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Preface to the Second Edition

Automorphism groups survey similarities on mathematigatesms, which appear nearly
in all mathematical branches, such as those of algebra, icatobics, geometry,- - and
theoretical physics, theoretical chemistry, etc.. In getyn configurations with high
symmetry born symmetrical patterns, a kind of beautifulypies in aesthetics. Naturally,
automorphism groups enable one to distinguish systemsnyasity. More automor-
phisms imply more symmetries of that system. This fact htebéshed the fundamental
role of automorphism groups in modern sciences. So it is mapofor graduate students
knowing automorphism groups with applications.

The first edition of this book is in fact consisting of my paktetoral reports in Chi-
nese Academy of Sciences in 2005, not self-contained anguitaible as a textbook for
graduate students. Many friends of mine suggested me toextdo a textbook for
graduate students in past years. That is the initial matmadf this edition. Besides, |
also wish to survey applications of Smarandache’s notigh @@mbinatorics, i.e., math-
ematical combinatorics to automorphism groups of map$ases and Smarandache ge-
ometries in this edition. The two objectives advance me tamete this self-contained
book.

Indeed, there are many ways for introducing automorphissagg. | plan them for
graduate students both in combinatorics and geometry. Hterrals in this book include
groups with actions, graphs with symmetries, graphs orasasf with enumeration, reg-
ular maps, isometries on finitely or infinitely pseudo-Edeln spaces and an interesting
notion for developing mathematical sciences in 21th cgntig. the CC conjecture.

Contents in in this book are outlined following.

Chapters 1 and 2 are an introduction to groups. Topics sutioas of groups and
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subgroups, regular representations, homomorphism timsoitructures of finite Abelian
groups, transitive groups, automorphisms of groups, cheratic subgroupsp-groups,
primitive groups, regular normal subgroups are discusedddew useful results, for ex-
amples, these Burnside lemma, Sylow theorem and O’Narnt-Bwairem are established.
Furthermore, an elementary introduction to multigrou s @@rmutation multigroups, in-
cluding locally or globally transitive groups, locally oofpally regular groups can be also
found in Chapters 1 and 2.

For getting automorphism groups of graphs, these symnggtjuhs, including vertex-
transitive graphs, edge-transitive graphs, arc-traresifiaphs and semi-arc transitive graphs
are introduced in Chapter 3. Indeed, the automorphism gsbamormally Cayley graph
or GRR of a finite group can be completely determined. Forsdi@ag maps on sur-
faces underlying a grapB, one needs to consider the action of semi-arc automorphism
group Aut%G on its semi-arc seX%G. Such groups are not veryftirent from that of
automorphism group db. In fact, AutG = AutG if G is loop-free. This chapter also
discuses multigroup action graphs, which make a few resualtdobally transitive groups
in Chapter 2 simple.

As a preparing for combinatorial maps with applications teiK surfaces, Chapter
4 is mainly on surfaces, including both topological surfaaad Klein surfaces. Indeed,
Sections 41-4.3 can be used to an introduction on topological surfaces aotiddis 44-
4.5 on Klein surfaces. These fundamental techniques or sesulsurfaces, such as those
of classifying theorem of surfaces by elementary operati@eifert-Van Kampen theo-
rem, fundamental groups of surfaces, NEC groups and aufinison groups of Klein
surfaces are well discussed in this chapter.

Chapters 5-7 are an introduction on algebraic maps, i.ephgron surfaces, partic-
ularly, automorphisms of maps. The rotation embeddingreehen graphs and its con-
tribution to algebraic maps can be found in Sectioris®2. Then map groups, regular
maps and the technique for constructing regular maps bygieagroups are interpreted
in Sections 3-55.

Chapter 6 concentrates on lifting automorphisms of mapsaidf voltage assign-
ment technique. A condition for a group being that of a liftedp and a combinatorial
refinement of the Hurwitz theorem on Riemann surfaces aremgo Sections 4-6.4.
After that, Section & concerns the order of an automorphism of Klein surfacesay t
of map, which is an interesting problem in Klein surfaces.
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The objective of Chapter 7 is to find presentations of aut@iiems of maps un-
derlying a graph. A general condition for a graph group beivag of map is established
in the first section. Then all these presentations for autpimsms of maps underlying a
complete graph, a semi-regular graph or a bouquet are foumdh are useful for enu-
merating maps underlying such a graph.

Applying results in Chapter 7 enables one to classify maps,enumerating rooted
maps or maps underlying a graph in Chapter 8. These enumgnatsults on rooted
maps underlying a graph are presented in Sectich$8.2 by group action. It is worth
to celebrate that a sum-free formula for rooted maps uniheylg graph is found by the
action semi-arc automorphism group of graph. Then a geseleme for enumerating
maps underlying a graph is established in Secti@n By applying this scheme and those
presentations of automorphisms of maps in Chapter 7, tteeaplete maps, semi-regular
maps and one-vertex maps are enumerated in Sectid+&a3 respectively.

Chapter 9 turns on a special kind of automorphisms, i.emétdes on Smarandache
geometry, a mixed geometry with an axiom validated or imedi, or only invalided but in
at least two distinct ways. A formally definition with exareplfor such geometry can be
found in Sections 9-9.2. Then all isometries on finitely or infinitely pseudo-Edelan
spacesR", u) are determined in Sections339.4. It should be noted that for the finite
case, all such isometries can be combinatorially chaiaettby graphs embedded in the
Euclidean spacB".

The final chapter concentrates on an important notion foeld@ing mathematical
sciences in 21th century, i.e., the CC conjecture appear€thapter 5 of the first edition
in 2005. That is the originality ahathematical combinatoricdts contributions to math-
ematics and physics are introduced, and research problenpsesented in this chapter.
These interested readers are referred to [Mao25] for ithéurapplications to geometry
or Riemann geometry.

This edition was began to prepare in 2009. Many colleagudsfreands of mine
have given me enthusiastic support and endless helps imgvriHere | must mention
some of them. On the first, | would like to give my sincerelyrtkeito Dr.Perze for his
encourage and endless help. Without his encourage, | wausdhe else works, can not
investigate mathematical combinatorics for years andHittigs edition. Second, | would
like to thank Professors Feng Tian, Yanpei Liu, Mingyao Xyj ¥an, Fuji Zhang and
Wenpeng Zhang for them interested in my research works.r€neburaging and warm-
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hearted supports advance this book. Thanks are also givnotessors Han Ren, Yanqiu
Huang, Junliang Cai, Rongxia Hao, Wenguang Zai, Goudong\Meili He and Erling
Wei for their kindly helps and often discussing problems mtinematics altogether. Par-
tially research results of mine were reported at Chinesal&eg of Mathematics & Sys-
tem Sciences, Beijing Jiaotong University, Beijing Normaiversity, East-China Normal
University and Hunan Normal University in past years. Soifith@m were also reported
at The 2ndand 3rd Conference on Graph Theory and Combinatorics of Chima006
and 2008. My sincerely thanks are also give to these audatiseussing mathematical
topics with me in these periods.

Of course, | am responsible for the correctness all of thestemals presented here.
Any suggestions for improving this book or solutions for ogeoblems in this book are
welcome.

L.F.Mao

June 24, 2011
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There are many wonderful things in nature, but the most wduabe
of all is man.

Sophocles, an ancient Greek dramatist



CHAPTER 1.

Groups

A groupis surely the laws of combinations on its symbols, an imptrtan-
ception of mathematics. One classifies groups into two caiesg) i.e., thab-
stract groupsandpermutation groupslts application fields includes physics,
chemistry, biology, crystallography,..., etc.. Now it lreeome a fundamental
of all branches of mathematical sciences. For introducéaglers to abstract
groups, these algebraic systems, groups with subgroupslarerepresenta-
tion, homomorphism theorems, Abelian groups with striespumultigroups
and submultigroups with elementary properties are diszlssthis chapter,
where multigroups are generalized algebraic systems afpgrby Smaran-
dache multi-space, i.e., a union of groupstetient two by two.



2 Chap.1 Groups

§1.1 SETS

1.1.1 Set.A setS is a category consisting of parts, i.e., a collection of otg@ossessing
with a property<?. Usually, a set is denoted by

G = { x| x possesses the property }.

If an elemeni possesses the prope®y, we say thakis an element of the séi, denoted
by x € &. On the other hand, if an elementoes not possesses the property then it
is not an element o, denoted by ¢ &.

For examples,

P = {cities with more than 2 million peoples in China
E={(xy)0<x<1 0<y<1l}

are 3 sets by definition, and the numloer 1, city with more than 2 million peoples in
China and pointX, y) with 0 < x,y < 1 are elements of sefs, P andE, respectively.

LetS, T be two sets. These binary operatiamson SU T andintersection SV T of
setsS andT are defined by

SUT:{xlxeSOrxeT}, sﬂT — {xx € Sandxe T).

These operations andn have the following laws.
Theorem1.1.1 Let X T and R be sets. Then
() XUX=X and XN\ X = X;
(i) XUT=TUX and X\ T=TNX;
(i) XUMUR) = (XUT)UR and X(TNR) = (XNT)NR;
(iv) XUMNR =(XUT)NXUR),
XAMUR =(XNT)UXNR).

Proof These lawsi{-(iii ) can be verified immediately by definition. For the law)(
letx e XU(TNR) = XUT)NXUR). Thenx e Xorx e TNR, i.e.,,x € T and
x € R Now if x € X, we know thatx ¢ X U T andx € XU R. Whence, we get that
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xe (XUT)NXUR). Otherwisex € TR, i.e.,x € T andx € R. We also get that
xe XUT)NXUR).

Conversely, foivx € (XU T) N(XUR), we know thatx e X|JT andx € XJR,
e, xe Xorxe Tandx e R If xe X, we getthatx e X(J(TNR). If xe T and
x € R, we also get that € X J(T N R). Therefore XU (TNR) = (XUT)N(XUR) by
definition.

Similarly, we can also get the laN T = XU T. O

Let &; andS; be two sets. If fovx € &4, there must bex € G,, then we say that
S, is asubsetof G,, denoted byS; € G,. A subsetS; of G, is proper, denoted by
S, C G, if there exists an elemegte G, withy ¢ &4 hold. It should be noted that the
void (empty) set is a subset of all sets by definition. All subsets of a&etaturally
form a set#(©), called thepower sebf &.

Now let S be a set ani € Z(&). We define the complemektof X c & to be

X={y|ye & buty ¢ X}.

Then we know the following result.
Theorem1.1.2 Let& be aset, ST ¢ &. Then

(i) XNnX=0andXuUX=6;

(i) X = X;

([{H)XUT =XNnTandXNT=XUT.

Proof The laws {) and (i) can be immediately verified by definition. Faii), let
xe XUT. Thenxe & butx¢ XUT,ie.,x¢ Xandx ¢ T. Whencex e X andx e T.
Thereforex e XN T. Now forVx e X N T, there must bex e X andx e T, i.e.,xe &
butx ¢ X andx ¢ T. Hencex ¢ XU T. This fact implies thak € X U T. By definition,

we find thatXUT = X N T. Similarly, we can also get the laWNT = XU T. This
completes the proof. O

1.1.2 Cardinality. A mapping ffrom a setSto T is a subset o6 x T such that for
¥xe S, |[f(n({x} xT)| =1,ie.,fn({x} xT)only has one element. Usually, we denote
a mappingf fromStoT by f : S — T and f(x) the second component of the unique
element off N ({x} x T), called themageof x underf.
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A mappingf : S — T is calledinjectionif for Yy € T, |f N (S x {y})] < 1 and
surjectionif |[f N(Sx{y})| > 1. If itis both injection and surjection, i.¢f,N(Sx{y})| = 1,
then it is called @ijectionor a 1- 1 mapping

Definition 1.1.1 Let S, T be two sets. If there is a bijection: fS — T, then the
cardinality of S is equal to that of T. Particularly, if E {1,2,---,n}, the cardinal
number, usually called the order of S is defined to be n, denoS| = n.

Definition 1.1.2 A set S is finite if and only if(§) < co. Otherwise, S is infinite.
Definition 1.1.3 A set S is countable if there is a bijection § — Z*.

By this definition, one can enumerate all elementsSaby an infinite sequence
S, S, +, S+ TheseZ*, P andE in Subsection 1.1 are countable, finite and infi-
nite set, respectively. Generally, we have the followirguie

Theorem 1.1.3 A set S is infinite if and only if it contains a countable subset

Proof If S contains a countable subset, by Definitioh.3 it is infinite. Now if S is
infinite, chooses; € S, 5, € S\ {1}, € S\ {S, S}, .0y ST E S\ {S1, S, -, St )ye... BY
assumptions$ is infinite, so for any integen > 1, the seS \ {s;, S, -, S,-1} can never
be empty. Therefore, we can always choose an elesendm it and this process will
never stop until we get an infinite sequerges,, - - -, S,, - - -, @ countable subset & [

Theorem 1.1.4 The sefR of all real numbers is not countable.

Proof Assume there is an enumeratiqnrs, - - -, rp,, - - - of all real numbers. Then list
the decimal expansion of these numbers after the decimal ptheir enumerated order
in a square array:

M =---.an@p3di4- -
f2 =---.@xa2083a4" "
M3 =---.A31832833834 " -
M4 =---.Q41042843844 " - -

wherean, is the nth digit after the decimal point of,,, Then we construct a new real
number/ between 0 and 1 as follows:

Let thebth digit b, in the decimal expansion df be a,, — 1 if a,, # 0 and 1 if
ann = 0. Thenb = .b;bybsb,- - - is the decimal expansion &f which is a real number by
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definition but difers from thenth numberr,, of the enumeration in theth decimal place
for any integen > 1. Whenceb is not in the sequenag,r,,-- -, Iy, ---. This contradicts
our assumption. O

1.1.3 Subset Enumeration.Let S be a countable set, i.e.,

6:{&’&’...’31""}'

We adopt the following convention for subsets.
Convention 1.1.1 For a subset S= {s,, S, -, S,} of &, | > 1, assign it to a monomial
3132 e SI .

Applying this convention, we can find the generator of subeét setS.

Theorem1.1.5 Under Conventiod.1.1, the generator of elements in the power $&tS)
is

G(2(B)) = Z ]_[sfs.

es=0or 1l ses

Proof LetT = {s,,S,,---,S}, | > 1 be an element ii’(&). Then it is the term
S,S, -5 InG(Z#(6)). Conversely, le, s, - - - s, k> 1be atermirG(£(&)). Then it
is the subsets,, S, - - -, &} by Convention 11.1. O

For a finite setS, we can get a closed formula for counting its subsets fohgwi

Theorem 1.1.6 LetS be a finite set. Then the number of its subsets is
|2(6)| = 2.

S
Proof Notice that for any integerl <i < |&|, there are{ | . | )subsets of cardinal-
[

ity i in &. Therefore, we find that

i=1

[S]
(6) :Z[ |?| J:2|6|_ -
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§1.2 GROUPS

1.2.1 Algebra System.Let.«# be a nonempty set. Binary operation on is a bijection
0: .« x .o/ — <. Thuso associates each ordered pairly) of elements ofer with an
elemento(a, b) that of «7. For simplicity, we writea o b for o(a, b) and refer too as a
binary operation on7. A set.«/ associated with a binary operations called to be an
algebraic systendenoted by .¢7; o).

If < is finite, let.s? = {Xx1, %o, -+, Xn}, We can present an algebraic system; o)
easily by operation table following.

X1 | XgoXy XpoXy - X1 0 Xn

X2 | X20X X200 Xy - X2 © Xn

Xn | XnO0 Xy  XpOoXp - Xn © Xn
Table 1.2.1

For example, leK = {1, a,,y} with an operatiorr determined by the following
table.

oll a B vy
111 o B vy
ala 1 v pB
BB v 1 «
yly B o 1
Table 1.2.2

Then we easily get that
lol=aoa=BoB=yoy=1,
loa=acl=q,lof=F0ol=Bloy=y0l=yy,
@of=Poa=y,aoy=yoa=pLoy=yofi=a

by Table 12.2. Notice thatxo (yo z) = (Xoy)ozandxoy = yo xfor ¥x,y,z € K in Table

1.2.2. These properties enables us to introduce the assocati’eommutative laws for
operation following.
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Definition 1.2.1 An algebraic systerfx/; o) is associative if foia, b, c € <7,
(@aocb)oc=ao(boc).

An associative syste(ws’; o) is usually called a semigroup. A systémi; o) is Abelian if
forvVa,be 7,

aob=boa
There are many non-Abelian systems. For exampleVl|€R) be alln x n matrixes
with matrix multiplicationo. We have known that the equality

AoB=BoA

does not always hold fofA, B € M,(R) from linear algebra. Whencéay,(R), o) is a non-
Abelian system. Notice that each element associated watklgment 4., is unchanging
in M,(R). Such an element is called to be a unit defined followingchiailso enables us
to introduce the inverse element of an elementdn §).

Definition 1.2.2 Let (<7; o) be an algebraic system. An eleméht o (or 1" € <7, or
1 e &) is called to be a left unit (or right unit, or unit) if fova € <7

loa=a (oracl =a or loa=aol=a).

Definition 1.2.3 Let(«7; o) be an algebraic system with a udit,. An element k& <7 is
called to be arightinverse ofa .« ifaob=1,.

Certainly, there are algebra systems without unit. For e@tantetH = {a, b, c, d}
with an operation determined by the following table.

a b ¢ d
alb ¢ a d
b,c d b a
cla b d c
did a c¢c b

Table 1.2.3

Then H, -) is an algebraic system without unit.
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1.2.2 Group. A group is an algebraic associative system with unit andrseelements,
formally defined in the following.

Definition 1.2.4 An algebraic systen¢; o) is a group if conditiong1)-(3) following
hold:

(1) (Xoy)oz=Xo(yo2),¥YXY,ze ¥,

(2) A1y € ¥ such thatly o X = X0 1y = X, X€ ¥,

B)Vxe ¥,dye ¥ suchthat y=yox=1q4.

A group ¢; o) is Abelianif it is itself Abelian, i.e., an additional condition (4)lfo
lowing holds:

(4)VX,ye G, xoy=YyoXx, VX ye¥.

For example, the systeriK( o) determined by Table.2.2 is such an Abelian group,

usually callecKlein 4-group. More examples of groups are shown following.

Example 1.2.1(Groups of Numbers) Léf,Q,R andC denote respectively sets of all
integers, rational numbers, real numbers and complex nisrdred +, - the ordinary
addition, multiplication. Then we know

Q) (Z;+), (Q;+), (R; +) and (C; +) are four Abelian infinite groups with identity O
and inverse-xfor Yx e Z,Q,R or C;

(2) (Z\ {0}; ), (Q\ {0}; ), (R \ {0};-) and (C \ {0}; ) are four Abelian infinite groups
with identity 1 and inverse /X for Yx € Z, Q, R or C.

(3) Letn be an integer. Define an equivalent relatioon Z following:
a~b e a=b(mod).

Denoted byi the equivalent class includiigWe getn equivalent classe& 1, - --, n— 1.

Let Z, = {0,1,---,n—1}. Then &.; +) is an Abeliann-group with identity0, inverse
=x for X € Z, and ¢, \ {0};-) an Abelian (i — 1)-group with identityl, inversel/x for

X € Zn \ {0}, wherel/x denotes the equivalent class including sugk With x - (1/X) =

1(moch).

Example 1.2.2(Groups of Matrixes) LeBL(n, R) be the set of all invertiblaxn matrixes
with codficients inR and+, - the ordinary matrix addition and multiplication. Then

(1) (GL(n,R); +) is an Abelian infinite group with identity,Q,, thenxn zero matrix
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and inverse-Afor A e GL(n, R), where—A is the matrix replacing each entajby —ain
matrix A.

(2) (GL(n,R); -) is a non-Abelian infinite group i > 2 with identity 1,.,, then x n
unit matrix and inversé! for A € GL(n,R), whereA - A~! = 1,,,,. For its non-Abelian,

12 2 -3
, B= .
21] [3 1]

let n = 2 for simplicity and

Calculations show that

P Y

WhenceA-B # B- A.

~4 1
5 7

Example 1.2.3(Groups of Linear Transformation) L&t be ann-dimensional vector
space oveiR andGL(V, R) the set of all bijection linear transformation ¥ We have
known that each bijection linear transformation\6fis associated with a non-singular
nx n matrix and the compositiomof two such transformations is correspondent with that
of matrixes if a fixed basis of is chosen. ThereforeGL(V, R); o) is a group by Example
12.2.

Example 1.2.4(Isometries ofE?) Let E? be a Euclidean plane. There are three basic
isometries inE?, i.e.,rotationsabout a pointreflectionsn a line andranslationsmoving
a point x,y) to (X5, y + b) for some fixeda, b € R. We have know that any isometry is a
rotation, a reflection, a translation, or their product.

If X is a bounded subset &, for example, the regular polygon shown in Fig.1
in the next page, then it is clear that an isometry leavinigvariant must be a rotation
or a reflection, can not be a translation. In this case, thaioots that leaveX invariant
are about the center of through anglesa/nforn=0,1,2,---,n— 1. The reflections
which preserveX are lines joining opposite verticestif = 0(mod2) (see Fig.2.1) or
lines through a vertex and the midpoint of the opposite etigesi1(mod2).

Let p be a rotation about the center ¥fthrough angles 2/n from the vertex 1
in counterclockwise and a reflection joining the vertex 1 with its opposite vertex if
n = 0(mod2) or midpoint of its opposite edgeni= 1(mod2).
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Fig.1.2.1

Then we know that

P"=1x, =1k Tlor=pL

We thereafter get the isometry grobp of regularn-polygon to be
Dn={p70<i<n-1,0<j<1}.

This group is usually called thaihedral groupof order 2.

Definition 1.2.5 Let(¥; o), (#Z; -) be groups. A bijection : ¢4 — 7 is an isomorphism
if
¢(acb) = ¢(a) - ¢(b)

forVa,b € ¢4. If such an isomorphisi exists, the grouf?; o) is called to be isomorphic
to (/7; -), denoted by¥; o) ~ (57 -).

Example 1.2.5 Each group pair in the following is isomorphic.
(1) %)), X* = L with (Zn; +);
(2) Klein 4-group in Table 2 with Z, x Z,;
(3) GL(V, R), dimV = nwith (GL(n, R); -).
1.2.3 Group Property. Elementary properties of groups are listed following.

P1. There is only one unity in a group(¥; o).

In fact, if there are two unitsgdand 1, in (¢;0), thenwe getd = 1,01, =1/, a
contradiction.
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P2. There is only one inverseafor a € ¢ in a group(¥¢; o).

If a;*, a,* both are the inverses afe ¢, then we get that,* = a;* cao &)t = a7,
a contradiction.
P3. (al)t=a ac¥.

This is by the definition of inverse, i.eapca?=aloa= 1.
P4. Ifaocb=aocorboa=coa,whereab,ce ¥, then b= c.

If acb=aoc, thenato(aoh) =alo(aoc). According to the associative law, we
getthatb=1,0b=(atoca)ob=a?o(aoc)=(atoa)oc=1,0c=c. Similarly, if
boa=coa, wecanalso gdi = c.

P5. There is a unique solution for equations & = b and yo a = b in a group(¥; o) for
abey9.

In fact,x = a* o bandy = bo a ! are such solutions.
Denote bya" = acao ---oa. Then the following property is obvious.

n
P6. Foranyintegersmimandabe 4, a’oca™ = a™™, (a")™ = a". Particularly, if (¢; o)
is Abelian, ther{faoc b)" = a" o b".

Definition 1.2.6 Let(¥;0) be a group, ac ¥. If there exists a least integerk 0 with
a< = 1, such k is called the order of a and denoted Ifg)c= k. If there are no positive
power of a equal tdy, a has order infinity.

Theorem 1.2.1 Let(¥;0) be a group, x ¢ and dx) = k. Then

(1) X = 14 if and only if KI;
(2)if o(X) < +00, X = x™if and only if Kl — m, and if {X) = +o, then X = x™ if and
only if | = m.

Proof If K|, letl = kd for an integed. Then
X=X = () = 18 = 1,

Conversely, ik is not a divisor ofl, let| = kd +r for integersd andr, 0 <r < k— 1.
Then we know that
X|=Xkd+r=XkdOXr=1gOXr¢1g

by the definition of order. So we get (1).
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Notice thatX = x™ if and only if X" = 14, i.e.,| — mk by (1). Furthermore, if
0(X) = +o0, thenx = x™only if | = mby definition. We get conclusion (2). OJ

1.2.4 Subgroup. Let 77 be a subset of a groug/( o). If (77; o) is a group itself, then
it is called asubgroupof (¢; o), denoted by7Z < 4. If 7 < & butZ # ¢, thens?

is called aproper subgroumf ¢, denoted by7” < 4. We know a criterion of subgroups
following.

Theorem1.2.2 Let.7Z be a subset of a groufy; o). Then(Z; o) is a subgroup of¥4; o)
if and only if 7# # 0 and ao b~ € J7 for Va,b € 7.

Proof By definition if (7; o) is a group itself, thew? # 0, there isb™! € 7 and
aoblisclosedin,i.e.,aob™ e 7 forvabe 7.

Now if 5# # 0 andao bt € 2 for Ya,b € 27, then,

(1) there existsah € 2# and 1y = ho h™ € J7;

(2) if x,y€ 7, theny? = 1, oyl € 5 and hencexo (y 1)1 = xoy e J7;

(3) the associative lawo (yo 2) = (xoy) o zfor x,y,ze 7 is hold in (¢; o). By
(2), itis also hold in77. Thus (77; o) is a group. OJ

Corollary 1.2.1 LetsA; <9 ands5 < 9. Thensin 75 < 9.

Proof Obviously, ¥ = 1,4 = 1,, € 54N SoN 5 + 0. Letx,y € 4N 5.
Applying Theorem 12.2, we get that

Xoyte A, xoyle b

Whence,
Xoy e 4N .

Thus, (71 N 7%5; o) is a subgroup ofy; o). O

Let X be a subset of a groug/( o). Define the subgroupX) generated by to be
the intersection of all subgroups & (o) which containsX. Notice that there will be one
such subgroup, i.e.4; o) at least. SAX) is a subgroup of¢; o) by Corollary 12.1. A
subgroup generated by one elemert¥; o) is usually called &yclic group denoted by
(X). The next result determines the form of each element in thgreup(X).

Theorem 1.2.3 Let X be a nonempty subset of a grdgfs o). Then(X) is the set of all
elements of the fornix - - - X&', where xe X, ¢ = +1 and s> 0 (if s = 0, this product
is interpreted to bdy).
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Proof Let S denote the set of all such elements. Applying Theorer®1we know
that (S; o) is a subgroup of¥; o). It is clear thatX c S. Whence(X) c S. But by
definition, it is obvious tha® c (X). So we get thab = (X). 0.

For a finite subgroup?’ of (¢; o), the criterion of Theorem.2.2 can be simplified
to the following.

Theorem 1.2.4 Let.s# be a finite subset of a groyf; o). Then(s#; o) is a subgroup of
(¢;0)ifand only if7Z +# @ and ao b € 77 for Va,b € 7.

Proof The necessity is clear. We prove thdfstiency. By Theorem 2.2, we only
need to check™ € JZ in this case. In fact, ldb € 2#. Then we geb™ € J# for any
integerm € Z* by assumption. But?# is finite. Whence, there are integéesl, k # |
such thato® = b'. Not loss of generality, we assurke> |. Thenb*'"! = bt ¢ 7.
Whence, §7; o) is a subgroup of«; o). O

Definition 1.2.7 Let(¥, o) be a group,7# < ¢ and ac ¢4. Define
ao  ={aohhe 7}

and
H oa=1{hoahe 7},

called the left or right coset of?, respectively.

Because the behavior of left coset is the same of that thé nyé only discuss the
left coset following.

Theorem 1.25 Let.77 < ¢ with an operatiorr and ab € 4. Then

(1) forVbeao o7, a0 5 =bo J;
(2) ao# =bos#ifandonlyifbloac J7;
(3) aoc s =bos oraoc ' Nbo =0.

Proof (1) If b € ao 7, then there exists an elemdne 7 such thatb = ao h.
Thereforebo 57 = (aoh)o 7 =ao(ho s =ao .

(2) If ao =b o 27, then there exist elemenitg, h, € .77 such thatao h; = bo h,.
Whenceb™oa = h,oh;* € #. Conversely, it o a € 7, then there existh € 7
suchthabtoa = h,i.e.,a € bo.#. Applying the conclusion (1), we gab.7# = bo J#.

(3) Infact, ifao 7 Nbo 7 + 0,letce (ao s Nbo ). Thenco 7 =ao 7
andc o 7 = b o s by the conclusion (1). Thereforae 57 = bo 7. O
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Let us denote by /77 all these left (or right) cosets ard : .77 the resulting sets
by selecting an element from each left coset/#f, called theleft coset representation
By Theorem 12.5, we get that

9= ] tor

teg:.
andV¥g € ¢ can be uniquely written in the fortme hfort € & : 57, h € . Usually,
|9 . | is called thendexof .77 in ¢. For such indexes, we have a theorem following.

Theorem 1.2.6 (Lagrange)Let 77 < ¥4. Then¥| = ||| . 7).

Proof Let
G = U to .

ted:

Notice thatt; o 77 Nty 0 7 = 0 if t; # t, and|t o 57| = |.77|. We get that
4= > tost =|HIY : H). O
teG.

Generally, we know the following theorem for indexes of sudps. In fact, Theo-
rem 12.6 is just its a special case df” = {1}, thetrivial group.

Theorem 1.2.7 Let.# < 77 < ¢ with an operatiore. Then(¥ : 7)o . %) is a left
coset representation o¥” in ¢. Thus

G . | =4 . AN . K|

Proof Let4 = |J tosands# = |J uo.#.Whence,

teg:.# uel.

&G = U touo . 7.
ted. 7, ue . %
We show that all these coseétsu o %" are distinct. In fact, itouo 7 =t oU o % for
somet,t’ € G : 7, u,u € . o, thentlot’ € 2 andt o 77 =1’ o # by Theorem
1.2.5. By the uniqueness of left coset representation¥ in .7#, we find thatt = t'.
Consequentlylo 7 = U o % . Applying the uniqueness of left coset representations in
. K, we get thau = u'. O

Let 7 < ¢ and.#” < ¢ with an operatiorn. Define

HYG ={hoghe #,ge 9}
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The subgroups? and_#" are said to beermuteif 779 = ¢.7. Particularly, if for
Yg € 4, 9o s = H o (g, such subgroups? are very important, called theormal
subgroupf (¥4; o), denoted by7Z < ¢.

Theorem 1.2.8 Let(¥; o) be a group and’Z < ¢4. Then the following three statements
are equivalent.

(1) Xo X = oxforV¥xe ¥,
(2) xtost ox=# forVxe ¥;
(3) xtohoxe s for¥x e 4 and he 7.

Proof For (1) = (2), multiply both sides of (1) bx %, we get (2). The (2)= (3)
is clear by definition. Now for (3= (1), leth € 2 andx € 4. Then we find that
hox=Xo(xtohox) € xos# andxoh = (x1)™tohox e s o x. Therefore,
Xo H = I oX O

Obviously,{14}<¥ and¥ <«¥. A group (4; o) is calledsimpleif there are no normal
subgroups dferent from (14}; o) and (¢; o) in (¢; o).

Although it is an arduous work for determining all subgroumsnormal subgroups
of a given group. But there is little fficulty in the case of cyclic groups.

Theorem 1.2.9 Let¥ = (X) and.7Z < ¢ with an operatiore. Then

(1) if ¢ is infinite, .77 is either infinite cyclic or trivial;
(2) if ¢ isfinite,.2Z is cyclic of order dividing n. Conversely, to each positingsbr
d of n, there is exactly one subgroup of order d, i<ﬁ'.‘{d>.

Proof (1) If 7 is trivial, the conclusion is obvious. So lgf’ # {1,-}. Then there
is a minimal positive numbek such that# contains some positive powef # 1.
Obviously,(X) c /. If X' € 7, we writet = kq+r, where 0< r < k- 1. Then we find
thatx = (xX€)"90 X' € 2. Contradicts the minimality df. Whencey = 0 andk|t. Hence
X e <xk> and? = <xk>. If ¢ is infinite, thenx has infinite order, as doe&. Therefore,
¢ is also infinite.

(2) Leto(xX) = n. Then|s7| dividesn by Theorem 12.6. Conversely, suppos#n.
Theno(x"9) = d and|<x”/d>| = d. If there is another subgroup®) of orderd. Then
x3¢ = 1,, andn|sd. Consequently, we get/d dividess. Whence(x®) < <x”/d>. But they
both have the same ordéyso(x®) = <x”/d>. O

Certainly, every subgroup of a cyclic group is normal. Thiofeing result com-
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pletely determines simply cyclic groups.

Theorem 1.2.10 A cyclic groupXx) is simple if and only if (x) is prime.

Proof The suficiency is immediately by Theorems2l6 and 12.9. Moreover(X)
should be finite. Otherwise, the subgrc(ugé) would be its a normal subgroup, contradicts
to the assumption. By Theoren219, we know thab(x) must be a prime number. [J

1.2.5 Symmetric Group. LetQ = {a;, ay, - - -, a,} be ann-set. ApermutationronQ is a
bijectiono : Q — Q. The cardinalityQ| of Q is called thedegreeof such a permutation
o. Denoted bya” the image obr(a) for 1 <i < n. Theno can be also represented by

[al a - an]
g = .
a &

Usually, we adopf2 = {1, 2, - - -, n} for simplicity. In this case, we represantby

1 2 - n
o= .
1 29 ... n°
Let o, T be two permutations of2. The productrr is defined by

"= (), fori=12---,n.

1 2 3 4 12 34
o= , T= .
2 41 3 214 3
Then we get that

1 2 3 4|1 2 3 4 1 2 3 4
oT = = .
2 41 3J]12 1 4 3 1 3 2 4

Let o be a permutation of such that

For example, let

a] =ap,a) =ag,---,a, 1 =amap=a

and fixes each elemefit \ {a;,a,,---,an}. We call such a permutatiom a m-cycle
denoted it by &, a, - - -, ay) and its elements byf]. If m = 1, o is the identity; ifm = 2,
i.e., @1, &), such ar is calledinvolution
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Theorem 1.2.11 Any permutatiorr can be written as a product of disjoint cycles, and
these cycles are unique.

Proof Let o be a permutation o® = {1,2,---,n}. Choose an elememt € Q.
Construct a sequence

a= aa'o,aff,affz,...,a”k’...,
wherea’” € Q for any integeik > 0. Whence, there must be a least positive integer
such thata™ = a”, 0 < i < m. Nowifi # 0, we get thatg’™ )" = (a”)”. But
a’™" # a” " by assumption. Whence’" = (& )" # (a” ')"a”, a contradiction. So
i =0,i.e.,a" = a, orin other wordsr; = (a,a”,a”,---,a”" ') is anm-cycle.

If Q\[71] = 0, thenm = nando is ann-cycle. Otherwise, we can choodse Q\ [74]
and get as-cyclet, = (b, b7, ---,b" ).

Similarly, if chooseQ \ ([r1] U [t2] # 0, choosec in it and find al-cycle 73 =
(c,co, -, ).

Continue this process. Because of the finitene$3,afe finally get an integerand
cyclesty, 1p,- -+, 1y such thatQ \ ([ry] U [l U---U[r] = 0 ando = 71715+ - 1y With
disjoint cyclesr;, 1 < i < t. The uniqueness af, 1 < i < tis clear by their construction.
0

Notice that
(al? g, -, am) = (al’ a2)(a1’ a2) e (al? am)

We can always represent a permutation by product of innarstby Theorem .2.11. For
example,

12345
= (1,2,3)(4,5
[23154]( J59)

(1.2)(L.3)(4.5) = (2,3)(1. 2)(4.5)
(2,3)(L, 2)(1, 3)(4. 5)(1. 3).

Definition 1.2.8 A permutation is odd (even) if it can be presented by a prodfiodd
(even) involutions.

Theorem 1.2.12 The property of odd or even of a permutatierns uniquely determined
by o itself.
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Proof Let P be a homogeneous polynomial with form

P= l_l (% = X;).

1<i<j<n

Clearly, any permutation leavésunchanged as to its sign. For example, the involution
(x1%2) changesx; —x,) into its negativeX,—xX,), interchangesg —x;) with (x,—x;), j > 2
and leaves the other factor unchanged. Whence, it chdahgesP. This fact means that
an odd (even) permutatianalways changeB to —P (P), only dependent oo itself. [

The next result is clear by definition.

Theorem 1.2.13 All permutations and all even permutations Q@form groups, called
the symmetric group Sor alternating group A, respectively.

Let 7, o be permutations o2 ando = (a1, &, - - -, am). A calculation shows that
ot = (af, a5, -, an).

Generally, if
O =0102"""05
is written a product of disjoint cycles for an integer 1, Then

1

’

TOT — = 01050,
where theo is obtained fromur; replacing each entrgtin o by 7(a).
1.2.6 Regular Representation.Let (¢; o) be a group with

G ={a =1y, @, -, a0}
ForVYa € ¢4, we know these elements

A oa,pod, ,a0q

or

-1

-1 -1
ai oal,ai OaZ""’ai © an

still in ¢. Whence, they are both rearrangementa; o, - - -, a,. We get permutations

al a2 . arl ) [ a )
O-a: = ’
Qoaq A@og - Aoy aoaq
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a a e an a
Ty = = .
Y ai_loal ai_loaz ai_loan ai‘loa
In this way, we get two sets ofpermutations

R?f = {O-a]_’ O-az, o ',O'an} and L(f = {Ta]_’ Taz, o ',Tan}-

Notice that each permutati@gnin Ry or Ly is fixed-free, i.e.a* = a,a€ Qonlyif ¢ = 14.
We sayRy, Ly theright or left regular representatioof ¢, respectively. The cardinality
|| = nis called thedegreeof Ry, or Ly.

Example1.2.6 LetK = {1,a,8,y} be the Klein 4-group with an operatiendetermined
by Table 12.2. Then we get elements,, o, 0, 0, in R¢ as follows.

o1 = ()@B)),

(Y: = 1’ b b
o ¢ 1y B (L, a)(B.7)
1 apy
= =(1
o 5y 1 a (LB) (@, ),
1 a By
= = 1
Oy VB a1 (L y)(a,p),

That is,
Rec = {(D@B)), (L, )(B. 7). (1, 5)(a,y), (L, y)(a. B)}-

Theorem 1.2.14 R, and Ly both are subgroups of the symmetric group. S

Proof Applying Theorem 2.4, we only need to prove that for two integérg 1 <
I, ] <N, 0404 € Ry andry 7y € Ly. Infact,

a a a
0g0aq = = = Ogoa; € Ry,
aog aoa ao g o g;

a a a
ToTa = =
Qj ] a.l—l oa aj—l oa aJ—l o a1—l oa

a
i [ (aioaj)‘loa):Ta“’aj €Ly.
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ThereforeR, andLy both are subgroups &. O

The importance oR, andLy are shown in the proof of next result.

Theorem 1.2.15(Cayley) Any group¥is isomorphic to a subgroup of.S

Proof Let (¢4;0) be a group withg = {a; = 1l4,a,---,a,}. Define mappings
f:9 - Ryandh : ¢4 — Ly by f(a) = 04, h(&) = 74. Thenf andh both are
one-to-one because éfa;) # f(a;), h(a) # h(a)) if & # a;. By the proof of Theorem
1.2.14, we know that

f(a o)) = Tae = Ta0s = f(@)f(a),

h(a| o} aj) = Tajoaj = TaTaj = h(a|)h(al)

for integers 1< i, j < n. So f andh are isomorphisms by definition. Consequeniyis
respective isomorphic to permutatioRg andL. Both of them are subgroups 8f, by
Theorem 12.14. O

§1.3 HOMOMORPHISM THEOREMS

1.3.1 Homomorphism. Let (¥;0), (¢’;-) be groups. A mapping : ¥4 — ¥’ is a
homomorphisnif

¢(ac b) = ¢(a) - ¢(b)

for Ya,b € 4. A homomorphismy is called to be anonomorphisnor epimorphismf
it is one-to-one or surjective. Particularly,dfis a bijection, such a homomorphis#ris
nothing but ansomorphisnby definition.

Now let¢ be a homomorphism. Define tiraagelm¢ andkernelKerg respectively
as follows:

Img =9 ={¢(@)|ge 9},
Kerg ={gl¢(Q) =1y, g€ ¥ }.
For example, letZ; +) and Zn; +) be groups defined in Example21l. Define
¢ 7 — Zn by ¢(X) = x(mod). Theng is a surjection fromZ; +) to (Z; +).
Letg : 4 — 2 be a homomorphism. Some elementary properties of homomor-
phism are listed following.
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H1. ¢(x") = ¢"(X) for all integers n, xe ¢4, whenceg(ly) = 1, andg(x?) = ¢71(X).

By induction, this fact is easily proved for> 0. If n = 0, by ¢(X) = ¢(xo 1y) =
#(X) - ¢(1ly), we know thatp(ly) = 1. Now letn < 0. Then L, = ¢(1ly) = ¢(X" o x™") =

P(X") - p(x"), .8, p(X") = ¢7H(X ") = ($7"(¥)) 7 = ¢"(x).
H2. o(¢(X))|o(X), x € 4.

In fact, Leto(x) = k. Thenx® = 1,,. Applying the property H1, we get that

$"(x) = ¢(X) = ¢(1y) = Ls.
By Theorem 12.1, we get thad(4(x))|o(X).

The following property is obvious by definition.

H3. If x oy =yo X, theng(x) - ¢(y) = ¢(y) - #(X).
H4. Im¢ < 77 and Kep < 9.

This is an immediately conclusion of Theorem2.2 and 12.8.

Theorem 1.3.1 A homomorphism : 4 — 7 is an isomorphism if and only Kerg =
{1y}

Proof The necessity is clear. We prove thdiguency. Let Kep = {14}. We prove
thate is a bijection. If not, leip(x) = ¢(y) for two different elemenk,y € ¢, then

p(Xoy ™) =¢(X) - ¢H(Y) = 1

by definition. Thereforex o y?! € Kerg, i.e.,xoy ! = 1,. Whence, we gex = y, a
contradiction. O

1.3.2 Quotient Group. Let (¢; o) be a group,4, 7, 74 < 4. Define themultiplica-
tion and inverse of set by

A = {Xoy|xe,ye ) and AP ={xX"|xe ).

It is clear thati#1(745.743) = (7#1.76).74. By this definition, the criterion for a subset
A C ¢ to be a subgroup of can be written by

HHC A
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Now we can consider this operation #/.7# and determinavhen it is a group
Generally, forva, b € ¢4, we do not always get

(ao ) (bo ) e G|
unless7Z < ¢. In fact, we have the following result f&f / 7.
Theorem 1.3.2 ¢ /. is a group if and only if7# is normal.
Proof If 27 is a normal subgroup, then
(a0 #)(bo ) =ao(# ob)o s =ao(bo#)o# =(@ob)o

by the definition of normal subgroup. This equality enablesaucheck laws of a group
following.

(1) Associative laws it/ | 77 .

[(@c ) (bo A)(Co#) = [(acb)oc]ot =[ac(boc)] o

(@c )(bo )(co ).

(2) Existence of identity element 1, in /2.
Infact, ky/,p = 10 7 = .
(3) Inverse element fofx o ¢ € & | .

Because ofX™ o s#)(xo ) = (X o X) 0 # = # = 1y,», We know the inverse
element ofxo 57 € G/ isx L o .
Conversely, it7 /.57 is a group, then foao 7, bo 57 € 4|7, we have

(@ao ) boH)=Cco .
Obviously,ac b € (a0 ) (b o .7¢). Therefore,
(@0 ) bos#)=(aob)o 7.
Multiply both sides bya™?, we get that
H obo# =bo .
Notice that L € 27, we know that

bo st/ c Hobo# =bo A,
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i.e.,bos? ob™ c 7. Consequently, we also fift! o 7 o b ¢ 27 if replaceb by b,
i.e.,# c bo# obt. Whence,

blo# ob=s#
for Vb € 4. Namely,s# is a normal subgroup & . O

Definition 1.3.1 If ¢/ is a group under the set multiplication, we say it is a qudtien
group of¥ by 7.

1.3.3 Isomorphism Theorem. If 27 is a normal subgroup ¢f, by Theorem 13.2 we
know that¥ /.7 is a group. In this case, the mapping ¥ — ¢/ determined by
#(X) = X o S is a homomorphism because

p(xoy) = (Xoy) o A = (X0 H)yo H) = $(X)¢(Y)

forall x,y € ¢4. Itis clear that Inp = ¢ /.7 and Kep = 5#. Such ap is called to be
natural homomorphisrof groups. Generally, we know the following result.

Theorem 1.3.3(First Isomorphism Theorem)f ¢ : ¢ — 27 is a homomorphism of
groups, then the mapping: x o Kergp — ¢(X) is an isomorphism fror /Kerg to Ime.

Proof We have known that Ker<1 ¢ by the property (H4) of homomorphism. So
¢ |Kerg is a group by Theorem.3.2. Applying Theorem B.1, we only need to check
that Kek = {1y/kers}. In fact, x o Kerg € Kerg if and only if x € Kerg¢. Thusg is an
isomorphism from fron¥ /Kerg to Img. O

Particularly, if Imp = 7, we get a conclusion following, usually called thienda-
mental homomorphism theorem

Corollary 1.3.1(Fundamental Homomorphism Theoreif)y : 4 — 7 is an epimor-
phism, ther¥ /Kerg is isomorphic to7.

Theorem1.3.4(Second Isomorphism Theorergt. 77 < 4 and. 4" <¥. Then N /'
¢ and xo (' N .A) — Xo 4 is an isomorphism from?’ /7 N N t0 N | N .

Proof Clearly, the mapping : X —» Xo.4" is an epimorphism fror#?’ to N 7 | NV
with Kerr = 7 N 4. Applying Theorem 13.3, we know that it is an isomorphism from
| NN WOIN|N. O

Theorem 1.3.5(Third Isomorphism Theorem)}et .Z, /" <1 ¢ with .4 < .#. Then
MIN QG| N and(G | N)(M | N) =G| A .
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Proof Define a mapping : ¢/ .4 — G |.# by p(Xxo .A) = Xo .. Then

el(xoA)o(yo )]

el(xoy)o AN] = (Xxoy)o.#
(xo.)o(yo M) =p(XoN)op(yo.N)

and Kep = Z /., Imp = 4G /.#. Soyp is an epimorphism. Applying Theorem313,
we know thatp is an isomorphism fromi4 / ) /(A | V)10 Y | # . O

§1.4 ABELIAN GROUPS

1.4.1 Direct Product. An Abelian groupis such a group¥; o) with the commutative
lawaob = boahold fora,b € 4. The structure of such a group can be completely
characterized byirect product of subgroup®llowing.

Definition 1.4.1 Let(¥; o) be a group. If there are subgroupsB < ¢ such that

(1) for Vg € ¢, there are uniquely & A and be B such that g= ao b;
(2)aocb=Dboaforae Aandbe B, then we say¥; o) is a direct product of A and
B, denoted by = A® B.

Theorem14.1 If ¥ = A® B, then

(1)A< ¥ and B« ¥;
(2)¥ = AB;
(3)ANB = {ly}.

Conversely, if there are subgroupsB\of¥ with conditions {)-(3) hold, then¥ = A®B.

Proof If ¥ = A® B, by definition we immediately get th&f = AB. If there is
ce AnBwithc # 14, we get

c=coly, ceA 1,€B

and

c=1y0c, 1y€A ceB,

contradicts the uniqueness of direct productASoB = {14}.
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Now we proveA <1 ¢. ForVa € A, g € ¢, by definition there are uniquely;, € A,
0> € B such thag = g, o g,. Therefore,
gloacg = (diog)  cao(giog)=0; o0 cacgiog,
= giloaogioGlog=giloacg €A
So0A < ¥. Similarly, we getB < ¥.
Conversely, if there are subgroupsB of ¢ with conditions (1)-(3) hold, we prove

¢4 = A®B. Forvg € ¢4, by ¥ = ABthere area € Aandb € B such thag = aob. If there
area’ € A b’ € Balso withg = & o b, then

altoa=bobleAnB.

ButAnB = {14}. Whencegloca=b'ob? =1y, i.e.,a= a andb = b’. So the equality
g = ao bis unique.
Now we proveao b = bo aforae Aandb € B. Notice thatA < ¢4 andB < ¢4, we
know that
aoboalobt=ao(boatob?t)ecA

and
aoboalob?=(achoa?t)obleB.

ButAn B ={1,}. So
aoboalob?l=1, i.e, aob=boa

By Definition 14.1, we know that/ = A® B. O

Generally, we define theemidirect producof two groups as follows:

Definition 1.4.2 Let¥ and.”# be two subgroups of a groyjy’’; o), a : 7 — Aut¥ a
homomorphism. Define the semidirect proddct, .77 of ¢ and. 7 respect tax to be

G %o ={(0.h)lge Y. he 7}
with operation determined by
(91, 1) - (92, h2) = (Q1 0 g‘z’(“l"l, hy o hy).

Clearly, if a is the identity homomorphism, then the semidirect prodtist, 77 is
nothing but the direct produét ® /7.
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Definition 1.4.3 Let (¥; o) be a group. If there are subgroups.A,,---,As < ¢ such
that

(1) for Vg € ¢, there are uniquely;ae A;, 1 <i < s such that
g=a0oao---0oas

(2)acaj =ajoaq forae A and be Aj, wherel <i, j < s, i# j, then we say¥; o)
is a direct product of A Ay, - - -, A, denoted by

G =AMA® - A
Applying Theorem 4.1, by induction we can easily get the following result.
Theorem14.2 If A, As,---,As< ¥, thend = A @ A, ® --- ® A if and only if
D)A<Y, 1<i<s;
QY =AR- A
Q) (Ar--AaA- - A)NA = {ly}, 1<i<s,
1.4.2 Basis.Let¥ = (aj,a, -, as) be an Abelian group with an operationlf
aliloalézo---oalész 1y

for integersky, ks, - - -, ks implies thata}Q =1y, i = 1,2,---,s, then sucha, ay, - - -, as
are called @asisof the Abelian group¥; o), denoted by#A(¥) = {a;,a,,---,as}. The
following properties on basis of a group are clear by debniti

Bl. If 9 = A Band#A(A) = {a,a,---,as}, B(B) = {by,by,---, by}, then#(¥) =
{al’aZ"",aS3b1’b2""’bt}'

B2. If B(¥Y) = {aq, @, --,as) and A= (as, ap, -+, &), B = (&1, &2, -, as), Where
1<l <s, theng = A® B.

An importance of basis is shown in the next result.

Theorem 1.4.3 Any finite Abelian group has a basis.

Proof Let¥ = (a;,a, -, &) be an Abelian group with an operation If r = 1,
then% is a cyclic group with a basi®#(¥) = {a;}.

Assume our conclusion is true for generators less th&ke prove it is also true for

I generators. Let

afoayo-oaf =1y (1-1)
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for integersky, k, - - -, k.. Definem = min{ky, ks, - - -, k- }. Without loss of generality, we
assumean = k;. If m= 1, we find that

alzagkzoagkao.“oar—kr'

Hence¥ = (ay, as, - -, &) and the conclusion is true by the induction assumption.
So we can assume our conclusion is true for the powex déss thanm and find
integers;, s fori =2,---,r such that

k=tm+s, 0<s <m
Let
aj=ajoadlo---oal. 1-2)
Substitute (X 2) into (1- 1), we know that
(@)"oafo-oa¥ = 1.

If there is an integer, 1 < i < r such thats # 0, then by the induction assumptisfi,has
a basis. So we can assume that

and get
@)" = 1.

Notice that
t

a1 =ajoa %o 0",
Whence¥ = <a1 ay, - a) Now we prove that
For this objective, we only need to check that

<a§> N <a27“"al'> = {1E¢}

In fact, leta e <a1> N{ap,---,a). Then we know that

a=(a) =(aoajo-oar) =ajooar
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Therefore,
aoal o oglih =1, (1-3)
By the Euclidean algorithm, we can always find an intedysuch that
O<l-dm<m

By equalities (1~ 1) and (1- 3), we get that

t2|—|2—dm

aIl—dm o az tri—l —dm _

[ Ie) ar = 1%.
By the induction assumption, we must hdvedm= 0. So

a=(a) = (a)" = L.
Whence, we get that

G =(a) @@, a).
By the induction assumption again, {eb, - - -, &) = (b)) ® - - - ® (b;). We know that

G =(@)by®- - o).

This completes the proof. 0J

Corollary 1.4.1 Any finite Abelian group is a direct product of cyclic groups.

1.4.3 Finite Abelian Group Structure. Theorem 14.3 enable us to know that a finite
Abelian group is the direct product of its cyclic subgroups.fact, the structure of a
finite Abelian group is completely determined by its ordehaTis the objective of this
subsection.

Definition 1.4.4 Let p be a prime numbef¥; o) a group, ge ¥ and 7 <¥. Then g
is called a p-element, ag# a p-subgroup if () = p or |.77| = p' for some integers
k,1>0.

Definition 1.4.5 Let(¥, o) be a group with¥| = p*n, (p,n) = 1. Then each subgroup
A < G with |7 = p* is called a Sylow p-subgroup (¥#; o).

Theorem 1.4.4 Let (¢;0) be a finite Abelian group with¢| = pi*p5>--- ps®, where
P1, P2, - -, Ps @re prime numbers, gferent two by two. Then

G =(a) ®@(a) ® - ®as)
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with o(a) = p* for1<i <s.

Proof By Corollary 14.1, a finite Abelian group is a direct product of cyclic groups,
le.,
G =(a)®(@)® - ®(a).

! 2---pﬁ“ with p;; € {p, 1 <i < s}, 6, >0forl<j<I We prove that can be

i1 Mip

uniquely written as; = by ob,o---oby such thab(b;) = pﬁ”, biobj =bjoby, 1<i,j <L

If there is an integer, 1 < i < r such thato(a) is not a prime power, led(g) =

Now leto(a)) = mym, with (mg, mp) = 1. By a result in elementary number theory,
there are integens,, U, such thau;m;, + u,m, = 1. Whenceg ™2™ = g™
a”™ o a"™. Choosec; = a”™ andc, = &"™. Thenc® = 15 andc}? = 1,. Whence,

o(cy)|my, o(cy)|m,. Because; o ¢, = ¢, o ¢ and ©(cy), o(cy)) = 1, we know thatmym, =

o a1U2m2 =

o(a) = o(cyoCy) = 0o(cy)o(c,). So there must be(c;) = my ando(c,) = M. Repeating the

previous process, we finally get elemebitsh,, - - -, by € 4 such thag, = b;obyo---o by
with O(bj) = piﬂjij, b o bj = bj ob,1<i,j<l.

Whence, we can assume that the order of each cyclic group iditéct product

G =(ap®(@a)®- - (a).

is a prime power. Now if the order dh,), (&,), -+, (&) are all with a same bass,
replacinga;, o a, o - - - o &, by a we get a direct product

Y =(a)®(a)®- - ®(as)
witho(a) = p", 1 <i <. O
Theorem 1.4.5 Let(¥; o) be a finite Abelian p-group. If

Y=AA®---®A and ¥ =B;®B,®---® B,

where A, B;j are cyclic p-groups foll < i <r, 1 < j < s, then s= r and there is a
bijectionw : {A, Ao, -+, A} = {By, By, - -, B} such thatlA| = |[@(A), 1 <i <.

Proof We prove this result by induction af|. If || = p, the conclusion is clear.
Define¥, = {a € ¥|aP = 14} and¥P = {aP|a € ¢¥}. Notice that

G=AMA,® --QA.

If & € A isthe generator ofy, 1 <i <r, then#(¥) = {a,a,---,a&}. Leto(a) = p°.
Without loss of generality, we can assume teat &, > --- > & > 1. Then#(¥,) =
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@A af andg) = P Ife = e = - = g = 1, then®P = {1).
Otherwise, le; > € > -+ > €y > €nyy = -+~ = & = 1. ThenB(¥P) = (&}, a), - - -, ).

Now letb; € B; be its a generator for ¥ i < s. Then#(¥) = {by,b,,---,bs}. Let
o(b)) = pfi,1 <i < swith f; > f, > - > fo. Similarly, we know thai%,| = pS. Sos=r.
Now if ¥P = {14}, there must b, = f, = --- = fg = 1. Otherwise, if¢P # {14}, let
fi>fh> > fiy> fyoa =+ = fs= 1. Then®B(¥P) = (b}, b, -, b, }. Notice that
|9P| < |¢4|, by the induction assumption, we get tlmat= ' ande = fifor 1 <i <.
Thereforep(a)) = o(b) for 1 <i <r. Now definew : {A, As,---, A} = {By, By, - -+, By}
by w(A) = B, 1 <i <r. We getA| = |w(A)| for integers 1< i <r. O

Combining Theorems.4.4 and 14.5, we get the fundamental theorem of finite
Abelian groups following.

Theorem 1.4.6 Any finite Abelian groulf; o) is a direct product
G =(a) @ (@)@ ®(as)

of cyclic p-groups uniquely determined up to their cardityal

These cardinalities(a;) |, | {(ax) |, -+, | (asy| In Theorem 14.6 are defined to be the
invariants of Abelian group ¢; o), denoted by Inva. Then we immediately get the
following conclusion by Theorem.4.6.

Corollary 1.4.2 Let¥, 7 be finite Abelian groups. Thefi ~ 77 if and only ifinvard =
InvarsZ .

§1.5 MULTIGROUPS

1.5.1 MultiGroup. Let% be a setwith binary operatiof A pair ¢; O) is analgebraic
multi-systenif for Ya, b € ¢ ando € O,aob e S?providedao b existing.
We consider algebraic multi-systems in this section.

Definition 1.5.1 For aninteger n> 1, an algebraic multi-systeﬂfff; 0) is an n-multigroup
if there are¥,, %, ---,%, C 7,0 = {oi, 1 <1 < n}with
—~ n
1)¥ = _L_Jl%;

(2) «; ol._) isagroupforl <i<n.
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ForYo € O, denoted by, the group ¢; o) and¥™ the maximal groug(¢; o), i.e.,
(@M o) is a group but@M®* U {x}; o) is not for¥x e G\ ¢¥Min (% 0).

Definition 1.5.2 Let(%;; O;) and(%; O,) be multigroups. The(#;; O;) is isomorphic to
(¢; Oy), denoted by, 1) : (%; 0y1) — (%; Oy) if there are bijections} : 4 — %, and
.1 O, — O, such that for ab € ¢, ando € Oy,

P ao b) = F@)(c)d(b)
provided &b existing in(%,; O:). Such isomorphic multigroups are denotedy; O,) ~
(é%; 62)
Clearly, if (%, 0O,) is ann-multigroup with ¢, ) an |somorph|sm the image 0?(L)

is also am-multigroup. Now let ¢, ¢) : (%, O,) — (%, O,) with G = U G, G = U i,

O; = {os, 1 <i < njandO, = {os, 1 <i < n}, then foro € O, %omax IS |somorph|c to

ﬁ(%)['(‘sx by definition. The following result shows that its conversaliso true.

Theorem 1.5.1 Let(%;; O;) and(¥; O,) be n-multigroups with

G = O%i, Gy = O%i,
i-1 i-1

Or={oir, 1<i<n},Op={op, 1<i<n} If¢: % — % is an isomorphism for each
integer i 1 < i < nwith ¢ly, gy = dilegng, for integersl < k|1 < n, then(f%; 61) is
isomorphic to(&%; O,).

Proof Define mappings : % — % and. : O; — O, by
9(a) = ¢i(a) if a€ % c & andi(oy) = oy for each integer k i < n.

Notice thatgyly, vy = dileng, for integers 1< kI < n. We know thatd, ¢ both are

bijections. Leta, b € ¢ for an integers, 1 < s< n. Then
Hao1sb) = ps(ac1sb) = ¢5(a) 025 ps(b) = F(@)e(015) (D).

Whence, ¢,1) : (%1; 01) — (%1; Oy). m

1.5.2 Submultigroup. Let (f?; O) be a multigroup,%zc % andO c O. If (%7; O)is
multigroup itself, then.¢Z’; O) is called asubmultigroup denoted bycéiz; 0) < (5!7; 0).
Then the following criterion is obvious for submultigroups
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Theorem1.5.2 An multi-subsysteW?; O)ofa muItigroup(??; O) is a submultigroup if
and only if. 77 N ¥, < 4™ for Yo € O.

Proof By definition, if (,%7; O) is a multigroup, then fo¥o € O, A NYG,isa group.
Whence,Z N ¥, < gmax,

Conversely, it N, < @gm& for Yo € O, then.# N %, is a group. Therefore,
(,77; O) is a multigroup by definition. O

Applying Theorem 12.2, we get corollaries following.

Corollary 1.5.1 An multi-subsysterfy#’; O) of a multigroup(¢/; O) is a submultigroup
if and only if aoc b € AN @Ym¥for Yo € O and gb € j‘?provided ao b existing in
(4 0).
Particularly, ifO = {o}, we get a conclusion following.
Corollary 1.5.2 Leto € O. Then(#; o) is submultigroup of a multigroup?; O) for
A c 4 if and only if(#; o) is a group, i.e., @ bt € s# fora,b e 7.
A multigroup (Q O) is said to be asymmetric n-multigrouyif there are.;,.%5,
e, I, 0 =10, 1<i<n}with
—_ n
1) = _U1<5ﬂi;
i=
(2) (A4; oi) is a symmetric groufo, for 1 < i < n. We call then-tuple (4], |Q2], - - -, |nl])
thedegree of the symmetric n-multigro(fﬁv; 0).

Now let multigroup ¢; O) be an-multigroup with%;, %, - -, %, ¢ 4, 0 = {o;, 1 <
i <n}. Foranyinteger, 1 <i <n. Let¥, = {ay = 1y, . @02, . an, }. FOrYay € Y

ai1 ai2 e Qin a
Oay = = )
droak @208k -+ Qn, ©aKk ao ai

define

_ a1 a2 ain,, 3 a
T T 1ia aloa. ... aloa | at
" o1 G © A2 & © @, g oa
Denote byRy, = {0a;, 0aps T, } @NA Ly = {7Ta;,Tay,  +5 s, } @NA X[ OF X; the
induced multiplication irR; or Ly. Then we get two sets of permutations

n

n
R7 = U{O'amo'aaz""’o'amoi} and Ly = U{Tail’Taiz’“.’Tainoi}'

i=1 i=1
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We sayR;, L theright or left regular representatiorf g, respectively. Similar to
Theorem 12.15, theCayleytheorem, we get the following representation result fortmul
groups.

Theorem 1.5.3 Every multigroup is isomorphic to a submultigroup of synrroehulti-
group.

Proof Let multigroup ¢;0) be an-multigroup with%,%,---,%, c 4, O =
{oi, 1 < i < n}. For any integeli, 1 < i < n. By Theorem 12.14, we know that
R4 andLy both are subgroups of the symmetric grdoip for any integer 1< i < n.
Whence, R7; O) and (; O" both are submultigroup of symmetric multigroup by defi-
nition, whereO" = {x/|1 <i < n}andO' = {x/]1 <i < n}.

We only need to prove thaf% O) is isomorphic to R7; O). For this objective,
define a mappingf(¢) : (¢;0) — (R O") by

f(ak) = o5, and (o)) = x|

for integers 1< i < n. Such a mapping is one-to-one by definition. It is easily ®tbat

f(aii o ak) = Oajojax = U aj ><ir Oay = f(aij)t(oi)f(aik)

for integers 1< i,k,| < n. Whence, {,¢) is an isomorphism from@; O) to (R7 O").

Similarly, we can also prove th%N( 0) ~ (L o). U

1.5.3 Normal Submultigroup. A submultigroup (%7 O) of (f?; O) is normal, denoted
by (#7: 0) <1 (¢; O) if for Vg € 4 andVo € O

go ' = A og,

whereg o A = {gohlh e %providedg o h existing and.Z o g is similarly defined.
Then we get a criterion for normal submultigroups of a muttigp following.

Theorem 1.5.4 Let(7:0) < (¢;0). Then(#; 0) <1 (¢: O) if and only if

A NG gmax
for Vo € O.

Proof If 27 N @M g @M for Vo € O, thengo JZ = # o g for Yg € 4™ by
definition, i.e., all suclyg € ¢ andh € 7 with gohandhogdefined. So@(;iz; O)<1(5¢~; 0).
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Now if (#; 0) < (¢: O), it is clear that# N ¥Ma < gMafor Vo e O, O

For a normal submultigroup% O) of (52; 0), we know that
(aoj?)ﬂ(b-j?):(b or ao # =b- .
In fact, ifce (ao %7) N(b- j‘?) then there existls,, h, € # such that
aohy=c=Db-h,
Soa! andb™ exist ing™* and¥M#, respectively. Thus,
bt -aohy=bt-b-hy=h,

Whence,
bl.-a=hyohle 7.

We find that
ao# =b-(hpoh)o # =b- .

This fact enables one to find a partition@ffollowing

7= | ) go 7

ge¥,0€0

Choose an elememtfrom eachg o # and denoted byH all such elements, called the
representatiorof a partition of%, i.e.,

g = U ho /7.

heH,0cO

Define thequotient sebf g by A 1o be
G| A ={ho A#lheH,oecO}
Notice that7# is normal. We find that
(@0 #)-(be#)=# oa-be# =(a-b)o# e =(a-b)o

N9/ foro, e, -€0,ie., @/J? O) is an algebraic system. It is easily to check that
(5?/3?; 0) is a multigroup by definition, called trguotient multigroupof é?byfiz.
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Now let ¢;; O1) and %; O,) be multigroups. A mapping pai#(:) with ¢ : % — %
and: : O; — O, is ahomomorphisnif

¢(@c b) = ¢(@)u(c)¢(b)

for Ya,b € ¢ ando € O, provideda o b existing in @i; O,). Define theimagelm(g, )
andkernelKer(g, ¢) respectively by

Im(¢,0) = {$(Q) g€ “ ),

Ker(g,0) = {91 ¢(0) = 1y, g€ % ,0 € Oy).

Then we get the following isomorphism theorem for multigreu

Theorem 1.5.5 Let (¢, ) : (%1; O1) — (42; O,) be a homomorphism. Then

G1/Ker(p,0) = Im(g,0).

Proof Notice that Kerg, () is a normal submultigroup of%; O,). We prove that the
induced mappingd, w) determined by, w) : X o Ker(p,t) — ¢(X) is an isomorphism
from ?Z/Ker(gb, t) to Im(g, ¢).

Now if (o, w)(X1) = (o, w)(X%), then we get thatf, w)(x;0x;) = 1y, providedx;ox;*
existing in @1; O4), i.e., X o X1 € Ker(g, ). Thusx, o Ker(g, ) = X o Ker(, ), i.e., the
mapping §, w) is one-to-one. Whence it is a bijection frd?@/Ker@, t) to Im(g, ¢).

ForVao Ker(g, ), b o Ker(g, 1) € % /Ker(g, ) and- € O,, we get that

(o, w)[ao Ker(p, 1) - b e Ker(p, 1)]
= (0, w)l(a- b) o Ker(g, )] = ¢(a- b)
= ¢(@)u(-)¢(b) = (0, w)[ac Ker(g, )]u(-)(c, w)[b  Ker(g, )].

Whence, ¢, w) is an isomorphism fror@Z/Ker(qs, t) to Im(e, o). O

Particularly, let @; O,) be a group in Theorem3.4, we get a generalization of the
fundamental homomorphism theorem, i.e., CorollaB/11following.

Corollary 1.5.3 Let({f; O) be a multigroup andw, ¢) : ({47; 0) — (<7; o) an epimorphism
from (¢; O) to a group(«/; o). Then

G IKer(w,1) = (o; o).
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1.5.4 Abelian Multigroup. For an integen > 1, ann-multigroup @ O) is Abelianif
there aresy, o, - - -, oy, c¥,0= {oi, 1 <1 < n}with
—_— n
1) = _Ulsz%i;
1=
(2) (¢#; oj) is Abelian for integers X i < n.

For Yo € O, a commutative set &#M* s defined by
C¥.,) ={a,be¥™aob=Dboal.

Such a set is calleshaximalif C(¥4,) U {x} for x € ¥M*\ C(¥,) is hot commutative again.
Denoted byZ™®(¥,) the maximal commutative set 8f"®. Then it is clear thaZ™*{(<¥,)

is an Abelian subgroup ¢

Theorem 1.5.6 An n-multigroup(ff; O) is Abelian if and only if there are ®X,) for
Vo € O such that
G = U Z"X(cg ).

066

Proof If 4 = U ZM(%.), it is clear thats(?; O) is Abelian sincez™(%,) is an
066

Abelian subgroup oZ™ Now if (¢; O) is Abelian, then there are4, <, - - -, Ay C ¥,
O = {o;, 1 <i < n} such that
n
g =)
i=1

and @&; o) is an Abelian group for X i < n. Whence, there exists a maximal commuta-
tive setZ™(¥, ) c ¥ such thath; ¢ Zm*(¥,,). Consequently, we get that

G = U Z"X,).
i=1

This completes the proof. 0J

Combining Theorems.5.6 with 1.4.6, we get the structure of finite Abelian multi-
group following.

Theorem 1.5.7 A finite multigroup(?; 0) is Abelian if and only if there are generators
a°, 1<i < s, for Vo € O such that

7= J@e®) e -oa).

0e0
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1.5.5 Bigroup. A bigroupis nothing but a 2-multigroup. There are many examples of
bigroups in algebra. For example, these natural number(figld, -), real number num-
ber field R; +, -) and complex number fieldX, +, -) are all Abelian bigroups. Generally,
afield (F; +, ) is an algebraic systef with two operationst, - such that

() (F; +) is an Abeilan group with identity O;
(2) (F \ {0};-) is an Abelian group;
(3)a-(b+c)=a-b+a-cforvab,ceF.

Thus a field is an Abelian 2-group with an additional condit{8) called thedis-
tributive lawfollowing.

Definition 1.5.3 A bigroup(%’; +, -) is distributive if
a-(b+c)=a-b+a-c
hold for all a, b, c € A.

Theorem 1.5.8 Let(%’; +, -) be a distributive bigroup of order 2 with ¥ = A; U A, such
that (A;; +) and (A, -) are groups. Then there must be A A;.

Proof Denoted by 0, 1 the identities in groupsAi; +), (A, ), respectively. If
A=A =%,wegetl,1l € Ay andA,. BecauseA,, -) is a group, there exists an inverse
element Q' in A, such that @' - 0, = 1.. By the distributive laws, we know that

a-0,=a-(0,+0,)=a-0,+a-0,

hold forva € . Whencea- 0, = 0,. Particularly, leta = 0;*, we get that ¢* - 0, = 0,,
which means that 0= 1. But if so, we must get that

a=aol, =ao0, =0,,

contradicts to the assumpti¢s#i| > 2. O

Theorem 15.8 implies the following conclusions.

Corollary 1.5.3 Let(¥; o) be a non-trivial group. Then there are no operationso on
¢ such that(¢; o, -) is a distributive bigroup.

Corollary 1.5.4 Any bigroup(%’; o, -) of order> 2 with groups(%’; o) and (%, -) is not
distributive.
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Corollary 15.4 enables one to classify bigroups into the following catiego

Class 1. ({14}; +, ), i.e., which is a union of two trivial groupg$ls}; +) and ({14}; ).
Class 2. Non-distributive bigroups of order2.

This kind of bigroup is easily found. Le#; o) and (%; -) be two groups without
the definitionao b - canda- bo for a,b,c € ¥, where?d = 4, U%,. Then (¢;o,-)is a
non-distributive bigroup with order2.

Class 3. Distributive bigroups of order 2.

In fact, any field is such a distributive Abelian bigroup. @aerly, we can find a more
general result for the existence of finite distributive bigps.

Theorem 1.5.9 There are finite distributive Abelian bigroug®’; +, -) of order> 2 with
groups(Aq; +) and(Ay, -) such thate” = A U A, for |Ay — As] = |%|—m, whergm+ 1)||%].

Proof In fact, let (¥, +, ) be afield. Then.%; +) and (¥ \ {0,}; -) both are Abelian
group. Applying Theorem 4.6, we know that there are subgroupg;(-) of (% \ {0.}; )
with orderm, where (m+1)||%|. Obviously,¢ = A{UA,. So (¥, +, -) is also a distributive
Abelian bigroup with groupsAy; +) and @, -) such thate’ = A; U A; and|A, — Ay| =
|| — m. 0

A group (#Z; o) (or (27;-)) is maximumin a bigroup ¢; o, -) if there are no groups
(Z;0)(or (7)) in(¥4;0,-) such that7’| < |.7|. Combining Theorem.5.9 with Corol-
laries 15.3 and 15.4, we get the following result on fields.

Theorem 1.5.10 A field(.%; +, -) is a distributive Abelian bigroup with maximum groups
(Z#;+) and(F \ {0.}; ).

1.5.6 Constructing Multigroup. There are many ways to get multigroups. For example,
let ¥ be a set. Defina binary operations, o, - - -, o, such that¥; o;) is a group for any
integeri, 1 <i < n. Then ¢;{o;, 1 <i < n})is a multigroup by definition. In fact, the
structure of a multigroup is dependent on its combinatatialcture, i.e., its underlying
graph, which will be discussed in Chapter 3. In this subeac¢tive construct multigroups
only by one group or one field.

Construction 1.5.1 Let (¢; o) be a group an& the symmetric group of. ForVa,b €
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¢ and

a
w = € Sy,

define a binary operatiof), on¥® = ¢ by
ao,b=(@"" ob ")

forYa,b e ¢4, Clearly, (¢“;0,) is a group and : (¢;0) — (4%; o,) is an isomorphism.
Now for an integen > 1, choosen permutationsv,, w,, - - -, w,. Then we get a multi-
group €/;{o,|1 < i < n}), where groups¥; o,,) is isomorphic to ¢; o,,) for integers
1 <, j < n. Therefore, we get the following result of multigroups.

Theorem 1.5.11 There is a multigroup”? such that each of its group is isomorphic to
others in#.

Construction 25.2 Let (#; +, ) be a field andS » the symmetric group acting of .
ForVYc,d € 4 andw € Sz, define a binary operatios, on.#* = .% by

a+,b=(@"" +b" ")

and
a-,b=(@" -b)”

for Va,b € 4. Choosen permutations, ¢», - - -, ¢n € S#. Then we get a multigroup
T = (F i+, 1<i<nh{s1<i<n),

which enables us immediately to get a result following.

Theorem 1.5.12 There is a multigroud.%; {+; ,1 < i < n},{; ;1 < i < n}) such that
for any integer i,(.#; 4, ) is a field and it is isomorphic t¢7; +;, -;) for any integer
j, 1<i, j<n.

§1.6 REMARKS

1.6.1 There are many standard books on abstract groups, suchsesa{@iM1], [Rob1],
[Wan1l], [Xum1] and [Zhal] for examples. In fact, the matkyiam Sections 11-14 are
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mainly extracted from references [BiM1] and [Wanl] as amaetary introduction to
groups.

1.6.2 For an integen > 1, aSmarandache multi-spacea union of spaces,, Ao, - - -, A,
different two by two. Le®, 1 < i < nbe mathematical structures appeared in sciences,
such as those of groups, rings, fields, metric spaces or gdiyfgelds, we therefore get
multigroups, multrings, multfields, multmetric spaces bygical multi-fields. The mate-
rial of Section 15 is on multigroups with new results. More results on mybi&ses can be
found in references [Mao4]-[Mao10], [Mao20], [Mao24]-[E25] and [Smal]-[Sma2].

1.6.3 The conceptions of bigroup and sub-bigroup were first agokar [Magl] and
[MaK1]. Certainly, they are special cases of multigroup anddmultigroup, i.e., special
cases of Smarandache multi-spaces. More results on bigarpbe found in [Kanl].

In fact, Theorems 5.2-1.5.5 are the generalization of results on bigroups appeared in
[Kan1].

1.6.4 The applications of groups to other sciences are mainly byeging symmetries of
objects, i.e., the action groups. For this objective, amelgary introduction has been ap-
peared in Subsection26, i.e., regular representation of group. In fact, those@gghes
can be only surveying global symmetries of objects. Forllpcaurveying symmetries,
we are needelbcally action groupswhich will be introduced in the following chapter.



CHAPTER 2.

Action Groups

Action groups, i.e., group actions on objects are the oltsh, also the
origin of groups. The action idea enables one to measurdasityiof ob-
jects, classify algebraic systems, geometrical objectgrbyps, which is the
fountain of applying groups to other sciences. Besidedsd allows one to
find symmetrical configurations, satisfying the aesthet&ihg of human be-
ings. Topics covered in this chapter including permutagooups, transitive
groups, multiply transitive groups, primitive and nonfpitive groups, auto-
morphism groups of groups armgroups. Generally, we globally measure
the symmetry of an object by group action. If allowed theattocally, then
we need the conception of locally action group, i.e., actimdti-group, a
generalization of group actions to multi-groups discuseetis chapter.
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§2.1 PERMUTATION GROUPS

2.1.1 Group Action. Let (¢;0) be agroup anf = {a;, a,, - - -, a,}. By aright actionof
¢ onQ is meant a mapping : Q x ¢ — Q such that

(X d1002)p = ((X 1), G)p and & Ly)p = Xx.

It is more convenient to writ&d instead of k, g)p. Then the defining equations become
x4% = (x9)% and x} =x, Xe€Q, g, € Y.

