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Title 
QUANTUM SIMILARITIES OR RADAR SCATTERING AS A GAUGE 
THEORY  
 
 
ABSTRACT 
 
As a continuation of a preceding paper “The trapped light” a preliminary attempt of 
how to construct a spinor theory of radar scattering or radar signal-target interaction 
with the gauge theories of quantum mechanics is presented. This way radar signals 
and radar targets may become visible macroscopic objects to be put in analogy with 
Standard Model particles and interactions. The basic idea is that particles and forces 
are all of electromagnetic nature, light, and appear different due to the size and shape 
of interacting objects. 
For the purpose that we propose here, you must first deal with a generic radar signal 
in spinor form (note: it is TEM, TE, TM or evanescent. I mean “radar signal” in a 
wide sense, ie for ex. also into a waveguide).  
This is done by deriving a spinor representation of the TE TM through the Dirac 
equation for plane wave, starting rigorously from Maxwell's equations without any 
use of equivalent V, I as in previous papers.  
As a byproduct the representation is extended to the TEM.  
Then I introduce a tentative procedure to express the deflection of the field in a 
different direction, and its variation in frequency, and rest mass. This is accomplished 
through the interaction with ( ) ( )12 USU ⊗  gauge fields ie electroweak interactions. 
Some simple but illustrative examples are given. 
The ideas set out here need of course further research.  
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INTRODUCTION  
 
For the purpose that we propose here, you must first deal with a generic radar signal 
in spinor form (note: it is TEM, TE, TM or evanescent).  
As it is known in the theory of waveguide, the propagation for the TE and TM modes 
can be represented by an appropriate equivalent transmission line [1] and voltage and 
current V, I.  
In previous papers ([2], [3]) has examined this representation with the equivalent V, I 
compared with the Dirac equation.  
She then demonstrated equivalence between the two representations.  
We now want to derive a spinor representation of TE TM in waveguide through the 
Dirac equation for plane wave, starting from Maxwell's equations rigorously, without 
any use of equivalent V, I.  
 
To show how and why the Maxwell and the Dirac equations are connected between 
them, in the following Clifford algebra is used in a formulation which is essentially 
that of the STA (Hestenes [4]).  
When you try to do the same thing with the equations in the classical formalism, the 
important reasons behind this correspondence is in fact masked by the different 
character of Maxwell's equations than the Dirac equation, the latter being a matrix 
equation in terms of Dirac matrices µγ . 

The STA algebra can treat µγ  as algebraic elements (the basics of 4D space-time) and 

thus enables a much more direct correspondence between the Dirac equation and 
Maxwell's equations.  
The Clifford algebra used here is slightly different (see Appendix 1) but is 
substantially the Hestenes STA, unless the use of "signature" (+++-) with 

1ˆˆˆ 222 +=== kji  and 1ˆ 2 −=Τ  instead of " STA signature" (---+) with 1,1 2
0

2 +=−= γγ k , 
)3,2,1( =kkγ . 

 
MAXWELL EQUATIONS  
 
Maxwell's equations are obtained by introducing a Clifford number or "even number" 
(Appendix 1):  
 
(1)           ( ) ( )ltlt jHHTjijEEF +++=  
 
(in MKSA units should be written with Eε  and Hµ ).  
The condition of analyticity for F  
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provides equaling components:  
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where they are placed tE  etc. equal to:  
 
                yxt iEEE +=  

 
                 τiEEE zl +=  
(5) 
               yxt iHHH +=  

 
               τiHHH zl +=  
 
The (4) are the Cauchy Riemann conditions or the conditions of analyticity 0* =∂ F  
for F . They coincide with the Maxwell equations for the conjugate *F  (basically 
changing the sign of the y, z components). Note that this property corresponds 
exactly to the known properties of analytic functions on the plane, to which it is 
reduced in two-dimensional case: the conditions of analyticity 0* =∂ f  coincide with 
the field equations for the field which has as components those of *f .  
From another point of view, and are equal regardless of the result, we can instead say 
"analyticity for F  also leads to the analyticity for iF ˆ ” that so contains the physical 
components of E

r
 and H

r
 along the axes x, y, z.  

So: 
 
(6)               0ˆ* =∂ iF  
 
where:    
 
(7)                )ˆˆˆ(ˆˆˆˆ kHjHiHTjikEjEiEHjiEiF zyxzyx +++++=Τ+=

rr
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In (7) then the components y and z are not the same of (5) but the same with a change 
of sign.  
In (7) I also put 0=τE  and 0=τH  in order to have Maxwell equations in empty 
space; with 0≠τE  and 0≠τH  terms would appear formally related to electric and 
magnetic charge and currents.  
(Note: strictly speaking the true quality of are those of "time-like bivectors" 
(Hestenes, [3]), so TiF ˆˆ  should be considered and not iF ˆ . But to avoid too heavy 
notations use (7) which is sufficient for present purposes).  
Is immediate and very smart from (7) to derive the Maxwell's equations with div and 
rot. It starts with the 3D property in Clifford algebra (Appendix 1): 
 
(8)          ( )( )akjiaaaa VVVVV ×∂+•∂=∧∂+•∂=∂

rrrrr
ˆˆ̂  
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and therefore the operators div and rot are "embedded" in the 'Clifford algebra, 
through the formula:  
 
(10)       ( )( )rotakjidivaaV

ˆˆˆ+=∂
r

 
 
Then immediately derive Maxwell's equations with div and rot.  
In fact we can rewrite (6) as follows:  
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Developing with (10) and separating the indices comes quickly:  
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which are Maxwell equations with div and rot.  
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DESCRIPTION OF TE TM FIELDS WITH MAXWELL FIELDS IN 
WAVEGUIDE, COMPONENTS OF A TENSOR OR SPACE TIME 
BIVECTOR F  
 
Let us express the Maxwell equations for TE or TM.  
I take in (4) 0=+= τiEEE zl  (TE):  
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Now proceed on the assumption of exponential dependence tie ω+  as is the custom in 
the IEEE conventions.  

Take in the fourth (13) ω
τ

i=
∂
∂

: 
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from which liH  to be replaced in the first: 
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The first and third equations thus become a TE equations and become precisely: 
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(Note that to obtain the field components along the x, y axes the (7) holds, ie there is 
an operation () * conjugation in between).  
Do now in (4) 0=+= τiHHH zl  (TM): 
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I take in the the second ω
τ
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from which liE  replacing in the third  
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and so arrive to the equations for a TM: 
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In summary I have the complete TE and TM equations derived in the hypothesis 

ω
τ
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. 
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Using the subscript TE or TM to recall how I learned.  
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Emphasized again that is passed to the components of field along the x, y axes with: 
 
(7bis)         ( )ijiHEjiHEiFHjiE TMTMTETE

ˆˆ Τ++Τ+==Τ+
rr
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Let me give some physical interpretation.  
Take the case TE. 

For propagation along z is zik
z
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 and from the first of the two you have: 
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To grasp the physical meaning multiply by î  from  right  
 
(23)            0=− TETEz HiEk

rr
ω  

This shows that TETE HiE
rr
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î
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On the x, y plane at each point TEE
r

 is 90 ° with respect to TEH
r

 so as to give rise to a 

Poynting vector TETE HE
rr

×  different in amplitude, but always directed toward the 
positive z:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At this point I do a hypothesis of alternative representation of the TE and TM fields, 
namely a spinor representation relative to the total energy that propagates in the 
waveguide (and, as we shall, rest energy or mass, and polarization).  
 
ELIMINATION OF (X, Y) DEPENDENCE AND FIELD DESCRIPTION 
WITH (FICTITIOUS) FIELDS ΗΕ, , COMPONENTS OF A SPINOR ψ . 
 
Let us now turn to an alternative representation of the TE and TM fields, namely a 
spinor representation, but subject to the condition of properly express the value of the 
energy that is propagated (and also, as we shall see, the polarization).  
We go into more detail. 
 
