave in z are (Apper3i

2+ (iﬂmjwl
( +imjzp2=0

2w Z-mp, =0

(34)
or

T

_‘/’2 + i—imjl/u =0
0
Rewrite the (33), rearranged as follows

: 0 .
- 1Hmy +(E+IwO)ETM =0

: 0 .
- 1Hee +(E_IwO)ETE =0

(39)
d 0 . .
EETM +(E_Iw0)IHTM =0

0 0o .. .
EETE +(E+Iw0)IHTE =0

With a few more boring, but simply steps it is ribteat they are also the Dirac
equation for plane wave (26), where it is simplyeadohe following name change in
¢ components:

Y, ETM

¥, _ jETEj
(36) ¢, B iHTM

Wi |iiHr]

12



Here, however, the term TE or TM becomes misleadawpuse for examplg,,y.
can be TM but also TE.

Indeed ................

As we have seen, the equations in this symmetiocad should no longer have to
submit the subscript TE or TM, but rather provideoanplete set of solutions
"electric" and "magnetic" in the double possibilitfyexponential dependence. This
double possibility of exponential dependence meangen the significance of the
'imaginary'ij =i, a dual state of polarization.

Therefore this may be more significant further denof name

E;

<

TE

E
LR
H

Z
I T mm

TE -

which | get the equations of the form:

0. 0 .

—iH, +(=—+iw)E, =0
az + (61' Ia)O) +

0. 0 .
—iH_+(=——iw)E_ =0
0z (ar ab)E-

(38)

0 J . .
—E,+(—-iw,)iH, =0
az + (OT O) +

0

0 . )
—E_+(—+iw)H_=0
9z (ar b)iH-

These then are the Dirac equation (34) with thiedohg name change in the
components :

¢’1 E+
w,|_| JE.]
(39) ws| | iH,
W] LiH_]

We'll see after the reason of the use of the siygtget) or (-).
For a further discussion see Appendix 5.

13



INTUITIVE INTERPRETATION OF E,H

Notwithstanding that,H are components of a spingr, can give a physical
interpretation "intuitive" forg,H .

(Note: not to be confused symbols@asi , field components, with symbolsH,
components of a spingr)

Since the transverse field components are givgiTdywe can read,H as
"fictitious" field components using the same foreuA fictitious field follows:

(40) E+TjiH = (Eqg + TjiHq +Eqy + TjiHo, )i

From a physical point of view we are thus confrdnigth a possible dual description
of the fields in waveguide.
Consider (for example) a TE. | summarize with tltecd a drawing.

Description of the TE field with Maxwell fields @efields), components of a space-
time bivectorF .
Transverse fieldg,,H, and longitudinal fieldH, .

3

W=, G —

electric fields magnetic fields

14



Description of the TE field with a spinagr: fields (fictitious fields)E,H.
Only transverse fieldg,H .

— - ?

C():a)o a — 00

electric fields magnetic fields

Note: we will see that with a choice of scale fastmay be invoked for the fictitious
fields E,H the condition on the Poynting vector

(41) EXH:ifﬁEtxl—Tth

Now all this can be useful if we want to createaussual image of,H.

But we have seen th&H are components of a Dirac spingr

We can then also create us directly a visual intddlee components ap .

We can see how directly generates the fictitious fiekh TjiH .

For brevity only summarize the results, for a castgdiscussion refer to Appendix

5.
Let ¢ a spinor solution of Dirac equation

(42) W=y + iy, +Tig,+Ty,
Let:
w. =+ Tiy,)
(43)
w=(ip, +Ty,)
(it may be interesting to note that these are #respvhich respectively commute or

not with i, and whose meaning in quantum mechanics is trera@m of the
solutions at opposite spin).

15



Fictitious field E+TjiH is obtained directly from
(44)  E+TiH =g g ()N

This also justifies the reason for the name withghbscripts (+) and (-).
It is apparent

(45) E+TjiH=(E, +TjiH, +E_+TjiH_)

fully equivalent to the previous (44).

CHOICE OF SCALE FACTORS

We start from the Dirac equation (34) for free géatwith the componentg, and
Ys.

0 0 .
—Y;+ —+imyy, =0
R )

(46)
0 o . _
E%{g 'mjwa =0

These may be a TE or a TM depending on if resoatedst withy, #0 or with

Ww,20.
TE case.
These solved fog, # 0 at rest provide (placingn - «,)

w-w,

Jo+ w,

(47) wl - e—iax+ikzz ws — Be—ia,t+ikzz B=

(48) K =d-&

We usey, = dec
dk

, formula for the group velocity in the waveguide.

Z
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From (48) is obtained

(49) k,=y&’ —af SO

z

dw Wf
(50) v, = i :1/1—;‘;

In summary,

Y=Y+ Y, +Tig,+Ty,

W, =W, +Tiy,)

E+TjiH=y.i

= . A W™ Wy

E+TjiH=(1+Tj——
W+,

E+TjiH = e "7 +Tji

)e—iamkzzi“ or

W= w, it +ik,z 2

W+ w, .

Equations of TM.