For a fixedg € ¢, the inverse mapping of — X3 is x — X3 . Whencex — xgis a
permutation of2. Denote this permutation ly'. Then @; o g,)” mapsxto x%%, as does
0:95. We find that ¢: o g,)” = g]g. Therefore, the group action determines a homomor-
phismy : 4 — S,. Such a homomorphismis called apermutation representatioof &
onQ.

Two permutation representations of a group¥ — Sx andés : ¢4 — Sy of a group
¢ on X andY are said to bequivalenif there exists a bijectioi : X — Y such that

o = g0, ie, X9 =x3°

for all x e X andg € ¢. Particularly, ifX =Y, then there are somge Sy such that
g’ = 0-g’0. Certainly, we do not distinguish equivalent represeatatiof permutation
groups in the view of action.

Lety : 4 — S be a permutation representationfon Q. The cardinality of
Q is called thedegreeof this representation. A permutation representatiofaithful if
Kery = {14}. So the subgroups” of Sq are particularly important, callegermutation
groups Fora e Q andr € &2, we usually denote the image @inderr by a-,

( al a2 . arl ] [ a ]
T= = .
o ay oA ) \a

As a special case of equivalent representations of groeps?|{ and &, be two
permutation groups action @y, Q,, respectively. Asimilarity from &, to &, is a pair
(v, 6) consisting of an isomorphism: &7, — &, and a bijectiord : Q; — Q, which are

related by
0 =06n", ie, &
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for all a € Q, andr € Z2,. Particularly, ifQ, = Q,, this equality means that = 6176
for ¥, 0 € for Vmr € &2,.

2.1.2 Stabilizer. Thestabilizer 22, andorbit a” of an elemena in & are respectively
defined as follows:

P,={oc|la”=a ce P} anda” ={bla”"=b, 0 e ).

Then we know the following result.

Theorem2.1.1 Let & be a permutation group acting d@, x,y € & andab € Q. Then

(L)a” Nnb” =0 ora” =b?, i.e., all orbits forms a partition of2;

(2) P, is a subgroup of” and if b= a*, then?, = x 1.2,x. Moreover, if & = 1Y,
then X7, = yZ,;

(3)|a”| = |22 : 24, particularly, if 2 is finite, then 2| = | Z,|a”| for Ya e Q.

Proof If c € a7, then there iz € & such that = aZ. Whence,

c” = {C|xe P} = {a¥xe Z}=a”.
Soa” Nb” = @ ora” = b”. Notice that an elememte & lies in at least one ob#”,
we know that all obits forms a partition of the €t This proves (1).

For (2), itis clear that % € &2, and forx,y € &, xy'! € Z,. So P, is a subgroup
of &2 by Theorem 122.2. Now if b = a*, then we know that

ye Py o a¥=ae xyxle P,
i.e.,y e x1Z.x, Whencex12x = &, Finally,
= oaY —ao xyle P, o xP, = yP,

So (2) is proved.

Applying the conclusion (2), we know that there is a bijectietween the distinct
elements ilm” and right cosets of7, in &2. Thereforda”| = |2 : Z,|. Particularly, if
2 is finite, thena” | = |22 : Z,| = |2|/|Z4. So we get that?| = | Z4)|a”)|. O

Now letA c Q. We define th@ointwise stabilizeandsetwise stabilizerespectively
by

Pn={ola”=a aeAando € &}
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and
@{A}:{O'|AO—:A,O'€¢@}.

It is clear that¥(,y and 4, are subgroups of”. By definition, we know that

Pny = ﬂ Pas

acA

and
Pinony = Pao [ | Pan = (P
Applying Theorem 211, fora, b € Q we also know that

| - Papl = la”|l07%| = |b” la”].
Clearly, Z) < Za;. Furthermore, we have the following result.

Theorem2.1.2 P <O Py

Proof Letg € &, andh € &,,. We prove thah~'gh e P - Infact, leta e A, we
know thata™ € A. Therefore,

"= [@))" =[a"]"=a
Whenceh 'ghe 2. O

2.1.3 Burnside Lemma. For counting the number of orbital s&dsb(Q2) of Q under the
action of 7, the following result, usually calleBurnside Lemmés useful.

Theorem 2.1.3(Cauchy-Frobenius Lemma)et & be a permutation group action dn.
Then

1
Orb(Q)| = — fix(x)|,
|Orb(Q) l%é (Xl
wherefix(x) = {a € Qla* = a}.

Proof Define aset? = {(a, X) € Qx.Z|a* = a}. We count the number of elements of
</ in two ways. Assuming the orbits 6f under the action of” areQy, Qy, - - -, Qorpq)-

Applying Theorem 21.1(3), we get that
lorb(Q)|
2,7
i=1 acQ
lorb(@)l |Orb(Q)|

S S AN 121 < jorb@) )

=1  acQ, €2l i=1

7|
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By definition,|.</| = ) [fix(X)|. Therefore,

XeP

1 .
|Orb(Q)| = Ed Z Ifix(X)].

Xe P

This completes the proof. O

Notice that|fix(x)| remains constant on each conjugacy class4fwe get the fol-
lowing conclusion by Theorem 23.

Corollary 2.1.1 Let &2 be a permutation group action of2 with conjugacy classes
C,GCy, -+, C. Then

1 k
Orb(Q)| = — Cillfix(x)],
Orb(Q)| @l;) fix(x)|
where x € C,.

Example2.1.1 Let & = {01,075, 03,04, 05,0607, 0g} be a permutation group action on
Q=1{1,234,5,6,7, 8}, where

o1=1», 02,=(1,4,32)(528,7,6),
o3 = (1,3)(24)(57)(6,8), 04=(1,23,4)586,7,8),
os5=(1,7,3,5)(26,4,8), o0s=(18,3,6)(27,4,5),
o7=(15,3,7)(28,4,6), 05=(1,6,3,8)(25,4,7).

Calculation shows that
fix(1) = fix(2) = fix(3) = fix(4) = fix(5) = fix(6) = fix(7) = fix(8) = {1},

Applying Theorem 21.3, the number of obits d under the action of” is

1 1 <
Oorb(Q)| = — fix(x)| = = x 1=1.
Orb(Q)] @l;@l (=3 le

In fact, forVi € Q, the orbit ofi under the action of?” is

i” ={1,2,3,4,5,6,7,8}.

§2.2 TRANSITIVE GROUPS

2.2.1 Transitive Group. A permutation group? action onQ is transitiveif for x,y € Q,
there exists a permutatiane & such tha™ = y. Whence, a transitive groug? only has
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one obit, i.e.Q under the action of”. A permutation group” which is not transitive is
calledintransitive According to Theorem.2.1, we get the following result for transitive
groups.

Theorem 2.2.1 Let &2 be a transitive group acting of2, a € Q. Then|Z?| = |Q| Z4,
i.e.,|Z . P =19

A permutation group?’ action onQ is said to besemi-regularif &2, = {15} for
Ya e Q. Furthermore, if# is transitive, Such a semi-regular group is caliegular.

Corollary 2.2.1 Let. % be a regular group action o. Then|.Z| = |Q|.

Particularly, we know the following result for Abelian trsitive groups.
Theorem 2.2.2 Let & be a transitive group action of. If it is Abelian group, it must
be regular.

Proof Letae Qandr € &2. Then (#,)" = P« by Theorem 2L.1(2). But#, < &
because? is Abelian. We know that’?, = &5 for Ynr € &7. By assumption,? is
transitive. It follows that ifa™ = a, thenb™ = bfor Vb € Q. Thus#2, = {15}. O

2.2.2 Multiply Transitive Group. Let &7 be a permutation group acting &2 =
{ag, @, -+, a} and
O = {(ag. .. a)la € Q1< < k).

Define Z act onQ* by
(al’aZ?'“?ak)n:(ag’a%T,"',aﬁ), 7'(632,

If & acts transitive o2, thenZ is said to bek-transitiveon Q. The following result is
a criterion on multiply transitive groups.

Theorem 2.2.3 For an integer k> 1, a transitive permutation group” acting onQ is
k-transitive if and only if for a fixed elementaQ), &7, is (k — 1)-transitive onQ \ {a}.

Proof Assume that” is k-transitive acting o2 and

(&g, @, -, a-1), (b1, o, -+, k1) € Q\ {a).

Thena # a# b for 1 <i < k- 1. Notice that? is k-transitive. There is a permutation
7 such that

(al’ a2’ Y ak—l’ a)ﬂ = (bl, b2, T bk—l, a)
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Thusr fixesa and mapsdy, a, - - -, ac_1) to (by, by, - - -, bx_1), which shows that”, acts
(k — 1)-transitively onQ \ {a}.

Conversely, let?, is (k—1)-transitive o\ {a}, (a1, ay, - - -, &), (b1, b2, - - -, by) € Q.
By the transitivity of.2? acting onQ, there exist elements n’ € &7 such tha] = aand
b’lf' = a. BecauseZ, is (k — 1)-transitive o \ {a}, there is an elemeit € &2, such that

(@), -, @)7) = (05 - b ).

Whenceg™ = b, i.e., & = b for 2 <i < k. Sinceo € &, we know thawi™ =
a’ =a" = b,. Therefore, the elementrr’ maps @y, a, - - -, &) to (b1, by, -+, by). O

A simple calculation shows that
0 =n(n-1)---(n-k+1).
Applying Theorems 2.1 and 22.3, we get the next conclusion.

Theorem2.2.4 Let & be k-transitive orf2. Then

nin-1)---(n-k+1)|2|.

2.2.3 Sharplyk-Transitive Group. A transitive groupZ? on Q is said to besharply
k-transitiveif &2 acts regularly o2, i.e., for twok-tuples inQ¥, there is a unique permu-
tation in &2 mapping oné-tuple to another. The following is an immediately conatursi
by Theorem 2L.1.

Theorem 2.2.5 A k-transitive group?? acting onQ with |QQ| = n is sharply k-transitive
ifand only if || =n(n-1)---(n—k+ 1).

These symmetric and alternating groups are examples ofpiyuitansitive groups
shown in the following.

Theorem2.2.6 Letn> 1be anintegerand = {1,2,---,n}. Then

(1) Sq is sharply n-transitive;
(2) If n > 3, the alternating group A is sharply(n — 2)-transitive group of degree n.
Proof For the claim (1), it is obvious by definition. We prove theiclg2). First, it

is easy to find thad, is transitive. Notice that if2 = {1, 2, 3}, Aq is generated by (2, 3).
It is regular and therefore sharply 1-transitive. Whenke,dlaim is true fon = 3. Now
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assume this claim is true for all integers. Letn > 4 and defineHd to be the stabilizer
of n. ThenH acts on the se® \ {n}, produce all even permutations. By inductidhjs
(n—3)-transitive group o \ {n}. Applying Theorem 2.3, A, is (n—2)-transitive. Thus
|Aq| = %(n!) =n(n—1)---3. By Theorem 2.5, it is sharply ( — 2)-transitive. O

More sharply multiply transitive groups are shown follogirThe reader is referred
to references [DiM1] and [Rob1] for their proofs.

Sharply 2, 3-transitive group. Let F be aGalois field GKq) with g = p™ for a prime
numberp. DefineX = F U {co} and think it as the projective line consistingagpt 1 lines.
Let L(qg) be the set of all function$ : X — X of the form

_ax+b
~ cx+d

£(x)

for a,b,c,d € F with ad — bc # 0, where the symbab is subject to rulerx + co =
o, co/co = 1, etc. Then it is easily to verify that(q) is a group under the functional
composition. DefineH(q) to be the stabilizer ofo in L(qg), which is consisting of all
functionsx — ax+ b, a # 0. ThenH(q) is sharply 2-transitive o F(qg) of degreej and
L(q) is sharply 3-transitive off U {co} of degreeg + 1.

Particularly, ifc = d = 0, i.e., for a linear transformatiomand a vecto¥ € F9, we
define thegffine transformation

tav: F¢ = F9 by tay: U — Ga+V.
Then the set of ali,y form theaffine group AGL(q) of dimensionatd > 1.
Sharply 4, 5-transitive group LetQ ={1,2,3,---,11,12} and
¢ =(4,56)(78,9)(1011,12), x=(4,7,10)(58,11)(69,12),
v =(57610)89,1211), w=(58,612)(711109),
m = (1,4)(7,8)(911)(1012), x, = (1,2)(7,10)(8 11)(9 12);

n3 = (2,3)(7,12)(8 10)(9 11).

DefineMy1 = (¢, x, ¥, w, 11, 1o, m3) and My, = (o, x, ¥, w, 1, 7o), called Mathieu groups.
Then My, is sharply 5-transitive of degree 12 with order 95040, ahd is sharply 4-
transitive of degree 11 of? \ {3} with order 7920.
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Theorem 2.2.7(Jordan) For an integer k> 4, let &7 be a sharply k-transitive group of
degree n which is neither symmetric nor alternating grougeen either k= 4and n= 11,
ork=5and n= 12

Combining Examples.2.1, 22.2 with Theorem 2.7, we know that there are sharply
k-transitive group of finite degree if and only ifd k < 5.

§2.3 AUTOMORPHISMS OF GROUPS

2.3.1 Automorphism Group. An automorphisnof a group ¢; o) is an isomorphism
from ¢ to ¢. All automorphisms of a group form a group under the funalarompo-
sition, i.e.,0¢(X) = 6(s(X)) for x € ¢4. Denoted by Au¥, which is a permutation group
action on¥ itself. We discuss this kind of permutation groups in thisties.

Example2.3.1 Let¥ = {e a,b, c} be an Abelian 4-group with operatiodetermined by
the following table.

e a b c
ele a b c
ala e c b
b/b ¢ e a
clc b a e

Table 2.3.1

We determine the automorphism group &ut Notice thate is the identity element of
¢. By property (H1) of homomorphism, i is an automorphism off, thené(e) = e.
Whence, there are six cases for possthiellowing:

(eabc]
0, = ,
e achb

(eabc]
04 = ,
e b c a

QD

(e

O
~———

e
(=
(eabc

H_e
3_eb

o]
O T
O O
~—_———
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e ab c e ab c
05 = , Op = .
e cahb e ¢c b a
It is easily to check that all thesig 1 < i < 6 are automorphisms o/, -). We get the

automorphism group
AUt = {01, 05,03, 04, 05, 05}

Letx,g € 4. An elementx? = g~ o X o gis called theconjugateof x by g. Define a
mappingg” 1 ¥ — ¢ by g'(x) = X%. Then oy)® = xIoye andg™(g™)" = lauy = (970"
Sog’ € Aut¥, i.e., an automorphism ori¢( o). Such an automorphismy is called
the inner automorphisnof (¢; o) induced byg. It is easily to check that all such inner
automorphisms form a subgroup of Aitdenoted by Inf.

Theorem 2.3.1 Let (¥, 0) be a group. Then the mapping: 4 — Aut¥ defined by
7(X) = g'(X) = X8 for ¥x € ¢ is a homomorphism with imagen¥ and kernel the set of
elements commutating with every elemer# of

Proof By definition, we know thax®"" = (goh)=*oxo(goh) = h"togtoxogoh =
(x9)". So @ o h)” = g'h7, which means that is a homomorphism.

Notice thaiy” = 1auy is equivalent ttoxog = x by definition. Namelygox = Xog
for Yx € 4. This completes the proof. O

Definition 2.3.1 The center Z¢) of a group(¥; o) is defined by
Z(9) ={xe¥9|xog=gox forallge ¥}.
Then Theorem 3.1 can be restated as follows.

Theorem2.3.2 Let(¥;0) be agroup. Then ) <¥ and¥ /Z(¥¢) ~ InnY.

The properties of inner automorphism group4himduced it to be a normal sub-
group of Aut/ following.

Theorem 2.3.3 Let(¥; o) be a group. Theinn¥ < Aut¥ .
Proof Letg e ¢ andh € Aut¥. Then forVx € ¢,

hgh™(x) = hg'(h™(x) =h(g™ o h™(x) o g)

h™(g) o x o h(g) = X"@ ¢ Inn¥.
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Whence, Inf < Aut¥. O
Definition 2.3.2 The quotient groupAut¥ /Inn¥ is usually called the outer automor-
phism group of a grouf¥; o).

Similarly, we can also consider the conjugating relatiotwleen subgroups of a
group.

Definition 2.3.3 Let(¥; ) be a group,/7, 77<1¥. Then.z is conjugated to/7; if there
Is X € ¢4 such that
Xt x= 6.

Definition 2.3.4 Let(¥; o) be a group,7Z <¢. The normalizer M(.7¢) of 77 in (¥, o)
is defined by
Ny () ={Xeb | X o ox=)

Theorem 2.3.4 The set of conjugates o’ in ¢ has cardinalityly : Ny (7).
Proof Notice thai¥ : Ny (s7)| is the number of left cosets &f,(77) in 4. Now if
altosoa=bto.# ob, then
boalo# oaob™=7.
That is,
(@aob)y™to# o(aoh) =7.
By definition,a o b € N¢(7). This completes the proof. U

Definition 2.3.5 Let(¥; o) be agroupZ <1 andab € ¢. If there is an elementx ¢
such that x! o ao x = b, a and b is called to be conjugacy. The centralizg(aJ of a in
¢ is defined by

Zy(@) = {{ge YIgtoaog=al}.

It is easily to check thafy(a) is a subgroup o¥ .

Theorem2.3.5 Let(¥; o) be a group and & ¢. Then the number of conjugacy elements
toain¥is|¥ : Z4(a)|.

Proof We only need to prove that¥1oaox =y loaoy, thenxoy? e Z,(a). In
fact,if xloaox=yloaoy, thenyoxloaoxoy=a,ie., Xoy?)toao(xoy?) =a
Thereforex oyt € Zy(a). O
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A relation between the center and normalizer of subgroupgrbap is determined
in the next result.

Theorem 2.3.6 Let(¥;0) be a group,sZ < ¥. Then 4.¢) <t Ny (7).

Proof If g € Ny (57), let g denote the mapping — gt ohoh. Itis clear an
automorphism of7. Furthermorez : Ny (2#) — AutsZ is a homomorphism with
kernelZ(7#’). Then this result follows from Theorema3l13. 0J

2.3.2 Characteristic Subgroup. Let (¢;0) be a group,7Z < ¥ andg € AutY. By
definition, there must bg(77°) ~ 2 butg(7¢) # 2 in general. Ifg(o¢) = s for
Yg € Aut¥, then such a subgroup is particular and callezharacteristic subgroujpf
(¢, o). For example, the center of a group is in fact a characiesabgroup by Definition
2.3.1.

According to the definition of normal subgroup, Ftr € Inn&¢, a subgroup? of
a group {7; o) is norma if and only ifh(#") = ¢ for Yh € Inn&. So a characteristic
subgroup must be a normal subgroup. But the converse iswaysiltrue.

Example2.3.2 Let%; = {ea a% ab,b-ab-a%b-a’ be adihedral group of order 8
with an operation determined by the following table.

a & a b ab &b a-b

a & a b ab &b a-b

& a e ab &-b a-b b

a’ a? a e a &b ab b ab

a a e a & ab b a-b &-b

b b a&-b &b ab & a e a

a-b| a-b b a-b &-b & a’ e
a-b| a>-b ab b a&-b e a a’

a-b| atb &-b ab b a e a a’

Table 2.3.2

Notice that all subgroups a¥s are normal andh is a unique element of degree 2. So
((a?) ; o) is a characteristic subgroup Gk.

Now let(b) = {e b,a? a?- b}. Clearly, it is a subgroup of7s. We prove it is not a
characteristic subgroup 6. In fact, let¢ : 2 — 2 be a one-to-one mapping defined by
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e—>e a—a a-a, a-ad,
b—oa-b a-b—-a’b a-b-a-b a-b-h
Theng is an automorphism. But
#((b)) = {e,a-b,a% a- b} # (b).
Therefore, it is not a characteristic subgroupAgf

The following result is clear by definition.

Theorem 2.3.7 If 4, < ¢ is a characteristic subgroup & and%, < ¢; a characteristic
subgroup ot4, then% is also a characteristic subgroup &f.

2.3.3 Commutator Subgroup. Let (¢; o) be a group and, b € 4. The element
[abj=atlobloaoh

is called thecommutatoof a andb. Obviously, a groupd; o) is commutative if and only
if [a,b] = 14 for Ya,b € ¢. Thecommutator subgroujs generated by all commutators
of (¢; o), denoted by’ or [¢4,¥9], i.e.,

¥ =(labllabe?).

Theorem2.3.8 [Sy, Sy] = An.

Proof Notice that we can always represent a permutation by prazfuctolutions.
By the definition of commutator, it is obvious th&,[, S,] c A,. Now forVYg € A, we can
always write it ag) = (ag,1, as,1)(8s,2, As,2) * - - (8s,m» 8s,m) With m = 0(mod2) by definition,
whereag; € {1,2,---,n} fori = 1,2 and 1< j < m. Calculation shows that

(i, (K = (. k)G, DA KG ) = 105.K), @ 1]
ifi#],j+kand
(i, D, 1) =, ), K KK =10, K), 5 DI 1), (5, K)]

if i, ),k | are all distinct. Whence, each elementApn can be written as a product of
elements in$,, Sy, i.e., A, C [Sh, Si]. O

A commutator subgroup is always a characteristic subgrawg) as those shown in
the next result.
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Theorem 2.3.9 Any commutator subgroup of a gro(fg; o) is a characteristic subgroup.

Proof Let¢ € 4. We provep(¥4’) = ¢4’. In fact, forVa, b € ¢4, we know that

¢(ab]) = ¢@*obtoach)
= ¢(@ah) o ¢(b™) o ¢(a) o ¢(b)
= ¢7'(a) 0 ¢7'(b) 0 ¢(a) o p(b) = [¢(a), ¢(b)].
Whence’ is a characteristic subgroup ¢f{o). O

Corollary 2.3.1 Any non-commutative grolf¢; o) has a non-trivial characteristic sub-
group.

Proof If (¢;0) is non-commutative, then there are elememts € ¢ such that
[a, b] # 1». Whence, it has a non-trivial characteristic subgretimt least. OJ

The most important properties of commutator subgroupseisidxt.

Theorem 2.3.10 Let(¥; o) be a group. Then

(1) The quotient grougy /¥’ is commutative;
(2) The quotient grougy /> is commutative fop?’ < ¢ if and only if 77 > &".

Proof (1) Leta,be ¢. Then

(@o¥)too¥)lo(@o¥)o(bo¥)
—alo@oblo@oao? obo¥
= (a_lob_loao b)o¥ =9,

Thereforeao ¥’ ocbo¥’ =bo¥%’ cao¥’.
(2) Notice thatd /.7 is commutative if and only if fop,b € ¢,

ao obo s’ =bo s cao .
This equality is equivalent to
(@ao ) to(bost)o(aoH)o(bo )=,

i.e., @lobloaoh)o.# = 7. Whence, we findthaglb] =atobloaobe 7,
which means that?” > 4. O
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§2.4 P-GROUPS

As one applying fields of permutations to abstract groupsdiseussp-groups in this
section.

2.4.1 Sylow Theorem. By definition, a Sylowp-subgroup of a groupgq, o) with |¢| =
p*n, (p,n) = 1is essentially a subgroup with maximum orgé&r Suchp-subgroups are
important for knowing the structure of finite groups, for exae, the structure Theorems
1.4.4-1.4.6 for Abelian groups.

Theorem 2.4.1(Sylow’s First Theorem)Let (¢; o) be a finite group, p a prime number
and|¥4| = p*n, (p,n) = 1. Then for any integer,il < i < a, there exists a subgroup of
order g, particularly, the Sylow subgroup always exists.

Proof The proof is by induction of#¢|. Clearly, our conclusion is true for = 1.
Assume it is true for all groups of ordempn.

Denoted byz the order of center?(¢). Notice thatZ'(¥) is a Abelian subgroup
of ¢. If p|z, there exists an elemeatof orderp by Theorem 14.6. So(a) is a normal
subgroup of¢ with order p. We get a quotient grouf#/(a) with order p*~*n < n.
By the induction assumption, we know that there are subgr&®ypay of orderp', i =
1,2,---,a-1in¥/(@y. SoP;, i =1,2,---,a — 1 are subgroups of ord@! in ¥.

Now if p fz, letCy,Cy, - - -, Cs be conjugacy classes @f. Notice thatp||</| butp /Jz
By

s
41 =12@)+ )" [Cil
i—1
we know that there must be an inte¢iefl < i < ssuch thatp f|C|. Letb € C,. Then

Ny(b) ={ge ¥Ig'obog=h)
is a subgroup o¥ with index
|g . ffg(bﬂ = h| > 1.

Sincep® and %4 (b) < p*n, by the induction assumption we know that there are subgroup
of orderp for1<i <ain Z;(b) < 9. O

Corollary 2.4.1 Let(¥; o) be a finite group and p a prime number. If4), then there
are elements of order p if¥; o).
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Theorem 2.4.2(Sylow’s Second Theoreml.et (¢; o) be a finite group, p a prime with
pll¢|. Then

(1) If np is the number of Sylow p-subgroupsé4nthen n, = 1(modp);
(2) All Sylow subgroups are conjugate(#; o).

Proof Let P, Py, Py, ---, P, be all Sylowp-subgroups ir¢Z. Notice that a conjugacy
subgroup of Sylowp-subgroup is still a Sylow subgroup &f. ForVa € ¢, define a
permutation

P P, P,

Oa= .
aloPoa aloPjoa -+ aloPoa

andS, = {oala € P}. ThenS, is a homomorphic image &1. It is also ap-subgroup.

If Py is invariant under the actid®, for an integer 1< k < r, thenao P, = P o afor
Ya € P. Whence PPy is a p-subgroup of/. But P, P, are Sylowp-subgroups of/. We
getPP, = P = Py, contradicts to the assumption. SoRjJl 1 < k < r are not invariant
under the action af, exceptP. By Theorem 21.1, we know thatpr|||Sp| forl<k<r.
Let PZ", PZ", cee Pft" be a partition of Py, Py, - - -, P;}. Then

t
Np=1+r= 1+Z|P§p| = 1(modp).

i=1
This is the conclusion (1).

For the conclusion (2), assume there anjugate subgroups . Similarly, we
know thats = 1(modp). If there exists another conjugcy class in which there sre
Sylow p-subgroups, we can also firgd = 1(modp), a contradiction. So there are just
one conjugate class of Syloptsubgroups. This fact enables us to know that all Sylow
subgroups are conjugate i {o). OJ

Corollary 2.4.2 Let P be a Sylow p-subgroup (#; o). Then
(1) P < ¢ if and only if P is uniquely the Sylow p-subgroup@f, o);
(2) P is uniquely the Sylow p-subgroup of (¥).

Theorem 2.4.3(Sylow’s Third Theorem)Let (¢; o) be a finite group, p a prime with
pll¢|. Then each p-subgroup A is a subgroup of a Sylow p-subgro(ig; o).

Proof Let o, be the same in the proof of Theorem}2 andS, = {oaa € Al.
Consider the action db, on Sylow p-subgroupgP, Py, - - -, P;}. Similar to the proof of
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Theorem 24.2(1), we know thaquA|||SA| for 1 < k < r. Because of = 0(modp).
Whence, there are at least one obit with only one Sypesubgroups. Let it b&,. Then
forvae A ato P oa= P. SOAP is ap-subgroup. Notice tha® < AP.. We get that
AR =P, ie ,A<P. O

2.4.2 Application of Sylow Theorem. Sylow theorems enables one to know fe
subgroup structures of finite groups.

Theorem 2.4.4 Let P be a Sylow p-subgroup (/; o). Then

(1) If Ngy(P) < 27 < ¢, thens?’ = Ny(7);
(2) If N <« ¢4, then PN N is a sylow p-subgroup diN; o) and PNN is a Sylow
p-subgroup ofG/N; o).

Proof (1) Letx € Ny (7). Becausé < H <INy (7)), we know thatx toPox < 7.
Clearly,P andx! o P o x are both Sylowp-subgroup of’#. By Theorem 2.2, there is
an elemenh € 7 such thatx! o Po x = h™ o Po h. Whencexo h™ € Ny (P) < /7.
Soxe J,i.e., 7 = Ny ().

(2) Notice thatPN is a union of cosetao P, a€ N andN a union of cosetbo (PN
N),b € N. Now leta,b e N. By

aocP=boPoalobePoalobeNNnPoaoNNP=boNNP,

we get thatN : PN N| = |PN : P|, which is prime top. SinceN NP, NP/N are respective
p-subgroups oN or ¢ /N by Theorem 12.6, this relation implies that they must be Sylow
p-subgroup oN or ¢/N. O

Theorem 2.4.5(Fratini) Let N < ¢ and P a Sylow p-subgroup ¢N; o). Then¥ =
Ny (P)N.

Proof Choosea € ¢. SinceN <1%¢, we know thata™ o P o a < N, which implies
thata! o P o ais also a Sylowp-subgroup of K; o). According to Theorem 2.2, there
isbe Nsuchthabto(@loPoa)ob=P. Whenceaob e Ny(P), i.e.,ac Ny(P)N.
Thus¥ = Ny (P)N. O

As we known, a finite group with prime powpt for an integek is called ap-group
in group theory. Fop-groups, we know the following results.

Theorem 2.4.6 Let(¥; o) be a non-trivial p-group. Then®) > {14}.
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Proof Let|¥4| = p™, man integer ancC, = {14}, C,, - - -, Cs conjugate classes &f.
By

S
DGl =191=p",
i=1

we know thatCi| = 1 or a multiple ofp by Theorem 21.5. But|C,| = 1. Whence, there
are at least an integ&r 1 < k < ssuch thatCy =1, i.e.,Cc = {a}. Thenae Z(¥). 0O

Theorem 2.4.7 Let p be a prime number. A groy{; o) of order p or 7 is Abelian.

Proof If |4| = p, then¥ = (a) with a® = 14, by Theorem 12.6.

Now let|¢| = p?. If there is an elemeri € ¢ with o(b) = p?, then®¥ = (b), a cyclic
group of ordemp? by Theorem 12.6. If suchb does not exist, by Theorem46 Z(¥4) >
{14}, we can always choose, &+ a € Z(¥) andb € ¥ \ Z(¢). Theno(a) = o(b) = p by
Theorem 12.6. We get tha”Z(¥) = (a) and¥/Z(¥) = (bo Z(¥)). Whence¥ = (a, b)
withao b =boaando(a) = o(b) = p. So it is Abelian. O

For groups of ordepg or p?q, we have the following result.

Theorem2.4.8 Let p q be odd prime numbers,sd. Then group$4; o) of order pq or
p?q are not simple groups.

Proof By Sylow’s theorem, we know that there amg= 1(modp) Sylowqg-subgroups
Pin (¥;0). Letn, = 1+ kpfor an integek.

If || = pq, p > g, we get thaip(1+ kp)|pg, i.e., 1+ kplg. Sok = 0 and there is only
one p-subgroupP in (¢; o). We know thatP <1 ¢. Similarly, if p < g, then the Sylow
g-subgroupQ < ¢. So a group of ordepqis not simple.

If |9| = p?’qandp > q, then 1+ kp/g implies thatk = 0, and the only on@-subgroup
P <1 ¢. Otherwisep < g, we know 1+ Ig|p®. Notice thatp < g, we know than, = 1 or
p2. Butif ng = p?, i.e.,lg = p> - 1, we get that|(p - 1)(p + 1). Whenceq = p+ 1. It
is impossible sincg andp + 1 can not both be prime numbers. &p= 1. LetQ be the
only one Sylowg-subgroup in%; o). ThenQ <% . Therefore, a group of ordgrq is not
simple. O

2.4.3 Listing p-Group. For listing p-groups, we need a symbé%), l.e., theLegendre

symbolin number theory. For a prime /1, the numbe(ip) is defined by

(/1) _ [ 1 if ¥* = A(modp) has solution;
p/ | -1 if ¥ = A(modp) has no solution
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We have known that
(%) = Ap%l(modp)

and the well-knowrGauss reciprocity law

LEREES

for prime number$ andq in number theory, .

Completely list allp-groups is a very diicult work. Today, we can only list those of
p-groups with small power. For example, thgsgroups of orderg” for 1 < n < 4 are
listed in Tables 2.1 — 2.4.4 without proofs.

4 p-group Abelian?
p (1) (@), aP=1y Yes
p? (1) (@), a” =1y Yes
(2)(a,by, a??=bP=1,, aocb=boa Yes
(1) (@), a =1y Yes
(2)(a,by, @ =bP =1y, acb=boa Yes
(3)¢(a,b,c), aP =bP=cP =1y, aocb=boa,
aoc=coaboc=cob Yes
ps (4)(a,by,a” =bP=1,,bloaoch=al*P No
(p#2)| (5)(a,b,cy,a>=bP=cP=1y,aocb=boaoc,
Coa=aocC Ccob=boc No
Table 2.4.1

For p = 2, these 2-groups of orde? are completely listed in Table£22.

1| | 2-group Abelian?
(1)(ay, a®=1y Yes
(2)(a,b), a*=b?=1y, aob=boa Yes
22 | 3)(ab,c), @=b*=c?=1y, acb=boa,
aoc=coaboc=cob Yes
(4)Qg=(ab),a*=1y,*=a’?bloaob=a No
(5)Dg=(a,b),a*=b>=1y,blocaocb=a" No

Table 2.4.2
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14| p-group Abelian?
(1)(a), a*=1y Yes
(2)(a,by, a” = bP =1, Yes
p* | 3)(ab), a” =b” =1, Yes
p£2| (4)(ahb,c), a” =bP=cP =1y, Yes
(5)(a,b,c,d), aP = DbP = cP = dP = 14(a, b),
a"” =bP =1, Yes
(1)(a,b), a® =bP = 1y, bt oaoc b= ak*¥ No
(2)(a,by, ¥ =b” =1,,bloaoh=al*’ No
(3)(a,b,c), @ =bP=cP =1y, [a,b] =[ac] = Ly,
[b,c] =aP No
(4)(ab,c), @ =bP=cP =1y, [ab] = [b,c] =1,
[a,c] =aP No
(5)(a,b,c), @ =bP=cP =1y, [a,b] =[ac] = Ly,
[a,c]=Db No
p* | (6)(ab,c), @ =bP=cP=1y,,bloaoh=al*,
p#2 cloaoc=aob,cloboc=b No
(7)(a,b,c), a¥ =bP=1y,cP=aP,bloaob=al*r,
cloaoc=aob,cloboc=Db No
(8)(a,b,c), a” =bP =1y, cP = a'P, (%) = -1
cloaoc=aob,cloboc=Dbbloaobh=alP, No
(9)(a,b,c,dy, a” =bP =cP=dP = 1y, [c,d] = a,
[a,b] =[a,c] =[ad] =[b,c] =[b,d] =1, No
(10-1){a,b,c,d), p>3,a° =bP =cP =dP = 1y,
[a,b] =[a,c] =[ad] =[b,c] = 1y,
dlobod=aobh, dlocod=boc No
(10-2)(a,b,c), p=3,a°=b’=c® = 1y, [a,b] = 1y,
cloaoc=aob, cloboc=a3ob No
Table 2.4.3

For groups of order2 the situation is more complex. For example, there are 6stype
for n = 3, 14 types fon = 4, 31 types fom = 5 and 267 types fon = 6. Generally, we
do not know the relation for the number of types with\e have listed 2-groups of order
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2% in Table 24.2. Similarly, these non-Abelian 2-groups of ordéraze listed in Table
2.4.4 following.

1] | 2-group Abelian?
(1) (aby, @®=b?=1y,bloaob=a?l No
(2)(a,b), @8 =b’=1y,bloaocb=a’ No
(3)(a,b), @8 =b’=1y,bloaob=2a’ No
(4)(a,b), a®=1y,b>=a* bloaob=a No

2* | (5)(a,b), a*=b*=1y,bloaob=atl No
(6)(a,b,c), a*=b’=c?=1y,bloaob=a,

cloaoc=a, [bc =a’ No
(7)(a,b,c), a*=b>=c?=1y,bloaob=a
cloaoc=al, [bc] =a? No
(8)(a,b,c), a*=b?=1y,P=a% bloaob=a,
cloaoc=al [bc=1 No
(9)(a,b,c), a*=b*=c?=1y,bloaocb=a
cloaoc=aob, [bc =1y No
Table 2.4.4

A complete proof for listing results in TablesA21-2.4.4 can be found in references,
for example, [Zhal] or [Xum1].

§2.5 PRIMITIVE GROUPS

2.5.1 Imprimitive Block. Let & be a permutation group action én A proper subset
A c Q, |A > 2is called anmprimitive blockof &2 if for Yr € &, eitherA = A"
or AN A" = (. If such blocksA exist, we sayZ? imprimitive. Otherwise, it is called
primitive, i.e., & has no imprimitive blocks.

Example2.5.1 Let & be a permutation group generated by
g=(12,34,5,6) and h=(2,6)(305).

Notice that#? is transitive onQ = {1,2,3,4,5,6} andhg = g°h. There are only 12
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elements with forng'h™, wherel = 0,1,2,3,4,5andm= 0, 1. LetA = {1,4}. Then
{1,4)9 = {25}, (1,4 = (3,6},

{1, 4}‘9’3 ={1,4}, (1,4)" = (1,4).

WhenceA” = Aor A" n A =0 forVr e &, i.e.,Ais an imprimitive block.
The following result is followed immediately by Theoremia on primitive groups.

Theorem2.5.1 Let & be a transitive group actin of2, A an imprimitive block of”? and
H the subgroup of alk in &2 such that A= A. Then

(1) The subsetsAr € &2 : H form a partition ofQ;
(2) 1] = |AIlZ : HI.

Proof Leta € Q andb € A. By the transitivity of%? on Q, there is a permutation
m € & such thata = b". Writing r = or with o € H andr € & : H, we find that
a= (b”)" € A". WhenceQ is certainly the union oA™, 7 € H. Now if A" N A" # 0, then
AN (A")" " £ 0. Consequentlyd = (A”)" " andr’r ! e H. Butr,7’ € & : H, we get that
T=1".S0A", T e & : His a partition ofQ. Thus we establish (1).

Notice that|/Al = |A"| for T € &2 : H. We immediately get thaf)| = |A|.Z : H| by
2). O

2.5.2 Primitive Group. Applying Theorem 2.1, the following result on primitive
groups is obvious.

Theorem 2.5.2 A transitive group of prime degree is primitive.

These multiply at least 2-transitive groups constituteeguiently encountered prim-
itive groups shown following.

Theorem 2.5.3 Every2-transitive group is primitive.

Proof Let & be a 2-transitive group action dp. If it is imprimitive, then there
exists an imprimitive blocld of &2. Whence we can find elemersish € Aandc € Q\ A.
By the 2-transitivity, there is an element & such thatg, b)” = (a,c). Soae An A"
ConsequentlyA = A™. But this will implies thatc = b™ € A, a contradiction. O

Let (¢;0) be a group. A subgroup? < ¢ is maximalif there are no subgroups

A <9 suchthatZ < % < ¢. The next result is a more valuable criterion on primitiv-
ity of permutation groups.
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Theorem2.5.4 A transitive group?? action onQ is primitive if and only if%7, is maximal
forVae Q.

Proof If &2, is not maximal, then there exists a subgradpof &7 such that¥, <
H < . Define a subset @@ by

A={a'|r € ).

Then|Al > 2 because ofZ > £, First, if A = Q, then forVr € &2 we can find
an elementr € 7 such thata™ = a’. Thusro™! € £,, which givesr € 7 and
H = 2. Now if there ismt € &2 with An A" # 0 hold, then there areq, 05> € .77 such
thata”™ = a’#". Thuso;* € &, < #. Whences € ., which implies thatA = A"
Therefore A is an iprimitive block and? is imprimitive.

Conversely, lefA be an imprimitive block of#?. By the transitivity of%” onQ, we
can assume thate A. Define

H ={ne PN =Anrne P}

Thens# < ¥. Forb,c € A, there is ar € ¢ such that™ = c. Thusc € An A*. Whence,
A = A" andr € 2 by definition. ThereforesZ is transitive onA. Consequently,
A=|77:). Nowif r € &, thena=a € AN A". SOA = A" andnr € 7. Thereafter,
P, < A and A, = 3. Applying Theorem 2.1, we know thatQ| = |2 . &, and
|Al = |7 . | = |7 . Pg|. SO P, < H < P and A, is not maximal inZ. O

Corollary 2.5.1 Let & be a transitive group action of. If there is a proper subset
Ac Q,|Al > 2such that

acAadcA= A=A

for r € &, thenZ is imprimitive.

Proof By Theorem 5.4, we only need to prove tha¥, < &5 < &, i.e., P, 1S
not maximal ofZ. In fact, &7, < & is obvious by definition. Applying the transitivity
of &, for Vb € Athere is an element € &7 such that” = b. Clearly,c € &, but
o ¢ P5. Whence, P, < P

Now letc € Q\ A. Applying the transitivity of%? again, there is an elemeng &
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such thal™ = c. Clearly,r € 4 butt ¢ ¢,,. So we finally get that
gZa < r@{/_\} < f@,

i.e., Z,is not maximal in#. O

Theorem 2.5.5 Let &2 be a nontrivial primitive group action of. If 4" < &, then./
is transitive onQ.

Proof Leta € Q andA = {a@|r € .#'}. Notice that &)" = (&")”" ando™ € ./ if
me P, o€ N. ThusA"is an obit containing™ WhenceA = A" oran A" = (), which
implies thatA is an imprimitive block. This is impossible becauséis primitive onQ.
WhenceA = Q, i.e.,./ is transitive o). 0J

Theorem .5 also implies the next result for imprimitive groups.

Corollary 2.5.2 Let & be a transitive group action of2 with a non-transitive normal
subgroup#”. ThenZ? is imprimitive.

The following result relates primitive groups with simplegps.

Theorem 2.5.6 Let & be a nontrivial primitive group action of. If there is an element
X € Q such that?, is simple, then there is a subgroup” <1 &2 action regularly onQ
unlessZ is itself simple.

Proof If &2 is not simple, then there is a proper normal subgrelipa &?. Consider
A N Py, which is a normal subgroup o¥#,. Notice thatZ, is simple. We know that
N NPy =Py or{lyl).

Now if 4" NPy = Py, thenP, < 4. Applying Theorem 5.5, we know that4” is
transitive onQQ. Whence /" < &, sincexs = xfor Y¢ € &, i.e., Z, is not transitive on
Q. By Theorem 5.4, there mustbet” = &2, a contradiction. Whencey N &y = {15}.
Applying the transitivity ot/ onQ, we immediately get that);, = {15} for Vy € Q, i.e.,
" acts regularly orf. O

2.5.3 Regular Normal Subgroup. Theorem 2.5 shows the importance of normal
subgroups of primitive groups. In fact, we can determineegjular normal subgroups of
multiply transitive groups. First, we prove the next result

Theorem 2.5.7 Let(¥; o) be a nontrivial finite group and” = Aut¥.
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(1) If &2 is transitive, then(¥; o) is an elementary Abelian p-group for some prime

(2) If & is 2-transitive, then either p- 2 or |4] = 3;
(3) If & is 3-transitive, then¥| = 4;
(4) & can not bed-transitive.

Proof (1) Let p be a prime dividind¥|. Then there exists an elemexof order
p by Corollary 24.1. By the transitivity we know that every element4h)\ {14} is the
form X', T € & and hence of ordep also. Thus? is a finite p-group and its center
Z(%) is nontrivial by Theorem 2.6. By definition,Z(¥) is characteristic in«; o) and
thus is invariant iri¢. Applying the transitivity of%? enables us to know th&(¥) = ¢.
Whence¥ is an elementary Abeliap-groups.

(2) If p> 2, letx € ¢ with x # 1. Thusx # x . If there is also an elemegte ¥,
y # 1y, X, X1, then the 2-transitivity assures us of & & such that ¢, x )™ = (x,y).
Plainly, this fact implies thay = x1, a contradiction. Thereforef = {14, x, x"!} and
14| = 3.

(3) If &2 is 3-transitive or¢ \ {14}, the later must has 3 elements at least, [[4.> 4.
Applying (2) we know that/ is an elementary Abelian 2-group. Let’ = {1, X,y, Xo Y}
be a subgroup of order 4. If there is an elemeat¥ \ 77, thenxo z,yozandxoyo z
are distinct. So there must be an automorphism%? such that

X =Xoz Yy =yozand Koy)" = Xoyoz

by the 3-transitivity of%? on¥. However, these relations imply that 1., a contradic-
tion. Whence,Z” = 9.

(4) If &2 were 4-transitive, it would be 3-transitive ai = 4 by (3), which excludes
the possibility of 4-transitivity. Whencey can not be 4-transitive. O

By Theorem 5.7, the regular normal subgroups of multiply transitive grewan
be completely determined.

Theorem 2.5.8 Let % be a k-transitive group of degree n withek2 and.#” a nontrivial
regular normal subgroup of”. Then,

(1) Ifk = 2, then n=|.4| = p™and.# is an elementary Abelian p-group for some
prime p and integer m;
(2) If k = 3, then either p=20orn = 3;
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(3) Ifk = 4, then n= 4;
(4) k > 5is impossible.

Proof Clearly, 1< k < n. Let & be ak-transitive group acting of2 with [QQ] = n
anda € Q. By Theorem 2.3, we know that#, is (k — 1)-transitive om \ {a}.

Consider the action of?, on ./ \ {15} by conjugation. Now ifr € .4\ {15}, by
the regularity of #~ we know thata™ # a. Thus there is a mapping from .4\ {15} to
Q \ {a} determined by® : 7 — a". Applying the regularity of " again, we know that
@ is injective. Besides, since is transitive by Theorem.3.5, we know tha® is also
surjective. Whence,

©: A \{lp} - Q\{&}

is a bijection.

Now let 1, # 7 € & ando € 5. Then we have thai{)” = &, or (O(r))” =
O(n”). Thereafter, the permutation representationsgqfon .4 \ {15} andQ \ {a} are
equivalent. Whence”, is (k — 1)-transitive on/" \ {15}. Notice that#, < Aut./". We
therefore know that Aut is (k — 1)-transitive on/" \ {15} also. By Theorem B.7, we
immediately get all these conclusions @§4). O

2.5.4 O’Nan-Scott Theorem. The main approach in classification of primitive groups
is to study the subgroup generated by the minimal subgrawgsthesocleof a group
defined following.

Definition 2.5.1 Let(¥; o) be a group. A minimal normal subgroup (¥#; o) is such a
normal subgroug./; o), 4 # {1y} which does not contain other properly nontrivial
normal subgroup o¥.

Definition 2.5.2 Let(¥; o) be a group with all minimal normal subgroup$i, .45, - - -,
. The soclesocf?) of (¢; o) is determined by

SOC(Y) = (M1, N2y -+ s Nin) .

Then we know the following results on socle of finite grouptwut proofs.

Theorem 2.5.9 Let(¥; o) be a nontrivial finite group. Then

(1) If K is a minimal normal subgroup and L a normal subgrou§f o), then either
K<Lor(K L)=KxL;
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(2) There exist minimal normal subgroups, Ko, - - -, K, of (¢; o) such that
socfd) = Ky x Ky x -+ - X Kiy;

(3) Every minimal normal subgroup K ¢¥; o) is a direct product K= T; x T, X
---x Ty, where these T 1 < i < k are simple normal subgroups of K which are conjugate
under(¥; o);
(4) If these subgroup K1 < i < min(2) are all non-Abelian, then KK, ---, Ky,
are the only minimal normal subgroups @f; o). Similarly, if these T 1 <i < kin(3)
are non-Abelian, then they are the only minimal normal sobgs of K.

Theorem 2.5.10 Let & be a finite primitive group of §and K a minimal normal sub-
group of . Then exactly one of the following holds:

(1) For some prime p and integer d, K is a regular elementary Admeljroup of
order @, andsoc(#?) = K = Z,(K), where Z(K) is the centralizer of K inZ;

(2) K is a regular non-Abelian group,AK) is a minimal normal subgroup o#’
which is permutation isomorphic to K, asoc(??) = K x Z4(K);

(3) K is non-Abelian, Z(K) = {15} andsoc(¥?) = K.

Particularly, for the socle of a primitive group, we get tbédwing conclusion.

Corollary 2.5.3 Let & be a finite primitive group of $with the socle H. Then

(1) H is a direct product of isomorphic simple groups;
(2) H is a minimal normal subgroup offs,(H). Moreover, if H is not regular, then
it is the only minimal normal subgroup ofs,(H).

Let Q andA be two sets or groups. Denoted by FQnd) the set of all functions
from Q into A. For two groups’#’, 7# acting on a non-empty s€k, thewreath product
JH Wrq 7 of 2 by 7 with respect to this action is defined to be the semidireaypco
Fun@, #') x ¢, whereZ acts on the group Fuf) .#7") is determined by

f7(a) = f(ayfl) forall f e Fun@Q, %), ac Qandy e 7.
and the operationin Fun@, %) x ¢ is defined to be
-1
(fr.Ou) - (f2 @) = (f £, , 0u0n).

Usually, the grouB = {(f, 1»)|f € Fun@, %)} is called thebase groupf the wreath
productz” wrq 7.
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A permutation group?” acting onQ with the socleH is said to bediagonal type
if &7 is a subgroup of the normalizets,(H) such that¥” contains the base grou =
Ty X To X -+ X T, Then by Theorem 8.9 these groupd,, Ty, - -, T, are the only
minimal normal subgroups dfi andH < &2. So & acts by conjugation on the set
{T1, Ty, .-+, T} Then we know the next result characterizing those primigvoups of
diagonal type without proof.

Theorem 2.5.11 Let & < 45,(H) be a diagonal type group with the socle HT; x
T, X --- X Ty, ThenZ? is primitive subgroup of § either if

() m=2; or
(2) m > 3 and the action of#? by conjugation onTy, T, - -+, Ty,} of the minimal
normal subgroups of H is primitive.

Now we can present th®@’'Nan-Scott theorenfollowing, which characterizes the
structure of primitive groups.

Theorem 2.5.12(O’'Nan-Scott Theorem) et &2 be a finite primitive group of degree n
and.”Z the socle of#2. Then either

(1) 27 is a regular elementary Abelian p-group for some prime ps p™ = |7
and & is isomorphic to a subgroup of thgfme group AGk(p); or

(2) 27 is isomorphic to a direct powerTof a non-Abelian simple group T and one
of the following holds:

(i) m=1andZ is isomorphic to a subgroup &utT;

(i) m>2and.Z is a group of diagonal type with a |T]|;

(i) m > 2 and for some proper divisor d of m and some primitive grétvith a so-
cle isomorphicto ¥, &7 is isomorphic to a subgroup of the wreath proddcivr S, |Q| =
m/d with the product action, and & I™9, where | is the degree of ;

(iv) m=> 6, 77 is regular and n= |T|™.

A complete proof of the O’Nan-Scott theorem can be found @r#ierence [DiM1].
It should be noted that the O’Nan-Scott theorem is a usetulltéor research problems
related with permutation groups. By Corollarns3, a finite primitive group?” has a
socleH = T™, a direct product ofn copies of some simple grouip Applying this result
enables one to divide a problem into the following five typegéneral:



Sec.2.6 Local Action and Extension Groups 69

1. Affine Type H is an elementary Abeliap-group,n = p™ and & is a subgroup of
AGLy(p) containing the translations.

2. Regular Non-Abelian Type H andT are non-Abeliann = |T|™, m > 6 and the group
& can be constructed as a twisted wreath product.

3. Almost Simple Type H is simple and#? < AutH.

4. Diagonal Type H = T™with m > 2,n = |T|™?! and & is a subgroup of a wreath
product with the diagonal action.

5. Product Type H = TMwith m=rs, s> 1. There is a primitive non-regular group
with socleT" and of type in Cases 3 or 4 such thztis isomorphic to a subgroup of the
wreath product” wr S,, |A| = swith the product action.

All these types are contributed to applications of O’NawiStheorem, particularly
for the classification of symmetric graphs in Chapter 3.

§2.6 LOCAL ACTION AND EXTENDED GROUPS

Let (5!7; 5) be a multigroup with¢ = Lnj%, 0 = {oill <i < mjandQ = UQi a set. An
i=1

i=1
action(e,t) of (¢, 0) onQ is defined to be a homomorphism

(¢.0): (¢:0)—> O Sa,
i=1
such thatylg, : 4% — Sgq is @ homomorphism, i.e., forx € Q;, ¢(h) : x — X" with
conditions following hold,
X9 = X"(o))X?, h,ge A
for any integer 1< i < m. We sayy|o, thelocal actionof (¢, ¢) onQ for integers 1< i <m.
2.6.1 Local Action Group. If the multigroup (2 5) is in fact a permutation group?

~ m
with Q = [J Q;, we call such & to be alocal action groupon ; for integers 1< i < m.
i=1

In this case, docal actionof & onQ is determined by
Q7 =0 and Q\Q)”=Q\Q

forintegers 1<i<m.
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If the local action of%? on Q; is transitive or regular, then we say it isl@cally
transitive groupor locally regular groupon Q; for an integer 1< i < m. We know the
following necessary condition for locally transitive ogrgar groups by Theorem 21
and Corollary 2.1.

~ m
Theorem2.6.1 Let % be a group action o = | J Q; and7 < &2. ThensZ is locally
i=1
transitive only if there is an integepk 1 < ko < m such thatQy| | |.77°|. Furthermore, if
it is locally regular, then there is an integey, 11 < o < m such thaiQ; | = |.77.

—_ —_~ m
Let & be a group locally acting o, whereQ = [JQ;. If there are integers
i=1
k,i,k>2,1<i < msuch that the action o on(; is k-transitive or sharplk-transitive,
we say it is docally k-transitive groupor locally sharply k-transitive groupn Q. The

following necessary condition for locallkttransitive or sharply groups is by Theorems
22.3-225.

~ m

Theorem 2.6.2 Let &2 be a group action o2 = | J Q; and .7 < &. ThensZ is locally
i=1

k-transitive only if there is an integeg,i 1 < ip < m such that fova € Q;,, J7 is

(k — 1)-transitive acting o2 \ {a}. Particularly, |Q;,[(1Qi,| — 1)--- (1| — K+ 1) | [7Z].
Furthermore, if it is locally sharply k-transitive, thendfe is an integerg, 1 < jo <m
such thatQ; (12, = 1) - - - (1Qj,] — k+ 1) = |.77].

Theorems &.1 and 26.2 enables us to know what kind subgroups maybe locally

action groups.

Example2.6.1 Let % be a permutation group with
7 = {15,(1,2,3,4,5),(1,4,2,5,3),(1,5,4,3,2)

(2,3,5,4),(1,3,2,5),(1,5,4,3),(1,2,4,3),(1,4,5,2)

(2,4,5,3),(1,4,3,5),(1,2,5,4),(1,5,2,3),(1,3,4,2)

(2,5)(3,4),(1,5)(2 4), (1,4)(23),(1,3)(4,5), (1, 2)(3 5)}
Then

2 =1{15,(1,2,3,4,5),(1,4,2,5,3),(1,5,4,3,2)},
T ={15,(1,2,3,4),(1,3)(2 4),(1,4,3,2)}

both are subgroups a#?. Notice that.#’| = 5, |.7| = 4. We know that’Z’ and.7 are
transitive acting o2 = {1, 2, 3,4,5} andA = {1, 2, 3, 4}, respectively. But none of them
is k-transitive fork > 2.
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Corollary 2.6.1 Let % be a group action oM = U Q, <P Forintegersj 1 <i <
m and k> 1, if |Q](]Qi] — 1)(Q] —2)- - - (1] — k+ 1) is not a divisor of.77|, then(77; o)
is not locally k-transitive oif);.

—_— —_~ m
For a local action group” on Q with Q = |J Q;, if there isan integer, 1 <i <m
i=1
such that the action o on Q; is primitive, we say it is docally primitive groupon Q.

The following condition for locally primitive group is by Horems 5.4.

Theorem 2.6.3 Let & be a local action group o = U Qi with 77 < &. Then(7; o)
is locally primitive if and only if there is an integer Il < | < m such that’#” action on
Q, is transitive and77; is maximal forva € Q.

2.6.2 Action Extended Group. Conversely, let” be a permutation group action 6y
A a set withA N Q = (. A permutation grou@action onQ U A is anaction extended
of Z onQif (37)A = &, andk-transitive extendedr primitive extendedf 2 action on
QU A isk-transitive for an integek > 1 or primitive. Particularly, ifA] = 1, such a action
extended group is callezhe-point extendeon &.

The following result is simple.

Theorem 2.6.4 Let &2 be a permutation group action dp, AN Q = 0, k> 1 an integer
and & an extension of? action onA U Q. If

(1) 7 is k-transitive om;
(2) there are k elements %, - - -, Xx € A such that for | elementsyy,,---,y € Q,
wherel < | < k there exists an elemente 2 with

y'=x for 1<i<lbut X=x if | +1<i<Kk,

hold, thenZ is k-transitive extended ok U Q.

Proof Let x,Yy;, 1 <i < kbe X elements i) U A. Firstly, we prove that for any
choice ofxy, X, - - -, Xk € QUA, there always exists an elemernt 2 such that alkd € A
for1<i <k If X, %, -+, X% € A, there are no words need to say. Not loss of generality,
we assume that;, X, - - -, Xs € Q but Xs,1, Xsi2, - - -, Xk € A for an integer 1< s< k. Then
by the assumption (2), there is an element 2 such thatx™ € Afor1 <i < sbut
x© =X fors+1<i<k Whencex™eAforl<ic<k,ie.,0=nsis for our objective.
Similarly, there also exists an element 2 such thay? e Afor1<i <k
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Applying the assumption (1), there is an element 2 such that )" = yr for
integers 1< i < k. Consequently, we know that

X =y for 1<i <k

This completes the proof. O

Particularly, ifk = 1, we get the following conclusion for transitive extendsd b
Theorem %6.4.

Corollary 2.6.2 Let & be a permutation group action o2, An Q = 0 and Z an
extension of#2 action onA U Q. If

(1) 27 is transitive onA;
(2) there is one element x A such that for any element ¥ Q, there exists an
elementr € 2 with y* = x hold,

then 2 is transitive extended oft U Q.

Furthermore, if% is one-point extended &¥, we get the following resullt.

Corollary 2.6.3 Let Z be an one-point extension P action onQ by x ¢ Q. For
Yy € Q, if there exists an elemente 2 such that ¥ = X, then is transitive extended
of #.

These conditions in Corollaries62-26.3 is too strong. In fact, we improve condi-
tions in them as in the following result.

Theorem 2.6.5 Let #Z be a permutation group action dn with orbits %, %5, - - -, $m,
ANQ=0and

P = (P, D),

with 2 = {(x,y),1 <i <m (X,2,X € A, X # X}, where Xe A, yj € %, z= X 0ry
for 1 < i < m. ThenZ is transitive extended. Furthermore, 4 is transitive onQ or
A ={x}, i.e., Pis one-point extension a¥, then

(ﬁ:((@;(x,y),(%,z), X eAX #X) or (Z;(Xy),1<i<m)

withye Q, z= x or y is transitive extended a” onQ U A or Q U {x}.

Proof We only prove the first assertion since all others are thdavied.
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Firstly, for ¥z € %, zj € %, letZ* =y, andZ? =yj, oi,0) € &. Then
270NN — 7. Now if X, X, € A, by definitionxa0eX = x, o (a0 —
or xGaW0eN) — ) o xEWURCMUR) _ e it (%, %), (%, X), OF (X, X), (% Y1), (¥i» %), OF
(X1, Vi), (X2, Y1), or (X1, ¥i), (¥i, X), (X, Y;), (Y, X2) € 2. Finally, if x € A andz; € %4, let
X" = xandZ = y;. Thenx*"* = z.

Therefore,Z is transitive extended af2 U A. U

The k-transitive numbero2"(7; A) of a permutation group” action onQ by a
setA with AN Q = 0 is defined to be the minimum number of involutions appeared in
permutations presented by product of inventions adde# teuch thatZ is k-transitive
extended of” onQUA. Particularly, ifk = 1, we abbreviater;2"(77; A) to @""(Z; A).

We know the numbetr(Z7; A) in the following result.

Theorem 2.6.6 Let &7 be a permutation group action d@ with an orbital set Ori<),
ANQ =0andZ an extended action of? onA U Q. Then

@ (2; A) = |A| + |Orb(Q)| - 1.
Furthermore, if# is transitive or% is one-point extension a¥, then
@™ (2; A) = |A| or |Orb(Q)].

Proof Let x e AU Q be a chosen element. denotedAjy] all elements determined
by

e

AlX] ={yIX" =Yy, VYmre Z}.

If 7 is a transitive extended action & onA U Q, there must bé&[x] = AUQ. Enumer-
ating all inventions appeared in permutatienpresented by product of inventions such
thatx™ = y € A[X], we know that

@®(Z; A) > |A| + |Orb(Q)] - 1.
Applying Theorem &.5, we get that
@ (2; A) < |A| + |Orb(Q)| - 1.

Whence,
@ (2; A) = |A| + |Orb(Q)| - 1.
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Notice that|Orb(QQ)| = 1 or|A] = 1 if &2 is transitive orZ is one-point extension of”.
We therefore find that
@"(2; A) = |A| or |Orb(Q)]

if 2 is transitive orZ is one-point extended. O

Now we turn our attention to primitive extended groups. Apmd Theorem 5.3,
we have the following result.

Theorem 2.6.7 Let &7 be a permutation group action a2 and A a nonempty set with
AN Q = 0. Then there exist primitive extended permutation gro@sf & action on
QUAIf|A| > 20r |A] = 1 but &2 is transitive onQ.

Proof Let %, %, - -, % be orbits ofZ2 action onQ. Define
P = (Z;(%Y),L<i<m((X,X),X € A, X #X),

wherex e A, y; € %,. ThenZ is 2-transitive extended of? by Theorem B.4 if |A| > 2.
Notice thatgz; = 2. If A = {x} and & is transitive onQ, we also know that? is
2-transitive extended o by Theorem 2.3. Whence, we know that” is primitive
extended of”” onQ U A by Theorem 5.3 in each case. O

2 6.3 Actlon MultiGroup. Let Z be a permutation multigroup action enwith &7 =

U P.Q = U Q; and for each integerl < i < m, the permutation group?; acts onc;.
i=1 i=1

Such a permutation multigrou@ is said to beglobally k-transitivefor an integeik > 1
if for any twok-tuplesxy, Xp, - - -, Xk € Q; andy, Yo, - - -, Yk € Qj, where 1< i, j < m, there
are permutations,, n,, - - -, T, such that

T+ T, T+, T+,
X’]’ilz n:yl, >€12 n:yi,___,)le n:yk'

For simplicity, we abbreviate the globally 1-transitivetb@tglobally transitiveof a per-
mutation multigroup.

Remark 2.6.1: There are no meaning if we define the globatransitive on twok-
tuplesxy, X, - -, % € Q, V1, Yo, - - -, Yk € Q in a permutation multigroup? because there
are no definition for the actiong if x, ¢ Q; butr € &%, 1 <i <m,where I<| <k
—_— —_ _—~ m —_~
Theorem 2.6.8 Let &2 be a permutation multigroup action da with & = |J £4,Q =
i=1

U Q;, where each permutation groug; transitively acts orf); for each integerd <i <
i=1
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m. Then? is globally transitive orQ if and only if for any integer,i1 < i < m, there
exists an integer,j1 < j <m, j # i such that

QimQj 0.

Proof If 7 is globally transitive action of, by definition forx € Q; andy ¢ €,
1<i<m,there are elements, np,---,m, € 2 such that

X =y

Not loss of generality, we assume, n,, - - -, 1 € & butm, my,q, - -, mn € &, i.e.,l be
the least integer such that ¢ &7,. Letm € &7;. Notice that%;, &; act onQ; andQ;,
respectively. We get thatv> ™ € Q; N Q;, i.e.,

Q[ Q=0

Conversely, if for any integdr 1 < i < m, there always exists an integgrl < j <
m, j # i such that

Q[ )90,

let x € Q; andy ¢ Q;. Then there exist integelsg I,, - - -, |s such that

Q[ )@, #0, Q[ )@, #0,--,Q,,( ), #0.

LetX, X3 € Qi Q, X € Q, N, -, X €, NQ, Y€ Q, andm € P, € P,
oy s 1 € Ay, s € P such thak™ = x,, X2 = X, -, X°1 = X, X° = y by the
transitivity of %, 1 <i < m. Therefore, we find that

X2 TS =y,

This completes the proof. U

The condition of transitivity on each permutatiofy, 1 <i < min Theorem 6.8 is
not necessary for the globally transitive@f on Q, such as those shown in the following
example.

Example 2.6.2 Let Z bea permutation multigroup action enwith

P =P, U P, and Q = {1,2.3,4,5,6,7, 8) U{l, 2,5,6,9,10,11,12),
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where 2, = ((1,2,3,4),(5,6,7,8)) and 2, = ((1,5,9,10), (2,6, 11, 12)), i.e.,

Py = {1,,(13)(24)(1,2,3,4),(1,4,3,2),
(5,7)(6,8), (5.8,7,6),(5,6,7,8),
(13)(24)(57)(6,8), (13)(24)(36,7,8), (13)(24)(58,7,6)
(1,2,3,4)(5 7)(6,8). (1,2, 3,4)(5,6,7,8), (1 2, 3,4)(5,8,7,6)
(1,4,3,2)(5 7)(6,8), (1, 4,3,2)(5,6,7,8),(14,3,2)(5.8,7,6))

and

Py = {1, (1,9)(510),(1,5,9,10),(1,10,9,5)
(2,11)(6 12),(2,6,11,12),(2,12,11,6)
(1,9)(510)(2 11)(6 12), (1,9)(5,10)(2 6,11, 12), (1,9)(5,10)(2 12 11, 6)
(1,5,9,10)(2 11)(6 12),(1,5,9,10)(2 6,11,12),(1,5,9,10)(2 12 11,6)
(1,10,9,5)(211)(6 12),(1,10,9,5)(2 6,11,12),(1,10,9,5)(2 1211, 6).

Calculation shows tha#” is transitive orQ, i.e., for any element, for exampledﬁ,
17 = {1,2,3,4,5,6,7,8,9,10,11, 12}.

Generally, we know the following result on the globally tséive of permutation
multigroup, a generalization of Theoren638 motivated by Example.g.2.
—_— —_ P m —_
Theorem 2.6.9 Let & be a permutation multigroup action da with &2 = |J £%,Q =
i=1

m
U Qi, where each permutation grou; acts on<; with orbits %;;, 1 < j < |0rb(€;)| for
i=1

integersl <i < m. ThenZ is globally transitive o if and only if for integer jj, 1 <
i<m, 1< j<|0rb(Q)], there exist integers,KL < k <m,1 < | < |Orb(Qy)|, k # i such
that

Qij ﬂ Qu # 0.
Proof Define a multiset
_ m m (|Orb(¢Y)|
5-)o =U( ) @]
\ \ et

Then % acts on eacl;; is transitive by definition for ki <m, 1 < j <|Orb(¢)| and
the result is followed by Theorem&8. O
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Counting elements in eacy, 1 < i < m, we immediately get the following conse-
guence by Theorem@9.

Corollary 2. 63 Let ﬁ be a permutation multigroup globally transitive action én
with & = U P,Q = U Q;, where each permutation groug; acts on<; with orbits

Bij, 1< ] < |Orb(Q)| for integersl < i < m. Then forany integeril <i <m,
Q\ Qi > [Orb(),
particularly, if m= 2 then
Q4] > |Orb(Qy)| and [Q,] > |Orb(Q,)|.

—_— m ~ m
A permutation multigroup? = |J & action onQ = |J is said to beglobally
i=1 i=1
primitive if there are no proper subsefs c Q, |A| > 2 such that eitheA = A" or

ANA"=0forVre ﬁprovideda’r existing forva € A.

Theorem 2.6.10 A permutation multlgroup@ U 2, action onQ = U is globally
primitive if and only if&%; action ong; is primitive for any integefl <i < m

Proof If & action onQ is globally primitive, by definition we know that there are
no proper subset& c Q;, |Al > 2 such that eitheA = A" or AN A" = ( for Vnr € &,
where 1< i < m. Whence, eacly’; primitively acts onc;.

Conversely, if each??; action on€; is primitive for integers 1< i < m, then there
are no proper subsefsc Q;, |Al > 2 such that eitheA = A" or An A" = ( for Yn € &
for 1 <i < mby definition. Now letr € & for an integeli, 1 <i < m. Notice thatA”

Is existing forvYA c Q if and only if A c Q. Consequentlyﬁaction onQ is globally
primitive by definition. O

Combining Theorems.2.10 with 25.4, we get the following consequence.

—_— m —_— m
Corollary 2.6.4 Let & = | & be a permutation multigroup action @2 = [ J, where
i=1 i=1

; Is transitive and(&7), is maximal forva € Q;, 1 < i < m. Then? is globally
primitive action onQ.

§2.7 REMARKS

2.7.1 There are many monographs on action groups such as thoseedf][svid [DiM1].
In fact, every book on group theory partially discussesoactjroups with applications.
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These materials in Sectionsl22.2 2.3 and 25 are mainly extracted from [Wan1], [Rob1]
and [DiM1], particularly, the O’Nan-Scott theorem on priiweé groups.

2.7.2 A central but dificult problem in group theory is to classify groups of orddor
any integem > 1. The Sylow’s theorem op-groups enables one to see a glimmer on
classifyingp-groups. However, this problem is alsdfdiult in general. Today, we can
only find the classification op-groups with small power (See [Xuml] and [Zhal] for
details). In fact, these techniques used for classifyrggoups are nothing but the group
actions, i.e., application of action groups.

2.7.3 These permutation multigroups in Sectio & in fact action multigroups, a kind
of Smarandache multi-spaces first discussed in [Mao21] Blab25]. These concep-
tions such as those of localktransitive, locally primitive k-transitive extended, prim-
itive extended, globally transitive and globally priméiare first presented in this book.
Certainly, there are many open problems on permutationignoitps, for exampleor a
permutation group?” action onq, is there always an extended primitive actiondgfon
QU A forasetA, AN Q =0? Can we characterize such permutation groggor such
SetsA?

2.7.4 Theorems 5.8 and 26.9 completely determine the globally transitive multigreup
However, we can also find a more simple characterization &gtgg in Chapter 3, in where
we clarify the property of globally transitive is nothingttihe connectedness on graphs.
In fact, these conditions in Theorem$38 and 26.9 are essentially enables one to find a
spanning tree, a kind of most simple connected grapﬁ.on



CHAPTER 3.

Graph Groups

An immediate applying field of action groups is to that of drgor them
easily to handle by intuition. By definition, a graph groumisubgroup of
the automorphism group of a graph viewed as a permutatiampgobits ver-
tices. In fact, graphs has a nice mathematical structurebggctives. Usu-
ally, the investigation on such structures enables one tbrfew important
results in mathematics. For example, the well-knddigman-Sims group
one of these 26 sporadic simple groups was found by that ghggaoups
in 1968. Topics covered in the first 4 sections including psawith opera-
tions, graph properties with results, Smarandachely gppperties, graph
groups, vertex-transitive graphs, edge-transitive gsapfc-transitive graphs,
semi-arc groups with semi-arc transitive graph, etc.. A graph is itself
a Smarandache multi-space by definition, which naturalbyvigle us a nice
source for get multigroups. In Sectiotb3we show how to get mutligroups
on graphs, also find new graph invariants by that of graphigrolips, which
will be useful for research graphs and getting localizedrsgtnic graphs.
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§3.1 GRAPHS

3.1.1 Graph. A graph Gis an ordered 3-tuple/ E; 1), whereV, E are finite setsy # 0
andl : E - V x V. CallV thevertex seand E the edge sebf G, denoted by (G)
and E(G), respectively. An elements € V(G) is incidentwith an elemene € E(G)

if 1(e) = (v,x) or (x,v) for anx € V(G). Usually, if (u,v) = (v,u), denoted byuv or
vu € E(G) for Y(u,v) € E(G), thenG is called to be a graph without orientation and
abbreviated tgraphfor simplicity. Otherwise, it is called to be a directed dgnapith an
orientationu — v on each edgeau(Vv).

The cardinal numbers o¥(G)| and|E(G)| are called itorder andsizeof a graphG,
denoted byG| ande(G), respectively.

Let G be a graph. We can represent a gr&phy locating each vertex in G by a
point p(u), p(u) # p(v) if u# vand an edgeu v) by a curve connecting poinggu) and
p(v) on a planeR?, wherep : G — P is a mapping from th&(G) to R2.

For example, a grap® = (V,E;I) with V = {vy,V,,Vv3,V4}, E = {€1, €, €3,€4, 65,
€5, €7, €5, &, €10} andl(e) = (v, Vi), 1 < i < 4;1(e5) = (v, V2) = (V2, V), I (&8) = (V3,Va) =
(Va, V3), 1 (€5) = 1(€7) = (V2,V3) = (V3, V), I(€8) = I(&) = (V4,V1) = (V1,Vs) can be drawn
on a plane as shown in Fig131.

€ €

€4 €

Fig. 3.1.1

LetG = (V,E; ) beagraph. Foree E,if I(€) = (u,u),u € V, theneis called doop,
For example, edges — e, in Fig.31.1. For non-loop edges;, e, € E, if I1(e) = I(&),
thene,, & are callednultiple edge®sf G. In Fig.31.1, edgess, e; andey, €, are multiple
edges. A graph isimpleif it is loopless without multiple edges, i.@(g) = (u, v) implies
thatu # v, andl(e)) # I (&) if e; # & for Ve, e, € E(G). In the case of simple graphs, an
edge (I, v) is commonly abbreviated tav.
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A walk of a graphG is an alternating sequence of vertices and edgges, U, &,
<+-,6h Uy With & = (ui,u,1) for 1 < i < n. The numbemn is called thelength of the
walk. A walk is closedif u; = un,1, andopened otherwise. For example, the sequence
V1€1V165V065V363V367 V06V, IS a walk in Fig.13.1. A walk is atralil if all its edges are
distinct and gpathif all the vertices are distinct also. A closed path is usuedlled a
circuit or cycle For exampley,Vovav, andviVoVsV,av; are respective path and circuit in
Fig.31.1.

A graphG = (V,E; 1) is connectedf there is a path connecting any two vertices in
this graph. In a graph, a maximal connected subgraph ishcigdl@component

Let G be a graph. Fo¥u € V(G), theneighborhood i(u) of the vertexu in G is
defined byNg(u) = {V|¥(u,V) € E(G)}. The cardinal numbédNg(u)| is called thevalency
of vertex uin G and denoted byg(u). A vertexv with pg(v) = 0 is anisolated vertex
andpg(v) = 1 apendent vertexNow we arrange all vertices valency Gfas a sequence
pa(U), pa(V), - - -, pa(W) with pg(U) > pe(v) = -+ > ps(W), and denote\(G) = pg(u),
6(G) = pc(w) and call then the maximum or minimum valency@f respectively. This
sequencec(u), pc(V), - - -, pc(W) is usually called thealency sequenaaf G. If A(G) =
6(G) = r, such a graplt is called a r-regular graph. For example, the valency sempien
of graph in Fig.3L.1is (55,5, 5), which is a 5-regular graph.

By enumerating edges B(G), the following equality is obvious.

> polt) = 2E(G).

ueV(G)

A graphG with avertex seV(G) = {vi, Vo, - - -, Vp} and an edge s&l(G) = (e, &, - - -,
€} can be also described by those of matrixes. One such matig isq adjacency ma-
trix A(G) = [aj] pxq, Wherea;; = [I71(vi, V). Thus, the adjacency matrix of a gra@his
symmetric and is a,d-matrix having O entries on its main diagonalGfis simple. For
example, the matriA(G) of the graph in Fig.3.1is

A(G) =

N O -
SO N - P
= ~ N O
P R O N

LetG; = (V1, Eg; 1) andG, = (Va, Ey; 1) be two graphs. They ardentical denoted
by G, = G, if V1 = Vo, E; = E; andl; = 1,. If there exists a + 1 mappingg : E; —
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E, and¢ : Vi, — V, such thatpl,(e) = l,¢(e) for Ye € E; with the convention that
o(u,v) = (¢(u), p(v)), then we say thab; is isomorphicto G,, denoted byG; = G, and
¢ anisomorphisnbetweenG; andG,. For simple graphsi,, H,, this definition can be
simplified by (, v) € 11(E,) if and only if (¢(u), ¢(v)) € I2(Ey) for Yu,v € V.
For example, leG; = (V1, Eg; 11) andG; = (V,, Ez; I,) be two graphs with

Vi ={vi,Vo,v3}, E1={e, e, 6,6}

l1(e1) = (V1, V2), [1(€2) = (V2, V3), l1(€3) = (V3, V1), l1(€4) = (V1, V1)
and

Vo = {ug, Up, Uz}, Bz = {fy, f2, f3, fa},

I2(f1) = (Ug, Up), I2(f2) = (Up, U3), 12(f3) = (Us, Uy), 12(fs) = (Uz, Up),
i.e., those graphs shown in Fidl2.

€4 fa
& e f f2
V3 Vo Us Uz
fa
G]_ G2
Fig. 3.1.2

Define a mappingg : E1UVi — ExUV2 by ¢(e1) = fa,8(e2) = 3, é(es) =
fi,p(es) = fpandg(vi) = u forl < i < 3. It can be verified immediately that
oli(e) = l,¢(e) for Ye € E;. Thereforey is an isomorphism betwees; andG,, i.e.,
G; andG; are isomorphic.