The electromagnetic fields in waveguide, respectively TE and TM, we have so far 
dealt with the Maxwell equations.  

TEE
r

 TEH
r

 

î  

k̂ 

ĵ  

TETE HE
rr

×  
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This means that they are described as follows:  
- As regards the fields, through the components tE , ZE  tH  and ZH ; 
- As regards energy, the energy and momentum tensor ikT ; 
- As regards the momentum or energy that propagates in the waveguide in the z 
direction, at any point in the plane (x, y) from the Poynting vector tt HE

rr
× . 

I intend to show that this description can be replaced with another equivalent, in 
which the energy that propagates in the waveguide in the z direction is given by a 
energy momentum vector *ˆψψTP =

r
 through the spinor ψ  associated to P

r
 (see 

Appendix 2).  
In this second mode so the TE and TM modes are described overall by a energy 
momentum vector *ˆψψT . In other words, the TE and TM modes are physically 
described only by the total energy that propagates in the waveguide in the z direction 
that is by *ˆψψT  while the Maxwell field components tE , tH  (and ZE  and ZH ), a re 
effectively ignored.  
I intend to show that with the only condition for the spinor ψ  to satisfy the Dirac 
equation (see Appendix 3) follows for the electromagnetic field a double opportunity 
of state TE / TM and a double state of circular polarization.  
Let us now eliminate the dependence on x, y in order to obtain an overall description 
of the field as a whole.  
Consider the case TE.  
Equations for the TE  
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The first of these two shows that TEE
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 and TEHi
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 are parallel. 
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Separate the dependence on x, y in the form  
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Choose A is equivalent to implicitly define ΗΕ,  (See Appendix 4).  
Choosing:  
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obtained:   
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and then the equations directly in the required "Dirac form". 
With appropriate variants can repeat the procedure for TM and you have the complete 
equations  
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Observe separately the equations for the TE and the TM.  
The equations for the TE now appear in a particularly symmetrical shape.  
They can be seen as providing, at rest, the proposed solution "electric" tie 0ω+ . 
(That is, consistent with the initial assumptions, an exponential dependence "electric” 
with positive ω ). 
However, the same equations also provide, at rest, a solution "magnetic" tie 0ω− , 
exponential dependence with negative ω .  
Symmetric equations for the TM shall provide, at rest, the proposed solution 
"magnetic" tie 0ω+ . 
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(That is consistent with the initial assumptions, a solution "magnetic" with 
exponential dependence with positive ω ).  
However, the same equations also provide, at rest, a solution "electric" tie 0ω− , with 
exponential dependence with negative ω . In summary, the equations in this 
symmetrical form should no longer have to submit the subscript TE or TM, but rather 
provide a complete set of solutions "electric" and "magnetic" in the double possibility 
of exponential dependence tie ω± . This double possibility of exponential dependence 
means, given the significance of the 'imaginary' i  which is nothing but iji =ˆ̂ , the 
bivector operator of rotations in the x, y plane, a dual state of polarization.  
That said, we can now compare these equations with those of Dirac for a plane wave.  
The Dirac equation for plane wave in z are (Appendix 3):  
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Rewrite the (33), rearranged as follows  
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With a few more boring, but simply steps it is noted that they are also the Dirac 
equation for plane wave (26), where it is simply done the following name change in 
ψ  components: 
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Here, however, the term TE or TM becomes misleading because for example 31,ψψ  
can be TM but also TE.  
Indeed ................  
As we have seen, the equations in this symmetrical form should no longer have to 
submit the subscript TE or TM, but rather provide a complete set of solutions 
"electric" and "magnetic" in the double possibility of exponential dependence. This 
double possibility of exponential dependence means , given the significance of the 
'imaginary' iji =ˆ̂ , a dual state of polarization.  
Therefore this may be more significant further change of name  
 

(37)          



















Η
Η
Ε
Ε

=



















Η
Η
Ε
Ε

−

+

−

+

TE

TM

TE

TM

  

 
which I get the equations of the form:  
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These then are the Dirac equation (34) with the following name change in the ψ  
components : 
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We'll see after the reason of the use of the subscript (+) or (-).  
For a further discussion see Appendix 5.  
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INTUITIVE INTERPRETATION OF ΗΕ,  
 
Notwithstanding that ΗΕ,  are components of a spinor ψ , can give a physical 
interpretation "intuitive" for ΗΕ, . 
(Note: not to be confused symbols as HE, , field components, with symbols ΗΕ, , 
components of a spinor ψ ) 
Since the transverse field components are given by (7a) we can read ΗΕ,  as 
"fictitious" field components using the same formula. A fictitious field follows: 
 
(40)       ( )ijijiji TMTMTETE

ˆΗΤ+Ε+ΗΤ+Ε=ΗΤ+Ε
rr

 
 
From a physical point of view we are thus confronted with a possible dual description 
of the fields in waveguide.  
Consider (for example) a TE. I summarize with the aid of a drawing.  
 
 
Description of the TE field with Maxwell fields (real fields), components of a space-
time bivector F . 
Transverse fields tt HE ,  and longitudinal field ZH . 
 
 
 
 
 
 
 
 
 
 
                   0ωω =                                                                                 ∞→ω  
 
          electric fields                                   magnetic fields 
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Description of the TE field with a spinor ψ : fields (fictitious fields) ΗΕ, . 
Only transverse fields ΗΕ, . 
 
 
 
 
 
 
 
 
 
 
                   0ωω =                                                                                  ∞→ω  
 
          electric fields                                            magnetic fields 
 
Note: we will see that with a choice of scale factors may be invoked for the fictitious 
fields ΗΕ,  the condition on the Poynting vector  
 
(41)            dVHE tt∫∫∫ ×=Η×Ε

rrrr
 

 
Now all this can be useful if we want to create us a visual image of ΗΕ, . 
But we have seen that ΗΕ,  are components of a Dirac spinor ψ .  
We can then also create us directly a visual image of the components of ψ . 
We can see how ψ  directly generates the fictitious field ΗΤ+Ε

rr
ji . 

For brevity only summarize the results, for a complete discussion refer to Appendix 
5.  
Let ψ  a spinor solution of Dirac equation  
 
(42)      4321 ψψψψψ Τ+Τ++= jj  
 
Let: 
 
            ( )31 ψψψ jΤ+=+  
(43) 
            ( )42 ψψψ Τ+=− j    
 
(it may be interesting to note that these are the parts which respectively commute or 
not with i , and whose meaning in quantum mechanics is the separation of the 
solutions at opposite spin).  
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Fictitious field ΗΤ+Ε
rr

ji  is obtained directly from  
 
(44)        ( )ijiji ˆˆ −+=ΗΤ+Ε −+ ψψ

rr
 

 
This also justifies the reason for the name with the subscripts (+) and (-).  
It is apparent  
 
(45)      ( )ijijiji ˆ

−−++ ΗΤ+Ε+ΗΤ+Ε=ΗΤ+Ε
rr

 
 
fully equivalent to the previous (44).  
 
 
 
CHOICE OF SCALE FACTORS  
 
We start from the Dirac equation (34) for free particle with the components 1ψ  and 

3ψ . 
 