We can (for instance) start from (46) for the comgrtsy, andy,, but this time

looking for a solution withy, different from zero at rest. Will get a TM solutias

opposed to the previous polarization.
The (46) in fact have solutions

ws - e+i(d—ikzz wl = Be+i6d—ikzz B=

(51)
k? =’ —wjda cui

In summary, we have:

17



a)_

£

0 + Tj)e+i(ut—ikZZiA
W+ w,

namely:

~ _ L A w— W
E+TJ|H :Tjie-Ha.I—lkZZj + 0

T

We note thaH in case TE play the role of "small component"d8the wave

function, while E is the "large component”. In contrast to the Tkk(&ppendix 6).

We perform now the explicit calculation gfy* for the TE.

@ =Eq +Tj(iHre) = (@, + Tiw,)
Yty = (401 +Tj¢/3)T(‘//1* —(//3*Tj)

(52) YTy = (W, * v )T +Ti(, >+, )T

Or by wTE = ETE +TJ(IHTE)
YTy* = (E +TjiH)T(E* +TjiH*)

(53) YTy* = (EE* +HHY)T +Tji(HE* -EHY)T
| take ¥2 and replacgkT =Tji so with some step:

(54) gy = (EE* +HHYT -ZTIK(HE* -EHY)

18



For correspondence already established (40) aick nedéitions:

Substituting in (54) we have:

1 20 Lz qaizie les oo oo
(55) SVt —E(‘E‘ +‘H‘ )T -~ fIk(RE-ER)
Recalling the formulas (Appendix 1)

%(ab—ba)= alb
axb= —(ﬁlz)(a Ob)

finally we arrive at:
(56)  Iyfyr=1(g" +|A[)T-ExR)
2 2

This is the expression of the energy momentum Y@ator according to the
techniques and notations &y *) relevant to quantum mechanics.

For the electromagnetic field momentum and eneemsity is calculated from (7)
and provides:

(57)  SFTEe =2 (B [ )T -Exn

(see also Hestenes, [4]).

This is the fourth row of the field energy momenttensor and provides energy and
momentum density. It should be noted that (56) (&)l are formally identical,

which justifies the name fdag,H as fictitious fields. But remember thatH

transform like components of a spingr See also Appendix 7 as an exercise.
The volume integral of (57) is instead a four-vec¢tauli, [9]):

(58)  B=ffS(|E[ +[Fi]" Jrav - fffExHiav

19



In the integration circulating terms of the Poygtirector offset one another and
remains the only contribution of the Poynting veatothe z direction, which is
provided by transverse fields.

One can thus write

= 1/1=12 ~12\2 - -
p —fﬁa(‘E‘ +[H| jTolv—ﬁ:jEt x H,dV
which explicitly becomes, with the appropriate sagrse fields TE
(59) B =2 (B[ +[F]" rav - fffEe xHcav
2 TE TE
But it was placed with (26):
Ere = Ere(20)8(X Y) = Erc(z,t)e(x, Y)i = Ee*

Hie =He(zt)h(X, y) = Hye (z (X, y)I = Hh*

and then in (59) can be substituted

which with some step (Appendix 8):

(60) E.. xH = (ExH)eh*

In summary this leads to transform (59) in the form
(61) ﬁ=ﬁﬁ(\éf +‘H\2)fdv—(éxﬁ)ﬁ:}eh*dv

To match the total momentum to that expressed @yt(oughy establishes the
scale of amplitudes taking:

(62) fHehdv =1
From this follows

63) P={if2(|E" +|A[" frav-@xFy=Zufyr = L )T - ExP)

20



Summarize.

Describes the propagation as a whole, with totahemum and energy.

For this you choose the level of amplitude for that match the total momentum in
the z direction

(64) ExH ={f{E xH,dv

(note: ExH is the development afTy *).

In both formulations group velocity in z is the sam

As both descriptions are relativistic, this eqyadit speed and total momentum in z
direction ensures the correctness and coincidein@presentations not only of the
momentum, but of the whole (momentum, energy, astlenergy or mass). See also
Appendix 9.

EXTENSION TO TEM

Fora TEM (€ =0 e H, =0) equations (4) become

2+ 2 <o
0z or

(65)
iEt +ith =0
0z or

and simultaneously witlg, =0 andH, =0 must also be

i+ii iH, =0
ox oy

i+|i Et =0
ox oy

ie the transverse fields, andH, are analytic on x, y plane.

Maxwell's equations are reduced to two, and simpbyide two different solutions
that differ only in the polarization.

For the transition to the spinor representatidegsl to refer again to the same
reasoning that led to equations (33). Obviouslgé¢hare reduced from four to two,
being perfectly coincident equations for the THM when w, =0.

In fact, (33) become:

(66)

21



d d ..
EETE +(E)IHTE =0

0. 0
EIHTE +(E)ETE =0

(67)
0. 0
EIHTM +(E)ETM =0
0 0 ..
0z ETM +(0_T)IHTM =0

ie two by two equal and are reduced to

iiH +iE:O
0z or

(68)
iE+iiH =0
0z or

These are formally identical to (65) but the biffetence is thak,H are components
of a spinor. Therefore all the previous consideraiapply, including (64) for the
choice of the scale of magnitude.