A graphH = (V4, Eg; 1) is asubgraphof a graphG = (V,E;1)if V, C V,E; CE
andl; : E; —» V; x V1. We useH < G to denote thaH is a subgraph of. For example,
graphsG,, G,, Gz are subgraphs of the graghin Fig.31.3.

u U U, U, U U
Usg 3 Uz Ug U3 4
G G G, Gs

Fig. 3.1.3



Sec.3.1 Graphs 83

For a nonempty subskk of the vertex seV(G) of a graphG, the subgrapkU) of G
inducedby U is a graph having vertex set and whose edge set consists of these edges
of G incident with elements df). A subgrapiH of G is calledvertex-inducedf H = (U)
for some subsd of V(G). Similarly, for a nonempty subsgtof E(G), the subgrapkF)
induced byF in G is a graph having edge setand whose vertex set consists of vertices
of G incident with at least one edge Bf A subgraptH of G is edge-inducedf H = (F)
for some subsef of E(G). In Fig.31.3, subgraph$s; andG; are both vertex-induced
subgraphs{us, us}), ({up, uz}) and edge-induced subgraptitus, us)}), ({(U,, us)}). For
a subgrap of G, if [V(H)| = |[V(G)|, thenH is called aspanning subgrapbf G. In
Fig.31.3, the subgrapls; is a spanning subgraph of the graph

K(4’ 4) KG

Fig.3.1.4

A graphG is n-partite for an integen > 1, if it is possible to partitio’/(G) into n
subsetd/1, Vs, - - -, Vi such that every edge joints a verteX\Wio a vertex olVj, j #1i, 1 <
I, ] < n. A complete n-partite graph @& such am-partite graph with edgasv € E(G) for
Yu e V;andv e V, for 1 <i,j < n, denoted byK(ps, p2,-- -, pn) if [Vi| = pi for integers
1 <i < n. Particularly, if|Vi| = 1 for integers 1< i < n, such a completa-partite graph
is calledcomplete graptand denoted b¥,. In Fig.31.4, we can find the bipartite graph
K(4,4) and the complete gragfs. Usually, a complete subgraph of a graph is called a
clique and its a&-regular vertex-spanning subgraph also callé&dfactor.

3.1.2 Graph Operation. A union G, | G, of graphsG; with G, is defined by

VG1| JGo) = Vi| J Vo, EG1| JGo) = Ex| | Eo, 1(Ex| JE2) = h(En) [ 12(Eo).

A graph consists ok disjoint copies of a grapHl, k > 1 is denoted byc = kH. As an
example, we find that

5
Ke = JSui
i=1
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for graphs shown in Fig.3.5 following

3 3 4 4
4
5 {//5 %5 /5
. 6. 6 , 6, 6
Sl.5 S1.4 Sl.3 S1.2

Fig. 3.1.5

6
S
S11

and generallyK,, = nL_Jl S:;. Notice thatkG is a multigraph with edge multiplie for any
integerk, k > 2 and ela:lsimple grapBG.

A complemenG of a graphG is a graph with vertex sa&t(G) such that vertices are
adjacent inG if and only if these are not adjacent@ A join G, + G, of G; with G, is
defined by

V(G + Gy) = V(G) UV(Gy),
E(G1 + G2) = E(G1) U E(G2) U{(U, v)lu € V(Gy), v € V(Gy)}
and
1(G1 + G2) = 1(G1) U H(G2) Ut (U, V) = (U, V)lu € V(Gy), v € V(Gy)}.

Applying the join operation, we know th#t(m, n) = K, + K,. A Cartesian product
G1 X G, of graphsG; with G, is defined by (G; x G,) = V(G;) x V(G,) and two vertices
(uz, up) and {1, v,) of G X G, are adjacent if and only if either, = v; and (,, v») € E(G,)
or u; = Vp and (U, v1) € E(G,). For exampleK; x Pg is shown in Fig.3L.6 following.

u
1 2 3 4 5 6
Kz
P
v 6
Uz Uz U3 Ug Us Us
Vi Vo V3 Vg Vg Vg
Ks X Pg

Fig.3.1.6
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3.1.3 Graph Property. A graph property is in fact a graph family
‘gz = {Gl,GZ,G&"',Gn,"'}

closed under isomorphism, i.&¢ € & for any isomorphism on a gragh € 2. We
alphabetically list some graph properties and resultsawitiproofs following.

Colorable. A coloring of a graphG by colors in% is a mappingy : % —
V(G) U E(G) such thatp(u) # ¢(v) if uis adjacent or incident withr in G. Usually, a
coloringelye) : ¢ — V(G) is called avertex coloringandylg) : ¢ — E(G) anedge
coloring. A graphG is n-colorableif there exists a color sé&f for an integen > |%|. The
minimum numben for which a graplG is vertexn-colorable, edg@e-colorable is called
the vertex chromatic numbesr edge chromatic numbemnd denoted by(G) or y1(G),
respectively. The following result is well-known for cosdnle of a graph.

Theorem 3.1.1 Let G be a connected graph. Then

(1) x(G) < A(+) + 1 and with the equality hold if and only if G is either an odd
circuit or a complete graph; (Brooks theorem)
(2) x1(G) = A(G) or A(G) +1; (Vizing theorem)

Theorem 31.1(2) enables one to classify graphs into Class 1, Class @2 (8y) =
A(G) or y1(G) = A(G) + 1, respectively.

Connectivity. For an integek > 1, a grapl is said to be&k-connectedf removing
elements irX c V(G) U E(G) with |X| = k still remains a connected gragh- X. Usually,
we call G to bevertex k-connectedr edge k-connectefl X c V(G) or X c E(G) and
abbreviate vertek-connected t&-connectedh reference. The minimum cardinal number
of X c V(G) or X c E(G) is defined to be theonnectivityor edge-connectivitpf G,
denoted respective (G), «1(G). A fundamental result for characterizing connectivity
of a graph is the Menger theorem following.

Theorem 3.1.2(Menger) Let u and v be non-adjacent vertices in a graph G. Then the
minimum number of vertices that separate u and v is equalabtiie maximum number
of internally disjoint u- v paths in G.

Then we can characterikeconnected ok-edge-connected graphs following.

Theorem 3.1.3 Let G be a non-trivial graph. Then
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(1) G is k-connected if and only if fofu,v € V(G), u # v, there are at least k
internally disjoint u— v paths in G. (Whinety)

(2) G is k-edge-connected if and only if féu, v e V(G), u # v, there are at least k
edge-disjoint u- v paths in G.

Covering. A subsetW c V(G) U E(G) is independentf any two element inWV
is non-adjacent or non-incident. A vertex and an edge in plgeae said to beover
each other if they are incident andcaverof G is such a subséi c V(G) U E(G) such
that any element ivV(G) U E(G) \ U is incident to an element ib. If U c V(G) or
U c E(G), such an independent set is callezitex independemtr edge independeraind
such a covering gertex coveor edge coverUsually, we denote the minimum cardinality
of vertex cover, edge cover of a gra@by a(G) ana,(G) and the maximum cardinality
of vertex independent set, edge independent sg{®yandpg,(G), respectively.

Theorem 3.1.4(Gallai) Let G be a graph of order p without isolated vertices. Then
a(G) +p(G) =p and ai(G) +Bi(G) = p.

A dominating set Dof a graphG is such a subsdd c V(G) U E(G) such that every
element is adjacent to an elemenOnlIf D c V(G) or D c E(G), such a dominating set
D of G is called avertexor edge dominating sefThe minimum cardinality of vertex or
edge dominating set is denoted &{G) or o1(G), called thevertexor edge dominating
number respectively. The following is obvious by definition.

Theorem 3.1.5 Let G be a graph. Then

o(G) < a(G) and o1(G) < B1(G).

Decomposable.A decompositioof a graphG is subgraphsli; 1 < i < mof G such
thatH; = (E;) for some subsef; c E(G) with E;NE; = 0 for j #i,1 < j < m, usually

m
G= @ H;.
i=1

If every H; is a spanning subgraph & such a decomposition is calledactorizationof

denoted by

G into factorsH;; 1 < i < m. Furthermore, if every; is k-regular, such a decomposition
is calledk-factorableand eaclH; is ak-factor ofG.
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Ug V) \%1 V2
Ug < X > U3
Us Us Vy V3
Gl GZ
Fig.3.1.7

For example, we know that

Glel@Hg, andGQZFl@Fz@Fg

for graphsG;, G, in Fig.31.8, whereH; = (ujus, UoUs, UsUg), h, = (U1Ug, UpUs, UsUs)
andFy = (viVo, VaVa), Fo = (V1Vs, VoV3), F3 = (V1V3, Vo). Notice that evenH; or F; is
1-regular. Such a spanning subgraph in a gi@pé called aperfect matchingf G.

Theorem 3.1.6(Tutte) A non-trivial graph G has a perfect matching if and only if for
every proper subset 8§ V(G),
w(G-9) < S,

wherew(H) denotes the number of odd components in a graph H.
Theorem 3.1.7(Konig) Every k-regular bipartite graph with k 1 is 1-factorable.

Theorem 3.1.8(Petersen)A non-trivial graph G is2-factorable if and only if G i£n-
regular for some integer & 1.

Embeddable. A graphG is said to be embeddable into a topological spadtthere
is a 1- 1 continuous mapping : G — 7 with f(p) # f(q) if p,q ¢ V(G). Particularly, if
7 is a Euclidean planB?, we say thaG is aplanar graph In a planar grapkg, its face
is defined to be that regidn in which any simple curve can be continuously deformed in
this region to a single poir € F. For example, the graph in Figl38 is a planar graph.
Vi \

Uy u

Vy V3
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whose faces arE; = ujUVvausuy, Fo = ViVoVaVavy, F3 = UviVolbUy, Fa = UsVoVaUsUo,

Fs = usVaVausus andFg = ugVaviUgUg. It should be noted that each boundary of a face
in this planar graph is a circuit. Such an embedding graplaliee astrong embedded
graph

Theorem 3.1.9(Euler) Let G be a planar graph with p vertices, q edges and r facesnThe
p-q+r=2

An elementary subdivisioof a graphG is such a graph obtained frogby removing
some edge = uvand adding a new vertex and two edgesvw. A subdivisiorof a graph
G is a graph by a succession of elementary subdivision. DefgrahH homeomorphic
from that ofG if eitherH = G or H is isomorphic to a subdivision @. The following
result characterizes planar graphs.

Theorem 3.1.10(Kuratowski) A graph is planar if and only if it contains no subgraphs
homeomorphic with Kor K(3, 3).

Theorem 3.1.11(The Four Color Theoremitvery planar graph igl-colorable.

Travelable. A graphG is eulerianif there is a closed trail containing all edges and
is hamiltonianif there is a circuit containing all vertices &. For example, the graph in
Fig.31.6 is with a hamiltonian circui€ = v1V,V3V4UsUsUoUoVs, but it is not eulerian. We
know a necessary andf&igient condition for eulerian graphs following.

Theorem 3.1.12(Euler) A graph G is eulerian if and only g (v) = 0(mod2) Vv e V(G).

But for hamiltonian graphs, we only know somdistient conditions. For example,
the following results.

Theorem 3.1.13(Chvatal and Erdos).et G be a graph with at leag vertices. 1fx(G) >
B(G), then G is hamiltonian.

A closure GG) of a graphG is the graph obtained by recursively joining pairs of
non-adjacent vertices whose valency sum is at I&sfThen we know the next result.

Theorem 3.1.14(Bondy and Chatal)A graph is hamiltonian if and only if its closure is
hamiltonian.

Theorem 3.1.15(Tutte) Every4-connected planar graph is hamiltonian.
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3.1.4 Smarandachely Graph Property. A graph property?? is Smarandachelyf it
behaves in at least two fterent ways on a graph, i.e., validated and invalided, or only
invalided but in multiple distinct ways. Such a graph withedst one Smarandachely
graph property is called 8marandachely graptHere, we only alphabetically list some
Smarandachely graph properties and results with some apéfems following.

Smarandachely Coloring. Let A be a subgraph of a grafjh. A Smarandachely
A-coloring of a graphG by colors in% is a mappinge, : ¢ — V(G) U E(G) such
thatp(u) # ¢(v) if uandv are elements of a subgraph isomorphia\tin G. Similarly,
a Smarandachelg-coloring galve) @ € — V(G) or palge) : € — E(G) is called
a vertex Smarandacheli-coloring or anedge Smarandachely-coloring. A graphG
is Smarandachely i-colorableif there exists a color s&f for an integem > |%|. The
minimum numben for which a graplG is Smarandachely vertexA-colorable, Smaran-
dachely edgen A-colorable is called theertex Smarandachely chromatichumberor
edge Smarandachely chromatfienumberand denoted by”(G) or x4 (G), respectively.
Particularly, if A = P,, i.e., an edge, then a vertex Smarandachebpoloring or an edge
Smarandachely-coloring is nothing but the vertex coloring or edge coririga@raph.
This implies thaty*(G) = x(G) andx}(G) = x1(G) if A = P,. But in general, the
Smarandachely-coloring of a graphG is different from that of its coloring. For exam-
ple, xP2(Pn) = xt2 = 2, x*(Py) = k, x1(Pn) = k— 1 for any integer 1< k < nand a
Smarandachelis-coloring onP; can be found in Fig.3.9 following.

Fig.3.1.9

For the staS; , and circuitC, for integers 1< k < n, we can easily find that

2 if k=2,
XS =4 n+1 if k=3,
1 if4<k<n,

1 if k=2,
XP(S1n) =4 n if k=3,
1 if4<k<n
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and

ka(Cn) :lek(cn) =
=minfk+(i-1)+s,1<i<n-k|n=s(modk+i-1),0<s <k+i-1}.

The following result is known by definition.

Theorem 3.1.16 Let H be a connected graph. Then

(1) x"(nH) = [V(H)| and x}'(nH) = |E(H)|, particularly, y*(G) = |V(G)| and
X$(G) = [E(G);
(2) ¥"(G) :X?(G) =1ifH £ G.

Generally, we present the following problem.

Problem 3.1.1 For a graph G, determine the number$(G) and x4 (G) for subgraphs
A<G.

Smarandachely Decomposition. Let &7; and &2, be graphical properties. A
Smarandachely?,, &7,)-decompositiomf a graphG is a decomposition d& into sub-
graphsG,, Gy, - -+, G| € & such thaG; € &, or G; ¢ &2, for integers 1< i <.

If 22, or &, = {all graph$, a Smarandachely®,, 4%,)-decomposition of a grapB
is said to be @&marandachely”-decompositionParticularly, ifE(G;) N E(G;) < k and
A(Gj) < dforintegers 1< i, j < |, such a Smarandachely’-decomposition is called a
Smarandache graphoidal (&)-coverof a graphG.

Furthermore, ifd = A(G) or k = |G|, i.e., a Smarandachely graphoidkl £(G))-
cover with 7 = {path or a Smarandachely graphoid&l A(G))-cover with &7 = {treg
is called aSmarandachely path k-cover a Smarandache graphoidal tree d-cow&ra
graphG for integersk, d > 1. The minimum cardinalities of Smarandache#y:( &,)-
decomposition and Smarandache graphoiad)¢cover of a graphs are denoted by
5, #,(G), T%?(G), respectively.

Problem 3.1.3 For a graph G and properties”, &;, &,, determinell », »,(G) and
n%%G).
We only know partially results for Problem133. For example,

k

M) = 2(T) = 5
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for a treeT with k vertices of odd degree and

6 ifn=24,

TEAG) Y =
» T 0) 3]+3  ifn>5

for a wheeMW, = K; + C,_; appeared in references [SNM1]-[SNM2].

Smarandachely Embeddable. Let 77 and 7, be two topological spaces. A graph
G is said to beéSmarandachelyf(i, 7)-embeddablénto topological spaces; and7 if
there exists a decompositi@h= F P H; €P H,, whereF is a subgraph o with a given
property &2, Hq, H, are spanning subgraphs @fwith two 1 — 1 continuous mappings
f :Hy —» 71 andg : H, — 7, such thatf(p) # f(q) andg(p) # g(q) if p,q ¢ V(G).
Furthermore, if/1 or 77 = 0, i.e., a Smarandachely( 0)-embeddable grapB is such a
graph embeddable W if we remove a subgraph & with a property%”. Whence, we
know the following result for Smarandachely embeddablelgsay definition.

Theorem 3.1.17 Let7 be topological space, G a graph an@ a graphical property.
Then G is Smarandachely embedablé&iif and only if there is a subgraph K G such
that G— H is embeddable ifi".

Particularly, if7” is the Euclidean planR? andF a 1-factor, such a Smarandachely
embeddable grap@ is called to be éSmarandachely planar graphFor example, al-
though the graptKs3 is not planar, but it is a Smarandachely planar graph shown in
Fig.31.10, whereF = {uyvy, UsVa, UsVa).

.

Vs -

Fig.3.1.10

Problem 3.1.4 Let7 be a topological space. Determine which graph G is Smaran-
dachely7 -embeddable.

The following result is an immediately consequence of Thro81.10.
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Theorem 3.1.18 A graph G is Smarandachely planar if and only if there exisitsfactor
F < G such that there are no subgraphs homeomorphicstor; 3 in G — F.

§3.2 GRAPH GROUPS

3.2.1 Graph Automorphism. LetG; andG, be two isomorphic graphs. 8, = G, = G,

an isomorphism betwedB,; andG; is called to be armutomorphisnof G. It should be
noted that all automorphisms of a graBtiorm a group under the composition operation,
i.e.,p0(X) = ¢(0(x)), wherex € E(G) | V(G). Such a graph is called tleitomorphism
groupof G and denoted by AG.

G AutG order
Pn Z 2
Ch D, 2n
Kn S, n!
Kmn(m # n) SmX Sy min!
Knn So[Sh] 2n!2
Table 3.2.1

It can be immediately verified that ABt< S,, wheren = |G|. In Table 32.1, we
present automorphism groups of some graphs. But in geneiglery hard to present
the automorphism group AGtof a graphG.

3.2.2 Graph Group. Let (I'; o) be a group. ThenI{ o) is said to be ayraph groupif
there is a grapl& such that [, o) is isomorphic to a subgroup of AGt Frucht proved
thatfor any finite group(T; o) there are always exists a graph G such thiag AutG in
1938. Whence, the set of automorphism groups of graphs & égthat of groups.

LetS c I'with 1r ¢ SandS™! = {x!|x € S} = S. A Cayley graph G= Cay( : S)
of 'onS c I'is defined by

V(G) =T;
E(G) ={(g.h)lgtoheS).

Then we know the following result.
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Theorem3.2.1 Let(I; o) be afinite group, Sc T, St = S andl; ¢ S. Then% < AutX,
where X= Cay(T : S).

Proof For Vg € I', we prove that the left representation: x — g=* o x of g for
¥x € I'is an automorphism oX. In fact, by

(@'oX)to(gtoy)=xtogogltoy=x"oy,
we know that
Tg(X,Y) = (19(X), 74(¥)).

l.e.,7g € Aut(Cay(G : S)). Whence, we get that} < Cay(I : S). O

A Cayley graph Cay{( : S) is called to benormalif .4 < Aut(Cay(@G : S)), which
was introduced by Xu for the study of arc-transitive or hadfrsitive graphs in [Xum2].
The importance of this conception on Cayley graphs can bedfauthe following result.

Theorem 3.2.2 A Cayley grapiCay( : S) of a finite group(I'; o) on S c I" is normal if
and only ifAut(rmCay(I : S)) = %4 o Aut(T’, S), whereAut(G, S) = {a € Autl'|S* = S}.

Proof Notice that the normalizer ot in the symmetric groufr is -4 o Autl”. We
get that

Navicayr:sy (Z) = 4 o Autl ﬂ Aut(Cay(T : S)) = .% o (Autl ﬂ Ay).
That isNaucayr:s) (-Z1) = 21 o Aut(I', S). Whence, Cay{ : S) is normal if and only if

Aut(Cay( : S)) = % o Aut(T, S). O

The following open problem presented by Xu in [Xum2] is imaoit for finding the
automorphism group of a graph.

Problem 3.2.1 Determine all normally Cayley graphs for a finite gro(p o).

Today, we have know a few results partially answer Probletri 3Here we only list
some of them without proof. The first result shows that alltéigroups have a normal
representation except for two special families.

Theorem 3.2.3([WWX1]) There is a normal Cayley graph for a finite group except for

groups 4 x Z, and Qg x Z7' form > 0.

For Abelian groups, we know the following result for the natity of Cayley graphs.
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Theorem3.2.4([YYHX]) Let X= Cay(I : S) be a connected Cayley graph of an Abelian
group(I; o) on S with the valency of X at mo&t Then X is normal except for graphs
listed in Table3.2.2 following.

row r S X
1 Zy '\ {1r} 2Ky
2 Zyx Zp = (@) x (b) {a,a™, b} Qs
(cube)
3 Zs = (a) (a.a’,a) Kas
4 Z3 = (u) X (V) X (W) {W, Wu, WV, Wuv Kas
5 Zyx Zp = (8) x (b) {a,a% & b} Qs
(complement cube)
6 Zs X Zy = (a) X (b) {a,at, a%b, b} Kas
7 | ZyxZ5 = (a)x(byx(c) {a,a™t,a’ b Q4
(4-dimensional cube
8 Zs X Zy = (@) x (b) {a,a™t, a% b} Kzz x Ky
9 Zs X Zys = (a) X (b) {a,al,b,b?) CsxCy
10 | ZnxZo =(@ x(b),m>3 | {aaba?alb) Cim[2K4]
11 Zim ={a), m>2 {a,a®™! al a?™1) Com[2K1]
12 s =(a) '\ {1r} Ks
11 Zyp = (@) {a,a%a’,a% Kss — 5K;
Table 3.2.2
3.2.3 I'-Action. LetI be a group of a grap®. Generally, there are three cased of

action onG shown in the following.

I'-Action on Vertex Set. In this case,I' acts on the vertex séf(G) with or-

bits V1, Vo, - - -, Vi, wherem < |V(G)|. For example, leC, be a circuit withV(C,) =
{Vi, Vo, - - -, Vh}. We have known its automorphism group by Tah2 Bto be

Dh={p'70<i<n-1,0<j<1}

with

pn = 1Dn’ T2 = 1Dn’ T_lpT = p_l’
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such as the presentation in Exampl2.4. Now let
1 = (o) and I, = (7).

Then we know that there are only one orbitlgfaction onC,, i.e., {vi, Vo, -+, V,}. But

there are[g] orbits if n = 1(mod2) or[g] + 1 orbitsn = 0(mod2). For example, lat

a reflection joining the vertex; with its opposite vertex i = 0(mod2) or midpoint of

its opposite edge it = 1(mod2). Then we know the orbits bf action onV(C,) to be

Vi = {vi}, Vo = (V2 Vi = (v, v} forl < i < r_21 if n = 0(mod2) orV; = {vi};V; =
n+1

{vi,vp_ijforl<i< if n=1(mod2).

A graph G is called to bel-transitive or I'-semiregularfor its a groupI’ if T" is
transitive or semi-regular action aHG). Particularly, ifl’ = AutG, aTl-transitive graph
G is called atransitive graph By definition, al'-transitive graphG for any subgroup
YI' < AutG must be a transitive graph. But the inverse is not always tRee example,
I'; is transitive action oi€, in the previous example. Consequently it is a transitivelgra
butT’; is not transitive orV(G).

A simple calculation shows that the order of @emiregular grapks is multiple of
length of its orbits. Leh = 0(mod2). If we chooseto be a reflection joining the midpoint
V1V, with that midpoint ofvy 2V 2.1 in the previous example, thdr is I',-semiregular
action onV(G). In this case, there arg orbits of length 2, i.e.V, = {v,V, 1} for

. .n
1<i< >

I'-Action on Edge Set. TheI-action onE(G) is an action

e(x.y) = (e(x), ¢(y)) € E(G) for V(x.y) € E(G)

induced by an automorphisge T" with orbitsEy, E,, - - -, E;, wherel < |E(G)|. Naturally,
all orbits of " action onE(G) form a partition ofE(G).

Consider the grapls; shown in Fig.3L.5. In this case, it is easily find th@lls =
{PT0<i <50< j< 1jwithpb = 15,72 = 1p,, 7~ 2pr = p~Lisits a graph group, where
7 is a reflection joining the midpoint;vg with that midpoint ofusus. The orbitsk;, E; of
Ds action onE(G,) are listed in the following.

E1 = {U1Up, UpUs, UgUa, UgUs, UsUs, UgU1}, Eo = {U;Ua, UoUs, UsUs}.

A graphG is called to beedgel-transitivefor its a groufd’ if T" is transitive orE(G).
Particularly, ifl” = AutG, an edgd -transitive graplG is called aredge-transitive graph
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Certainly, an edgé&-transitive graphG for any subgroup/I" < AutG must be an edge-
transitive graph. But the inverse is not always true. Fongxa, the complete grapk,
for an integen > 3 is an edge-transitive graph with A4t = S,,.. Letl’ = (a>,)wherea €

= |E(Kp)I.

2

. . . . n
AutK, with o" = 1g,. ThenK, is not edgd -transitive sincél| = n <
By Theorem 2.1, T" can not be transitive oB(Kp).

I'-Action on Arc Set. Denoted byX(G) = {(u, v)luv € E(G)} the arc set of a graph
G. Thel-action onX(G) is an action orX(G) induced by

e(xy) = (e(x), ¢(y)) € X(G) for V(x.y) € X(G)

for an automorphisnp € I'. Similarly, a graphG is called to bearc I'-transitivefor its a
graph groud" if I is transitive onX(G), and to bearc-transitiveif AutG is transitive on
X(G). The following result is obvious by definition.

Theorem 3.2.5 Any arcI-transitive graph G is an edgé-transitive graph. Conversely,
an edgd -transitive graph G is ard-transitive if and only if there are involutiortse I’
such that(x, y)? = (y, X) for V(x, y) € E(G).

§3.3 SYMMETRIC GRAPHS

3.3.1 Vertex-Transitive Graph. There are many vertex-transitive graphs. For example,
by Theorem 2.1 we know that all Cayley graphs is vertex-transitive.

Theorem 3.3.1 Any Cayley graph C4q¥ : S) on Sc I is vertex-transitive.

Denoted by Z,; +) the additive groupmodulen with Z, = {0,1,2,---,n—-1}. A
circulant graphis a Cayley graplCayZ, : S) for S c S,,. Theorem 3.1 implies that
Cayley graphs are a subclass of vertex-transitive graphs. ifBhe order|V(G)| of a
vertex-transitive grapls is prime, Turner showed each of them is a Cayley graph, i.e.,
the following result in 1967.

Theorem 3.3.2 If G is a vertex-transitive graph of prime order p, then it iiaculant
graph.

Proof Let V(G) = {up, s, - -, Up1} andH the stabilizer ofuy. Suppose that; €
AutG is such an element that(up) = u;. Applying Theorem 2.1, we get thatAutG| =
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IH[lug"*®| = pIH|. Thusp||AutG|. By Sylow’s theorem, there is a subgrokip= {1,6, - -,
6P-1} of orderp in AutG. Relabeling the verticag, us, - - -, Up-1 BY Vo, V1, - - -, Vp_1 SO that
0(vi) = viy1 andd(vp_1) = Vo for 0 < i < p—2. Supposew, ;) € E(G). Then by definition,

(Vi’VZi) = (VO’ Vi)gli (V2i’v3i) = (Vi’VZi)gla T (V(pfl)i’VO) = (V(p*Z)i’V(pfl)i)gl € E(G) Thus
VoViVai - - - Vp-1) forms a circuit inG. Now if we writev; asi and defineS = {i|(vo, Vi) €
E(G)}, thenG is nothing but the circulant gragbay(Z, : S). O

It should be noted thattot every every vertex-transitive graph is a Cayley grapdr
example, the Petersen graph shown in F&j13is vertex-transitive but it is not a Cayley

graph (See [Yapl] for detalils).
Up

AN

./ 7
i
Us Us

Fig.3.3.1

However, there is a constructing way shown in TheoreBvJollowing such that every
vertex-transitive graph almost likes a Cayley graph, fobgdSabidussi in 1964. For
proving this result, we need the following result first.

Theorem 3.3.3 Let .7# be a subgroup of a finite groufd’; o) and S a subset df with
S1=3S8 Sns” = 0. If Gis a graph with vertex set (@) = I'/# and edge set
E(G) = {(Xxo s2,yo ) |x oy € s#Ss#}, called the group-coset graph bf .57 respect
to S and denoted by(G/>7 : S), then G is vertex-transitive.

Proof First, we claim the grapfs is well-defined. This assertion need us to show
that if (xo 7,y o ) € E(G) andx;, € Xo 7, y; € yo J, then there must be
(X1 0 H,y1 0 ) € E(G). In fact, there ard, g € 7 such thatx; = Xohandy; =yog
by definition. Notice that

xtoye #SH = (xoh)to(yog)e #SH = x;t oy € HSH.

Whence, Xo 57,y o ) € E(G) implies that & o J7,y, o ) € E(G).
Now for eachg e I', define a permutatiopy on V(G) = I'/9Z by ¢4(X o ) =
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go Xo s for xo 5 € I'/.7. Then by
XtoyeASH = (goX)  o(goy) e HSH = ¢ M (X) o dyly) € H'SH,

we find that ko 77, yo 77°) € E(G) implies that §4(X) 0 77, ¢pg(y) o) € E(G). Therefore,
¢g is an automorphism db.

Finally, for anyx o 7,y o 2 € V(G), letg = yo x*. Thengy(xo ) =yox*to
(Xo ) = yo . WhenceG is vertex-transitive. O

Now we can prove the Sabidussi’s representation theorefimitar groups following.

Theorem 3.3.4 Let G be a vertex-transitive graph and” = (AutG), the stabilizer of a
vertex ue V(G) with the composition operation Then G is isomorphic with the group-
coset graph @AutG/s7 : S), where S is the set of automorphism®f G such that
(u, o (u)) € E(G).

Proof By definition, we are easily find th&* = S andS n # = 0. Define
n o AutG/ . — G by n(x o ) = x(u), wherex o 5 € I'/2. We show thatr is a
mapping. In fact, lek o 5# = yo . Then there i € 7 such thal = xo h. So

n(y o ) = y(u) = (xo h)(u) = x(h(u)) = x(u) = 7(x o (H)).

Now we show thair is in fact a graph isomorphism following.

(1) mis 1 - 1. Otherwise, lefr(x o 2#) = n(y o). Thenx(u) = y(u) = y ! o x(u) =
U YyloXxe s =yeXoH = XoH =Yyo .

(2) mis onta Letv e V(G). Notice thatG is vertex-transitive. There existsE AutG
such that(u) = v, i.e.,n(zo ) = z(u) = v.

(3) m preserves adjacency in.®y definition, ko.77, yo.77°) € E(G(AUtG/ .77, S))
Xloye #SH o xtoy=hozogforsomeh,ge #,zeSehloxloyog?=
ze (uhtoxtoyog?(u) € E(G) & (u,xtoyu)) € E(G) & (x(u),y(u) € E(G) &
(m(x o ), n(y o I)) € E(G).

Combining (1)-(3), the proof is completes. O

Theorem 3.4 enables one to know which vertex-transitive gr&phs a Cayley
graph. By Theorem.2.1(2), we know that any two stabilizers (AGsix,, (AutG), for u,v e
V(G) are conjugate in A@. Consequently, (A@), is normal if and only if (AuG), =
{lauc). By definition, the group-coset gragh(AutG/# : S) in Theorem 3.4 is a
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Cayley graph if and only if Aug/.7# is a quotient group. But this just means thét <
AutG by Theorem 13.2. Combining these facts, we get the necessary afiitismt
condition for a vertex-transitive graph to be a Cayley grapfi heorem 3.4 following.

Theorem 3.3.5 A vertex-transitive graph G is a Cayley graph if and only & #ction of
AutG on (G) is regular.

Generally, let; o) be a finite group. A grapfs is called to be araphical regular
representatiofGRR) ofT" if AutG = I" and Auf acts regularly transitive o¥(G). Such
a groupl is called to have a GRR. We needed to answer the followingl@nob

Problem 3.3.1 Determine each finite groupwith a GRR.

A simple case for Problem.31 is finite Abelian groups. We know the following
result due to Chao and Sabidussi in 1964.

Theorem 3.3.6 Let G be a graph with an Abelian automorphism grdugG acts transi-
tively on MG). ThenAutG acts regularly transitive on {§G) and AutG is an elementary
Abelian2-group.

Proof According to Theorem 2.2, we know that AuB acts regularly transitive
on V(G). Now since AuG acts regularly orV(G), G is isomorphic to a Cayley graph
Cay(AuG : S). Because AUt is Abelian,r : g — g is an automorphism of A®
and fixesS setwise. It can be shown that this automorphism is an aufomsmn of
Cay(AuG : S) fixing the identity element of A@. Whenceg = 7(g) = g* by the fact
of regularity for everyg € AutG. So Au is an elementary 2-groups. U

Theorem 33.6 claims that an Abelian group has a GRR only if" = Z for some
integersn > 1. In fact, by the work of McAndrew in 1965, we know a completsaer
for Problem 33.1 in this case following.

Theorem 3.3.7 An Abelian groud” has a GRR ifand only if = ZJ forn=1o0rn > 5.

A generalized dicylic groufI’; o) is a non-Abelian group possing a subgroufy{ o)
of index 2 and an elememtof order 4 such that *ohoy = h=* for ¥h € 7. By following
the work of Imrich, Nowitz, Watkins, Babai, etc., Hetzel aBddsil respective answered
Problem 33.1 for solvable groups and non-solvable groups. They getdit@ifing result
(See [God1]-[God2] and [Cam1] for details) independently.
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Theorem 3.3.8 A finite group(T’; o) possesses no GRR if and only if it is an Abelian group
of exponent greater tha?y a generalized dicyclic group, or one b8 exceptional groups
following:

1) 2.2, 23,

(2) Ds, Dg, D1o;

(3) As;

(4)<a,b,c|a2: b?2=c?=1,aoboc=bocoa= canb>;

(5) (a,bla® = b? = 1r,boaoc b = b°);

(6)(ab.cla®=b? == (aob)? = (Cob)? = Ir,aoc=coa);

(7)<a,b,c|a3 =b*=c®=1,aoc=coaboc=cobc=alob?loao b>;

(8) Qg X Z3, Qg X Za.

3.3.2 Edge-Transitive Graph. Certainly, the edge-transitive graphs are closely related
with vertex-transitive graphs by definition. We can easlyain the following result.

Theorem 3.3.9 Let G be an edge-transitive graph without isolated vertiddsen

(1) G is vertex-transitive, or
(2) G is bipartite with two vertex-orbits under the acti®wtG on VG) to be its
vertex bipartition.

Proof Choose an edge = uv € E(G). Denoted by; andV, the orbits ofu and
v under the action of A@ on V(G). Then we know thaV,; U V, = V(G) by the edge-
transitivity of G. Our discussion is divided into toe cases following.

Casel. If Vi NV, # 0, thenG is vertex-transitive.

Let x andy be any two vertices dB. If X,y € V; or x,y € Vy, for examplex,y € V;,
then there existr,¢ € AutG such thatr(u) = x andg(u) = y. Thusgo™ is such an
automorphism withgo=1(x) = y. If x € V; andy € V,, letw € V; N V,. By assumption,
there arep, ¢ € AutG such thaip(x) = ¢(y) = w. Then we get thap¢(x) =y, i.e.,Gis
vertex-transitive.

Case2. If Vi NV, =0, thenG is bipartite.

Let x,y € V;. If Xy € E(G), then there are- € AutG such thai(uv) = xy. But this
implies that one ok, y in V; and another in/,, a contradiction. Similarly, i,y € V,,
thenxy ¢ E(G). WhenceG is a bipartite graph. O
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We get the following consequences by this result.

Corollary 3.3.1 Let G be a regular edge-transitive graph with an odd degree #l. If

|G| = 1(mod2) then G is vertex-transitive.

Proof Notice that ifG is bipartite, thenVid = |Vo|d = &(G). Whence,|G| =
V1| + |V,] = 0(mod?2), a contradiction. O

Corollary 3.3.2 Let G be a regular edge-transitive graph of degree {f5|/2. Then G is
vertex-transitive.
Uz Uz

Us Us

Us Us

Fig.3.3.2

In fact, there are many edge-transitive but not vertexsitase graphs, and vertex-transitive
but not edge-transitive graphs. For example, the completehd<,, ,, with n; # n; is
edge-transitive but not vertex-transitive, and the grapbws in Fig.33.2 is a vertex-
transitive but not edge-transitive graph.

3.3.3 Arc-Transitive Graph. An s-arc of a grapl® is a sequence of verticeg vy, - - -, Vs
such that consecutive vertices are adjacentvand# vi,; for 0 < i < s. For example, a
circuit C, is s-arc transitive for alk < n. A graphG is s-arc transitivaf AutG is transitive
ons-arcs. Fors > 1, it is obvious that as-arc transitive graph is alse+{ 1)-arc transitive.
A O-arc transitive graph is just the vertex-transitive, aridarc transitive graph is usually
called to bearc-transitive graphor symmetric graph

Tutte proved the following result fos-arc transitive cubic graphs in 1947 (See in
[Yap1] for its proof).

Theorem 3.3.10 Let G be a s-arc transitive cubic graph. Theg $.

Examples ok-arc transitive cubic graphs far< 5 can be found in [Big2] or [GOR1].
Now we turn our attention to symmetric graphs.
LetZ, ={0,1,---, p—1} be the cyclic group of ordgw written additively. We know
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that AuZ, is isomorphic taZ,_,. For a positive divisor of p—1, letH, denote the unique
subgroup of AuZ,, of orderr, H, ~ Z,. Define a grapl@(p, r) of orderp by

V(G(p,1)) = Z,, E(G(p,r)) = {xyIXx—y € H}.

A classification of symmetric graph with a prime ordemwas obtained by Chao. He
proved the following result in 1971.

Theorem 3.3.11 Let p be an odd prime. Then a graph G of order p is symmetricdf an
only if G = pK; or G = G(p, r) for some even divisor r of p 1.

In the reference [PWX1] and [WaX1], we can also find the cfasgion of symmet-
ric graphs of order a product of two distinct primes. For eglanthere are 12 classes
of symmetric graphs of orden@3wherep > 3 is a prime, including BKy, pKs, 3G(p,r)
for an even divisor of p — 1, G(3p,r) for a divisor of p — 1, G(p, r)[3K,], K3, and
other 6 classes, whel@(3p,r) is defined byV(G(3p,r)) = { X || € Z3,x € Z, } and
E(G@Bp.r)) =1{ (% Yis1) |i € Zz, X,y € Zy andy — x € H,}.

A graphG is half-transitiveif G is vertex-transitive and edge-transitive, but not arc-
transitive. Tuute found the following result.

Theorem 3.3.12 If a graph G is vertex-transitive and edge-transitive witbdd valency,
then G must be arc-transitive.

Proof Letuv € E(G). Then we get two arcsi(v) and {, u). DefineQ; = (u, V)AUC =
{(u,v)¥g € AutG} andQ, = (v, Uy = {(v,u)%g € AutG}. By the transitivity of AuG
on E(G), we know that; U Q, = A(G), whereA(G) denote the arc set @. If G is
not arc-transitive, there must 6 N Q, = 0. Namely, there are ng € AutG such that
(% y)? = (v, x) for YV(x,y) € A(G). Now let X, = {X|(v, X) € Q1} andY, = {yI(Y,V) € Q1}.
ThenX, NY, = 0. WhenceNg(vV) = X, UY,. This fact enables us to know the valency
of Gisk = |X,| + |Y,y|. By the transitivity of AuG onV(G), we know thatX,| = |X,| and
IYul = Yyl for Yu € V(G). SolE(G)| = IXVIV(G) = IVIIV(G)l. We get thatX,| = i/, i.e.,
kis an even number, a contradiction. O

By Theorem 3.12, a half-transitive graph must has even valency. In 1960wer
constructed half-transitive graphs of valercfor each even numbéer> 2 and the mini-
mum half-transitive graph is a 4-regular graph with 27 \eedifound by Holt in 1981. In
1992, Xu proved this minimum half-transitive graph is ureq@ee [XHLL1] for details).
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§3.4 GRAPH SEMI-ARC GROUPS

3.4.1 Semi-Arc Set. Let G be a graph, maybe with loops and multiple edges,uv €
E(G). We dividee into two semi-arcs g, €] (or €', ), and call such a vertexto be the
root vertexof €. Here, we adopt a convention following:

Convention3.4.1 Let G be a graph. Then fore uv e E(G),

Denote byx%(G) the set of all such semi-arcs of a gra@h We present a few
examples forX%(G). Let Do30,B3,K4 be the dipole, bouquet and the complete graph
shown in Fig.34.1.

el
_ Uy Uo
/i\ .
u \Y
\\\\g////
O Uz Uy
Do.3.0 Bs Ka

Fig.3.4.1

Then, we know their semi-arc sets as follows:

X, (Doso) = (e, &, &', bt 2", &),
X%(BS) = {%+’ %+9 e%+9 etlj_’ %_9 e%_}!

_ + - + - + - + - + - + -
X1(Ks) = {Uslz, UyUa, UgU3, Uzl UgUy, UsUy, UpUs3, UpUs, UpUy, UpUy, Usly, Usly ).

Notice that the Convention&1 and these examples show that we can represent all
semi-arcs of a grap8 by elements iV(G) U E(G) U {+, —} in general, and all semi-arcs
of G can be represent by elementsM(G) U E(G) U {+} or by elements iV(G) U {+}
if and only if G is a graph without loops, or neither with loops or multiplegyes, i.e., a
simple graplG.

Two semi-arcf, f with o, e € {+, -} are saidncidentif u=v,e# f witho = e =
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+,0ore=f,u#vwitho = e, ore= f,u=vwitho = +, ¢ = —. For exampleg?" and
€2* in Doso, €5 ande in B; in Fig.34.1 both are incident.

3.4.2 Graph Semi-Arc Group. We have know the conception of automorphism of a
graph in Section 3. Generally, arautomorphisnof a graphG on V(G) | E(G) is an
1 -1 mapping £, ) onG such that

£:V(G) - V(G), n: E(G) - E(G)

satisfying that for any incident elemergsf, (¢, n)(e) and &, n)(f) are also incident. Cer-
tainly, all such automorphisms of a gra@also form a group, denoted by ABit

We generalize this conception to that of the semi-ar(X%é(B). The semi-arc auto-
morphism of a graph was first appeared in [Maol], and theniegfdr the enumeration
maps on surfaces underlying a grdpim [MaL3] and [MLW1], which is formally defined
following.

Definition 3.4.1 Let G be a graph. AL — 1 mappingé on X%(G) is called a semi-arc
automorphism of the graph G if fofe, f; € Xy (G) with o, e € {+, -}, £(€7) andé&(f)) are
incident if and only if gand f are incident.

By Definition 34.1, all semi-arc automorphisms of a graph form a group under th
composition operation, denoted by A, which is important for the enumeration of
maps on surfaces underlying a graph and determining the@ooaf transformations on a
Klein surface.

The Table 34.1 following lists semi-arc automorphism groups of a few wealbwn
graphs.

G Aut%G order
Kn Sh n!
Kmn(m # n) SnXx S, min!
Knn S,[Sh] 2n!?
Bn Si[S] 2"n!
Dono S, X Sy 2n!
Dni(K# 1) | So[Si] X Snx So[Si] | 2 niklI!
Dnkk Sy X Sp X (So[Sk])? | 2%+ Iniki?

Table 3.4.1
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In this table,Dg, is a dipole graph with 2 verticesy multiple edges and,, is a
generalized dipole graph with 2 verticesnultiple edges, and one vertex wkiibouquets
and another] bouquets. This table also enables us to find some usefuhiatton for
semi-arc automorphism groups. For example,%ﬁ(ut: AutK, = S, Aut% B, = Si[S2]
but AutB, = S,,, i.e., Aut% B, # AutB, for any integemn > 1.

Comparing semi-arc automorphism groups in Tabk B with that of Table 2.1, it
is easily to find that the semi-arc automorphism group are#nee as the automorphism
group in the first two cases. Generally, we know a resultedldhe semi-arc automor-
phism group with that of automorphism group of a graph, Tagorem 34.1 following.
For this objective, we introduce a few conceptions first.

For Yg € AutG, there is an induced actionl%gon X%(G), g: X%(G) — X%(G)
determined by
Vey € X1(G), g(eu) = (9(&)g(w)-
All induced action of the elements in ABton X% (G) is denoted by AuB|z. Notice that
AUtG = AutG|?. We get the following result.

Theorem3.4.1 Let G be a graph without loops. Théwt; G = AUtG|z.

Proof By the definition, we only need to prove that Mf% € Aut%G, & = §%|G €
AutG andéy = £]7. In fact, Lete, f; € X3(G) with o, e € {+, -}, wheree = uv € E(G),
f = xy e E(G). Now if

§1(e) = 17,
by definition, we know thaf% () = 1. Whenceg%(e) = f. That is,g% lc € AutG.

By assumption, there are no loopsGn Whence, we know thq{% lc = lauc if and

only if 5% = 1Aut%G. So§% is induced bf%le on X%(G). Thus,

Aut; G = AUtG|Z. O

We have know that AuB, # AutB, for any integen > 1. Combining this fact with
Theorem 3.1, we know the following.

Theorem 3.4.2 Let G be a graph. TheAut%G = AutG|z if and only if G is a loopless
graph.

3.4.3 Semi-Arc Transitive Graph. A graphG is called to besemi-arc transitivaf
Auty G is action transitively orK; (G). For example, each df,, B,_; andDq,,o for any
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integern > 2 is semi-arc transitive. We know the following result fonrgearc transitive
graphs.

Theorem 3.4.3 A graph G is semi-arc transitive if and only if it is arc-tratige.

Proof A semi-arc transitive grap@ is arc-transitive by the definition of its preserv-
ing incidence of semi-arcs.

Conversely, leG be an arc-transitive graph. Let and f, Xy (G) with e = (u, x)
andf = (v,y). By assumption( is arc-transitive. Consequently, there is an automor-
phismg¢ € AutG such that(u, X) = (v,y). Then itis easily to know thaf(e}) = f,", i.e.,

G is semi-arc transitive. O

§3.5 GRAPH MULTIGROUPS

3.5.1 Graph Multigroup. There is a natural way for getting multigroups on graphs. Let
G be a graphH < G ando € AutG. Consider the localized actiany of o onH. In
general, this action must not be an automorphisrl ofFor example, leG be the graph
shown in Fig.36.1 andH = (vy, V,, V3)g.

Vi Ve

V3 Vg

Fig.3.5.1

Let o1 = (v, Va)(V4, V5)(V2)(Vs) and o = (v, Vs)(V2, V5)(V3, V4). Then it is clear that
o1, 02 € AutG and

H72 = (v, Vo, V3)g = H and H7* = (v, Vs, Ve)g # H.

Whence,o; is an automorphism ofl, buto is not. In fact, let¥g € (AutG)y. Then
Hs = H, i.e.,¢|y is an automorphism dfi. Now define

AutGH = (sly | ¢ € (AUtG)H ) .

Then AutGy is an automorphism group of.
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An extended actiog|® for an automorphisng € AutH; is the action ofg on G by
introducing new actions aj onG \ V(H;), 1 < i < m. The previous discussion enables
one to get the following result.

m
Theorem 35.1 Let G be a graph and G- €p H; a decomposition of G. Then for any

i=1
integer i 1 < i < m, there is a subgroup”?, < AutH; such thatZ|® < AutG, i.e.,
m

P = U & is a multigroup.
i=1
Proof ChooseZ; = AutGy, for any integeli, 1 < i < m. Then the result follows.]

m
For a given decompositid® = &P H; of a graphG, we can always get automorphism
i=1

m
multigroups AUtY'G = | 7%, 24 < AutH; for integers 1< i < m, which must not be
i=1

m
an automorphism group @&. For its dependence on the structure®f P H;, such
i=1

a multigroup Aut™G is denoted b@ 2 in this book. Generally, the automorphism
multigroups of a grapl are not unlque unless = K;. The maximal automorphism
multigroup of a grapltG is Aut™'G = @AutHi and the minimal is that of AGt'G =

i=1
Cr?) {1autm; ). We first determine automorphism group<3iin these multigroups following.
- Let G be a graphH < G ando € AutH, 7 € Aut(G \ V(H)). They are called to be
in coordinatingwith each other if the mapping: G — G determined by
o(v), ifveV(H),

av) = { (), if veG\V(H)
is an automorphism d& for Yv € V(G). If such ag exists, we say can beextendedo
G and denotedy by 7. Denoted by AUtH = { o© |o € AutH }. Then it is clear that
AutGy = Aut®H|y < AutH. We find the following result for the automorphism group of
a graph.

Theorem 3.5.2 Let G be a graph and Hk G. Then the mappings : AutG — AutH
determined byg(g) = dln is a homomorphism, i.eAutG/Kergg ~ AutG.

Proof For any automorphism € AutG, by Theorem &.1, there is a localized action
gln such thaH? = H, g = gl4 € AutGy, i.e., such a correspondenggis a mapping. We
are needed to prove the equaliiy(ab) = ¢c(a)¢s(b) holds forva, b € AutG. In fact,

¢a(@ge(b) = al bI§ = (@b)I5 = ¢e(ab)
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by the property of automorphism. Whengg,is a homomorphism. Applying the homo-
morphism theorem of groups, we get AjKergs =~ Kergs. Notice that Keps = AutGy.
We finally get that AuG/Kergg ~ AutGy. O

If ¢ isonto or -1, then Kepg = 1auc Or AutH. We get the following consequence
by Theorem 3%.2.

Corollary 3.5.1 Let G be a graph and K G. If the homomorphism : AutG — AutH
is onto orl — 1, thenAutG/Kerg ~ AutH or AutG ~ AutGy.

For example, LeG be the graph shown in Fig®1 andH = (vy, V3, V4, V). Then
o1ln = (Vo, V3)(Va, V) and oy = (V1, V6)(V3, Va), i.€., the homomorphismg : AutG —
AutGy is 1- 1 and onto. Whence, we know that

AUtG =~ AutGy = (o 1lH, 02|H) .

Although it is very dificult for determining the automorphism group of a gr&pim
m

general, it is easy for that of automorphism multigroup&é decompositios = P H;
7
is chosen properly. The following result is easy obtaineddfynition. |

Theorem 3.5.3 For any connected graph G,

AUtEG = @ S{u,v}
(u,vV)eE(G)
is an automorphism multigroup of G, wherg,$ is the symmetric group action on the
vertices u and v.

Proof Certainly, any grapl has a decompositioB = &5 (u,v). Notice that
(uV)eE(G)
the automorphism on each edge\) € E(G) is that symmetric grou®,,;- Then the

assertion is followed. O

The automorphism multigroup At® is a graphical property by Theorem53.
Furthermore, we know that AeG is a graph invariant o by the following result.

Theorem 3.5.4 Let G, H be two connected graphs. Then G is isomorphic to H if and
only if AuteG andAutgH are permutation equivalent, i.e., there is an isomorphism
AuteG — AutgH and al - 1 mapping : E(G) — E(H) such thatk(g)(«(e)) = «(g(e)) for

¥Yg € AutG and ec E(G).
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Proof If G ~ H, we are easily getting an isomorphigm: V(G) — V(H), which
induces an isomorphisg: AuteG — AutgH and a 1- 1 mapping : E(G) — E(H) by
o(u,v) = (o(u), o(v)) for Ye = (u,v) € E(G).

Now if there is an isomorphisg: AuteG — AuteH and a -1 mapping : E(G) —
E(H) such that(g)(«(e)) = «(g(e)) for Vg € AutG ande € E(G), by definition

AuteG= () Suy,
(uV)eE(G)

we know that

S O Sux = O Swyls

(u,x)eE(G) for xeV(G) (v,y)eE(H) for yeV(H)

where: : (U, X) € E(G) — (v,y) € E(H). Whenceg and: induce a 1- 1 mapping

o @ (u,x) — @ (v, y).

(u,x)eE(G) for xeV(G) (v,y)eE(H) for yeV(H)

This fact implies that- : u € V(G) — v € V(H) if we represent the verticag v re-
spectively by those ofi = oy (u,x) andv = oy (v,y) in graphs

(u,X)eE(G) for xeV(G) (v,y)eE(H) for yeV(H)
G andH, where the notatioa = b means the definition od by that ofb. Essentially,

such a mapping : V(G) — V(H) is an isomorphism between grapBsandH for easily

checking that
o (u, x) = (o(u), o(x))
for Y(u, X) € E(G) by such representation of vertices in a graph. TBusH. O
The decompositio® = & (u,V) is aK,-decomposition. Aclique decomposi-

(u,vV)eE(G)
m
tion of a graphG is such a decompositic® = €p K, whereK,, is a maximal complete
i=1
subgraph inG for integers 1< i < m. We halve know AW, = S, from Table 32.1.
Whence, we know the following result on automorphism muttigps of a graph.
m
Theorem3.5.5 Let G = P K, be a clique decomposition of a graph G. Theant™'G =
i=1
m
() 2% is an automorphism multigroup of G, whe#§ < Sv(Ky)-

i=1

m
Proof Notice that AuK, = S,. Whence, Aut,G = (-) 2 is an automorphism
i=1
multigroup ofG for each.s < Sv(Ky,)- O
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Similar to that of Theorem .8.4, we also know that the maximal automorphism

m
multigroup Aut,G = (©) Sv(,,) Is also a graph invariant following.

i=1
Theorem 3.5.6 Let G, H be two connected graphs. Then G is isomorphic to H if and
only if AutyG andAut,H are permutation equivalent.

Proof This result is an immediately consequence of Theorés dy applying the
fact Sy, = ((V1, V2), (V1,Va), - -+, (V1, Vo)) if V(Kn) = {v1, V2, - -+, Vi}. O

3.5.2 Multigroup Action Graph. Let & be a multigroup action on a s& For two
elementsa, b € Q, if there is an elemente 2 such thag” = b, we can represent this
relation by a directed edge,(b) shown in Fig.3.2 following:

(on

Fig.3.5.2

Applying this notion to all elements iR, we get the action graph. Aaction graph
G[Z; O] of Z onQ s a directed graph defined by

V(G[Z;Q)) = Q,
E(G[Z;Q]) ={(a,b)| Ya,be Qanddo € & such thag” = b }.

Sinces! always exists in a multigrouﬁ, we also get thab” " = a. So edges between
aandb in G[Z; Q] must be the case shown in Figs3.

Fig.3.5.3

Such edgesx b) and p, a) are callecparallel edgesFor simplicity, we draw each parallel
edges §, b) and p, a) by a non-directed edgab in the graka[éZv; ﬁ], ie.,

VG[Z;Q)) = Q,

E(G[Z;Q]) = {ab|Va,be QandJo € Z such thae” = b}.
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Example3.5.1 Let# ={(1),(1,2)(3 4),(1,3)(2 4),(1,4)(2 3)} be a permutation group
action onQ = {1, 2, 3,4}. Then the action grap8[Z; Q] is the complete grapK, with
labels shown in Fig.5.4,

Fig.3.5.4

in wherea = (1,2)(3,4), 8 = (1, 3)(2 4) andy = (1,4)(2 3).

Example3.5.2 Let Z be a permutation multigroup action énwith
P =\ )P, andQ=11,23456,78| }1,256,9,101112,

where#?; = ((1,2,3,4),(5,6,7,8)) and &, = ((1,5,9,10),(2,6,11,12)). Then the ac-
tion graphG[.Z; Q] of Z onQ = {1,2,3,4,5,6,7,8,9,10,11, 12} is shown in Fig.%.5,
in where labels on edges are removed. It should be notedhisaddtion graph is in fact
a union graph of four complete grapKsg with intersection vertices.

12 11
3 2 6 7
4 1 5 8
10 9
Fig.3.5.5

These Examples.B.1 and 35.2 enables us to find the following result on the action
graphs of multigroups.
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Theorem3.5.7 Let 2 be a multigroup action on a s€t with

m m
zgj:Uf@i andfz:UQi,
i=1 i=1

where each permutation grou; acts ont; with orbitsQ;;, Qip, - - -, Qig, for each integer

i, 1<i<m.Then
m S
70 - )| D
i=1 \j=1

with intersections I§, g, only if forintegersl <i # k<m,1 < j< s, I <1< s

Particularly, ifm=1, i.e., Zis just a permutation group, then its action grap[L@ ﬁ]
is a union of complete graphs without intersections.

Proof Notice that for each orb®;; of & action onQ;, the subgraph of the action
graph is the complete grapdio| andQij, N Qij, = 0 if j1 # jo, i.€.,,Kia; | N Ky, = 0.
This result follows by definition. O

By Theorem 3.5, we are easily find the automorphism groups of the graph show
in Fig.35.5, particularly the maximal automorphism group following:

AUtCIG[f-@/; ﬁ] = S{1,2,3,4} @ S{5,6,7,8} @ S{l,5,9,10} @ S{2,6,1l12}-

Generally, we get the following result.

Theorem3.5.8 Let Z be a multigroup action on a s& with P = U 2, and Q = U Qi,
i=1

where each permutation groug; acts onQ; with orbitsQ;;, Qio, - - -, Qs for each mteger
i, 1<i<m. Then the maximal automorphism group ¢4 Q] is

m
AutyG[ Z7; Q] = U Sq,-
j=1

Particularly, if [Qj; N Q| = Lfori #k,1<i,k<m,1<j<s,I<I<s,then

AutG[Z; Q] = CT) @) Sa;-
=1

i=1

Proof Notice that if|Q;; N Q| =1fori#k 1<i,k<m1<j<s,|<I<s,then

GlZ; Q] = @@Kw
i=1 j=1

This result follows from Theorems35 and 35.7. O
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3.5.3 Globally Transitivity. Let Z be a permutation multigroup action @ This
permutation multigrou@is said to beglobally k-transitivefor an integeik > 1 if for
any twok-tuplesxy, g, - - -, X € Q; andyy, Yo, - - -, Yk € Qj, where 1< i, j < m, there are
permutationse,, 7, - - -, 1y € 2 such thab ™™ = y;, X377 =y, ---, X = W
We have obtained Theorems3-2.6.10 for characterizing the globally transitivity of
multigroups. In this subsection, we characterize it by ttioa graphs of multigroups.
First, we know the following result on globally 1-transitiy i.e., the globally transitivity
of a multigroup.

Theorem35.9 Let Z be a multigroup action on a s€t with
_ m . m
r@:Uf_@i andQ:UQi,

i=1 i=1

where each permutation groug; acts onQ; for integersl <i < m. ThenZ is globally
transitive action or if and only if GL@; ﬁ] is connected.

Proof Letx,y € Q. If Zis globally transitive action oR, then there are elements
1, Mo, =+, Ty € 2 such thatemzm = y for an integem > 1. Definev; = X, v, =
X2 e Vg = Xreem-1 - Notice thatvy, Vo, - -+, Vo1 € Q. By definition, we conse-
quently find a walk (path¥wV; - - - v,_1y in the action graph‘:[ﬁ ﬁ] for any two vertices
X,y € V(G[@? ?z]), which implies tha’G[97; ﬁ] is connected.

Conversely, iG[97; ﬁ] is connected, fovx,y € V((G[97; 5])) =0, letxu - - Un_1Y
be a shortest path connected the verticesdy in G[57’; Q] for an integem > 1. By
definition, there are must ba, 7, - -+, 1, € 2 such thate = Uy, Up? = Up, - -+, U =Y.
Whence,

X7T17T2"'7Tn — y.
ThusZ is globally transitive action oR. O
For a multigroup action? action onQ with
_ m . m
@:U@i andQ:UQi,
i=1 i=1
where each permutation grouf, acts onQ; for integers 1< i < m, define

m
OF ={ (% %) I X €Q} and Q= |_JoF

i=1
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for integersk > 1 and 1< i < m. Then we are easily proved thatpermutation group
2 action onQ is k-transitive if and only if% action onQX is transitive for an integer
k > 1. Combining this fact with that of Theorem53, we get the following result on the
globally k-transitivity of multigroups.

Theorem3.5.10 Let.Z be a multigroup action on a s@twith

~ m ~ m
ﬂ:g@i andQ:iUIQi,

where each permutation groug; acts onQ; for integers 1< i < m. ThenZ is globally
k-transitive action o2 for an integek > 1 if and only ifG[ﬁ ﬁ"] is connected.

Proof Replacingfz by OKin the proof of Theorem 8.9 and applying the fact that a
permutation group” action onQ is k-transitive if and only if%? action onQX is transitive
for an integek > 1, we get our conclusion. O

Applying the action grap}G[@i; ﬁ] and 6[97; ﬁk], we can also characterize the
globally primitivity or other properties of permutation ftigroups by graph structure.
All of those are laid the reader as exercises.

§3.6 REMARKS

3.6.1 For catering to the need of computer science, graphs weref gaimes and turned
into graph theoryin last century. Today, it has become a fundamental tool &alidg
with relations of events applied to more and more fields, siscthose of algebra, topol-
ogy, geometry, probability, computer science, chemiglgctrical network, theoretical
physics,- - - and real-life problems. There are many excellent monogrédphits theo-
retical results with applications, such as these refeieftckL1], [Whil] and [Yap1l] for
graphs with structures, [GrT1], [MoT1] and [Liul] for grapbn surfaces.

3.6.2 The conception oSmarandachely graph properity Subsection 3.4 is presented
by Smarandache systerns Smarandache’s notign.e., such a mathematical system in
which there is a rule that behaves in at least twdedent ways, i.e., validated and in-
valided, or only invalided but in multiple distinct ways GSfVao2]-[Mao4], [Mao25]
and [Smal]-[Sma2] for details). In fact, there are two way$obk a graph with more
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than one edges as a Smarandachely graph. One is by its gbptniccture. Another
is by graph invariants on it. All of those Smarandachely emtions are new and open
problems in this subsection are valuable for further regear

3.6.3 For surveying symmetries on graphs, automorphisms aresde®dich is permu-
tations on graphs. This is the closely related place of ggaugh that of graphs. In fact,
finite graphs are a well objectives for applying groups, ipalarly for classifying sym-
metric graphs in recent two decades. To determining thenaurjohism groups A@ of

a graphG is an important but more flicult problem, which enables one to enumerating
maps on surfaces underlyiy or find regular maps on surfaces (See following chapters
in this book). Sections.2-3.3 present two ways already known. One is the GRR of finite
group. Another is the normally Cayley graphs for finite greuplore results and exam-
ples can be found in references [Big2], [GoR1], [Xum2], [XHland [Yap1] for further
reading.

3.6.4 A hypergraphA is a triple {, f, E) with disjointsV, E andf : E —» Z(V),
where each element M is called thevertexand that inE is called theedgeof A. If
f: E - V xV, then a hypergrapi is nothing but just a grapfs. Two elements
x € V, e € E of a hypergraph\{, f, E) are called to bencidentif x € f(e). Two hy-
pergraphs\; = (Vy, f1, E;) andA; = (Va, f,, E;) areisomorphidf there exists bijections
p:E;s — Ep q: Vi — V,such thag[fi(e)] = fo(p(e)) holds forvVe € E. Particularly,
if A1 = Ay, i.e., isomorphism between a hypergraphsuch an isomorphism is called
an automorphisnof A. All automorphisms of a hypergraph form a group, denoted
by AutA. For hypergraphs, we can also introduce conceptions suttinas of vertex-
transitive, edge-transitive, arc-transitive, semi-aaasitive and primitive by the action of
AUutA on A and get results for symmetric hypergraphs. As we knowngtiaee nearly
none such results found in publication.

3.6.5 The semi-arc automorphism of a graph is firstly introducefMaol] and [MaoZ2]
for enumerating maps on surfaces underlying a graph. Besifithese two references,
further applications of this conception can be found in [BadMaL3], [MLW1] and
[Liud]. 1t should be noted that the semi-arc automorphisrmaked semi-automorphism
of a graph in [Liu4]. In fact, the semi-arc automorphism gradia graplG is the induced
action of AutG on semi-arcs o6 if G is loopless. Thus is the essence of Theoremd 3
and 34.2. Butif G has loops, the situation is veryfiirent. So the semi-arc automorphism
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group of a graph is valuable at least for enumerating mapsaidace underlying a graph
with loops because we need the semi-arc automorphism gnotijust the automorphism
group ofG in this case.

3.6.6 Considering the local symmetry of a graph, graphs can be ae¢ime sources of
permutation multigroups. In fact, automorphism of a grapiveys its globally symmetry.
But this can be only applied for that of fields understood bykirad. For the limitation
of recognition, we can only know partially behaviors of WbrlSo a globally symmetry
in one’s eyes is localized symmetry in the real-life Worldhal is the motivation of
multigroups. Although to determine the automorphism of @pgris very dificult, it is
easily to determine the automorphism multigroups in marsesa Theorems.83 and
3.5.5 are such typical examples. It should be noted that TheoBsand 35.6 show
that the automorphism multigroups A@ and Aut,G are new invariants on graphs. So
we can survey localized symmetry of graphs or classify ggdphthe action of AWG
and Aut,G.



CHAPTER 4.

Surface Groups

The surface groups generated by loops on a surface with or without bound-
ary. There are two disguises for a surface group in mathemafne is the
fundamental group in topology and another is the non-Eaalidcrystallo-
graphic group, shortly NEC group in geometry. Both of them ba viewed
as an action group on a planar region, enables one to knowvirtietses of
surfaces. Consequently, topics covered in this chaptesisoaf two parts
also. Sections 4.-4.3 are an introduction to topological surfaces, includ-
ing topological spaces, classification theorem of compadiases by that
of polygonal presentations under elementary transfoonati fundamental
groups, Euler characteristie; -, etc.. These sectionsddand 45 consist a
general introduction to the theory of Klein surfaces, inlahg the antiana-
lytic functions, planar Klein surfaces, NEC groups and endgohism groups
of Klein surfaces; - -, etc.. All of these are the preliminary for finding au-
tomorphism groups of maps on surfaces or Klein surfacesearfdahowing
chapters.
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§4.1 SURFACES

4.1.1 Topological Space.Let .7 be a set. Aopologyon a set7 is a collectioné of
subsets of7, calledopen setsatisfying properties following:

(THO e % and.T € €,
(T2)if U, Uy € €, thenU; NnU, € €,
(T3) the union of any collection of open sets is open.

Forexample, lety’ = {a, b, c} and% = {0, {b}, {a, b}, {b, ¢}, 7}. Then? is atopology
on .7 . Usually, such a topology on a discrete set is calleltsarete topologyotherwise,
a continuous topologyA pair (&, %) consisting of a setV and a topologys on .7 is
called atopological spacand each element ifr is called gpointof .7. Usually, we also
use.7 to indicate a topological space if its topology is clear ia tontext. For example,
the Euclidean spade" for an integemn > 1 is a topological space.

For a pointu in a topological space”, its anopen neighborhoo@ an open sety
such thatu € U in .7 and aneighborhoodn .7 is a set containing some of its open
neighborhoods. Similarly, for a subsatof .7, a setU is anopen neighborhooar
neighborhoodf A if U is open itself or a set containing some open neighborhoods of
that set in7. A basisin .7 is a collection% of subsets of7 such that7 = Ug.4#B and
B, B, € 4, x € B; N B, implies thatdB; € 4 with x € Bs ¢ B; N B; hold.

Let .7 be a topological space and= [0,1] c R. Anarc ain .7 is defined to be a
continuous mapping : | —» 7. We calla(0), a(1) the initial point and end point o,
respectively. A topological spac# is connectedf there are no open subspackandB
such thatS = AU B with A, B # 0 and calledarcwise-connected every two pointsu, v
in .7 can be joined by an ain .7, i.e.,a(0) = uanda(l) = v. Anarca: | - Jis
aloopbased apif a(0) = a(1) = pe 7. A —it degenerated loop, : | — x€ S, i.e.,
mapping each element Into a pointx, usually called goint loop

A topological space” is calledHausdoyf if each two distinct points have disjoint
neighborhoods anfirst countablef for eachp € .7 there is a sequendé),)} of neigh-
borhoods ofp such that for any neighborhoad#lof p, there is am such thaty, c U. The
topology is calledsecond countabligit has a countable basis.

Let {x,} be a point sequence in a topological spacelf there is a poink € .7 such
that for every neighborhodd of u, there is an integed such than > N impliesx, € U,
then{u,} is saidconvergedo u or u is alimit point of {u,} in the topological spacg’.
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4.1.2 Continuous Mapping. For two topological space$; and.% and a poinu € .77,
a mappingy : % — % is calledcontinuous at uf for every neighborhood of ¢(u),
there is a neighborhodd of u such thatp(U) c V. Furthermore, ifp is continuous at
each poinuin .73, theng is called acontinuous mappingn .7;.

For examples, the polynomial functidn: R — R determined byf(x) = a,x" +
a1 X1 + ... + a;X + @ and the linear mapping : R" — R" for an integem > 1 are
continuous mapping. The following result presents progedf continuous mapping.

Theorem4.1.1 LetZ, . and.7 be topological spaces. Then

(1) A constant mapping t#Z — .¥ is continuous;

(2) The identity mapping ld #Z — Z is continuous;

Q) If f : # — .7 is continuous, then so is the restrictiofy, of f to an open subset
U of #Z;

@it : 22— < andg: .¥ - 7 are continuous at x Z and f(x) € ., then so
is their composition mapping gf# — 7 at x.

Proof The results of (1)-(3) is clear by definition. For (4), notibat f andg are
respective continuous ate R and f(x) € .. For any open neighborhodlf of point
a(f(x) € .7, g} (W) is opened neighborhood d{x) in .. Whence,f1(g~%(W)) is an
opened neighborhood afin # by definition. Thereforeg(f) is continuous axk. O

A refinement of Theorem.4.1(3) enables us to know the following criterion for
continuity of a mapping.

Theorem 4.1.2 Let# and.¥ be topological spaces. Then a mapping ## — . is
continuous if and only if each point & has a neighborhood on which f is continuous.

Proof By Theorem 41.1(3), we only need to prove theféigiency of condition. Let
f : % — . be continuous in a neighborhood of each pointdéndU c .. We show
that f~1(U) is open. In fact, any point € f~1(U) has a neighborhood(x) on which f
is continuous by assumption. The continuityfaf implies that lv) *(U) is open in
V(X). Whence it is also open i#Z. By definition, we are easily find that

(Flv) (V) = (xe ZIf(x) € U} = FHU) [ V(¥),

in f~1(U) and containx. Notice thatf~1(U) is a union of all such open sets asanges
over f~1(U). Thusf-1(U) is open followed by this fact. O
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For constructing continuous mapping on a union of topolaigspaces?’, the fol-
lowing result is a very useful tool, called ti&uing Lemma

Theorem 4.1.3 Assume that a topological spac¥ is a finite union of closed subsets:
n

Z = X. If for some topological spac#’, there are continuous maps:fX; — # that
i=1

agree on overlaps, i.e.ilf nx, = fjlx nx foralli, j, then there exists a unique continuous

f: 2 — % with fly, = fi foralli.
Proof Obviously, the mapping defined by
f() = fi(¥), xeX

is the unique well defined mapping frofti’ to % with restrictionsf|y, = f; hold for alli.
So we only need to establish the continuityfobn 2. In fact, if U is an open set i/,
then

(V)

X() W) = (X)) W)

i=1
Lo () 2wy =[x () 174wy = | 7).
i=1 i=1 i=1

By assumption, each is continuous. We know thdt*(U) is open inX;. Whence,

f-1(U) is openin2’. Thusf is continuous onZ’". O
Let 2 be atopological space. A collectichc &?(2") is called to be @overof 2~

Jc=2.

CeC
If each set inC is open, therC is called anopened coveand if |C| is finite, it is called

a finite coverof 2". A topological space isompactif there exists a finite cover in its
any opened cover aridcally compactf it is Hausdoftf with a compact neighborhood for
its each point. As a consequence of Theorei34 we can apply the gluing lemma to
ascertain continuous mappings shown in the next.

Corollary 4.1.1 Let Let 2" and ¢ be topological spaces and\, A, -- -, Ay} be a fi-
nite opened cover of a topological spage. If a mapping f: 2" — # is continuous
constrained on each;AL <i < n, then f is a continuous mapping.

4.1.3 Homeomorphic Space. Let . and .7 be two topological spaces. They are
homeomorphidf there is a 1- 1 continuous mapping : . — .7 such that the inverse
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mapinge™! : .7 — .7 is also continuous. Such a mappiags called ahomeomorphic
or topologicalmapping. A few examples of homeomorphic spaces can be fautitki
following.

Example4.1.1 Each of the following topological space pairs are homegumior

(1) A Euclidean spacR" and an opened unitball B" = { (X1, Xp, - -, o) | X5 + X5 +
(2) A Euclidean plan®™*! and a unit spher8” = { (X, Xp, - -+, Xns1) | X6+ X5 + - - - +
X2, = 1} with one pointp = (0,0, - - -, 0, 1) on it removed.

In fact, define a mapping from B" to R" for (1) by
(Xl? X2’ T, Xl"l)
1- \/x§+x§+---+xﬁ

f(Xl’XZ?""Xn) =

for V(xq, X0, - - -, X) € B". Then its inverse is
(X1, X2, + 5 Xn)
1+ \/x§+x§+---+xﬁ

fH (e, Xo, o+, Xn) =

for V(Xq, Xo, - - -, X,) € R™. Clearly, bothf andf~* are continuous. SB" is homeomorphic
to R". For (2), define a mappinfjfrom S" — p to R™*! by

f(Xl’ X23 Tt Xﬂ+1) = (Xl’ X23 Tt Xﬂ)

1- +1

Its inversef 1 : R™! — S" — pis determined by
f_l(xl’ X, v, Xl"l+1) = (t(X)Xl, Tt t(x)xn, 1- t(X)),

where
2

2 2 2
I+ X +X5+--+ X,

t(x) =

Notice that bothf and f~* are continuous. Thu8" — p is homeomorphic t&R"*.

4.1.4 Surface. For an integen > 1, ann-dimensional topological manifoid a second
countable Hausdfirspace such that each point has an open neighborhood hon@amor
to an opem-dimensional balB" = {(X1, Xp, - - - , X)X +35+- - -+X2 < 1} in R". We assume
all manifolds is connected considered in this book. A 2-rfiddiis usually callecdsurface

in literature. Several examples of surfaces are shown ifoll@ving.
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Example4.1.1 These 2-manifolds shown in the Fidl4 are surfaces with boundary.

plane torus rectangle cylinder

Fig.4.1.1

Example4.1.2 These 2-manifolds shown in the FidL2 are surfaces without boundary.

= &

sphere torus

Fig.4.1.2

By definition, we can always distinguish the right-side agftt$ide when one object
moves along an arc on a surfase Now letN be a unit normal vector of the surfae
Consider the result of a normal vector moves along a loop surfaces in Fig.4.1 and
Fig.4.1.2. We find the direction oN is unchanged as it come back at the original paint
For example, it moves on the sphere and torus shown in thé. Eigyfollowing.

& &

sphere torus

Fig.4.1.3
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Such loop4. in Fig.4.1.3 are calledrientation-preservingHowever, there are also loops
L in surfaces which are not orientation-preserving. In suatec we get the opposite
direction ofN as it come back at the original poimt Such a loop is calledrientation-
reversing For example, the process (1)-(3) for getting the famousiM&strip shown in
Fig.4.1.4, in where the loofk is an orientation-reversing loop.

A B’ A A
N
\ , El
v E
B A B B’
1 2
1) A (2)
L
B
3
Fig.4.1.4

A surfaceS is defined to berientableif every loop onS is orientation-preserving.
Otherwise hon-orientabldf there at least one orientation-reversing loopSaniwhence,
the surfaces in Examplesl41-4.1.2 are orientable and the Mobius strip are non-orientable.
It should be noted that the boundary of a Mobius strip is aadioarc formed byAB and
A’B. Gluing the boundary of a Mobius strip by a 2-dimensiondl B3, we get a non-
orientable surface without boundary, which is usuallyeirosscapn literature.

4.1.5 Quotient Space.A natural way for constructing surfaces is by the quotieicgp
from a surface. For introducing such spaces, 26t % be a topological spaces and
n . 2 — Y be a surjective and continuous mapping. A suliset % is defined to be
open if and only ifr~1(U) is open in.2". Such a topology o is called thequotient
topologyinduced byr, andr is called a quotient mapping. It can be shown easily that the
quotient topology is indeed a topology én.

Let ~ be an equivalent relation o#A”. Denoted by §j] the equivalence class for each
ge Z andletZ/ ~ be the set of equivalence classes. Nowdet. 2™ — 27/ ~ be
the natural mapping sending each elengtd the equivalence clasg][ Then 27/ ~
together with the quotient topology determinedsbys called thequotient spacandn
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theprojection For example, the Mobius strip constructed in Fifj.4 s in fact a quotient
space?’/ ~, whereZ" is the rectangldEBAE’'B’, and

) X if [xA| = |XA|,xe AB,ye AB,
T =
x if xe 2\ (ABUADB).

Applying quotient spaces, we can also construct surfactswt boundary. For ex-
ample, gorojective planas defined to be the quotient space of the 2-sphere by idamdify
every pair of diametrically opposite points, i.€; = {(X1, X2, X3)IX5 + X5 + X5 = 1} with
m(=X1, =Xz, =X3) = (X1, X2, X3)-

Now let 2" be a rectangl&dBAB’ shown in Fig.41.5. Then diferent identification
of points onAB with A’B’ and AA’ with BB’ yields diferent surfaces without boundary
shown in Fig.41.5,

b
A A A
a a a
B B B’
spheres? torusT2 P
b
A b & A A
a a a a
B b B’ B B’
projection pland? Klein bottleK? P
Fig.4.15

where the projection is determined by

- X if [XA| = [XA|,xe ABB,y € AAB,
JT =
X if xe 2\ (ABUAB UAA UBB)
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in the sphere,
X if |[xA|=|xXB|,xe AA,X € BB,
a(x) =4 X' if XA =|XA|,xeAB X € AB,
X if xe 2 \(ABUAB UAA UBB)
in the torus,
¥ X if [xB = |[XA|,x€ BAA, X € AB'B,
T =
x if xe 2\ (ABUAB UAA UBB)

in the projection plane and
X if [XA|=|xXB|,xe AA,X € BB,
a(X)=¢ X if XA =|X'B|,x€ AB, X € A'B,
x if xe Z\(ABUAB UAA UBB)

in the Klein bottle, respectively.