              013 =






 +
∂
∂+

∂
∂ ψ

τ
ψ im

z
 

(46) 

             031 =






 −
∂
∂+

∂
∂ ψ

τ
ψ im

z
 

 
These may be a TE or a TM depending on if resolved at rest with 01 ≠ψ  or with 

03 ≠ψ . 
TE case. 
These solved for 01 ≠ψ  at rest provide (placing 0ω→m ) 
 

(47)     zikti ze +−= ωψ 1        zikti zBe +−= ωψ 3            
0

0

ωω
ωω

+
−

=B  

(48)      2
0

22 ωω −=zk  

We use 
z

g dk

d
v

ω= , formula for the group velocity in the waveguide.  
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From (48) is obtained  
 
(49)        2

0
2 ωω −=zk    so 

 

(50)         
2

2
01

ω
ωω −==

z
g dk

d
v          

 
In summary,  
 

4321 ψψψψψ Τ+Τ++= jj  
( )31 ψψψ jΤ+=+  

iji ˆ
+=ΗΤ+Ε ψ

rr
 

ieTjTji zikti z ˆ)1(
0

0 +−

+
−

+=Η+Ε ω

ωω
ωωrr

 or 

jeTjiieTji ziktizikti zz ˆˆ
0

0 +−+−

+
−

+=Η+Ε ωω

ωω
ωωrr

 

 
 
 
                                         Η

r
 

 
                                                         Ε

r
 

 
 
                                                             Η×Ε

rr
 

 
 
 
 
Equations of TM.  
We can (for instance) start from (46) for the components 1ψ  and 3ψ , but this time 
looking for a solution with 3ψ  different from zero at rest. Will get a TM solution as 
opposed to the previous polarization.  
The (46) in fact have solutions  
 

             zikti ze −+= ωψ 3        zikti zBe −+= ωψ 1            
0

0

ωω
ωω

+
−

=B  

(51) 
             2

0
22 ωω −=zk da cui: 

 
In summary, we have:  
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ieTjTji zikti z ˆ)(
0

0 −++
+
−

=Η+Ε ω

ωω
ωωrr

 

namely: 

iejTjieTji ziktizikti zz ˆˆ
0

0 −+−+

+
−

+=Η+Ε ωω

ωω
ωωrr

 

 
 
 
                                         Η

r
 

 
                                                         Ε

r
 

 
 
                                                             Η×Ε

rr
 

 
 
We note that Η  in case TE play the role of "small component" [8] of the wave 
function, while Ε  is the "large component". In contrast to the TM (see Appendix 6).  
We perform now the explicit calculation of *ˆψψT  for the TE. 
 

( )31)( ψψψ jiTj TETE Τ+=Η+Ε=  

( ) ( )TjTTjT **ˆ*ˆ
3131 ψψψψψψ −+=  

 
(52)           TTjTT ˆ*)*(ˆ*)*(*ˆ

31133311 ψψψψψψψψψψ +++=  
 
or by )( TETETE iTj Η+Ε=ψ  

*)*(ˆ)(*ˆ Η+ΕΗ+Ε= TjiTTjiTψψ  

 
(53)          TTjiTT ˆ*)*(ˆ*)*(*ˆ ΕΗ−ΗΕ+ΗΗ+ΕΕ=ψψ  
 
I take ½ and replace TjiTkji =ˆˆˆ̂  so with some step: 
 

(54)         *)*(ˆˆˆ
2

1ˆ*)*(
2

1
*ˆ

2

1 ΕΗ−ΗΕ−ΗΗ+ΕΕ= kjiTTψψ  
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For correspondence already established (40) are valid relations: 
 

îΕ=Ε
r

 
i
rr

Η=Η  
 
so 
 

Ε=Ε↔Ε=Ε
rr

ii ˆ*ˆ  
Η=Η↔Η=Η
rr

ii ˆ*ˆ  
 
Substituting in (54) we have:  
 

(55)         )(ˆˆ̂
2

1ˆ)(
2

1
*ˆ

2

1 22
ΗΕ−ΕΗ−Η+Ε=
rrrrrr

kjiTTψψ  

 
Recalling the formulas (Appendix 1)  

         ( ) babaab ∧=−
2

1  

          ( )( )bakjiba ∧−=× ˆˆ̂  
 
finally we arrive at:  
 

(56)         )(ˆ)(
2

1
*ˆ

2

1 22
Η×Ε−Η+Ε=
rrrr

TTψψ  

 
This is the expression of the energy momentum four-vector according to the 
techniques and notations (ie *ˆψψT ) relevant to quantum mechanics.  
For the electromagnetic field momentum and energy density is calculated from (7) 
and provides:  
 

(57)          HEHEFF
rrrr

×−Τ




 +=Τ ˆ

2

1
*ˆ

2

1 22
 

 
(see also Hestenes, [4]).  
This is the fourth row of the field energy momentum tensor and provides energy and 
momentum density. It should be noted that (56) and (57) are formally identical, 
which justifies the name for ΗΕ,  as fictitious fields. But remember that ΗΕ,  
transform like components of a spinor ψ . See also Appendix 7 as an exercise.  
The volume integral of (57) is instead a four-vector (Pauli, [9]):  
 

(58)       dVHEdVHEP ∫∫∫ ∫∫∫ ×−Τ




 +=

rrrrr
ˆ

2

1 22
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In the integration circulating terms of the Poynting vector offset one another and 
remains the only contribution of the Poynting vector in the z direction, which is 
provided by transverse fields.  
One can thus write  
 

dVHEdVHEP tt∫∫∫ ∫∫∫ ×−Τ




 +=

rrrrr
ˆ

2

1 22
 

which explicitly becomes, with the appropriate transverse fields TE  
 

(59)       dVHEdVHEP TETE∫∫∫ ∫∫∫ ×−Τ




 +=

rrrrr
ˆ

2

1 22
 

 
But it was placed with (26):  

*ˆ),(),(),(),( eiyxetzyxetzE TETETE Ε=Ε=Ε=
rrr

 

*ˆ),(),(),(),( hiyxhtzyxhtzH TETETE Η=Η=Η=
rrr

 
 
and then in (59) can be substituted  
 

*eETE Ε=
rr

 

*hHTE Η=
rr

 
 
which with some step (Appendix 8):  
 
(60)           *)( ehHE TETE Η×Ε=×

rrrr
 

 
In summary this leads to transform (59) in the form  
 

(61)         dVehdVHEP ∫∫∫ ∫∫∫Η×Ε−Τ




 += *)(ˆ

2

1 22 rrrrr
 

 
To match the total momentum to that expressed by (56) through ψ  establishes the 
scale of amplitudes taking:  
 
(62)         1* =∫∫∫ dVeh  

 
From this follows  
 

(63)     )(ˆ)(
2

1
*ˆ

2

1
)(ˆ

2

1 2222
Η×Ε−Η+Ε==Η×Ε−Τ





 += ∫∫∫

rrrrrrrrr
TTdVHEP ψψ  
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Summarize.  
Describes the propagation as a whole, with total momentum and energy.  
For this you choose the level of amplitude for ΗΕ,  that match the total momentum in 
the z direction  
 
(64)            dVHE tt∫∫∫ ×=Η×Ε

rrrr
 

 
(note: Η×Ε

rr
 is the development of *ˆψψT ).  

In both formulations group velocity in z is the same.  
As both descriptions are relativistic, this equality of speed and total momentum in z 
direction ensures the correctness and coincidence of representations not only of the 
momentum, but of the whole (momentum, energy, and rest energy or mass). See also 
Appendix 9. 
 
 
 
EXTENSION TO TEM 
 
For a TEM ( 0=lE  e 0=lH ) equations (4) become 
 

                0=
∂
∂+

∂
∂

tt EiH
z τ

 

(65) 

                0=
∂
∂+

∂
∂

tt iHE
z τ

 

 
and simultaneously with 0=lE  and 0=lH  must also be  
 

                0=








∂
∂+

∂
∂

tiH
y

i
x

 

(66) 

                0=








∂
∂+

∂
∂

tE
y

i
x

   

 
ie the transverse fields tE  and tH  are analytic on x, y plane.  
Maxwell's equations are reduced to two, and simply provide two different solutions 
that differ only in the polarization.   
For the transition to the spinor representation is legal to refer again to the same 
reasoning that led to equations (33). Obviously these are reduced from four to two, 
being perfectly coincident equations for the TE or TM when 00 =ω .  
In fact, (33) become:  
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                 0)( =Η
∂
∂+Ε

∂
∂

TETE i
z τ

 

                 0)( =Ε
∂
∂+Η

∂
∂

TETEi
z τ

 

(67) 

                 0)( =Ε
∂
∂+Η

∂
∂

TMTMi
z τ

 

                 0)( =Η
∂
∂+Ε

∂
∂

TMTM i
z τ

 

 
ie two by two equal and are reduced to  
 

                  0=Ε
∂
∂+Η

∂
∂

τ
i

z
 

(68) 

                  0=Η
∂
∂+Ε

∂
∂

i
z τ

 

These are formally identical to (65) but the big difference is that ΗΕ,  are components 
of a spinor. Therefore all the previous considerations apply, including (64) for the 
choice of the scale of magnitude.  
We are now able to handle a generic radar signal (note: it is TEM, TE, TM or 
evanescent. I mean “radar signal” in a wide sense, ie for ex. also interactions into a 
waveguide).  
It raises the possibility of a spinor theory of scattering or signal - target interaction 
with the gauge theories of quantum mechanics.  
Consider, for example, a TEM radar signal incident on a target from a certain 
direction.  
 