We are now able to handle a generic radar sigoék(iit is TEM, TE, TM or
evanescent. | mean “radar signal” in a wide seed®ey ex. also interactions into a
waveguide).

It raises the possibility of a spinor theory oftseang or signal - target interaction
with the gauge theories of quantum mechanics.

Consider, for example, a TEM radar signal incidant target from a certain
direction.

-——

_— ~
- \
(Gauge Thesy \

\
N - /
Spinor theory of radaattering

Propose a procedure that takes place through atiemavith asu(2)Ju (1) gauge
fields (see also [10]) and that may express thieckssn of the field in a different
direction, and its (possible) change of frequency.

22



DEFLECTION AND CHANGE OF FREQUENCY OF A RADAR SIGNAL

To illustrate the guidelines of the procedure idtree it first for a signal in a
waveguide.
| start for this from the Dirac equation (Appen@ixto rewrite it in this form

(69) oW +myiT =0 0=10,+]0,+kd, +T9,)

and introducing a local gauge transformationgon

(70) Y - =y

whereg is a function of the coordinates

(71)  ¢=4(xy.21)

The transformation (70) is the electromagnetic gawgnsformation and is part of
su(2).

With it is

0y'=0(ye"™) = (0w)e" +(yo, + [yd, +kyo, +Tyd,)e"’

or

dy'=@y)e™’ + ({0, g+ 10,4 +kd,p+T0,p)ie™

Now replaced in (69) and is (after simplificatioinam exponential from right):

(72)  Oy+my'T =0y + (0,6 +]0,¢ +kd.p+T0, )i + myiT =0

If (69) is true, this is no longer true becauseptesence of a foreign term. So to
force the Dirac equation valid fgr still valid for ¢* we introduce in (69) instead of

dy a covariant derivativ®y that delete the foreign term. Should be in pldcé
(73) oY — Dy =0y —eAyi

where

(74) eA=i0,p+ 10,9 +kd,p+T0,4 = e(A+TD)

The equation is then amended
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(75) oW — eAYi + myiT =0
and will have for example in place of TE solutid@) | recall

(48) k; =’ -of

a new and different solution where both the freqyeand the direction of
propagation will be changed.

In this context (75) is used to express the frequenriation and the variation of the
direction of propagation of the TE. But it is forllgethe Dirac equation for a particle-
electron in the presence of electromagnetic patlsnti @, namely the scalar
potential® and the vector potentia.

To appreciate the kind of result we can therefeferrto this example.

As you know, instead of the formula for free pdetj@analogous to (48)

(76) p?=E*-m’
by (75) and withA & # 0 constants (see for example Schiff) we have:
(77)  (p-eN’=(E-ed)’-m’

The result then is this: the scalar potenttathanges the energy and the vector
potential A changes the momentum.

Similarly we can therefore conclude that a gaugedfiormation (70), and with

(71) function of the coordinates and time, will oha « (see also [2]) and of a TE.
As a hypothesis we can then to conclude that Wwithwe will be able to express at
will the desired change in frequency and direcbbpropagation of a TE in
waveguide. (The latter means a change of directidhe waveguide).

Note that to have the same effect in a TM must gbdhe sign to the coupling
parameteg.

After this introduction we briefly illustrate thame situation for a TEM. Also
mention here the procedure as a preliminary attempt
Consider the action of a transformation

(78) ‘/’ N w.:we—TjiZt—iUt
Transformation with is the electromagnetic gauge transformation aiadpigrt of
su(2). Transformation withriji is U(1).

The (78) involves the introduction of an appromiebvariant derivative that leads to
the equation:
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(79) AW+ jiYz+Tyiu =0
Developing full gives:

9y, + 2y +ig,z + iU =0
0z or
(80)

0 0 . .
E% +E¢/3 +|¢’12 +¢/3|U =0

These equations provide, in the absence of gaalgisfia TEM solution that can be
both right and left.

Let's see what possible solutions exist in thegires of gauge fields.

Seeking a solution in the form (TEM "right").

wl - e—ia,t+ikzz
(81) lﬂs — e—ia,t+ikzz
k, =w

Substituting (81) in (80) withk, and« indeterminate are actually solutions of the
form (81) with the condition:

82)  (k,+Z) =(w-U)

So from an initial condition in the absence ofd&lvith k, = w must happen tha,

and « undergo a change as to satisfy (82).

From a physical point of view a TEM can increase@crease the frequency through
the interaction with an object (or a "target"). Esample a moving target that
communicates a Doppled, .

However, a TEM can increase or decreasédut must do maintaining the condition
of equality between. andk (which means propagation speed c = 1). It follnom
(82) that the action of U and Z is not permissiith the signs that appear there, that
Is (for positive U and Z) with an increase lgf and a decrease af.