$4.2 CLASSIFICATION THEOREM

4.2.1 Connected Sum.Let S;, S, be disjoint surfaces. Aonnected suraf S; andS,,
denoted by5,#S, is formed by cutting a circular hole on each surface and th&ngthe
two surfaces along the boundary of holes.

A A A A C C
Nl I
_.CT lC_. D / D'
D D’ I
} /u/ | A(A’* B lB(B’)
B B’ B B’ C (03
1) (2) 3)

Fig.4.2.1

For example, we show that a Klein bottle constructed in Figx4s in fact the connected
sum of two Mobius strips in Fig.2.1, in where, (1) is the Klein bottle in Fig#5. It
should be noted that the rectang@®C’'D’ andDACC B'D’ are two Mobius strips after
we cutABAB’ alongCC’, DD’ and then glue alongB, A'B’ in (3).
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For a precise definition of connected sum,Dgtc S; andD, c S, be closed 2-
dimensional discs, i.e., homeomorphicﬁ%: {(Xq, x2)|x§ + x§ < 1} with boundaryoD,,
0D, homeomorphic t&* = {(xy, xz)lxi + xg = 1}. Notice that eacldD; homeomorphic to
Stfori=1,2. Leth, : dD; — St andh; : 6D, — S! be such homeomorphisms. Then
hglhl : D1 — 0Dy, i.e., there always exists a homeomorphidby — 0D,. Chosen
a homoeomorphisrh : dD; — dD,, thenS;#S, is defined to be the quotient space
(S1 U Sy)/h. By definition, S;#S, is clearly a surface and does not dependent on the
choice ofD4, D, andh.

Example 4.2.1 The following connected sums of orientable or non-oriel@aurfaces
are orientable or non-orientable surfaces.

(1) A connected surif?#T2#- - - #T2 of n toruses is orientable. Particularly2#T?2

n
is called the double torus.

(2) A connected sur?#P%# - - - #P? of k projection planes is non-orientable. Partic-

k
ularly, K? = P?#P? as we shown in Fig.2.1.

4.2.2 Polygonal Presentation. A triangulation of a surfaceS consisting of a finite
family of closed subsetsl;, Ty, - - -, Ty} that coversS with T; N T; = 0, a vertexv or an
entire edges in common, and a family of homeomorphisgs T/ — T;, where eacH

is a triangle in the plan®?, i.e., a compact subset bounded by 3 distinct straight.lines
The images of vertices and edges of the triarigleinder¢; are called also theertices
andedgesrespectively. For example, a triangulation of the Molstrgp can be found in
Fig.42.2.

V1 Vo V3 V4 Vs
Uy Uo Us Ug Us
Fig.4.2.2

In fact, there are many non-isomorphic triangulation fougeace, which is the central
problem of enumerative theory of maps (See [Liu2]-[Liu4{ ttetails). T.Radd proved
the following result in 1925.
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Theorem 4.2.1(Radd) Any compact surface S admits a triangulation.

The proof of this theorem is not fiiicult but very tedious. We will not present it
here. The reader can refers references, such as those of]ah8 [Leel] for details.
The following result is fundamental for classifying sudaavithout boundary.

Theorem 4.2.2 Let S be a compact surface with a triangulati®on Then S is homeo-
morphic to a quotient surface by identifying edge pairs i@irtgles in7".

Proof Let7 = {T;; 1 <i < nbe a triangulation 08. Our proof is divided into two
assertions following:

(Al) Letv be avertex of . Then there is an arrangement of triangles with v as a
vertex in cyclic order T, T}, ---, TY

p such that Tand T,; have an edge in common for
integersl < i < p(v) (modp(V)).

Define anequivalenceon two trianglesT?, T/ by that of T andTJ.v have exactly an
edge in common ifT". Itis clear that this relation is indeed an equivalent refabn7".
Denote by §] all such equivalent classes . Then if|[7]] = 1, we get the assertion
(Al1). Otherwise|[7]| > 2, we can choos€lf], [T\] € [7] such thatT{] N [T}'] = {v}in
7. Whence, there is a neighborhdél of v small enough such th&¥,—v is disconnected.
But by the definition of surface, there is a neighborhdd'df v homeomorphic to an open
sphereB? in S. ConsequentiWW' — v is connected for any neighborhotd, of v small
enough, a contradiction.

(A2) Each edge is an edge of exactly two triangles.

First, each edge is an edge of two triangles at lea$t,imne., there are no vertices
x on an edge off; for an integerj, 1 < i < n with a neighborhoodV, homeomorphic
to an open balB2. Otherwise, a loo. encircledx in T; — W, can not be continuously
contracted to the point if;. But itis clear that any loop ifi; — W, for neighborhood¥V,
of x small enough can be continuously contracted to a poifit #nW, for any pointx on
an edge offy, a contradiction.

Second, each edge is exactly an edge of two triangles. Nibtateve can continu-
ously subdivide a triangulation such that trianglewith a common edge are contained
in ane-neighborhood of a point if. Not loss of generality, we assurfieis such a trian-
gulation ofS. By applying Jordan curve theorem, i #e moving of any closed curve C on
S? reminds two connected components W, with W,nW, = C, we know that each edge
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is exactly an edge of two triangles 9. In fact, letee 61, e€,6, - - -, €665 be trian-
gles contained in aa-neighborhoodV with a common edge, wheree, e, &, 1 <i <s

are edges of these triangles. Th&N- eg e, has two connected components by Jordan
curve theorem. One of them is the interior of triangég e,; and another i8V—T,, where

Te is the triangle with boundarge ;e,;. So there must be= 2.

Combining assertions (Al)-(A2), we consequently get tiselte O

According to Theorem 2.2, we know that a compact surface can be presented by
identifying edges of triangles, where each edge is exactlydme of two triangles. Gen-
erally, let< be a set. Avordis defined to be an orderédtuple of elements € <7 with
the forma or a-1. A polygonal presentatiqrdenoted by

W = (o | W, W, -, Wi )

is a finite setey together with finitely many wordé/;, W, - - -, Wi in 7 such that each ele-
ment of<7 appears in at least one words. A polygonal presentétiofV,, W, - - -, W) is
called asurface presentatioifieach elemend € <7 occurs exactly twice iy, Wo, - - -, W
with the forma or a™t. We call elements € . to beedgesW, 1 < i < k to befaces
of S and vertices appeared in each faegticesif each words is represented by a poly-
gon on the plan®?. It can be known that a surface is orientable if and only iftihe
occurrences of each element o7 are with diferent power, otherwise, non-orientable.

For example, le6 be the torusr? with short sidea and length sidd in Fig.4.1.5.
Then we get its polygonal presentatioh = <a, b|aba‘1b‘1>. Generally, Theorem.2.2
enables one knowing that the existence of polygonal pragentfor compact surfaces,
at least by triangles, i.e., each woMsis length of 3 ing’.

4.2.3 Elementary Equivalence. Let o7 be a set of English alphabets, the minuscules
a,b,c,--- € o but the Greek alphabetsB,y,--- ¢ o/, S = (Z|W, W, ---, W) be a
surface presentation and let the capital letferB, - - - be sections of successive elements
in order andA™t, B™1, - - - in reserving order in wordg/. For two wordswi, W, in S, the
notationW; W, denotes the word formed by concatenatgwith W, in order. We adopt
the convention thata(!)~! = ain this book.

Define operations El.1-EI.6, calletementary transformatioren S following:

El.1(Relabeling): Changing all occurrences of a hy ¢ .o/, interchanging all oc-
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currences of two elements a and b, or interchanging all oemages a and &, i.e.,

(/|aAbBWs, - -\ W) < {(Z|bAaBW, - - -, W),
(maAa-lB,Wz,---,Wk) N (ma-lAa,Wz,---,Wk) or
(maA a‘lB,---,Wk> o (ma-lA, aB,---,Wk>.

El.2(Subdividing or ConsolidatingReplacing every occurrence of a bg and a*
bys~tal, or vice versa, i.e.,

(aAa B W, - W) & (|aBAB a7 B Wy, -, W)
<d|aA, a'B, -, Wk> o (maﬁA, 5o B, - -,Wk> :

El.3(Reflecting) Reversing the order of a word W a;a, - - - an, i.€.,

(H)ag, 80+ - A Wa, - - -, Wi) <$27|a,}1'“ailall,Wz,“',Wk>-
El.4(Rotating) Changing the order of a word \W a;a; - - - a, by rotating, i.e.,
(Aag, a2 am, Wa, - -+, W) & (F|amdy - - - 8m-1, Wa, - -, Wi .
EL.5(Cutting or Pasting)If the length of W, W, are both not less thag, then
(Wi Wy, -, Wiy & (& [Why, y W, -+, WL .

El.6(Folding or Unfolding) If the length of Wis at least3, then
(A IW186™8, Wa, -+, W) & (/ [W, W, -+, WE)

Let S; andS; be two surface presentations.8f can be conversed to that 8 by
a series of elementary transformationsn,, - - -, 7, in ELL1 — —EL6, we sayS; andS,
to beelementary equivalersnd denote bys; ~g; S,. It is obvious that the elementary
equivalence is indeed an equivalent relation on surfacgeptations. The following result
is fundamental for applying surface presentations to thelassifying compact surfaces.

Theorem4.2.3 Let S; and S, be compact surfaces with respective presentati®nss,.
If S; ~g1 Sy, then § is homeomorphic to S

Proof By the definition of elementary transformation, it is clelaatteach pairs of
cutting and pasting, folding and unfolding, subdividinglalonsolidating are inverses of
each other. Whence, we are only need to prove our result ®mobsuch pairs.
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Cutting. Let P, andP, be convex polygons labeled B,y andy W, respectively
andP be a convex polygon labeled by;W,. Not loss of generality, we assume these are
the only words in their respective presentations.steP; U P,/ ~— S; andn’ : P/ ~—

S, be the quotient mappings. The line segment going from thmeiied vertex ofW; in
P to its initial vertex lies inP by convexity, labeled this line segment pySuch as those
shown in Fig.42.3 following.

<>
cutting

Fig.4.2.3

Applying the gluing lemma, there is a continuous mappingP; U P, — P that takes
each edge oP; or P, to the edge irP with a corresponding label, and whose restriction
to P, or P, is a homeomorphism, i.ef,is a quotient mapping. Becaus$adentifying two
edges labeled by andy~! but nothing else, the quotient mappimg f andz’ makes the
same identifications. So their quotient spaces are homewmtor

folding %/ |&\"
< =
unfolding

b—
Fig.4.2.4

If k > 3, extendingf by declaring it to be the identity on the respective polygand
processed as above, we also get the result.

Folding. Similarly, we can ignore the additional wort, - - -, W. If the length of
W, is 2, subdivide it and then perform the folding transformatand then consolidate.
So we can assume the lengthWwf is not less than 3. First, |&; = abcandP, P’ be
convex polygons with edge labedbcee! andabg respectively. Lelr : P — S; and
7 PP - S, be the quotient mappings. Now adding edge®,irP’, turns them into
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polyhedra, such as those shown in Fig4. There is a continuous mappirig P — P’
that takes each edge Bfto that the edge d® with the same label. Therf o f andr are
guotient mappings that make the same identifications.

If the length> 4 of W;, we can writeW,; = Abcfor some sectioi of length at least
2. Cutting alonga we obtain

(7,b,c,elAbcee®) ~g (. a,b,c,efAa", abcee®)
and processed as before to get the result.

Subdividing. Similarly, let P, P, be distinct polygons with sectiorgsor a* and
P;, P, with sections replacing by e anda™* by g~ in P; andP,. Such as those
shown in Fig.42.5.

™

subdividing
a <
consolidating \

a

Fig.4.2.5

Certainly, there is a continuous mappihg P, U P, — P; U P, that takes each edge of
P1, P, to that the edge dP’, P, with the same label, and the edge with laaéb the edge
with labeleg in P; U P,. Thenn’ o f : PyUP,/ ~— S;andr : P, UP,/ ~— S, are
guotient mappings that make the same identifications.

If aora ! appears twice in a polygdd, the proof is similar. Thu$; is homeomor-
phic toS; in each case. O

4.2.4 Classification Theorem. Let S be a compact surface with a presentati®n-
(W, Ws, - - - W) and letA, B, - - - be sections of successive elements in a Wivriah S.
Theorems £.1-42.3 enables one to classify compact surfaces as follows.

Theorem 4.2.4 Any connected compact surface S is either homeomorphic pheres
or to a connected sum of tori, or to a connected sum of prajegtianes, i.e., its sur-
face presentatiots is elementary equivalent to one of the standard surfacesptasions
following:
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(1) The sphere 3= (alaa™?);
(2) The connected sum of p tori
P
T2HT2#.. - #T2 = < a,b,1<i<p]| l_laibiai_lbi_l>;
p i=1
(3) The connected sum of g projective planes
q
2 2 2 _ . i I
P2#P2. .. #P _<a,,1susq| ]_—1[a>.
q =

Proof Let S = (&|Wy, W, -- -, W). For establishing this theorem, we first prove
several claims on elementary equivalent presentationgrtdces following.

Claim 1. There is a word W in# such that
S=(d W, Wy, - W) ~g (& |W).

If k > 2, we can concatenaWy, W, - - -, W, by elementary transformatiod.1 —
El.6. In fact, by definition, there is an elemenbnly appears once W;. ThusW,; = Aa
anda does not appears iA. Not loss of generality, led or a™! appears ifW,, i.e.,
W, = Baor W, = a !B. Applying El.1 - EI.6, we know that

S = (o|AaBaWs, -, W)
~e (o [Aaa B Wy, Wi ) ~e (7 | AB™L W, - W )

S=(o/ | Aaa’BWs---, W ) ~e (7 | AB W, -, Wi ).

Furthermore, by induction okwe know thatS is elementary equivalent to a surface just
with one wordW if k > 2. Thus

S=(F | W, W, -, W) ~g1 (& |W).
Claim 2. ( 7 | AaBbCa'Db'E ) ~¢ ( « | ADCBEabalb® ).
In fact, byEl.1 - EI.6, we know that
(/| AaBbCa'Db™'E ) ~g ( </ U {6} | Db EAa, 6 'BbCa™ )
~g (o b} | EA¥DCa'67'B ) ~gi { 7 U (6} | Aash, b'DCa's'BE )
~g] (mbAaBEb DCa™ ) ~g (7 U {6} | AaBEs, 6~ 'b™'DCa b )
(o a} | BESAbS "b™'DC ) ~g { 7 U {6} | Aba a™'6~'b'DCBES )
(o b}| ADCBEsas *a™ ) ~¢i ( «/ | ADCBEaba'b™ ).

~EI

~EI
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Claim 3. (.« | AcBcC) ~g ( o | AB—lcCc).
By El.1 - EI.6, we find that

( o/ | AaBaC) ~g ( <7 U {6} | A&, 5'BaC)

~ (7 U {6} 6Aa a'B6C™ ) ~g (7 U (6} \ (a} | SAB'6CT )
~e (7 U{6}| ABlsa,a'C ™6 ) ~ei ( 7 U{5}| aAB s, 5'Ca)
~g ( o/ | AB'Caa).

Claim 4. (42% | Accabalb ) ~g1 ( o/ | Accaabb).

Applying EI.1 — EI.6 and Claim 3, we get that

< </ | Accabalb? > ~El < o/ U {6} | atbtAcs, 6‘1cab>
~E| ( o U8} | satbtAc, clsblat ) ~E| ( o USY\ {c} | sa~tb tAsbtat )
~E| ( o U\ {c) | Asb tatsa bt ) .

Applying Claim 3, we therefore have

( o/ | Accaba'b™ ) ~E| ( o U8\ (¢} | Asastab bt )
~E| ( o/ UsY\ {c} | A66b‘1b‘laa> ~g1 ( </ | Accaabby .

Now we can prove the classification for connected compatases. If|.<7| = 1, let
</ = {a}, then we get
S:<a|aa‘1> or (alaa),

I.e., the sphere or the projective plane.|df| > 2, by Claim 1 we are only needed to
prove the classification for compact surfaces with one wiced S = ( a| W ). Our proof
is divided into two cases following.

Casel. There are no elementsa«’ such that W= AaBaC.

In this case, there are sectioAsB, C, D, E of W such thatw = AaBbCa'DbE
or W = AaBbCb*Da'E. If there are no elements b such thaW = AaBbCa’DbE,
thenW must be the form of- - cG(ayH,b.b*H *at) - - - (@ Hibiby*H *a )G d ™t - - -. By
the elementary transformatidi.5, we finally get thatS ~g, < | aa‘1>, the sphere. Not
loss of generality, we will assume that this case never appeaur discussion, i.e., for
Ya € </, there are always existse .7 such thatwv = AaBbCa'Db™E. In this case, by
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Claim 2 we know thatS ~g ( </ | ADCBEaba'b™ > Notice that elements iADCBE
also satisfy the condition of Case 1. So we can applying Clamepeatedly and finally

p
S ~gi <«27| l—[aibiaibi_1>

i=1

get that

for an integemp > 1.
Case2. There are elementsa.«/ such that W= AaBaC.

In this case, by Claim 3 we know th&t ~g, <%|AB‘1Caa>. Applying Claim 3 to
ABIC repeatedly, we finally get that

S
S~E|<M|H]_[aaa>
i=1

for an integers > 1 such that there are no elemehts H such thatH = DbCbE Thus
each element € &7 \ {a;;1 < i < s} appearx at one time anc* at another. Similar to
the discussion of Case 1, we know that

S S t
s~a (o 1n] [aa )~a (o1 [ aa] [xycy?)
i=1 i=1 i=1

for some integers, t by applying Claim 2. Applying Claim 4 also, we finally get that

S~E|<%|H]i[aa>~5|<%| ]i[aaa>,

i=1
for an integelq = s+ 2t. This completes the proof. 0J

Notice that each step in the proof of Theorera4 does not change the orientability
of a surfaces with a presentatios. We get the following conclusion.

Corollary 4.2.1 A surface S is orientable if and only if it is elementary egient to the

sphere $ or the connected sum?®T2#. - - #T2 of p tori.
p

4.2.5 Euler Characteristic. LetS = (.« | Wi, W, ---, W ) be a surface presentation
andr : (& | Wi, Ws, ---, W ) — S a projection by identifyinga with a- for Va € .
TheEuler characteristiof S is defined by

X(S) = IV(S) - [E(S)] + [F(S)],
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whereV(S), E(S) andF(S) are respective the set of vertex set, edge set and facetbet of
surfaceS. We are easily knowing th#E(S)| = |.<7|, |F(F)| = kand|V(S)| the number of
orbits of vertices in polygon®/;, W, - - -, Wi undern. The Euler characteristic of a sur-
face is topological invariant. Furthermore, it is unchabgelementary transformations.

Theorem 4.25 If S; ~g Sy, theny(S:) = x(S>), i.e., the Euler characteristic is an
invariant under elementary transformations.

Proof Let (.« | W;,W,, ---, W ) be a presentation of a surfad We only need
to prove each elementafyl.1 — EI.6 on S does not change the valyéS). Notice the
elementary transformatiortsl. 1(Relabeling) El.3(Reflecting) ancEl.4(Rotating) leave
the numbers of vertices, edges and faces unchanged. Cemslygu(S) is invariant
underEl.1, EI.3 — El.4. We only need to check the result for elementary transferma
tions EI.2(Subdividing or Consolidating}|.5(Cutting or Pasting) ané&l.6(Folding or
Unfolding). In fact, El.2(Subdividing or Consolidating) increase or decrease buth
number of edges and the number of vertices by 1, leaves thberushfaces unchanged,
El1.5(Cutting or Pasting) increases or decreases both the mwhbdges and the number
of faces by 1, leaves the number of vertices unchangeddb@~olding or Unfolding)
increases or decreases the number of edges and the numleeticéy, leaves the number
of faces unchanged. Whengg,S) is invariant under these elementary transformations
El.1 — EI.6. This completes the proof. O

Applying Theorems 2.4 and 42.5, we get the Euler characteristic of connected
compact surfaces following.

Theorem4.2.6 Let S be a connected compact surface with a present&tidrnen

2, if S ~g S
2-2p, ifS~g T2HT%#. . #T?
X(S) = M

2-q,  if S~g PH#P#...#P%.
q

Proof Notice that the numbers of vertices, edges and faces of acaBfare re-
spectivelV(S)| = 2 |E(S) = 1, |F(S)| = 1if S = <a|aa‘1> (See Fig.4L.5 for de-

p
tails), [V(S)| = 1,|E(S)| = 2p, [F(S)| = 1if S = <ai,bi,1 <i<p] Haibiai_lbi_1> and
i—1

q
V(S) = LIES) =q,|F(S) =1if S = <ai,1 <i<q] Hai>. By definition, we know
i=1
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that
2, if S~g S?,
2-2p, if S~g THTH. . #T?
X(S) = 5
2-q, if S~g P#P#.. #P?
q
by Theorem £.5. Applying Theorems 2.4, the conclusion is followed. O

The numberg andq is usually defined to be thgenusof the surfaceS, denoted
by g(S). Theorem 2.6 implies thaty(S) = 0, por g if S is elementary equivalent to the
sphere, the connected sumpfori or the connected sum gfprojective plane.

$4.3 FUNDAMENTAL GROUPS

4.3.1 Homotopic Mapping. Let .7, % be two topological spaces and gt ¢, : 77 —
7, be two continuous mappings. If there exists a continuouspmgi : .7 x| — %
such that

H(x,0) = p1(x) and H(x,1) = ¢2(X)

for Yx € 73, theny; andy, are callechomotopi¢ denoted byp; ~ ¢,. Furthermore, if
there is a subs& c .7 such that

H(a t) = p1(a) = ¢o(a), acA tel,
theny; andyp, are callechomotopic relative to AClearly,e; is homotopic tap, if A = 0.

Theorem 4.3.1 For two topological spaces”, ¢, the homotopic+ on the set of all
continuous mappings fror to _¢ is an equivalent relation, i.e, all homotopic mappings
to a mapping f is an equivalent class, denoted iy

Proof Let f, g, h be continuous mappings fro#r to _#, f ~ gandg =~ h with
homotopic mappingbl; andH,. Then we know that

(1) f =~ fifchooseH : I x1 —» .7 byH(t,s) = f(t) forVse l.
(2) g =~ f if chooseH(t, s) = Hq(t, 1-s) for Vs, t € | which is obviously continuous.

(3) DefineH(t, s) = HoHq(t, s) for Vs, t € | by
Hi(x, 2t), ifo<t<i,

H(t, s) = HoH4(t, s) =
(t.9) = HHu(t. 9 {Hz(x,Zt—l), if 1<t<1
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Notice thatH;(x, 2t) = Hi(x, 1) = g(X) = Ha(x, 2t = 1) if t = % Applying Theorem 413,
we know the continuousnessdiH,. Whence,f ~ h. O

Theorem432 If f1,f,: .7 - Zandg,0,: ¢ — £ are continuous mappings with
fi~f,andg ~ g, then fogs ~ f00>.

Proof AssumeF : f; ~ f,andG : g; ~ g, are homotopies. Define a new homotopy
H: 7 x| - ZbyH(Xxt) = G(F(x1t),t). ThenH(x,0) = G(f1(X),0) = g:1(f1(x)) for
t = 0andH(x, 1) = G(fx(x), 1) = g»(f2(X)) fort = 1. ThusH is a homopoty frong; o f;
togy o fo. O

We present two examples for homotopies of topological space

Example4.3.1 Letf, g: R — R? determined by

fO) = (% %), 9g(x) = (%X
andH(x,t) = (x, > —tx> + tx). ThenH : R x | — R is continuous withH(x, 0) = f(X)
andH(x, 1) = g(x). WhenceH : f ~g.

Example4.3.2 Letf, g:.7 — R?be continuous mappings from a topological spate
to R?. Define a mappingd : .7 x| — 7 by

H(xt) = (L-t)f(x) +tg(x), xe 7.

Clearly,H is continuous wittH(x, 0) = f(x) andH(x, 1) = g(x). ThereforeH : f ~ g.
Such a homotop¥ is called astraight-line homotoppetweenf andg.

4.3.2 Fundamental Group. Particularly, leta,b : | — .7 be two arcs witha(0) = b(0)
anda(l) = b(1) in a topological space . In this casea ~ b implies that there exists a
continuous mapping

H:Ixl—>S

such thatH(t, 0) = a(t), H(t, 1) = b(t) for ¥t € | by definition.
Now leta andb be two arcs in a topological spacg with a(1) = b(0). A product
arc a- b of awith b is defined by

2 b(t) = a2y, if 0<t<i,
 bt-1), if i<t<1

and an inverse mapping efbya = a(1 - t).
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Noticethata-b: | — 7 anda: | — .7 are continuous by Corollary1. Whence,
they are indeed arcs by definition, called fireduct arcof a with b and theinverse arc
of a. Sometimes it is needed to distinguish the orientation oaran We say the ara
orientation-preservin@nd its invers@ orientation-reversing

Let a, b be arcs in a topological spacg. Properties on product of arcs following
are hold obviously by definition.

(P1) a
(P2) b-a = a- b providingab existing;
(P3) & = e, wherex = g0) = &(1).

a,

Theorem4.3.3 Leta b,c and d be arcs in a topological space S. Then

(1) a=~bifaxb;
(2) a-b~c-difax=b, c~dwith a-can arc.

proof Let H; be a homotopic mapping fromto b. Define a continuous mapping
H : I x|l - SbyH’(t,s) = Hi(1 - t, s) for Vt,s € I. Then we find thatH’(t, 0) = a(t)
andH’(t, 1) = b(t). Whence, we get th@ =~ b, i.e., the assertion (1).

For (2), letH, be a homotopic mapping fronto d. Define a mappingd : | xI — S
by

<1
2’

<t<1

IA
~—+

ML = Hy(2t, 9), if 0
| Ha2-1,9), if 4

Notice thata(1) = ¢(0) andH4(1, s) = a(1) = ¢(0) = H»(0, s). Applying Corollary 41.1,
we know thatH is continuous. Therefore,- b ~ ¢ - d. OJ

For a topological space’, x, € 7, let (7, %) be a set consisting of equivalent
classes of loops basedxt Define an operation in 1(.7, Xo) by

[a] o [b] =[a-b] and [a]™! =[a™?].

Then we know thair,(.7, %) is a group shown in the following result.

Theorem4.3.4 7,(.7, Xo) IS a group.

Proof We check each condition of a group fer(.7, o). First, it is closed under
the operatior since B] o [b] = [a- b] is an equivalent class of loag- b based ak, for
v[al, [b] € m1(T, Xo).
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Now leta,b,c: 1 — 7 be three loops based @ By definition we know that

a(4t), if 0<t<Z,
(@-b)-ct) =< bat-1), if 2<t<i
c2t-1), if <t<1
and
a(2t), if 0<t<i,
a-(b-c)(t) =4 bdt-2), if I<t<?
c4t-3), if 2<t<1
Define a functioH : | x| — .7 by
a2ty it 0<t< >t
l+s s+1 4s+2
H(t,s) =4 b(dt-1-9), if — <t<——1,
4(1-1) s¥2 4
c(1- 2_S), if Tstsl

ThenH is continuous by applying Corollary. 1, H(t,0) = ((a- b) - ¢)(t) andH(t, 1) =
(@a- (b-c))(t). Thereafter, we know thatd] o [b]) o [c] = [a] o ([b] o [c]).
Now lete,, : | — X € .7 be the point loop a%,. Then it is easily to check that

a-axeg, a-axey,
and
&,-a~a a-g,=~a
We conclude that(7, Xo) is a group with a unitd, ] and an inverse elemera ]

for any [a] € m1(S, %) by definition. O

Let 7 be a topological spaceg, x; € 7 and £ an arc fromx to x;. ForV[a] €
(7, %), we know that £ [a] o £ € 71(.7, x1) (see Fig.4311 below). Whence, the
mapping & = £o[a] 0 £ : (T, %) = m1(T, %)

~— £

_ X
[a]
Xo

Fig.4.3.1
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Then we know the following result.

Theorem4.3.5 Let.7 be a topological space. Ifoxx; € .7 and£ is an arc from ¥ to X
in 7, thenry (7, Xo) =~ m1(7, X1).

Proof We have known that:£: 71(.7, X0) — 71(.7, X1). For [a],[b] € m1(.7, Xo),
[a] # [b], we find that

£q([a]) =£o[a o £71 # £0 [b] 0 £71 = £([b]),
i.e., £ is a1l- 1 mapping. Choose] € n1(7, X). Then

folaloftofo[bloEt=EF£c[a]log, o[a] o £
= £ola]lo[b] o £t =£4a] o[b]).

£x([a]) o £4([c])

Therefore, £is a homomorphism.

Similarly, £,* = £ o [4] o £ is also @ homomorphism from (.7, ) to 71(.7, Xo)
and £' o £, = [e,], £4 0 £, = [e,] are the identity mappings between(.7 , Xo) and
m1(7, X1).Hence, £ is an isomorphism form (.7, Xo) to 71(7, X1). O

Theorem 43.5 implies the fundamental group of a arcwise-connectedespads
independent on the choice of base poipt Whence, we can denote the fundamental
group of 7 by mi (7). If m(7) = {[eg]}, then.7 is called to be asimply connected
space For example, the Euclidean spdeg n-ball B" are simply connected spaces for
n > 2. We determine the fundamental groups of graphs embeddegatogical spaces
in the followiing.

Theorem 4.3.6 Let G be an embedded graph on a topological space S and T aisygann
tree in G. Them(G) =(T +e|ee E(G\T)).

Proof We prove this assertion by induction on the numben ef |E(T)|. If n = 0,

G is a bouquet, then each edgées a loop itself. A closed walk o is a combination of
edgesin E(G), i.e.,m1(G) = (e| ee E(G) ) in this case.

Assume the assertion is true for= k, i.e.,m(G) = (T +e|ee E(G\T) ). Con-
sider the case afi = k+ 1. For any edg@ € E(T), we consider the embedded graph
G/€, which means continuously to contra&to a pointv in S. A closed walk onG
passes or not throughin G is homotopic to a walk passes or not througim G/€ for
k(T) = 1. Therefore, we conclude thai(G) = ( T + e|e€ E(G\ T) ) by the induction
assumption. O
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4.3.3 Seifert-Van Kampen Theorem. For a subseA of B, aninclusion mapping i:
A — Bis defined hyi(a) = afor Ya € A. A subsetA of a topological spacX is called a
deformation retracof X if there exists a continuous mapping X — A and a homotopy
f : Xx | — Xsuch that

f(x,0)=x% f(x,1)=r(x), Yxe X and f(a,t)=aYac A andtel.
we have the following result.

Theorem 4.3.7 If A is a deformation retract of X, then the inclusion mappingA — X
induces an isomorphism af(A, a) ontor,(X, a) for any a€ A.

Proof Leti, : m1(A,a) — m(X a) andr, : m(X,a) — m1(A a) be induced homo-
morphisms by andr. We conclude that.i. is the identity mapping of1(A, a). Notice
thatir is homotopic to the identity mapping — X relative to{a}. We know that.r, is
the identity mapping of1(X, a). Thusi, : m1(A, a) — 71(X, a) is an isomorphism.  [J

Generally, to determine the fundamental gray@”) of a topological spac€” is not
easy, particularly for finding its presentation. For thigeaktive, a useful tool is the Seifert-
Van Kampen theorem. Its modern form is presented by homahmisrs following.

Theorem 4.3.8(Seifert and Van-Kampen)et X = U UV with U, V open subsets and let
X, U, V, UNV be non-empty arcwise-connected wigheXtd NV and H a group. If there
are homomorphisms

¢1 - m1(U, %) — H and ¢, : m1(V, %) = H
and

il ﬂl(U’ XO) ¢l

Ja

(U NV, Xg) —m1(X, Xo)----- —~H

with @1 - i1 = ¢, - i, where i : 1 (U NV, Xg) — m1(U, Xo), iz : m1(U NV, Xo) — m1(V, Xo),
j1:m(U, X)) = m1(X, %) and p : m1(V, Xg) — m1(X, Xo) are homomorphisms induced by
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inclusion mappings, then there exists a unique homomanmpidis 71(X, X9) — H such
that® - j; = ¢ and® - j, = ¢5.

The classical form of the Seifert-Van Kampen theorem is lyftiowing.

Theorem 4.3.9(Seifert and Van-Kampen theorem, Classical Versia@t X = U UV
with U, V open subsets and let XJ, V, U NV be non-empty arcwise-connected with
X0 € U NV, inclusion mappingsi ji1, i», j» as the same in Theored3.7. If

J 1 (U, Xo) * m1(V; %) — m1(X, Xo)
is an extension homomorphism qfand p, then j is an epimorphism with kernkkerj
generated by;t(g)i2(g), g€ (U NV, Xp), i.e.,
m1(U, Xo) * m1(V, Xo)
[i74(0) - i2(9) g € ma(U N Vo xg)|
where[A] denotes the minimal normal subgroup of a gréijincluded Ac ¢.

7T1(X, XO) =

A complete proof of the Seifert-Van Kampen theorem can b&dou references,
such as those of [Leel] [Mas1] or [Munl]. By this result, wenediately get the follow-
ing conclusions.

Corollary 4.3.1 Let X, X, be two open sets of a topological space X witkX; U X,,
X, simply connected and, X; and X = X; N X, hon-empty arcwise-connected, then for

¥Xo € Xo,
71(Xa1, Xo)

[ (i)-([aD)I[a] € 71 (X0, X0) I
Corollary 4.3.2 Let X, X; be two open sets of a topological space X witkX; U X;.

ﬂ'l(x’ XO) =

If there X X1, X, are non-empty arcwise-connected argl=XX; N X, simply connected,
then forvVx, € Xo,
m1(X, X0) = m1(X1, Xo)m1 (X2, X0)-
Corollary 43.2 can be aeplied to find the fundamental group of an embeddgxhgr
particularly, a bouqueB, = U L; consisting ofn loopsL;,1 < i < n again following,

i=1
which is the same as in Thelorem%.

Let Xo be the common pointiB,,. Forn = 2, letU = B, —{X;}, V = B, — {X}, where
X; € Ly andx, € L. ThenU NV is simply connected. Applying CorollaryB2, we get
that
m1(B2, Xo) = m1(U, Xo)m1(V, Xo) = (L1) (L2) = (L1, o).
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Generally, letx, € Li, W, =L — {x}for1 <i <nand

U=L{ W[ Jo | JWo and v =wi [ JLo| |- JLn

ThenU NV = Sy,, an arcwise-connected star. Whence,
m1(Bn, O) = m1(U, O) * m1(V, O) = (L1) * m1(Bn-1, O).
By induction induction, we finally find the fundamental group
m1(Bn, O) =(Lj, 1 <i<n).

4.3.4 Fundamental Group of Surface. Applying the Seifert-Van Kampen theorem and
the classification theorem of connected compact surfaces;an easily get the funda-
mental groups following, usually called tsarface group#n literature.

Theorem 4.3.10 The fundamental groups(S) of compact surfaces S are respective

(1), the trivial group if S ~g S?

p
< ai, bl, ) ap’ bp | I_I aibia'i_lbi_l =1 > if S ~EI T2#T2# . #Tz,
i=1 —_—

my(S) = p

<cl,cz,---,cq|_lg[10i2:1> if S ~g P#P%#---#P?,
i= —_—
q

Proof If S ~g S?, then it is clearly thatr,(S) is trivial. Whence, we conside is
elementary equivalent to the connected surp @dri or q projective planes following.
Case 1. S ~g TH#T%#. - -#T2

p

LetS = <a1, by, -+, ap, by 1B[ abia bt ) be the surface representation®f By
Theorem £.2, we can represer.ﬁl_gy a 4p-gon on the plane with sides identified in pairs
such as those shown in Fig32(a). By the identification, these edgas by, ay, by, - - -, a,, by
become circuits, and any two of them intersect only in theehaaint X,. Now let
U = S\ {y}, the complement of the centgrand letV be the image of the interior of
the 4p-gon under the identification. Théh V both are arewise-connected. Furthermore,
the union of circuitsy, by, ay, by, - - -, ap, by is a deformation retract df, andV is simply
connected. Therefore,

ﬂl(\/’ Xl) = < 1 W) >’ ﬂl(U’ XO) = < al’ﬁl’ a2’ﬁ2’ T ’ap’ﬁp | 0 >’
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whereay, 51, az, B2, - - -, ap, Bp @re circuits represented by, by, ap, by, - - -, &, by, respec-
tively.

br?

Fig.4.3.2

Notice thatU N V has the homotopy type of circuit. Wheneg(U NV, x) is an
infinite cyclic group generateq, the equivalent class of a loaparound the poiny once
with

$1(y) = | | @Bl )™

P

i=1

wheree] = d'aid, g/ = d™'p;d for integers 1< i < p.
Applying Corollary 43.1, we immediately get that

m1(S)

P
< B @Byl [ | eiBie) @)t =1 >
i=1

1

p
< ag, by, -, ap, by | naibiai‘lbi‘l — 1>,
i=1

Case 2. S ~g P#P%#---#P?
p
The proof is similar to that of Case 1. In this casejs presented by identify-

ing in pairs sides of agon with sidesay, a;, ay, @, - - -, 8g, 8y, such as those shown
in Fig.4.3.2(b). Similarly chooseU,V as them in Case 1. Then the union of circuits
ai, ap, - -+, aq Is a deformation retract df, andV is simply connected. Therefore,

ﬂ'l(\/,X]_):<1|0>, 7T1(U,X0):<(11,a'2,“‘,a’q|®>,

whereas, as, - - -, aq are circuits represented lay, ay, - - -, a4, respectively andr,(U N
V, X1) is an infinite cyclic group generated the equivalent class of a loaparound the
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pointy once with
q
6:10) = | [@)?,
i=1

wherea/ = d™*a;d for integers 1< i < g. Whence,

q
m(S) = <a1,ozz,~-,ozq | l_[(ozi')2 = 1>
i=1
q
~ <c1,02,---,cq| [ ] = 1>
i=1
by applying Corollary 4.1. O

Corollary 4.3.3 The fundamental groups of the torug @nd projective plane Pare
m1(T?) =(ablab=ba) and m(P?) = < ala?=1 > respectively.

$4.4 NEC GROUPS

We show how to construct a polygon used in last section on mKl&face, i.e., funda-
mental region of a non-Euclidean crystallographic grougiraviated to NEC group in
this section. Thus will be used in next chapter.

4.4.1 Dianalytic Function. Let C be the complex planeéj c C a open subset and
f : A — C amapping. As usual, we write= x+iy € C, xye R, i = V-1,Z2= x— iy
andf(2) = u(x,y) + iv(x,y) for certain functionss, v : A — R of C2. Then by definition,
we know that

of ou _ov duox .Qugdy [ovox .ovay

— = —tl—=—==——ti=——=+i|=—=+i=—=],

0z 0z 0z 0Xdz 0yoz 0Xdz 0yoz

of ou _ov duox .dugdy [ovox .ovay

—_—=—t+tl===——=+4+l-—-+Il|{——+1——=].

0z 0zZ 0z 0X0zZ 0yoz 0Xo0z 0yoz

Z+2 i(z-2

Notice thatx = — andy = > , we know that

0X 3 ox 1 . B
iz 0z 2 9z 2 0z 2
Whence,
of 1(ou .du .ov 8v) nd of 1(8u Ou . ov v

52" 2\ax oy Tax T oy 7 2\ox oy T ox ay)
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Particularly, letf : A — C be determined by : z = x+iy — f(2) = u(x,y) — iv(x, y).
Then we get the fundamental equalities following:

of ofy of [of

7 (5) 5 (5) (4-1
LetC* = {z|Imz> 0}. Amappingf : A— C (or C*") is called to beanalytic

onAif (;_; = 0 (Cauchy-Riemann equatipandantianlyticon A if g—i = 0. A mapping

f : A - C (or C*) is dianalyticif its restriction to every connected componentAof

is analytic or antianalytic. The following properties oadalytic mappings is clearly by

formulae (4-1) and definition.

(P1) A mapping f: A — C (or C*) is analytic if and only iff is antianalytic;

(P2) If a mapping f: A — C (or C*) is both analytic and antianalytic, then f is
constant;

(P3)Iff : A-> Bc C(orC*)andg: B — C (or C*) are both analytic or
antianalytic, then the compositionegf : A — C (or C*) is analytic. Otherwise, g f is
antianalytic.

Example 4.4.1 Letab,c,d € R, C ;&bO andA = C\ {-d/c}. Clearly, the mapping
. az+

f : A - C determined byf(2) __CZ-Ed
- : — az+

f : A— C determined byf(2) = 1

Let f(2) = u(x,y) + iv(x,y). Calculation shows that

ou oJu , ,
ax ay |_ _|[ou ov

det a_v 8_\/ = 6[(67() +(@) ],
ox oy

wheree = 1if f is analytic and-1 if f is antianalytic. This fact implies that an analytic

for ¥z € Ais analytic. Whence, the mapping

for Yz € Ais antianalytic by (P1).

function preserves orientation but that an antianalytie @verses the orientation.

4.4.2 Klein Surface. A Klein surfaceis a topological surfac8 together with a family
X ={(Uj,¢) |1 €A }suchthat

(1) {Ui|i e A}isanopen cover db;

(2) ¢i : Ui = A is a homeomorphism onto an open suleaif C or C*;

(3) thetransition functionf X defined in the following are dianalytic:

¢ij = ¢ig; * (Ui ﬂ Uj) — ¢i(U; ﬂ Uj), i,jeA.
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Usually, the familyX is called to be amtlasand eachl;, ¢;) acharton S, which is
positiveif ¢;(U;) c C*. Theboundaryof S is determined by

0S = {x € S| there exist$ € |, x € U;, ¢i(X) € R andg;(U;) € C*}.

Particularly, if each transition functiog; is analytic, such a Klein surface is called a
Riemann surfacén literature. Denote respectively B¢S), g(S) andy(S) the number

of connected components 68, the genus and the Euler characteristicSpfwhere if

0S # 0, we define its genug(S) to be the genus of the compact surface obtained by
attaching a 2-dimensional di& to each boundary component 8f Then by applying
Theorem 4.6, we know the following result.

Theorem4.4.1 Let S be a Klein surface. Then

2-29(S) - k(S) if Sis orientable

X(S) = e .
2-9(S) - k(S) if Sisnon- orientable

Proof LetS be a surface without boundary, i.8S = 0 with a definite triangulation.
We remove the interior of one triangle to form a new surfac&’. Clearly, V(S') =
V(S),E(S) = E(S) andF(S’) = F(S) \ {T}. Whenceyx(S’) = x(S) — 1. Continuous
this process, we finally get tha{S’) = y(S) — k if we removek triangles orS. Then we
know the result by Theorem26. O

Some important examples of Klein surfaces are shown in th@fimg.

Example4.4.2 LetH ={ze C|Imz>0}andD ={ze C||Z < 1} be respectively the
upper half plane and the unit disc@shown in Fig.44.1 following.

/////
/////
////////
///////
/////

/////

/////
//////

//////

(@) (b)

Fig.4.4.1
Choose atlag(U = H,¢ = 14)} and{(U = D,¢ = 1p)} on H andD, respectively. Then
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we know that both of them are Klein surfaces without bound&uch Klein surfaces will
be always denoted iyt andD in this book.

Example 4.4.3 The surfac&* with a structure induced by the analytic at{é8, 1)} is
a Klein surface with boundagC* = R

Example4.4.4 LetC = CU{co} andA = C*U{co}. Then they are compact Klein surfaces
with atlas

%1 ={(U1=C.¢1 = 1), (U2=C{0} ¢ =2},
% ={(U1=C*¢1=1c,), (Up=A{0}2=27)},
respectively. ClearhpC = 0 anddA = R U {co}.

4.4.3 Morphism of Klein Surface. Let Abe a subset of*, defineA={ze C|ze A}.
A folding mappings the continuous mapping : C — C* determined byd(x + iy) =
X + ilyl. Clearly,® is an open mapping anb(A) = AU A. Particularly®X(R) = R

Let S andS’ be Klein surfaces. Aorphism f: S — S’ from Sto S’ is a continuous
mapping such that

(1) f(0S) c 99;
(2) forVse S, there exist chartdJ, ¢) and {, ) at pointss and f(s), respectively
and an analytic functiof : ¢(U) — C such that the following diagram

f
U Vv

¢ Y (4-2)

p(U) —F c —2 c*

commutes. It should be noted that in the case of Riemanncas;fave only deal with
orientation-preserving morphisms, in which the diagramZ}is replaced by the diagram
(4 - 3) following.

¢ Y (4-3)

) = w(V)
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Let S andS’ be Klein surfaces andl : S — S’ a morphism. Iff is a homeomor-
phism, thenS andS’ are called to bésomorphic Such a morphisnf is isomorphism
betweerS andS’. Particularly, ifS = S’, such af is calledautomorphisnof a Klein sur-
faceS. Similarly, all automorphisms db form a group with respect to the composition
of automorphisms, denoted by AitWe present an example of automorphisms between
Klein surfaces following.

Example4.4.5 LetH andD be Klein surfaces constructed in Examplé.2 and a map-
ping byp(2) = (z+1)/(iz+ 1). Theno : D — H is well-defined becauseif= x+ iy € D,
so there must b# + y? < 1 and consequently

2X+ (1= X2 —y?)
Z) =
Furthermore, it is analytic, particularly continuous byfid#ion. Fors € D, we choose
(U = D,1p) and ¥ = H,1y) to be charts as € D andp(s) € H, respectively. Then

H.

®p = p for p(D) c H c C* and the following diagram is commute.

U p Vv

1U 1V

pU) F=p. ¢ @ c

Whence p is a morphism between from Klein surfacBsto H. Now ifg: H —» Cis
defined byg(2) = 12—_:2 thengo p = 1. Because is onto, Ing c D andpg = 14, we
know thatp is an isomorphism of Klein surfaces.

4.4.4 Planar Klein Surface. LetH = { ze C | Imz > 0} be a planar Klein surface
defined in Example 4.2 and let PGL(, G) be the subgroup of GIb(RR) determined by

all A € GL(n,R) with DetA # 0. Now for A =

b
4 d ] € PGL(2 R) with real entries,

we associate a mappirfg : H — H determined by
az+b

if DetA > 0,

W@ =1 E1b
— if DetA < O.

cz+d

Clearly, fo € AutH and fy = f.a for any non-zera € R. Hence, the mapping — fa
embeds PGL(2R) in AutH. We prove this mapping is also surjective. In fact, fe€
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AutH and letp : D — H be the isomorphism determined in Examplé.4. Notice that
f is analytic, and so the same holds true ot p~1 o f o p. Applying the maximum

principle of analytic functiong(z) = 12__22 for somea € D, u € C with |u| = 1. Hence,
az+b
f(2 = for somea,b,c,d e C.
cz+d

Becausef(H) = H, we know thatf(R \ {-d/c}) c R by continuity, and it is easy to
see that we can choose real numbeeis c, d. Notice thatf (i) € H implies that Def =
ad-bc> 0.

If f reverses the orientation, lat: H — H be a mapping determined thyz) =
—f(2). Notice thath is an automorphism dfl, i.e.,h € AutH and it preserves the orienta-
tion. We know that

f(2 = %) forsomea,b,c,d e R with DetA=ad-bc< 0.

Whence, we get the following result for the automorphisnugrof H.

Theorem4.4.2 LetH={ze C|Imz>0}. Then

(1) AutH = PGL(2 R);
(2) AutH is a topological group, i.e AutH is both a topological space and a group
with a continuous mappingf o g=* for f, g € AutH.

4.45 NEC Group. A subgroupl” of AutH is said to bediscreteif it is discrete as a
topological subspace of Adt Such a discrete groupis called to be anon-Euclidean
crystallographic grougshortly NEC group) if the quotient spaé¥T is compact.

Notice that there exist just two matrixds B € GL(2, R) such thatf,, fg for any
f ee AutH with |DetA| = |DetB| = 1, i.e.,B = —A, DetA = —DetA and TiB = —TrA.
Define Def = DetA and Tif = TrA, respectively. Then we classifiy € AutH into 3
classes with conditions following:

Hyperbolic. Detf = 1 and[Trf| > 2.
Elliptic. Detf = 1 and|Trf| < 2.
Parabolic. Detf =1 and|Trf| = 2.

Furthermore,f is called aglide refectionif Detf = -1, |Trf| # O or arefectionif
Detf = -1, |Trf| = 0. Denote by AutH the subgroup of Al formed by all orien-
tation preserving elements in Adt Then it is clear that [AUd : Aut"H] = 2. Call
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an NEC groufd” to be Fuchsianif I' < Aut*H. Otherwise, groper NEC group. For
any NEC groud’, the subgroup™ = I' N Aut*H is always a Fuchsian group, called the
canonical Fuchsian subgroup

Calculation shows the following result is hold.

Theorem 4.4.3 Extend each s € AutH to fonCu {co} In the natural way for A=

[a b]ePGL(ZR)by
c d

—-d/c  ifz= oo,

B ) if z=-d/c,

fa(2) ={ az+b 3 _
CZ+% if Detfa =1, z# oo, —d/c,
az+b .
1 if Detfa = -1, z# oo, —d/cC.

Let f € AutH andFixf = {ze C U {o0}|f(2) = 2. Then

two points onR U {co} if f is hyperbolic or glide re fection
Fixf — one point orR U {co} if isparabolic
| two non- real conjugate pointsif f is elliptic

acircle or aline perpendicular t®R if f is areflection

Let I be an NEC group. Aundamental regiorfor I" is a closed subsd® of H
satisfying conditions following:

(1) If ze H, then there existg € I such thag(z) € F;
(2) If ze H andf,g eI verify f(2), g(2) € IntF, thenf = g;
(3) The non-Euclidean area Bf\ IntF is zero, i.e.,

,u(F\IntF):ff szdyzo.
FuntF Y

The existence of fundamental region for an NEC group can &e Isg the following
construction for thd®irichlet regionwith centerp.

Construction 4.4.1 LetI" be an NEC group. We construct its fundamental region in the
following. First, we show that there exists a pom¢ H such thag(p) # pfor1lr # geT.
In fact, we can assume the existence of an upper half Eudliiteal perpendicular t®
such thatl # Fix(y) for everyy € I'. Otherwise, we can get a sequeriggn € N}
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convergent to a poird € H, lying on a Euclidean line parallel t&, and the upper half
Euclidean lind,, perpendicular t&® and passing througk, verifiesl,, = Fix(y,) for some
vn € I'. Consequentlyy, # ym if N # mand limy,(a)} = lim{y,(x,)} = lIm{x,} = a,
contradicts to the continuity of the mapping AutH x H — H determined by(f, x) =
f(x) for f € AutH, x € H.

Choose a sequengg|n € N} of pointsH lying onl convergent to some poibte H.
By assumption, there exists a sequence of pairwise distarcdformationgg,in e N} c T’
such thag,(y,) = y» for everyn € N, which leads to a contradiction as before.

Now it is easy to check that

F =Fp,={ze H|d(z p) <d(g(2), p) for eachg eI’}

is a fundamental region df, whered(u, v) is the non-Euclidean distance between

X2 1/2

Cuyv being the geodesic joining andy, i.e., a circle or a line orthogonal ®. ThenF,
verifies conditions (1)-(3):

(1) Letzbe a pointinH. Sincel is discrete, the orbiD, of zunderT is closed. Thus
there existsv € O, such thad(w, p) < d(w’, p) for eachw’ € O,. If w=g(2), g € T, then

andy, i.e.,

itis clear thag(z) = w e F,.
(2) Obviously that

IntF, = {ze H|d(z p) < d(9(2), p), foreachge I\ {14}}.

Thenze H, f,geT"andf(2), 9(2) € IntF, imply that for f # g,

d(f(). p) <d(@f(f(@). p)) = d(9(. p). d(9@. p) < d(fg™(9(2. p) = d(f (2. p),

a contradiction. Thusf, = g.
(3) This is follows easily from the fact that the boundaryFgfis a convex polygon
with a finite number of sides in the non-Euclidean metric.

Usually, a fundamental regida of an NEC group verifying conditions following is

calledregular.

(1) Fis abounded convex polygon with a finite number of sides imtire Euclidean
metric;
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(2) F is homeomorphic to a closed disc;

(3) F\ IntF is a closed Jordan curve and there are finite verticds pintF which
divide it into the following classes of Jordan arcs:

(3.1) e= FngF,whereg € I is a reflection;

(3.2) e= FngF,wheregeT, ¢ # 1y;

(3.3) e for which there exists an elliptic transformatigne T, g° = 1 such that
evuge=FngF;

(4) If F, gF do not have an edge in common fog& I, thenF N gF has just one
point.

Then we know the following conclusion.

Theorem 4.4.4 For any NEC groud’, there exist regular fundamental regions, such as
F, for example.

Construction 4.4.2 LetF be a regular fundamental region of an NEC graupFor a
giveng € I, gF is said to be dace Clearly, the mappind’ — {facesg determined by

g — gF is a bijection anH = | J gF. In fact,{gF|g € I'} is a tessellation of.
gell

(1) Given a sidee of F, let g be the unique transformation for whiggF meetsF
in the edgeg, i.e.,e = F N g.F. then{gee € sides ofl'} is a set of generators of In
fact, for¥g € I' there exists a sequence of elememits= 14,9 — 2,---,0ns1 iN T such
thatg F meetg;,;F one to another in a side, sayg), whereg is a side off. Clearly,
0i(0e f) = 0i:1F and sogi;; = gige for 1 < i < n. Consequentlyy = ge,Ge, - - - Ge, fOr
some sidesg;, e, -+, e, of F.

(2) First, we label sides of type (@B. Afterward, if we labek a side of type (2)
or (33), the sidegeis labelede if g e I'*, ande* if g e I' \ I'". We write down the labels
of the sides in counter-clockwise order and sa(, (e €*) pair sides. In this way, we
obtain the surface symbols, which enables one to determepresentation df and the
topological structurdd/T", such as those claimed in Theorer.2.

(3) Leta anda be pair sides and leg € ' be an element such thgtl(a) = a
For a hyperbolic ard joining two vertices ofF and splittingF into two regionsA andB
containinga anda, respectivelyAu gBis a new fundamental region bfwhich has a new
pair sidesb andb with b = g~1(b) instead ofa anda and suitably relabeled other sides.
Repeating this procedure in suitable way one can arrive tmdadmental region with the
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following side labelings

§1€1- - Erél€ery10° V15,81 T EYK0 T Yka BB By - - aBpaBy (4-4)

%

E1E] - EEl€1Y107 - V15,EL " EKYI0 " " Yk EkO101 * - - Oy (4-9)

according taH/I" orientable or not.

(4) Identify points on pair side, we get thd{T is a sphere witlk disc removed and
p handles o crosscups added if (4 3) or (4— 4) holds.

(5) For getting the defining relations fbr consider the faces meeting at each vertex
of F. Notice thafl" is discrete. The number of these faces is finite. Choose overtites
of I'and letl = Lo, Ly, -+, Ln, Lo = L be the corresponding chain faces. Obviously,
there exisg, - - -, g, of elements of " such that

Li=oL Lo =0ol,---,L=Ly1=0n---01L.

Whence, every vertex induces a relation

OnOn-1---0201 = 1n.

It turns out that these relations of this type ad= 1 coming from such sides & fixed
by a unique nontrivial elemegt € T" form all defining relations of.

(6) As we get a surface symbol {44) or (4- 5) and using procedures described in
(1) and (5), we find the presentationlofollowing:

Generators X, 1<i<r;
e, 1<i<k
Cj, 1<i<k 1l<j<s;
a, b, 1<i < pinthe case (4 4);
d, 1<i <qinthe case (4 5).

Relations
=1, 1<i<r;
€ '8 Cs = Ir, 1<i <k
1 =G = (Gjac)™ = 1,

Xp - %€ - &lag, ba] -+ [@p, bp] = 1in case (4- 4);
X1 %€ ---adf---di = 1incase (4-5),
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wherea, b, c, d, e, xcorrespond to these transformations induced by edggsy, 9, &, &,
[a,b] = abia bt andm, n; are numbers of faces meetiffggat common vertices for
sides &, &) and ¢ j-1, %), respectively.
For an NEC group with the previous presentation, we define signatureo-(I') of
I by
o) = (g = [my, -, m ] {(Ng, - M), - (Nkas =+ -5 Mk )Y,

and itshyperbolic areau(I') by

r 1, 18 1
(I) = ag+k—2+;(l— )t E;;a——) :
whereg = p, the sign+ anda = 2 in (4—-4) org = q, the sign—- anda = 1 in (4-5), i.e.,
orientable in the first and non-orientable otherwise. Itlesn shown thai(T') is just the
hyperbolic area of the fundamentallofind independent on its choice.
Usually, ifr =0, s = 0 ork = 0, we denote theserp, - - -, m], (N1, - - -, Nis,) by [-],
(-) or {-}, respectively. For example,

o) =@ [-L (=), ()
k
if r = 0ands = 0. Such an NEC group is called to besarface group Partic-
ularly, if k = 0, i.e., these fundamental groups in Theore® 10, the signature is
o) = (g; =;[-]; (-)). Clearly, the area of a surface groLijs u(I') = 2n(ag + k — 2).

Theorem 4.4.5(Hurwitz-Riemann formula)LetI" be a NEC subgroup of a NEC group

I. Then
u(I)
w(I)
Proof Notice thatl” is a discrete as a subgroupldt By definition,H/I"” andH/T"

=[I":T].

are compact, sb’ andI” have compact fundamental regidi'sandF. Lethy,---, h e I”
be the coset representativesIgfwherek = [I” : T']. Then It is easily to know that
F =hy(F)u---Uh(F’). Consequently,

k
u(l) = areafF) = Z areal(F’")) = kx area(F) = kx u(I").
i=1

Thus,
pM _
u(I)

[ 1]. 0
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$4.5 AUTOMORPHISMS OF KLEIN SURFACES

4.5.1 Morphism Property. We prove the automorphism group of a Klein surface is finite
in this section. For this objective, we need to characterinephisms of Klein surfaces in
the first.

Theorem 45.1 Let f : S — S’ be a non-constant morphism arid, ¢), (V,y) two
charts in S and Swith f(U) c V, ¢(V) c C*. Then there exists a unique analytic
mapping F: ¢(U) — C such that the following diagram

U \Y,

pU) —F—~ ¢ —2 . v

commutes.

Proof First, if there are two non-constant analytic mappiRg§’ : ¢(U) — C such
that®F = ®F’, thenF = F' or F = F’. LetY c F}(C \ R) be a nonempty connected
set. Choosd, = {x € Y|F(X) = F/(x)} andM, = {x € Y|F(X) = F’(x)}. ThenM; andM,
are closed and disjoint witif = M; U M5, which enables one to g&t; = Yor M, =Y.

If M, =Y, F must be both analytic and antianalytic ¥nThusF|y is constant, and sB
is constant by the properties of analytic functions, a ahttion. Whencef: = F'.

Now suppose that we can cougiby {Uj|j € J} such that there are analytic mappings

F; : ¢(U;) — C with the following diagram

f
U \Y,

¢ ¥

o) Fi ¢ 2 Ly

commutes. Then these mappirfgisglue together will produce a functida that we are
looking for. So we only need to find such mappirkgs

By definition, forx e U andy = f(x) € V, there exist chartd[*, ¢, and /¥, y) and
an analytic mapping with U* c U, V¥ c V such that the following diagram commutes:
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ux VY

¢x l/’y

PN (UL, L S SR VY (V)

We construct a mapping; such that the following diagram also commutes:

ux f VY

¢x '70)’

s(U) P Lo v

In fact, for any giveru € ¢(U>), we know thaF ypy¢(u) € O 1(Imyy) = gy (V) Uy (V).
Consider gy;1)" 1 yy(VY) U gy (V) — C. Then according withp,¢~* andyy;,* were
analytic or antianalytic, we takie; or F; to be (pw;l)AFx¢x¢‘1. Then we get suck; as
one wish. O

A fundamental result concerning the behavior of morphisnen composition is
shown in the following.

Theorem 45.2 Let SS’ and S’ be Klein surfacesand f S - S, g: S —» S”
continuous mappings such tha(os) c 0S’, g(0S’) c 9S”. Consider the following
assertions:

(1) fis amorphism;

(2) gis amorphism;

(3) go fisamorphism.
Then @) and ) imply (3). Furthermore, if f is surjective 1) and @) imply 2), and if f
is open, R) and @) imply (2).

The proof of Theorem 5.2 is not dificult. Consequently, we lay it to the reader as
an exercise.

Corollary 45.1 Let S and S be topological surfaces and f S — S’ a continuous
mapping. Then
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(1) If S’ is a Klein surface, then there is at most one structure ofrkseirface on S
such that f is a morphism.

(2) If f is surjective and S is a Klein surface, then there exista@ast one structure
of Klein surface on Ssuch that f is a morphism.

4.5.2 Double Covering of Klein Surface. Let S be a Klein surface with atlag, =
{(u, ¢))li € 1}. Suppose is not a Riemann surface and define

U/ =Ux{i} x{1} and U =U;x{i} x{-1},

wherei runs over. We identify some points in

o]

icl icl

(1) Fori € | andD; = S n U, identify D; x {i} x {1} with D; x {i} x {-1}.

(2) For (j,k) € | x| such thatU; meetsUy, let W be a connected component in
Uj N Uk Identify W x {j} x {6} with W x {k} x {5} for § = £1 if ¢;p." : ¢(W) — C
is analytic, andWV x {j} x {6} with W x {k} x {6} for 6 = =1 if ;¢ : (W) — C is
antianalytic.

PutSc = X/{identificationsabove For each < I, let¢! : U’ — C determined by
¢/(x,1,1) = ¢i(X) and¢!” : U’ — C determined by (x,i,-1) = #i(X). Obviously, if
p : X — Scdenotes the canonical projection ddd= p(U; U U”"), the family{Ujli € I}
is an open cover d¢. Furthermore, each mappidg: U; — C defined byg;(u) = ¢’ (u)
if ue U/ or ¢i(u) = ¢”(u) if u € U/ is a homeomorphism onto its image. Thug =
{(Ui, 4ili € 1)} is an analytic atlas oBc. Clearly,dSc = 0. Whence Sc is a Riemann
surface by construction.

We claim that there exists a morphisim: Sc — S and an antianalytic mapping
o Sc — Sc such thatfo = f ando? = 1s. In fact, it is sufices to determine
f:Sc—Sbyf:u=p,id — viorve U;andé = +1. It should be noted that each
fibers of f has one or two points and we define

u if | (f ()l =1,

“:SCHSC”H{ W) fITNT) = 2

Such a triple ¢, f, o) is called thedouble covenf S.
We know the following result due to Alling-Greenleaf ((BEQG
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Theorem 4.5.3 Let g be a morphism from a Riemann surface S onto a Klein seu$ac
with the double covefS;., f’, o). Then there exists a unique morphism & — S such
that f'g’ = g.

4.5.3 Discontinuous Action. Let S be a Klein surface an® < AutS. We sayG

acts discontinuouslgn S if each pointx € S possesses a neighborhoddsuch that
Gy is finite. FurthermoreG is said to beacts properly discontinuouslgn S if it acts

discontinuously ors satisfying conditions following:

(1) ForVxy e S with x ¢ y°, there are open neighborhoodsandV at pointsx
andy such that there are nbe G with U n f(V) # 0;

(2) Forxe S, 1s # f € G, and the mappingyf¢,* is analytic restricted suitably
is isolated in Fix().

For the existence of properly discontinuously groups, wavkthe following result
as an example.

Theorem 4.5.4 Every discrete subgroup of AutH acts properly discontinuously on H.

Proof First, the stabilizef” of eachx € H is finite. Otherwise, letf,jn € Z*} c T’y
such thatf, # f,,if n # mand so lim{ f,(X)In € Z*} = x. But then" must be not discrete.

Now let N be the set of nar%t_;oal numbemssuch thatH contains the Euclidean ball
Bm with centerx and radius Im. LetI'y, = I'g,. Then there must be

In fact, if f ¢ 'y, take open disjoint neighborhootsandV of x and f(x). If mis bigger
enough,B,, c U, f(By) c V. Thus there must bé ¢ I',,. On the other hand, if € I'y,
then there is an integen, such that for any integen > ng, B, = f(By,). This establishes
the previous equality.

(1) I acts discontinuously oH. Assume that each, is infinite. Then the finiteness
of I'y and the above equality imply that

[‘mlg[‘ng...

for some sequendangk € Z*} ¢ Z*. Choosefy € I'n, \ I'm.,. Clearly, fy # i if k # I.
However, if we takex € By, N (B, ) andy € By, with X, = f(yx), then

l!im{xklk eZ)=x= |lim{yklk eZ").
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Soklig{f(xk)|k € Z*} = X, which contradicts the discretenesdof

(2) Forx,y € H, x ¢ y"""" there are neighborhoods of x andV of y such that
there are nd € G with U n f(V) # 0. In fact, letP be the set of numbers € Z* such
that the ballsB,,, and B/, of radius ¥m with centersx andy, respectively, are contained
in H. We prove that there are noe I" with B, n f(B;,) # 0 for all m € P. Denoted by
Dm = {f € IBnn f(B,) # 0}. Clearly, "\ D, = 0. Otherwise, for somé < I there
are pointsx, € By andyn, € B/, with f(yr::)P: Xm, M € P, which impliesf(y) = x, i.e.,
x € y""'"H 'a contradiction. So we have

D, 2 Dy 2 -+

for some sequencgnk € Z*} ¢ P. Choosefy € Dp, \ D, then we know that
|lim{fk(y)lk e Z*} = X, fc # f if kK # 1, contradicts the discontinuousnesg of
(3) Given 4, # f €T, f has the form

az+b
f(2 = o d (b,c,d—a) # (0,0,0).
Thus Fix(f) \ {x} is finite, i.e.,x is isolated in Fixf). O

The importance of these properly discontinuously group&iamn surfaces is im-
plied in the next result.

Theorem4.5.5 Let G be a subgroup &&utS which acts properly discontinuously on the
Klein surface S. Then’S= S/G admits a unique structure of Klein surface such that
n:S — S’is amorphism.

A complete prof of Theorem.B8.5 can be found in [BEGGL1]. Applying Theorems
4.5.4 and 45.5 to the planar Klein surfadd, we know the following conclusion.

Theorem 4.5.6 For a discrete subgroup’ of AutH, the quotient HI" admits a unique
structure of Klein surface such that the canonical projeetH — H/I" is a morphism of
Klein surfaces. Particularly, this holds truelifis an NEC group.

Generally, we also know the following result with proof ingBG1], which enables
one to find Klein surfaces on topological surfaces with gendis

Theorem 45.7 If S is a Klein surface an@g(S) + k(S) > 3 if S is orientable, or
a(S) + k(S) > 3 otherwise. Then there exists a surface NEC grbuguch that S and
H/I" are isomorphic Klein surfaces and-S= H/T'*, whereI'* is a subgroup formed by
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orientation preserving elementsin In fact,|[I" : I'*| = 2. Furthermore, ifr’ : H —» H/T’
be the canonical projection, i.€,= (f € AutH|r’ f = n’).

According to this theorem, we can construct Klein surfagesa@mpact surfaceS
unlessS is the sphere, torus, projective plane or Klein bottle.

4.5.4 Automorphism of Klein Surface. LetS andS’ be compact Klein surfaces. Denote
by Isom§&’, S) all isomorphisms fron®’ to S. If they satisfy these conditions in Theorem
4.5.6, then they can be represented yi”, H/T" for some NEC groug” andI'. Let
n:H — H/T"andn’ : H — H/I"” be the canonical projections and

A", T) = {g € AutH|n'(X) = 7/(y) if and only if 7g(X) = 7g(y)}.
Then we know the following result.

Theorem 4.5.8 Let ge AutH. The following statements are equivalent:
(1) ge A", I);
(2) there is a uniqug € IsomM/I”, H/T') with the following commutative diagram:

H 9 H

S 9 S

(3) I’ =gIg.

Proof (1) = (2). Forx = n/(X) € S, defineg(x) = gr’(x) = ng(X). Applying
Theorem 45.2, we know thafy is a homeomorphism o by the definition ofA(T’, T7).
(2) = (3). Applying Theorem 4.7, if f e I” andh = gfg?, then

1

rh=ngfg'=0r'fg ' =Or'g" =ngg™* =,

i.,e.,heTandsd” c g-iI'g. Conversely, ih € g-'I'g, thenghg™ €T, i.e.,rghg™? = n.
Sogr’h =gn’. Notice thafis bijective. We knowr’'h =/, i.e.,h e T.

(3) = (1). Letx,y € H with 7/(X) = 7’(y) andy = f(x) for somef € I" = g~'I'g.
Now h = gfg? e I'. Notice thathg = gf andrzh = 7. We find that

7(9(y)) = 7(9(f(x))) = 7(h(9(x))) = 7(9(x))-

The converse is similarly proved. O
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Theorem45.9 LetS=H/T'and S = H/T”’. Then

(1) S and Sare isomorphic if and only i andI” are conjugate irAutH.
(2) AutS = Npyn(I)/T, where Ny () is the normalizer of " in AutH.

Proof Obviously,S andS’ are isomorphic if and only iA(I',T”) # 0. By Theorem
4.5.8, we get the assertion (1).

For (2), we prove first that the mappiI,I”) — Isom(’,S) is surjective. In
fact, if S and S’ are Riemann surfaces, lgte Isom(S’,S) and H, ) and H’, pi’) be
the universal coverings & andS’, respectively. Then by the Monodromy theorem and
Theorem 4.2, there existg € AutH such that the following diagram is commutative.

H d H

s ¢ S

It is clear thatg € A(T',T”). So¢ =g by Theorem 4.8.

Generally, letf : Sc — Sandf’ : S. — S’ be the double coverings with the
corresponding antianalytic involutions : Sc — Sc ando”’ : S; — S{. By Theorem
4.5.3, there existg € Isom(S¢, Sc) such that the following diagram

St ¢ Sc

f’ f

S ¢ S

is commutative. Lep : H — Sc andp’ : H — S{. be the canonical projections. As we
shown for Riemann surfaces, there exgts AutH such that the following diagram

H d H

P’ p

St ¢ Sc

is commutative. Now up to the identifications 8fwith H/T" and S’ with H/I"”, the
mappingst = f’p’ : H - S’ andr = fp: H — S are the canonical projections, which
enables us to obtain a commutative diagram following.
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Applying Theorem 4.8 again, we know thag € A(I',T”) and¢ =@. Now letS = S'. It
follows thatA(I',I") = Nayn(I). Thus

t - Naun () = Aut(S) determined by u(g) =G

IS a surjective mapping. We prove it is also an epimorphisnfatt, letg;, g, € A(I,T”)
with 1, Q> such thatrg; = Gy andng, = Qonr. Thenn(g:192) = G0, = (0:02)7. But
010, € I', we know thatr(g:Q,) = §:07. Whenceg:0; = 010, by Theorem 46.8. Thusu
is an epimorphism. Finally, we check that et I'. Clearly, ifg € T', we haverg = n,
ie.,

By Theorem 45.8, we gefg = 1s. Sog € Keru. Converselyg = 1s implies thatrg = 7.
Thusg € I'. This completes the proof. O

Theorem4.5.10 Let f,ge Aut™H \ {14}. If fg = gf, thenFix(f) = Fix(g).

Proof Not loss of generality, we assume that<l |[Fix(f)| < |Fix|/(g) < 2. By
fg = gf, we conclude thag(Fix(f)) = Fix(f) and f (Fix(g)) = Fix(q).

Now if Fix(f) = {Xo}, theng(xg) = %o, and ifg(y) = ywe knowf(y) =y, .i.e.,y = Xq.
Thus Fix(f) = Fix(g) in this case.

If Fix(f) = Xo, Yo, then{g(xo), 9(Yo)} = {Xo, Yo} Whence, either Fix() = Fix(g) or
Fix(f) # Fix(g) with g(X0) = Yo, 9(Yo) = Xo. In the second case, choogee Fix(g) \
Fix(f). Notice thatxo, Yo andz, are distinct fixed points of?>. We know thatg? = 1.
Let A € GL(2,R) with DetA = 1 such thatg = fa. Then byg® = 1,4, we get that
A? = | and so the minimal polynomial & # +I is x* + 1. Consequentlyg(z) = -1/z
and Fix@g) = {+i}. Sincef(H) = H and f(Fix(g)) = Fix(g), we getf(i) = i, and so
f(=i) = —i. Thus Fix(f) = Fix(g). O

The following result shows thada () is also an NEC group.
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Theorem4.5.11 LetI’ be an NEC group. Thengn(I) in AutH is also an NEC group.

Proof Noticer : H — H/I'. We immediately find the compactnesstfNayn ()
from H underr. Because AW is a topological group, we only need to check that the
identity {14} is an open subset NayH (T).

We claim that there existl# hy, h, € T'" such that Fixid;) # Fix(h,). In fact, let
h; € T'" defined byh;(2) = roz for somery € R. Then Fixf,) = {0, o}. If there are
another € I'*, h # h; such that Fix() = {0, o}, then

I[IMfcA={f:H->H|f@=rzreR",zeC}.

SinceH/T™* is compact, the same holds fdyA ~ (0, 1), a contradiction.

Now let Cayn(he, hp) = {h € AutH|hhy = hih,i = 1, 2}. We prove thaCay (hy, hy)
is trivial. Applying Theorem 4.10, if there are 4 # h € Cpun(hs, hy) N Aut*H,
then Fixfp,) = Fix(h) = Fix(hy), a contradiction. On the other hand, if there are
Cauni(h1, h) \ Aut™H, thenh? = 1, and soh(2) = -z Now hiy = h;h implies that
hi(z2 = -1/zfori = 1,2, also a contradiction. Thus the mappifig Naun(I')) — T by
g — ghg™ are well-defined and continuous wiglf1y) = h;.

Sincer is discrete, we can find open neighborhoddsV, of 1y in Nayn(I') such
thats;(Vi) c {h}, i.e.,ghg™ = h;, i = 1,2 for eachg € V = V; N V,. In other words,
V C Caun(hg, h) = {1n}. Thus{ly} = V is open inNayH (). O

A group of automorphism of a Klein surfa&is a subgroup of Alg. We get the
following consequence by Theorenb4l 1.

Corollary 4.5.2 A group G< AutS with S= H/I" if and only if G~ I""/T" for some NEC
groupI” withT" < T".

Proof Applying Theorem 4.11, G is a subgroup oNy(I')/T. So there is a
subgroud” of Nayn(I') containingl” such thatH/T” is compact. Notic&” is also discrete.
Whence]” is a NEC group. O

Now we prove the main result of this section.

Theorem4.5.12 Let S be a compact Klein surface with conditions in Theotdn? hold.
ThenAutS is finite.

Proof LetS = H/T. By Theorem 46.10, Nayn(I') is an NEC group. Applying
Theorem 4.5, we know Aus is finite by that of the group indedNuyn(I) : TT. O
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$4.6 REMARKS

4.6.1 Topology, including both thpoint topologyand thealgebraic topologyhas become
one of the fundamentals of modern mathematics, partigufarl geometrical spaces.
Among them, the simplest is the surfaces fascinating madkierans in algebra, geome-
try, mathematical analysis, combinatories, and mechanics. There are many excellent
graduated textbooks on topology, in which the reader canrfiack interested materials,
for examples, [Mas1]-[Mas2] and [Mun1].

4.6.2 Similar to Theorem £.4 on compact surface without boundary, we can classify
compact surface with boundary and prove the following tesul

Theorem 4.6.1 Let S be a connected compact surface with k boundaries. Then its
surface presentation is elementary equivalent to one ofidih@ving:

(1) Sphere with k= 1 holes
aa'c,Bic;teBact - - - okBye
(2) Connected sum of p tori withkx 1 holes
arbya; by tashoa;'h;t - - - aghpasthy teiBic feoBoc - - - G BiG
(3) Connected sum of g projection planes withk & holes

-1 -1 -1
-+ - aqC1B1CCoBYC, T - - - o By

4.6.3 The conception of fundamental group was introduced by khéoE in 1895. Sim-
ilarly, replacing equivalent loops of dimensional 1 basédsaby equivalent loops of
dimensionald, we can extend this conception for characterize those higingensional
topological spaces with resemble structure of surface.

4.6.4 The conception of Klein surface was introduced by Alling &wkenleaf in 1971
concerned with real algebraic curves, correspondencethathof Riemann surfaceon-
cerned with complex algebraic curves (See [All1] for defailThe materials in Sections
4.5.4 and 45.5 are mainly extracted from the reference [BEGG1]. Cenaiall Rie-
mann surfaces are orientable. Their surface group is yscallled theFuchsian group
constructed similarly to that of Constructiom£. It should be noted that each surface
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in Construction 4.2 for an NEC group maybe with boundary. This constructiow als
establishes the relation of surfaces with that of NEC grpapables one to research au-
tomorphisms of Kleins surface by that of combinatorial maps



CHAPTER 5.