 
 
 
                                        Gauge Theories 
 
 
 
 
                              Spinor theory of radar scattering  
 
Propose a procedure that takes place through interaction with a ( ) ( )12 USU ⊗  gauge 
fields (see also [10]) and that may express the deflection of the field in a different 
direction, and its (possible) change of frequency.  
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DEFLECTION AND CHANGE OF FREQUENCY OF A RADAR SIGNAL  
 
To illustrate the guidelines of the procedure introduce it first for a signal in a 
waveguide.  
I start for this from the Dirac equation (Appendix 3) to rewrite it in this form  
 
(69)          0ˆ =+∂ Timψψ

r
                  )ˆˆˆˆ

τ∂+∂+∂+∂=∂ Tkji zyx

r
 

 
and introducing a local gauge transformation on ψ  
 
(70)          ϕψψψ ie+=→ '          
 
where ϕ  is a function of the coordinates  
 
(71)       ),,,( tzyxϕϕ =  
 
The transformation (70) is the electromagnetic gauge transformation and is part of 

( )2SU .  
With it is  
 

ϕ
τ

ϕϕ ψψψψψψψ i
zyx

ii eTkjiee +++ ∂+∂+∂+∂+∂=∂=∂ )ˆˆˆˆ()()('
rrr

 

 
or  
 

ϕ
τ

ϕ ψϕϕϕϕψψ i
zyx

i ieTkjie ++ ∂+∂+∂+∂+∂=∂ )ˆˆˆˆ()('
rr

 

 
Now replaced in (69) and is (after simplification of an exponential from right):  
 
(72)          0ˆ)ˆˆˆˆ(ˆ'' =+∂+∂+∂+∂+∂=+∂ TimiTkjiTim zyx ψψϕϕϕϕψψψ τ

rr
 

               
If (69) is true, this is no longer true because the presence of a foreign term. So to 
force the Dirac equation valid for ψ  still valid for 'ψ  we introduce in (69) instead of 

ψ∂
r

 a covariant derivative ψD
r

 that delete the foreign term. Should be in place of ψ∂
r

 
 
(73)         ieAD ψψψψ −∂=→∂

rrr
 

 
where    
 
(74)        )ˆ(ˆˆˆˆ Φ+=∂+∂+∂+∂= TAeTkjieA zyx

r
ϕϕϕϕ τ  

 
The equation is then amended  
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(75)         0ˆ =+−∂ TimieA ψψψ
r

 
 
and will have for example in place of TE solution (48) I recall  
 
(48)           2

0
22 ωω −=zk

r
 

 
a new and different solution where both the frequency and the direction of 
propagation will be changed.  
In this context (75) is used to express the frequency variation and the variation of the 
direction of propagation of the TE. But it is formally the Dirac equation for a particle- 
electron in the presence of electromagnetic potentials Φ,A

r
, namely the scalar 

potential Φ  and the vector potential A
r

. 
To appreciate the kind of result we can therefore refer to this example.  
As you know, instead of the formula for free particle, analogous to (48)  
 
(76)         222 mEp −=r  
 
by (75) and with 0, ≠ΦA

r
 constants (see for example Schiff) we have: 

 
(77)        222 )()( meEAep −Φ−=−

rr  
 
The result then is this: the scalar potential Φ  changes the energy and the vector 
potential A

r
 changes the momentum p

r .  
Similarly we can therefore conclude that a gauge transformation (70), and with ϕ  
(71) function of the coordinates and time, will change ω  (see also [2]) and k

r
 of a TE.  

As a hypothesis we can then to conclude that with this we will be able to express at 
will the desired change in frequency and direction of propagation of a TE in 
waveguide. (The latter means a change of direction of the waveguide).  
Note that to have the same effect in a TM must change the sign to the coupling 
parameter e.  
 
After this introduction we briefly illustrate the same situation for a TEM. Also 
mention here the procedure as a preliminary attempt.  
Consider the action of a transformation  
 
(78)            iUtTjiZte −−=→ ψψψ '  
 
Transformation with i  is the electromagnetic gauge transformation and is a part of 

( )2SU . Transformation with Tji  is ( )1U . 
The (78) involves the introduction of an appropriate covariant derivative that leads to 
the equation:  
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(79)            0* =++∂ iUTZji ψψψ  
 
Developing full gives:  
 

                01313 =++
∂
∂+

∂
∂

iUZi
z

ψψψ
τ

ψ  

(80) 

                03131 =++
∂
∂+

∂
∂

iUZi
z

ψψψ
τ

ψ  

 
These equations provide, in the absence of gauge fields, a TEM solution that can be 
both right and left.  
Let's see what possible solutions exist in the presence of gauge fields.  
Seeking a solution in the form (TEM "right").  
 
                   zikti ze +−= ωψ 1                                 
(81)            zikti ze +−= ωψ 3                      
                   ω=Zk            
 
Substituting (81) in (80) with Zk  and ω  indeterminate are actually solutions of the 
form (81) with the condition:  
 
(82)       ( ) ( )22 UZkZ −=+ ω  
 
So from an initial condition in the absence of fields with ω=Zk  must happen that Zk  
and ω  undergo a change as to satisfy (82).  
From a physical point of view a TEM can increase or decrease the frequency through 
the interaction with an object (or a "target"). For example a moving target that 
communicates a Doppler dω . 
However, a TEM can increase or decrease ω , but  must do maintaining the condition 
of equality between ω  and k  (which means propagation speed c = 1). It follows from 
(82) that the action of U and Z is not permissible with the signs that appear there, that 
is (for positive U and Z) with an increase of Zk  and a decrease of ω . 
Therefore the only possible hypothesis is that under the transformation (78):  
a) U and Z appear both and not single;  
b) U and Z have equal value and opposite sign and then  
c) there are " coupling charges" to U and Z opposite.  
We appear in (80) the presence of "coupling charges" to U and Z. Quite subtle I use 
the following arbitrary names:  
call [ ]2

Y  the coupling charge to Z;  

call [ ]3T  the coupling charge to U.  
The (80) thus becomes:  
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                [ ] [ ] 032 1313 =++
∂
∂+

∂
∂

iUTZiY
z

ψψψ
τ

ψ  

(83) 

                [ ] [ ] 032 3131 =++
∂
∂+

∂
∂

iUTZiY
z

ψψψ
τ

ψ  

 
Solve with:  
 

(84)           
2

1

2
+=




Y   

(85)           [ ]
2

1
3 −=T   

 
Is thus the solution TEM "right":  
 

(86)       
22

2

1

2

1







 +=






 + UZkZ ω  

 
This solution is now physically compatible and is the action a "moving target" which 
imparts a Doppler dω  with an increased frequency from ω  to dωω + . The action of 
this object is so identified with the field produced by the gauge transformation (78).  
Now consider the solution TEM "left" in the absence of fields:  
 
                                      zikti ze −+= ωψ 1             
(87)                                zikti ze −+= ωψ3               
                                      ω=Zk            
 