Therefore the only possible hypothesis is that utiteetransformation (78):

a) U and Z appear both and not single;

b) U and Z have equal value and opposite sign lael t

c) there are " coupling charges" to U and Z opposit

We appear in (80) the presence of "coupling chdnged and Z. Quite subtle | use
the following arbitrary names:

call [VZJ the coupling charge to Z;

call [T3] the coupling charge to U.
The (80) thus becomes:
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0 0 | )
Yty [%]| w,Z +[T3y,iu =0

(83)
0 0 i .
E‘/jl +E‘/’3 + [Y/z]l ‘//12 +[T3]¢’3|U =0
Solve with:
Y], 1
(84) H =
(85) [T3]= —%

Is thus the solution TEM "right":
1) 1)
(86) (kz +§Zj =(0)+§Uj

This solution is now physically compatible andhe aiction a "moving target" which
imparts a Dopplek, with an increased frequency fromto w+w, . The action of

this object is so identified with the field prodddey the gauge transformation (78).
Now consider the solution TEM "left" in the absemnddields:

W, = gtict-ik.z
(87) v, — gHatkz
k, =w

Interacting with the same target first and theneuribde action of gauge fields
produced by the transformation (78) we found umggothesis (84) (85) the
following solution of (83):

(88) (kz —%zjg :(w—lujz

2

This leads to the absurd situation where the sangetto communicate a positive
doppler to TEM "right" and a negative Doppler toMEeft", which is not what
physically happens.

Are we supposed to "coupling charge" of the TEMt"l®® U and Z equal to:

Yl 1
NS
(90) [T3]:+%
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therefore opposite to those of TEM "right".

This will find the correct solution (86).

It is therefore necessary for the coupling chatgeke gauge fields the following
situation:

VA el
TEM “left” 1 -

TEM “right” -

NI N
NI~ NP

which clearly recalls the classification of neutignn the Standard Model
(obviously without being able to assign any meanmthe symbols, which | chose to
art):

VA el

vV, -

NI N
N~ NP

This leads to a possible interpretation in termaralogy with the action of Z°.
However this is not what interests me now.

What interests me is to have demonstrated thewollp:

for the «. of a TEM can increase or decrease through theactien with a radar
target must consider the effect of a gauge transition withi andTiji

simultaneously:

(91) Y - @r=yet™t
where

_i@-Tj)
(92) b ===

Note: we change signs in the (78) in the right &ag introduce a single coupling
charge ta andTiji .

This holds fora .

What about the direction of propagation?

Extend the (91) to the case wheras a function of the coordinates of space and
time.

We can repeat the whole procedure followed withfdineulas (71) (77) and in
particular come to the conclusion
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(93) 0w -QAWh=0
where
(94) QA. =104+ ]0,p+kd,0+T0,0=Q(A, +TD ;)

and you will have for example in place of the solIfTEM R (81) withk? =«? a

new and different solution where bathandk will be changed.

The (93) is formally the Dirac equation for a peldiof zero mass, in the presence of
potential A, = A, +To_, namely a scalar potential , and a vector potential ..

(I use this notation for the potential they represe action that resembles that of the
Z° particle).

The effect of the scalar potential has already @@mined with (86).

From the action of the vector potentid), instead, we must expect effects on the

direction of propagation.

So we can conclude for the moment that with a ganagesformation (91) we can
properly express at will the change in frequenay @inection of propagation of a
radar signal in free space.

| repeat that the potential introduced by (91) Hesraaction reminiscent of the
particle Z°, but that was not what | was interesteshowing at this time. What
interested me was to identify a possible procetiudeflect a TEM.
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INTERPRETATION OF THE ACTION OF GAUGE FIELDS

| intend to show that the varying potentials aterpreted as forces exerted by
physical objects.

In the case of the electromagnetic poterdial is easily interpretable.

| interpreted in [2] the action of the electromatimpotential® as a equivalent
“waveguide 2” with a different cutofy,, (ie sized,).

dl'wO d2’a)0,2

I waveguide 1 waveguide 2

Alternatively, rather than considering a equivalemveguide 2” with cutoffw,,

I've interpreted in [10] the action @f with the action of someone or something that
has changed.in («-U). That something is detectable by the mathemapicit of
view in the operatioy - ¢'=¢e™"', who acted oy increasing (ifu <0) the .

From the electromagnetic point of view such anaaicis produced by the interaction

with an object in the waveguide that imparts a Depfrequency (here positive).
A push.

Anyhow, the resulting action is that of "electromatic force” exerted by the
particle or the potentiab .

However you want to interpret, there are two region

-a first region where the potential is manifestbdrgging from the value =0 to the
final value .

In this region® is variable and there is a force, an electridfigk —grad® .
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-a region where there is a potent#@k 0 constant. In this regiow is constant and
the energy (the.) is changed and that remains.

A

region 1 region 2

»

______

) Potenzialed # 0 costante
N Energia (o« ) modificata

e

N
v 9

Potenzialed variabile
Regione con forza agente
(campo elettriccE)

This example illustrates a very general situatrowhich we can interpret the
behavior of gauge fields.

It starts from an initial situation in the absené@otentials.

There is a region of interaction in which poterstiatcur, until reaching their final
value.