Map Groups

A map groups a subgroup of an automorphism group of map, which is also a
kind of geometrical group, i.e., a subgroup of triangle gauThere are two
ways for such groups in literature. One is by combinatogahnhiques. An-
other is the classical by that of algebraic techniques. Bbthem have their
self-advantages and covered in this chapter. The matémi&@ections 51—
5.2 are an elementary introduction to combinatorial maps. H&ydiscussion
of Chapter 4, we explain how to embed a graph and how to claiaetan
embedding of graph on surface in Sectiaf, Jarticularly these techniques
related to algebraic maps, such as those of rotation systend decompo-
sition of surface, traveling ruler and orientability algbm in Section 5L.
This way naturally introduce the reader to understand tihneespondence be-
tween embeddings and maps, and the essence of notatjgrend &2, or
flags in an algebraic mapi(,, &%). The automorphisms of map with prop-
erties are discussed in Sectiofd 5characterized by behavior of maps or the
semi-arc automorphism of its underlying graph. The mateia Sections
5.4-55 concentre on regular maps, both by combinatorial and edgetech-
niques, which are closely related combinatorics with geoyrend algebra.
By explaining how to get a regular tessellation of a planeg@ngetrical way
for constructing regular maps by triangle group is intraetlin Section 5.
After generalizing the conception of surface to multiscefa in section 55,
we also show how to construct malgson multisurfaces such that the pro-
jection of M on each surface & is a regular map.
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§5.1 GRAPHS ON SURFACES

5.1.1 Cell Embedding. Let G be a connected graph with vertex $€G) and edge set
E(G) andS a surface. An Zell embeddingf G on S is geometrical defined to be a con-
tinuous 1- 1 mappingr : G — S such that each component® 7(G) homeomorphic to
an open 2-disk. Certainly, the imaggs) is contained in the 1-skeleton of a triangulation
of the surfaces. Usually, components i§ — 7(G) are called faces. For example, we have
shown an embedding &f; on the sphere and Klein bottle in Figl5L(a) and Fig.51.1(b)
respectively.

Vi1

Uz

Fig.5.1.1

Forv € V(G), denote byNZ(v) = {e1, &, --,€,,} all the edges incident with the
vertexv. A permutation one;, &, - -, €, IS said apure rotation All pure rotations
incident withv is denoted by(v). A pure rotation systerof the graphG is defined to be

p(G) = {o(V)lv € V(G)}.

For example, the pure rotation systems for embeddings,adn the sphere and Klein
bottle are respective

P(Ks) = {(U1Ug, U1Us, UzUy), (UzUs, UpUs, UpUs), (UsUy, UsUas, UsUy), (UsUs, UsUp, UsUs)},
p(Ka) = {(U1lz, UrUs, U1Us), (UgUs, UpUs, UpUs), (UsUp, UsUa, UsUz), (UsUs, Uslp, UsUs)}

and intuitively, we can get a pure rotation system for eacheasiding ofK, on a locally
orientable surfac§.

In fact, there is a relation between these pure rotatioresystof a grapls and its
embeddings on orientable surfaceéscalled therotation embedding schemebserved
and used by Dyck in 1888, Hter in 1891 and then formalized by Edmonds in 1960
following.
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Theorem 5.1.1 Every embedding of a graph G on an orientable surface S irglace
unique pure rotation systep{G). Conversely, Every pure rotation systge() of a graph
G induces a unique embedding of G on an orientable surface S.

Proof If there is a 2-cell embedding & on an orientable surfac® by the definition
of surface, there is a neighborho@d on S for u € V(G) which homeomorphic to a
dimensional 2 disg : Dy — {(X1, X2) € Z?|%2 + X5 < 1} such that each edge incident with
u possesses segment noDp. Denoted byD, = {(X1. %) € Z?%¢ + x5 = 1} and let the
counterclockwise order of intersection points of edgess € Ng(u) with that of 9D, be
Pvis Pv» -+ Py, - Define a pure rotation af by o(u) = (v, Uw,, - - -, UV,). Then we get
a pure rotation systep(G) = {o(u),u € V(G)}.

Conversely, assume that we are given a pure rotation sygtgjn\We show that this
determines a 2-cell embedding @fon a surface. LeD denote the digraph obtained by
replacing each edgav € G with (u,v) and {, u). Define a mapping : E(D) —» E(D)
by 7(u,v) = o(v)(v,u), which is 1- 1, i.e., a permutation o&(D). Whencer can be
expressed as a product of disjoint cycles. Each cycle is ln afr = action onD(EO.
Thus the orbits partition the se{D). Assume

F:uvv,w)---(zu)
is such a orbit under the action of simply written as
F:(uv,w,---,zu).

Notice this implies araveling ruler, i.e., beginning ati and proceed alongu(Vv) to v,
the next arc we encounter after, ¢) in a counterclockwise direction abouts p(V)(v, u).
Continuing this process we finally arrive at the azaij, return tou and get the boundary
of a 2-cell.

Let Fqy, Fy, -+ -, F) be all 2-cells obtained by the traveling ruler B(D). Applying
Theorem 4.2, we know it is a polygonal representation of an orientabiéase S by
identifying arc pairsy, v) with (v, u) in E(D). O

According to this theorem, we get the number of embeddinggoéph on orientable
surfaces following.

Corollary 5.1.1 The number of embeddings of a connected graph G on oriensaiple

faces is ]—[ (o(v) — D)L

veV(G)
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5.1.2 Rotation System.For a 2-cell embedding of a gra@on a surface, its embed-
ded vertex and face can be viewed as 0 and 2-disks, and itdeledhedge can be viewed
as a 1-band defined as a topological sga@ath a homeomorphism : | x1 — B, where
| =[O0, 1], the unit interval. The arcls(l x {i}) fori = 0,1 are called thendsof B, and
the arcsh({i} x I) for i = 0,1 are called thesidesof B. A 0-band or 2-band is just a
homeomorphism of the unit disk. Band decompositioaf the surfaces is defined to be
a collection# of 0-bands, 1-bands and 2-bands with conditions followioiglh

(1) The diterent bands intersect only along arcs in their boundary;

(2) The union of all the bands 8, i.e., Ug B=S;

(3) The ends of each 1-band are con?gfned in a 0-band;

(4) The sides of each 1-band are contained in a 2-band,

(5) The 0-bands are pairwise disjoint, and the 2-bands areipa disjoint.

For example, a band decomposition of the torus is shown irbRig, which is an
embedding of the bouqué on T2.

Fig.5.1.2

A band decomposition is callddcally orientableif each 0-band is assigned an ori-
entation. Then a 1-band is calledientation-preservingf the direction induced on its
ends by adjoining 0-bands are the same as those induced loy thregtwo possible orien-
tations of the 1-band. Otherwise, the 1-band is cadieentation-reversingsuch as those
shown in Fig.51.3 following.

@ © @ ©

Orientation-preserving band Orientation-reversing band

Fig.5.1.3
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An edgee in a graphG embedded on a surfac associated with a locally ori-
entable band decomposition is said tayeeO if its corresponding 1-band is orientation-
preserving, andype 2, otherwise. A walk in this associated graphyipel if it has an
odd number of type 1 edges atygheO, otherwise.

For such a grapl& associated with a locally orientable band decompositiom, w
define arotation systenp-(v) of v € V(G) to be a pair (7 (v), 1), whereJ (V) is a pure
rotation system and : E(G) — Z; is determined byi(e) = 0 or A(e) = 1 if eis typeO or
typel edge, respectively. For simplicity, we denote the paiy8)(and €, 1) by e andet,
respectively. The rotation systesh(G) of G is defined by

PH(G) = {(T(WV), DT (V) € p(G), A : E(G) > Zy}.

For example, the rotation system of the complete gtapbn the Klein bottle shown in
Fig.51.1(b) is

P (Ka) = {(Uslp, UyU3, UyUa), (UpUy, UpUs, UpUs), (Uslp, UgUa, UsUy), (UsUy, UsUsp, UsUiz) .

It should be noted that the traveling ruler in the proof of diteen 51.1 can be gener-
alized for finding 2-cells, i.e., faces in both of a graph eddssl on an orientable or
non-orientable surface following.

Generalized Traveling Ruler. Not loss of generality, assume that there are no 2-valent
vertices inG.

(1) Choose an initial vertey, of G, a first edgee; incident withvy andv; be the
other end of;.

(2) The second edg® in the boundary walk is the edge after (respective, befare)
atv if e is type O (respective, type 1). If the edggis a loop, there; is the edge after
(respective, before) the other occurrence;cdt v;.

(3) In general, if the walk traced so far ends with edgat vertexv;, then the next
edgee,; is the edge after (respective, befoegat vertexy, if the walk is type O (respec-
tive, type 1).

(4) The boundary walk is finished at edggf the next two edges in the walk would
bee; ande, again.

For example, calculation shows that the faceKgembedded on the Klein bottle
shown in fig.51.1(b) is

F1 = (U1, Uz, Us, Us, Ug),  F2 = (Ug, Us, Ug, Uy, Ug, Uy, Ug, Uy, Ug).
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The general scheme for embedding graphs on locally orientalsfaces was used
extensively by Ringel in the 1950s and then formally provedhahl in 1978 following
([Stal]-[Sta2)).

Theorem 5.1.2 Every rotation system on a graph G defines a unique locallgniable
2-cell embedding of G- S. Conversely, everg-cell embedding of a graph G» S
defines a rotation system for G.

Proof The proof is the same as that of Theorerm Bby replacing the traveling ruler
with that of the generalized traveling ruler. O

For any embedding of a grafhon a surfaces with a band decompositio%, we
can always find a spanning tr&eof G such that every edge on this tree is type 0 by the
following algorithm.

Orientability Algorithm. LetT be a spanning tree @.

(1) Choose a root vertaxfor T and an orientation for the 0-band .

(2) For each vertey, adjacent taljy in T, choose the orientation for the 0-banduef
so that the edge df from ug to uy is type 0.

(3) If u; andu;,, for an integer are adjacent h and the orientation ai; has been
already determined but that af ; has not been determined yet, choose an orientation at
Ui,1 such that the type of the edge framto u;,, is type 0.

(4) Continuous the process anuntil every 0-band has an orientation.

Combining the orientability algorithm with that of Theoré&m.2, we get the number
of embeddings of a graph on locally orientable surfacesvatig.

Corollary 5.1.2 Let G be a connected graph. Then the number of embeddings of G o
locally orientable surfaces is

24(G) ]_[ (o(v) — 1)!

veV(G)
and the number of embeddings of G on the non-orientable cesfes

@0 -1 [ [ w-

veV(I)

wheres(G) = |[E(G)| — |V(G)| + 1 is the Betti number of G.

5.1.3 Equivalent Embedding. Two embeddings{x, 11), (J2, 1>) of a graphG on a
locally orientable surfac& are called to beequivalentif there exists an orientation-
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preserving homeomorphismof the surfaceS such thatr : 9, — 5, andrd = Ar.

If (J1,11) = (J2,12) = (J,4), then such an orientation-preserving homeomorphism
mapping (71, 11) to (7>, A,) is called an automorphism of the embeddifg 4). Clearly,

all automorphisms of an embedding (1) form a group under the composition operation
of mappings, denoted by AuI(, ).

For example, the two embeddingskof shown in Fig.51.4(a) and Q) are equivalent,

Fig.5.1.4

where the orientation-preserving homeomorphisimdetermined by

h(uy) = Uy, h(uz) = uz, h(us) = U andh(ug) = us.

The following result is immediately gotten by definition.

Theorem 5.1.3 Let (7, 1) be an embedding of a connected graph G on a locally ori-
entable surface S. Then

Aut(7, 1) < AutG.

5.1.4 Euler-Poincag Characteristic. Applying Theorems £.5-4.2.6, we get the Euler-
Poincaré characteristic of an embedded gi@pin a surface following.

Theorem5.1.4 Let G be a graph embedded on a surface S. Then

V(G) - &(G) + ¢(G) = x(S),

where,v(G), £(G) and ¢(G) are the order, size and the number of faces of the embedded
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graph G on S, ang(S) is the Euler-Poincaré characteristic of S determined by

2 if S ~g S
2-2p ifS~g THT#. . #T2,
x(S) = 5

2—-q if S~g P#HPH. . #P%.
q

§5.2 COMBINATORIAL MAPS

5.2.1 Combinatorial Map. The embedding characteristic of a graplon surfacesS,
particularly, Theorems.%.1-5.1.2 and the generalized traveling ruler present embryonic
maps. In fact, a map is nothing but a graph cellularly embedute a surface. That
is why one can enumerates maps by means of embedded grapbgames. In 1973,
Tutte found an algebraic representation for the embeddiggaphs on locally orientable
surfaces (see [Tutl]-[Tut2] for details), which complgtalansfers 2-cell partitions of
surfaces to permutations in algebra.

Let G be an embedded graph on a surf&eith a band decompositio® ande €
E(G). Then the ban®. of eis a topological spacB with a homeomorphisth: I xI — B
and sidedh({i} x I) fori = 0, 1. For characterizing its embedding behavior, i.e., ihgral
end vertices, left and right sides of 1-baBg a natural idea is to introduce quadricells for
g, such as those shown in Figzal following,

Xe | Xe
e v = ey
Be aXe K Xe apXe

Fig.5.2.1

where we denote one quarter beginning at the varaB, by X, and its reflective quar-
ters on the symmetric axi on the perpendicular mid-line @fand on the central point
of e by axe, BXe andaBxe, respectively.
LetK = {1, @,8, aB}. ThenK is a 4-element group under the composition operation
by definition with
a® =1, ,82:1, af = Ba,
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called theKlein group The action oK on an edge € E(G) is defined to be

Ke = {Xe, @Xe, BXe, @B Xe},

called thequadricellsof e. Notice that Theorems.51-5.1.2 and the generalize traveling
ruler claim the embedded grafhon surfaceS is correspondent with

P (G) = {(T(WV), DT (V) € p(G), 1: E(G) — Zy}.

Whence, if we turn 1-bands to quadricells ®re E(G), the rotation system(u) at a
vertexu becomes to two cyclic permutations,(, Xe,, - - -, Xe,y ) (@Xey, @Xeys @ Xe,) if
No(u) = {er, e, -+, e,w}. By definition,Kx,, N Kx,, = 0 if & # €. We therefore get a
set

Zip= | ) Kxe= 6P % 0% BXe, apiXe).

ecE(G) ecE(G)
Define a permutation

P = || e Xer 2 X ) (@%e, 0% - 0%) = | | v+ (@Clla™),

ueV(G) ueVv(G)

called thebasic permutatioron 24, i.e., 2¥x # ax for any integerk > 1, x €
Lap, WhereC, = (Xe, Xe» 5 Xeyy)-  This permutation also make one understanding
the embedding o6 on surfaceS if we view a vertexu € V(G) as the conjugate cycles
C-(aC ™) = (Xeps Xepr > Xg 0 )(@Xep, XX, - - - » @Xe,) @Nd a@n edge as the quadricell
KXe. We have two claims following.

Claml. aZal=21

Let P = [] (Xeps Xeps s Xe)(@Xey, @Xe, ), - -+ @Xe,). Calculation shows that
ueV(G)
aZa = a| || (e Xen s X (@%@ %) |7
ueV(G)
- 1_[ (Q(Xel’ Xegs* o xep(u))ofl) ' (a(axel, @Xeyps ax@z)a_l)
ueV(G)
= [ ] (@XenaXe o 0% )0 X0 Xe) = 27
ueV(G)

Claim 2. The group(a, 8, &) is transitive onZ, .

ForVx,y € 2,z assume they are the quadricells of edgleand€?. By the con-
nectedness db, we know that there is a path= e'€?- - - €5 connected ande” in G for
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an integers > 0. Notice that edgeg with e* ande”’ with €° are adjacent. Not loss of
generality, letZ"1x = xa and 2% xs = y. Then we know that

(aB)°Xet = Xes, OF @Xes, OF BXes OF fXes.
Whence, we must have that

PRe(ap)sPax =y, or Pa(af)Px=y, or
PRpap)s P ax =y, or Pa(aB)rPx=y.

Notice thatZ?%(aB)s 2%, P*%a(ap)s 2%, 2*%B(aB)SP* and P*a(ap)st 2% are ele-
ments in the grouge, 8, &2). Thus(a, B, &) is transitive onZ, .

Claims 1 and 2 enable one to define a nMyalgebraically following.

Definition 5.2.1 Let X be finite set, K= {1, «, 8, @B} the Klein group and

Zop = @{x, aX, BX, afSXx}.

XeX

Then a map M is defined to be a p&i#, 5, &), whereZ” is a basic permutation action
on %,z such that the following axioms hold:

Axiom1l. o = P la;
Axiom 2. The group?; = (e, 8, &) with J = {a, 8, &7} Is transitive on%Z, .

Notice that Axiom 2 enables one to decompa#eto a production of conjugate
cyclesC, andaC;*a* correspondent to the vertices of the i.e.,

Z =[] CaClta™
veV(M)

We present an example for maps correspondent to embeddausdadlowing.

Example 5.2.1 The embedded gragk, on the toursT? shown in Fig.52.2 following
can be algebraic represented by a mag £, &%) with 2,5 = {X,y,Z u,v,w, aX, ay, az,
au, av, aw, BX, BY, Bz, U, BV, BW, afX, aBy, afZ afpu, afv, apw} and

P = (XY, D(apx u, W)(aBz aBu, v)(aBy, aBv, afw)
X (X, az ay)(BX, aw, au)(Bz, av, BU)(BY, BW, BV).
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Its four vertices are

U = {(X Y, 2, (ax, az ay)}, Uz = {(aBX, U, W), (B, aw, au)},
Uz = {((}’BZ, Qﬁu, V)’ (Bze CKV,ﬁU)}, Ug = {(Q’By, QBV’ QBW)’ (ﬁY’BW’ﬁV)}

and its six edges afe, ae, Be, ape}, where,e € {X,y, Z U, Vv, w}.
5.2.2 Dual Map. LetM = (2,4, &) be a map. Notice that
aPat=271 = B(Pap)st=(Zap)t

and¥; = (@, B, &) is transitive onZ;, also. We known thaM* = (X3, Pap) is also a
map by definition, called théual mapof M. Now the generalized traveling ruler becomes

Traveling Ruler on Map. For Vx € 2,4, the successor of x is the element y afigx
in Z, thus each face of M is a pair of conjugate cycles in the decitipn

zap=|] c-BCTBY,

fev(M*)
l.e., a vertex of its dual map MThe length of a face f of M is called the valency of f.

Example5.2.2 The faces oK, embedded on torus shown in Fi2 are respective

f1 = (X, u,v, aBwW, aBX, Y, aBv, aB2)(BX, @z aVv, BY, aX, aw, BV, fu),
f2 = (Cly,ﬁW, @U,ﬁz)(aﬁy, Z Qﬁu, W)

By the definitions of magM with its dual M*, we immediately get the following
results according to Theoremsl3-5.1.2.

Theorem 5.2.1 Every map M= (Z,4, &?) defines a unique locally orientabcell
embedding of G» S with

V(G ={{C-aClat|Ce¥}}, E(G)={Kx|xeX}
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and the face set (&) determined by cycle paif§, SF371} in the decomposition af?ap.
Conversely, everg-cell embedding of a graph G» S defines a map M= (2,4, &)
determined by

Zog= | ) Kxe= P % 0% B axe)

e<E(G) e<E(G)

and
P = || e X Xe o) (@K, X -+ @),

ueV(G)
If NG(U) = {el? ez’ Tt ep(u)}
By Theorem 2.1, the embedded grafih (the mapM) correspondent to the may

(the embedded grapb) is called theunderlying graph of Mmap underlying ¢ denoted
by G(M) andM(G), respectively.

Theorem5.2.2 Let M = (Z,4, &?) be amap. Then its Euler-Poincaré characteristic is

x(M) = v(M) - &(M) + $(M),

wherev(M), (M), #(M) are the number of vertices, edges and faces of the map M, re-
spectively.

Example 5.2.2 The Euler-Poincaré characteristioM) of the map shown in Fig.3.2 is
xY(M)=v(M) —e(M)+¢p(M)=4-6+2=0.

5.2.3 Orientability. For defining a mapX, s, #) is orientable or not, we first prove the
following result.

Theorem5.2.3 Let M = (Z,4, &) be a map. Then the number of orbits of the group
Y. = (ep, &) action onZ, s with L = {aB, &} is at mosi2.

Proof Notice that|¥; : ¥, | = 2, i.e.{a,B, &) = (aB, Z)|Ja{aB, ¥). FOrxy €
2, if there are no elementse P, such tha" = y, by Axiom 2 there must be an element
0 € ¥; with X’ = y. Clearly,0 € o'P,. Letd = ah. Thenax" = yandgx =y, i.e., X, a8X
in one orbit andrx, Bx in another. This fact enables us to know the number of orlits o
¥ action onZ,z is 2. O

IfamapM = (2,4, &) is on an orientable surface, i.e., each 1-band is type @, the
anyx € Z,4 can be not transited tex by the generalized traveling ruler on its edges,
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I.e., the number of orbits oF, action on.Z,; is 2. This fact enables us to introduce the
orientability of map following.

Definition 5.2.2 A map M= (%4, &) is non-orientable if it satisfies Axio&following,
otherwise, orientable.

Axiom 3. The group¥, = (af, &) is transitive onZ, 4.

Definition 5.2.3 Let M be a map on a surface S. Then the ger{&3 i called the genus
of M, i.e.,

0 ifS~g S
p if S ~e TPHT 2. #T2
g(M) = o

q ifS~g P#PH#. . .#P?.
q

It can be shown that the number of orbits of the griy@ction onX, ;s = {X,y,Z u,Vv,

W, aX, ay, az au, aV, aWw, X, BY, BZ, U, BV, BW, afX, afY, afZ afu, afv, afw} in Fig.52.2
is 2. Whence, it is an orientable map and the geg{iy4) satisfies

2-29M)=v(M)—eM)+p(M) =4-6+2=-2.
Thusg(M) = 1, i.e.,,M is on the torud ?, being the same with its geometrical meaning.

5.2.4 Standard Map. A map M is standardif it only possesses one vertex and one face.
We show that all the standard surfaces in Chapter 4 is stdndaps. From Theorem
4.2.4 we have known the standard surface presentations as follow

(1) The sphereS? = (alaa’);

(2) The connected sum g@ftori

P
T2HT 2. #T% = < a,b,1<i<p] ]_[ aibiai‘lbi‘1>;
p i=1

(3) The connected sum gfprojective planes

g
pz#pZ...#p2:<a,-,lsisq| na«>
D i=1

All of these surface presentations is in fact maps, i.e.,
(') The sphereOy = (Z.p. &) with 2, 5(0o) = {a, aa, Ba, afa} and ¥ (OQp) =
(&, aBa)(aa, B);
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(2) The connected sum @ftori O, = (£, 4, &) with

Zap(Op)

p p
U{a,aa,ﬁa,aﬁa})u[U{bi,abi,ﬁbi,aﬁbi} ,
i=1 i=1

(al’ bl’ aﬁals a,ﬁbls a2’ b2’ aﬁaZs a’ﬁsz Tty aps bps a,ﬁap’ aﬁbp)
(aala ﬁbpa ﬁapa a,bp’ aapa e 3ﬁb2’ﬁa23 a,b23 a,a23 ﬁbl’ﬁal’ abl)

Z(0p)

(3) The connected sum ofprojective plane®N, = (£, 4, &) with

p

| &, 0a, pa, apal,

i=1
(al?Bal? aZ?BaZ’ Tt ap,ﬁap)(aal, aﬁap’ a/ap’ Tt aﬁaz’ aay, Qﬁal)

%a,ﬁ (Nq)

Z(Ng)

Then we know the following result.

Theorem5.2.4 These maps §) O, and N, are standard maps. Furthermore,

(1) The map Qs orientable with genus(@,) = p for integers p> 0;
(2) The map Nis non-orientable with genugl,) = q for integers > 1.

Proof Clearly,v(Op) = 1 andv(Ng) = 1 by definition. Calculation shows that

P(0o)ap
P (Op)ap

(@, apa)(aa, Ba);

(aq, aBby, aBay, by, ap, afby, afay, by, - - -, ay, afby, afa,, by)
(Bay, Bbp, aay, aby, Ba, - - -, By, aay, aby, Bay, By, aay, aby);
P(Ng)a = (aq,@aq, &, ady, -+, ag, @8q)(Ba1, afag, fag, - - - , affdz, fag, afay).

Therefore, there only one face @, andN,. Consequently, they are standard maps for
integersp > 0 andq > 1.

Obviously, the number of orbits &, action on%, 5(Op) is 2, but that onZ;, 5(O,) is
1. Whence{, is orientable for integerp > 0 andN, is non-orientable for integers> 1.
Calculation shows that the Euler-Poincaré charactesistiO, andN, are respective

x(Op)=1-2p+1 and xy(Ng)=1-q+2

Whenceg(Op) = pandg(Ng) = q. O
By the view of map, the standard surface presentation in fEmeal2.4 is nothing

but the dual mapsX, s, &) of bouquetsBy,, By on T#T%# - - -#T2 or P#P%# . . - #P?
p q
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with

@(sz) (al’ aﬁb:b Q’Bal, bl’ a-2’ aﬁbZ’ alﬁa27 b2, ) ap’ aﬁbp’ Q/Bap’ bp)
(ﬁal’ﬁbp’ a/a-p’ abp,ﬁap, te ’ﬁbz’ a[az’ abz’ﬁaz’ﬁbl? a[al’ a[b]_),
P(By) = (aq,0a, 8y a8y, -,aq ady)(Ba1, afag, Bag, - - -, B8y, fay, afay).
For example, we have shown this dual relation in ERy&for p = 1 andq = 2
following.

Fig.5.2.3

In fact, the embedded gra@, on torus and Klein bottle are map<{ s, &), where
Zap(B2) = {8, a3, 3, afa, b, ab, b, apb}, 7 = (a, apb, afa, b)(aa, ab, fa, fb), Papf =
(a b, aBa, apb)(aa, b, Ba, ab) on the torus, and” = (a, aa,b, ab)(Ba, aBb, Bb, ¢Ba),
Zap = (a,Ba, b, Bb)(aa, aBb, ab, aBa) on the Klein bottle, respectively.

§5.3 MAP GROUPS

5.3.1 Isomorphism of Maps. Let M; = (%afﬁ, 1) andM, = (%jﬂ, Z,) be maps. If

there exists a bijection
£ ‘%a%ﬁ - ‘%tzﬁ
such that fovx € 27},

§a(X) = a&(X),£8(x) = B&E(X)  and  &P1(X) = P24(X).

Such a bijectiorf is called arisomorphisnfrom mapsM; to M.

Clearly, é'a(y) = aé7(y),£'B(y) = pETHY) and&r2(y) = 2&7(y) fory e
2.2, Thus the bijectio™ : 22, — 2. is an isomorphism from mapl, to M;.
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Whence, we can just say subh andM, are isomorphic without distinguishing that the
isomorphisn¥ is from My to M, or from M, to M, if necessary.

Theorem5.3.1 Let My and M, be isomorphic maps. Then

(1) My is orientable if and only if Mis orientable;
(2) v(My) = v(My), e(My) = (M) and¢(My) = ¢(M,), particularly, the Euler-
Poincaré characteristicg(M;) = y(M,).

Proof Let My = (2.}, 21), M2 = (275, P2), 7 = 25 — 2.7, an isomorphism
from My to M, and X3, X, € %afﬁ such that there exists@ € ¥{ = (af, %) with
o(X1) = X. Then There must beor (r(x1)) = (%), i.e., 7¥i7! = (aB, P2) = V2.
Whence, ¥} is not transitive on2}; if and only if ¥ is not transitive on2%,. That is

the conclusion (1).

For (2), letx; be an element in the conjugate p&ir («Cta!) of 22, andy; an
elementinC’ - («C'~ta?) of 22,. Itis easily know that(C - (aC*a™?)) = C' - (aCta™?)
and t({Xy, aXy, BX1, X)) = {Y1, @Y1, BY1, aBy1}, i.e., v : Kx; — Ky;. Whence,r is
an bijection betweeWv(M;) andV(M;), E(M;) andE(M;). Thusv(M;) = v(M,) and
e(M1) = &(My).

By definition, we know that(Z1a8) = (H.aB)r. So similarly we know that is
also a bijection between the vertices, i.e., faceMpfindM,. Consequently, we get that
¢(My) = ¢(M2). O

Forvx e Z,; letvy, e andf, be the vertex, edge and face containing the quadricell
xinamapM = (2,4, ). The triple {4, &, fx) is called aflag incident with that of xn
M. Denoted by# (M) all flags in a mapM. Then we get the following result by the proof
of Theorem 53.1.

Corollary 5.3.1 Let M; and M, be isomorphic maps. Then there is a bijection between
flag sets# (M;) and.Z (M,).

Theorem5.3.2 Amap M = (2%,, 22,) is isomorphic to M = (272, %) if and only if

B’ ap’
the dual map NI = (%r,_;’la, Zap) is isomorphic to that of §= (%?a, Pap).

Proof Letr : %afﬁ - %fﬁ be an isomorphism fronM; to M,. Thenra - ar,
8 = Br andr ¥, = H,r. Consequentlyr(H1aB) = Pot(apf) = (PaB)r. Notice that
Loy = X4, and 22, = 22, We therefore know that is an isomorphism betweevi}
andM;. O
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Applying isomorphisms between maps, an alternative agbrfma determining equiv-
alent embeddings and maps on locally orientable surfacasriying a graph can be de-
fined as follows:

For a given mapM underlying a graplG, it is obvious that AuM|s < Aut%G.
Whence, we can extend the action\y e Aut%G on V(G) to that ofg|% on X, g with
X = E(G) by defining that foivx € X, 4, if X3 =y, then

1 1 1 1
X3 =y, (@X)9? = ay, (BX)9° =By and @BX)9° = apy.
Then we can characterize equivalent embeddings and isdémear@aps following.

Theorem 5.3.3 Let My = (Z,4. %) and My = (2,5, &2) be maps underlying a graph
G. Then

(1) My and M, are equivalent if and only if there is an elemérd Aut%G such that
ﬂf = P,.

(2) M; and M, are isomorphic if and only if there is an element Aut%G such that
P = Pyor P = P,

Proof Letx be an equivalence between embeddifgsandM,. Then by definition,
k must be an isomorphism between mays and M, induced by an automorphisme
AutG. Notice that
AULG = AUIG|? < Aut,G.

We know that € Aut;G.

Now if there is & € Auty G such that@f = S, thenVe, € Xy (G), £(&) = £(€)s(x-
Assume thae = (x,y) € E(G), then by convention, we know thatef = e € 2,4, there
must beg, = ge. Now by the definition of automorphism on the semi-arc)S;(G), if
{(ey) = fu, wheref = (u,v), then there must bg(e,) = f,. Notice thatX%(G) = 25 We
therefore know that(ey) = {(Be) = gf = f,. Now extend the action af on Xy (G) to
Zop by L(a€) = af(€). We get that'e € Z,,;,

al(€) = Za(e), BL(e) = {B(e) and () = Z5(e).

So the extend action @fon .Z,, s is an isomorphism between the mislag and M, which
preserve the orientation dvi; andM,. Whence/ is an equivalence between the nmdp
andM,. That is the assertion (1).
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For the assertion (2), if there is an eleméra Aut%G such that@f = &,, then the
mapM, is isomorphic tavl,. If @f = 3”2‘1, then there must bé?f" = Y,. SoM; is also
isomorphic toM,. This is the stficiency of (2).

Let ¢ be an isomorphism between mads andM,. Then forvx e 2, 4,

a€(X) = £a(X), BE(X) = €B(X) and F5(X) = Po(X).

By convention, the condition

BE(X) = EB(X) and 5 (X) = P5(X)

is just the condition of an automorphisfror a£ on Xy (G). Whence, the assertion (2) is
also true. O

5.3.2 Automorphism of Map. If M; = M, = M, such an isomorphism betwe&h and
M, is called arautomorphisnof M, which surveys symmetries on a map.

Example5.3.1 LetM = (Z,4, &) be a map with

Zap(B2) = (&, aa, fa, afa, b, ab, Bb, apb}

and
2 = (a apb, afa, b)(ea, ab, a, Ab),

i.e., the bouqueB, on the torus shown in Fig.5.1 following.

Fig.5.3.1

We determine its automorphisms following. Define

a wa Ba aBa b ab Bb apb
aa a aBa Ba pb apb b ab
(a, @a)(Ba, aBa)(b, Bb)(ab, apb),
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™

a aa Pa apBa b ab pb apb
pBa aBa a aa ab b apb ,Bb]

(a, Ba)(ea, apa)(b, ab)(Bb, apb),

B a aa pBa apa b ab pb apb
2 aBa Ba aa a apb pb ab Db ]
(a, apa)(aa, fa)(b, epb)(ab, Ab),

| a ca pa apa b ab pb epb
T4 b ab Bb apb aoBa pa aa a )
(& b, epa, apb)(aa, ab, pa, fb),
a aea pBa aBa b ab pb aﬁb)

nos ab b apb pb ea a aeBa pBa
= (a ab)(ea, b)(Ba, apb)(apa, pb),
B a aea pa aBa b ab pb apb
o pb apb b ab pa aBa a a/a]
= (a,pb)(ea, apb)(Ba, b)(eBa, ab),
B a aea pa aBa b ab pb apb
oo apb Bb ab b a aa Ba aﬁa)

(a, apb, afa, b)(aa, b, fa, ab).

We are easily to verify that these permutations 17, 1 < i < 7 are automorphisms of
the mapM shown in Fig.53.1.

Theorem5.3.4 All automorphisms of a map M (%, 4, &) form a group.

Proof Letr, 7, andt, be automorphisms d¥1. Then we know thata = ar, 18 =
pr, 7 = Prandnia = aty, 118 = fr1, 11 = P11. Clearly, 1, , is an automorphism
of Mandrta = ar?, 7718 = grt, 712 = 2771, i.e., 71 is an automorphism off.
Furthermore, it is easily to know that

(rr)a = a(rry), (rr)B =B(rry) and (1) = P(r11),
l.e., 771 IS also an automorphism & with

(T2 — y(rir2)

for Vx e 2,4 i.e., @(T1)12 = 7(7172). SO all automorphisms form a group by definitian.
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Such a group formed by all automorphisms of a s called theautomorphism
groupof M, denoted by Au¥l and any subgroup of automorphism groups of maps is
called amap group

Theorem5.3.5 Any map groug’ is fixed-free.

Proof Let M = (Z,4, &) be a mapx € 2,5 andI’ < AutM. If x” = X, we prove
that

g = 1(9@#.

In fact, forVy e 2,4, by definition¥; = (a,8, &) is transitive onZ, 4, there exists an
element € ¥; such thatx" = y. Hence,

yU:XO—h:XhO—:Xh:y,

i.e.,o fixes all elements i, 4. O

For a group [; o), denoted byZ-(H) = {g e INgohog? = hVh € H} the
centralizer ofH in (I'; o) for H < I'. Then we are easily to get the following result for
automorphism group of map.

Theorem5.3.6 Let M = (%,4, &) be a map. ThedutM = ZS%.M((a,,B, Z7)), where
S, Is the symmetric group o, s.

Proof Let V7 € AutM be an automorphism. Then we know that= at, 78 = Bt
andt? = 27 by definition. Whencer € ngftyﬁ((a,,fg’, ). Conversely, foro €
ZS%M (a, B, &), Itis clear thatra = ao, o8 = Boandoc ¥ = Yo by definition. [

A characterizing for automorphism group of map can be fourttié following.

Theorem 5.3.7 Let M = (Z,4, &?) be a map with A= AutM and ve V(M). Then the
stabilizer A is isomorphic to a subgroup K (C,) generated b, = C, - oCyla %, iie.,
a product of conjugate pair of cycles .

Proof By Theorem 211, if g € A,, we know thatgC,g~! = Cgy = C,. Thatis
gC. = C,g. Whence, ifwis a quadricell irC,, theng(w) is also so. Denote the constraint
action of an automorphism e A, on elements itC, by g. Notice thatC, is a product of
conjugate pairs of cycles i. There must be an integesuch thag(w) = Civ. Choose
X = Ci(w) be a quadricell irC,. Then

g(x) = I, ) = C, '(w) = T,(%.
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Whence,g = Eiv. Define a homomorphism : A, — <EV> by 6(a) = g for Vg € A..
Then itis also a monomorphism by Theorers.5. ThusA, is isomorphic to a subgroup
H < (C,). O

Applying isomorphisms between maps, similar to that of Then53.3 we can also
characterize automorphisms of a map by extended actiorenufarc automorphisms of
its underlying graph following.

Theorem 5.3.8 Let M = (2,45, &) be a map underlying graph G, g AutG. Then the
extend action @ of g onZ, s with X = E(G) is an automorphism of map M if and only if
Yv e V(M), gl% preserves the cyclic order of v.

Proof Let g|% € AutM be extended by € Aut;G with u9 = vfor u,ve V(M). Let

u= (Xl’ X2’ Tt Xp(u))(alxp(u)7 Tt a/X27 ale),

V= (Y,Y2 -, yp(v))(ayp(v), e, Yo, aYr).

Then there must be

1

(Xl’ X2, ey Xp(u))gl2 (yl? Y2, -, yp(V)) or
1

(Xl’ ) CIERR Xp(u))gl2 — (ayp(v), Y CYYZ, CVY1)

Without loss of generality, we assume tha, &, - - -, Xp(u))g'% = (Y1, Y2, Yory)- ThUS,
(g|%(xl)? g|%(X2)’ T, gl%(xp(u))) = (yl’ y2? Y yp(V))

Whencegl% preserves the cyclic order of vertices in the mdap
Conversely, if the extend acticgh% ofge Aut;G on X, 4 preserves the cyclic order

1
of each vertex iV, i.e.,Yu € V(G), Av € V(G) such thau¥? = v. Let

QZ:HU.

ueV(M)
Then
1 1
P9 = ud® = v= 2.
uel\/_(l/l) vel\/_(l[VI)
Whence, the extend actigy# is an automorphism of malg. O

Combining Corollary 3.1 and Theorem 8.5 enables us to get the following result.
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Theorem 539 Let M = (Z,;.5) be a map withy; of vertices andp; faces of valency
i, i>1 Then
JAUtM| | (2ivi, 2j¢;; 12 1, j > 1),

where(2iv;, 2j¢; ; i > 1, | > 1) denotes the greatest common divisoRif, 2j¢; for an
integer pairi j > 1.

Proof Let Aj andA; respectively be the sets of quadricells incident with aesedf
valencyi or incident with a face of valencyfor integersi, j > 1. Consider the action
of AutM on A; andA;. By Corollary 53.1, such an action is closed i or A;. Then
applying Theorem 2.1(3), we know that

IAUtM] = [(AUtM), X ™M) = x|

for Yx € A; for |(AutM),| = 1 by Theorem 8.5. Therefore, the length of each orbit of
AutM action onA; or A; is the samgAutM|. Notice thafA;| = 2iv; and|Aj| = 2j¢;. We
get that

JAUtM| | |Aj| = 2iv; and |AutM| | |Aj| = 2]¢;

for any integer pairg j > 1. Thus
IAUtM| | (2ivi, 2j¢; ;i > 1, j = 1). O

Corollary 5.3.2 Let M = (Z,4, &’) be a map with vertex valency k and face valency .
Then|AutM| | (2KIM|, 2[|M*|), where M is the dual of M. Particularly]AutO,| | 2p and
|AutOy| | 2p for standard maps Pand N,.

By Theorem 53.9, we can get automorphism groups Aubf mapM in sometimes.
Example5.3.2 LetM = (%2, 4, &) be the map shown in Fig&2, i.e.,K, on torus with

one face length 4 and another 8. By Theore®% there must bRAUtM| | (4x3, 8,4) = 4,
i.e.,|]AutM| < 4. Define

o1 = (X aX)(BX apX)(y, a2)(ay, 2)(BZ af2)(afz BY)
(v, BV)(@V, apv)(u, aw)(au, w)(Bu, apw)(aBu, fw)
and
o2 = (X’ IBX) (CZX, ClﬁX) (y’ Q’W) (Cly, W) (ﬁy’ ClﬁW) (aﬁy’ IBW)

(v, aV)(BV, afb)(z au)(az U)(BZ apu)(aBz BU).
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It can be verifies that-; and o, both are automorphisms &fl and crf == 1y,, and
0'% =1y,,- SO AUM = (01, 072).

Example 5.3.3 We have construct automorphismg, 1andr;, 1 < i < 7 for the map
shown in Fig.53.1 in Example 53.1. Consequently, we get that

AutM = {1, ,, 71,72, 73, T4, T5, Te, T7}

by Corollary 53.2.
Notice that

ZZivi = ZZ igi = | Zapl

i>1 i>1

fora mapM = (Z,4, &?). Therefore, we get the following conclusion.
Corollary 5.3.3 For any map M= (Z,4, &), |AutM| | | Z, 4l = 4e(M).

Proof Applying Theorem 3.9, we know that

IAutM| | ZZivi and |AutM| | Zzi¢i.

i>1 i>1
Because of
2> i =2>"igi =120
i>1 i>1
we immediately get thafAutM| | |2, 4| = 4e(M). O

Now we determine automorphisms of standard maps on surfaces

Theorem5.3.10 Let O, = (Z,4(0p), £(0y)) be an orientable standard map with

p p
U{a.-,aa,ﬁau,aﬁa}JU[U{bi,abi,ﬁbi,aﬁbi} ,

i=1 i=1

(al’ bl? aﬁal? aﬁbl’ a, b2? aﬁaZ? aﬁbz’ Tt ap’ bp’ aﬁap’ Q,Bbp)
(aal’ ﬁbp’ ﬁapa a,bps a,ap’ Tt ’ﬁbZa ﬁaZs a,b23 a,a-Z’ ﬁbl’ Bals a,bl)

Zap(Op)

Z(0y)

and letNg = (%, 5, <) be a non-orientable map with

p
| Jta, ea, pa, apa),
i=1
(al’ﬁala a2,,8a2, T apsﬁap)(a’als a,ﬁapa a,ap’ T, aﬁaZ, aaz, aﬁal)-

Zap(Ng)

P (Ng)
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Define
s = P%0,), 0<s<p-1,
o = ]_ﬂl[(a,aa.-)(bi,Bbi)(aﬁa.-,ﬁa)(aﬁbi,abi),
0 = ﬁ(a,aﬁbi)(aa,ﬁbi), c= ﬁ(a,aﬁa)(bi,aﬁbi)
and - :l
m=2?(Ng). 0sl<q-1; 9= |(a apa)oa.pa)
Then h

AutO, =0, 0, ¢, 75, 1 <s<p-1) and AutNy > (&, iy, 1 <1 <q-1).

Proof It is easily to verify thatxa = aX, X8 = BX, X?(0p) = Z(Op)x if
Xell o,6, 17,1 < s< p-1andye = ay, Y8 = BY, YZ(Ng) = Z(Nyy if
ye{d, m, L <1 <q-1}. Thus AuD, > (0, 0, ¢, 75, 1 < s< p-1) and AutN, >
(@, m, 1 <1 <qg-1). Notice that (4, o, ¢, 75, L<s< p—1)| = 8p = [Z,5(0Op)l. Ap-
plying Corollary 53.3, AutO, = (0, o, ¢, 75, 1 < s< p— 1) is followed. O

5.3.3 Combinatorial Model of Klein Surface. For a complex algebraic curve, a very
important problem is to determine its birational automaspts. For curveC of genus

g > 2, Schwarz proved that Auj is finite in 1879 and then Hurwitz proveédut(C)| <
84( - 1), seeing [FaK1] for details. As observed by Riemann, tleeigs of birational
automorphisms of complex algebraic curves are the sameagitbmorphism groups of
compact Riemann surfaces which can be combinatorially deihl the approach of maps
on surfaces. Jones and Singerman proved the followingtriegubS1].

Theorem 5.3.11 If M is an orientable map of genus p, thé&wtM is isomorphic to a
group of conformal transformations of a Riemann surface.

Notice that the automorphism group of Klein surface possetise same represen-
tation as that of Riemann surface by Theore4 This enables us to get a result likely
for Klein surfaces following.

Theorem 5.3.12 If M is a locally orientable map on a Klein surface S, thantM
is isomorphic to a group of conformal transformations of &iklsurface, particularly,
AutM < AutS.
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Proof According to Theorem 5.7, there exists a NEC grodpsuch that Auf =~
No(I')/T', whereQ = AutH = PGL(2, R) being the automorphism group of the upper half
planeH. BecauseM is embeddable on Klein surfa& so there is a fundamental region
F, a polygon inH such thafgF|g € I'} is a tessellation ofl, i.e., S is homeomorphic to
H/T". By Constructions 4.1-4.4.2, we therefore know that AM < No(I')/T, i.e., AutM
is a subgroup of conformal transformation of Klein surf&ce O

§5.4 REGULAR MAPS

5.4.1 Regular Map. A regular map M= (2,4, &) is such a map that its automorphism
group AutM is transitive onZ,, i.e.,|AutM| = 4¢(M). For example, the map discussed
in Example 53.2 is such a regular map, but that map in Examp815is not.

If M isregular, then AW is transitive on vertices, edges and faceddsy Corollary
5.3.1. This fact enables us to get the following result.

Theorem5.4.1 Let M be a regular map with vertex valencyk3 and face valency* 3,

called a typgk, 1) regular maps. ThemkKM) = I¢p(M) = 2¢(M) and

14 (K= 2)(|4|— 2)-4

oM) = (k—aa—a—4
2+ o

v(M), if M is orientable

)v(l\/l), if Mis non- orientable

Proof Letvx = v(M), ¢ = ¢(M) andv; = ¢; = 0if i £k, j # | in the equalities
2) ivi=2) g =12, = (M),

i>1 i>1
we immediately get thdtv(M) = 1¢p(M) = 2¢(M).
Substitutes(M) = EV(M) and¢(M) = l—v(M) in the Euler-Poincaré genus formulae

2+ &(M) —v(M) — ¢(M)
g(M) ={

> , if Mis orientable

2+ &(M) —v(M) — ¢(M), if Mis non- orientable
We get that
1+ (k-2)(1-2)-4

4
g(M) =
2+Uk—aa—a-4

v(M), if Mis orientable;

o )v(M), if M is non- orientable



192 Chap.5 Map Groups

This theorem enables us to find tyjel] regular maps on orientable or non-orientable
surfaces with small genus following.

Corollary 5.4.1 A map M is regular of M) = 0if and only if GM) = C,, | > 1 or the
1-skeleton of the five Platonic solids.

Proof If k = 2 thenv(M) = (M) = | and¢(M) = 2. WhenceM is a map underlying
a circuitC, on the sphere. Indeed, such a nMgs regular by the fact AWM = (p, a),
wherep is the rotation about the center Gf through angles2/| from a chosen vertex
Uo € V(C) withp' = 1, ,.

Letk > 3. Then by Theorem.8.1, we get that

1+((k—2)(|—2)—4

4 )V(M) =0, ie, k=-2)(-2) < 4

by Theorem 5.1, i.e., k1) = (3,3), (3,4), (3,5), (4,3), (5,3), which are just the Pla-

tonic solids shown in Fig.8.1 following. O
(3,3) (3,4) (4,3)
tetrahedron hexahedron octahedron
(3,5) (5,3)
dodecahedron icosahedron
Fig.5.4.1

Corollary 5.4.2 There are infinite regular maps M of torug.T

Proof In this case, we gek(- 2)(I — 2) = 4 by Theorem %.1. Whence, K |) =
(3,6), (4,4), (6,3). Indeed, there exist regular maps on torus for such integes. For
regular map on torus with (8) or (4 4), see (a) or (b) in Fig.8.2. It should be noted
that the regular map on torus with, @ is just the dual that of (%) and we can construct
such regular maps of ordes®r 4s for integers > 1. So there are infinite many such
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regular maps on torus. O

Fig.5.4.2

Corollary 5.4.3 There are finite regular maps on projective plarfefth vertex valency
3 and face valency 3.

Proof Similarly, we know thatk — 2)(I — 2) < 4 by Theorem 5.1, i.e., the possible
types ofM are (33), (3,4), (4,3), (5,3), (5,3) and it can verified easily that there are no
(3, 3) regular maps of?. Calculation shows that

(kD) | v(M) | &(M) | G(M) Existing?| M Existing?
33| 2 3 Yes No
(3,4 4 6 Yes Yes
4,3)| 3 6 Yes Yes
(3,5 | 10 15 Yes Yes
5,3)| 6 15 Yes Yes

Therefore, regular maps on projective pldfevith vertex valency 3 and face valengy

3 is finite. The regular maps of types (8) and (34) are shown in Fig.g.3. O
B I
i4 5I
2 _________ U
(@) (b)

Fig.5.4.3
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The following result approves the existence of regular ntapsvery orientable sur-
face.

Theorem5.4.2 For any integer p> 0O, there are regular maps on every orientable surface
of genus p.

Proof Applying Theorem 3.10, the standard map, is regular on the orientable
surface of genup. Combining the result in Corollary.&1, we get the conclusion. [

Notice that Theorem.8.2 has claimed that the automorphism group of a Klein sur-
face is finite. In fact, by Theorem41, we can also determine the upper bound ofMut
for regular mapsdv on a surface of genug> 2.

Theorem5.4.3 Let M be a regular map on a surface S of genus gwith vertex valency
k > 3 and face valency* 3. Then

168@—1), if S is orientable

|JAutM| < , , ,
84@@-1), if S isnon-orientable

and with the equality holds if and only(&, 1) = (3,7) or (7, 3).

Proof By definition, a mapVl = (Z,4, &%) on S is regular if and only ifAutM| =
| Za gl = 4e(M). Substitutey(M) = Es(M) in Theorem %.1, we get that

( 8 )(g - 1), if Sisorientable

AutM = | \(k=2)(1~2)-4
4K| o _
K212 —4)©@~ D i Sisnon-orientable
Clearly, the maximum value o(*i( — 2)(:d_ -4 is 21 occurring precisely ak(l) = (3,7)

or (7, 3). Therefore,

168g-1), if S isorientable
|AutM| < e :
84@@-1), if S isnon-orientable
and with the equality holds if and only ik(l) = (3, 7) or (7, 3). O

5.4.2 Map NEC-Group. We have known tha¥'; = (a, 8, &) acts transitively onZ, g,

i.e., x* = 2,5. Furthermore, ifM is regular, then its vertex valency and face valency
both are constant, sayandm. Usually, such a regular may is called with type i§, m).
Then we get the presentation'f for M following

¥y =(a.p2|a?=p =" = (Pap)" = 1, ).



Sec.5.4 Regular Maps 195

We regard relations of the fori?™ = 1, , or (Zaf)” = 14,, as vacuous. The free
group ¥ generated by, 3, 2, i.e., ¥ = {(a,p, 2) is called theuniversal mapof M, a
tessellation of planar Klein surfat¢é. It should be note tha¥; is isomorphic to the NEC
group generated by facial boundarieshdf Whence,M ~ H/x" = XY /X =~ Py,
wherex is a chosen point il. Applying Theorem 4.9, we get the following result.

Theorem5.4.4 Let M = (Z,4) be a regular map on a Klein surface S. TheatM =~
Nz (¥;)/¥s, where N;(W;) is the normalizer o; in P
This result will be applied for constructing regular mapssanfaces in Section.5.
5.4.3 Cayley Map. Let ([; o) be a finite group generated By A Cayley mapfI'to S
with 1r ¢ SandS™ = S, denoted by Ca{(I" : S,r) is a map @,4( : S), 2(T : S)),
where
Zop(T S,1) = { Oh, @Gn, BOh, @B |G €T, he Sandgtohe S},
PI:.5r)= l—[ (Ghs Or(ry> Dragrys =+ - - )(@Oh, @Qr-1(hy> @G-y, -+ + - )

gel’, heS

with Tag, = at0h, 780h = B10y for T € T, wherer : S — S is a cyclic permutation.
Clearly, the underlying graph of a Cayley map &éy: S,r) is Cay( : S).

Example 5.4.1 Let ([; o) be the Klein groug™ = {1,a,8,a8}, S = {a,B,aB} andr =
(@, 3, aB). Then the Cayley map CHyI" : S, r) is K, on the plane shown in Fig44.

o

ap > B

Fig.5.4.4

Theorem 5.4.5 Any Cayley mafcay! (" : S, r) is vertex-transitive. In fact, there is a
regular subgroup oAutCay(I" : S, r) isomorphic tal.

Proof Consider the action of left multiplicatioh: on vertices of Ca¥y(I" : S, r),
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i.e.,L, : h - gohforg,heI'. We have known it is transitive on vertices of Cayley
graph Cayll : S) by Theorem 2.1. It only remains to show that such a permutation
Lg is @ map automorphism of CéyT" : S,r). In fact, forg, € 2,4(T : S,r) we know
L,agn = ocagh = aogh = al,gni.e., L,a = al, by definition. Similarly,L,8 = BL,.

Notice thatifg*oh e S,then rog) ™o (coh)=gloheS,ie., L)), m €
Zap(l 2 S,r). Calculation shows that

L, 2 :S,r)L;*
=L, 1_[ (Ohs gr(h),grz(h),"')(agh, agrfl(h),agr,z(h),---)L;l

gel’, g-loheS
= (LoD, L@, s - - )LD, ¢y 2L (@)L, 25 - - )
gerl, g-loheS
= (0Goh> 0ot (h)> TQorz(hys * = ATy X0Q) rr-1()s AT Gr-2(crhys * * *)
gerl, g-loheS
= (St S0 S~ @S @S 1pas 5, ) = L(00S),
seTI, sloteS
i.e., Ly is an automorphism of C8{I" : S,r). We have known that; ~ I by Theorem
1.2.14. O

Although every Cayley map is vertex-transitive, there aye-regular Cayley maps
on surfaces. For example, |& @) be an Abelian group with = {1, a, b, c}, S = {a, b, c},
a=b’=c*>=1,aob=boa=caoc=coa=b,boc=cob=aandr = (a,b,c).
Then the Cayley map CHyI" : S,r) is K, on the projective plane shown in Figd,
which is not regular.

Fig.5.4.5

Now we find regular maps in Cayley maps of finite groups. Fiwstnheed to prove
the following result.
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Theorem 5.4.6 Let Cay(I" : S,r) be a Cayley map and let be an automorphism of
group(T; o) such thak|s = r' for aninteger ] 1 < | < |G|, theng € (AutCay"(I : S, 1))y,

Proof Notice thatg is an automorphism of groupp'{c). There must be(1r) = 1r.
Letgn € 2,4(T: S,r). Thengohe S. Because of(g™* o h) = ¢7*(g) o ¢(h) € S, we
know that €(g), s(h)) € E(Cay(I" : S, r)) ands(g)cty € Zap(l : S,r). We only need to
show thatg € AutCay"(I" : S, r). By definition, we know thata = a¢ andgB = B¢. We
verify ¢ 2 : S,r)g™t = Z(I : S,r). Calculation shows that

cP2(:Sr)gt
=< l_l (Gn: Grim.g24, >+ )(@Gh: @Gr-s(ag o>~ )S B
gel’, g-loheS
= (s(Dsty> S @srry» * - Nas(D)gry» @S2y * * )
gel’, g-loheS
= (s(Dsry> S@rey» - - Nas(Q)ery» @S(Dr-2¢s(ry)s * * )
gel', gloheS
= (s, St).52 " -)(aSt,aSrfl(t)ﬂSr_z(t), ) =22 S)(:S,r).
sel, g-loheS

Thereforeg is an automorphism of map CA{I" : S,r), i.e.,¢ € (AutCay'(I" : S,r)),. O

The following result enables one to get regular maps in Gaylaps.

Theorem 5.4.7 LetCay*(I" : S,r) be a Cayley map withr € Autl’ such thatr|s = .
ThenCay"(I' : S, r) is an orientable regular map.

Proof According to Theorem 8.6, we know thatr € (AutM);.. By Theorem
5.3.7, [(AutCay!(I" : S,r)),,| divides|S|. Butt|s = r, a|S|-cycle, so that(AutCay (I :
S, 1), = |S|. Clearly, (AutCay!(T : S,r)),, is generated by. Applying Theorem 545,
(AutCay(T : S,r)) is transitive ol = V(Cay"(I" : S, r)). Whence,
| Zap(l 2 S,r1)]

—
Therefore, AutCa}(I" : S,r) x () is transitive on2;, 4(I" : S, ). O

AutCay"(T" : S, r)| = [T||(AutCayM(I" : S, 1))1,| = [T|IS| =

5.4.4 Complete Map. A complete map Ms such a map underlying a complete graph
K, for an integem > 3. We find regular maps in complete maps in this subsectior. Th
following result is an immediately conclusion of Theorer8.5.

Theorem5.4.8 There are no automorphismasin a complete map M= (2,4, &) fixing
more than one vertex unless= 1, .
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Proof If o(u) = v, o(v) = v for two verticesu,v € V(M), letuv = {x, ax, BX, a8X},
then there must be(x) = x because ofive V(M). Applying Theorem 3.5, we get the
conclusion. O

A Frobenius groud” is defined to be a transitive group action on aQetuch that
only 1 has more than one fixed pointsénh By Theorem 54.8, thus the automorphism
group AuiM of a complete vertex-transitive may is necessarily Frobenius. For finding
complete regular map, we need a characterization due teRiabin 1902 following.

Theorem 5.4.9 LetI be a Frobenius group action o€ with N* the set of fixed-free
elements of and N= N* U {1}. Then there are must be

(1) IN| = |Q;

(2) N is aregular normal subgroup af.

Theorem 5.4.10 LetI" be a sharply2-transitive group action oi2. Then|Q| is a prime
power.

A complete proof of Theorems49 and 54.10 can be found in [Rob1] by applying
the character theory on linear representations of groups.ifBhe condition thaf’y is
Abelian for a pointx € Q is added, Theorem.&9 can be proved without characters of
groups. See [BiW1] for details.

Theorem5.4.11 Let M be a complete map. Thé&utM acts transitively on the vertices
of M if and only if M is a Cayley map.

Proof The suficiency is implied in Theorem.8.5. For the necessity, applying The-
orem 54.8 we know that AuM is a Frobenius group. Now by Theoren8%, (AutM)y
is isomorphic to a subgroup generated@y= C, - «C;*a?, i.e., a product of conjugate
pair of cycles in#?. Whence, we get a regular normal subgréupf AutM by Theorem
5.4.9. LetT" = Z, and define a bijectionr : V(Cay(Zy, Zn \ {1},1)) — N by o (i) = a,
whereag; is the unique element transforming point Oitan N. Calculation shows that
r:N\ {1} = N\ {1} is given byr(a) = az@,z\.m() fori # 0. Thus we get a Cay-
ley mapCay(Zn, Zn» \ {1},1). It can be verified that the bijectian is an automorphism
between mapM andCay (Z,, Zn \ {1}, ). O

Now we summarize all properties of Adtin the following obtained in previous on
regular magM underlyingK,:



Sec.5.5 Constructing Regular Maps by Groups 199

(1) AutM is a Frobenius group of ordefn — 1);

(2) AutM has a regular normal subgroup isomorphidp for a primep and an
integerm> 1, i.e.,n=p™;

(3) AutM is transitive on vertices, edges and faced/lofand regular onz, s;

(4) ForVv e V(M), (AutM), = Z, 1.

We prove the main result on complete regular maps of thisesatios following.

Theorem5.4.12 A complete map M underlying,Ks regular on an orientable surface if
and only if n is a prime power.

Proof If M is regular on an orientable surface, thaatM| = 4¢(K,) = 2n(n - 1).
Whence|AutM/ (a)| = n(n - 1), i.e., AutM/ () acts one 2, 4 is Frobenius. Applying
Theorem %4.10, we know thah is a prime power.

Conversely, ifn = p™, letT" = Z, i.e., the additive group iGF(n), wherep is
a prime andh a positive integer and ldt e T" generate this multiplicative group. Take
[ =T - {0}, whereQ is the identity ofZi andr : I — I'* determined by (x) = tx for
x € T'*. By definition, we know that is cyclic permutation oiA*. We extend fromI™ to
I' by definingr(0) = 0. Notice that (x+Yy) = rx+ry for x,y € I'. Such an extendads an
automorphism of group. Applying Theorem 5.7, we know that Ca{}(I" : T*,r) =~ M
is a regular map on orientable surface. O

§5.5 CONSTRUCTING REGULAR MAPS BY GROUPS

5.5.1 Regular Tessellation.Let R? be a Euclidean plane armg q > 3 be integers. We
know that the angle of a regulargon is (1- 2/p)x. If g suchp-gons fit together around
a common pointi € R?, then the angle op-gons must be2/q. Thus

2 2r .
1-—|n=—, le, -2)(q-2)=4.
(1-2)=-2 (P-2a-2)
We so get threplanar regular tessellationsf type (p, g) on a Euclidean plane following:

(4,4), (3,6), (6,3).

For example, a tessellation of type 44 onR? is shown in Fig.%.1.
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Fig.5.5.1

Now let S? be a sphere. Consider regufagons onS?. The angle of a sphericak
gon is greater than @& 2/p)x, and gradually increases this valuertd the circum-radius
increases from 0 ta/2. Consequently, if

(p-2)a-2) <4,

we can adjust the size of the polygon so that the angle islgXactq, i.e.,q suchp-gons
will fit together around a common poimnte S?. This fact enables one to gspherical
tessellation®f type (p, q) following:

(2.0), (@.2), (3.3), (3.4). (4.3). (3.5). (5.3).

The type of (2q) is formed byq lues joining the two antipodal points and the type2)
is formed by twag-gons, each covering a hemisphere. All of these rest typsghadrical
tessellations are the blown up of these five Platonic sohdsva in Fig.54.1.

Finally, let H? be a hyperbolic plane. Consider the reguegons onH?2. Then the
angle of such g-gon is less than (2 2/p)x, and gradually decreases this value to zero if
the circum-radius increases from Oto Now if

(p-2)a-2) >4,

we can adjust the size of the polygon so that the angle is lgxaefq. Thusq such
p-gons will fit together around a common poimte H2. This enables one to construct
a hyperbolic tessellationf type (p, ), which is an infinite collection of regulgr-gons
filling the hyperbolic planéd?.

Consider a tessellation of typ®,() drawn in thick lines and pick a point in the
interior of each face and call it the icenter of the face. loheface, join the center by
dashed and thin line segments with every point covered-ggns and the midpoint of
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every edge, respectively. This structure of tessellas@ailed thédarycentric subdivision
of tessellation. Each of the triangle formed by a thick, a @nnd a dashed sides is called
aflag, such as those shown in Figh®. Denote all flags of a tessellation b.

Fig.5.5.2

A tessellation of type, q) is symmetrical by reflection in certain lines, which may
be a successive reflections of three typ¥s: g —» Xg, Y : g - YgandZ : g — Zg,
where for each flag, the flagwgis such the unique flag fierent fromg that shares with
g the thin, the thick or the dashed sides dependingoa X, Y or Z. Obviously,

X2=Y?2=72=(XY)>=(YD)P =(ZX)9=1 and XY =YX

Furthermore, the groufX, Y, Z) is transitive permutation group o#.

A tessellation of type§, ) on surfaceS is naturally a magM = (2,4, &) on S
with 2, s = #. The behaviors oK, Y andY Zare more likely to those @ , and#” on
M. But essentiallyX # 8, Y # e andYZ # & because, Y andY Zact on a givery, not
onallgin .#. SuchX, Y or YZcan be only seen as the localizationgfa or &2 on a
guadricellg of mapM.

5.5.2 Regular Map on Finite Group. Let ('; o) be a finite group with presentation
F=(xy zI|¥=y=Z=(xoy’=(yod’ =(zox)I=---=1r),

where we assume that all exponents are true orders of theetsiend dots indicate a pos-
sible presence of other relations in this subsection. Thegaar mapgM = M(T’; X, Y, 2)
of type (p, g) on group ['; o) is constructed as follows.
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Construction 5.5.1 Letg € I'. Consider a topological triangle, i.e., a flag labeledgby
with its thin, thick and dashed sides labeled by generatoysandz, respectively. Such

as those shown in Fig&3.

7. X
g

y
Fig.5.5.3

For simplicity, we will identify such flags with their groupegnent labels. Then for each
g € ' andw € {x,y, z}, we identify the sides labeled in the flagg andg o win such a
way that points on the thick, thin or dashed sides meet argifeba as well. For example,

such an identification fog = x, y or zis shown in Fig.%.4.

Fig.5.5.4

This way we get a connected surfégevithout boundary by Theorem22. The cellular
decomposition o0& induced by the union of all thick segments forms a regular Map
M(T; X, Y, 2) of type (p,q). Such thick segments & consist of the underlying graph



Sec.5.5 Constructing Regular Maps by Groups 203

G(M) with vertices, edges and faces identified with the left tdeésubgroups generated
by (X, y), <y, 2 and(z X) in the group [; o), respectively. We therefore get the following
result by this construction.

Theorem5.5.1 Let(I’; o) be a finite group with a presentation
F=(xy z[¥=y=Z=(xoy’ =(yo2’=(zoX =" =1r).

Then there always exists a regular magIVx, y, z) of type(p, g) on (T'; o).

Consider the actions of left and right multiplicationobn flags ofM. By Construc-
tion 5.5.1, we have known that the right multiplication by generatqry andz on a flag
g € I' gives the permutations, Y andZ defined in Fig.%.2. For the left multiplication
of I" on flags ofM, we have an important result following.

Theorem 5.5.2 Let M = M(I'; X,y, 2 be a regular map of typép, g) on a finite group
(T; o), wherell = < XY Z|X¥=y?=22=(Xoy)P? =(Yyo)P=(zoX)9=--- =1t > Then

AutM = Ly = (T;0).

Proof Notice that if two flags= andF’ are related by a homeomorphigmon S,
i.e,h:F — F/,thenh: Fog — F’ og. Therefore, the left multiplication preserves
the cell structure oM on S and induces an automorphismMf. Whencelr < AutM.
Now Z,5(M) = #(M) = I'. By Corollary 53.3, there is)AutM| < |Z,(M)| = |T].
Consequently, there must be AMit = Lr. By Theorem 12.15, Ly =~ (I';0). This
completes the proof. O

There is a simple criterion for distinguishing isomorphiapsM(I'y; X4, Y1, 21) and
M(T'2; X2, Y2, 2) following.

Theorem 5.5.3 Two regular maps NI'y; X1, Y1, 1) and M(I'z; Xo, Y2, 22) are isomorphic if
and only if there is a group isomorphism: I'y — I', such thatp(x) = X, (Y1) = Vo
and¢(z) = z.

Proof If there is a group isomorphisign : I'1 — I'; such thatp(x)) = X, ¢(y1) =
Yy, and ¢(z1) = 2z, we extend this isomorphism from flags.# (M(I'1; X1, 1, 21)) tO
F(M(I'2; X, Y2, 22)) by

P(UPUF -+ - UF) = p(UP)(U) - - - P(US)
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for u € {X,V1,21}, § € {+,—} and integers > 1. Theng is an isomorphism between
M(I'1; X1, Y1, z1) andM(I',; X, Yo, 2o) because it preserves the incidence of flags.
Conversely, if¢ is an isomorphism fronM(I'y; X1, Y1, z1) to M(I'2; X2, V2, ), then
it preserves the incidence of vertices, edges and faces.n¥&hié induces an isomor-
phism from flags# (M(I'1; X1, Y1, 21)) t0 7 (M(I'2; X2, Y2, 22)), 1.€., @ group isomorphism
¢ : T'y — T',, which preserve the incidence of vertices, edges and féaasdionly if
d(X1) = X2, ¢(y1) = Y2 and¢(zy) = z, by Construction 5.1. OJ

Similarly, it can be shown that a regular mBl{I’, X', y’, Z) is a dual ofM(T’, X, Y, 2)
ifand only if " = T'andX =Y,y = X. By this way, regular maps of small genus are
included in the next result.

Theorem5.5.4 Let M= M(T, x, Y, 2) be a regular map on a finite group

(A) If M is on the sphere § then

()T = < XY, Z| =y =7 =(xy)? = (y2" = (z¥? = 1r> ~ D, x Z, and M is an
embedded n-dipoles with dua),Gn S;

(2) T = < XY,Z| ¥ =y =7 =(xy)?=(y2?=(2X%=1; > ~ S, and M is the tetra-
hedron, which is self-dual on’S

(3) I' = < XY, Z| X =y =27 = (xy)? = (y2* = (zX% = 1r > ~ S, x Z, and M is the
octahedron with dual cube or’S

(4) T = < XY, Z| X =y =2 =(xy)? = (y2°® = (zX? = 1r> ~ As x Z, and M is the
icosahedron with dual dodecahedron oA S

(B) If M is on the projective plane®let r = yz and s= zx, then

(1) T = < XY, Z| X =y’ =27 =(xy)? = (y2*" = (zX° = zsI" = 1; > ~ Dy, and M is
the embedded bouquesBvith dual G, on P;

(2) T = < XY, Z| X =y? =2 =(xy)? = (y2* = (zX3 = zrsir?s = 1r> ~ S, and M
is the embedded R with dual K, on P?, where K? is the graph K with double edges;

8) I = < XY,Z| X2 =y? =27 = (xy)? = (y2° = (2% = zr’srlsr?s= 1 > ~ Ag
and M is the embeddedsn P.

(C) If M is on the torus F, let b, ¢ be integers, thell = < r,s|ré=g=(rs)?=
(rs™hP(r-tg)® = 1 > or ( r,s|ré=s=(rs)? = (rsir)°(sr?d) = 1 > if bc(b—c) # 0
andTl’ = ( r,sirt=g=(rs)P(rts =1; > or < r,s|ré =8 = (rsr)’(s'r?)¢ = 1 >
if bo(b — ¢) = 0.

A complete proof of Theorem.5.4 can be found in the reference [CoM1]. With the
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help of parallel program, orientable regular maps of gents 5, and non-orientable
regular maps of genus 4 to 30 are determined in [CoD1]. Reatiy, the regular maps
on a double-torus or a non-orientable surface of genus 4renerkin the following.

Theorem5.55 M = M(T, x,y, 2) be a regular map on a finite group, r = yz, s= zX
and t= xr.

(A) If M is orientable of genu®, thenl' = <r, sird=<=(rs3?=1 > or
< rns|irt=¢s=(rst)?=1; > or< nsirf=L=@rs)Y=rs¥rist=1; > or< r,s|rd
=s0=gr3= 1p>, or<r,s| =g =r?2s4= 1p>,or<r,s| f=L=rs3= 1r>.

(B) If M is non-orientable of genu4, thenI” = < rnst|rt=s=t?=tstrsir2
=1, or(rstirt= == (s?)?=Srsr2=1).

We have known that there are regular maps on every oriersabi@ce by Theorem
5.4.2, and there are no regular magdson non-orientable surfaces of genuys 18, 24,
27, 39 and 48 in literature. Whether or not there are infinite napntable surfaces
which do not support regular maps is a problem for a long tif@vever, a general result
appeared in 2004 ([DNS1]), which completely classifies l@gonaps on non-orientable
surface of genup+ 2 for an odd prime # 3,7 and 13. For presenting this general result,
let v(p) be the number of pairs of coprime integeyd) such thatj > | > 3, bothj andl
are odd andj(—- 1)( — 1) = p+ 1 for a primep.

Theorem 5.5.6 Let p be an odd prime, g 3, 7, 13 and letNy,, be a non-orientable
surface of genus p 2. Then

(1) If p = 1(mod 12) then there are no regular maps o, »;

(2) If p = 5(mod 12) then, up to isomorphism and duality, there is exactly one
regular map onV,,»;

(3) If p = -5(mod 12) then, up to isomorphism and duality, there a(@) regular
maps 0Vy,;

(4) If p = —1(mod 12) then, up to isomorphism and duality,., supports exactly
v(p) + 1 regular maps.

5.5.3 Regular Map on Finite Multigroup. Let Py, P,,---, P, be a family of topological
polygons with even sides for an integer> 1. Denoted byoP; the boundary ofP;,
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n n
1 <i < n. Define a projectionr : | JP; — (U P;)/ ~ by
i=1 i=1

n(x) #7(%) # - £1(X%) fxeP\oP,1<i<n,
n(y1) =n(y2) =---=ny) ifyedP,1<i<n,

i.e., 7 is an identification on boundaries Bf, P,, - - -, P,. Such an identification space
n —_~

(U Py)/ ~is called amm-multipolygorby n polygons and denoted W, The cross section
i=1

of P is shown in Fig.%.5(a). Sometimes, a multipolygon maybe homeomorphic to a
surface. For example, the sph&zeis in fact a topological multipolygon of 2 polygons
shown in Fig.41.2.

It should be noted that the boundary of mmultipolgonP is the same as any of
its m-polygon. So we can also get the polygonal presentation of-amultipolygon such
as we have done in Sectior?4 Similarly, an orientable or non-orientableultisurface
S is defined orP by identifying side pairs oP. Certainly,S = Lnjl P/ ~= Lnjl S;, where
Si = P;/ ~ is a surface for integers £ i < n. The inclusior; mappingyli 'S > S
determined byr;(x) = x for x € S; is called thenatural projection ofS on S.

By definition,dP/ ~ is a closed curve 08, called thebase line denoted by, and
a multisurfaceS possesses the hierarchical structure, $8&.1_ is disconnected union of
Pi\ dP;, 1 <i < n. Such as those shown in Figh5(b) for longitudinal and cross section

boundary Ly Ly
) (b)

Fig.5.5.5

of a multitorus.

boundary
(a

Similarly considering maps on surfaG we can find such a decomposition $f
with each components homeomorphic to a open disk of dimeab® i.e., a maM on
S. So a problem for maps on multisurfaces is presented in fleving.

n

Problem 5.5.1 Determine map# onS = US‘ such thatr;(M) is a transitive map,
i=1

furthermore a regular map on;Sor any integerj 1 <i < n.

If S is orientable, the answer isfamed by Theorem &.2 by applying to standard
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mapO, onS; for an integer I< i < n. We construct more such maps on finite multigroups
following.

Cayley Map on Multigroup. Let (% O) be a multigroup withy = U 4,0 =
{oi, 1 < i < n} such that€; o) is a finite group generated b = AIl 1g ¢ A
for integers 1< i < n. Furthermore, we assume eagh= A is minimal for integers
1 <i < n. WhenceA s an independent vertex set in Cayley graphs @ayf). SuchA
is always existed if we choose the grody; ;) = (¢; o) for integers 1< i < n.

Letr : S — S be a cyclic permutation oA. For an integef, 1 < i < n, we
construct a Cayley map CHy% : A r). Not loss of generality, assume that the genus of
Cay'(%, : Ar)isgforl < | < s Particularly,s = nif (4;0) = (¢; o) for integers
1 <i < n. Now letS be a multisurface consisting efsurfacesS;, S,, - - -, Sg of genusg.

We place each element éfon the base liné 4 of S. Then the map

Cay'(# : An) =(_JCay'(4, : A1)
j=1

is such a map that; : Cay"'(?: Ar)— Cayv'(%j . A, r). We therefore get the following
result.

Theorem 5.5.7 For any integers g> 0, n > 1, if there is a Cayley magay"(I" : A, r)
n

of genus g, then there is a map on multisurfaces = U Si consisting of n surfaces of
i=1
genus g such that;(M) is a Cayley map, i.e., a transitive map, particularly, thése

mapM on'S such that;(M) = Cay"(I" : A, r) for integersl < i < n.

Regular Map on Triangle Multigroup. LetT = U(F,, i) be a multigroup, where

(T; o) is a finite triangle group with; = <x. Y.z =y =Z = (X o Vi) = (Yioi z)" =
(7 oj %)% = --- = 1) for integers 1< i < n. Then there is a regular mag(T5; X, Y, z)
correspondent td¥; o;) by Construction 5.1.

Not loss of generality, assume that the genudvidfs ; x,.y.z,) is p for integers
1< j < k. Particularly,s = nif M(T; X,Y,z) = M(T; X, y, 2) for integers 1< i < n. Now
let S be a multisurface consisting sfsurfacesS;, S,, - - -, Ss of genusp. Choose a flag
in M(T,; %, ¥, z;) with thick sides ofg andg o;, x identifying with a segmen®PQ on the
base lineL, of S for integers 1< j < s. Then the magM on S defined by
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S
M =M%,y 2)
i1

is such a map that; : M — M(T;; %, Y, z,), @ regular map o6;;. This fact enables one
to get the following result.

Theorem 5.5.8 For any integers g 0, n > 1 and pq > 3, if there is a regular map
M(T'; X,y, 2) of genus g correspondent to a triangle grolip= < XY, Z| =y =27 =
n
(Xoy)? =(yo2)P =(zoX)94= 1r>, then there is a ma on multisurfaceS = U Si
i=1
consisting of n surfaces of genus g such théW) is a regular map MT; X, Y, z), par-
ticularly, there is a magM on'S such that;(M) = M(T; , v, 2) for integersl < i < n.

§5.6 REMARKS

5.6.1 A topological mapM is essentially a decomposition of a surfa&&evith com-
ponents homeomorphic to 2-disk, which can be also charaeteby the embedding of
graphG[M] on S. Many mathematicians had contributed to the foundationag theory,
such as those of Tutte in [Tutl], Jones and Singerman in [Ja&ice in [Vinl]-[Vn2]
and Bryant and Singerman in [BrS1] characterizing a map byrigells or flags. They
are essentially equivalent. There are many excellent bookihese topics today. For
example, [GrT1] and [Whil] on embedding and topological :dMoT1] on the topo-
logical behavior of embeddings and [Liu2]-[Liu4] on algelr maps with enumerative
theory.