Interacting with the same target first and then under the action of gauge fields 
produced by the transformation (78) we found under hypothesis (84) (85) the 
following solution of (83):  
 

(88)       
22

2

1

2

1







 −=






 − UZkZ ω  

 
This leads to the absurd situation where the same target to communicate a positive 
doppler to TEM "right" and a negative Doppler to TEM "left", which is not what 
physically happens.  
Are we supposed to "coupling charge" of the TEM "left" to U and Z equal to:  
 

(89)           
2

1

2
−=




Y   

(90)           [ ]
2

1
3 +=T   
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therefore opposite to those of TEM "right".  
This will find the correct solution (86).  
It is therefore necessary for the coupling charges to the gauge fields the following 
situation:  
 
                                 [ ]2

Y                            [ ]3T  

TEM “left”                
2

1                             
2

1−      

TEM “right”           
2

1−                                
2

1  

 
which clearly recalls the classification of neutrinos in the Standard Model 
(obviously without being able to assign any meaning to the symbols, which I chose to 
art):  
 
                                 [ ]2

Y                            [ ]3T  

Lν                               
2

1                             
2

1−      

Rν                            
2

1−                                
2

1  

 
This leads to a possible interpretation in terms of analogy with the action of Z°. 
However this is not what interests me now.  
What interests me is to have demonstrated the following:  
for the ω  of a TEM can increase or decrease through the interaction with a radar 
target must consider the effect of a gauge transformation with i and Tji  
simultaneously: 
 
(91)            )(' tbe ϕψψψ +=→           
 
where  

(92)          
2

)1( Tji
b

−=                   

 
Note: we change signs in the (78) in the right way and introduce a single coupling 
charge to i and Tji . 
This holds for ω .  
What about the direction of propagation?  
Extend the (91) to the case where ϕ  is a function of the coordinates of space and 
time.  
We can repeat the whole procedure followed with the formulas (71) (77) and in 
particular come to the conclusion  
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(93)         00 =−∂ bQA
Z

ψψ
r

 

 
where   
 
(94)        )ˆ(ˆˆˆˆ

000 ZZzyxZ
TAQTkjiQA Φ+=∂+∂+∂+∂=

r
ϕϕϕϕ τ  

 
and you will have for example in place of the solution TEM R (81) with 22 ω=k

r
 a 

new and different solution where both ω  and k
r

 will be changed.  
The (93) is formally the Dirac equation for a particle of zero mass, in the presence of 
potential 000

ˆ
ZZZ

TAA Φ+=
r

 namely a scalar potential 0Z
Φ  and a vector potential 0Z

A
r

.  

(I use this notation for the potential they represent an action that resembles that of the 
Z° particle).  
The effect of the scalar potential has already been examined with (86).  
From the action of the vector potential 0Z

A
r

 instead, we must expect effects on the 

direction of propagation.  
So we can conclude for the moment that with a gauge transformation (91) we can 
properly express at will the change in frequency and direction of propagation of a 
radar signal in free space.  
I repeat that the potential introduced by (91) recall an action reminiscent of the 
particle Z°, but that was not what I was interested in showing at this time. What 
interested me was to identify a possible procedure to deflect a TEM.  
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INTERPRETATION OF THE ACTION OF GAUGE FIELDS  
 
 
I intend to show that the varying potentials are interpreted as forces exerted by 
physical objects.  
In the case of the electromagnetic potential Φ  it is easily interpretable.  
I interpreted in [2] the action of the electromagnetic potential Φ  as a equivalent 
“waveguide 2” with a different cutoff 2,0ω  (ie size 2d ). 

 
 
 
 
 
 
 
 
 
 
 
Alternatively, rather than considering a equivalent "waveguide 2” with cutoff 2,0ω  

I've interpreted in [10] the action of Φ  with the action of someone or something that 
has changed ω in ( U−ω ). That something is detectable by the mathematical point of 
view in the operation iUte−=→ ψψψ ' , who acted on ψ  increasing (if 0≤U ) the ω . 
From the electromagnetic point of view such an action is produced by the interaction 
with an object in the waveguide that imparts a Doppler frequency (here positive).  
A push.  
 
 
 
 
 
 
 
 
 
Anyhow, the resulting action is that of "electromagnetic force” exerted by the γ  
particle or the potential Φ . 
However you want to interpret, there are two regions:  
-a first region where the potential is manifested changing from the value 0=Φ  to the 
final value Φ .  
In this region Φ  is variable and there is a force, an electric field Φ−= gradE

r
. 

 

waveguide 1 
01,ωd  

waveguide 2 
2,02 ,ωd  
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-a region where there is a potential 0≠Φ  constant. In this region Φ  is constant and 
the energy (the ω ) is changed and that remains.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This example illustrates a very general situation in which we can interpret the 
behavior of gauge fields.  
It starts from an initial situation in the absence of potentials.  
There is a region of interaction in which potentials occur, until reaching their final 
value.  
In this region, with variable potentials, actions that are produced can be attributed to 
force field (the derivatives of the potentials).  
Reached their final value the potentials remains constant. Any subsequent change 
would entail a new force.  
 
 
 
 
 
 
 
 
 
 
 

Potenziale Φ  variabile 
Regione con forza agente 
(campo elettrico E

r
) 

Potenziale 0≠Φ  costante 
Energia (o ω ) modificata 

region 1 region 2 

Potenziali 
costanti 

Potenziali variabili 
(Forze agenti) 
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Take the case of the vector potential A
r

. 
In this case A

r
 variable means magnetic field. In the short interaction region manifests 

an effect similar to the effect of a magnetic field on an electric charge: a deflection. 
The situation is succinctly summarized in the figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The gauge fields expressed by (93) lead instead to the following interpretation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally in [10] have examined a gauge field the effect is similar to the action of the W 
particle, which is interpreted as shown.  

Potenziale vettore A
r

 variabile 
Regione con forza agente 
(campo magnetico H

r
) 

 

Potenziale 0≠A
r

 costante 
Direzione modificata 

Potenziale variabile 
Regione con forza agente 
Particella Z° 

Potenziale costante 
Modificati e ω  e k

r
 

(Energia e direzione) 
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CONCLUSIONS 
 
It was rigorously derived a spinor representation of TE TM through the Dirac 
equation for plane wave, alternative to Maxwell's equations.  
Doing this the TE and TM modes are physically described only by the total energy 
that propagates in a waveguide in the z direction and this is provided by a four vector 

*ˆψψT  while the components of the Maxwell field tE , tH  (and ZE  and ZH ), are 
effectively ignored.  
With the unique mathematical condition for the spinor ψ . satisfy the Dirac equation, 
is automatically for the electromagnetic field a double possibility of state TE / TM 
and a double state of circular polarization.  
All this also transfers to the special case of TEM. In this case describes the 
electromagnetic field in free space (specifically: radar signals in free space) and the 
Dirac equation are those of the neutrino.  
Using the spinor representations thus obtained opens up the possibility of a spinor 
theory of radar scattering or radar-target interaction, briefly outlined here, developed 
with the gauge theories of quantum mechanics. Some simple but illustrative examples 
are given. 
Further study is of course needed in order to verify if this approach can gain the 
status of a viable theory.  
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APPENDIX 1 
 
I use a Clifford algebra based on 4 elements î  ĵ  k̂  Τ̂  (axis unit vectors in spacetime, 
sometimes referred to the authors with other symbols, such  0321 ,,, eeee ). They have 
the following properties:  
 
(1)     1ˆˆˆ 222 +=== kji            1ˆ 2 −=Τ    
 
and all anticommute between them, eg  
 
      jiij ˆˆˆˆ −=     Τ−=Τ ˆˆˆˆ kk    etc 
 
Possibly I use the symbols i  j  Τ  to generalize the usual imaginary unit i  of the x, y 
plane  
(2)      jii ˆ̂=    kij ˆˆ=    Τ=Τ ˆî  
 