In this region, with variable potentials, actiohattare produced can be attributed to
force field (the derivatives of the potentials).

Reached their final value the potentials remaimstamt. Any subsequent change
would entail a new force.

. TN Potenziali
e D costanti
\\ \

~

\ ,’
\ ’
g

Potenziali variabili
(Forze agenti)

30



Take the case of the vector potential

In this caseA variable means magnetic field. In the short inteoa region manifests
an effect similar to the effect of a magnetic fieldan electric charge: a deflection.
The situation is succinctly summarized in the fegur

_______

PotenzialeA # 0 costante
Direzione modificata

Potenziale vettoré variabile
Regione con forza agente
(campo magneticei )

The gauge fields expressed by (93) lead inste#uktéollowing interpretation

Potenziale costante
Modificati e & e k (LEAEET >
(Energia e direzione) g

N

\

~
’
’
.

-

-
<
Sl -

Potenziale variabile
Regione con forza agente
Particella Z

Finally in [10] have examined a gauge field thezeffis similar to the action of the W
particle, which is interpreted as shown.
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______

'\ ; Potenziale costante
. Massam (0 w,) modificata

Potenziale variabile
Regione con forza agente
Particella W

CONCLUSIONS

It was rigorously derived a spinor representatibm® TM through the Dirac
equation for plane wave, alternative to Maxweltjsations.

Doing this the TE and TM modes are physically desct only by the total energy
that propagates in a waveguide in the z directrahthis is provided by a four vector
wTy* while the components of the Maxwell fiekl, H, (andE, andH,), are

effectively ignored.

With the unique mathematical condition for the spig . satisfy the Dirac equation,
Is automatically for the electromagnetic field aidie possibility of state TE/ TM
and a double state of circular polarization.

All this also transfers to the special case of THMhis case describes the
electromagnetic field in free space (specifical@dar signals in free space) and the
Dirac equation are those of the neutrino.

Using the spinor representations thus obtainedpprihe possibility of a spinor
theory of radar scattering or radar-target inteoactoriefly outlined here, developed
with the gauge theories of quantum mechanics. Symgle but illustrative examples
are given.

Further study is of course needed in order to yéfrthis approach can gain the
status of a viable theory.
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APPENDIX 1

| use a Clifford algebra based on 4 eleménfsk T (axis unit vectors in spacetime,
sometimes referred to the authors with other symisnich g ,e,,e,,e,). They have
the following properties:

A

(1) 2=j?=Kk*=+1 F2=1

and all anticommute between them, eg

AN An A~

jil=-] Tk=-kT etc

Possibly | use the symboisj T to generalize the usual imaginary uinitf the x, y
plane

(2) i=i] j=ik T=iT

All this, combined with the rule concerning the paates
(3) (ABf = B* A*

generates all properties of interest.
It's enough to admit that fact thatj k T do not change by conjugation (as it is

intuitive that it should be) to derive for exampde rediscover, the usual rule for the
conjugatei *:

@)  ir=([ff=ir=ji=A]=-

and so are obtained as a simple consequence etltbperties (and therefore do not
need to send to mind):

(6) =) Te=-T
i’=-1 j*=-1 T’=
ij=-ji iT=-Ti jT=-Tj
(Tji r = Tji (Tji)? =-1
The algebra is constructed by all possible prodoetareen’ | k T.
The algebra has 16 items

A

1, i kK T (4items), ij T etc. (6items),ijk etc. (4items), kT
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and contains a subalgebra of 8 elements ("everigreliva of a Clifford Algebra”,
Hestenes)

1, i] T etc. (6items), (KT
It can be rewritten at will as consisting of allsgdble products betweenj T
1,0, j,T,0f ,0iT, jT,Tii

On xy plane symbols or operators

0o .0

6) 9=—-i—
(6) ox oy
a*:i+ii
ox oy

are, respectively, to express the derivative aedZthuchy Riemann conditions.
These are generalized in

7) 0=9-9_;9 19
ox o0y "0z Or

a*:i+ii+ji+Ti
ox o0y "0z Or

and the property is

2 2 2 2
@ ar=0ro=2 40 1 00
ox° oy° 0z° or

Alternatively, the symbol or operator used to express the analyticity can use the
operator that is obtained by multiplyirigleft (note: if * f =0 alsoiao* f =0 and

vice versa).

The operator thus obtained

is formally seen as a four-vector, Bs
In Clifford algebra a product naturally arises timaorporates scalar product and
vector product.
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It starts from the obvious equality:
1 1
(10) ab=5(ab+ ba)+§(ab—ba)

This truism becomes a raison d'etre for the featt tiere are elements of Clifford
Algebra which anticommute, so it makes sense takspéba distinct fromab.
They are also potentially opposite.

An analysis of this formula with some examples irdragely shows that

(11) %(ab+ba)=a-b

Is the usual inner product between vectors ands@akar, while what should be called
exterior product:

(12) %(ab—ba)=an

remember, but do not call it that, the vector paidikb.
For if a andb are vectorsaCb is a bivector, whileaxb e is a vector.
Between the two there is the formula:

(13) alb= (iA]RXax b)
you can also use reversed
(14) axb= —(iA]IZXa Ob)

The (14) is not necessary to send her to mind Isecius easily remembered by the
example:

A

15)  ij=(kk

that relates the bivectdf with the vectori x j =k .