5.6.2 Although it is dificult to determine the automorphism group of a graph in génera
it is easy to find the automorphism group of a map. By Theor&h6 5the automorphism
group of mapM = (Z,z, &) is the centralizer of the groufer, 8, &) in the symmetric
groupSy;,. In fact, there is anfécient algorithm for getting an automorphism group
of map with complexity not bigger thad(2(M)). See [Liul], [Liu3]-[liu4] for details.
Besides, a few mathematicians also characterized autdmsangroup of map by that of
its underlying graph. This enables one to know that the aatpmsm group of map is an
extended action subgroup of the semi-arc automorphismpgobits underlying graph.
See also [Mao2] and [MLW1] for detalils.
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5.6.3 The research of regular maps, beginning for searchingagtdllpolyhedra of sym-
metrical beauty, is more early than that of general map, wappeared firstly in the work
of Kepler in 1619. The well-known such polyhedra are the fikednic polyhedra. There
are two equivalent definitions for regular map by let the endgohism group of map/
transitive on its quadricells or flags. Both of them makesléngest possible on auto-
morphisms of a map, i.e., transitive and fixed-free. Thisbéesone knowing that the
automorphism group of a map is transitive on its verticegesdand faces, and also its
upper bound of regular maps of geru8. For many years, one construct regular maps
by that of symmetric graphs, such as those of Cayley grapimplete graphs, cubic
graph and Paley graph on surfaces. The materials in refesgBigl]-[Big2], [BiW1]
and [JaJ1] are typical such examples.

Such as those discussions in the well-know book [CoM1] owrrdis group with
geometry. A more fficient way for constructing regular map is by that of the tgian
groupl’ = < XY, Z| X2 =y? =2 = (xy)? = (Yy2P = (zX9 = 1r>. In fact, by the barycentric
subdivision of map on surface, a regular mdpis unique correspondent to a triangle
groupI” and vice vera. This correspondence turns the question oh§imdgular maps to
that of classifying or constructing such triangle groupd anables one to classify regular
maps of small genus. For example, the classification of eegnaps onV,,, for an odd
prime p in [DNS1] is by this way, and the classification of regular mapr orientable
genus from 2 to 15, non-orientable from 4 to 30 in [CoD1] iodby this way with the
help of parallel program.

5.6.4 A multisurfaceS is introduced for characterizing hierarchical structurésopo-
logical space. Besides this structure, its baselligegs common and the same as that of
standard surfac®, or N,. We have shown that there is a méipon S such that its projec-
tion on any surface o8 is a regular map by applying Cayley maps on finite groups, and
by regular maps on finite triangle group. Besides for regulap, we can also consider
embedding question on multisurfaBe Since all genus of surface in a multisurf&gés
the same, we define the gery(S) of S to be the genus of its surface.

Let G be a connected graph. Define its orientable or non-oriemtgdhusy(G),
N(G) on multisurfaceS consisting ofm surfacesS by

9(G) = min{ g(S) | G is 2 - cell embeddable on orinetable multisurfage

Y(G) = min{ g(S) | G is 2 - cell embeddable on orinetable multisurfage
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Then we are easily knowing thaP(G) = ¥(G) andy}(G) = ¥(G) by definition. The
problems for embedded graphs following are particulargnesting for researchers.

Problem 5.6.1 Let nm > 1 be integers. Determing(G) and»N(G) for a connected
graph G, particularly, the complete graph,kind the complete bipartite graph,k.

Problem 5.6.2 Let G be a connected graph. Characterize the embedding mehahG
on multisurfaceS, particularly, those embeddings whose every facial watk circuit,
i.e, a strong embedding of G &.

The enumeration of non-isomorphic objects is an importaoblem in combina-
torics, particular for maps on surface. See [Liu2] and [[Liiof details. Similar problems
for multisurface are as follows.

Problem 5.6.3 LetS be a multisurface. Enumerate embeddings or may® by param-
eters, such as those of order, size, valency of rooted verteoted face; - -.
Problem 5.6.4 Enumerate embeddings on multisurfaces for a connectechggap

For a connected grag, its orientable, non-orientable genus polynonggllG](x),
Im[G](X) is defined to be

anlGI(¥) = > (@)X and Tu[Gl(¥) = D gn(G)X,
i~0 i~0
whereg?,(G), gi.(G) are the numbers d& on orientable or non-orientable multisurface
S consisting ofm surfaces of genuis

Problem5.6.5 Let m> 1be an integer. Determing§G](x) andgm[G](x) for a connected
graph G, particularly, for the complete or complete biptetgraph, the cube, the ladder,
the bouquet;- -.



CHAPTER 6.

Lifting Map Groups

The voltage assignment technique on graphs or maps is ia famtstruction
of regular coverings of graphs or maps, i.e., covering spac®wer dimen-
sional cases. For such covering spaces, an interestinggprslis that finding
conditions on the assignment so that an automorphism ohgramap is also
an automorphism of the lifted graph or map, and then appby téchnique
to finding regular maps or solving problems on Klein surfa¢es these ob-
jectives, we introduce topological covering spaces, dagemappings first,
and then voltage graphs and maps in Sectidn @he lifting map group is
discussed in the following section. These conditions sicthase of locally
invariant, A;-uniform andA;-compatible, and furthermore, a condition for a
finite group to be that of a map by voltage assignment can bedfouSection
6.2, which enables one finding a formulae related the Eulend2oé charac-
teristic with parameters on maps or its quotient maps. Tfuesaulae enables
us to discussing the minimum or maximum order of automorpkisf a map,
i.e., conformal transformations realizable by maps M omiien or Klein
surfaces in Section.b. Section & presents a combinatorial generalization of
the famous Hurwitz theorem on orientation-preserving @uaigphism groups
of Riemann surfaces, which enables us to get the upper or loawends of
automorphism groups of Klein surfaces. All these discussgupport a con-
jecture in forewords of Chapter 5 in [Mao2], i.e., CC conjgetdiscussed in
the last chapter of this book.
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§6.1 VOLTAGE MAPS

6.1.1 Covering Space.LetS be a topological space. overing spacs of S consisting
of a spaceS with a continuous mapping : S — S such that any point € S possesses an
arcwise connected neighborhobg, and any arcwise connected componenpdfU,)
is mapped topologically ontdl, by p. Such an opened neighborhoddg is called an
elementary neighborhoaghd p a projectionfrom Sto S.

Definition 6.1.1 Let ST be topological spacesgx S,yo € T and f: (T, Vo) — (S, Xo)
a continuous mapping. IS, p) is a covering space of S, € S, % = p(%) and there
exists a mapping'f: (T,yo) — (S, %) such that f = f' o p, then f is a lifting of f,
particularly, if f is an arc, f is called a lifting arc.

The following result asserts the lifting of an arc is uniqueéépendent on the initial
point.

Theorem6.1.1 Let (S, p) be a covering space of & € X and (%) = X. Then there
exists a unique lifting arc'f: | — S with initial pointX, for each arc f: | — S with
initial point Xo.

A complete proof of Theorem.8.1 can be found in references [Mas1] or [Munl],
which applied the property of Lebesgue number on metricespac

Theorem6.1.2 Let (S, p) be a covering space of S € S and (%) = %. Then

(1) the induced homomorphism pr(S, X)) — 7(S, Xo) is @ monomorphism;
(2) for X € p~1(x), the subgroups (S, %) are exactly a conjugacy class of sub-
groups ofr (S, Xp).

Proof Applying Theorem 6L.1, forX, € S andp(Xp) = Xo, there is a unique mapping
on loops fromS with base poink, to S with base pointy. Now letL; : | — S,i=12
be two arcs with the same initial poirg in S. We prove that ifpL; ~ pL,, thenL; ~ L,.

Notice thatplL; ~ pL, implies the existence of a continuous mappihg! x| — S
such thaH (s, 0) = pli(s) andH(s, 1) = pLy(s). Similar to the proof of Theorem B0, we
canfind numbersg < s <---<sy,=1land0=ty<t; <--- <t,=1suchthat each
rectangle §_1, s] x [tj_1,t;] is mapped into an elementary neighborhoo&ihy H.

Now we construct a mappir@ : | x | — S with pG = H, G(0,0) = % hold by the
following procedure.
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First, we can choos6 to be a lifting ofH over [Q ;] x [0, t;] sinceH maps this
rectangle into an elementary neighborhoog®%). Then we extend the definition &
successively over the rectangles {, s] x [0,t;] for i = 2,3,---, mby taking care that it
is agree on the common edge of two successive rectangles) ehables us to g& over
the stripl x [0, t;]. Similarly, we can extend it over these rectandledt;, to], [t2, t3], - - -,
etc.. Consequently, we get a liftitdf of H, i.e.,L; =~ L, by this construction.

Particularly, ifL; andL, were two loops, we get the induced monomorphism homo-
morphismp. : 7(S, %) — 7(S, X). This is the assertion of (1).

For (2), suppos®& andX; are two points o6 such thatp(X;) = p(%) = Xo. Choose
a clasd of arcs inS from X; to X,. Similar to the proof of Theorem.B7, we know that
& = L[a]L%,[a] € #(S, %) defines an isomorphist® : #(S, %) — #(S,%). Whence,
p.(7(S, %)) = p.(L)7(S, %) p.(L™1). Notice thatp,(L) is a loop with a base point. We
know thatp. (L) € 7(S, Xo), i.e., p.7(S, X) are exactly a conjugacy class of subgroups of
7(S, Xo). O

Theorem 6.1.3 If (S, p) is a covering space of S, then the set$(p) have the same
cardinal number for all xe S.

Proof For any pointsx; andx, € S, choosing an aré¢ in S with initial point x; and
terminal pointx,. Applying f, we can define a mapping : p(x,) — p(x) by the
following procedure.

ForVy; € p~X(x), we lift f to an arcf' in S with initial pointy; such thatp f' = f.
Denoted byy, the terminal point off'. Define¥(y,) = y».

By applying the inverse ar€!, we can defineéP~1(y,) = y; in an analogous way.
Thereforey is a 1- 1 mapping formp=(x,) to p~1(x,). O

Usually, this cardinal number of the sqist(x) for x € S is called thenumber of
sheetsof the covering spaceS(p) on S. If |p1(x)| = nfor x € S, we also say it an
n-sheeted covering

6.1.2 Covering Mapping. Let M = (%ﬁ, % andM = (Z,z, &) be two maps. The
mapM is called to be covered by may if there is a mapping : %T,ﬁ — X,z such that
VX € X’:ﬁ,

an(X) = na(X), Br(X) = 1B8(X) andzrﬁ(x) = Pn(X).

Such a mapping is called acovering mappingForVx € 2, z, define thequadricell set
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aY(X) by
74 (X) = (XX € (Zop anda(X) = x}.

Then we konw the following result.

Theorem6.1.4 Letr : )'(:,ﬁ — Z,p5 be acovering mapping. Then for any two quadricells
X1, X2 € X,

D) It x)l = 7).

(2) If Xy # X, thena=1(x) N7~ 1(x) = 0.

Proof (1) By the definition of a map, fok;, X, € 2,4, there exists an element
oeV¥;=<aq,B, Z >suchthat, = o(Xy).

Sincer is an covering mapping frorM to M, it is commutative withe, 8 and 2.
Whence is also commutative with-. Therefore,

(%) = N o (%)) = o (7 (%0)).

Notice thato € ¥ is an 1- 1 mapping onZ., 5. Hence |z 1(x1)| = 7 *(%)!.
(2) If x; # %, and there exists an elemegnt n~1(x;) N 7~1(x2), then there must be
X1 = n(y) = %. Contradicts the assumption. O

Then we know the following result.
Theorem6.1.5 Letr : faﬁ — %, be a covering mapping. Thenis an isomorphism if
and only ifris al— 1 mapping.

Proof If x is an isomorphism between the mays= (Zﬁ, ) andM = (Zop, P),
then it must be an 2 1 mapping by the definition, and vice via. 0J

A covering mapping from M to M naturally induces a mapping by the condition
following:
VX € Zip g€ AUM, 7* : g — 7grY(X).

Whence, we have the following result.

Theorem6.1.6 If : %ﬁ — Z,p IS a covering mapping, then the induced mappthg
is a homomorphism froMutM to AutM.

Proof First, we prove that fovg € AutM andx € Zop, m°(0) € AutM. Notice that
for Vg € AutM andx € 2,4,

agn H(X) = m(gr (X)) € Zog
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andVxy, Xo € Zag, if X1 # X, thenngr1(x;) # ngn~1(xp). Otherwise, let
g (%) = 7gr (%) = Xo € L.

Then we must have that = 7g~1771(Xy) = X2, which contradicts to the assumption.
By definition, forx € 2, we have that

m*a(X) = mgr ta(X) = rgan (X)) = ragr H(X) = angn(X) = an*(X),

7'B(X) = ngrB(X) = g8 (X) = 7Bgr (X = Brgr(X) = B’ (X).
Now n(% = Z. We therefore get that

7 P(X) = ngn L P(X) = 19 P 1 (X) = 7 Pgn 1 (X) = Prgn(X) = Pr(X).

Consequentlyrgrt € AutM, i.e.,7* : AutM — AutM.
Now we prove that* is a homomorphism from A to AutM. In fact, for¥g,, g, €
AutM, we have that

7 (G1G2) = (GG = (ngur ) (nGon ™) = 7" (Gu)7 (G2)-
Whencez* : AutM — AutM is a homomorphism. O

6.1.3 Voltage Map with Lifting. Let G be a connected graph anid ¢) a group. For
each edgee € E(G), e = uv, anorientationon e is such an orientation oa from u to
v, denoted bye = (u,v), called theplus orientationand itsminus orientation from v
to u, denoted bye! = (v,u). For a given graplG with plus and minus orientation on
edges, aoltage assignmemin G is a mappingr from the plus-edges @ into a group
satisfyingo(e!) = o1(€), e € E(G). These elemenis(e), e € E(G) are called voltages,
and G, o) avoltage graplover the groupl(; o).

For a voltage graphQ, o), its lifting G” = (V(G”), E(G”); I(G")) is defined by

V(G?) = V(G) x T, (u,a) € V(G) xI" abbreviated tai,;

E(G?) = {(Ua, Vab)l€" = (U, V) € E(G), o(€") = b}

and
1(G”) = {(Ua, Vaob) |1 (€) = (Ua, Vaop) if € = (Ua, Vaop) € E(G7)}.
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This is a|l']-sheet covering of the grapgh. For example, leG = K3 andI’ = Z,.
Then the voltage grapiKg, o) with o : K3 — Z, and its lifting are shown in Fig.6.1.

G, 0) G

Fig.6.1.1

We can find easily that there is a unique lifting patiirwith an initial pointX for
each path with an initial pointin T, and forvx e T, |p~1(X)| = 2.

For finding a homomorphism between Klein surfaces, voltagpsrare extensively
used, which is introduced by Gustin in 1963 and extensivegdiby Youngs in 1960s for
proving the Heawood map coloring theorem and generalize@rogs in 1974 ([GrT1]).
By applying voltage graphs, the 2-factorable graphs arenenated in [MaT2] also.

Now we present a formally algebraic definition for voltagepsianot using geomet-
rical intuition following.

Definition 6.1.2 Let M = (Z, 4, &) be a map andl’; o) a finite group. A pai(M, ) is a
voltage map with groufl’; o) if ¥ : 2,5 — T, satisfying conditions following:

(1) For ¥x € 2,z %(aX) = ¥(X), HaBX) = 3(BX) = 3 (X);

(2) For VF = (X¥,---,2(Bz---,BY,8X) € F(M), the face set of M(F) =
F()I(Y) - - - H2) and(HF)|F € .#(u),u e V(M)) =T, where.# (u) denotes all the faces
incident with vertex u.

For a voltage maplNl, ), define

‘%;Iﬂ,ﬁﬂ = %d,ﬁ X F,

P’ = [1 [ 100 Yo 2@z, 0y, %)

Y.+, (az - ay,aX)eV(M) gel’
and

a’ﬂ = l—[ (Xg’ a/Xg), :819 = l_l (Xg,ﬁxgﬁ(x)),

XE%YJ;’ ger XE%aﬁ, geF
whereuy denotes the element,@) € 2,4 xT.
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Then it can be shown immediately thel” = (X, 0, 2”) also satisfies the condi-
tions of map, and with the same orientation as mivap/Nhence, we define the lifting map
of a voltage map in the following definition.

Definition 6.1.3 Let (M, ) be a voltage map with grouf”; o). Then the map M =
(X7 5 277) is defined to be the liting map (¥, 9).

There is a natural projection: M? — M from the lifted mapM?” to M by n(xg) = x
for vg e I' andx € 2, 5(M), which means tha¥!” is a[I'-coverM. Denote by

) = {x € Zopg(M') | geT ),
called thefiber overx € 2, 3(M). For a vertex = (C)(aCat) € V(M), let {C} denote
the set of quadricells in cyclé. Then the following result is obvious by definition.
Theorem 6.1.7 The numbers of vertices and edges in a lifting mapd¥lvoltage map
(M, 9) with group(T’; o) are respectively

v(M?) = y(M)I[ and &(M?) = (M)|T].

Theorem 6.1.8 Let F = (C*)(aC*at) be a face in the map M. Then there 4/ o(F)
faces in the lifting map N with group (I'; o) of length|F|o(F) lifted from the face F,
where @F) denotes the order of | ¢#(X) in group(T’; o).

xe{C}

Proof LetF = (u,v---,w)(Bw, - - -, BV, Bu) be a face in the mapl andk is the length
of F. Then, forvYg € I" the conjugate cycles

Cc) = (Ugs Vgaqy» * * * » Uga(Fy» Vago(Fyoy» - * * » WaaEy2s * * * » Wago®)-1())
,B(Ug, Vgou)s * * * > Uga(F)s Vga(F)a()» * s WaaF)zs * * WgﬂO(F)—l(F))_lﬁ_l.
is a face inM? with lengthko(F) by definition. Therefore, there ajig/o(F) faces in the
lifting map M?. O

We therefore get the Euler-Poincaré characteristic dtedlimap following.

Theorem 6.1.9 The Euler-Poincaré characteristigM?) of the lifting map M of a volt-
age map M, ) with group(T; o) is

KM =M+ S (14 ),

meO(F(M))
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whereO(F(M)) denotes the set of faces in M of ord€Fo.

Proof According to the Theorems 57 and 61.8, the lifting mapM? has|Tv(M)

. 1
vertices|I'le(M) edges andl5| >,  — faces. Therefore, we know that
meO(F(M)) M

X(M7) = »(M?) = (M) + ¢(M")
ITv(M) = ITle(M) + 101 >

meO(F(M))

GleM) —sM)+ > )

meO(F(M))

1
GlaeM)+ >, (-1+). O

meO(F(M))

1

§6.2 GROUP BEING THAT OF A MAP

6.2.1 Lifting Map Automorphism. Let (M, o) be a voltage map withr : 2,5 = I',ue
V(M) andW = x;1 % - - - X, @ walk encoded by the corresponding sequence of quadricells
X, i =1,2,---,kin M, i.e., the qudricell aftex; is ZapBx by the traveling ruler orM.
Define thenet voltageon W to be the product

(W) = o(x1) o o(Xz) 0 - - 0 07(%)
and the local voltage grougu) by
'(u) = {o(W) | Wis a closed walk based at a quadriaell

By Definition 61.2, we know that"(u) = I for Yu € Z,4(M). Forx € Z,z, denote
by I1(M, x) the set of all such closed walks basedxatThenII(M, X) = n1(M, X), the
fundamental group o1 based ak.

Letoi, oo @ Zups — T be two voltage assignments on a mdp= (2,4, ¢’) and
idw an identity transformation o, 4, i.e., both ofM* andM?2 are|I'|-covers ofM with
natural projectiong; : M?* - M andn, : M?2 - M on M. Then we know

Zap(M7) = Z,5(M72) = { Xg | X € Zp(M), geT'}

by definition. Thero;, o, are said to beequivalentif there exists an isomorphism:
M7t — M?2 that makes the following diagram
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MO’l T MO’Z

T T2

idw

M

commutate. The following result is fundamental.

Theorem 6.2.1 Letoy, o, @ Z,5 — I be two voltage assignments on a map-M
(Zop, &), ue Z,5(M). Thenoy, o, are equivalent if and only if there exists an auto-
morphismr of groupI” such that

701(W) = 02(W)

for every closed walk W in M based at u.

Proof Choose a closed wal in mapM based at. If o, ando, are equivalent,
then there exists an automorphism M7t — M“2 such thatr(W"t) = W2, Define
T > T byt :1o01(W) - o2(W). Let W be another closed walk iM based atu.
Notice thatWW is also a closed walk basedwin M. We find that

101 (WW) = 701 (W)r01(W') = 072(W)o2(W'),

Le., T(c1(W)o1(W')) = (01 (W))t*(01(W’)). Thust* is an automorphism df. By
definition, we are easily get thato (W) = o,(W).

Conversely, if there exists an automorphishe Autl’ such thatr’ o1 (W) = o,(W)
for every closed wallV in M based at, let : 2, 3(M?t) — Z,3(M?*) be determined
by 7: W't — W2, i.e, 7’0 W(r'o1) ™ = 0,Wo,*. Thenitis easily to know that

T (‘gzalﬁ)o-l T_l = (Tlo-l) 1_[ (Xg, ) Zg)(azg, Y axg) (Tlo-l)_l
(%, 2)(az -, ax)eV(M), gel’
- [ T01(Xg Yoo 5 Z)(@Zg, - -, @Yg, aXg) (7o)
(%Y, 2@z ay,aX)eV(M), gel’
— l—[ 0-2()(9, yg’ e Zg)(CYZg, cee Cng, CYXg)O'El

(%2 (az,aX)eV(M), gel'

= (Zap)”
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Pt = 1P

and

ot =1a%?, Bt =16

Thust is an isomorphism fronM“* to M?2 by definition. Whence, we know that; and
o, are equivalent. O

Such an isomorphism from M7t to M?2 induced by an automorphism of M is
called a lifted isomorphism af . Particularly, ifo; = o, = o, a lifted isomorphism from
M1 to M?2 is called alifted automorphisnof 7. Theorem &.1 enables one to get the
following result.

Theorem 6.2.2 An automorphisng of voltage map M with assignment— I’ is a lifted
automorphism of map Mif and only if every closed walk W with net voltagéV) = 1r
implies thato(¢(W)) = 1 in (M, o).

Furthermore, leM = (2,4, &?) be a map,I(; o) a finite group and < AutM, a
map group. We say that a voltage assignment.2, ; — I is locally .7-invariantat a
quadricellu if, for Yt € <7 and every walkV € T1(M, u), we have

ocW) =1 = o(x(W)) = 1r.

Particularly, a voltage assignmentlagally r-invariant for r € AutM if it is locally in-
variant respect to the groyp) generated by. Then Theorem &.2 implies the following
conclusion.

Corollary 6.2.1 Let M = (Z,4, &) be a map with a voltage assignment 2,5 — T,
n: M7 - Mand« < AutM. Thene/ < AutM? if and only ifo is locally o7 -invariant.

Notice that a magM = (2,4, &) is regular if|[AUtM| = |2, 4. We know the
following result by Corollary &.1.

Corollary 6.2.2 Let M be a regular map with a localljutM-invariant voltage assign-
mento : 2,5 — I'. Then M is also regular.

Proof Notice that the actioig : u, — ugn Naturally induced an automorphism on
fiber 7~(u) of M“ for Yu € , 5 andg € I'. Now all automorphisms df/ are lifted toM.
Whence]AutM?| = [[|AutM| = 4[Te(M) = | Z,5(M7)|. ThusM? is a regular map. [
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6.2.2 Map Exponent Group. Let M = (Z,4, &) be a map. An integekis anexponent
of M if the mapM¥ = (2, 5, Z) is isomorphic taV, i.e., there exists a permutatiern
P SUch thatra = at, 76 = pr andr2* = 1. Such a permutation € Aut%G[M] is
called an isomorphism associated with exporkent

If kis an exponent oM, then X is also a basic permutation ofi, s with Axioms
1 -2 hold. So gcd, pm(v)) = 1 forv € V(M). Consequentlyk must be a coprime with
the ordero(2?) of &, the least common multiple of valencies of verticedin

Obviously, 1 is an exponent &fl. On the other hand, the integet is an exponent
if M is isomorphic to its mirror £, 5, 2271). Now letl = k(modd(£?)) andk an exponent
of M. Then2' = &% Thusl is also an exponent dfl. Letk, | be two exponents
associated with isomorphismsd, respectively. Then

PXor = (P0r = 02't = 002,

i.e., kl is also an exponent dfl associated with isomorphisfir € Aut%G[M]. We
therefore find the following result.

Theorem 6.2.3 Let M be a map. Then all residue classes of exponmaoido(~?)) of M
form a group, and all isomorphisms associated with expaehiM form a subgroup of
Aut%G[M], denoted b¥Ex(M) andExo(M), respectively.

Now let (; o) be a finite group and let: I' —» Ex(M), ¥ : Exo(M) — Ex(M) be
homomorphisms with K& = AutM = A. Denote byA; = ¥~1(J), whereJd = (). Then
thederived map M* is a map Zyo gre, Z7*) with

%a/u-,z’ﬁ(r.z = %a,ﬁ X r

and
«9)
P — l—[ ((Xg, yg, e Zg)(alzg, e Cng, a,xg)) ,
(XY, 2)(az - ay,ax)eV(M), gel
a”™ = l_l (Xg» Xg), B = l—[ (X9 BXga(x)-
XE Z o p, ger Xe Zap, Q€T

A voltage assignment : Z,3(M) — I'is calledA;-uniformif for every u-based
closed walkwW on M with o(W) = 11 and every isomorphisme A;, one hasr(r(W)) =
1. Similarly, an exponent homomorphisnof M is Aj;-compatiblewith o if for every
u-based walkV and everyr € A;, one always hagr(W) = (o (r(W)). Then we have the
following result.
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Theorem6.2.4 Let M be an orientable regular map; : 2, 5(M) — I' a voltage assign-
ment and : I' - Ex(M) with (I') = J. Then M* is an orientable regular map i# is
A;-uniform andr is A;-compatible witho.

A complete proof of theorem.B.4 was established in [NeS2]. Certainly, the reader
can find more results on constructing regular maps by grapfé¢aS1]-[NeS2].

6.2.3 Group being That of a Lifted Map. A permutation group” action onQ is called
fixed-freeif I'y = 1 for Yx € Q. We have the following result on fixed-free permutation

group.
Lemma6.2.1 Any automorphism group of a map M= (2,5, &) is fixed-free onZ, g.

Proof Notice thatl' < AutM, we get thaf’y < (AutM)y for Vx € Z,5. We have
known that (AuM), = 1. Whence, there must be tHgt = 1r, i.e.,I' is fixed-free. [

Notice that the automorphism group of a lifted map has a als/gBubgroup deter-
mined by the following lemma.

Lemma6.2.2 Let M” be a lifted map of a voltage assignmeht 2,5 — I'. Thenl is
isomorphic to a fixed-free subgroupA@itM? on V(M?).

Proof For Vg € I', we prove that the induced acti@fi : 2,00 — 2o by
g" ! X — Xgn IS an automorphism of majd”.

In fact,g* is a mapping orZ,» z» and forvx, € Z,» g, we know thag” : Xg1, — X.

Now if for X,,yi € Zuo g0, Xn # Yi, We have that'(x,) = g°(ys). ThusXgh = Ygi
by the definition. So we must have= y andgh = gf, i.e.,h = f. Whencex, = vys,
contradicts to the assumption. Therefareis 1 -1 on .2, .

We prove that foxx, € 2, 4, g* is commutative withe”, 3” and 27”. Notice that

x O

g'a"X = g (aX)y = (@X)gu = aXgu = ag"(Xy);

9B (%) = I BNy = BNgqus = Bawey = B (%) = B9 (%)

and

g 2" (x)
= g

Sk

[ [0y 200z oy ax)(%)

XY, 2)(az - ay,ax)eV(M) ueG

9Yu = You



Sec.6.2 Group being That of a Map 223

l_[ (Xgus Yous * * *» Zgu)(@Zgu, - - -, @Ygu» @Xgu) (Xgu)

(XY, 2)(az - ay,ax)eV(M) gueG

P! (xq) = 279 (%)-

Thereforeg* is an automorphism of the lifted may”.
To see thay” is fixed-free orV (M), choose/u = (X, Vi, * -+ » Z)(@Zn, - - -, @Yh, @Xp) €
V(M),heT.If g’(u) = u, i.e.,

(Xgh, YQh, Tt Zgh)(a'Zgh, Tt aygh, alxgh) = (Xh’ yh’ Tt Zh)(aZh’ Tt Q’Yh, ath)’

assume thaky, = Wy, wherewy € {Xn, Yh, - - -, Zh, @%h, @¥h, - - -, @Zy}. By definition, there
must be thak = wandgh = h. Thereforeg = 1r, i.e.,Yg € I, g" is fixed-free orv(M).
Definer : g — g. Thent is an isomorphism between the action of elements on
oo g and the group” itself. O

According to Lemma 2.1, for a given magM and a groug” < AutM, we define a
quotient map MI" = (2Z,4/T", #/T) as follows.

%a,ﬁ/r = {Xle € %a,ﬁ}a
wherex" denotes the orbit df action onxin 2 and

PIT = [ (Y)Y ax)
(XY, 2 (az - ay,ax)eV(M)
sincel” action onZ,; is fixed-free.
Such a mapM may be not a regular covering of its quotieviyI". We have the
following result characterizing fixed-free automorphisrouyps of map orv(M).

Theorem 6.2.5 An finite group(T; o) is a fixed-free automorphism group of map M
(Zop, @) on V(M) if and only if there is a magM/I',I') with a voltage assignment
9 Zap/T — T such that M= (M/T)".

Proof The necessity of the condition is already proved in the Ler@ra&. We only
need to prove its gticiency.

Denote byr : M — M/I the quotient mapping frorivl to M/T". For each element of
n~1(x), we give it alabel. Choosee 7~1(x'). Assignits label : x — Xy, i.e.,1(X) = x,.
Since the group acting on2, 4 is fixed-free, ifu € 7~1(x") andu = g(x), g € T, we label
uwith [(u) = X. Whence, each elementin'(x") is labeled by a unique elementlin
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Now we assign voltages on the quotient " = (Z,4/I, Z/T). lf px=y,y €
n~}(y") and the label of is I(y) = y;,h € T, where,l(y*) = 1r, then we assign a voltage
honx'i.e.,,?(x) = h. We should prove this kind of voltage assignment is wellaon
which means that we must prove that fore 7=1(x") with I(v) = |, j € T, the label ofgv
isl(Bv) = jh. In fact, by the previous labeling technique, we know thatlt#bel ofgv is

1(Bv) = 1(8gx) = 1(g8x) = 1(gy) = l(ghy) = gh.

Denote byM' the labeled map on each element it®,, ;. WhenceM' = M. By the
previous voltage assignment, we also know tkiais a lifting of the quotient map/T
with the voltage assignmetit: 2, ;/I" — I'. Therefore,

M = (M/T)’.

This completes the proof. O
According to the Theorem.B.5, we get the following result for a group to be a map

group.
Theorem 6.2.6 If a groupI” < AutM is fixed-free on YM), then

1
MM+ > (~1+ ) = x(M),
m
med/(F(M/T))
Proof By the Theorem 2.5, we know that there is a voltage assignm@min the
guotient mapgVl/T" such that
M = (M/T)’.

Applying Theorem 61.9, we know the Euler characteristic of mhipis
1
X(M) = IN(M/D) + > (-1+ ). O
m
meO(F(M/T))

Theorem &.6 has some applications for determining the automorphisamof a
map such as those of results following.

Corollary 6.2.3 If M is an orientable map of genus p,< AutM is fixed-free on YM)
and the genus of the quotient mapIMs y, then
2p-2

C2y-2+ Y (-3
me(F(M/T))

Il
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Particularly, if M/T is planar, then

2p-2

2+ ¥ (1-3)
meo(FM/D)

Il =

Corollary 6.2.4 If M is a non-orientable map of genus §, < AutM is fixed-free on
V(M) and the genus of the quotient magIMs ¢, then
g-2

§-2+ % (1-3%)
med(F(M/T))

Il =

Particularly, if M/T" is projective planar, then

q-2

-1+ ¥ (1-3)
mea(F(M/T)

I =

By applying Theorem 2.5, we can also find the Euler characteristic of the quotient
map, which enables us to get the following result for a groeipdp that of map.

Theorem 6.2.7 If a groupI” < AutM, then

M)+ > (10ug)] + 10(g))) = T (M/T),
gel',g#1r
where,®,(g) = {vlve V(M), W = v}, ®¢(g) = {f|f € F(M), f9 = f}, and ifT" is fixed-free
onV(M), then

XM+ > 104(g)] = I (M/T).

gel",g#lr

Proof By the definition of quotient map, we know that

SAM/T) = orB(1) = = 3" [04(0)

gell

and
$1(M/D) = orby (1) = = )" [04(0)L

gell
by applying the Burnside lemma. SinEes fixed-free onZ, ; by Lemma 61.4, we also

know that
&(M)

e(M/T) = o
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Applying the Euler-Poincaré formula for the quotient mdpl’, we get that
2 [Py (9)l 2 [@(9)l

gel’ _ S(M) + gel’

= yv(M/D).
Iy ] M)

Whence,

D 10u(@) - &(M) + > [@4(9)] = [T (M/T).

gel’ gel’
Notice thatv(M) = |®y(1)l, ¢(M) = |@¢(1r)] andv(M) — (M) + #(M) = x(M). We find
that
M)+ > (10g)] + 124(Q)]) = [T (M/T).

gel,g#1r
Furthermore, it is fixed-free oriv(M), by Theorem &.5 there is a voltage assign-
ment¥ on the quotient ma/I" such thatM = (M/G)”. According to Theorem .7,
there must be

v(M)
M/T) = .
v(M/T) = <
Whence,}; |®,(g)l = v(M)and . (@ (g)| = 0. Therefore, we get that
gel’ gellg#1r
M)+ > [@4(9)] = Tl (M/T). O
gel,g#1r

Consider the action properties of grolipn F(M), we immediately get some inter-
esting results following.

Corollary 6.2.5 If T < AutM is fixed-free on YM) and transitive on M), for example,
M is regular andl” = AutM, then MT is an one face map and

x(M) = [l (M/T) = 1) + ¢(M).
Corollary 6.2.6 For an one face map M, If < AutM is fixed-free on YM), then
x(M) =1 = (M/T) - 1),

and|I. Particularly, |JAutM| is an integer factor of (M) — 1.

Remark 6.2.1 For a one face planar map, i.e., the plane tree, the only-freedauto-
morphism group on its vertices is the trivial group by the @ary 6.2.6.



Sec.6.3 Measures on Maps 227

§6.3 MEASURES ON MAPS

On the classical geometry, a central question is to deterifia measures on objects,
such as those of the distance, angle, area, volume, cueyaturFor maps being that of
a combinatorial model of Klein surfaces, we also wish toadtrce various measures on
maps and then enlarge its application to more branches dfemeittics.

6.3.1 Angle on Map. For a mapM = (Z,z, &), X € Z,p, the permutation pair
(X, 2X), (ax, P LX)} is called anangle of M incident with x introduced by Tutte in
[Tutl]. We prove that any automorphism of a map is a conformegbping and éirm the
Theorem 53.12 in Chapter 5 again in this section.

We define thengle transformatioi® of a mapM = (2,4, &) by

O = ]_[ (X, 2X).

Xe ,%y B

Then we have

Theorem 6.3.1 Any automorphism of map M (2,4, &) is conformal.

Proof By the definition, forvg € AutM we know that

ag = ga, fg = g8 and ¥ g = g&.

Therefore, foWx € 2,4,
©g(x) = (9(x), Z9(x))
and
90(x) = g(x, ) = (9(x), Z9(x))-
Whence, we get that fofx € 2, 5, ©9g(X) = gO(X). S0®g = g0,i.e.,gOg* = ©.
Since forYx € 2,4, 90g1(X) = (9(X), Z9(X)) and®(x) = (x, (X)), we get that

9(x), Z29(x) = (x, Z(x)).
Thusg is a conformal mapping. O

6.3.2 Non-Euclid Area on Map. For a voltage mapN], o) with a assignment- :
Zop(M) — T, itsnon-Euclid arequ(M, T') is defined by

WMD) = 2n( M)+ S (-1+ ).
meO(F(M))
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Particularly, since any mahl can be viewed as a voltage may,(lr), we get the non-
Euclid area of a mam

u(M) = u(M, 1r) = —2mx(M).
Notice that the area of a map is only dependent on the genhs stirface. We know
the following result.
Theorem 6.3.2 Two maps on one surface S have the same non-Euclid area.
By the non-Euclid area, we find tiRiemann-Hurwitz formuléor map in the fol-
lowing.
Theorem6.3.3 If I < AutM is fixed-free on YM), then

o u(M)
M=oy

wheret is constructed in the proof of the Theoré&®.5.

Proof According to the Theorem.B.6, we know that

—x(M)

M)+ ¥ (-1+y)
meO(F(M))

—2mx (M) __uM)
2n(—x(M)+ 3 (-1+3)  w(M/T,9)
meO(F(M))

I

As an interesting result, we can obtain the same result ®ontin-Euclid area of a
triangle as in the classicalftierential geometry following, seeing [Carl] for detalils.

Theorem 6.3.4 The non-Euclid area:/(A) of a triangle A on surface S with internal
anglesn, 0,0 is

uA)=n+0+o—n.

Proof According to the Theorems21 and 62.5, we can assume that there exists
a triangulationM with internal angleg, 6, o on S, and with an equal non-Euclid area on
each triangular disk. Then

u(M) = =2y (M)
—2n(v(M) — &(M) + ¢(M)).

d(M)u(A)
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SinceM is a triangulation, we know thaiePM) = 3¢(M). Notice that the sum of all the
angles in the triangles on the surfégés 2rv(M). We get that

¢(Mu(a) = -2r(v(M) - &(M) + $(M)) = (2v(M) - s(M))z
(M)
= D Im+0+0) -] = M) +0+0 ).
i=1
Whence,u(A) =n+ 60+ o0 —n. U

§6.4 A COMBINATORIAL REFINEMENT OF HURIWTZ THEOREM

6.4.1 Combinatorially Huriwtz Theorem. In 1893, Hurwitz obtained a famous result
on orientation-preserving automorphism groups'/Autf Riemann surfaceS ((BEGG1],
[FaK1] and [GrT1]) following:

For a Riemann surface S of genusSy> 2, Aut*S < 84(g(S) — 1).

We have established the combinatorial model for Klein sigsaespecially, the Riemann
surfaces by maps. Themhat is its combinatorial counterpart? What can we know the
bound for the automorphisms group of map?

For a given graplir, a graphical propertf is defined to be a family of its subgraphs,
such as, regular subgraphs, circuits, trees, stars, wheelsetM = (2, 4, &7) be a map.
Call a subseA of .2, 4 has the graphical properif its underlying graph of possesses
propertyP. Denote byA(P, M) the set of all theA subset with propertf in the mapM.

For refining the Huriwtz theorem, we get a general combinatoesult in the fol-
lowing.

Theorem6.4.1 Let M = (Z,4, ) be a map. Then forH < AutM,
[Vllv e V(M)] | H]

and
IHITIAIIAP, M),
wherg [a,b, - - -] denotes the least common multipleagb, - - -
Proof According to Theorem .2.1(3), for¥v € V(M), [H| = |H/[V"|. So| | |H.

Whence,
[IVlive V(M)] | [H.
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We have know that the action Bff on 2, 4 is fixed-free by Theorem.8.5, i.e.,Vx € Z,4,
there must bgH,| = 1. We consider the action of the automorphism grbupn A(P, M).

Notice that ifA € A(P, M), then forvg € H, A% € A(P, M), i.e., A" € AP, M).
Thus the action oH on A(P, M) is closed. Whence, we can classify the elements in
AP, M) by H. Forvyx,y € A(P, M), definex ~ y if and only if there is an element
0,0 € H such that® =y.

Since|H,| = 1, i.e.,|x"'| = |H|, each orbit oH action onZ, ; has a same lengthi|.
By the previous discussion, the actiontdfon A(P, M) is closed. Therefore, the length
of each orbit oH action onA(P, M) is |H|. Notice that there ar\||A(P, M)| quadricells
in A(P, M). We get that

IHI TAIAP, M)

This completes the proof. 0J

Choose the property to be tours with each edge appearing at most 2 in the Mhap
Then we get the following results by the Theore. &.

Corollary 6.4.1 Let7r; be the set of tours with each edge appearing 2 times. Then for

H < AutM,

-
IHI T (7ol 1 =T = % >1, TeTry,).

Let7r, be the set of tours without repeat edges. Then

T
H| | 2T, I =|T| = 7' >1, TeTry,).

Particularly, denote by(i, j) the number of faces in M with facial length i and singular
edges j, then

IHI1((2 - )¢, j).1, ] = 1),
where(a, b, - - -) denotes the greatest common divisor df.a- -.

Corollary 6.4.2 Let7 be the set of trees in the map M. Then fokHAutM,
IHIT (2,1 > 1),

where t denotes the number of trees with | edges.

Corollary 6.4.3 Let Vv be the number of vertices with valence i. Then fog AutM,

HI | Q@ivi,i > 1).
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6.4.2 Application to Klein Surface. Theorem 64.1 is a combinatorial refinement of the
Hurwitz theorem. Applying it, we can get the automorphismougr of map as follows.

Theorem 6.4.2 Let M be an orientable map of genugM) > 2 andI'* < Aut™M,
I' < AutM. Then

'] < 84(g(M)-1) and [[]< 168@(M) - 1).

Proof Define the average vertex valeng®) and the average face valeng@ev) of
a mapM by

1 ,
VM) = S

i>1

1 :
wherey(M),¢(M),¢(M) and¢; denote the number of vertices, faces, vertices of valence
and faces of valencg respectively. Then we know thatM)v(M) = ¢(M)p(M) = 2e(M).

M .
Whencey(M) = and¢(M) = ——. According to the Euler formula, we have

V(M)
that

V(M) = &(M) + ¢(M) = 2 - 29(M),

whereg(M), g(M) denote the number of edges and genus of the khag/e get that

2(g(M) -1)
e(M) = .
(1- v(iﬂ) B ﬁ

Choose the integeks= [v(M)] andl = [¢(M)]. We find that

2M) - 1)

2 2\ °
(L-%-7

e(M) <

Because of 1 E — Ig > 0, Sok >3, > k2_k2 Calculation shows that the minimum

2 2.1 : - ,
value of 1- KT is 21 and attains the minimum value if and only k() = (3,7) or
(7, 3). Therefore,

e(M < 42(g(M) - 1))

According to the Theorem.4.1 and its corollaries, we know thil < 4e(M) and if
I'* is orientation-preserving, thehi*| < 2e(M). Whence,

Il < 168Q(M) - 1))
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and
| < 84@Q(M) - 1)),

with equality hold if and only iT" = I'* = AutM, (k,I) = (3,7) or (7, 3). OJ

For the automorphism of Riemann surface, we have

Corollary 6.4.4 For any Riemann surfacs of genus g> 2,
49(S) + 2 < |JAut*S| < 84@Q(S) - 1)

and
89(S) + 4 < |AutS| < 168@Q(S) - 1).

Proof By the Theorems .B.11 and 4.2, we know the upper bound fphutS| and
|JAut®S]. Now we prove the lower bound. We construct a regular idap= (Zx, %) on
a Riemann surface of gengs> 2 as follows, wherd = 2g + 1.

<%|‘( = {Xl? X2? Y Xk’ CYX]_, a/XZ’ Y QXk,ﬁXl,ﬁxz, e ’Bxk? aﬁX]_, aﬁXZ? Y aﬁXk}

P = (X1, X, + 5 Xio OBX1, X, - -+, BXi) (B, * =+ B2, BX1, Xy - - -, X2, X1).

It can be shown thal is a regular map, and its orientation-preserving automermh
group Aut My =< &, >. Calculation shows that K = 0(mod2), My has 2 faces, and if
k = 1, My is an one face map. Therefore, By Theore®HL, we get that

|JAut™S| > 2¢(My) > 49 + 2,
and
|AutS| > 4¢(My) > 8g + 4. d

For the non-orientable case, we can also get the bound f@autoenorphism group
of a map.

Theorem 6.4.3 Let M be a non-orientable map of genu¢Nd) > 3. Then forl'* <
Aut™M,
I < 42(g'(M) - 2)

and forI" < AutM,
[l < 84@@'(M) - 2),
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with the equality hold if and only if M is a regular map with t&x valence3 and face
valence7 or vice via.

Proof Similar to the proof of the Theorem42, we can also get that
e(M <21@ (M) - 2))

and with equality hold if and only if T = AutM and M is a regular map with vertex
valence 3, face valence 7 or vice via. According to the Cargl64.3, we get that

T < 4e(M)

and
IC*| < 26(M).
Whence, fol™* < Aut™M,
Tt < 42(@'(M) - 2)
and forl" < AutM,
IT| < 84@'(M) - 2)

with the equality hold if and only iM is a regular map with vertex valence 3 and face
valence 7 or vice via. O

Similar to Hurwtiz theorem for that of Riemann surfaces, \&a also get the upper
bound of Klein surfaces underlying a non-orientable s@fac

Corollary 6.4.5 For a Klein surface’X underlying a non-orientable surface of genus
q=>3,
IAut™ K| < 42 - 2)

and
|JAutK| < 84— 2).

§6.5 THE ORDER OF AUTOMORPHISM OF KLEIN SURFACE

6.5.1 The Minimum Genus of a Fixed-Free Automorphism. Harvey [Harl] in 1966,
Singerman [Sinl] in 1971 and Bujalance [Bujl1] in 1983 coastd the order of an au-
tomorphism of a Riemann surface of gerug 2 and a compact non-orientable Klein
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surface without boundary of gengs> 3. Their approach is by using the Fuchsian groups
or NEC groups for Klein surfaces. Their approach is by applyingRemann-Hurwitz
equation, i.e., Theorem4l5. Here we restate it in the following:

LetI" be an NEC graph an@i” a subgroup of” with finite index. Then

()
u(I)

where,u(I') is the non-Euclid area of group defined by

=[I': 1],

kK s
u(G) = 2r{ng + k- 2+Z(1 ym)+1/2) > (1-1/n))]

i=1 j=1

if the signature of the group is

o =g M- m (Mg ), (M -+ Nk)}),

where,n = 2 if sign(o) = + andn = 1 otherwise.

Notice that we have introduced the conception of non-Euateh for the voltage
maps and have gotten the Riemann-Hurwitz equation in The6r26 for a group action
fixed-free on vertices of map. Similarly, we can find the miaimgenus of a fixed-free
automorphism of a map on its vertex set by the voltage assghtechnique on one of
its quotient map and get the maximum order of an automorpbfsmap.

Lemma6.5.1 Let N = H P, p1 < P2 < - < px be the arithmetic decomposition of an
integer N and m> 1, mlN fori= -, k. Then for any integer 5 1,

: 1 1, s
1-—)>2(1- )=l
;( )= 20- L5
Proof If s= 0(mod2), it is obvious that

° 1, 1 1
;(1- )z ;(1_ )= -2s

Assume that = 1(mod2) and there aren, # p1,j = 1,2,---,1. If the assertion is not
true, we must have that

1 : 1 1
(1- E)(l ~1) > ;(1— E) > (1- E)I'



Sec.6.5 The Order of Automorphism of Klein Surface 235

Whence,

1 1 1 1
1- N >A-N+1-— >121-),
( pl) ( pz) P1 ( pl)

a contradiction. Therefore, we get that

> 1 1,s
1-—)>2(1-—)l=l l
;( =) = 2= )13

Lemma 6.5.2 For a map M = (%4, &) with ¢(M) faces and N= H pl,pL < P2 <

- < pk, the arithmetic decomposition of an integer N, there e>asts|tage assignment
¥ Zop — Zn such that fovF € F(M), o(F) = p; if ¢(M) = O(mod?2) or there exists a
face iy € F(M) such that §F) = p, for YF € F(M) \ {Fo}, but dFo) = 1

Proof Assume thaff;, f,,---, f, are then faces of the maM, wheren = ¢(M). By
the definition of voltage assignment,fBx or x, a8x appear on one facg,1 <i < n
altogether, then they contribute#gf;) only with 9(x)9-*(x) = 17,. Whence, not loss of
generality, we only need to consider the voltageon the common boundary among the
facesf; andf; for 1 <i, j < n. Then the voltage assignment on thfaces are

¥(f1) = Xa2Xa3+ - - Xan,

¥(f2) = Xo1Xoz+ - - Xon,

P(Fn) = XXz - - - Xngn-1)-

We wish to find an assignment & which can enables us to get as many faces as possible
with the voltage of ordep;. Not loss of generality, we choos(f;) = 1, in the first.

To makedP (f,) = 1z, choosexys = X3, - -, Xen = X If we have gotter?™ (f)) = 1,

andi < nif n=0(mod) ori <n-1if n=1(mod), we can choose that

-1 -1 -1
Xi+1)(+2) = Xi(i+2)> Ki+1)(+3) = Xi(i+3)> " "> Xi+1n = Xin >

which also maké®(fi,1) = 1z,.

Now if n = O(mod2), this voltage assignment makes each fack< i < nsatisfying
that9® (f;) = 1z,. Butif n = 1(mod2), it only makesy® (f;) = 1, for 1 <i < n-1, but
¥(fn) = 1z,. This completes the proof. O
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Now we can find a result on the minimum genus of a fixed-freeraatphism of
map by Lemmas.6.1-6.5.2 following.

Theorem6.5.1 Let M = (2,45, #)beamapand N= p*---pX,p1 < p, <--- < pcthe
arithmetic decomposition of integer N. Then for any voltagsignmen® : 2,5 — Z,

(1) If M is orientable, the minimum genus,gof the lifted map M which admits a
fixed-free automorphism on(M?”) of order N is

G =14 NigM) -1+ 1= T 200,

meO(F(M)) b1
(2) If M is non-orientable, the minimum genus, gof the lifted map M which
admits a fixed-free automorphism o) of order N is

1 M
G = 2+ N{G(M) — 2+ 2(1 - )LMJ

Proof (1) According to Theorem.8.5, we know that

1
2-2g(M") = Ni2-2g(M) + > (-1+ ).
meO(F(M))
Whence,

20(M”) = 2+ N{2g(M) -2+ > (1- 1y,
meO(F(M))

Applying Lemmas 6.1 and 65.2, we get that

Omin = 1+ N g(M) 1+ (l - _)LMJ

(2) Similarly, by Theorem @.1, we know that

N 1
2-gM) =N{@-gM) + ) (-1+ )

meO(F(M))

Whence, .
Y — _—
oM”) =2+ NigM) -2+ > (1= ).

meO(F(M))

Applying Lemmas 6.1 and 65.2, we get that

G = 2+ N{G(M) — 2+ 2(1— 1)LMJ 0
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6.5.2 The Maximum Order of Automorphisms of a Map. For the maximum order of
automorphisms of a map, we have the following result.

Theorem 6.5.2 The maximum order fy of automorphisms g of an orientable map M
with genug 2 is
Nmax < 20(M) + 1

and the maximum order /)y, of automorphisms g of a non-orientable map with gen8s
IS

Ninax < 9(M) + 1,
where M) denotes the genus of map M.

Proof According to Theorem 2.3, denote by = (g), we get that

M)+ > (10ug)] + 10(g))) = T (M/T),

gel,g#1r
where, ®¢(g) = {FIF € F(M),F% = F} and®,(g) = {vv € V(M),\¥ = v}. Notice
that a vertex ofM is a pair of conjugacy cycles i¥?, and a face oM is a pair of
conjugacy cycles inZap. If g # 1r, direct calculation shows that(g) = ®¢(g?) and
®y(g) = Du(g?). Whence,

D 104g)l = (T - 1) Dy (g)

gel,g#1r

and

> 104(@) = (I - Dj@(g)l.

gel,g#1r

Therefore, we get that

X(M) + (IT] = D)ioy(g)l + (I - D@+ (9)] = M (M/T).

Whence,

X(M) = (10u(9)] + [D¢(9)]) = T (M/T) = (1Du()] + [P (9)))-
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If x(M/G) = (10(9)] +1P¢(9)]) = O, i.e. x(M/I') = |D\(g)] + |@¢(g)l > O, then we get
thatg(M) < 1 if M is orientable oig(M) < 2 if M is non-orientable. Contradicts to the
assumption. Thereforg(M/I') — (|®@,(9)| + |®+(g)]) # 0. Whence, we get that

_ (M) = (0u(g)l + [ (g))

X(M/T) = (|0u(9)] + [P¢(g)I)
Notice thatl'l, x (M) — (IDy(9) + P+ (9)]) andx (M/G) — (12.(9)| + [P+ (9)]) are integers. We
know that the functiotd (v, f; g) takes its maximum value g{M/I') - (|D,(9)|+|®+(Q)]) =
—1 sincey(M) < —1. Butin this case, we get that

Il

= H(v, f: Q).

Tl = [®y(Q)] + [@£(9) — x(M) = 1+ x(M/T) = x(M).

We divide our discussion into two cases.
Casel. M is orientable.

Sincey(M/T) + 1 = (|®.(9)| + |®¢(9)]) = 0, we know thaf(M/T') > —1. Whence,
x(M/T') =0 or 2. We get that

Il = 1+ x(M/T) = x(M) < 3-x(M) = 29(M) + 1.

That is, Nmax < 2g(M) + 1.
Case2. M is non-orientable.

In this case, sincg(M/T’) > -1, we know thajy(M/T) = -1,0,1 or 2. Whence,
we get that
I = 1+x(M/T) = x(M) < 3-x(M) =g(M) + 1.

This completes the proof. O

According to this theorem, we get the following result foe thrder of an automor-
phism of a Klein surface without boundary by the Theore®112, which is even more
better than the results already known.

Corollary 6.5.1 The maximum order of conformal transformations realizddylenaps M
on a Riemann surface of geru2 is 2g(M) + 1 and the maximum order of conformal
transformations realizable by maps M on a non-orientableiisurface of genus 3
without boundary is ¢M) + 1.



Sec.6.6 Remarks 239

The maximum order of an automorphism of map can be also detedby its un-
derlying graph as follows.

Theorem 6.5.3 Let M be a map underlying graph G and lg{(M, g), 0maxG, g) be the
maximum orders of orientation-preserving automorphismAutM and inAut%G. Then

OmadM, @) < 0maxdG, 9),

and the equality holds for at least one such vapnderlying graple.

The proof of the Theorem.b.3 will be delayed to the next chapter after we proved
Theorem 71.1. By this result, we find some interesting conclusions feiig.

Corollary 6.5.2 The maximum order of orientation-preserving automorpkisifra com-
plete mapk;,, n > 3is at most n.

Corollary 6.5.3 The maximum order of orientation-preserving automorphkisifra plane
tree7 is at most{7 | — 1 and attains the upper bound only if the underlying tree isaa st

§6.6 REMARKS

6.6.1 The lifted graph of a voltage grapls (o) with o : Xy (G) — I'is in fact a regular
covering of 1-complexG constructing dependent on a grodp €). This technique was
extensively applied to coloring problem, particularlg,dual, i.e., current graph for deter-
mining the genus of complete graply on surface. The reference [GrT1] is an excellent
book systematically dealing with voltage graphs. One cap &hd the combinatorial
counterparts of a few important results, such as those oRibmann-Hurwitz equation
andAlexander’s theoreron branch points in Riemann geometry in this book. Certainly
the references [Liul] and [Whil] also partially discusstagk graphs. A similar consid-
eration for non-regular covering space presents the faligywroblem:

Problem 6.6.1 Apply the voltage assignment technique for constructingnegular cov-
ering of graphs or maps.

6.6.2 The technique of voltage graphs and voltage maps is esgatidiscrete realiza-
tion of regular covering spaces with dimensional 1 or 2. Masults on covering spaces
can be found the combinatorial counterparts in voltage lggagr maps. For example,
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Theorem 6L.1 asserts that if : S — S is a covering projection, then for any afdn S
with initial point xo there exists a unique lifting ari¢ with initial point% in S. In voltage
graphs, we know its combinatorial counterpart following.

Theorem 6.6.1 Let W be a walk with initial vertex & V(G) in a voltage graph(G, o)
with assignmentr : Xy (G) - I'and ge I'. then there is a unique lifting of W that starts
at uy in G.

Certainly, there are many such results by finding the contbiiz counterparts, for
example in voltage graphs or maps for results known in tapoto geometry. The book
[MoT1] can be seen as a discrete deal with surface geomegrycombinatorics on sur-
face geometry. These results in Sections 4 and 5 are alscksuthesults. Generally, a
combinatorial speculation for mathematical science wikfiiy arrived at theCC conjec-
ture for developing mathematics discussed in the final chapt#igbook.

6.6.3 For a map i, o) with voltage assignment : .2, z(M) — T, itis easily to know
that the groupI(; o) is a map group oM action closed in each fiber*(x) for x €
Zop(M), l.e., T < AutM?. In this way, one can get regular maps in lifted maps. Such a
role of voltage maps is known in Theoren2@, which enables one to get regular maps by
voltage assignments. Similarly, the exponent groupMEx¢f map and the construction

of derived mapM“* also enables one to find more regular maps. The reader iseelfén
[Ned1] and [NeS1] for its techniques.

6.6.4 Theorem &.5 is an important result related the quotient map with thatadfage
assignment, which enables one to find relations betweeagmlgroup, Euler-Poincare
characteristic and fixed point sets. Theoren®8and 62.7 are such results. This theo-
rem is in fact a generalization of a result on voltage graploviong, obtained by Gross
and Tucker in 1974.

Theorem 6.6.2 Let.« be a group acting freely on a gragh and let G be the resulting
qguotient graph. Then there is an assignmerdf voltages ineZ to the quotient graph G
and a labeling of the vertices & by the elements of(®) x <7 such thatG = G” and
that the given action of7 on G is the natural left action of7 on G.

6.6.5 For applying ideas of maps to metric mathematics, variousose®n maps are need
to introduce besides angles and non-Euclid area discuss8ddtion 3. For example,
the length and arc length, the circumference, the volumetla@aturvature; - -, which
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needs one to speculate the classical mathematics by coimiasai.e., combinatorially
reconstruct such a mathematical science.

6.6.6 We have know that maps can be viewed as a combinatorial mbd&io surfaces
in Chapter 5. Usually, a problem isfiicult in Klein surface but it is easy for its counter-
part in combinatorics, such as those in Corollafy. B Further applying this need us to
solve the following problem.

Problem 6.6.2 Determine these behaviors of Klein surfaces S, such as aupdmsms
that can not be realizable by maps Mon S.

As we known, there are few results on Proble®Bin publication. But it is funda-
mental for applying combinatorial technique to metric negtiatics.



CHAPTER 7.

Map Automorphisms Underlying a Graph

A complete classification of non-equivalent embeddingsrapgG on sur-
faces or mapM = (2,4, &?) underlyingG requires to find permutation
presentations of automorphisms®@fon 2, 4. For this objective, an alter-
nate approach is to consider the induced action of semitgtanerphisms
of graphG(M) on quadricellsZ, 4. In fact, the automorphism group Aut
is nothing but consisting of all such automorphisgné+ that 297 = .
Topics covered in this chapter include a necessary afiitiemt characteris-
tic for a subgroup ofs being that of map and permutation presentations for
automorphisms of maps underlying a complete graph, a seguilr graph

or a bouquet. Certainly, these presentations of compleps masemi-regular
maps can be also applied to maps underlying whiéels C, or GRR graphs

of a finite group [; o). All of these permutation presentations are typical ex-
amples for characterizing the behavior of map groups, andbealso applied
for the enumeration of non-isomorphic maps in Chapter 8.
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§7.1 A CONDITION FOR GRAPH GROUP BEING THAT OF MAP

7.1.1 Orientation-Preserving or Reversing. Let G = (V,E) be a connected graph.
Its automorphism is denoted by A&it Choose the base set of maps underly@&tp be
X = E. Then its quadricells?;, s is defined by

Zap = |_Jix ax x Bapx,
xeX
where K = {1, a, 8, aB} is the Klein 4-elements group. F&g € AutG, aninduced action
g7+ of gon 2, is defined as follows:

For Vx e 2,4, if X3 =y, then defingax)? = ay, (8x)9 = By and(eBX)? = afy.

LetM = (Z,4, &) be a map. According to the Theoren88, for an automorphisrg €
AutM, letglym : U = Vv, u,ve V(M). If U = v, thengis called arorientation-preserving
automorphisnand if u¢ = v-1, such ag is called arorientation-reversing automorphism
For anyg € AutM, it is obvious thap| is orientation-preserving or orientation-reversing,
and the product of two orientation-preserving or orieotaieversing automorphisms is
orientation-preserving, but the product of an orientafo@serving with an orientation-
reversing automorphism is orientation-reversing.

For a subgroug™ < AutM, definel'* < I being the orientation-preserving sub-
group of H. Then it is clear that the index df* in I' is 2. Letv be a vertex with
V= (Xg, X2, -+, Xom)(@Xoy), - - -, @Xo, @X1). Denote by(v) the cyclic group generated lyy
Then we get a property following for automorphisms of a map.

Lemma7.1.1Letl’ < AutM be an automorphism group of map M. Théne V(M),

(1) If Yg e T, g is orientation-preserving, thdn, < (v) is a cyclic group;
(2) Ty < (V) x<a).

Proof (i) LetM = (Z,z. ). For any¥g € G, sinceg is orientation-preserving, we
know thatv" = v for Vv € V(M), h e I,. Assume

V= (X1, X, Xo) ) (@Xo)s @Xp()=1, * * +» ¥ X1).

Then

[(X1, X2, - - =, X)) (@Xo()s = =+ » X2, CYXl)]h = (X, X2, s X)) (@Xo)s =+ + » @ X, Xq).



244 Chap.7 Map Automorphisms Underlying a Graph

Therefore, ifh(x;) = X1, 1 < k < p(v), then

h = [(Xl’ X2? Tt Xp(V))(aXp(V)’ alxp(v)—l’ B alxl)]k = Vk

Now if h(X1) = aX,y)-k+1, 1 < K < p(Vv), then

h = [(X1, X2, - - -, Xo ) (@Xo(v)» X Xp)-1, - - ',axl)]ka = Va.

But if h = V¥a, we know that" = v* = v'1, i.e.,his not orientation-preserving. Whence,
h=V 1<k <p(v),ie., every elementif, is a power ofv. Let¢ be the least power of
elements if,. Thenl, = (\ﬁ) < (v is a cyclic group generated hy.

(2) Forvge G,V =y, i.e.,

[(Xl’ X2, 00, Xp)(axp7 axX,—1, ", axl)]g = (Xl’ X2, 000, Xp)(axp7 axX,—1," ", CZX]_).

Similar to the proof of (1), we know that there exists an iefreg 1 < s < p such that
g=Vv®org= Vvia. Consequenthg e (vyorge (V) «a, i.e.,

I < (V) x{a). O
Lemma7.1.2 Let G be a connected graph.Ilf< Autl’, andVYv € V(G), I, < (V) x (),

then the action of on 2,4 is fixed-free.

Proof Choose a quadricek € 2, 5. We prove thal'y = {14, ,}. Infact, ifg € T,
thenxd = x. Particularly, the incident vertaxis stable under the action gfi.e.,u? = u.
Let

u= (Xs y].’ Y yp(u)—l)(a'X, a’yp(u)—l’ Y CVyl),
then because df, < (u) x (@), we get that
X =Y1 =Y Yoer = Yot

and
(@X)? = ax, (ay1)? = ay1, - - -, (@Ypu-1)° = AYpu)-1,

thus for any quadricel, incident with the vertexi, €] = e,. According to the definition
of induced action Aus on 2, 5, we know that

(Bx)° = Bx, (BY1)? = BY1, - - -, (BYpw)-1)° = BYou-1
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and
(@BX)° = aBX, (aBy1)® = aBys, - - -, (aBYpw)-1)° = ABYpu)-1-

Whence, for any quadricefle 2,4, if the incident vertex of is w, then by the connect-
edness of grapls, there is a patiiP(u,w) = uwVv; - - - Vsw connecting the vertices and
w in G. Not loss of generality, we assume tiggf is incident with the vertex;. Since
(By«)? = Byk andl,, < (v1) X (@), we know that for any quadricedi, incident with the
vertexvy, €, = e,.

Similarly, if a quadricelle, incident with the vertex; is stable under the action gf
le., &,)? = &,, then we can prove that any quadriag||, incident with the vertex;,; is
stable under the action gf This process can be well done until we arrive the vewiex
Therefore, we know that any quadricel) incident with the vertexv is stable under the
action ofg. Particularly, we get thatd = y.

Thereforeg = 1r. Whencel'y = {1r}. O

7.1.2 Group of a Graph Being That of Map. Now we obtain a necessary andistient
condition for a subgroup of a graph being that an automonpli®up of map underlying
this graph.

Theorem 7.1.1 Let G be a connected graph. IIf < AutG, thenI" is an automorphism
group of map underlying graph G if and only if fév € V(G), the stabilizel, < (v)x{a).

Proof According to Lemma 4.1(jii), the condition of Theorem.Z.1 is necessary.
Now we prove its sfiiciency.

By Lemma 71.2, we know that the action df on 2, is fixed-free, i.e., forx
Zap: ITxl = 14;,. Whence, the length of orbit ofunder the action df is || = [[/|X'| =
I, i.e., for¥x e 2,4, the length of orbit o under the action af is [T'.

Assume that there areorbitsO,, O, - - -, Og in V(I') under the action df, where,

O1 = {ug, U, - -+, U,
Oz = {v1, V2, -+ -, i},
Os = {w1, W, - - -, W}
We construct a conjugatcy permutation pair for every venidke graphG such that their
product is stable under the action bf
Notice that forvu € V(G), because of’| = |T',||u’|, we know thatk,I,---,t] | .
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First, we determine the conjugatcy permutation pairs focheeertex in the orbiO;.
m-1

Choose any vertew; € O;. Assume that the stabilizéy, is {12; ,, 91,9201, - -, [1 Om-i},
i=1

where,m = |I'y,| and the quadricells incident with vertex is N(u;) in the graphG. We

arrange the elements N/(\lI) as follows.
Choose a quadricell} € l\/l@:) We applyl'y, action onu? andaUg, respectively.

-1
Then we get a quadricell s&t = {ug, g1(u), - -, rT11"[ Om-i(U3)} andaA; = {aUf, a1 (1)), - - -,
i=1
1
a”ﬁ Im-i(U3)}. By the definition of a graph automorphism action on its qicadls, we
i=1

m-1
know thatA; N aA; = 0. Arrange the elements iy asKi = U, 02(U3), - - -, TT Om-i(U3).
i=1
If I\T(DI) \ At JaA; = 0, then the arrangement of elementslﬁﬁﬁf) IS Ki If
I\/l(\df) \ A UaA; # 0, choose a quadricell? € N/(\l:II) \ AL U aA;. Similarly, apply-

m-1
ing the groupl,, acts onu?, we get thatA, = {U2, gy(Wd), - -, [ gm-i(W)} and A, =
i=1

m-1
{al, agy(W), -+, @ [] gm-i(U)}. Arrange the elements iy, (J A as
i=1

5 m-1 m-1
Al A =18 gu@), . [ | (U)W gu(W), - | | g (D).
i=1 i=1

If N(\uf)\(Al U AU AL U @Ap) = 0, then the arrangement of element#in J Az is
Ay U As. OtherwiseJ\T(UI)\(Al U AU aAL U @A) # 0. We can choose another quadri-
cellu§ € N(up) \ (AU AU @A U a@Az). Generally, If we have gotten the quadricell sets
A, Ay, -+, ALl <t < 2Kk and the arrangement of elementin themliU A, U e U A,
if Nu)\(AAUAU---UA UadALUaA U -+ - U aA) # 0, we can choose an element
u‘j € N(\uf) VALUA Y- UA UaAL U aA U -+ - U @A) and define the quadricell set

m-1
A= {Ug’ gl(ug)’ s l_l gm_i(U‘f)}
i=1

m-1
A1 = (o, age(U), -, a [ | g (U}
i=1

and the arrangement of elementsin; is

m-1
At = o), | | gma(ud).
i=1
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r+1
Now define the arrangement of elementg jmA; to be
j=1

r+1 r
A =AAR
j=1 i=1

Whence,
k k
N(un) = (A [ el JA)
j=1 j=1
andAy is obtained by the action of the stabiliz&; onu$. Atthe same time, the arrange-

—

K o k
ment of elements in the subsgt A; of N(u;) to beU A
j=1 P
j=1
We define the conjugatcy permutation pair of the vettgto be

ou, = (C)(aCa),

where

m-1 m-1 m-1
C = (U, U8, U5 Gu(W), Gu(W), -+ gu(u), - | [eud). [ [, ] Jwsy.
i=1 i=1 i=1

For any vertexy; € O, 1 < i < k, assume thdi(u,) = u;, whereh € G, we define the
conjugatcy permutation padgx, of the vertexy; to be

o4 =0, = (CM(aCta™).

SinceO; is an orbit of the actios onV(I'), then we get that

k k
(1_[ Qui)r = l_[Qui-
i=1 i=1

Similarly, we can define the conjugatcy permutation paiSov,, -0, " *»Ow;»
Ow, - * +» 0w, Of vertices in the orbit®,, - - -, Os. We also have that

| |
(l—[ QVi)F l—[ Ov;-
i=1 i=1
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Now define the permutation

k | t
2 = ([ |ew) x (| Jow) x---x ([ Jow).
i=1 i=1 i=1

Since allO,, O, - - -, Og are the orbits o¥/(G) under the action df, we get that

k | t

(| [ew) > (| [ > x(] Jew)
i=1 i=1 i=1
k | t

(l—[QUi) X (l_lei) XX (l_IQWi) =Z.
i=1 i=1

i=1

321"

Whence, if let magM = (2,5, &), thenI is an automorphism d¥l. OJ
For the orientation-preserving automorphisms, we knowdhewing result.

Theorem 7.1.2 Let G be a connected graph. If < AutG, thenI is an orientation-
preserving automorphism group of map underlying graph Gd anly if forvv € V(G),
the stabilize’, < (v) is a cyclic group.

Proof According to Lemma 2.1(i)), we know the necessary. Notice that the ap-
proach of construction the conjugatcy permutation paihengroof of Theorem.7.1 can
be also applied in the orientation-preserving case. We khatl" is also an orientation-
preserving automorphism group of migp O

Corollary 7.1.1 For any positive integer n, there exists a vertex transitivep M un-
derlying a circultant such that Zis an orientation-preserving automorphism group of
M.

By Theorem 71.2, we can prove the Theorenb& now.

The Proof of Theorem6.5.3

Since every subgroup of a cyclic group is also a cyclic growg know that any cyclic
orientation-preserving automorphism group of the gr&pis an orientation-preserving
automorphism group of a map underlyifidgpy Theorem 71.2. Whence, we get that

Omax(M, g) S Omax(G, g) |:|

Note 7.1.1 Gardiner et al. proved in [GNSS1] that if add an additiomaddition in The-
orem 71.1, i.e,I" is transitive on the vertices iB, then there is a regular map underlying
the graphG.
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§7.2 AUTOMORPHISMS OF A COMPLETE GRAPH ON SURFACES

7.2.1 Complete Map. A map is called acomplete mapf its underlying graph is a
complete graph. For a connected gr&hlthe notation€C(G), EN(G) and&-(G) denote
the embeddings df on the orientable surfaces, non-orientable surfaces aradlycsur-
faces, respectively. Fofe = (u,v) € E(G), its quadricellKe = {e ae, Be, aBe} can be
represented bile = {u'*, u¥-, v, W}

Let K, be a complete graph of order Label its vertices by integers 2, - - -, n. Then
its edge seti¢ij|l1<i,j<n,i# jij = ji}and

ZapKo) =i s1<i j<niz il 1<ij<nizj),

a= [ @i

1<i,j<n,i#j
=[] @mima-,in).
1<i,j<n,i#j
We determine all automorphisms of complete maps of anderd find presentations
for them in this section.
First, we need some useful lemmas for an automorphism of mdpced by an
automorphism of its underlying graph.

Lemma 7.2.1 Let G be a connected graph andsgAutG. If there is a map Me E-(G)
such that the induced actiori g AutM, then forV¥(u, v), (x,y) € E(G),

[19(u), 1°(v)] = [19(X), I°(y)] = constant

where, $(w) denotes the length of the cycle containing the vertex w iybke decompo-
sition of g.

Proof According to the Lemma.g.1, we know that the length of a quadricelt or
u'~ under the actiog” is [I9(u), 19(v)]. Sinceg* is an automorphism of map, therefogg,
is semi-regular. Whence, we get that

[19(u), 19(V)] = [19(X), I%(y)] = constant O

Now we consider conditions for an induced automorphism gb imathat of graph
to be an orientation-reversing automorphism of map.

Lemma7.2.2 If £ is an automorphism of map, théa = of.
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Proof Sinceéa is an automorphism of map, we know that

(E@)a = a(éa).
That is, éa = aé. O

Lemma 7.2.3 If ¢ is an automorphism of map M (Z, 4, ), thenéa is semi-regular on
Zop With order d¢) if 0(¢) = 0(mod2) and20(¢) if o(¢) = 1(mod?).

Proof Since¢ is an automorphism of map by Lemm&.2, we know that the cyclic
decomposition of can be represented by

£= ]_[(xl, Xo, +++, X (@Xe, @Xo, « -+, aX),
k

where,[] denotes the product of disjoint cycles with lengtk o(¢).
Therefore, itk = 0(mod?2), then

fa = l_l(xl, a'XZ, X33 Tt a’Xk)
k
and ifk = 1(mod2), then

o = [ (0 % Xa, -+, X X0, X, 0%, -+, @),
2k

Whence¢ is semi-regular acting o2, 4. O

Now we can prove the following result for orientation-resiag automorphisms of
maps.

Lemma 7.2.4 For a connected graph G, lek be all automorphisms ihutG whose
extending action onZ, 5, X = E(G) are automorphisms of maps underlying graph G.
Then forvé € K, o(¢*) > 2, &*a € K if and only if d¢*) = O(mod2).

Proof Notice that by Lemma 2.3, if £ is an automorphism of map underlying
graphG, thené*a is semi-regular acting o, g.
Assumet™ is an automorphism of malel = (2,4, &7). Without loss of generality,
we assume that
P =Ci1Cy---Cy,

whereC; = (X1, X2, -+, Xj;) iS @ cycle in the decomposition ¢fy) andx; = {(€?, €2,
oo, @) (a€l, €l - - -, a€?)) and.

é:lE(G) = (ell’ e12, Tty eS1)(e21’ e22’ Tty e232) tte (Ql, QZa Tty aS|)-
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and
& =C(aCla),

where,C = (€1, €12, -, €)(€21, €2, . €5) - -~ (81,82, -+, 8g). NOw since” is an
automorphism of map, we getthgit=s, =--- = § = 0(¢*) = s.
If o(¢) = O(modR), define a mapl* = (£, 4, &%) with

P =CiCy---CL,

where,Ci' = (X3, X, -5 X)), X = (€1, €+, € )(€f;, @€, - -+, €))} and € = €y,
Takee; = ey if = 1(mod2) ande]; = aeyq if = 0(mod2). Then we get thav® = M.
Now if o(&*) = 1(mod2), by Lemma 72.3, o(¢é*a) = 20(¢*). Therefore, any chosen
quadricells €%, €2, - - -, €' adjacent to the vertex, fori = 1,2, ---, n, wheren = |G|, the
resultant mapgM is unstable under the action &&. Whence¢£a is not an automorphism
of map underlying grapf®. O

7.2.2 Automorphisms of Complete Map.We determine all automorphisms of complete
maps of orden by applying the previous results. Recall that the automisrplgroup of
Kn is the symmetry group of degreethat is, AuK, = Sy(x,).

Theorem 7.2.1 All orientation-preserving automorphisms of non-oridsigacomplete
maps of order r= 4 are extended actions of elements in

& &

(s3] Yy

and all orientation-reversing automorphisms of non-otaie complete maps of order
n > 4 are extended actions of elements in

a& a& a&1,12)

[(29)%]° (292’

where,&, denotes the conjugatcy class containing elengeint the symmetry group of
degree n.

Proof First, we prove that an induced permutatgnon a complete map of order
n by an elemen¢ € Sy, is a cyclic order-preserving automorphism of non-orielgab
map, if and only if

ce&a| J&,ony
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Assume the cycle index @fis [1%, 2, ..., nk]. If there exist two integerk;, k; # O
andi, j > 2,i # j, then in the cyclic decomposition &f there are two cycles

(U, Up, ..., ) and  {n, Vo, ..., V)).

Since
[€(uD), F(up)] =i and  [5(va), 5(v2)] = |

andi # j, we know that£* is not an automorphism of embedding by Theore®&%
Whence, the cycle index gfmust be the form of [4, S].

Now if k > 2, let (u), (v) be two cycles of length 1 in the cycle decompositiorF of
By Theorem 33.8, we know that

[1€(u), (V)] = 1.

If there is a cycle\, ...) in the cyclic decomposition gf whose length greater or equal to
2, we get that

[1£qu), IFw)] = [1, I¥W)] = 1¥(w).

According to Lemma 2.1, we get that®(w) = 1, a contradiction. Therefore, the cycle
index of¢ must be the forms ofd] or [1, S]. Whence,sl = nor sl+ 1 = n. Calculation
shows that = g orl = ”;51 That is, the cycle index aof is one of the following three
types 17, [1, s”;sl] and [s¢] for some integes > 1.