All this, combined with the rule concerning the conjugates  
 
(3)        ( ) *** ABAB =  
 
generates all properties of interest.  
It’s enough to admit that fact  that î  ĵ  k̂  Τ̂  do not change by conjugation (as it is 
intuitive that it should be) to derive for example, or rediscover, the usual rule for the 
conjugate *i : 
 
(4)        ( ) ijiijijjii −=−==== ˆ̂ˆˆ*ˆ*ˆ*ˆ̂*  
 
and so are obtained as a simple consequence all other properties (and therefore do not 
need to send to mind):  
 
(5)       jj −=*       Τ−=Τ*  
            12 −=i      12 −=j       12 =Τ  
            jiij −=    ii Τ−=Τ    jj Τ−=Τ  
         ( ) jiji Τ=Τ *          ( ) 12 −=Τji  
 
The algebra is constructed by all possible products between î  ĵ  k̂  Τ̂ . 
The algebra has 16 items  
 
1,      î  ĵ  k̂  Τ̂  (4 items),    ji ˆ̂   Τ̂î  etc.  (6 items),  kji ˆˆ̂  etc.  (4 items),     Τ̂ˆˆ̂kji  
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and contains a subalgebra of 8 elements ("even subalgebra of a Clifford Algebra", 
Hestenes)  
 
                   1,          ji ˆ̂   Τ̂î  etc.  (6 items),          Τ̂ˆˆ̂kji  
 
It can be rewritten at will as consisting of all possible products between i  j  Τ  
 
                  jijiijji ΤΤΤΤ ,,,,,,,1  
 
On xy plane symbols or operators 
 

(6)     
y

i
x ∂

∂−
∂
∂=∂  

 

        
y

i
x ∂

∂+
∂
∂=∂*  

 
are, respectively, to express the derivative and the Cauchy Riemann conditions. 
These are generalized in  
 

(7)    
τ∂
∂Τ−

∂
∂−

∂
∂−

∂
∂=∂

z
j

y
i

x
 

 

        
τ∂
∂Τ+

∂
∂+

∂
∂+

∂
∂=∂

z
j

y
i

x
*  

 
and the property is  
 

(8)        
2

2

2

2

2

2

2

2

**
τ∂
∂−

∂
∂+

∂
∂+

∂
∂=∂∂=∂∂

zyx
 

 
Alternatively, the symbol or operator *∂  used to express the analyticity can use the 
operator that is obtained by multiplying î  left (note: if 0* =∂ f  also 0*ˆ =∂ fi  and 
vice versa).  
The operator thus obtained  
 

(9)     Vk
z

j
y

i
x

i ∂=Τ
∂
∂+

∂
∂+

∂
∂+

∂
∂=∂

r
ˆˆˆˆ*ˆ

τ
 

 
is formally seen as a four-vector, as P

r
. 

In Clifford algebra a product naturally arises that incorporates scalar product and 
vector product.  
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It starts from the obvious equality:  
 

(10)        ( ) ( )baabbaabab −++=
2

1

2

1  

 
This truism becomes a raison d'etre for the fact that there are elements of Clifford 
Algebra which anticommute, so it makes sense to speak of ba  distinct from ab . 
They are also potentially opposite.  
An analysis of this formula with some examples immediately shows that  
 

(11)         ( ) babaab •=+
2

1  

 
is the usual inner product between vectors and is a scalar, while what should be called 
exterior product:  
 

(12)         ( ) babaab ∧=−
2

1  

 
remember, but do not call it that, the vector product ba× . 
For if a  and b  are vectors, ba ∧  is a bivector, while ba× è is a vector.  
Between the two there is the formula:  
 
(13)        ( )( )bakjiba ×=∧ ˆˆ̂  
 
you can also use reversed  
 
(14)      ( )( )bakjiba ∧−=× ˆˆ̂  
 
The (14) is not necessary to send her to mind because it is easily remembered by the 
example:  
 
(15)        ( )kkjiji ˆˆˆˆˆ̂ =  
 
that relates the bivector ji ˆ̂  with the vector kji ˆˆˆ =× . 
(Note: the introduction of ba×  due to Gibbs hides the true quality of the product of 
two orthogonal vectors, which are those of an entity bivector. However the formula 
(14) make things right).  
We extend the (14) to the vector operator V∂

r
 (3D):  

 

(16)     Vk
z

j
y

i
x

∂=
∂
∂+

∂
∂+

∂
∂ r

ˆˆˆ  
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From (11 )...( 14) we have successively  
 
(17)       ( )( )akjiaaaa VVVVV ×∂+•∂=∧∂+•∂=∂

rrrrr
ˆˆ̂  

 
and therefore the operators div and rot are "embedded" in the 'Clifford algebra 
through the relation:  
 
(18)       ( )( )rotakjidivaaV

ˆˆˆ+=∂
r

 
 
This algebra differs from the STA for the choice of the base with the properties (1). 
The STA choice is for a basis of "spacelike" vectors )3,2,1( =kkγ  and a "timelike" 
vector that instead of (1) has the properties:  
 
(19)     1,1 2

0
2 =−= γγ k  

 
So doing to obtain a unit vector basis of three axes x, y, z with modulus (+1) three 
spacetime bivectors should be defined (Hestenes, [4]):  
 
(20)    0γγσ kk =  
 
Hestenes note explicitly the opportunities of either choice ([4], p.25):  
“If instead we had chosen 1,1 2

0
2 −== γγ k  we could entertain the solution kk γσ = , 

which may seem more natural, because (.....)”,  
......because vectors in space would also be vectors in spacetime.  
I prefer to keep this option best suits to engineers (î  ĵ  k̂  with 1ˆˆˆ 222 +=== kji , 
vectors in space equal to vectors in spacetime, the symbol i  for the imaginary unit on 
x, y plane, complex numbers in x, y plane iyx + , etc.). 
I should also note that all the names that I used as a vector, complex number, 
imaginary unit vector and so on recall mnemonically concepts of the past and we can 
sometimes help but are materially misleading. All the things we have introduced are 
simply numbers, and if we can correctly called "Clifford numbers", the simple 
underlying rules, the sum product and division of Clifford algebra. The same goes for 
symbols such as the arrow in P

r
 etc. here have the sole function of mnemonic recall. 

What matters are only the properties of algebra I have briefly summarized.  
 
APPENDIX 2  
 
Recall briefly the description of a four vector *ˆψψTP =

r
 by a spinor ψ  associated 

with it.  
Let’s start from the study of a plane motion with complex numbers, rather than 
through the velocity vector tangent to the trajectory. Placing  
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ieV i ˆϕρ=
r

 
 
instead of the analysis in terms of velocity vector V

r
 goes to the study of complex 

number ϕρ iez = . 
We can say (after Hestenes) that the operation that has made introduced a Clifford 
algebra constructed on the basis of the two unit vector ji ˆ,ˆ  of the x, y plane  and 
having identified as "imaginary" the bivector jii ˆ̂= .  
The space of complex numbers z is thus identified as "even subalgebra of a Clifford 
Algebra" of components, so if you want to call it, "real" 1 and "imaginary" i . The 
essential thing is that everything is clear, all roles, including geometric, are clarified. 
The word "complex" or "imaginary" is essentially useless or misleading.  
Let us now jump next to move from 2D to 3D space.  
Everything is repeated with the added fact, that I consider irrelevant even if it is 
necessary, that now the complex number must be applied half right and half left. All 
of this is known.  
The number now has 4 components and is called quaternion.  
With the usual language and the clarity of clarification we owe to David Hestenes 
(although my symbols) we can say that this introduces an "even subalgebra of a 
Clifford Algebra" built on a 3-unit vector space kji ˆ,ˆ,ˆ . 
The components of quaternions are precisely the components "even" of algebra 

kjkiji ˆˆ,ˆˆ,ˆ̂,1 .  
The last and decisive step is to pass in 4D, ie the study of a vector of spacetime or 
four-vector with a complex number, according to the usual technique that we have 
seen in 2D and in 3D space.  
It is necessary (and sufficient) to introduce a Clifford algebra on a basis of 3 unit 
spacelike vectors and one timelike:  

