Smarandache's Cevian Triangle Theorem in The Einstein Reletivistic Velocity Model of Hyperbolic Geometry

Cătălin Barbu

"Vasile Alecsandri" College - Bacau, str. Iosif Cocea, nr. 12, sc. A, ap. 13, Romania º kafka_mate@yahoo.com

ABSTRACT. In this note, we present a proof of Smarandache's cevian triangle hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry.

2000 Mathematical Subject Classification: $51K05$, $51M10$, $30F45$, $20N99$, $51B10$ Keywords and phrases: hyperbolic geometry, hyperbolic triangle, Smarandacheís cevian triangle, gyrovector, Einstein relativistic velocity model

1. Introduction

Hyperbolic geometry appeared in the first half of the $19th$ century as an attempt to understand Euclidís axiomatic basis for geometry. It is also known as a type of non-Euclidean geometry, being in many respects similar to Euclidean geometry. Hyperbolic geometry includes such concepts as: distance, angle and both of them have many theorems in common. There are known many main models for hyperbolic geometry, such as: Poincaré disc model, PoincarÈ half-plane, Klein model, Einstein relativistic velocity model, etc. The hyperbolic geometry is a non-Euclidian geometry. Here, in this study, we present a proof of Smarandacheís cevian triangle hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry. Smarandache's cevian triangle theorem states that if $A_1 B_1 C_1$ is the cevian triangle of point P with respect to the triangle ABC, then $\frac{PA}{PA_1} \cdot \frac{PB}{PB_1} \cdot \frac{PC}{PC_1} = \frac{AB \cdot BC \cdot CA}{A_1 B \cdot B_1 C \cdot C_1 A}$ [1].

Let \overline{D} denote the complex unit disc in complex z - plane, i.e.

$$
D = \{ z \in \mathbb{C} : |z| < 1 \}.
$$

The most general Möbius transformation of D is

$$
z \to e^{i\theta} \frac{z_0 + z}{1 + \overline{z_0} z} = e^{i\theta} (z_0 \oplus z),
$$

which induces the Möbius addition \oplus in D, allowing the Möbius transformation of the disc to be viewed as a Möbius left gyrotranslation

$$
z \to z_0 \oplus z = \frac{z_0 + z}{1 + \overline{z_0}z}
$$

followed by a rotation. Here $\theta \in \mathbb{R}$ is a real number, $z, z_0 \in D$, and $\overline{z_0}$ is the complex conjugate of z_0 . Let $Aut(D, \oplus)$ be the automorphism group of the grupoid (D, \oplus) . If we deÖne

$$
gyr: D \times D \to Aut(D, \oplus), gyr[a, b] = \frac{a \oplus b}{b \oplus a} = \frac{1 + ab}{1 + \overline{a}b},
$$

then is true gyrocommutative law

$$
a \oplus b = gyr[a, b](b \oplus a).
$$

A gyrovector space (G, \oplus, \otimes) is a gyrocommutative gyrogroup (G, \oplus) that obeys the following axioms:

(1) gyr[u, v]a. gyr[u, v]b = a \cdot b for all points a, b, u, v $\in G$.

(2) G admits a scalar multiplication, \otimes , possessing the following properties. For all real numbers $r, r_1, r_2 \in \mathbb{R}$ and all points $\mathbf{a} \in G$:

$$
(G1) 1 \otimes \mathbf{a} = \mathbf{a}
$$

 $(G2)(r_1+r_2)\otimes \mathbf{a}=r_1\otimes \mathbf{a} \oplus r_2\otimes \mathbf{a}$

$$
(G3) (r_1r_2) \otimes \mathbf{a} = r_1 \otimes (r_2 \otimes \mathbf{a})
$$

 $(G4)$ $\frac{|r|\otimes a}{\|r\otimes a\|}$

 $\left(\begin{array}{c} G4 \end{array}\right) \frac{|r| \otimes \mathbf{a}}{\|r \otimes \mathbf{a}\|} = \frac{\mathbf{a}}{\|\mathbf{a}\|} \ (G5) \ gyr[\mathbf{u},\mathbf{v}](r \otimes \mathbf{a}) = r \otimes gyr[\mathbf{u},\mathbf{v}]\mathbf{a}$