(Note: the introduction odxb due to Gibbs hides the true quality of the proauict
two orthogonal vectors, which are those of an ghiNector. However the formula
(14) make things right).

We extend the (14) to the vector operaipr(3D):

i -

0 o~ ~ 6 o
16) —i+ +—k=0
(16) X ayJ 0z v
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From (11)...( 14) we have successively
(17) od,a=d,+a+d, Dazév-a+(ﬁl2 évxa)

and therefore the operators div and rot are "eméxditicl the 'Clifford algebra
through the relation:

(18) od,a=diva+ (iA]IZ)(rota)

This algebra differs from the STA for the choicetlué base with the properties (1).
The STA choice is for a basis of "spacelike" vestgik = 1,23) and a "timelike"

vector that instead of (1) has the properties:
(19) w=-1y =1

So doing to obtain a unit vector basis of threesaxey, z with modulus (+1) three
spacetime bivectors should be defined (Hestengs, [4

(20) gy = Vo

Hestenes note explicitly the opportunities of aitti@oice ([4], p.25):

“If instead we had choseyf =1, = -1 we could entertain the solutian =y, ,

which may seem more natural, because (.....)",

...... because vectors in space would also be \&ert@pacetime.

| prefer to keep this option best suits to engisder] k with i2 = j2 =k? = +1,

vectors in space equal to vectors in spacetimesythdoli for the imaginary unit on
X, ¥ plane, complex numbers in x, y plaxeiy, etc.).

| should also note that all the names that | useal \&ector, complex number,
Imaginary unit vector and so on recall mnemoniceatiyjcepts of the past and we can
sometimes help but are materially misleading. Ad things we have introduced are
simply numbersand if we can correctly called "Clifford numberdie simple
underlying rules, the sum product and division bff@d algebra. The same goes for
symbols such as the arrow inetc. here have the sole function of mnemonic tecal
What matters are only the properties of algebravelbriefly summarized.

APPENDIX 2
Recall briefly the description of a four vect®e ¢Ty* by a spinony associated
with it.

Let’s start from the study of a plane motion withngplex numbers, rather than
through the velocity vector tangent to the traject®lacing
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V = pel?f

instead of the analysis in terms of velocity veatogoes to the study of complex
numberz = pe'? .

We can say (after Hestenes) that the operatiorhématnade introduced a Clifford
algebra constructed on the basis of the two umitoré, j of the x, y plane and
having identified as "imaginary" the bivectioti] .

The space of complex numbers z is thus identifseteaen subalgebra of a Clifford
Algebra" of components, so if you want to call'ieal" 1 and "imaginary'i . The
essential thing is that everything is clear, diésoincluding geometric, are clarified.
The word "complex” or "imaginary" is essentiallyelesss or misleading.

Let us now jump next to move from 2D to 3D space.

Everything is repeated with the added fact, tlainisider irrelevant even if it is
necessary, that now the complex number must beeagphlf right and half left. All
of this is known.

The number now has 4 components and is called mu@te

With the usual language and the clarity of claafion we owe to David Hestenes
(although my symbols) we can say that this intreduan "even subalgebra of a
Clifford Algebra” built on a 3-unit vector spaég, k.

The components of quaternions are precisely thgpooents "even" of algebra
1i7,ik, Ik .

The last and decisive step is to pass in 4D, iestidy of a vector of spacetime or
four-vector with a complex number, according to tiseal technique that we have
seen in 2D and in 3D space.

It is necessary (and sufficient) to introduce df@id algebra on a basis of 3 unit
spacelike vectors and one timelike:

~

i, 1.k, T
and this identifies a "even subalgebra of a Cldfalgebra” to 8 components

A A A A AA A~ A

1,i],ik, Jk, 7T, jT,.KT,(jKT

Complex numberg are now Dirac spinors with the exception of dstaitd / or
notations. Even now, the complex number must bé&eappalf right and half left. For

example, ifP is an energy momentum vector thee ¢Ty* as with the quaternions

(except here the use at ) and so on.
Note that the sub-case with componenisik, jk provides the aforementioned

guaternions in 3D space while the componélﬁs give the ordinary complex
numbers in the 2D x,y plane.
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Among the various consequences of the rotatiopacetime there is one now eg. a
four-velocity can be rotated with a bivector lifeand then rotate onj plane, but

also with a bivector like T (Lorentz transformation) and then rotateigh plane

or speeds up or slows down.

So we can summarize how the energy propagates wakieguide in the z direction
is provided by an energy momentum four vederyTy* through the spinog
associated t® .

| remember that the time axis rotated through a Lorentz transformation becomes
the four-velocityd (T2 =-1,G2 =-1). Indeed lety = R unitary:

i
2

R=e
and rotatel doing

. A i . —ix?
u=RTR*=e ?Te

2=Te ™
So
v
0=Te™ =T = -Kkf —C—
where

@ = arcth!
C

The four vectori is the four-velocity of the body. Its square &) (for any velocity
V. In the example considered the motion is theig Baving been made a Lorentz
transformation (rotation) according to bivectdr normal to the(z,7) plane .
Summarize.