Tkji ˆ,ˆ,ˆ,ˆ  
 
and this identifies a "even subalgebra of a Clifford algebra" to 8 components  
 

TkjiTkTjTikjkiji ˆˆˆˆ,ˆˆ,ˆˆ,ˆˆ,ˆˆ,ˆˆ,ˆˆ,1  
 
Complex numbers ψ  are now Dirac spinors with the exception of details and / or 
notations. Even now, the complex number must be applied half right and half left. For 

example, if P
r

 is an energy momentum vector then *ˆψψTP =
r

 as with the quaternions 

(except here the use of T̂ ) and so on.  
Note that the sub-case with components kjkiji ˆˆ,ˆˆ,ˆ̂,1  provides the aforementioned 

quaternions in 3D space while the components ji ˆˆ,1  give the ordinary complex 
numbers in the 2D x,y plane. 
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Among the various consequences of the rotation in spacetime there is one now eg. a 

four-velocity can be rotated with a bivector like ji ˆ̂  and then rotate on ji ˆ,̂  plane, but 

also with a bivector like Ti ˆˆ  (Lorentz transformation) and then rotate on Ti ˆ,ˆ  plane 
or speeds up or slows down.  
So we can summarize how the energy propagates in the waveguide in the z direction 
is provided by an energy momentum four vector *ˆψψTP =

r
 through the spinor ψ  

associated to P
r

. 
I remember that the time axis T̂  rotated through a Lorentz transformation becomes 
the four-velocity û  ( 1ˆ 2 −=T , 1ˆ 2 −=u ). Indeed let R=ψ  unitary: 
 

         2
ˆˆ ϕ
Τ

=
k

eR  
 
and rotate T̂  doing  
 

     2
ˆˆ

2
ˆˆ

ˆ*ˆˆ
ϕϕ Τ−Τ

==
kk

eTeRTRu = ϕΤ− ˆˆˆ keT  
 
So 

        





















−

−

−

== Τ−

2

2

2

2

ˆˆ

1

ˆˆ

1

1ˆˆˆ

c

V

c

V

Tk

c

V
TeTu k ϕ  

where   

          
c

V
arcth=ϕ  

 
The four vector û  is the four-velocity of the body. Its square is (-1)  for any velocity 
V. In the example considered the motion is the z axis having been made a Lorentz 
transformation (rotation) according to bivector Τ̂k̂  normal to the ( )τ,z  plane . 
Summarize.  
A rotation with R=ψ  gives the four-velocity uRTR ˆ*ˆ = . 
Multiplying by mc as in relativistic mechanics ( ii mcup =  [5]) yields instead the 

energy momentum vector *ˆˆ ψψTumcP ==
r

. 
While *ˆˆ ψψTumcP ==

r
 transforms as a vector, ψ  transforms as a spinor. The law of 

transformation "single-sidedly" of spinors is summarized effectively by Doran et. al. 
([6] "States and operators in the Spacetime Algebra", Found. Phys. 23 (9), 1993).  
If a vector, such  *ˆˆ ψψks =  is rotated through '*(_)' RR , the result of the rotation is  
 
    '*ˆ''ˆ RsRs =  
 
then the corresponding spinor ψ  must become  
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    ψψ '' R=  
 
“We use the term spinor to denote any object which transforms single–sidedly under 
a rotor R” (Doran, [6]). 
 
 
APPENDIX 3 
 
The Dirac equation is obtained by introducing an 8-components "even number" 
exactly structured as F , unless the different notations for the components.  
Let: 
 
(1)     4321 ψψψψψ Τ+Τ++= jj  
 
where 4321 ψψψψ  are with indexes 1,i . The Dirac equation is: 
 
(2)    Τ−=∂ ˆˆ* imi ψψ  
 
Developing and equating the components we obtain the Dirac equation in the usual 
extended form, see ex. Schiff [7]:  
 

               0134 =






 +
∂
∂+

∂
∂+









∂
∂−

∂
∂ ψ

τ
ψψ im

zy
i

x
 

 

               0243 =






 +
∂
∂+

∂
∂−









∂
∂+

∂
∂ ψ

τ
ψψ im

zy
i

x
 

(3) 

                0312 =






 −
∂
∂+

∂
∂+









∂
∂−

∂
∂ ψ

τ
ψψ im

zy
i

x
 

 

                0421 =






 −
∂
∂+

∂
∂−









∂
∂+

∂
∂ ψ

τ
ψψ im

zy
i

x
   

 
From ψ  may form several "squares" for example  
(4)                *ψψ  
 
or the four-velocity û   
 
(5)    ûˆ * =Τψψ         1ˆ 2 −=u  
 
true if ψ  is unitary ie if ψ  is a "rotor"  
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(6)     R=ψ        1* =RR  
 
Conditions of relativistic invariance for (2), i.e. invariance with respect to spacetime 

rotations of an angle ϕ , make that ψ  transforms with half angle 2
ϕ . This implies 

(the fact is a consequence of the other and vice versa) all quantities like *ˆψψΤ  
transform like vectors.  
 
 
 
APPENDIX 4 
 
From the TE equations 
 

            0=−
∂
∂

TETE HiEi
z

rr
ω  

            0)1(
2

2
0 =−+

∂
∂

TETE EiHi
z

rr

ω
ωω  

 
write    
 

),(),( yxetzVETE

rr
=  

),(),( yxhtzIHi TE

rr
=  

 
While compliance with the values of TEE

r
 and TEHì

r
 you can alter at will the scale of 

amplitudes between eV
r↔  and hI

r
↔ . In particular, put  

 
                ),(),( yxhyxe

rr Α=  
 
The equations become:  
 

                0=+
∂
∂

IiVA
z

ω  

                0)1(
2

2
0 =−+

∂
∂

VAiI
z ω

ωω  

Choose 1=
h

e
r

r

 means to choose for 
I

V  the same ratio that exists between TEE
r

 and TEHì
r

, 

ie 
zTE

TE

kHi

E ω=r

r

. With this choice we come to the usual form of the equation of the 

equivalent transmission line [3]. In fact if I take A=1 I get the equations for V, I:  
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            IiV
z

ω−=
∂
∂

 

            ViI
z

)1(
2

2
0

ω
ωω −−=

∂
∂  

 
But one can proceed in a different way by observing that the equations are  
 

                0=+
∂
∂

IiVA
z

ω  

                0
))(( 00 =

+−
+

∂
∂

VAiI
z ω

ωωωω
 

 
which it is found that choosing instead:  
 

                 
0ωω

ω
+

=A  

 
equations are obtained directly in the request "Dirac form", as I did in the text.  
 
 
APPENDIX 5 
 
From 
 

( )ijijiji TMTMTETE
ˆΗΤ+Ε+ΗΤ+Ε=ΗΤ+Ε

rr
 

 
exploiting the aforementioned  
 



















Η
Η
Ε
Ε

=



















jij

i

jj

TE

TM

TE
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4

3

2

1

ψ
ψ
ψ
ψ

 

 
get   
 

( )ijjjjji ˆ)()( 4231 −Τ+−+Τ+=ΗΤ+Ε ψψψψ
rr

 
 
equivalent to   
 

( )ijiji ˆˆ −+=ΗΤ+Ε −+ ψψ
rr

 
 
being    



 42 

 
      4321 ψψψψψ Τ+Τ++= jj   
      ( )31 ψψψ jΤ+=+  
      ( )42 ψψψ Τ+=− j    
 
This also justifies the reason for the name with the subscripts (+) and (-)  
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









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
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It is apparent  
 

( )ijijiji ˆ
−−++ ΗΤ+Ε+ΗΤ+Ε=ΗΤ+Ε

rr
 

 
fully equivalent to  
 

( )ijjjjji ˆ)()( 4231 −Τ+−+Τ+=ΗΤ+Ε ψψψψ
rr

 
 
For comparison:  
 
                          1ψ=Ε+        
                      3ψjji Τ=ΗΤ +     
                           ( )jj −=Ε− 2ψ  
                       ( )jji −Τ=ΗΤ − 4ψ  
 
The meaning in summary is this.  
The part ( )++ ΗΤ+Ε ji  is contained in the spinor 4321 ψψψψψ Τ+Τ++= jj  in part 

( )31 ψψψ jΤ+=+  commuting with i . 
The part ( )−− ΗΤ+Ε ji  is contained in the spinor 4321 ψψψψψ Τ+Τ++= jj  in part 

( )42 ψψψ Τ+=− j  anticommuting with i . 
We can illustrate this in more detail.  
 