$$
(G6) \; gyr[r_1 \otimes \mathbf{v}, r_1 \otimes \mathbf{v}] = 1
$$

(3) Real vector space structure ($||G||$, \oplus , \otimes) for the set $||G||$ of onedimensional "vectors"

$$
||G|| = \{\pm ||\mathbf{a}|| : \mathbf{a} \in G\} \subset \mathbb{R}
$$

with vector addition \oplus and scalar multiplication \otimes , such that for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in G$,

 $(G7)$ $\|r \otimes \mathbf{a}\| = |r| \otimes \|\mathbf{a}\|$ $(G8)$ $\|\mathbf{a} \oplus \mathbf{b}\| \leq \|\mathbf{a}\| \oplus \|\mathbf{b}\|$

Theorem 1. (The Hyperbolic Theorem of Ceva in Einstein Gyrovector Space) Let $\mathbf{a}_1, \mathbf{a}_2, \text{ and } \mathbf{a}_3$ be three non-gyrocollinear points in an Einstein gyrovector space (V_s, \oplus, \otimes) . Furthermore, let \mathbf{a}_{123} be a point in their gyroplane, which is off the gyrolines a_1a_2, a_2a_3 , and a_3a_1 . If a_1a_{123} meets a_2a_3 at a_{23} , etc., then

$$
\frac{\gamma_{\ominus \mathbf a_1 \oplus \mathbf a_{12}} \left\|\ominus \mathbf a_1 \oplus \mathbf a_{12}\right\|}{\gamma_{\ominus \mathbf a_2 \oplus \mathbf a_{12}} \left\|\ominus \mathbf a_2 \oplus \mathbf a_{12}\right\|} \frac{\gamma_{\ominus \mathbf a_2 \oplus \mathbf a_{23}} \left\|\ominus \mathbf a_2 \oplus \mathbf a_{23}\right\|}{\gamma_{\ominus \mathbf a_3 \oplus \mathbf a_{23}} \left\|\ominus \mathbf a_3 \oplus \mathbf a_{23}\right\|} \frac{\gamma_{\ominus \mathbf a_3 \oplus \mathbf a_{13}} \left\|\ominus \mathbf a_3 \oplus \mathbf a_{13}\right\|}{\gamma_{\ominus \mathbf a_1 \oplus \mathbf a_{13}} \left\|\ominus \mathbf a_1 \oplus \mathbf a_{13}\right\|} = 1,
$$

(here $\gamma_{\mathbf{v}} = \frac{1}{\sqrt{1-\gamma_{\mathbf{v}}}}$ $1 - \frac{\|\mathbf{v}\|^2}{s^2}$ is the gamma factor).

(see [2, pp 461])

Theorem 2. (The Hyperbolic Theorem of Menelaus in Einstein Gyrovector **Space**) Let $a_1, a_2,$ and a_3 be three non-gyrocollinear points in an Einstein gyrovector space (V_s, \oplus, \otimes) . If a gyroline meets the sides of gyrotriangle $\mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3$ at points $\mathbf{a}_{12}, \mathbf{a}_{13}, \mathbf{a}_{23}, \mathbf{a}_{23}$ then

$$
\frac{\gamma_{\ominus \mathbf a_1 \oplus \mathbf a_{12}}\left\|\ominus \mathbf a_1 \oplus \mathbf a_{12}\right\|}{\gamma_{\ominus \mathbf a_2 \oplus \mathbf a_{12}}\left\|\ominus \mathbf a_2 \oplus \mathbf a_{12}\right\|}\frac{\gamma_{\ominus \mathbf a_2 \oplus \mathbf a_{23}}\left\|\ominus \mathbf a_2 \oplus \mathbf a_{23}\right\|}{\gamma_{\ominus \mathbf a_3 \oplus \mathbf a_{23}}\left\|\ominus \mathbf a_3 \oplus \mathbf a_{23}\right\|}\frac{\gamma_{\ominus \mathbf a_3 \oplus \mathbf a_{13}}\left\|\ominus \mathbf a_3 \oplus \mathbf a_{13}\right\|}{\gamma_{\ominus \mathbf a_1 \oplus \mathbf a_{13}}\left\|\ominus \mathbf a_1 \oplus \mathbf a_{13}\right\|}=1
$$

(see [2, pp 463])

For further details we refer to the recent book of A.Ungar [2].