A rotation withy = R gives the four-velocityRTR* =G .

Multiplying by mc as in relativistic mechanicgp(=mcy [5]) yields instead the
energy momentum vecto¥ = mai = ¢ty *.

While P=mdi =¢Ty* transforms as a vectay, transforms as a spinor. The law of

transformation "single-sidedly" of spinors is sumined effectively by Doran et. al.
([6] "States and operators in the Spacetime Aldelbiaund. Phys. 23 (9), 1993).
If a vector, suchs=yky* is rotated througtR ( )R*, the result of the rotation is

§= R&R™
then the corresponding spingrmust become
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v'=Ry

“We use the term spinor to denote any object wirighsforms single—sidedly under
a rotor R” (Doran, [6]).

APPENDIX 3
The Dirac equation is obtained by introducing aro&iponents "even number"

exactly structured a5 , unless the different notations for the components
Let:

(1) w=gi+ig,+Tiy,+Ty,
wherey .y, are with indexes 1, The Dirac equation is:
(2) o'y =-imyT

Developing and equating the components we obtairac equation in the usual
extended form, see ex. Schiff [7]:

0 .0 0 0 . _
(& .a_yJ¢/4+$¢/3+(a_r+|mj¢/1—O

o .0 ) o _
[ +|a_yjl//3 —¢4+(E+lmj¢z—0

X 0z
3)
0 .0 0 0 .
[&_la_y W, +E‘/’1+(5_|mj¢/3 =0
0 .0 0 0 .
— — - i =0
[axﬂay g azl'[/2 +(0T |mj¢/4

Fromy may form several "squares"” for example
(4) '

or the four-velocityi

true if ¢ is unitary ie ify is a "rotor"
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(6) ¢=R RF* =1

Conditions of relativistic invariance for (2), iievariance with respect to spacetime
rotations of an angle , make thaty transforms with half angl% . This implies

(the fact is a consequence of the other and vitsayeall quantities likeTy *
transform like vectors.

APPENDIX 4

From the TE equations

0 .= . =
E'ETE"CUHTE:O

.- . W\ =
EIHTE +|C()(1_a—%)ETE =0
write

- =V(Z,1)8(x,Y)
iHye = 1(z)h(x,y)

While compliance with the values &, andiH,. you can alter at will the scale of
amplitudes betweewt . @ and! - h. In particular, put

&(x,y) = Ah(x, )
The equations become:
iVA+iaJI =0
0z
2
9 viwa-“yva=o
0z 17
Choose% =1 means to choose fc}>|/4E the same ratio that exists betwegp andiH .,

—

_Ei =kﬂ. With this choice we come to the usual form of élgeation of the
I TE z
equivalent transmission line [3]. In fact if | take1 | get the equations for V, I:

ie
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9y =iu
0z

d . o
I =—id- 2V
02 X az)

But one can proceed in a different way by obsertirag the equations are

iVA+iaj =0
0z

i| +i(w_w0)(w"'wo)

VA=0
0z w

which it is found that choosing instead:

(7
A=
w+ w,

equations are obtained directly in the requestd®©form”, as | did in the text.

APPENDIX 5

From
E+TjiH = (Eqg + TjiHy +Eqy + TjiHp, i

exploiting the aforementioned

¢, Ery

W, — Bl

[//8 iHy

Yal [iHrel
get

E+TjiFA = (g, + Tigs + i, (=) + T, (=)l
equivalent to
E+TjiH =g i +y (=)

being
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YW i, +Tig, + Ty,
w. =W, +Tiy,)
w_=(jy,+Ty,)

This also justifies the reason for the name withghbscripts (+) and (-)

E;

<

+

T

E
H.
H

m

<

E
E
H,
TE H—

It is apparent

E+TjiH =(E, +TjiH, +E_+TjiH_)
fully equivalent to

E+TjiH = (g, + Tigs + i, (=) + T, (=)l

For comparison:

E+ :wl
TiH, =Tig,
E.= jl/’z(_ J)

TiH =Ty, (- )

The meaning in summary is this.

The part(E, +TjiH,) is contained in the spingr =y, + jy, + Tjy, + Ty, in part
w, =y, +Tiy,) commuting withi .

The part(E_ +TjiH_) is contained in the spingr =y, + jy, + Tjw, + Ty, in part
w_=(jw, +Ty,) anticommuting withi .

We can illustrate this in more detalil.

The Dirac equation for plane wave at rest hasdhewing 4 solutions

Yy=e'“ w, 20, electron
Y =je' W, 20, electron
Y = Tjie"™ W, #0, positron

@ =Tji(je"") w,#0, positron
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Take the two solutions "electron”

Yy=e“ w, 20, electron
Y =je™ w, 20, electron

The two solutions have componenfsj ,ij .