The Dirac equation for plane wave at rest has the following 4 solutions  
 
             tie ωψ −=             01 ≠ψ ,  electron 
             tije ωψ −=            02 ≠ψ ,  electron 
             tijie ωψ +Τ=          03 ≠ψ ,  positron 
             )( tijeji ωψ +Τ=      04 ≠ψ ,  positron 
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Take the two solutions "electron"  
 
             tie ωψ −=             01 ≠ψ ,  electron 
             tije ωψ −=            02 ≠ψ ,  electron 
 
The two solutions have components ijji ,,,1 . 
The first of the two components i,1  is interpreted in a natural way as transverse 
(fictitious) electric field, just ask iei ti ˆˆ ωψ −

+ ==Ε
r

. 
For the second component ijj ,  you can not have an interpretation as a transverse 
field. They do not see a reason.  
Moreover certainly in quantum mechanics it represents the solution “electron” with 
opposite spin. In order to have i,1  components and rotate in the opposite direction 
multiply j−  from right. The final formula is ( )iji ˆˆ −+=Ε −+ ψψ

r
. 

Therefore the mapping that we have established between the even number ψ  and Ε
r

 
is so done, that the positions ijj ,  are still related to transverse components i,1 , but 
rotating in opposite directions.  
The same applies to the ψ  components having jiΤ  in front, which have the same 
meaning but are magnetic components.  
As saying that the mapping ( )iji ˆˆ −+=Ε −+ ψψ

r
 holds even if  ψ  is 8 components, and 

this provides not only Ε
r

 but also Η
v

 in the form that we have already written  
 
              ( )ijiji ˆˆ −+=ΗΤ+Ε −+ ψψ

rr
  

 
 
APPENDIX 6 
 
We can compare this observation with that contained in Wang et. al. [11]:  
“For the fields produced by an electric source, the electric field E is the large 
component and the magnetic field B the small component, while for the fields 
produced by a magnetic source, the magnetic field B is the large component and the 
electric field E the small component. Similarly, in the electron field, ζ is the large 
component and χ the small component, while in the positron field, χ is the large 
component and ζ the small component”. 
 
 
APPENDIX 7 
 
As an exercise we show that ΗΕ,  transform like the components of a spinor ψ .  
What we can do is:  
1° - take the solution at rest for, example, a TE;  
2° - then take the solution with velocity gvV =  (group velocity in waveguide);  
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3° - finally verify that it passes from one to another by one side transformation ψR  
on Η+Ε= Tjiψ , as it should be for a spinor.  
(Note: in reality this is obvious because there was only a change of name 

( ) Η+Ε=Τ+= Tjij 31 ψψψ  
Let's start with some formulas (example: TE)  
The solution in motion, speed gvV = , is:  

 
             zikti ze +−==Ε ωψ 1       

           zikti zei +−

+
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==Η ω

ωω
ωω

ψ
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0
3             

                  2
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2

2
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ω
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The solution at rest is: 
 
            tie 0

1
ωψ −==Ε       

           03 ==Η ψi             
                  2

0
22 ωω −=zk     

 

Let 2
ˆˆ ϕ
Τ

=
k

eR . The vectors are transformed with *RPR
r

. Spinors are transformed with 
ψψ R→ .  

Rotate the spinor  ( ) Η+Ε=Τ+= Tjij 31 ψψψ  with ψψψ
ϕ
2

ˆˆΤ
=→

k
eR . 

Contrary to the expression of ϕΤ̂k̂e , the expression of  2
ˆˆ ϕ
Τk

e  is less usual.  
I proceed step by step: 
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Express the hyperbolic functions of 
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ϕ  as a function of ϕ :  

2

1

2

+= ϕϕ ch
ch  

 

2

1

2

−= ϕϕ ch
sh  

 
However  
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and then replacing  
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Thus from the solution at rest tie 0
1

ωψ −==Ε  the solution in motion ψψ
ϕ
2

ˆˆΤ
=

k
eR  

becomes  
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(note: ( ikzti +− ω ) comes from the transformation of phase ( ti 0ω− ) in new reference). 
Despite the odd appearance, this is exactly the solution in motion, differs only by a 
different normalization (here is normalized to 1* =ψψ ). To see more explicitly write  

TjTk =ˆˆ  and 
2

2
01

ω
ω

−= cV  ie 
0

2

2

1
ω
ω=−

c

V . 

Thus we have  

kztieTj +−













 −
+

+
= ω

ω
ωω

ω
ωωψ

0

0

0

0

2

1

2

1  

 
which is clearly the already written solution in motion  
 

ziktizikti zz eTjeTji +−+−

+
−

+=Η+Ε= ωω

ωω
ωω

ψ
0

0  

            zikti ze +−==Ε ωψ 1       



 46 

           zikti zei +−

+
−

==Η ω

ωω
ωω

ψ
0

0
3             

                  2
0

22 ωω −=zk     
 

if normalized to 1* =ψψ  through multiplication by 











 +

0

0

2

1

ω
ωω

 

 
APPENDIX 8 
 
The *)( ehHE TETE Η×Ε=×

rrrr
 is obtained from all these steps in detail.  

We recall formulas 
 

( ) babaab ∧=−
2

1  

( )( )bakjiba ∧−=× ˆˆ̂  
( )( )bakjiba ×=∧ ˆˆ̂  

 
Let 
 

*eEa TE Ε==
rr

 

*hHb TE Η==
rr

 
 
We have 
 

( ) ( )****
2

1ˆˆˆ ehhekjiHE TETE ΕΗ−ΗΕ−=×
rrrrrr

 

 
or  

( ) ( )ΕΗ−ΗΕ−=×
rrrrrr

*)(*)(
2

1ˆˆˆ ehehkjiHE TETE                

This is rewritten so as exterior product ( ) babaab ∧=−
2

1  between ( )Ε
r

 e ( )*ehΗ
r

 which 

finally *)( ehHE TETE Η×Ε=×
rrrr

. 
 
 
APPENDIX 9 
 

It 's interesting the physical meaning of *ψψ  or better *
2

1ψψ . For this we note that 

the following remarkable equality holds  
 

2222 *)()ˆ(*)(*ˆ*ˆ*)ˆ( ψψψψψψψψψψ −=== TTTT  
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But from the energy momentum vector  
 

)(ˆ)(
2

1
*ˆ

2

1 22
Η×Ε−Η+Ε=
rrrr

TTψψ  

 
we also have 
 

222 )()(*)ˆ
2

1
( MOMENTUMENERGYT +−=ψψ  

 
so by  
 

22 *)ˆ
2

1
(*)

2

1
( ψψψψ T−=  

 
the identification follows 
 

2222 )()()(*)
2

1
( MOMENTUMENERGYMASS −==ψψ  

 
which can also be viewed  
 

222
0

2 )()()(*)
2

1
( zk−== ωωψψ  

 

So the physical meaning of 2*)
2

1
( ψψ  is the mass-squared or 2

0 )(ω . 
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