2. Main result

In this section, we present a proof of Smarandache's cevian triangle hyperbolic theorem in the Einstein relativistic velocity model of hyperbolic geometry.

SMARANDACHE'S CEVIAN TRIANGLE THEOREM IN THE EINSTEIN RELETIVISTIC VELOCITY MODEL OF HYPERBOLIC GEOMETH

Theorem 3. If $A_1B_1C_1$ is the cevian gyrotriangle of gyropoint P with respect to the gyrotriangle ABC; then

$$
\frac{\gamma_{_{[PA]}[PA]}}{\gamma_{_{[PA_1]}[PA_1]}} \cdot \frac{\gamma_{_{[PB]}[PB]}}{\gamma_{_{[PB_1]}[PB_1]}} \cdot \frac{\gamma_{_{[PC]}[PC]}}{\gamma_{_{[PC_1]}[PC_1]}} = \frac{\gamma_{_{[AB]}[AB]}\cdot \gamma_{_{[BC]}[BC]}\cdot \gamma_{_{[CA]}[CA]}}{\gamma_{_{[AB_1]}[AB_1]}\cdot \gamma_{_{[BC_1]}[BC_1]}\cdot \gamma_{_{[CA_1]}[CA_1]}}
$$

Proof. If we use a theorem 2 in the gyrotriangle ABC (see Figure), we have

$$
\gamma_{|AC_1|}|AC_1| \cdot \gamma_{|BA_1|}|BA_1| \cdot \gamma_{|CB_1|}|CB_1| = \gamma_{|AB_1|}|AB_1| \cdot \gamma_{|BC_1|}|BC_1| \cdot \gamma_{|CA_1|}|CA_1| \tag{1}
$$

If we use a theorem 1 in the gyrotriangle AA_1B , cut by the gyroline CC_1 , we get

$$
\gamma_{|AC_1|}|AC_1| \cdot \gamma_{|BC|}|BC| \cdot \gamma_{|A_1P|}|A_1P| = \gamma_{|AP|}|AP| \cdot \gamma_{|A_1C|}|A_1C| \cdot \gamma_{|BC_1|}|BC_1| \tag{2}
$$

If we use a theorem 1 in the gyrotriangle $BB₁C$, cut by the gyroline $AA₁$, we get

$$
\gamma_{\lvert BA_{1}\rvert} \lvert BA_{1}\rvert \cdot \gamma_{\lvert CA\rvert} \lvert CA\rvert \cdot \gamma_{\lvert B_{1}P\rvert} \lvert B_{1}P\rvert = \gamma_{\lvert BP\rvert} \lvert BP\rvert \cdot \gamma_{\lvert B_{1}A\rvert} \lvert B_{1}A\rvert \cdot \gamma_{\lvert CA_{1}\rvert} \lvert CA_{1}\rvert \tag{3}
$$

If we use a theorem 1 in the gyrotriangle CC_1A , cut by the gyroline BB_1 , we get

$$
\gamma_{|CB_1|}|CB_1| \cdot \gamma_{|AB|}|AB| \cdot \gamma_{|C_1P|}|C_1P| = \gamma_{|CP|}|CP| \cdot \gamma_{|C_1B|}|C_1B| \cdot \gamma_{|AB_1|}|AB_1| \tag{4}
$$