The first of the two components is interpreted in a natural way as transverse
(fictitious) electric field, just askE, =g =e™i .

For the second componefij you can not have an interpretation as a transverse
field. They do not see a reason.

Moreover certainly in quantum mechanics it représ#re solution “electron” with
opposite spin. In order to hawg components and rotate in the opposite direction
multiply - j from right. The final formula i€ =¢.i +¢_(-j)i .

Therefore the mapping that we have establisheddetihe even number andE

IS so done, that the positiongj are still related to transverse componetitsbut
rotating in opposite directions.

The same applies to tlge components havingji in front, which have the same
meaning but are magnetic components.

As saying that the mappirg=w.i +¢_(-j)i holds even ify is 8 components, and
this provides not onhe but alsoH in the form that we have already written

E+TjiiH=g,i+w_(-j)

APPENDI X 6

We can compare this observation with that containéfang et. al. [11]:

“For the fields produced by an electric source dleetric field E is the large
component and the magnetic field B the small corepgrwhile for the fields
produced by a magnetic source, the magnetic fiakltBe large component and the
electric field E the small component. Similarly tive electron field; is the large
component ang the small component, while in the positron fiedds the large
component and the small component”.

APPENDIX 7

As an exercise we show thatH transform like the components of a spigor
What we can do is:

1° - take the solution at rest for, example, a TE;

2° - then take the solution with velociy=v, (group velocity in waveguide);
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3° - finally verify that it passes from one to amat by one side transformaticy
on ¢ =E+TijiH, as it should be for a spinor.

(Note: in reality this is obvious because there w@y a change of name
W=y, +Tjw,) =E+TjiH

Let's start with some formulas (example: TE)

The solution in motion, spead=v_, is:

E=y, = gria+ik,z
, Jo-@, o
iH :ws =—Oe iat+ik,z
W+ w,
K2 = af - af

2

(rememben =c 1—%)
w

The solution at rest is:

E:(l/lze_i%t
iH=y,=0
kK=o’ -af

i? _ : :
Let R=e" 2. The vectors are transformed wiiR* . Spinors are transformed with
Y - Ry.

A_,I\_g
Rotate the spinowy = (g, + Tjw,)=E+TjiH With ¢ — Ry =e" 2.

_ e
Contrary to the expression of?, the expression ok 2 is less usual.
| proceed step by step:

2
2

e 2= chg + Iz‘Al'sh2
2 2

Express the hyperbolic functions %f as a function op:

chﬁ _ chg +1
2 2

shﬂ _ [chg -1
2 2

However
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and then replacing

ch£= E( 1 +1)
2 2 V2
1=
C

shfz 1( ! -1)
2 2 1 V32

r
: . . . ke
Thus from the solution at regt=¢, =e™“ the solution in motiorRy =e 2y

becomes

1, 1 1, 1
W= |Z(——— e
2 V2 2 V2
1—?2 1—?2

(note: (-iat +ikz) comes from the transformation of phasédft) in new reference).

Despite the odd appearance, this is exactly theienlin motion, differs only by a
different normalization (here is normalizedgg* =1). To see more explicitly write

o _ WP 2
RF =Tj andv =¢,1-2 je j1-¥ =9
w ¢t w

Thus we have
W :(\/E W+ W, +Tj\/£ W— Wy Je—iaukz
2 w 2 w,

which is clearly the already written solution in thoo

+1)+l'(\-|’-\ _1) e—i(;.l+kz

it +i N W— ), _
w = E+TJ|H = e—la,t+|kzz +TJ 0 -iat+ik,z

Jw+ w, ¢

E=y, = gria+ikz
=y, =
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w- w,

iH = = g etrik.z
/8 ot
k2 =’ - af
if normalized togy* =1 through multiplication b)( %w;w"]
0

APPENDI X 8

The E,. xH,. =(ExH)eh* is obtained from all these steps in detail.
We recall formulas

1

E(ab—ba) =alb

axb= —(ﬁl?)(a Ob)
alb= (ﬁl?)(ax b)

E. xH,, = —(ﬁ-lz)%(ée* Aih* —Fih* Ee*)

or

E_xH., = —(i”jl%)% [EcFetr) - (FemE)

This is rewritten so as exterior produ;dtab—ba)= alb between(g) e (Feh*) which

finally E.. xH,. = (ExH)eh*.

APPENDIX 9

It 's interesting the physical meaningya# * or better%ww*. For this we note that
the following remarkable equality holds
Wy =@y * gy = (y)*(T)? = -y’
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But from the energy momentum vector
1 A*_laz 2 A .
SUTwr = (8 + A )T -Exm)
we also have
(%wfw*)z = —~(ENERGY? + (MOMENTUM)?
So by
1 *)2 = _ 1 T /%) 2
(zww ) (wa )
the identification follows
(%z/up*)2 = (MASS? = (ENERGY? - (MOMENTUM)?
which can also be viewed

(%W*)Z = (@) = (@)° - (k)

So the physical meaning o%zpz//*)z Is the mass-squared @n,)>.
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