Now we only need to prove that for each elemém & . ... and&, »,, there exists

[1s"5] [s3]’
an non-orientable complete map of ordern with the induced permutatiofi being its
cyclic order-preserving automorphism of surface. Theuwdismon are divided into two

cases.

Case 1. &€&y

Assume the cycle decomposition®beingé = (a,b,---,¢)--- (X, Vy,---,2) --- (U, V,
---,W), where the length of each cycleksand 1< a,b,---,¢c, Xy, ---,ZU,v,---,w < n.

In this case, we construct a non-orientable complete Mag (Xi,/_;’ 1) by defining

%jﬁz{i”:1si,jsn,i(j}U{ij‘:lsi,jsn,i;tj},

P = [ (CHN@C(X) ),

Xe{ah,-,C,o, XY, Z UV, -+, W}
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where
C(X) = (0@, -+, X, oo, X X0 W e XV O B LX),
x* denotes an empty position and
aC(X) ra = (O, XN, X, X X, X X X, ).

It is clear thaﬂ\/lf* = M;. Thereforeg* is an cyclic order-preserving automorphism

of mapM;.
Case 2. e S[l’sn;sl]

We assume the cyclic decompositionsédieing that

E=(ab,...0)..(XY,...2..(uV,.., W)t),

where, the length of each cycle ksbeside the final cycle, and ¥ a,b...c,x,y...,Z
uVv,..., W, t < n. Inthis case, we construct a non-orientable completekhap (2 2,, %)

B’
by defining
2 =( i j<niz i 1<ijnizj),
P, = (M)A ™) [ (CH)CX ),
xe{a,b,...,.C....,X.y,...ZUV,...,W}
where

A — (ta+ tX+ tU+ tb+ ty+ tV+ tC+ tZ+ tW+)
aAla = (8,1, 0, L, L, L 1),
C(X) = (T, .o, X, o X X X, L, L, LX)

and
aC(X)ra = O, XY, X, o X, X XX X L),

It is also clear thaMg* = M,. Therefore¢* is an automorphism of a mag, .

Now we consider the case of orientation-reversing autotmsms of complete maps.
According to Lemma 2.4, we know that an elemeé&t, whereé € Sy, is an orientation-
reversing automorphism of complete map only if,

teé

KT (@20 ]’
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Our discussion is divided into two parts.

Cases. ng=n.

Without loss of generality, we can assume the cycle decoitipoof ¢ has the
following form in this case.

E=(L2- KK+ Lk+2- 2k (N—Kk+Ln-—K+2--,n).

Subcase3.1 k= 1(mod2) andk > 1.

According to Lemma 2.4, we know that*a is not an automorphism of map since
o(¢*) = k = 1(mo?).
Subcase3.2 k= 0(mo).

Construct a non-orientable map; = (273, 9%3), whereX® = E(K,) by

a,pB’
Zs= || CO)eci)e),
i€{1,2,--,n}
where ifi = 1(mod?2), then
in—k+2+ i

C(I) _ (i1+ ik+1+ in—k+1+ 2+
- ’ ’ ’

I I N AR BN L ,
Q’C(i)_la = (il_, in_’ cee i2k—’ ik—’ e ik+1—)
and ifi = 0(mod2), then

H s1- sk+1- n—k+1- ;2- sN—Kk+2— . ke 12k -
C(I):(I N R N "',I*"',| S celd )’

CYC(i)_]'CY — (il+, in+’ . i2k+, ik+, . ik+1+),

where,i" denotes the empty position, for examplée, @+, 23, 2%, 25) = (2%, 23,24, 25). It
is clear that@g" = 3, that is,éa is an automorphism of majds.

Case 4. Ny # n.

Without loss of generality, we can assume that

& = (L2, KK+Lk+2---,n)---(m—-k+1,n—-K+2,---,ng)
X (Mm+Ln+2,---,m+2kMN+2k+1,---,ng +4k)---(n—2k+1,---,n)

Subcased.l k= 0(mod2).
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Consider the orbits of?t andn; + 2k + 1** under the action of¢a), we get that
lorb((1%)<*)| = k

and
lorb(((ny + 2k + 1))<>)| = 2k.

Contradicts to Lemma.Z.1.

Subcase4.2 k= 1(mod2).

In this case, ik # 1, thenk > 3. Similar to the discussion of Subcasé,3ve know
thatéa is not an automorphism of complete map. Wherkce,1 and

& € Epm om).
Without loss of generality, assume that
E=DR)---(n)(Mm+Ln+2) (N +3,n +4)---(Ng+ N2 —1,ng + ny).
If N, > 2, and there exists a may = (2,4, &), assume a vertex in M being
vp = (L, e L gl (ghe qhee L gl
where |y € {+2,-2,+3,-3,---,+n,—n} andly; # |4 if i # j. Then we get that
(Vo) = (L2, 2 a2l 2l 1) 2y,

Whence,£a is not an automorphism of malgd, a contradiction. Thereforey, = 1.
Similarly, we can also get that = 2. Whence¢ = (1)(2)(34) anch = 4. We construct a
stable non-orientable mayl, under the action ofaby defining

Ma = (2455 Pa),
where,
P, = (12+’ 13+, 14+)(21+’ 23+ 24+)(31+’ 32+ 34+)( AL+ 42+, 43+)
X (177,1%,1%) (2%, 2+, 2%)(3Y, 3%, 3) (41, 4%, 47).

Therefore, all orientation-preserving automorphismsui-nrientable complete maps
are extended actions of elements in

8 8 n-1

(s3] “ns"
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and all orientation-reversing automorphisms of non-aable complete maps are ex-
tended actions of elements in

g, a& a&p1,1,.2)-

@951 Mgk
This completes the proof. O
According to the Rotation Embedding Scheme for orientabibexding of a graph,
presented by H&er firstly in 1891 and formalized by Edmonds in [Edm1], areatable
complete map is just the case of eliminating the sigand - in our representation for
complete maps. Whence, we get the following result for aoigmism of orientable

complete maps.

Theorem 7.2.2 All orientation-preserving automorphisms of orientabtarplete maps
of order n> 4 are extended actions of elements in

& &

(s3] s

and all orientation-reversing automorphisms of orieneabbmplete maps of ordern4
are extended actions of elements in

a& a& a&1,12)

[(29)%]’ (292]’

where,&, denotes the conjugatcy class containthig Sy ).

Proof The proof is similar to that of TheoremZ/1. For completion, we only need
to construct orientable mamﬂio,i = 1,2,3,4 to replace non-orientable map4,i =
1,2, 3,4 in the proof of Theorem.2.1. In fact, for orientation-preserving cases, we only
need to takeV?, MJ to be the resultant maps eliminating the sigmand - inM;, M
constructed in the proof of Theoren27l. For the orientation-reversing cases, we take
M = (E(Kn)ap, 225) with

25= ] 0.
i€{1,2,---,n}
where, ifi = 1(mod?2), then
C(l) — (Il ik+l in—k+l i2 in—k+2 ii* ik i2k In)
and ifi = 0(mod2), then
C(l) — (Il ik+l in—k+l | in—k+2 ii* ik I2k in)—l
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wherei™ denotes the empty position aMf) = (E(K4), s, %4) with
94 — (12, 13, 14)(21, 23, 24)(31’ 34, 32)(41, 42, 43)

It can be shown that\°)¢* = M for i = 1,2, 3 and 4. O

§7.3 MAP-AUTOMORPHISM GRAPHS

7.3.1 Semi-Regular Graph. A graph is called to be semi-regular graphf it is simple
and its automorphism group action on its ordered pair ofcadjavertices is fixed-free,
which is considered in [Maol] and [MLT1] for enumerating itsn-equivalent embed-
dings on surfaces. A map underlying a semi-regular graphlisa&to be asemi-regular
map We determine all automorphisms of maps underlying a seguHar graph in this
section.

Comparing with the Theorem 1.2, we get a necessary andistient condition for
an automorphism of a graph being that of a map.

Theorem 7.3.1 For a connected graph G, an automorphigra AutG is an orientation-
preserving automorphism of non-orientable map underlygreph G if and only if¢ is
semi-regular acting on its ordered pairs of adjacent vessic

Proof According to Theorem 8.5, if £ € AutG is an orientation-preserving auto-
morphism of magM underlying graplt, thené is semi-regular acting on its ordered pairs
of adjacent vertices.

Now assume thag € AutG is semi-regular action on its ordered pairs of adjacent
vertices. Denote b¥ly), ¢le), the action of¢é on V(G) and on its ordered pairs of
adjacent vertices, respectively. By conditions in thigtleen, we can assume that

flV(G):(a-,b,'",C)”’(g,h,"',k)'"(X,y,"',Z)
and
§|E(G)ﬂ :Cl...Ci...Cm,

where, lets, = {a,b,---,c}|, - -+, sy =1{g, h, - - -, K}|, - - -, sy = [{X, Y, - - -, Z}], thens,|C(a)| =
- = §IC(g)l = - -+ = sIC(X)], and C(g) denotes the cycle containgg &l and

Cl:(al’bl,...,Cl’az,bz,...,CZ’...,aSa’bSa’...’Csa),
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Now for V¢, & € AutG, we construct a stable may = (2,5, &) under the action
of ¢ as follows.
X =E®)

and

7=]]]caech.

geTy xeC(g)

Assume that = £7(g), and

Ne(9) = (9%, 9%, ---, g%}

Obviously, all degrees of vertices @(g) are same. Notices thély, ) is circular acting
on Ng(g) by Theorem 71..2. Whence, it is semi-regular acting dla(g). Without loss of
generality, we assume that

e = (0%, 0%, - -, go) (@™, g2, - - -, g%) - - - (=2, g2 .. ge),
where,| = ks. Choose
Cg — (gzl+, gzs+1+, cee gz(k—l)s+1+’ gZZ+’ gzs+2+, cee gzs+, gZZS, cee ngs+)-

Then,
CX - (le+ XZS+1+ e Xz(k—l)s+1+ XZZ+ XZS+2+ V. XZS+ XZZS e le<s+)
where,
i+ froz+
X = E(g"),
fori=1,2,---,ks and

a'C;l _ (CYX21+, @)X )OS gy BT xS aXZkSJr),

Immediately, we get thamé = éMét = M by this construction. Whencé, is an
orientation-preserving automorphism of misip O
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By the rotation embedding scheme, eliminatingn each quadricell in Tutte’s rep-
resentation of embeddings induces an orientable embeddiderlying the same graph.
Since an automorphism of embedding is commutative witndg, we get the follow-
ing result for the orientable-preserving automorphismerggntable maps underlying a
semi-regular graph.

Theorem 7.3.2 If G is a connected semi-regular graph, then #f € AutG, £ is an
orientation-preserving automorphism of orientable mapenying graph G.

According to Theorems.3.1 and 73.2, if G is semi-regular, i.e., each automor-
phism acting on the ordered pairs of adjacent vertices is fixed-free, then every auto-
morphism of graplG is an orientation-preserving automorphism of orientabég rand
non-orientable map underlying gragh We restated this result in the following.

Theorem 7.3.3 If G is a connected semi-regular graph, then #f € AutG, £ is an
orientation-preserving automorphism of orientable map @on-orientable map under-
lying graph G.

Notice that if¢* is an orientation-reversing automorphism of map, thgnis an
orientation-preserving automorphism of the same map. Byrha 72.4, if 7 is an auto-
morphism of map underlying a gra@ thenra is an automorphism of map underlying
this graph if and only ifo(r) = 0(mod2). Whence, we have the following result for
automorphisms of maps underlying a semi-regular graph

Theorem7.3.4 Let G be a semi-regular graph. Then all the automorphismsiehtable
maps underlying graph are

g”* andah|*=#, g, h e AutG with ah) = 0(mod2)
and all the automorphisms of non-orientable maps undeglgiraph G are also

gl”** andah|”=#, g, h € Autl” with o(h) = 0(mod2)

Theorem 73.4 will be used in Chapter 8 for the enumeration of maps on sasfa
underlying a semi-regular graph.

An circulant transitive graph of prime order is Cayley gr&py(Z, : S), B.Alspach
completely determined its automorphism group as folloMs(]):
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If S =0, orS =2Z, thenAut(Cay(Z, : S)) = X, the symmetric group of degree p,
otherwise,
Aut(Cay(Z, : S)) = {Tapla€ H,b e Z},
where T, is the permutation on Zwhich maps x to axb and H is the largest even order
subgroup of Z such that S is a union of cosets of H.

We get a corollary from Theorem34 for circulants of prime order.

Corollary 7.3.1 Every automorphism of a circulant graph G, not be a completply,
with prime order is an orientation-preserving automorphisf map underlying graph G
on orientable surfaces.

Proof According to Theorem.3.4, we only need proving that each automorphism
6 = ax+ b of the circulant graph Cayf, : S), Cay{, : S) # K" is semi-regular acting
on its order pairs of adjacent vertices, wheres a prime number. Now for an ag? =
(9,0 € A(Cay(Z, : S)), whereA(G) denotes the arc set of the graphwe have that

(09 = (ag+ b)>o?;
(gsg)92 — (a(ag+ b) + b)a(asg+b)+b — (azg +ab+ b)azsg+ab+b;

(gsg)é)o(a) _ (ao(a)g + 2%@1p 4 g0@-2p 4 ... 4 b)ao(a)sg+a°(a)*lb+a°(a)*2b+---+b
ao(a)b - 1 o(a) a%@p-—
= (@g+ ﬁ)a Dsgr ST — g9,

whereo(a) denotes the order @& Thereforeg is semi-regular acting on the order pairs
of adjacent vertices of the graph Cay( S). O

For symmetric circulant of prime order, not being a compbtgigph, Chao proved
that the automorphism group is regular acting on its ordies phadjacent vertices([Chal]).
Whence, we get the following result.

Corollary 7.3.2 Every automorphism of a symmetric circulant graph G of prorger
p, G # K,, is an orientation-preserving automorphism of map on daéfe surface
underlying graph G.

Now letsbe an even divisor aj— 1 andr a divisor ofp—1. ChooseH(p,r) =< a >
,t € Z; be such that? € —H(p, r) andu the least common multiple afand the order of
tin Z;. The graptG(pg; r, s, u) is defined as follows:

V(G(pa 1, s u)) = Zg X Z, = {(i, X)li € Zg, X € Z,)}.
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E(G(pqr, s, u)) = {((i.X), (j,y))A € Z*such thatf —i = &,y — x e t'H(p, r)}.

It is proved that the automorphism group G{pg;r, s, u) is regular acting on the
ordered pairs of adjacent pairs in [PWX1]. By TheorerB.4, we get the following
result.

Corollary 7.3.3 Every automorphism of graph(@g; r, s, u) is an orientation-preserving
automorphism of map on orientable surface underlying gr@gpaq; r, s, u).

7.3.2 Map-Automorphism Graph. A graphG is a map-automorphism grapif all
automorphisms o6 is that of maps underlying grapgB. Whence, every semi-regular
graph is a map-automorphism graph. According to Theoreth$-7.1.2, we know the
following result.

Theorem 7.3.5 A graph G is a map-automorphism graph if and only if for e V(G),
the stabilizer(AutG), < (V) x {(a).

Proof By definition, G is a map-automorphism graph if all automorphismszof
are automorphisms of maps underlyi@gi.e., AuiG is an automorphism group of map.
According to Theorems.Z.1 and 71.2, we know that this happens if and only if for
Yv e V(G), the stabilizer (AUB), < (V) X {(a). O

We therefore get the following result again.

Theorem 7.3.6 Every semi-regular graph G is a map-automorphism graph.

Proof In fact, we know that (AuB), = 1y < (V) X (@) for a semi-regular grapB.
By Theorem 73.5, G is a map-automorphism graph. O

Further application of Theorem36 enables us to get the following result for vertex
transitive graphs.

Theorem 7.3.7 A Cayley graph X= Cay( : S) is a map-automorphism graph if and
only if (AutX)y,. < (S), where(S) denotes a cyclic permutation on S. Furthermore, there
is a regular map underlyin@ay( : S) if (AutX),. < (S).

Proof Notice that a Cayley graph Cdy( S) is transitive by Theorem.3.1. For
Vg, h € V(Cay( : S)), such a transitive automorphismis= g*oh: g — h. We
therefore know that (Ax)y =~ (AutX), for g,h € V(Cay( : S)). Whence X is a map-
automorphism graph if and only if (AM);. < (S) by Theorem 73.6. In this case, there is
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a regular map underlying Cdy( S) was verified by Gardiner et al. in [GNSS1], seeing
Note 71.1. O

Particularly, we get the following conclusion for map-amtarphism graphs.
Corollary 7.3.4 A GRR graph of a finite groufd’; o) is a map-automorphism graph.

Corollary 7.3.5 A Cayley magCay!(I'" : S,r) is regular if and only if there is an auto-
morphismr € Autl” such thatr|s =r.

Proof This is an immediately conclusion of Theorem4.B and 73.7. O

A few map-automorphism graphs can be found in TakdelZollowing.

G AutG | Map-automorphism Graph?
Pn Z; Yes
Cn Dy Yes
Pnx Py | Zy X2 Yes
CyaxPy, | Dyx 2o Yes
Table 7.3.1

§7.4 AUTOMORPHISMS OF ONE FACE MAPS

7.4.1 One-Face Map. A one face majs such a map just with one face, which means
that the underlying graph of one face maps is the bouquetsreidre, for determining
the automorphisms of one face maps, we only need to detetimen@utomorphisms of
bouquets, on surfaces. There is a well-know result for automorphishasrmap and its
dual in topological graph theory, i.e., the automorphisougrof map is the same as its
dual.

A map underlying grapiB, for an integem > 1 has the forn$s, = (2,5, &) with
X =E(Bn) = {e1, &, --,e} and

‘@ﬂ = (Xl’ X2’ Y XZH)(alxl, a'XZm Y XZ),

where,x; € X, X or X and satisfying Axioms 1 and 2 in Sectior2®f Chapter 5. For
a given bouqueB, with n edges, its semi-arc automorphism group is

Aut% Bn = Sn[Sz].
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From group theory, we know that each elemerBjfiS,] can be represented bg;hy, hy,
---,hp)withge Spandh; € S, = {1,aB}fori = 1,2,---,n. The actionof@; hy, h,, - - -, hy)
on a mapB, underlying grapiB, by the following rule:

lf X € {Q, CVQ,,BQ,CV,BQ}, then(g, hl’ h2’ Y hﬂ)(x) = g(h|(X))

For example, ifh, = B, then, @;hy, hy,---,h))(€) = aBg(e), (g;hs, hy, - - -, hy)(ee)

= pg(er), (g hi, hy, - - -, hn)(Ber) = ag(er) and @; ha, hy, - -+, hn)(eBer) = g(er).
The following result for automorphisms of a map underlyimgah B, is obvious.

Lemma 7.4.1 Let(g; hy, hy, - -, hy) be an automorphism of ma®, underlying a graph
B,. Then

(g’ hl? h2? T, hl’l) = (Xl’ X2’ ceey in)k
and if (g; hy, hy, - - -, hy)a is an automorphism of mag,, then

(9 he .-+ M) = (X, X, -+, Xan)"

for some integer KL < k < n, where xe {e,&,---,&,},i = 12,---,2nand x # X; if
I # .
7.4.2 Automorphisms of One-Face Map.Analyzing the structure of elements in group

Sh[Sy], we get the automorphisms of maps underlying grBpiry Theorems 8.1 and
7.3.2 as follows.

Theorem7.4.1 Let B, be a bouquet with n edgesferi = 1,2, ---,n. Then the automor-
phismgg; hy, hy, - - -, hy) of orientable maps underlying,Bor n > 1 are respectively
hl = 1?' = 1’2"“7n;

n/k
(02) g€ 8“&] andif g= ﬂ(il,iz,'--ik), where j € {1,2,---,n},n/k = 0(mod2),

(1) g€ &

i=1
thenh, = (1,08),i=12,---,gand h, =1 for j > 2;
2s (n-2kg)/2k
(03) g€ 8[kzs,(2k)n__22khs] and if g= l—l[(ilsiZ""ik) l_ll (ejl’ejz""’ejZk)’ where
1= ]=
ij,€, € {1,2,---,n}, thenh;, = (L,ep), i = 1,2,---,shy =1 forl > 2and h, =

1fort=12---, 2k,

and the automorphisn{g; hy, h,, - - -, hy) of non-orientable maps underlying,Born > 1
are respectively

(N1) ge& o, hi=11=21,2---,n;
[Kk

]’



264 Chap.7 Map Automorphisms Underlying a Graph

n/k
(N2) g€ 8“&] and if g= l_l(il,iz, ---1x), where i € {1,2,---,n},n/k = 0(mod2)
i=1
thenh;, = (1, aB), (1, 8) with at Ielastoneii;;1 =(@.pfori=12-.-,gandh, =1forj>

2;
2s (n-2kg)/2k

(N3) g e 8[kzs,(2k)n__22kk_s] and if g = l_ll(il’ i2, k) l—l[ (eil’ejz’ T ej2k)’ where
1= =
ij,e, € {1,2,---,n}, then h, = (1, eB),(1,B) with at least one f = (1,8) fori =

1,2,---,sandh =1forl >2andh, =1 t=12---,2k where&, denotes the
conjugacy class in symmetry groupg, containing the elemerst

Proof By the structure of grouf®,[S;], it is clear that the elements in the cases
(1), (2) and (3) are all semi-regular. We only need to construcbr@entable or non-
orientable mamB, = (Z.zs, Zn) underlyingB, stable under the action of elements in

each case.
n/k
(1) g= n(il,iz,---ik) andh; = 1,i =1,2,---,n, wherei; € {1,2,---,n}.
i=1
Choose

whereK = {1, a,, o} and

with

n n n
Cl = ( 11’ 21’ ) (E)l? aﬁll’ alﬁzl’ ) aB(E)l’ 12’ 22’ ) (E)Z’

n n n
(%812, aﬁzz’ Y QB(E)Z’ Y 1k’ 2k’ Y (E)k? aﬁlk? aﬁlk? Y aﬁ(E)k)

Then the maiB? = (%afﬁ, 2Y)is an orientable map underlying graBhand stable under
the action of ¢; hy, hy, - - -, hy).

For the non-orientable case, we chose

n n n
Cl = (11? 21’ S (E)l’ﬁll’ﬁzl? e ’ﬁ(E)l’ 12’ 22’ Y (E)Z’

312’3227 T ’ﬁ(E)Z’ B lk’ 2k’ B (E)k’ﬁlk’ﬁlb e ’ﬁ(E)k) .

Then the maB; = (2.}, #4) is a non-orientable map underlying graBhand stable

under the action ofgf; hy, hy, - - -, hy).
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n/k
(2) g= l—[(il,iz,---ik), hi = (1.B) or (1,ap),i = 1,2,---,n, } = 0(mod2), where
i=1

i e{l,2-n.
If by, = (Lap)fori=1,2---,¢andh, = 1fort> 2, then
n/k
(G hw ho, - ) = | (i, 0B, -+~ aBing v, i, -+, ).

i=1

Similar to the case of (1), le2 2, = 2.}, and
P2 = CyaCrta™)
with
n n
Co= (11, 2,0, (E)l, aply, af2y, - - -, CV,B(E)z, afly, afZy,
n n n n
s aﬁ(E)ks a’Blls aﬁzls Y aﬁ(E)l’ 123 22’ ) (E)23 ) 1ka 2ka ) (E)k) .

Then the maB; = (2.7, #7) is an orientable map underlying graBhand stable under
the action of §; hy, hy, -- -, h,). For the non-orientable case, the construction is similar
Now it only need to replace each elemeysi; by that ofgi; in the construction of the
orientable case iy, = (1,5).

2s (n—2ksg)/ 2k
@) 9= (i) || (en.en - e,) andhy, = (Lop), i =125
i—1 i=1

hy =1forl >2andh;, =1fort=1,2,---,2k

In this case, we know that

s (n-2ks)/2k
(9 he, b, 1) = [ (1, aBiz. - @i aBiv iz i) [ ] (e e €.
i=1 =1

Denote byp the numberrf — 2ks)/2k. We construct an orientable maj = (2.3, 77)
underlyingB, stable under the action afj;(h;, hy, - - -, h,) as follows.
Take
2.3 = 2., and Z; = Cs(aCila™)
with
Ci= (ln21-.sne,.6, .6y, 081082, -, 0B,

€1,, €2, €py - B L, AB2%, - -, ABSk, €14, E0r

€p ¥Bla, B2, -, af3S1, €115 €215t 5 Cpian 12, 20, 10

52 €10 B30z €z Lk 20+ > Skr Byr €+ 7 eka)-
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Then the maiB3 = (%jﬁ, 223) is an orientable map underlying graBhand stable under
the action of ¢; hy, hy, - - -, hy).

Similarly, replacing each elemenpi; by gi; in the construction of the orientable
case ifh; = (1,), a non-orientable map underlying graBhand stable under the action

of (g; hy, hy, - - -, hy) can be also constructed. This completes the proof. O

We will apply Theorem 4.1 for the enumeration of one face maps on surfaces in
Chapter 8.

§7.5 REMARKS

7.5.1 An automorphism of map/1 is an automorphism of graph underlying that\df
But the conversely is not always true. Any map automorphisiiked-free, i.e., semi-
regular, particularly, an automorphism of regular map gutar. This fact enables one
to characterize those automorphisms of maps underlyingahgrCertainly, there is an
naturally induced actiog|”«# for an automorphisny € AutG of graphG on quadricells
in maps underlyings, i.e.,

(@X)® = ay, (BX)° =By, (aBx)® = aBy

if X9 =yforV¥xe Z,5(M(G)). Consider the action of A@ on 2, z(M(G)). Then we
get the following result by definition.

Theorem 7.5.1 An automorphism g of G is a map automorphism if and only ifehea
map MG) stabilized under the action of¢+.

Theorems 7.1 and 71.2 enables one to characterize such map automorphisms in
another way, i.e., the following.

Theorem 7.5.2 An automorphism ¢ AutG of graph G is an automorphism of map
underlying G if and only i{g), < (v) x (@) for Yv € V(G).

7.5.2 We get these permutation presentations for automorphismmeaps underlying a

complete graph, a semi-regular graph and a bouquet, whiablenus to calculate the
stabilizer®d(g) of g on maps underlying such a graph in Chapter 8. A general prolde

the following.
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Problem 7.5.1 Find a permutation presentation for map automorphisms aediby such
automorphisms of a graph G on quadricells, s with base set X= E(G), particularly,
find such presentations for complete bipartite graphs, sugeneralized Petersen graphs
or regular graphs in general.

7.5.3 We had introduced graph multigroup for characterizing teal symmetry of a
graph, i.e., lelG be a connected graph{ < G a connected subgraph amde AutG.
Similarly, consider the induced action ofon 2, ; with base seX = E(H). Then the
following problem is needed to answer.

Problem 7.5.2 Characterize automorphisms of maps underlying H inducecudp-
morphisms of graph G, or verse via, characterize automanpisiof maps underlying G
induced by automorphisms of graph H by introducing the actibAutH on G\ H with

a stabilizer H.



CHAPTER 8.

Enumerating Maps on Surfaces

There are two kind of maps usually considered for enumeratiditerature.

One is the rooted map, i.e., a quadricell on map marked bedock Such a
map is symmetry-freed, i.e., its automorphism group isatiAnother is the
map without roots marked. The enumeration of maps on sigfacderlying

a graph can be carried out by the following programming:

STEP 1. Determine all automorphisngsof maps underlying grap@;

STEP 2. Calculate the the fixing s@®,(g) or W¥,(g) for each automorphism
ge Aut%G;

STEP 3. Enumerate the maps on surfaces underlying gfajty Burnside
lemma.

This approach is independent on the orientability of mapst &ables one to
enumerate orientable or non-orientable maps on surfadhs Dloe roots dis-
tribution and a formula for rooted maps underlying a graghiiacluded in the
first two sections. Then a general enumeration scheme fos onagerlying a
graph is introduced in Section 3. By applying this scheme,g@humeration
formulae for maps underlying a complete graph, a semi-eeguidaph or a
bouquet are obtained by applying automorphisms of mapsrdeted in last
chapter in Sections.8-8.6, respectively.
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§8.1 ROOTS DISTRIBUTION ON EMBEDDINGS

8.1.1 Roots on Embedding.A root of am embeddingVl = (Z,4, &) of graphG is an
element inX, ;. A rootr is called ani-root if it is incident with a vertex of valency. Two
i-rootsr, r, aretransitiveif there existsr € AutM such thatr(r,) = r,. An enumerator
v(D, X) and theroot polynomials (M, x), r (M(D), x) of M are defined by

v(D, X) = Z iviX';

i>1

r(M,%) = > r(M,i)X,
i>1
wherer (M, i) denotes the number of non-transitive i-rootdMrand
rMD),%) = > r(M,X).

MeM(D)
Theorem 8.1.1 For any embedding M (orientable or non-orientable),
. 2iVi
r(M,1) = ——
(M.1) |AutM|’
where y denotes the number of vertices with valency i in M.

Proof Let U be all i-roots onM. SinceUA"™ = U, AutM is also a permutation
group acting orlJ, andr(M, i) is the number of orbits iU under the action of AutM.
It is clear thatU| = 2iv;. ForV¥r € U, (AutM), is the trivial group by Theorem.3.5.
According to Theorem 2.1(3), |AutM| = |(AutM),|Ir*™|, we get thatrA"™| = |AutM]|.
Thus the length of each orbitlihunder this action ha&utM| elements. Whence,

up 2y
JAutM|  |AutM|’
Applying Theorem 8L.1, we get a relation betweexD, x) andr (M, x) following.

r(M,i) = 0

Theorem 8.1.2 For an embedding M (orientable or non-orientable ) with valg se-

guence D, 2D, %)
v(D, X
M, X) = .
"M = Taa
. 21V
Proof By Theorem 8L.1, we know thatr(M,i) = |Aulllll\/l|’ wherev; denotes the

number of vertices of valenayin M. So we have

(M%) = > r(M,i)X

i>1
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2ivi  2v(D,x)

= O
|AutM| |AutM|

i>1
Let r(M) denotes the number of non-transitive roots on an embeddings a by-
product, we get(M) by Theorem 8L.2 following.

Corollary 8.1.1 For a given embedding M,

4g(M)

r(M) =
M) |[AutM|’

wheree(M) denotes the number of edges of M.

Proof According to Theorem 8.2, we know that

nD.1) 1 .
M) = r(M.1) = _ Jiv.
r(M) =r(M.1) AUV |Aut|v||iZA i

Notice ] iv; = 2¢(M). We get that

i>1
_ 4(M)
Y

r(M) O

8.1.2 Root Distribution. Let G be a connected simple graph abd= {d;,d,, - -, d,}
its valency sequence. F@ig € AutG, there is an extended actigh’+# acting on.2;
with X = E(G). Define theorientable embedding indes(G) of G and theorientable
embedding indes®(D) of D respectively by

1
HO(G) = ’
MeZ:M(G) |AutM|
1

6°(D) = ,
(®) |AutM|

GeG(D) MeM(G)
whereG(D) denotes the family of graphs with valency sequebceThen we have the

following results.

Theorem 8.1.3 For any connected simple graph G and a valency sequence D ,

M d-1) M d-1)
o) _ deD(G) o) _ deD(G)
7O = —Zaug 2O = —rEy

where

1
AD)t= )] :
S |AutG|
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Proof Let W be the set of all embedings of graghon orientable surfaces. Since
there is a bijection between the rotation schemeof8) of G andW, it is clear that

IW| = [o(G)| = T[] (d- 1).. Notice that every elemegte AutG naturally induces an
deD(G)

gl”=# action onW. Since for an embedinif, ¢ € AutM if and only if £ € (AutG x (a))m,
S0 AutM = (AUtG X (@))m. BY |JAULG X (@) | = |(AULG X (@))u|[MAYCX@| we get that

MAuex — AU X (@)
IAutM|
Therefore, we have that
1
P°G) =
METEG) |AutM|
~ 1 |JAUtG X (@) |
|AUtG X (a) | MRHG) |AutM |
1
— |MAutG><<a/)|
|AutG| " EZM(G)
d-1)!
_ W deg(e)( :
~ 2AutG] 2JAutG|
and
[T (d-2)
deD(G)
°(D) = -
o) 2|AutG))
- - Y )
2 deD(G) Geg(D) |AUtG|
[T (d-21)!
deD(G)
= — O
2IA(D)|

Now we prove the main result of this subsection.

Theorem 8.1.4 For a given valency sequence=D{d;, d, - - -, dy},

v(D,x) [] (d-21)!

deD(G)

rMD).x) = A(D)]

where,

1
AD) = ] :
c5b) |AutG|
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Proof By the definition ofr (M(D), X), we know that

r(M(D). %)

r(M, X)
MeM(D)

r(M, x).
GeG(D) MeM(G)

According to Theorem 8.3, we know that

(MDY =y Y 2vD. %) _ b, x6(D).

Geg(D) MeM(G) |AUtM|
Whence,
[T (d-21)!
deD(G)
(D) = ———
)= =550

Therefore, we finally get that
v(D,x) [] (d-1)!

F(M(D), X) = l";?g;l . [

Corollary 8.1.2 For a connected simple graph G, le{G) = {d;,d,, - - -, d,} be its valency

sequence. Then
v(D,x) [] (d-21)!

deD(G)
|AutGl|
Corollary 8.1.4 The number of all non-transitive i-roots in embeddings ulyileg a

rM(G), x) =

connected simple graph G is

ivi T (d-1)!

deD(G)
|AutG| ’
where y denotes the number of vertices of valency i in G.

Corollary 8.1.5 The number ¢M(G)) of non-transitive roots in embeddings of simple

graph G on orientable surfaces is
2:(G) 1 (d-21)
deD(G)

rM(@G)) = AUG

Proof According to Theorem 8.2 and Corollary 8.2, we know that

rM(@)) = rM(G),1)
[ (d-1)'v(D,1)
deD(G)

|AutGl|
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Notice thatv(D, 1) = 3’ iv; = 2¢(M). So we find that

i>1

2¢(G) ] (d-1)!
FM(G)) = TADJ%' . 0

Theorem 8L.4 enables one to enumerate roots on edmeddings underlyergextransitive
graphs, a symmetric graph,., etc. For example, we can apply Corollar.8 to count
the roots on embeddings underlying a complete gt&phin this case, Autl = Sy«,),
so|AutK,| = n!. Therefore,

n(n—1)((n-2)H"
n!

rM(KT) = =((n-2)H" ™.

let n = 4. Calculation shows that there are eight non-transiti@sr@n embeddings
underlyingk#, shown in the Fig.a.1, in which each arrow represents a root.

Fig.8.1.1

8.1.3 Rooted Map. A rooted map Mis such a mapM = (2", &) with one quadricell

r e 2, zis marked beforehand, which is introduced by Tutte for thenegration of planar
maps. Two rooted mapd;* andM:? are said to bésomorphicif there is an isomorphism

6 : M; - M, betweenM; and< M, such tha®(r,) = r,, particularly, ifM; = M, = M,
two rooted mapsvi'* and M2 are isomorphic if and only if there is an automorphism
T € AutM such thatr(r;) = r,. All automorphisms of a rooted may’ form a group,
denoted by Au¥1'. By Theorem 3.5, we know the following result.

Theorem8.1.5 AutM' is a trivial group.

The importance of the idea introduced a root on map is thairiitstany map to a
non-symmetry map. The following result enables one to emateeooted maps by that
of roots on maps.
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Theorem 8.1.6 For a map M= (Z,z, &?), the number of non-isomorphic rooted maps
is equal to that of non-transitive roots on map M.

Proof Letr; andr, be two non-transitive roots oM. ThenM™ andM" are non-
isomorphic by definition. Conversely, M and M™ are non-isomorphic, there are no
automorphisms € AutM such thatr(r,) = r,, i.e.,r; andr, are non-transitive. L.

Theorem 8L1.6 turns the enumeration of rooted maps by that of roots on maps

Theorem 8.1.7 The number ¢(G) of rooted maps on orientable surfaces underlying a
connected graph G is

25(G) T (o(v) - 1)!

veV(G)

(@]
G) = ,
~(G) Aut, G|

wherep(v) denotes the valency of vertex v.

Proof Denotes the set of all non-isomorphic orientable maps wittedying graph
G by M°(G). According to Corollary 8.1 and Theorem 8.6, we know that

rO(G) — Z 4‘9(M)

|JAUtM|’
MeMO(G)

Notice that every element < AutG% x (@) natural induces an action atP(G). By
Theorem 8.3, YM € M(G), v € AutM if and only if, 7 € (AutG% X {(a))m.- Whence,
AutM = (AutG% X {a))m. According to Theorem.2.1(3), |AutG% X {a)| = |(AutG% X

(@)ulIM™F“| We therefore get that

AUIG 1 x(a) 2|AutG|
~ |AutM|”

M

Whence,

1
r°(G) 4¢(G) Z AUV

MeMO(G)

4¢(G) Z
|AutG% X {a)| MEATEG)
4¢(G)
|AutG% X {a)|

|AutG 1 X ()]
|AutM|

AutG 1 x{a)
M2
MeMO(G)

s@eee) _ PV Y

2/AUtGy| B Aut; G|
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By Theorems 3.1 and 81.7, we get a corollary for the number of rooted orientable
maps underlying a simple graph, which is the same as Coyd@lars following.

Corollary 8.1.6 The number?(G) of rooted maps on orientable surfaces underlying a
connected simple graph G is

26(H) 11 (o(v) - 1)!

veV(G)
|AutG|
For rooted maps on locally orientable surfaces underlyingranected grap, we
know the following result.

r°@G) =

Theorem 8.1.8 The number 'r(G) of rooted maps on surfaces underlying a connected
graph G is
2O5(G) T (o(v) - 1)!

veV(G)

L _
r(G) = AULG

Proof The proof is similar to that of Theorem187. In fact, by Corollaries 3.2,
8.1.1 and Theorem 8.6, let M(G) be the set of all non-isomorphic maps underlying
graphG. Then

4e(M) 1

L _ —

@) = ), AUtM| ONDY AULM|

MeM-(G) MeML(G)
4¢(G) |AutG% X {a) |

AUGy x (@), 44 .~ IAUM]

_ 48(G) Z | M AutG% x(a)l

AUGy x (@), 4

BO+14(G v) — 1)!
wee@ o OdPY Y
2/AUtGy| B Aut G|

This completes the proof. U

Sincert(G) = r°G) + rN(G), we also get the numbef'(G) of rooted maps on
non-orientable surfaces underlying a connected g@&fidilowing.

Theorem8.1.9 The number®¥(G) of rooted maps on non-orientable surfaces underlying
a connected graph G is

(2791 = 2)e(G) 1 (o(v) - 1)!
veV(G)

N
G) =
(G) AUt
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According to Theorems.8.8 and 81.9, we get the following table for the numbers
of rooted maps on surfaces underlying a few well-known gsaph

G r°@G) rNG)
P, n-1 0
Ch 1 1
Kn (n—2)in-1 "% — 1)(n-2)t
Knn(mM#n) | 2(m- DI (n - 1)1m-1 | @2m-men+2 _ 2)(m - 1)1 (n - 1)1m-t
Kn,n (n _ 1)!2n—2 (2n2—2n+2 _ 1)(n _ 1)!2n—2
By e @ - Dy
Dp, (n-121)! 2"-1(n-121)
Dpﬁ" k1) (n+k+|)(2k++lzl<l—r]Tl)(i$?+2|—1)! (zmkﬂ_l)(n+2kk++=)*(1nnJ!rlf!|T!_l)!(n+2|_1)!
D pkK (n+2K)(n+2k—1)12 (22K _1)(n+2K)(n+2k—1)12
Pn T oXnkz 2&Kniki2
Table 8.1.1

§8.2 ROOTED MAP ON GENUS UNDERLYING A GRAPH

8.2.1 Rooted Map Polynomial. For a graphG with maximum valency> 3, assume
thatr;(G),1i(G),i > O are respectively the numbers of rooted maps underlyinghgra
G on orientable surface of geny4G) + i — 1 or on non-orientable surface of genus
y(G)+i—1, wherey(G) andy(G) denote the minimum orientable genus and the minimum
non-orientable genus @, respectively. Theooted orientable map polynomial®](x) ,
rooted non-orientable map polynomidlG](x) androoted total map polynomial [I[&](x)

on genus are defined by

r[Gl(%) = > 1i(G),

i~0
TIGI(Y = ) Fi(G)
i>0
and
R[G](X) = Z r(G)X + Z?T(G)x‘i.
i>0 i>1

We have known that the total number of orientable embeddih@sis [] (d-1)!
deD(G)

and non-orientable embeddings i§¢2-1) ] (d-1)! by Corollary 51.2, whereD(G)
deD(G)
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is its valency sequence. Similarly, Ig{(G) andgi(G), i > 0 respectively be the number
of embeddings o5 on the orientable surface with genuy&s) + i — 1 and on the non-
orientable surface with genggG) + i — 1. Theorientable genus polynomial[@](x),
non-orientable genus polynomigliG](x) andtotal genus polynomia}[G](x) of graphG
are defined respectively by

glGI(X) = ) G(G)X,

i~0

gGlx) = > GO

i>0
and

GIGIM) = > a(G)X + > GE)x".

i~0 i>1
All these polynomials[G](X), TIG](X), RIG](X) andg[G](X), 9[G](X), G[G](X) are finite
by properties of5 on surfaces, for example, Theorem.3.
We establish relations betweefG](x) andg[G](X), T[G](X) andg[G](X), R[G](X)
andg[G](x) in the following result.

Theorem 8.2.1 For a connected graph G,
|Auts GI r[G](x) = 2£(G) g[G](x),

|Aut; GIT[G](x) = 2£(G) g[G](x)

and
|Aut%G| R[G](X) = 2¢(G) G(X).

Proof For an integek, denotes byM,(G, S) all the non-isomorphic maps on an
orientable surfac& with genusy(G) + k — 1. According to the Corollary.&.1, we know
that

r(G) 4e(M)
k =
MeM(G,S) |AUtM|
4¢(G) IAut: G x (@) |
AUt G x (@), &4 o |AUtM

SincelAut; G x (@) | = [(Aut; G x (@))mllM™ "+ and|(Aut,G x (@)l = |AutM],

we know that

4¢(G)

Aty Gx(a) 2e(G)gk(G)
|Aut%G X {a)|

G
"(G) Aut, G|

M
MeM(G.S)
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Consequently,

Aut; G| r[G](x) Aut; G| Z ri(G)X

i~0

Z Aut; GIr (G)X
i~0

2, 25(G)gi(G)X = 25(G) gIGI(¥).

i>0

Similarly, Ietﬂ(G, S) be all non-isomorphic maps on an non-orientable surfce
with genusy(G) + k — 1. Similar to the orientable case, we get that

I P (c) AUt G x (@)
WO = Anex@] 2 AUtM|
2 MeM(G,S)
4¢(G) Aty Gx(a)
|Aut:G X (@) | Z N M |
2 MeMk(G,S)
2£(G)Gk(G)
|AUt%G| '
Whence,
AUty GIT[G](x) = ZlAut%Glﬁ(G)x‘
i>0
= ), 25(G)G(G)X = 25(G) TAGI(X).
i~0
Notice that
RIGI(X) = ) (@)X + ) F(G)X
i>0 i>1
and
GIGIN = ), GG + ) GG)x .
i>0 i>1
We also get that
_ 2e(G)a(G) _ . _ 2s(G)k(G)
O =Tauer 2 9= TG

for integersk > 0. Therefore, we get that

AU GI(Y H(G)X + ) T(G)X )

|Aut%G| R[G](X)

i>0 i>1
= Z Aut; Gl (G)X' + Z |Aut; G (G)x”'
i>0 i>1

> 25(@)a(G)X + Y 2:(G)F(G)X = 22(G) GIGI(X).

i>0 i~0



Sec.8.2 Rooted Maps on Genus Underlying a Graph 279

This completes the proof. U

Corollary 8.2.1 Let G be agraph and s Oan integer. If g(G) and gy(G) are the numbers
of rooted maps and embeddings on a locally orientable serfaficgenus s underlying
graph G, respectively. Then

@) - 2966

|Aut%G|

8.2.2 Rooted Map SequenceCorollary 82.1 can be used to find the implicit relations
amongr[G](x), T[G](X) or R[G](X) if the implicit relations among[G](X), 9[G](X) or
G[G](x) are known, and vice via.

Denote the variable vectoxy, X, - - -) by X,

LG) = (---.T2(G), 11(G). 1o(G). r1(G). r2(G), - - ),

Ad(G) = (-, 02(G), 91(G), 9o(G), 91(G), 92(G), - - ).

We call {G) and dG) therooted map sequen@nd theembedding sequenoé graphG,
respectively.
Define a functiorF (x, y) to bey-linearif it can be represented as the following form

FOCY) = Fx0 %0, ) + DK, X, w+) Doy + 106, %,++) D AY),
i€l A0
wherel denotes a subset of index a@d set of linear operators. Notice thig;, o, - - -) =

F(x, Q), where 0= (0,0, ---). We get the following general result.

Theorem 8.2.2 Let G be a graph family and® C G. If their embedding sequences
9(G), G e H satisfy the equation

Fu(x.9(G)) =0, (4.1)

then the rooted map sequenc€SY, G € H satisfy the equation

|Aut: G|

it 571G = .

and vice via, if the rooted map sequenc@S)r G € H satisfy the equation

Fu(X1(G)) =0, (4.2)
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then the embedding sequencéS)y G € H satisfy the equation

2¢(C)
|Aut%G|

Fo(X, 9(G)) =0

2¢(G)
|Au t1(3|
If the embedding sequence$y, G € H satisfy equatior4. 1) then

G € H is a constant.

Furthermore, assume the functiorpy) is y-linear and

Fy(x1(G)) =0,

_ 2£(G)
where F,(x,y) = F(x_y)+(|AtGI

a(G), G e H satisfy equatiort4. 2) then

—1)F(x,0) and vice via, if the rooted map sequences

F(x9(G)) = 0.

|AU 1 |
25(F) - 1)F(,0).

Proof According to the Corollary .1, for any integes > o0 andG € H, we know
that

where B, = F(X,y) + (

2¢(G)

r{G) = AUL,G|

9s(G)

and
|AUt1 |
2¢(G)

Therefore, if the embedding sequencéS)yG € H satisfy equation (4), then

gs(G) = s(G)

|AUt1
2¢(G)
and vice via, if the rooted map sequencis)r G € H satisfy equation (£2), then

2¢(C)
|AUt%G|

Fa(X, L(G)) =

Fa(X, 9(G)) = 0.

Now assume thdt (X, y) is ay-linear function with a form

Fru(Xy) = f(Xe, X2, ) + h(Xg, X, --) Z Vi + 1%, %2, -+ ) Z A(Y),
i€l AeO
whereQ is a set of linear operators. Fy(x, g(G)) = 0, that is

FO X, ) + 0w X, +) D7 G(G) + 10w %) ). AEG) =0,

iel, GeH A€O0, GeH
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we get that
|Aut1 G|
(0w )+ hoase: ) D, 5 (@)
iel, GeH
|Aut1 G|
+ (X, X2, 7) A( -_—1(G)) = 0.
AeO,ZGeW ZS(G)
SinceA € Ois a linear operator an| iG()Bl’ G € H is a constant, we also have
1
2
. |AUt%G|h G
(Xl’ X2’ o ) + 25(6) (Xl’ X2’ o ) ieI’ZGEW r.I( )
|AUt%G|
———1(Xq, X, - - A((G)) =0,
3Gy e )AEQZGEH ((G))
that is,
2¢(G)

FOw ) + 0w o) D0 1i(G) + 10k +) Y, A®G) =0.

|AUt%G| iel, GeH A€O, GeH

Consequently, we get that
Fz(x.1(G)) = 0.
Similarly, if
Fu(x,1(G)) =0,
we can also get that
F7(x.9(G)) = 0.
This completes the proof. U

Corollary 8.2.2 LetG be a graph family and4 C G. If the embedding sequencd&y
of graph Ge G satisfy a recursive relation

> ai,6)g(G) =0,

i€J, GeH

where J is the set of index, then the rooted map seque(@gsatisfy a recursive relation

2,

i€J, GeH

a(i, G)/AutyG|

2@ ©=0
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and vice via.

A typical example of Corollary .2 is the graph family bouque®;,, n > 1. Notice
that the following recursive relation for the numlagy(n) of embeddings of a bouquBt,
on an orientable surface with genmdor n > 2 was found in [GrF2].

(n+1gn(n) = 4(2n-1)(2n-3)(n - 1*(N - 2)gm-2(n - 2)
+ 4(2n-1)(n- 1)gn(n-1)

with boundary conditions

Om(n) =0ifm<0o0rn<0;

9o(0) = go(1) = 1 andgm(0) = gm(1) = 0 form > O;

0(2) =4,01(2) = 2,gm(2) =0 form > 1.

Since|Aut% B, = 2'nl, we get a recursive relation for the numlyggn) of rooted
maps on an orientable surface of genusnderlying graptB, by Corollary 82.2 follow-
ing.

(M- -2ru(n) = (2n-1)(2n-3)(n - 1N - 2)rma(n - 2)
+ 2(2n-1)(n-1)MNn-2rnp(n-1)

with the boundary conditiong,(n) = 0if m< 0 orn < O;
ro(0) = ro(1) = 1 andr(0) = ry(1) = 0 form > O;
ro(2) =2,r1(2) = 1,gn(2) = 0 form> 1.

Corollary 8.2.3 Let G be a graph family andH < G. If the embedding sequences
09(G), G € G satisfy an operator equation

A@Q(G)) =0,
A€O, GeH
whereO denotes a set of linear operators, then the rooted map segsafG), G € H
satisfy an operator equation

|Aut: G|

AC—221(G)) = 0
2 Mg

and vice via.
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Letd = (61,0,,---,6) + 2n, i.e., 2 0; = 2n with positive integer®;. Kwak and

=
Shim introduced three linear operat(fr,@ andA to find the total genus polynomial of
bouquetdB,, n > 1in [KwS1] defined as follows.

Denotes byz, andz; = 1/z, the multivariate monomlalﬂ z, and ¥ H Z,, Where
= (01,60, ---,6¢) + 2n. Then the linear operatofs ® andA are deflned respectlvely by

z.g _ i Z 1+IZOJ+1 | }il’

0" = Z(ez +6 )(z“z‘*)

and

1 J+9,+2 20j+9i+2 1
)= 26:6;1( ) +{(=—)z)"].
1<;<k Zei 29i

Denote bﬁ[Bn](zj) the sum of all monomiat, or 1/z, taken over all embeddings &,
into an orientable or non-orientable surface, that is
1B(z) = > io(Br)z + D To(Bn)Z",
o0-2n o0-2n
where,is(B,) andiy(B,) denote the number of embeddingsBafinto orientable and non-
orientable surface of region type They found that

i[Bnia](z)) = C+ O + A)i[B)(z)) = (T + O + A)”(Z—12 +2).
and
618109 = T+ 0+ A" + Bl 1o 1 i
where, C«) denotes the condition
(Cx): replacing the powefl + n—2iof x by iifi > 0and—(1+n+i) by-iifi <O0.

Notice that

2¢(B)) _ 2n
andr’, ®, A are linear. By Corollary 2.3 we know that

(T + O + A)i[By](z)

=2"(n-1)!

R[ Bn+1](x) = ol zj=x for j>1 and (Cx)
C+0+A)(; +2)
= n zj=x for j>1 and (Cx)-
IT 2!

k=1
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Calculation shows that

1
RIBi(X) = x+ ™
5 4
R[B = 2 -+ —;
[B2](X) +x+X+X2
41 42 22
R[Bg](X) = g+ﬁ+?+5+1ox
and 488 690 304 93
R[B.](X) = + + + =+ 14+ 70x + 21X
x4 x3 X2 X

§8.3 A SCHEME FOR ENUMERATING MAPS UNDERLYING A GRAPH

For a given graplG, denoted by&°(G), EN(G) andEH(G) the sets of embeddings 6f
on orientable surfaces, non-orientable surfaces and atliyarrientable surfaces, respec-
tively. For determining the number of non-equivalent enddegs of a graph on sur-
faces and maps underlying a graph, another form of the Theb&3 by group action is
needed, which is restated as follows.

Theorem 8.3.1 Let My = (2,45, Z1) and My = (Z,4, &%2) be two maps underlying
graph G, then

(1) My, M, are equivalent if and only if M) M, are in one orbit omut%G action on
X4(G);

(2) My, M, are isomorphic if and only if M M, are in one orbit ofAut%G X {a)
action onZ, .

Now we can established a scheme for enumerating the numbmameisomorphic
maps and non-equivalent embeddings of a graph on surfacgsgbying the well-known
Burnside Lemma.e., Theorem 4.3 in the following.

Theorem 8.3.2 For a graph G, let& c E-(G), then the numbers(6, G) andn(&, G) of
non-isomorphic maps and non-equivalent embeddingsare respective

> @),

geAut; G
2

(&, G) = 2IAUL,G

MEC) = —— 3 [ou().

|AUt% Gl geAut% G
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where,®,(g) = {Z|¥ € &Eand P9 = Z or P9 = P}, Oy(Q) = {X|¥ € & and
P9 = P}

Proof Define the groupH = Aut%G X {(a). Then by the Burnside Lemma and the
Theorem 8.1, we get that

1
n(E.G) = 7o QZW [®1(9)l,
where,®,(g) = {X| ¥ € Eand X9 = Z}. Now|H| = 2|Aut%G|. Notice that if#29 = &2,
then 2% = &, and if 2% = &, then2?9 # &2. Whence®,(g) () ®1(ga) = 0. We
have that

1
S,G = CI) ’
"E.6)= 3aG ge/;l; 1(9)
2

where®,(g) = {Z|Z € & and P9 = & or X% = P},

Similarly,
1
E.8) = aiig 2 [P0
2 geAut%G
where,®,(g) = {Z|¥ € & and #9 = &}, O

From Theorem 8.2, we get results following.

Corollary 8.3.1 The numbers ¥(G), nV(G) and r+(G) of non-isomorphic orientable
maps, non-orientable maps and locally orientable maps dyitg a graph G are re-

spectively
1
(0] _ (0] .
©©) = Jauta gy;le *2(Q)! (83.1)
2
1
N _ N .
@) = FauE gg;ﬁ () (832)
2
1
“{G) = —— %y 3.
"©) = aut; gegtl; 1@ (83.3)

where,®9(g) = {2]|2 € E°(G) and 29 = 2 or 29 = 2}, DY(g) = (2|2 € EN(G)
and 29 = & or 2% = 7}, dL(g) = {P|F € EX(G) and 29 = & or ¥ = D).
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Corollary 8.3.2 The numberg®(G), nN(G) andn“(G) of non-equivalent embeddings of
graph G on orientable ,non-orientable and locally orien@aburfaces are respectively

1
(e} _ (e} .

OREvwe > 102 (83.4)

2 geAut%G

NG) = N (g)l; 3.

1) lAut%GlgeAZu;lG' 2! (83.5)
L _ L

@) = At QE;MGICDZ(Q)I, (8.3.6)

2

where,09(g) = (2|2 € E9(G) and 29 = 2}, DY(g) = {2|P € EN(G) and 279 = 2},
®5(9) = {2|Z € E-(G) and 29 = 7).

For a simple grapl®, since AugG = AutG by Theorem 311, the formula (8.4)
is just the scheme used for counting the non-equivalent ddibgs of a complete graph,
a complete bipartite graph in references [MRW1], [Mull].r Bm asymmetric graph
that is, AuLG = idx, ), we get the numbers of non-isomorphic maps and non-equivale
embeddings underzlying graghby the Corollaries 8.1 and 83.2 following.

Theorem 8.3.3 The numbers %G), n"V(G) and r+(G) of non-isomorphic maps on ori-
entable, non-orientable surfaces or locally orientablefaces underlying an asymmetric
graph G are respectively

QG (o(v) - 1)!
nO(G) = ) > >
(@) = 297 [ (o) - 1!
veV(G)
and
nN(G) — (ZB(G)—l — :_ZL) l_[ (o(v) — 1)1,
veV(G)

where B(G) is the Betti number of graph G.
The numberg®(G), nN(G) and;-(G) of non-equivalent embeddings underlying an
asymmetric graph G are respectively

°@) = [ | () -1,

veV(G)
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n"(G) =2 [ | () - 1)

veV(G)

and

NG) = @9 -1) | ]| W -1

veV(G)
All these formulae are useful for enumerating non-isomurpiaps underlying a com-
plete graph, semi-regular graph or a bouquet on surfacesctioas following.

§8.4 THE ENUMERATION OF COMPLETE MAPS ON SURFACES

We first consider a permutation with its stabilizer. A peratign with the following form
(X1, X2, - - -, Xp)(@Xn, X0, - - -, aXy) IS called apermutation pair The following result is
obvious.

Lemma8.4.1 Let g be a permutation on s& = {X;, X, - - -, X5} such that ¢ = aqg. If

I(X1, Xo, + s Xa)(@Kny @1, -+, @X)G T = (X, Xoy ++ +y Xn)(@ny @1, -+ +, @X1),
then
g = (Xl?XZ?“"Xn)k

and if

gar(Xa, Xo, -+ - Xn)(@Xny @X-1, - - - @X0)(G) ™ = (Xp, Xa, -+ -, X)) (@Xs X1, - - -5 X)),

then

g = (@Xn, @Xn-1, -+, @)
for some integek, 1 <k <n.

Lemma 8.4.2 For each permutation gg € 8[kE] satisfying @ = ag on setQ =
{X1, X2, - -, Xn}, the number of stable permutation pairs §hunder the action of g or

Qa is
2¢(k)(n - 1)!
&

whereg(k) denotes the Euler function.

9

ol

Proof Denote the number of stable pair permutations under theracfig or ga
by n(g) andC the set of pair permutations. Define the get {(g,C)|g € 8[kE],C €



288 Chap.8 Enumerating Maps on Surfaces

C and CY = Cor C¥ = C}. Clearly, forvg;,g, € &
Whence, we get that

kp We haven(g;) = n(gy).

A = 1€ p,In(Q). (8.4.1)

On the other hand, by the Lemma8,, for any permutation pal = (X1, X2, - - -, Xp)
(@Xn, @%n_1, - - -, @X1), SiINCeC is stable under the action gfthere mustbg = (X1, %o, - - - , %)’
or ga = (@Xy, @%n1, -+, aX), wherel = st.1 < s<kand @ k) = 1. Therefore, there
are 2(k) permutations irﬁ[kE] acting on it stable. Whence, we also have

A = 26(K)[C]. (8.4.2)

Combining (84.1) with (.4.2), we get that

_ 2(K)ICl _ 26(K)(n - 1)!
Q=TT "k :

ol ol

Now we can enumerate the unrooted complete maps on surfaces.

Theorem 8.4.1 The number h(K,) of complete maps of order:n 5 on surfaces is

1 200 (n — 2)IK B(K) 2600 (n - 2)1"F
nL(Kn) = E(Z T W ’ n-— 1 s
kin kin,k=0(mod2) k/* ki(n—1),k#1
where,
”(”2; 3 i k= 1mod):
a(nK) =\ niZ 2) k= Ofmo
K | = 0(moa2),
and
- % if k=1(mod):
B(n, k) = _ _
W, if k= 0(mod).

andn-(K,) = 11

Proof According to formula (8.3) in Corollary 83.1 and Theorem.2.1 forn > 5,
we know that

nt(Ks) 2|AutK| ; @@+ ), @)+ Y o)

n 0eE  n he& 1
[KK] (2925] e

- m X ;B[kﬁ]”@(gl)l‘l‘ Z [IT]||®(gza)|+ Z |8[ InTl]||q)(h)|
n

[In,I=0(mod2) ll(n-1)
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[m]
Without loss of generality, we assume that an elengegte S[kE] has the following

where,g; € 8[kE], 0. € &, andh e S[l’kn%] are three chosen elements.

cycle decomposition.

g:(1,2,---,k)(k+1,k+2,---,2k)---((r—l:—1)k+1,(r—l:—1)k+2,---,n)

and
P = nl X 1_[2’
where
1_[ — (1i21, (L 1in1) (2i12’ 2z ... 2in2) . (niln’ na ... ni(n—l)n) ,
1
and

-1
nz - “(nl )a_l’

being a complete map which is stable under the actiog, efheres; € {k+ k- |k =

1,2,---,n}.

Notice that the quadricells adjacent to the vertex 1 can n2&kén — 2)! different
pair permutations and for each chosen pair permutatiompahgermutations adjacent to
the vertices 23, - - -, k are uniquely determined sinc¢# is stable under the action gf

Similarly, for each pair permutation adjacent to the vekex, 2k+1, - - -, (E - 1) k
+1, the pair permutations adjacentka 2,k + 3,---,2k, and X+ 2,2k + 3,---, 3k, - -,
and(D — 1)k + 2, (D

k k
under the action aj.

— 1) k+ 3,---,nare also uniquely determined becauges stable

Now for an orientable embeddinigl; of K,, all the induced embeddings by ex-
changing two sides of some edges and retaining the othehsnged inVl; are the same
as M; by the definition of maps. Whence, the number dfatent stable embeddings
under the action of gotten by exchanging andax in M; for x € U,U c Xj, where

Xg= U (xBx},is 20k, whereg(e) is the number of orbits d(Ky) under the action
xeE(Kp)

of gand we substrac% because we can choseff k + 11, 2k + 1%, ... n— k + 1** first
in our enumeration.

Notice that the length of each orbit under the actioy o k for ¥x € E(K,) if kis
odd and isé for x = i*%,i = Lk+1,---,n—k+ 1, ork for all other edges ik is even.
Therefore, we get that
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#Mo) i k2 1mod2):
g(e) = g(hn) _n

TZ, if k= 0(mod2)
Whence, we have that

n nn - 3), if k= 1(mod2);

a(nK) =) - =1 e 2
——, if k=0(mod2)
2k
and
D(g) = 2™ (n - 2)Ik, (8.4.3)

Similarly, if k = 0(mod2), we get also that
|O(ga)| = 2™ (n - 2)IF (8.4.4)

for an chosen elementg € SM

Now for VYh e 8 e without loss of generality, we assume timat (1,2,---,K)

1 1
k+1Lk+2---,2k)--- ((nT -1|lk+1, (T —1)k+2 (n—1))(n). Then the
above statement is also true for the complete gitaph with the vertices 12,---,n - 1.

Notice that the quadricelis'*, n?*, - .-, n"1* can be chosen first in our enumeration and

they are not belong to the graphy_;. According to the Lemma.8.2, we get that

|cI>(h)| — Zﬁ(n,k)(n _ 2)!2%1 X w, (8.4.5)
Tl
Where
&gKna) n-1_(-1H(n-4) if k= 1(mod2);
n.K) = h(e) = 51 o-dh-e |
B(n.K) = he) 5('51—1) _n-1_ (@ 1%” 3 it k= 0(mod2)

k k 2k ’
Combining (84.3) — (8.4.5), we get that

n(Ko) = %x(;mwg]n@(go)u S8 I0(0)

IIn,|I=0(mod2)

+ ) 18, o ()

lI(n-1)
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1 ni2¢(n — 2)1k ni2¢(n — 2)1k
_ EXZ kn(n' e kn(n' )
: (! Kink=0(moc2) (!

o 260 =2 -2

kin

n-1,n-1 (n-1)!
K/(n-1),k+1 ke (T)I kﬂ-k—l(n;kl)!
1 2000 (n — 2)1k k)26 (n — 2)1%
= 30 kﬂfnu) " = nEl -
kn  kin,k=0(modR) (E)' kl(n-1),k#1

Forn = 4, similar calculation shows that(K,;) = 11 by consider the fixing set of
a& 4 anda8[1,1,2]. U

541 Sty Ceg ) g )
For the orientable case, we get the numiif§(iK,,) of orientable complete maps of

permutations ir&

ordern as follows.

Theorem 8.4.2 The number A((K,) of complete maps of order B 5 on orientable
surfaces is

SCCOIE ) SRR g et L g U

nN/n _
Kn  Knk=o(moc) ki (§)! K(n-T)kz1 n-1

and nK,) = 3.

Proof According to the algebraic representation of map, a g (2,4, P) is
orientable if and only if foivx € 2,4, X andaSx are in a same orbit of?;, s under the
action of the group¥| = (a8, ). Now applying (83.1) in Corollary 83.1 and Theorem
7.2.1, similar to the proof of Theorem4&1, we get the numbe®(K,,) for n > 5 to be

1 (n— 2)Ik P(K)(n—2)1"F
n°(Ka) = 5()  + ) + —_—
2 % k|n,kzoz(r;qodz) Ke(@! Tkt n-1
and for the complete gragy, calculation shows thai(K,) = 3. O

Notice thatn®(K,)) + n"N(K,) = n-(K,). Therefore, we get also the numb@i(K,)
of complete maps of order on non-orientable surfaces by Theorem4.Band 84.2

following.

Theorem 8.4.3 The number N(K,,) of complete maps of ordern > 5 on non-orientable
surfaces is

1 2000 _ 1)(n — 2)!k
vy - A3e 3 @2
Kn  Knk=0o(moc?) <!
BNK) _ — )%
N Z o(K)(2 1i(n 2)! k’
K(n-1).k#1 n-
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and MV(K,) = 8. Wherea(n, k) andg(n, k) are the same as in Theores. 1.

Forn = 5, calculation shows that (Ks) = 1080 anch®(Ks) = 45 by Theorems &.1
and 84.2. Forn = 4, there are 3 orientable complete maps and 8 non-orientabiplete
maps shown in the Fig.&81.

Fig.8.4.1

Now consider the action of orientation-preserving autggh@ms of complete maps,
determined in Theorem.Z.1 on all orientable embeddings of a complete graph of order
n. Similar to the proof of the Theorem4B2, we can get the number of non-equivalent
embeddings of a complete graph of ordewhich has been found in [Maol] and it is the
same gotten by Mull et al. in [MRW1].
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§8.5 THE ENUMERATION OF MAPS UNDERLYING A SEMI-REGULAR GRAPH

8.5.1 Crosscap Map Group. For a given maM = (2,4, &), its crosscap map group
is defined to be
T =<1¥xe Z,7=(XaxX) >,

where,X = E(G). Consider the action of on M. ForVe € 7, we define
M? 1= (2,5, 0207Y);
M7 = {MV0 € T}.

Then we have the following lemmas.

Lemma8.5.1 Let G be a connected graph. Then fvl € ET(G), there exists an element
7,7 € 7 and an embedding MM, € E°(G) such that

M = Mg
Lemma8.5.2 For a connected graph G,
E'(G) ={M M € E°(G), T € T}.

We need to classify maps &' (G). The following lemma is fundamental for this
objective.

Lemma 8.5.3 For maps MM, € E°(G), if there exist ge AutG andr € 7 such that
(M9* = My, then there must be Msomorphic to M andr € 7y,, and moreover, if
M; = M, then ge AutM.

Proof We only need to prove that M9 = M7, g € AutG andr € 7 ,thent € T,.
ASSLJme thaM = (%ﬁ, @), Ml = (g/lm//‘aﬁ, :@1), 32 = CQC_l,ﬂl = Cl(}/CIl andT =Ts,
whereS c {C,}. For¥x € {C}, a direct calculation shows that

‘@g = (X’ P g(yl)’ g(yZ)’ T g(yt))(a'x’ a'g(yt)’ Tt a'g(yl)) Ty

Pl = (X1, T, -, TZ)(@TX, QTZs, - -, QTZg) - - -, (8.5.1)

where
D= (X X, X, X)) Yo Y, Yo, s Ye) s

r@l - ... (X, 21,2, -, ZS)(a'X, aZs, -, a'Zl)



294 Chap.8 Enumerating Maps on Surfaces

andg(y) = X,z € vy, i €{1,2,---, 5}
Sinceg € AutG, we know that

{y,YL“’,yt}g = {X’ Xl""?XS}

= {Xz,---,z} (8.5.2)
andt = s. Now we consider two cases.
Casel. X¢S.
In this case, we get tha¥’] = --- (X, 721,72, - - -, 7Z)(aX, aTZs, - - -, @TZ1) - - -, from

(8.5.2). Sincer?? = Z[°, we get that(y:) = 7z, 9(Y2) = 72, - -, d(Ys) = 7Z. According
to (8.5.2), we know that(y:) = z1,9(Y2) = 2, --,d(Ys) = Zs. Therefore,z; ¢ S,z ¢
S,---,Zs¢ S, thatis{v} ¢ S.

Case?2. XeS.

In this case, we have tha?; = ---(aX, 721,72, - - -, 7Z)(X, @TZs, - - - ,@773) - - -, Be-
cause of#9 = 2%, we get thay(y,) = a1z, 9(Y2) = @7Zs1,---,9(Ys) = atz. Ac-
cording to (8.5.2) again, we find thgfy:) = z,9(Y2) = Zs.1,---,9(Ys) = z2. Whence,
21€S,€S, -,z € S, thatis{v,} C S.

Combining the discussion of Cases 1 and 2, we know that txésts@ vertex subset
V; ¢ V(G) such thatv; = S. Whencer € Ty,. SinceM9 = M] = M;, we get thatM; is
isomorphic toM.

Now if M; = M, we also get thaM9 = M. Thereforeg € AutM 0J

We get the following result by Lemmas3l - 8.3.1.

Theorem 8.5.1 Let G be a connected graph. Then

(1) For YM® € M7, M>* € M, where M, M, € E°(G), if M{® is isomorphic to
M", then M is also isomorphic to M

(2) For a given Me &E°(G), YM™, M™® € M7, there exists an isomorphism g such
thatg: M™ — M™if and only if ge AutM andrr € 741s) - Tm-

Proof (1) Assumeg ia an isomorphism betweevl;® andM.?, thus M%)9 = M®.
Since

g ([ [xex)g =] [(@*x ag ™)

XeS XeS

l—[ (X, aX) = Tg-4(S)s

xeg~1(S)

g 'rsg
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we get thatrsg = grg-1s). Whence,
(Moo= = M.

According to Lemma .3, M, is isomorphic toM,.
(2) Notice that there must lipe AutG. Since M™)% = M™®, we find that

(MOt = M,
According to Lemma .3 again, we get that
g € AutM and g € 1gy5)7 -
On the other hand, if there exist 7~ andg € AutM such thatrg = 7441 - 7, then
(M™)9 = (M9a™s) = MTats) = MR,
Thereforegis an isomorphism betwedvi™s andM™:. O

8.5.2 Enumerating Semi-Regular Map.We enumerate maps underlying a semi-regular
graph on orientable or non-orientable surfaces.

Lemma8.5.4 Let G= (V, E) be a semi-regular graph. Then fére AutG

0 dx)
D7) = l—[(O(§|Ne(x)) 1!
and g
DL(&)| = 2T ]_[(0( SIS()@) 1,

where, 'I;’ T‘fE are the representations of orbitsé€acting on (G) and EG) ,respectively
andéngy the restriction of to Ns(X).

Proof According to Theorem 8.1, we know that
E'(G) = {712 € E°G), T T)

Notice that ifM¢ = M, thenM™ = M". Now since AuG is semi-regular acting oB(G),
we can assume that

é:lV(G):(a’b"",c)"'(d’e,"',f)"'(X,y,"',Z)
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and
flE(G) = (ell’ €12, -, el|1) e (al’ €2, -, ah) e (esl, €0, ", eS|5)‘

For a stable orientable embeddiMy = (E(G). 5. Z%) under the action of, it is clear

that
|(D( M T, §)| = 2°rb(§|E(G))—0fb(§|V(G)),

whereorb(¢)g) andorb(élyv)) are the number of orbits &(G), V(G) under the action
of £ and we subtraatrb(é|yg)) because one of quadricells in vertiaes- -, d, - - -, x can
be chosen first in our enumeration. Now sime®(élgc)) = |T§E| andorb(élyg) = |T;’|,
we get that

(M, )] = 27T,

Notice that if the rotation of the quadricells adjacent te Hiertexa has been given,
then the rotations adjacent to the vertidgs: -, c are uniquely determined if the cor-
respondence embedding is stable under the actigh @imilarly, if a rotation of the
qguadricells adjacent to the verticas - -,d, - - -, x have been given, then the map =
(E(G)ap. P) is uniquely determined iM is stable under the action &f Sinceé|n,y) is
semi-regular, foi¥x € V(G) we can assume that

§|NG(X) — (le, XZZ, e XZS)(XZS”, XZs+2’ el Xzzs) . (X2(k71)5+1’ XZ(k—l)s+2, el Xst)_

Consequently, we get that

o0 dx)
DO@)| = ﬂ(0(§|NG(X)) L. O

According to the Corollary 8.1, we get enumeration results following.

Theorem8.5.2 Let G be a semi-regular graph. Then the numbers of maps undgrhe
graph G on orientable or non-orientable surfaces are respety

°0) = (Y 1@ [

AU St LY o)

~1)!

and

< e 7y,

£eAULG 0(¢INg ()

n(G) = |AutG|

wherel(¢) = 1if o(¢) = O(modZ)and%, otherwise.
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Proof By the Corollary 83.1, we know that

1
n°(G) = 2AULO] Z [02(g)|

2 geAut1 G
2
and L
ntG) = ——— @l (g)l.
©) = saita 2 1®1@
2 geAut%G

According to the Theorem.3.4, all automorphisms of orientable maps underlying graph
G are respectively

gl¥es andah|**#, g, h € AutG with o(h) = 0(mod2)
and all the automorphisms of non-orientable maps undeylgmaphG are also
gl*e* andah|**#, g, h € AutG with o(h) = 0(mod2)

Whence, we get the number of orientable maps by the Lem&xa &s follows.

n°@G) = 2|AutG| )
geAutG

~ d(x)
- 2|AutG| (2 r(o(aNG(x))_ )

£EAUIG xeTY
d(x)

¥ DI B (G
§€AULG,0(5)=0(Mmod2)xeTY SING(»)

3 d¥
B |AUtG|(Z —T[V(O(ﬂNe(x)) Lk

£eAUtG

- 1))

Similarly, we enumerate maps underlying grdplon locally orientable surface by
(8.3.3) in Corollary 8.1 following.

1
L — (DT
"©) = a2, 110
geAutG
TE-ITY|

_ 1 (Z 1—[( d(X)

- 1)!
2AUGI S erv OféINot0)

TE-ITY] d(x)
! Z 5 l—[ (O(S'lNG(x)) 1)

¢eAUtG,0(s)=0(mod?2)

OITE-ITY] d(x)
Z 1©2 l_l(o(fﬂNG(x)) b

£EAULG

|AutG|
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Notice thatn®(G) + nN(G) = n-(G). We get the number of maps on non-orientable
surfaces underlying grapgh to be

nMN(@G) = n"G)-n°(G)
1 ElTV d(x)
= x @ — @ | ] -1)!
|AUtG| feAZultG Xle_T!, 0(£Ins()
This completes the proof. O

Furthermore, ifG is k-regular, we get a simple result for the numbers of maps on
orientable or non-orientable surfaces following.

Corollary 8.5.1 Let G be a k-regular semi-regular graph. Then the numbersagsion
orientable or non-orientable surfaces underlying graph1® gespectively

1 v
n°(G) = X A(g)(k — 1)!s!
©) = aiG gEAZU]tG @k-1)
and
NG — TE-TY1 _ —1)Imel
(@) = g X 2 A@@TT - k- L

geAutG
where,A(£) = 1if o(¢) = O(modZ)and%, otherwise.

Proof Notice that forvé € AutG, & is semi-regular acting on ordered pairs of adja-
cent vertices of5. Therefore¢ is an orientation-preserving automorphism of map with
underlying graph 06.

Assume that

&ve) = (al, a, -, aS)(bl, b, -, b%)- - - (Cl, 2, -, ).
It can be directly checked that fée € E(G),

S
e“”| = sor=.
le™7] >

The later is true only if s is an even number. Therefore, wes hiast

VX e V(G)’ o(fNr(X)) =1

Whence, we get®°(G) andn"(G) by Theorem &.2. O

Similarly, if G = Cay(, : S) for a primep, we can also get closed formulas for the
number of maps underlying graph
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Corollary 852 Let G = Cay(Z, : S) be a connected graph of prime order p with
(p-1,S]) =2 Then

(ISI- 1)1+ 2p(S| - 1)!Z + (p— 1)(S| - 1)!

n°@G,.#) = 2
and
nN(G, %) _ (Z%Sl_p — 1)(|S| - 1)|p + 22(§p|5|_§p_2) _ 1)p(|S| B 1)|p7+1
(2° - 1)(p-1)(SI- 1!

4p

Proof We caIcuIat¢T§’|, |TgE| now. Sincepis a prime number, there ape-1 elements
of degreep, p elements of degree 2 and one element of degree 1. Thereferknow
that

1, if o@=p
Tol=12 B2 if o(g) =2

p, if o(g)=1
and
Bl if o(g)=p
Tgl=1{ 2 if o(g) =2
B2, if o(g) =1

Notice that AuG = D, and there arg elements order 2, one order 1 apé- 1 orderp.
Whence, we have

(ISI- )P+ 2p(S| - 1)!% + (p— 1)(S| - 1)!

n°@G,.#) = 2
and
NGy = @ EDSIZr 2‘2(5"—) - 1)p(s| - 1)!*%
(2° - 1)(p-1)(SI- 1!