We divide each relation (2) , (3) , and (4) by relation (1) , and we obtain

$$
\frac{\gamma_{|PA|}|PA|}{\gamma_{|PA_1|}|PA_1|} = \frac{\gamma_{|BC|}|BC|}{\gamma_{|BA_1|}|BA_1|} \cdot \frac{\gamma_{|B_1A|}|B_1A|}{\gamma_{|B_1C|}|B_1C|},\tag{5}
$$

:

$$
\frac{\gamma_{|PB|}|PB|}{\gamma_{|PB_1|}|PB_1|} = \frac{\gamma_{|CA|}|CA|}{\gamma_{|CB_1|}|CB_1|} \cdot \frac{\gamma_{|C_1B|}|C_1B|}{\gamma_{|C_1A|}|C_1A|},\tag{6}
$$

$$
\frac{\gamma_{|PC|}|PC|}{\gamma_{|PC_1|}|PC_1|} = \frac{\gamma_{|AB|}|AB|}{\gamma_{|AC_1|}|AC_1|} \cdot \frac{\gamma_{|A_1C|}|A_1C|}{\gamma_{|A_1B|}|A_1B|}. \tag{7}
$$

Multiplying (5) by (6) and by (7) , we have

$$
\frac{\gamma_{_{|PA|}|PA|}}{\gamma_{_{|PA_1|}|PA_1|}} \cdot \frac{\gamma_{_{|PB|}|PB|}}{\gamma_{_{|PB_1|}|PB_1|}} \cdot \frac{\gamma_{_{|PC|}|PC|}}{\gamma_{_{|PC_1|}|PC_1|}} =
$$

SMARANDACHE'S CEVIAN TRIANGLE THEOREM IN THE EINSTEIN RELETIVISTIC VELOCITY MODEL OF HYPERBOLIC GEOMETH

$$
\frac{\gamma_{_{[AB]}|AB|}\cdot\gamma_{_{[BC]}|BC|}\cdot\gamma_{_{[CA]}|CA|}}{\gamma_{_{[A_{1}B]}|A_{1}B|}\cdot\gamma_{_{[B_{1}C]}|B_{1}C|}\cdot\gamma_{_{[C_{1}A]}|C_{1}A|}}\cdot\frac{\gamma_{_{[B_{1}A]}|B_{1}A|}\cdot\gamma_{_{[C_{1}B]}|C_{1}B|}\cdot\gamma_{_{[A_{1}C]}|A_{1}C|}}{\gamma_{_{[A_{1}B]}|A_{1}B|}\cdot\gamma_{_{[B_{1}C]}|B_{1}C|}\cdot\gamma_{_{[C_{1}A]}|C_{1}A|}}\tag{8}
$$

From the relation (1) we have

$$
\frac{\gamma_{|B_1A|}|B_1A| \cdot \gamma_{|C_1B|}|C_1B| \cdot \gamma_{|A_1C|}|A_1C|}{\gamma_{|A_1B|}|A_1B| \cdot \gamma_{|B_1C|}|B_1C| \cdot \gamma_{|C_1A|}|C_1A|} = 1,
$$
\n(9)

so

 $\mathcal{L}_{\mathcal{A}}$

$$
\frac{\gamma_{_{|PA|}|PA|}}{\gamma_{_{|PA_1|}|PA_1|}} \cdot \frac{\gamma_{_{|PB|}|PB|}}{\gamma_{_{|PB_1|}|PB_1|}} \cdot \frac{\gamma_{_{|PC|}|PC|}}{\gamma_{_{|PC_1|}|PC_1|}} = \frac{\gamma_{_{|AB|}|AB|} \cdot \gamma_{_{|BC|}|BC|} \cdot \gamma_{_{|CA|}|CA|}}{\gamma_{_{|AB_1|}|AB_1|} \cdot \gamma_{_{|BC_1|}|BC_1|} \cdot \gamma_{_{|CA_1|}|CA_1|}}.
$$

REFERENCES

- [1] Smarandache, F, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org.
- [2] Ungar, A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, Hackensack, NJ:World Scientific Publishing Co.Pte. Ltd., 2008.