+

4p
By Corollary 85.1. O
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§8.6 THE ENUMERATION OF A BOUQUET ON SURFACES

8.6.1 Cycle Index of Group. Let (I'; o) be a group. Itsycle index of a groupdenoted
by Z(l'; s1, S, - -, Sn) is defined by
Z(T: S S 10 520 ., @)
( -G gZ 595705
where,1i(g) is the number of-cycles in the cycle decomposition @f For the symmetric
groupsS,, its cycle index is known to be

5/111%2"'ik

1’11/11!2’12/12! ce- k’lk/lk! )

Z(Snusl,sz,,sn):

A1+222+-+ki=n

For example, we have th#(S,) = 2. By a result of Polya ( See [GrW1] for details),
we know that the cycle index (Sn[Sz] is
2(S,[S2]; L G G
( ﬂ[ 2]1 SCI., 82, cee, SQI']) 2I’l ' 1/11/11!2/12/12. k/lk/lk.

A1+2A0++KAk=n

8.6.2 Enumerating One-Vertex Map. For any integek, k|2n, let 7 be the conjugacy
class inS,[S,] with each cycle in the decomposition of a permutatiofyjirbeingk-cycle.
According to Corollary 8.1, we need to determine the numbgp8(¢)| and|®t(£)| for
each automorphism of map underlyiBg

Lemma8.6.1 Leté = H (C(l))(aC(l)a‘l) e Jx be a cycle decomposition &éf where
C(i) = (X, Xz, =+, Xi) | s a k- -cycle. Then

(1) If k # 2n, then

2°) = K (2T~ 1)

and if k= 2n, then|®°(&)| = ¢(2n).
(2) If k > 3and k# 2n, then

@4 = @ - 1)

and
[0-(&) = 2"(2n-1)!

if € = (X)) (%) - - (Xn)(@X0)(@X2) - - (@X) (BX1)(BX2) - - - (BXn) (@BXa)(aBX2) - - - (aBXn), and
(&) =



Sec.8.6 The Enumeration of Bouquet on Surfaces 301

if é: = (Xl’ aﬁxl)(xz’ Q’sz) e (Xn, Q’an)((l’xl,ﬁxl)((l’Xz,ﬁX2) T (axn,ﬁxn)’ and
n!
(n—29)!dl

if & = ( e1,60,---,8n AN € Epnas x5 fOr some integer sg; = (Lep)forl <i <'s

D¢l =

ande; = 1for s+ 1 < j < n, where§pnas 55 denotes the conjugate class with the type
[1M-28, 29] in the symmetry group,Sand

D)l = p(2n)

if £ = 6;e1,62,---,enandfd € Eyy ande; = 1for 1 <i <n-1, &, = (1, aB), whereg(t)
is the Euler function.

. . N 2
Proof (1) Notice that for a representation Gfi), i = 1, Zrn because the
group({Z, ) is not transitive onZ, 4, there is one and only one stable orientable map
Bn = (Zap» Pn) With X = E(By) and &, = C(aC 1), where,

C = (Xll’ X21’ ) X2_k”1’ X21’ X22’ Tt X2_k”2’ Xlk’ X2k? Tt Xz—knk)'

2n

Counting ways for each possible order @i),i = 1,2,-- -, "

tions forC(i), we know that

and diferent representa-

09 = KF (5T - 1)

for k # 2n.

Now if k = 2n, then the permutation is itself a map underlying gr&ah Whence,
its power is also an automorphism of this map. Therefore, stelmt

|0°(8)| = ¢(2n).

(2) Fork > 3 andk # 2n, because the grou?,, af) is transitive onz, s or
not, we can interchang@(i) by aC(i)1e! for each cycle not containing the quadricell
X11. Notice that we get the same map if the two sides of some edgestarchanged
altogether or not. Whence, we find that

@@ = 28 HEACT 1y = @R - 1)

Now if éj = (Xl? aﬁxl)(xz’ Q’BXZ) e (Xn, aﬁxn)(axl,ﬁxl)(axz,ﬁXZ) e (axn,ﬁxn)s there
is one and only one stable ma@{ 5, #2}) under the action of, where

P = (X1, X0, - -+, Xn» @BX1, ABXa, - - -, ABXa)(@X1, B, - -, XL, Xy - -+, K1),
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which is orientable. Whencgb!(¢)| = |@°()| = 1.

If & = (X)(%2) - - - () (@Xa)(@X2) - - - (@Xn) (BX1)(BX2) - - - (BXn)(@BXa)(aBX2) - - - (aBXn),
we can interchangeyBx;) with (8x) and obtain diferent embeddings @, on surfaces.
Whence,

@)l = 2(2n - 1)L.

Now if ¢ = (£, e1,82, -, &n) @aNdL € Epnas s fOr some integes, & = (1, ap) for
1<i<sandgj=1fors+1< j<n,we can notinterchange(efx) with (ax,5x%)
to get diterent embeddings d, for it is just interchanging the two sides of one edge.
Consequently, we get that
n! n!
2= —————.
1n-28(n — 29)12sg! % (n-29)!s

O (&)] =

Foré = (0;e1,82,--+,&n),0 € Emandg; =1for1<i<n-1,¢, = (1, ap), wecan
not get diferent embeddings @, by interchanging the two conjugate cycles. Whence,
we get that

D) = 10°(E)] = ¢(2n).
This completes the proof. 0J

Now we enumerate maps on surfaces underlying gBadby Lemma 86.1.

Theorem 8.6.1 For an integer n> 1, the number A(B,) of maps on orientable surfaces
underlying graph Bis

n°(Bx)

@120 gy L 9FESIS)
k77 (3 ¥
Kj2n k2n k Js,

- o A

|sk=0

Proof According to the formula (8.3.1) in Corollary®1, we know that

1
n°(By) = R G
2x2"n! £eSp[So]x<a>

Since forvéy, & € Si[S,), if there exists an elememt € S,[S,] such thaté, = 66,672,
then|®O(&,)| = |DO(&,)| and|@O(£)| = |DC(£a)|. Notice thati®©(£)| has been gotten by
Lemma 86.1. Applying Lemma &.1(1) and the cycle indeX(S,[S,]), we get that

B = (Y KT - DI+ 9Tz

2% ki2n,k#2n
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ls=0

an .,2N 1 6%(Z(Sn[sz]))

- k(2> - 1)!
kl?nszk;fm w e o5
+¢(2n)w

i 0
FE

Now we consider maps on non-orientable surfaces underfyiaghB,. Similar to
the discussion of Theorem@l, we get the following enumeration result for the maps on
non-orientable surfaces.

Theorem 8.6.2 For an integer n> 1, the number N(B,) of maps on non-orientable
surfaces underlying graphBs

"(Bn) = (an; 1)!+k D (2k)2‘?‘1(2—;—1)!w_2”£[82]»|&
|2n,3<k<2n 6%

1 @ ESISD)
F (g T DT g o~ )

Proof Similar to the proof of Theorem.8.1, applying formula (1.3.3) in Corollary
8.3.1 and Lemma %.1(2), we get that

(2n- 1) ACCENER))
N(B) = o ) =

1 n! n 0"(Z(Sn[S2])) n
a2 oy T O DG o= 1))

+ Z (ZK)%—l(Z_kn _ 1)!6Tn (Z(SSH[SZ]))

ki2n.3<k<2n sy

|s=o0-

Notice than®(B,)) + nN(B,) = n*(B,). Applying Theorem &.1, we find that

ey = EDL S gt g DECHED),
' ki2n.3<k<2n s’
1 n! N A"(Z(Sn[S2]) n
2l (; =2 A Tg == 15D
This completes the proof. O

Calculation shows that

2SS = 2 =

and
S+ 285, + 355 + 2%

Z(S2[S2]) = 3 :
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Whence, ifn = 2, calculation shows that there are 1 map on the plane, 2 nrafiseo
projective plane, 1 map on the torus and 2 maps on the Klettebétl of those maps are
non-isomorphic and the same as gotten by Theoref$ &nd 86.2 shown in Fig.&.1.

§8.7 REMARKS

8.7.1 The enumeration problem of maps was first introduced by Taritplanar rooted
triangulation by solving a functional equation in 1962. &fhim, more and more papers
and enumeration result on rooted maps on surfaces publishedsurveying such an
enumeration, the readers are refereed to references {[liuf]] for details.

8.7.2 The enumeration of rooted maps on surfaces is canonicabiylanalytic approach.
Usually, this approach for enumeration of rooted maps epgbur steps as follows:

STEP 1. Decompose the set of rooted mapbconsidered;
STEP 2. Define the enumeration functioij, on maps by parameters, such as those of
ordern(M), sizem(M), valency of rooted vertex or rooted face; of maps, for example,

= > XM= ST g = N My gng £ = )T Dy )

are four enumeration functions respectively by ord@vl), size m(M) and valency of
rooted vertex(M) of map and then establish equations satisfiedpy
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STEP 3. Find properly parametric expression for varial¥ey, z, - - -.
STEP 4. Applying the Lagrange inversion, i.e. xf= t¢(x) with ¢(0) # 0, then

td-t [ .df
0= 100+ e (¢ oo
solves the equations for enumeration.

The importance of Theorems187 and 81.8 is that they clarify the essence of the
enumeration of rooted maps on surfaces, i.e., a calculafiime summation

25(G) [T (o(v) - 1)! 2O eG) T1 (o(v) - 1)!

veV(G) veV(G)
2 or )
b |Aut%G| & IAut%GI

whereGg denotles a graph family. For example, we know that the numireioted tree of

sizenis m Whence,
d-1)!
Z deII;{T)( ) _ (2n-1)!
Sh |AutT]| ni(n+ 1)!

where7  andD(T) denote sets of non-isomorphic trees of siand the valency sequence
of atreeT € 7, respectively.
Similarly, Theorem .1 implies the enumeration of rooted maps on a suraoé
genusd is in fact a calculation of the summation
25(G)gi(G)

GG(S) IAUL G|

whereG(S) denotes a graph family embeddable®nFor example, We know that there

are
2(2n — 1)1(2n + 1)!

(n+2)!(n+ nl(n-1)!
planar cubic hamiltonian rooted maps. Whence,

26(G)xo(G)  2(2n-1)(2n+ 1)!
Z AUtGl  (n+2)!I(n+ D!ni(n- 1)

Gebh

where%y denotes the family of hamiltonian cubic.

8.7.3 By applying Burnside lemma, Biggs and White suggested amseter enumerat-
ing non-equivalent embeddings of a graplon surfaces, i.e., orbits under the action of
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AutG on all embeddings d& in [BiW1]. Such an action is in fact orientation-preserving
Theorem 8.2 is a generalization of their result by considering theaactf Aut%G X (@)

on all embeddings o6 on surfaces. This scheme enables one to find non-isomorphic
maps on surfaces underlying a graph. Indeed, complete rsaps;regular maps and
one-vertex maps are enumerated in SectioAs3®%. Certainly, there are more maps on
surfaces needed to enumerated, such as those of maps ohetlygteblems following.

Problem 8.7.1 Enumerate maps on surfaces underlying a vertex-transiiveedge-
transitive or a regular graph, particularly, a Cayley gra@ay( : S).

Problem 8.7.2 Enumeration maps on surfaces underlying a graph G with kn@um%lG,
such as those of < P, and G,, x C,, x C, for integersnm, | > 1.

Problem 8.7.3 Enumerate a typical maps underlying a graph, for examplgp,lee maps
or Cayley maps.

The enumeration of maps on surfaces underlying a graph galsgskabout problems
following on graphs.

Problem 8.7.4 Find a graph familyg on a surface S such that the number of non-
isomorphic maps underlying graph gis summable.

Problem 8.7.5 For a surface S and an integer:n2, determine the familg,(S) embed-
dableon S With\Aut%| =nforvG e Gn(S).



CHAPTER 9.

Isometries on Smarandache Geometry

We have known that classical geometry includes those ofitEgelometry,
Lobachevshy-Bolyai-Gauss geometry and Riemann geomé&agh of the
later two is proposed by denial the 5th postulate for pdraiies in Euclid
postulates on geometry. For generalizing classical gegnaehew geometry,
calledSmarandache geometwas proposed by Smarandache in 1969, which
may enables these three geometries to be united in the saoe apogether
such that it can be either partially Euclidean and partiatip-Euclidean, or
non-Euclidean. Such a geometry is really a hybridizationthese geome-
tries. It is important for destroying the law that all poiat® equal in status
and introducing contradictory laws in a same geometricatsp For an in-
troduction to such geometry, we formally define Smarandgeloenetry, par-
ticularly, those of mixed geometries in Sectiod 9and classify s-manifolds,
a kind of Smarandache 2-manifolds by applying planar magSeiction 2.
After then, Sections 3 and 4 concentrate on the isometriégda or infi-
nite pseudo-Euclidean spac@¥'(u) by verifying the action of isometries of
R" on R",u) for n > 2. Certainly, all isometries on finite pseudo-Euclidean
spacesR", u) are automorphisms oR(", 1), and can be characterized combi-
natorially by that of maps on surfacesnif= 2 or embedded graphs R" if
n>3.
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§9.1 SMARANDACHE GEOMETRY

9.1.1 Geometrical Axiom. As we known, the Euclidean geometrical axiom system
consists of five axioms following:

(E1) There is a straight line between any two points.

(E2) A finite straight line can produce a infinite straighelicontinuously.
(E3) Any point and a distance can describe a circle.

(E4) Allright angles are equal to one another.

(E5) If a straight line falling on two straight lines make timeerior angles on the
same side less than two right angles, then the two straigbs lif produced indefinitely,
meet on that side on which are the angles less than the twioamgjtes.

The last axiom (E5) is usually replaced by:

(E5’) For a given line and a point exterior this line, there is onadiparallel to this
line.

Then ahyperbolic geometris replaced axiom (E5) by (L5) following

(L5) There are infinitely many lines parallel to a given line pasgsthrough an
exterior point,

and arelliptic geometryis replaced axiom (E5) byRb6) following:

There are no parallel to a given line passing through an egtguoint.

9.1.2 Smarandache Geometry. These non-Euclidean geometries constructed in the
previous subsection implies that one can find more non-&eah geometries replacing
Euclidean axioms by non-Euclidean axioms. In fact, a Sndaelme geometry is such a
geometry by denied some axioms (E1)-(E5) following.

Definition 9.1.1 A rule R e R in a mathematical systeifX; R) is said to be Smaran-
dachely denied if it behaves in at least twgfelent ways within the same sgf i.e.,
validated and invalided, or only invalided but in multiplstinct ways.

Definition 9.1.2 A Smarandache geometry is such a geometry in which theretare a
least one Smarandachely denied ruler and a SmarandachefoidM; A) is an n-
dimensional manifold M that support a Smarandache geontgt§marandachely denied
axioms inA.
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In a Smarandache geometry, points, lines, planes, spa@glés,- - - are called
respectivelys-points s-lines s-planes s-spacess-triangles - - - in order to distinguish
them from that in classical geometry.

Example9.1.1 Let us consider a Euclidean plaRé and three non-collinear points B
andC. Defines-points as all usual Euclidean points BA ands-lines any Euclidean line
that passes through one and only one of pot8 andC. Then such a geometry is a
Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points theresexi
one line passing through them is now replaced dye s-lineandno s-line Notice that
through any two distincs-points D, E collinear with one ofA, B andC, there is one
s-line passing through them and through any two distgpbintsF, G lying on AB or
non-collinear with one oA, B andC, there is nos-line passing through them such as
those shown in Fig.2.1(a).

Observation 2. The axiom (E5) that through a point exterior to a given lineréhis
only one parallel passing through it is now replaced by tvateshentsone paralleland
no parallel Let L be ans-line passes throug@ and is parallel in the Euclidean sense to
AB. Notice that through ang-point not lying onAB there is ones-line parallel toL and
through any othes-point lying onABthere is ncs-lines parallel td- such as those shown
in Fig.9.1.1(b).

Fig.9.1.1

9.1.3 Mixed Geometry. In references [Smal]-[Sma2], Smarandache introduced a
few mixed geometries, such as those of the paradoxist gegniet non-geometry, the
counter-projective geometry and the anti-geometry by remintts axioms E1) — (E5)

in a Euclid geometry following. All of these geometries aramples of Smarandache
geometry.
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Paradoxist Geometry. In this geometry, its axioms consist &1)— (E4) and one of the
following:

(1) There are at least a straight line and a point exteridritothis space for which
any line that passes through the point intersect the iditial

(2) There are at least a straight line and a point exteridritothis space for which
only one line passes through the point and does not inteifseatitial line.

(3) There are at least a straight line and a point exteridritothis space for which
only a finite number of linek, I», - - -, I, k > 2 pass through the point and do not intersect
the initial line.

(4) There are at least a straight line and a point exteridritothis space for which
an infinite number of lines pass through the point (but nadftthem) and do not intersect
the initial line.

(5) There are at least a straight line and a point exteridritothis space for which
any line that passes through the point and does not intetseatitial line.

Non-Geometry. The non-geometry is a geometry by denial some axiomgbf{ (E5),
such as those of the following:

(E17) Itis not always possible to draw a line from an arbitraryrpdd another
arbitrary point.

(E27) Itis not always possible to extend by continuity a finiteelbo an infinite line.

(E3") Itis not always possible to draw a circle from an arbitrapjnp and of an
arbitrary interval.

(E47) Not all the right angles are congruent.

(E5") If aline cutting two other lines forms the interior angldglte same side of it
strictly less than two right angle, then not always the twed extended towards infinite
cut each other in the side where the angles are strictly hessttvo right angle.

Counter-Projective Geometry. Denoted byP the point setl the line set an®R a relation
included inPxL. A counter-projective geometry is a geometry with thesenterdaxioms
(Cy) — (Cy) following:

(C1) There exist either at least two lines, or no line, that aors two given distinct
points.

(C2) Let py, po, p3 be three non-collinear points ang g, two distinct points. Sup-
pose thafp;.q:, p3} and{p,, 0, ps} are collinear triples. Then the line containipg p.
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and the line containing,, g, do not intersect.
(C3) Every line contains at most two distinct points.

Anti-Geometry. A geometry by denial some axioms of the Hilbert's 21 axiom&of
clidean geometry.

§9.2 CLASSIFYING ISERI'S MANIFOLDS

9.2.1 Iseri’s Manifold. The idea of Iseri’'s manifolds was based on a paper [Weel] and
credited to W.Thurston. A more general idea can be founda$[R. Such a manifold is
combinatorially defined in [Isel] as follows:

An Iseri's manifold is any collectio@(T, n) of these equilateral triangular disks
T, 1 <i < n satisfying the following conditions:

(1) Each edge e is the identification of at most two edges & two distinct trian-
gulardisks T, Tj,1<i,j<nandi# j;

(2) Each vertex v is the identification of one vertex in each of Bie or seven
distinct triangular disks.

The vertices of an Iseri’s manifold are classified by the nends the disks around
them. A vertex around five, six or seven triangular disks itedaan elliptic vertex a
Euclid vertexor ahyperbolic vertexrespectively.

An Iseri’'s manifold is called closed if the number of triatgudisks is finite and
each edge is shared by exactly two triangular disks, eadlexes completely around
by triangular disks. It is obvious that a closed Iseri’'s nfi@ldi is a surface and its Euler
characteristic can be defined by Theore@@l

Two Iseri’s manifoldsC,(T, n) andC,(T, n) are called to bésomorphidif there is an
1 - 1 mappingr : C1(T,n) — C»(T,n) such that fovT1, T, € C1(T,n), 7(T1 N T2) =
7(Ty) N 7(T2). If C(T,n) = C1(T,n) = C(T,n), 7 is called anautomorphisnof Iseri’s
manifoldC(T, n). All automorphisms of an Iseri’'s manifold form a group untlee com-
position operation, called the automorphism groug@f, n) and denoted by Adi(T, n).

9.2.2 A Model of Closed Iseri's Manifold. For a closed Iseri’'s manifol@(T, n), we
can define a maM by V(M) = {the vertices inC(T, n)}, E(M) = {the edges ii©(T, n)}
andF(M) = {T,T € C(T,n)}. ThenM is a triangular map with vertex valeney{5, 6, 7}.
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On the other hand, iM is a triangular map on surface with vertex valead$, 6, 7}, we
can define an Iseri’s manifold(T, #(M)) by

C(T,¢(M)) = {f[f € F(M)}.

ThenC(T, ¢(M)) is an Iseri’'s manifold. Consequently, we get a resulitielihg.

Theorem 9.2.1 Let5(T, n), M(T, n) and M*(T, n) be the set of Iseri’'s manifolds with n
triangular disks, triangular maps with n faces and vertexeway € {5, 6, 7} and cubic
maps of order n with face valeney(5, 6, 7}. Then

(1) There is a bijection betweeM(T, n) andC(T, n);
(2) There is also a bijection betweew*(T, n) andC(T, n).

According to Theorem 2.1, we get the following result for the automorphisms of
an Iseri’'s manifold following.

Theorem 9.2.2 Let C(T, n) be a closed s-manifold with negative Euler characteristic.
Then|AutC(T, n)] < 6n and

|JAUtC(T, n)| < =21y (C(T, n)),

with equality hold only ifC(T, n) is hyperbolic, wherg/(C(T, n)) denotes the genus of
C(T,n).

Proof The inequalityAutC(T, n)| < 6nis known by the Corollary @.1. Similar to
the proof of Theorem 8.2, we know that

—x(C(T,n
sc(r.m) = AT
3 k
1
wherek = ——— iv; < 7 and with the equality holds only K= 7, i.e.,C(T, n) is
) Z:‘ . quality y (T.n)
hyperbolic. 0J

9.2.3 Classifying Closed Iseri’s Manifolds. According to Theorem 2.1, we can clas-
sify closedlseri’s manifolds by that of triangular mapstwialency in{5, 6, 7} as follows:
Classical Type:

(1) A1 = {5-regular triangular mapgelliptic);

(2) A, = {6 —regular triangular mapg&uclid);
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(3) Az = {7 —regular triangular mapgyperbolig.

Smarandachely Type:
(4) A4 = {triangular maps with vertex valency 5 angd(6uclid-elliptio);
(5) As = {triangular maps with vertex valency 5 ang(&lliptic-hyperbolig;
(6) Ae = {triangular maps with vertex valency 6 angd(@uclid-hyperbolig;
(7) A; = {triangular maps with vertex valency@and 7 (mixed.

We prove each of these types is not empty following.

Theorem 9.2.3 For classical typeg\; — As, there are

(1) A1 = {O20, P1o};

(2) A2 ={Ti,Kj, 1<, j < +oo;

(B) Az ={Hi,1<i < +oo},
where Qq, Pipare showninFig.2.1, Ts, Kz are shown in Figd.2.2and H is the Hurwitz
maps, i.e., triangular maps of valency

1

‘\

Fig.9.2.2
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Proof If M is ak-regular triangulation, we get that@) = 3¢p(M) = kv(M).
Whence, we have

&(M) = @ and v(M) = 389").
By the Euler-Poincare formula, we know that
3 1
(M) = V(M) = (M) + 6(M) = (i = 5)o(M).

If M is elliptic, thenk = 5. Whencey(M) = ¢(1|\(;I) > 0. Therefore, ifM is orientable,
theny(M) = 2, Whencegp(M) = 20,v(M) = 12 ande(M) = 30, which is just the
mapOy. If M is non-orientable, theg(M) = 1, Whencegp(M) = 10,v(M) = 6 and
(M) = 15, which is the map.

If M is Euclidean, thek = 6. Thusy(M) = 0, i.e.,M is a 6-regular triangulatioi
or K; for some integer or j on the torus or Klein bottle, which is infinite.

If M is hyperbolic, therk = 7. Whencey(M) < 0. M is a 7-regular triangulation,
i.e., the Hurwitz map. According to the results in [Surlkri are infinite Hurwitz maps
on surfaces. This completes the proof. O

For these Smarandache Types, the situation is complex. Buatw also obtain the
enumeration results for each of the types- A;. First, we prove a condition for the
numbers of vertex valency 5 with that of 7.

Lemma9.2.1 LetC(T, n) be an Iseri’'s manifold. Then
V7 > V5 + 2

if y(C(T,n)) <-1and
V7 <V5—2
if x(C(T,n)) > 1, where ydenotes the number of vertices of valency@{it, n).

Proof Notice that we have know

e(c(r.my) = 2T
3 k

wherek is the average valency of vertices@(T, n). Since

_ 5v5 + 6Vg + 7V
Vst Vg + Vg

k

ande(C(T, n)) > 3. Consequently, we get that
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() If x(C(T,n)) < -1, then

1 2v5+2vg + 2V

- — > 0,
3  Bvg + 6vg + 7V,

i.e.,vs >Vvs+ 1. Nowifv; = v5 + 1, then
5V5 + 6V + 7v7 = 125 + 6V + 7 = 1(moR).
Contradicts to the fact that

2, pal¥) = 2(G) = O(mocR)

veV(G)

for a graphG. Whence there must be
V7 > V5 + 2.

(2) If x(C(T,n)) > 1, then

}_2V5+2V5+2V7 <
3  5v5+6vg + 7V,

i.e.,,vz <vs—1. Nowifv; = v5 — 1, then
5V5 + 6V + 7v7 = 125 + 6Vg — 7 = 1(moR).
Also contradicts to the fact that

2, pe(v) = 2¢(G) = O(moc)

veV(G)

for a graphG. Whence, there must be

V7 < V5—2. U
Corollary 9.2.1 There are no Iseri’'s manifoldS(T, n) such that

vz — Vs < 1,

wherev; denotes the number of vertices of valenay C(T, n).

Define an operata® : M — M* on a triangulatiorM of a surface by
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Choose each midpoint on each edge in M and connect the midpaach triangle
as shown in Fid.2.3. Then the resultant Mis a triangulation of the same surface and
the valency of each new vertexais

Fig. 9.2.3
Then we get the following result.

Theorem 9.2.4 For these Smarandache TypksA-, there are
(1) 1As| > 2;
(2) Each oflA4l, |Ag| and|A-] is infinite.
Proof For M € A4, letk be the average valency of verticeshh Since

_ 55 + 6vg —)((M)

V5 + Vg

k <6 and &(M)=

1_2

3 k

we have thay(M) > 1. Calculation shows that = 6 if y(M) = 1 andvs = 12 if
x(M) = 2. We can construct a triangulation with vertex valenc§ 6n the plane and the

projective plane in Fig.2.4.

() (b)

Fig.9.2.4

Now let M be a map in Fig.2.4. ThenM®? is also a triangulation of the same surface
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with vertex valency 56 andM® # M. Whence]A,| is infinite.

For M € As, by the Lemma 2.1, we know thatv; < vs — 2 if y(M) > 1 and
v7 > Vs + 2 if y(M) < —1. We construct a triangulation on the plane and projectiaag
in Fig.9.2.5.

Fig.9.2.5

6Ve + 7V .
For M € Ag, we know thatk = —2+ ¥ - 6 Whencex(M) < —1. Since

Vg + V7
3p(M) = 6vg + 7v7 = 2¢(M), we get that

6Vs ; v, + 6Vs ; v, :X(M)

Therefore, we have; = —y(M). Notice that there are infinite Hurwitz majpé on sur-
faces. Then the resultant triangular mdpis a triangulation with vertex valency 6 and
M* = M. Thus|Ag| is infinite.

For M € A7, we construct a triangulation with vertex valencyss7 in Fig.92.6.

Ve + V7 —

6 > A4
7 N\

2 )
\ 7

5 6

Fig.9.2.6

Let M be one of the maps in Fig®6. Then the action o® on M results infinite
triangulations of valency,® or 7. This completes the proof. U

For the setAs, we have the following conjecture.

Conjecture 9.2.1 The numbefAs| is infinite.
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§9.3 ISOMETRIES OF SMARANDACHE 2-MANIFOLDS

9.3.1 Smarandachely Automorphism. Let (M; A) be a Smarandache manifold. By
definition a Smarandachely denied axidxne A can be considered as an action/fof
on subsetS$ c M, denoted by8*. Now let (M1; A;) and (M,; A,) be two Smarandache
manifolds, whereA,, A, are the Smarandachely denied axioms on manifsldandM,,
respectively. They are said to morphicif there is 1- 1 mappings : M; — M, and

o A — Ay such thatr(SA) = 7(S)7@ for ¥S ¢ My andA € A;. Such a paird, o) is
called anisomorphism betweeM (; A;) and M,; A,). Particularly, ifM; = M, = M and
A = Ay = A, such an isomorphisnr (o) is called aSmarandachely automorphisoh
(M, A). Clearly, all such automorphisms d¥i(.A) form an group under the composition
operation orr for a giveno. Denoted by Auti/, A).

9.3.2 Isometry on R. Let X be a setang : X x X — R a metric onX, i.e.,

(1) p(x,y) = 0forx,y e X, and with equality hold if and only ik = y;
(2) p(xy) = p(y,x) for x,y € X;
() p(xY) +p(y,2) > p(X,2) for x,y,z€ X.

A setX with such a metrig is called ametric spacedenoted by X, p).

Example9.3.1 LetR? = {(x,y) | X,y € R }. Define

p(X1,X2) = V(X1 — %2)2 + (Y1 — Y2)2

for x; = (X1, Y1), X2 = (X2, ¥2) € R% Then such a is a metric orR?. We verify conditions
(2)-(3) in the following.

Clearly, conditions (1) and (2) are consequence?of 0 = x = 0 andx? = (—x)?
for x € R. Now let (X1, y1), (X2,Y2) and (s, ys) be three points oR? with

(Xl +a,Y1 + bl)

(X2, Y2)

(X3, y3) (Xl +a + Y+ b]_ + bg)

Then the condition (3) implies that

JeZ + 02+ \Jaz+ b2 > (o + &) + (s + D).

which can be verified to be hold immediately.
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An isometryof a metric spaceX, p) is a bijective mapping : X — X that preserves
distance, i.e.p(¢(x), ¢(y)) = p(X,y). Denote by Ison¥, p) the set of all isometries of
(X, p). Then we know the following.

Theorem 9.3.1 Isom(X, p) is a group under the composition operation of mapping.

Proof Clearly, I € Isom(X) and if ¢ € Isom(X), theng~! € Isom(X). Furthermore,
if ¢1, ¢ € Isom(X), by definition we know that

p(¢162(X), p192(Y)) = p(2(X), 2(y)) = p(X.Y)-

Whenceg, ¢, is also an isometry, i.eg;¢, € Isom(X). So Isomk, p) is a group. O

Let A, A’ be two triangles ofR?. They are said to beongruenif we can label their
vertices, for instanca = ABCandA’ = A’B’'C’ such that

|AB = |A'B|, |BC| =|B'C’|, |ICA =|C'A],
/CAB= /C'A'B, Z/ABC=/ABC’, /BCA=/BCA.

Theorem 9.3.2 Let¢ be an isometry ofR?. Theng maps a triangle to its a congruent
triangle, preserves angles and maps lines to lines.

Proof Let A be a triangle with vertex labels BandC onR?. Theng(A) is congruent
with A by the definition of isometry.

Notice that an angle’ < 7= and an angle/ > n can be realized respectively as an
angle Z/CAB, or an exterior angle of a triangleBC. We have known thap(ABC) is
congruent withABC. Consequently/¢(C)¢(A)¢(B) = ZCAB, i.e.,¢ preserves angles in
R?. If £ = n, this result follows the law of trichotomy.

For alineL in R?, let B, C be two distinct points o, and letL’ be the line through
pointsB’ = ¢(B) andC’ = ¢(C). Then for any poinA € R?, it follows that

p(A)¢od(l) © A¢Lo0</ZCAB<nr
o 0<ZC¢(AB <mo ¢(A) ¢ L .

Thereforeg(L) = L. O

The behavior of an isometry is completely determined by étsoa on three non-
collinear points shown in the next result.
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Theorem 9.3.3 An isometry ofR? is determined by its action on three non-collinear
points.

Proof Let A, B, C be three non-collinear points d&¢ and let¢;, ¢, € IsomR?)
have the same action &y B, C. Thus

$1(A) = 2(A),  ¢1(B) = ¢2(B),  ¢1(C) = ¢2(C).

i.e.,,
67501 (A) = A, ¢5%¢1(B) = B, ¢;¢1(C) = C.

Whence, we must show that if there exigtse IsomR?) such thatp(A) = A, ¢(B) =
B, ¢(C) = C, theny(P) = P for each poinP € R?.

In fact, sincep preserves distance andA) = A, it follows that P and ¢(P) are
equidistant fromA. Thuse(P) lies on the circles; centered af with radius|AP|. Sim-
ilarly, ¢(P) also lies on the circl&, centered aB with radius|BP|. Whence,p(P) €
61N Go.

Becauses; and %, are not concentric, they intersect in at most two pointshas
those shown in Fig.8.1 following.

€ ©(P)
©>

Fig.9.3.1

Notice thatP lies on both of¢; and%,. Thus%, N ¢, # 0. Therefore |61 N % = 1
or 2. If |61 N %] = 1, theng(P) = P. If |91 N %, = 2, letL be the line througl®, B,
which is the perpendicular bisector fP) andP, such as those shown in Fig3a.. By
assumptionC ¢ L, we get thaiCP| # |Cy(P)|. Contradicts to the fact th&, ¢(P) are
equidistant fronC. Whencg%, N %,| = 1 and we get the conclusion. O
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There are three types of isometriesRmlisted in the following.

Translation T. A translationT is a mapping that moves every pointRf through
a constant distance in a fixed direction, i.e.,

Tap: RZ > R?, (X, y1) = (X2 +a,y1 + b),
where @, b) is a constant vector. Call the direction af ) theaxisof T and denoted by
T = Tap.

Rotation R,. A rotation R is a mapping that moves every point Rf through a
fixed angle about a fixed point, called tbenter By taking the cente® to be the origin
of polar coordinates’(6), a rotationR, : R? — R?is

R:(r,0) - (r,0 + @),

wherew is a constant angleg € R (modZ2r). Denoted byR = R;.

ReflectionF. A reflectionF is a mapping that moves every pointRf to its mirror-
image in a fixed line. That link is called theaxisof F, denoted by = F(L). Thus for a
pointPin R?,if P € L, thenF(P) = P, and if P ¢ L, thenF(P) is the unique point ifR?
such thal is the perpendicular bisector BfandF (P).

Theorem 9.3.4 For a chosen line L and a fixed point © L in R?, any elemenp €
Isom(R?) can written uniquely in the form

¢ =TRF,
where F denotes the reflectionind.= Oor 1, R is the rotation centered at O,d T, and

the subgroup of orientation-preserving isometriefRédfconsists of those with € = 0.

Proof Let T be the translation transferrir@to ¢(O). Clearly, T~1o(O) = O. Now
let P € L be a point withP # O. By definition,

0 < p(O,P) = p(T~¢(0), T*¢(P)) = p(O, T¢(P)),

there exists a rotatioR centered a0 transferringP to T-1¢(P). ThusR 1T 1y fixes both
pointsO andP.

Finally, letQ ¢ L be a point. Then point® andR 1T 1y(Q) are equidistant both
from pointsO andP. Similar to the proof of Theorem.3.3, we know that point§) and
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R1T1¢(Q) are either equal or mirror-imageslin Chooses = 0 if Q = R*T1¢(Q) and
e = 1if Q # R1T1p(Q). Then the isometr{F¢R 1T ¢ fixes non-collinear point®, P
andQ. According to Theorem 8.3, there must be

FRIT Y = 1z

Thus
¢ =TRF.

For the uniqueness of the form, assume that
TRF = T'RF?,

wheree, 6 € {0,1}, T, T € T andR, R € Rq. Clearly,e = 6 by previous argument.
CancellingF if necessary, we get thdtR = T’R’. But then T’)"'T = RR! belongs
toRo N T, i.e., a translation fixes poil@. Whence, it is the identity mapping-1 Thus
T=T andR=R.

Notice thatT, R are orientation-preserving bEtis orientation-reversing. It follows
thatT RF* is orientation-preserving or orientation-reversing adotg toe = 0 or 1. This
completes the proof. O

9.3.3 Finitely Smarandache2-Manifold. A point P on a Euclidean planB? is in fact
associated with a real number Generally, we consider a functipn: R?> — [0, 2r) and
classify points orR? into three classes following:

Elliptic Type. All points P € R? with u(P) < .
Euclidean Type. All points Q € R? with u(P) = 7.
Hyperbolic Type. All points U € R? with u(P) > 7.

Such a Euclidean plan@? with elliptic or hyperbolic points is called 8marandache
plang denoted byR?, 1) and these elliptic or hyperbolic points are calfexh-Euclidean
points A finitely Smarandache plane is such a Smarandache plaimefiwite non-
Euclidean points.

Let L be an s-line in a Smarandache plaRé, ;) with non-Euclisedn pointéy, A,
.-+, Ay for an integemn > 0. Itscurvature KL) is defined by

R(L) = )0~ u(A)).
i=1
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An s-lineL is calledEuclideanor non-Euclideanf R(L) = +2r or # +2x. The following
result characterizes s-lines dR( u).

Theorem 9.3.5 An s-line without self-intersections is closed if and ohlyis Euclidean.

Proof Let (R?, 1) be a Smarandache plane andldie a closed s-line without self-
intersections onR?, 1) with verticesA, Ay, - - -, A,. From the Euclid geometry on plane,
we know that the angle sum of arpolygon is 6 — 2)r. Whence, the curvaturfg(L) of
s-lineL is +2x by definition, i.e. L is Euclidean.

Now if an s-lineL is Euclidean, theiR(L) = +2x by definition. Thus there exist
non-Euclidean pointBy, By, - - -, B, such that

n

D @~ n(B)) = £2n.

i=1
Whence L is nothing but am-polygon with vertices8,, B,, - - -, B, on R?. Therefore L
is closed without self-intersection. O

Furthermore, we find conditions for an s-line to be that ofutagpolygon onR?
following.

Corollary 9.3.1 An s-line without self-intersection passing through narcli€lean points
A, Ay, -+, Ay is aregular polygon if and only if all points:AA,, - - -, A, are elliptic with

2
n) = (1- 2}
orall A, A, - - -, A, are hyperbolic with
2
u(A) = (1 + —)ﬂ
n
forintegersl <i < n.

Proof If an s-lineL without self-intersection passing through non-Euclidpaimts
A, Ao, - -+, A, is a regular polygon, then all poings, A,, - - -, A, must be elliptic (hyper-
bolic) and calculation easily shows that

(A = (1— %)n or u(A) = (1+ %)n

for integers 1< i < n by Theorem B.5. On the other hand, if is an s-line passing

through elliptic (hyperbolic) pointéy, Ay, - - -, A, with

u(A) = (1— %)n or u(Ay) = (1+ %)n
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for integers 1< i < n, then it is closed by Theorem®5. Clearly,L is a regular polygon
with verticesAq, Ao, - - -, A,. O

Let p be the metric oriR? defined in Example 8.1. Anisometryon a Smarandache
plane R?, ) is such an isometry : R? — R? with u(r(X)) = u(x) for x € R?. Clearly,
all isometries onR?, 1) also form a group under the composition operation, denbyed
Isom®R?, u). Corollary 93.1 enables one to determine isometries of finitely Smararedach
planes following.

Theorem 9.3.6 Let (R? u) be a finitely Smarandache plane. Then any isomgirpf
(R?, u) is generated by a rotation R and a reflection FRf i.e.,.7 = RF¢ withe = 0, 1.

Proof Let .7 be an isometry on a finitely Smarandache plaR& £). Then for a
point A on (R?, ), the type ofA and .7 (A) must be the same with(.7 (A)) = u(A) by
definition. Whence, if there is constant vectarlf) € R? such thafT,;, : (R%u) —
(R?, 1) determined by

(Xy) = (X+ay+b)

is an isometry ané a non-Euclidean point irR?, i), then there are infinite non-Euclidean
pointsA, Tap(A), Tib(A), o, Top(A), - -+, forintegersn > 1, contradicts the assumption
that (R?, u) is finitely Smarandache. Thug can be only generated by a rotation and a
refection. ThusZ = RF¢. Conversely, we are easily constructing a rotafioand a
reflectionF on (R? ). For example, a rotatioR : 6 — 6 + /2 centered aD and

a reflectionF in line L on a finitely Smarandache planB?%( u) is shown in Fig.%B.2

(a) and ) in which the labeling number on a poiRtis u(P) if u(P) # n. Otherwise,

u(P) = rif there are no a label fop € R?. O
7 n
12 12
7 3
s N\ D 1
™. d T il 0 il
2 2 2 1 2
g L
T R
2 2
() (b)

Fig.9.3.2
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The classification on finitely Smarandache planes is thevafig result.

Theorem 9.3.7 Let Kn or K(n—-1)and0 < d; < d, < ---dx an integer sequence. Then
there exist one and only one finitely Smarandache p{&*teu) with n non-Euclidean
points A, A, ---, A, such that

IsomR?, i) =~ Dy

and
2 . . . . N
pOA) =t uA) = (1) (-Dkslsii<ii 1)<
if k|n, or
2 . . . . n-1
pOM) =d uA)=(1-F). (-Dk+1sij<ik 1<

with O = A, if k|(n - 1).
Proof Choosew = % and a rotationR,, : (r,0) — (r,0 + w) centered aD.

n . . ,
Assumekin. LetPy,Po, -+, P be X concentrically regulak-polygons aO with radius

di, dp, ---, dk. Place pointg\g, Ay, - - -, Ay on vertices ofPy, Ay, Aci2, - - -, Aok ON vertices
of P, - -, andAn_;1, Anks2, - - -, An ON Vertices ofPy, such as those shown in Fig33.

An—k+§% 77777777777777777 An —k+2
Aca o Ao
“As As
****** ST R A A
o 'Ak
. S " Ao
Al © A

Fig.9.3.3

Then we are easily know that
IsomR?, 1) =~ Dy

. n .
For the uniqueness, I1€, P, - P’E beE concentrically regulak-polygons at®

with radiusdy, dy, ---, d¢ and verticesA), A, ---, A, labeled likely that in Fig.8.3.
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Choose€ly o being a translation moving poid’ to O and Ra.a, @ rotation centered &
moving A; to A;. Transfer it first byTo o and then byRx a,. Then each non-Euclidean
point A’ coincides withA; for integers 1< i < n, i.e., they are the same Smarandache
plane R?, ).

Similarly, we can get the result for the casek§h — 1) by puttingO = A,. OJ

9.3.4 Smarandachely Map. Let S be a surface associated wjih: x — [0, 2r) for
each pointx € S, denoted by $,u). A point x € S is calledelliptic, Euclideanor
hyperbolicif it has a neighborhootl)y homeomorphic to a 2-disk neighborhood of an
elliptic, Euclidean or a hyperbolic point ifk¢, i). Similarly, a line on 8, i) is called an
s-line.

AmapM = (Z,5 &) on (S, pu) is calledSmarandachelyf all of its vertices is
elliptic (hyperbolic). Notice that these pendent verticesot important because it can
be always Euclidean or non-Euclidean. We concentrate @entain to non-separated
maps. Such maps always exist circuit-decompositions. dl@ifing result characterizes
Smarandachely maps.

Theorem 9.3.8 A non-separated planar map M is Smarandachely if and onlgefe
exist a directed circuit-decomposition

S
Ey(M) = (P E(C)
i=1
of M such that one of the linear systems of equations

Z (mr—x)=2r, 1l<i<s
veV(a)
or
Z (t—x)=-2r, 1<i<s
veV(a)

is solvable, where iE(M) denotes the set of semi-arcs of M.

Proof If M is Smarandachely, then each vertex V(M) is non-Euclidean, i.e.,
u(v) # n. Whence, there exists a directed circuit-decomposition

Ey(M) = (P E(C)
i=1
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of semi-arcs inVl such that each of them is an s-line R?(u). Applying Theorem .5,
we know that

D, @-nw)=2ror 3 (x-p(v)=-2r
veV(@i) vev(t)i)

for each circuiCj, 1 <i < s. Thus one of the linear systems of equations
Z (r—x)=2r1, 1<i<s or Z (r-x)=-21, 1<i<s
veV(@i) vev(éi)
Is solvable.

Conversely, if one of the linear systems of equations

Z (mr—%x,)=21, 1<i<s or Z (mr—x)=-2r, 1<i<s
veV(@i) vev(éi)

is solvable, define a mapping: R?> — [0, 4r) by

X, ifx=veV(M),
p =<3 "
n if x¢ v(M).
ThenM is a Smarandachely map oR% x). This completes the proof. O

In Fig.9.3.4, we present an example of a Smarandachely planar mapg wéfined
by numbers on vertices.

T T T
2 2 2
T T
2 7 2

2
T T T
2 2 2
Fig.9.3.4

Let wg € (0, 7). An s-lineL is callednon-Euclidean of typey if R(L) = +27 + wy.
Similar to Theorem 3.8, we can get the following result.
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Theorem 9.3.9 A non-separated map M is Smarandachely if and only if theist ex
directed circuit-decomposition

Ey(M) = (P E(C)
i=1

of M into s-lines of typevo, wo € (0, 7) for integersl < i < s such that one of the linear
systems of equations

Z (m—X) = 21 - wo, 1<i<s,
vev(Cy)
Z (m = %) = =271 — wo, 1<i<s
vev(Cy)
Z (= X) = 21 + wo, 1<i<s,
vev(Cy)
Z (m = %) = =271 + wo, 1<i<s
vev(Cy)

is solvable.

9.3.5 Infinitely Smarandache2-Manifold. Notice that the functiom : R?> — [0, 27)

is not continuous if there are only finitely non-Euclideannt®in (R?, x). We consider
a continuous functiom : R? — [0, 2n) in this subsection, in which we meet infinite
non-Euclidean points.

Fig.9.3.5

Letr : (a,b) — R? be a plane curv€ parametrized by arc lengthseeing Fig.38.5.
Notice thatu(x) is an angle variant from of a Euclidean point ta(x) of a non-Euclidean
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x in finitely Smarandache plane. Consider points moves ffota Y onr(s). Then the
variant of angles fronty tol, iIsé = ¢ — . Thusu(x) = d_d;' . Define thecurvature RC)
X

of curveC by
d
R(C) = d—‘i .
C

Then ifC is a closed curve oR? without self-intersection, we get that

2nr
d d
R(C) = d_qu: d_(i:¢|2nr_¢|0:2ﬂ"

C 0

Letr = (x(9),Y)(9)) be a plane curve iR?. Then

% = COS Q = sin
s~ €08 gg=sIne
Consequently,
d?x . d¢ dyde¢ d?y d¢p dxde
ag =~ "™4sT Tdsds  a¢  *ds” dsds
o . dy dx .
Multiplying the first formula by—d—s, the second byd—S on both sides and plus them, we
get that

o _dxdy  dxdy
ds dsd® d<gds
by applying sif¢ + co€ ¢ = 1.

If r(t) = (x(t), y(t)) is a plane curv& parametrized by, wheret maybe not the arc
length, since
‘ dx)\ dy 2
S:f (a) +(a) dt,
0
we know that

ds dx)\ dy2 dx (dx\ (ds dy (dy\ (ds
a0 \(a) (@) = (a0 (@) e g (&) ()
Whence,

dxdy _ dxdy
d¢  dtd di2 dt

NE
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Consequently, we get the following result by definition.

Theorem 9.3.10 A curve C determined ly= (X(t), y)(t)) exists in a Smarandache plane
(R?, ) if and only if the following dferential equation

dxd?y d?xdy

dtdt®  dt2 dt _

(S ()

Example9.3.1 Letr(6) = (cosb, siné) (0 < A < 2r) be a unit circleC onR?. Calculation
shows that

is solvable.

dxd?y d?xdy .
@w—@d—g —S|r]29+C0§9—1

2 2\3
dx + dy = sifd+cos6 =1
dt dt

Whence, the circl€ exists in a Smarandache plai®?(u) if and only if u(x,y) = 1 for
Y(x,y) € C.

and

Example 9.3.2 Letr(t) = (a(t — sint), a(1 — cost)) (0 < t < 27) be a spiral line orR?.
Calculation shows that

do 1
ds .t
4asin >
Whence, this spiral line exists in a Smarandache plRdgd) if and only if
1
,U(X, y) = - ]
4asm§

for x = a(t — sint) andy = a(1 — cost).

Now we turn our attention to isometries of Smarandache gRAg:) with infinitely
Smarandache points. These points Rf,(«) can be classified into three classes, i.e.,
elliptic points \4;, Euclidean points ¥, andhyperbolic points V, following:

Ve ={ue (R%u) | u(u) <},
Veu={Ve (Rzuu) |IU(V) =},
Vihy = {we (R% u) | (W) > ).
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Theorem9.3.11 Let(R, 1) be a Smarandache plane. If\# 0 and \f,, # 0, then \, # 0.

Proof By assumption, we can choose points Vg andv € V. Consider points on
line segmentivin (R?, i2). Notice thafu(u) < 7 andu(v) > . Applying the connectedness
of u, there exists at least one poinf w € uv such thaju(w) = x, i.e.,w € Vg, by the
intermediate value theorem on continuous function. TVys« 0. O

Corollary 9.3.2 Let(R,u) be a Smarandache plane. I§)\= 0, then either all points of
(R?, 1) are elliptic or hyperbolic.

Corollary 93.2 enables one to classify Smarandache planes into claskmsgifg:

Euclidean Type. These Smarandache planes in which each point is Euclidean.

Elliptic Type. These Smarandache planes in which each point is elliptic.

Hyperbolic Type. These Smarandache planes in which each point is hyperbolic.

Smarandachely Type. These Smarandache planes in which there are elliptic, Eu-
clidean and hyperbolic points simultaneously. This type ba further classified into
three classes by Corollary®2:

(S1) Such Smarandache planes just containing elliptic arefidean points;
(S2) Such Smarandache planes just containing Euclideahyg®ibolic points;
(S3) Such Smarandache planes containing elliptic, Ewatided hyperbolic points.

By definition, these isometries of a Euclidean pl&fei.e., translation, rotation and
reflection exist also in Smarandache plarfe$ () of elliptic and hyperbolic types if we
let u : R? — [0,n) be a constart = or > n. We concentrate our discussion on these
Smarandachely types.



332 Chap.9 Isometries on Smarandache Geometry

For convenience, we respectively colour the elliptic, iilezn and hyperbolic points
by colors red (R), yellow (Y) and white (W). For the cases (84)S2), if there is an
isometry of translatio,p, on (R?, 1), then this Smarandache plane can be only the case
shown in Fig.93.6, whereX =R or W and all other points colored by Y. Whence, if there
is also a rotatiorR, on (R?, ), there must be = b andd = /2 with center atX or
the center of one square. In this case, w can easily find atiefide in a horizontal or a
vertical line passing through X. Whence, there are isom&bf types translation, rotation
and reflection in cases (S1) and (S2).

Fig.9.3.7

Furthermore, if there is an isometry of rotatiBnon (R?, 1), then this Smarandache
plane can be only the case shown in Fig.B, whereX, U, Z € {R, W} and all other
points colored by Y. In this case, there are reflectibns lines passing through points O,
X and there are translatioffg, on (R?, u) only if § = 7/2 anda = b.

®ew a0 an

: o oz 2

s08g0 0
@ o @ @
X DK D OB

Fig.9.3.8
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Consider the case of (S3). In this case, if there is an isgnoéttranslationT,p
on (R?, 1), then this Smarandache plane can be only the case showg.8:3(, where
X e {R, W}, Z € {R, W} \ {X} and all other points colored by Y. Now if there is an
isometry of rotatiorR, on (R?, 1), there must ba = b andé = 7/2 centered at X, Z or
the center of one square.

Similarly, if there is an isometry of rotatioR, on (R?, x) such as those shown in
Fig.9.3.7. Then there are reflectio®sin lines passing through points O, X. In this case,
there exist translationk,, on (R?, u) only if = 7/2 anda = b.

Summarizing up all the previous discussions, we get thewatg result on isome-
tries of Smarandache pland®?( ) with a continuous functiop : R? — [0, 2r).

Theorem 9.3.12 Let (R? x) be a Smarandachely type plane wjth: R> — [0, 27) a
continuous function. Then there are isometries of tramstel,, and rotations R only
ifa = b andd = n/2, and there are indeed such a Smarandache plRrey) with
isometries of types translation, rotation and reflectiomaarrently in each of classes
(S1)-(S3).

§9.4 ISOMETRIES OF PSEUDO-EUCLIDEAN SPACES

9.4.1 Euclidean Space.A Euclidean spacen a real vector spade over a field.% is a
mapping

(- -Y:EXE —> Rwith (€,,&) — (€,6) forVe,,& € E
such thatfoe, e, & € E,a € ¥

(Al) (& + &) =(E&)+(6&);

(A2) (& a€) = a(ee);

(A3) (&1, &) = (&, &),

(A4) (8,8 > 0and(g e = 0if and only ife = 0.

In an Euclidean spadg, the number\/@ is called itsnorm, denoted byj|g|| for
abbreviation. It can be shown that

(1) (0.€) = (e 0) = Ofor Ve E;

@) <i

m

yiéJ?> = 3 > xy; (€. &), for & € E, where 1< i < maxm n} and

i=1li=1

X8,

LD=
M3
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s=1or?2.
Certainly, lete; = € = 0 in (A1), we find that<é, 6> = 0. Applying (A3), we get that
<6, é) = 0. This is the formula in (1). For (2), applyind1)-(A2), we know that

<an X&), Zm: yié,?>
i=1 j=1

1l 1l 1l
NgER Ma
< /\

= § J‘D

£ “f’ 2
o, o
~ \/ \/
T ME
Ms =
g 7
JD D
}p .
\/

9.4.2 Linear Isometry on Euclidean Space Let E be am-dimensional Euclidean space
with normal basige;, e, - - -, €n}, i.e.,<Ei,E,-> = 0 and|g| = 1 forintegers I<i, j < n. A
linear isometry T: E — E is such a transformation that

T(Ci8 + &) = 1 T(81) + CT(&) and (T (&), T(&)) = (€1, &)
fore, & € Eandcy, ¢, € .#.

Theorem 9.4.1 Let E be an n-dimensional Euclidean space with normal bésise,,
-,€n} and T a linear transformation o&. Then T is an isometry oB if and only if
{T(€1),T(€2),---,T(en)} is a normal basis oE.

Proof If T is a linear isometry, the(1T(EO,T(E,-)> = <Ei,Ej> = ¢i; by definition,
whered;; = 1ifi = jand O otherwise. WhencgT (€1), T(€2), - - -, T(€n)} is a normal basis
of E.

Conversely, letfey, €, - -, €}, {T(€1), T(€2),---, T(€n)} be normal basis oE and
vV € E. Without loss of generality, assume- a;€; + axé, + - - - + a,€,. Then we know that
T(V) = T (€1) + T (€2) +-- - +a,T (). Notice thaiT(e), T(j)) = 61,y and(z. ;) = o,
for integers 1< i, j < n. We get that

V,W=al,a+ --+a and (TVW), TWV)=al, a5+ +a’.

Thus(T (), T(®)) = (¥, V. 0
A matrix A = [a,-,-]nxn is called orthogonal iAA! = |, whereA! is the transpose of
Aif

g +a,+--+ay=1 and anaj +apgajp+ -+ andpn =0
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forintegers I<i, j <n, i # j.

Theorem 9.4.2 Let E be an n-dimensional Euclidean space with normal b#sise,,
-+, €} and T a linear transformation o determined by_m(t = [aij]nxn Yt, whereX =

(€1, €2, -+, €n) andY = (T(€1), T(€), - - -, T(&)). Then T is a linear isometry o if and
only if [aij] ) is an orthogonal matrix.

nx

Proof If T is a linear isometry ok, then(T(Ei),T(E,-)> = <Ei,E,-> = 6ij. Thus
&18j1 + G2y + - - - + @n@jn = i,

ie., [a,-,-]nxn is an orthogonal matrix by definition.
On the other hand, iﬁaij]nxn is an orthogonal matrix, then we are easily know that
(T(€), T(€2), - -, T(€,)} is a normal basis dE. Letb = by&, + bye; +- - - + byen € E. Then

T(B) = T(b1€1 + b222 + -+ bnEn) = blT(El) + bgT(Eg) + -+ bnT(En)

Thus
(TO.T®) =0+ 5+ -+ b7 = (B.b).

l.e., T is a linear isometry by definition. U

9.4.3 Isometry on Euclidean Space.Let E be ann-dimensional Euclidean space with
normal basigey, €, - - -, €,}. As in the case oR? by the distance-preserving property, any
isometry onE is a composition of three isometries Brfollowing:

Translation Ts. A mapping that moves every pointy( X, - - -, X,) of E by

Te: (X, X2, -+, %) = (Xe + €1, %+ €, -+, Xy + &),

ol

wheree = (e, e, - -, &).

Rotation R;. A mapping that moves every point Bfthrough a fixed angle about a
fixed point. Similarly, taking the cent@ to be the origin of polar coordinates §1, ¢-,
-+, ¢n-1), arotationRy, 4,4, - E > Els

Rﬂlﬁz,-“ﬁn_l . (r? ¢1? ¢2’ ) ¢n1) - (r? ¢1 + 01’ ¢2 + 02’ Y ¢n1 + 9”—1)’
whereg, is a constant angl®; € R (mod2r) for integers 1<i < n- 1.

ReflectionF. A reflectionF is a mapping that moves every pointto its mirror-
image in a fixed Euclidean subspd€eof dimensionah-1, denoted by = F(E’). Thus
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forapointPin E, F(P) = Pif Pe E’, and if P ¢ E’, thenF(P) is the unique point irfkE
such thate’ is the perpendicular bisector BfandF (P).

The following result is easily to know similar to the proof ®heorem 8.4 by the
distance-preserving property of isometries.

Theorem 9.4.3 All isometries fixing the origin on a Euclidean spdeare linear.

Whence, by Theorems£1-9.4.2, we get the following result.

Theorem 9.4.4 Any isometryl on a Euclidean spack is affine, i.e.,

t

Y

=1a;] X +8&

nxn

whereA is a constant numbe[raij] |a orthogonal matrix an@ a constant vector ig&.

nx

9.4.4 Pseudo-Euclidean Spacelet R" = {(x1, X2, - - -, X,)} be a Euclidean space of di-
mensionah with a normal basig, = (1,0,---,0),e, = (0,1,---,0),---,€, = (0,0, - - -, 1),

X € R" andvy, YT/) two vectors with end or initial point &, respectively. Apseudo-
Euclidean spacé€R", 1) is such a Euclidean spad®’ associated with a mapping :
77 - YT/) for X e R", such as those shown in Figd4L,

Vi NV Vs 7v

x|

X

(@) (b)

Fig.9.4.1

wherevy andyv are in the same orientation in casg, put not in caself). Such pointsin
case @) are callecEuclideanand in caself) non-Euclidean A pseudo-EuclidearR", )
is finite if it only has finite non-Euclidean points, otherwigefjnite.

Notice that a vectoW can be uniquely determined by the basif8f- Forx € R",
there are infinite orthogonal frames at pamtDenoted byOx the set of all normal bases
at pointX. Then apseudo-Euclidean spad¢®, 1) is nothing but a Euclidean spaé&
associated with a linear mapping: {€;, €, -,€} — {€,€,---,€,} € Ox such that
(€r) = €, w(€2) = €, -+ -, u(€n) = €, at pointx € R". Thus ifVg = C1&1+Coea+- - -+ Cren,
thenu(xV) = Cou(€y) + Copt(€2) + - - - + Coit(€n) = C1E, + CoEp + -+ + ChE.
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Without loss of generality, assume that

H(€1) = X11€1 + X12€2 + - -+ + Xin€n,
H(€2) = X21€1 + Xp2€2 + - - + Xonén,

Then we find that
UGEV) = (oL oo C)uEL). uE2). ()
X112 X2 o+ X
= (Cl’CZ""’Cn) Xer Xaz e e (ElaEZa"',En)t-
X1 Xn2 0 Xan
Denoted by
X11 X2 -+ Xan (u(€r). €1y (u(€1), €2y -+ (u(€r), €n)
X] = X1 Xe2 tt X | _ (u(€z), €1) (u(€2), €2y -+ (u(e2), €ny
X1 X2t Xan (u(en). €1) (u(en), €2y -+ (u(€n), €n)

called therotation matrixof X in (R", u). Thenu :VY - 77 is determined by(X) = [X]

for X € R". Furthermore, such an rotation matfi is orthogonal for pointX € R" by
definition, i.e.[X] [X]' = . Particularly, ifX is Euclidean, then such an orientation ma-
trix is nothing butu(X) = l«n. Summing up all these discussions, we know the following
result.

Theorem 9.45 If (R", 1) is a pseudo-Euclidean space, thg(x) = [X] is an nx n
orthogonal matrix fory X € R".

Likewise that the case oR@, 1), a lineL in pseudo-Euclidean spade’( u) is usually
called ans-line Define thecurvature RL) of an s-lineL passing through non-Euclidean
poiNtsXy, Xz, - - -, Xm € R" for m > 0 in (R", 1) to be a matrix determined by

RIL) = [ [ u(x)
i=1
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andEuclideanif R(L) = I, otherwisenon-Euclidean It is obvious that a point in a
Euclidean spacR" is indeed Euclidean by this definition. Furthermore, we irdiagly
get the following result for Euclidean s-lines iR, u).

Theorem9.4.6 Let(R", u) be a pseudo-Euclidean space and L an s-lindR «) passing
through non-Euclidean point&;, X, ---,Xn € R". Then L is closed if and only if L is
Euclidean.

Proof If L is a closed s-line, theh is consisted of vector X, XoXs, - - -, XoX1. By

definition,

XX _ XX

— = —; #(%)
Xi+1xi‘ 'Xi—lxi‘

for integers 1< i < m, wherei + 1 = (modm). Consequently,

m
Thus]—[,u(ii) = lxn, 1.€., L is Euclidean.

m
Conversely, let. be Euclidean, i.e.ﬂ 1(%) = laxn. By definition, we know that
i=1

, KX
KX _ XX oy i w10

SET = (X)X = iy XX ()
Xi+1xi‘ ‘Xi—lxi' 'Xi—lxi‘

m

for integers 1< i < m, wherei + 1 = (modm). Whence, if]—[ 1(X) = loxn, then there
i=1

must be

m
X% = Xo %o ]_[ u(X).
i=1

ThusL consisted of vectorg; X;, XoXz, - - -, X,X; IS a closed s-line inR", ). O

Letn = 2. We consider the pseudo-Euclidean spa&& /) and find the rotation
matrix u(X) for pointsX € R?. Let#x be the angle forra; to ue;. Then it is easily to know
that
_ cosfx Sinfx

( sindy —cosh x ]
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Now if an s-lineL passing through non-Euclidean poiRisX», - - - , X, € R?, then Theo-
rem 94.6 implies that

cosfz, Sinfdsx, cosfy, Sinfdsx, cosfx, Sinfx, _
Sinfz —cosix )| sinfx, —cosfsx, Sinfx, —CO0Sfx, m

Thus

_ C05671+9)—(2+"'+9)—(m) Sin(971+9)—(2+"'+9)—(m)
px) =1 = lnxn.
S|n(071+972+"'+97m) 005671+97(2+"'+97m)
Whencefx, + 6%, + -+ + 0%, = 2k for an integek. This fact is in agreement with that
of Theorem &B.5.

An embedded graph GnR" is a 1- 1 mappingr : G — R" such that forve, & <
E(G), 7(e) has no self-intersection anfe), 7(¢') maybe only intersect at their end points.
Such an embedded graghin R" is denoted byGgrn. For example, the-cubeC,, is such
an embedded graph with vertex S8C,)) = { (X;, X2, -+, X)) [ X =0 or 1 forl<i<n}
and two vertices X, X, - - -, X)) and i, X, - - -, ) are adjacent if and only if they are
differ exactly in one entry. We present twecubes in Fig.91.2 forn = 2 andn = 3.

(1,0) (1,1) (1,1,0 (1,1,1)
(1,0,0 (1,0,2)
(01,0 (0,1,1)
(0,0) (0,1) (0,0,0 (0,0,1)
n=2 n=3
Fig.9.4.2

An embedded grapBg- is calledSmarandachelif there exists a pseudo-Euclidean
space R", u) with a mappingu : X € R" — [X] such that all of its vertices are non-
Euclidean points inR", ). Certainly, these vertices of valency 1 is not importamt fo
Smarandachely embedded graphs. We concentrate our@attentembedded 2-connected
graphs.
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Theorem 9.4.7 An embedde@-connected graph g is Smarandachely if and only if
there is a mapping : X € R" — [X] and a directed circuit-decomposition

E; = 6[59 E(C)
i=1

such that these matrix equations

rl XY = Inxn 1 S I S S
T(EV(ei)

are solvable.

Proof By definition, if Ggn is Smarandachely, then there exists a mappingk €
R" — [X] onR" such that all vertices dbgn are non-Euclidean irR", u). Notice there are
only two orientations on an edge E(Grn). Traveling onGgrn beginning from any edge
with one orientation, we get a closed s-liBe i.e., a directed circuit. After we traveled
all edges inGgn with the possible orientations, we get a directed circeitamposition

S
5, - e
i=1
with an s-Iinea for integers 1< i < s. Applying Theorem 9.6, we get

l_[ U®) = lpn 1<i<s
YEV(_C)i)

Thus these equations
n XY = Inxn 1 S i S S
T(EV(ei)

have solution¥x = u(X) for X € V(C)).
Conversely, if these is a directed circuit-decomposition

E; = .6:19 E(C)

such that these matrix equations

n XY = Inxn 1 S i S S
T(EV(ei)
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are solvable, leXz = A¢ be such a solution fox V(f:)i), 1 <i < s. Define a mapping
u:XeR"— [X] onR" by

— Ay if Xe V(GRn),
u(x) = L
lnn  1f X & V(Grn).

Then we get a Smarandachely embedded g&gplin the pseudo-Euclidean spaé®'(u)
by Theorem 91.6. O

Now letC(t) = (X1(t), X2(t), - - -, Xa(t)) be a curve irR", i.e.,
C(t) = Xl(t)El + Xg(t)zg + -+ Xn(t)En

If it is an s-line in a pseudo-Euclidean spa&¥®,(u), then

Xl(t) _ Xo(t) -
@ x>

Whence, we get the following result.

Xn(t) _
|Xn(t)|

u(€r) = ., H(E) = s i(€n) =

Theorem 9.4.8 A curveC(t) = (X1(t), Xo(t), - - -, X(t)) with parameter t irR" is an s-line
of a pseudo-Euclidean spafR", i) if and only if

X1 (t)
Xo (t) O

Xn(t)

9.4.5 Isometry on Pseudo-Euclidean SpaceWe have known IsoniR") = (Ts, Ry, F).
Anisometryr of a pseudo-Euclidean spad®’(u) is an isometry oR" such thaj(r(X)) =
u(X) for ¥x € R". Clearly, all such isometries form a group Isdi{u) under composition
operation with IsonRR", 1) < IsomR"). We determine isometries of pseudo-Euclidean
spaces in this subsection.

Certainly, if u(X) is a constant matrixc] for ¥X € R", then all isometries oR" is
also isometries orR", ). Whence, we only discuss those cases with at least twowvalue
for 4 : X € R" — [X] similar to that of R?, u).

Translation. Let (R", ) be a pseudo-Euclidean space with an isometry of transla-
tion Tg, Wheree = (e, &, -+, €,) andP, Q € (R", u) a non-Euclidean point, a Euclidean
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point, respectively. Thep(T4(P)) = u(P), u(T¥(Q)) = u(Q) for any integerk > 0 by
definition. Consequently,

P, Te(P), Téz(P), cee Tle‘(P), .
Q. Te(Q), TA(Q), -+, TXQ), -~

are respectively infinite non-Euclidean and Euclidean{goifhus there are no isometries
of translations if R", ) is finite.

In this case, if there are rotatiol, 4,..4, ,, then there must b&y,0,,---,60,-1 €
{O,7/2}and ifg, = n/2for1<i<I|,6,=0ifi>1+1,thene, =6, =---=@,1.

Rotation. Let (R", u) be a pseudo-Euclidean space with an isometry of rotation
Ro,6,.-6,, @aNdP, Q € (R", 1) a non-Euclidean point, a Euclidean point, respectivehe

H(Ratree02(P) = 1(P), Ry, (Q)) = u(Q) for any integerk > 0 by definition.
Whence,

F)’ R‘)lsHZa"'aen—l(P)’ Rglﬁz,---,F)n,l(P)’ ) %1,92,---,9,1,1('3)’ ]
Q’ R‘)lﬁz,---,F)n,l(Q), Rglﬂz,'“ﬁn—l(Q)’ Y %1’92’...’()”71(Q)3 Tt

are respectively non-Euclidean and Euclidean points.

In this case, if there exists an intedgesuch thatg;|2kr for all integers 1< i <
n -1, then the previous sequences is finite. Thus there are Initthdnd infinite pseudo-
Euclidean spaceR", ) in this case. But if there is an integgt 1 < ip < n— 1 such
that6,, [ 2kr for any integelk, then there must be either infinite non-Euclidean points or
infinite Euclidean points. Thus there are isometries oftrota in a finite non-Euclidean
space only if there exists an intedesuch that;|2kr for all integers 1< i < n- 1.

Similarly, an isometry of translation exists in this caséyoh,, 0, - - -, 0,1 € {0, 7/2}.

Reflection. By definition, a reflectiorf in a subspac&’ of dimensionah -1 is an
involution, i.e.,F? = 1gn. Thus if R", 1) is a pseudo-Euclidean space with an isometry
of reflectionF in E’ andP, Q € (R",u) are respectively a non-Euclidean point and a
Euclidean point. Then itis only need tHatF(P) are non-Euclidean points afgl F(Q)
are Euclidean points. Therefore, a reflectidrcan be exists both in finite and infinite
pseudo-Euclidean spacd®"(u).

Summing up all these discussions, we get results followorgfifite or infinite
pseudo-Euclidean spaces.
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Theorem 9.4.9 Let(R", u) be a finite pseudo-Euclidean space. Then there maybe isome-
tries of translations g, rotations R and reflections oR", 1). Furthermore,

(1) If there are both isometriesgTand R, wheree = (e, e, ---,€) and g =
(01,02, -,0n_1), theny,0,,---,0,1 € {O,7/2} and if6, = 7/2for 1 <i < 1,6, =0
ifi>l+1,theng=6="---=@,1.

(2) Ifthere is anisometry Ry, .4, ., then there must be an integer k such thakr
forall integersl <i<n-1.

(3) There always exist isometries by putting Euclidean and Boclidean points
X € R" with u(X) constant on symmetric positions toig (R", w).

Theorem 9.4.10 Let (R",u) be a infinite pseudo-Euclidean space. Then there maybe
isometries of translationsg] rotations R and reflections ofR", x). Furthermore,

(1) There are both isometriessBnd R with € = (e, e, -+, €,) and @ = (64, 6,,
<+, 0h1),0nlyif01,05,---,0,1 € {0,nr/2}and ifg; = n/2for 1L <i <, 6, =0ifi >+ 1,
theng =g =---=@,;.

(2) There exist isometries of rotations and reflections by pgtiuclidean and non-

P

Euclidean points in the orbiR andy"’ with a constanf(X) in (R", w).

We determine isometries oRY¥, u) with a 3-cubeC® shown in Fig.94.2. Let[a] be
an 3x 3 orthogonal matrix[@] # laxs and letu(xq, X2, X3) = [@] for xq, X, X3 € {0, 1},
otherwiseu(x;, X, X3) = laxz. Then its isometries consist of two types following:

Rotations:

Ri, Ry, Rs: these rotations througi/2 about 3 axes joining centres of opposite
faces;

Rs, Rs, Rs, Ry, Rg, Ro: these rotations throughabout 6 axes joining midpoints of
opposite edges;

Rio, Ri1, Rz, Ris: these rotations through about 4 axes joining oppositeécestt

ReflectionF: the reflection in the centre fixes each of the grand diagoeagrsing
the orientations.

Then IsomR3 ) = (R, F, 1<i<13) = S, x Z,. But if let [b| be another X 3
orthogonal matrix[E] # [@] and defineu(xy, X2, X3) = [@] for x; = 0, Xp, X3 € {0, 1},
w(X1, X2, X3) = [5] for x; = 1, %o, X3 € {0, 1} andu(Xy, X2, X3) = lax3 Otherwise. Then only
the rotationR, R?, R®, R* throughzn/2, #, 37/2 and 2 about the axis joining centres of
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opposite face
{(0,0,0),(0,0,1),(0,1,0),(0,1,1)} and{(1,0,0),(1,0,1), (1,1, 0), (1, 1, 1)},
and reflectiorF through to the plane passing midpoints of edges
(0,0,0)-(0,0,1), (0,1,0)-(0,1,1), (1,0,0)-(1,0,1), (1,2,0)—(1,1,1)
or (0,0,0)-(0,1,0), (0,0,1)- (0,1,1), (1,0,0)—(1,1,0), (1,0,1)— (1,1, 1)

are isometries orR®, u). Thus IsomR3, 1) = (Ry, Ry, Rs, Ry, F) ~ Ds.

Furthermore, lefa], 1 <i < 8 be orthogonal matrixes distinct two by two and de-
finex(0,0,0) = [a], u(0,0,1) = [&], u(0,1,0) = [@s], u(0,1,1) = [&], u(1,0,0) = [&g],
u(1,0,1) = [36], u(1,1,0) = [a7], u(1, 1, 1) = [@g] andu(Xs, Xz, Xa) = laxa if X1, %o, X3 # O
or 1. Then Ison®R3, i) is nothing but a trivial group.

§9.5 REMARKS

9.5.1 The Smarandache geometry is proposed by Smarandache lay tthenbth postu-
late for parallel lines in Euclidean postulates on geometr{969 (See [Smal]-[Sma2]
for details). Then a formal definition on such geometry wagested by Kuciuk and An-
tholy in [KuAl]. More materials and results on Smarandackengetry can be found in
references, such as those of [Smal]-[SmaZ2], [Iserl]Zlsfvao4], [Mao25] and [Liu4].

9.5.2 For Smarandache 2-manifolds, Iseri constructed 2-matsfoy equilateral triangu-
lar disks on Euclidean plari®?. Such manifold can be really come true by paper model in
R3 for elliptic, Euclidean and hyperbolic cases ([Iseil]).9@hving the essence of identifi-
cation 5 6, 7 equilateral triangles in Iseri’'s manifolds is in fact a rpa@u : R — 51/3,

2r or 7r/3, a general construction for Smarandache 2-manifoldsmagp geometryas
suggested in [Mao3] by applying a general mapging R? — [0, 27) on vertices of a
map, and then proved such approach can be used for constypetiadoxist geometry,
anti-geometry and counter-geometry in [Mao4]. It shoulchbe&d that a more general
Smarandache-manifold, i.e.,combinatorial manifoldvas combinatorially constructed
in [Maol5]. Moreover, a dierential theory on such manifold was also established in
[Mao15]-[Maol7], which can be also found in the surveyingnograph [Mao25].

9.5.3 All points are equal in status in a Euclidean sp&ceBut it is not always true in
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Smarandache 2-manifolds and pseudo-Euclidean spacesfathimeans that not every
isometry of R" is still an isometry of R", ). For finite Smarandache 2-manifolds or
pseudo-Euclidean space, we can determine isometries bybicatorial approach, i.e.,
maps on surfaces or embedded graphs in Euclidean space®r Biinite Smarandache
2-manifolds or pseudo-Euclidean spaces, this approaabt @lways &ective. However,
we have know all isometries of Euclidean spaces. Applyimgféitt that every isometry
of a pseudo-Euclidean spade"(u) must be that oR", It is not hard for determining
isometries of a pseudo-Euclidean spdR® [i).

9.5.4 LetD : E — E be a mapping on a Euclidean spa&tdf

ID(X) — DOVl = X - VI

holds for allX,y € E, thenD is called anorm-preserving mappindNotice that Theorems
9.4.3 and 94.4 is established on the condition distance-preservinglVhence, They are
also true for norm-preserving mapping, i.e., there existthogonal matrix[a,-,-]

,a
nxn
constant vectoe and a constant numbegrsuch that

G= /l[a,-,-]nxn +8

9.5.5 Let E be a Euclidean space aiid: E — E be a linear mapping. If there exists a
real numben such that

(T(V1), T(V)) = 22 (V1, Vo),

for all v, v, € E, thenT is called dinear conformal mappinglt is easily to verify that
IT@)I = [Alv]

forve bfE. Such a linear conformal mappifgis indeed an angle-preserving mapping.
In fact, letv;, V, be two vectors with anglé. Then by definition

(TWa), T(W2)) _ A%(Va, Vo) _ (Va, Vo) _

cosATt), TR = @y @l ~ il el iwall vl

Ccosh.

ThusZ(T(V1), T(V2)) =60 for0< Z(T(Vy), T(W)), 6 <.

Problem9.5.1 Determine linear conformal mappings on finite or infiniteyse-Euclidean
spaceqR", u).
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9.5.6 For a Euclidean spacé&s a homeomorphisnh : E — E is called adifferentiable
isometryor conformal diferentiable mapping there is an real numbet such that

(df(W), df(%)) = (V1, Vo) or (df(Vy),d (%)) = A% (Vy, V)

for Y vi, V, € E. Then it is clear that the integral of a linear isometry is fedéen-
tiable. and that of a linear conformal mapping is fietentiable conformal mapping by
definition. Thus the dierentiable isometry or conformalftérentiable mapping is a gen-
eralization of that linear isometry or linear conformal maqy, respectively. Whence, a
natural question arises on pseudo-Euclidean spaces fotjow

Problem 9.5.2 Determine all diferentiable isometries and conformajjférentiable map-
pings on a pseudo-Euclidean spa&¥, u).



CHAPTER 10.

CC Conjecture

The main trend of modern sciences is overlap and hybrid coenbining dif-
ferent fields into one underlying a combinatorial structuréis implies the
importance of combinatorics to modern sciences. As a pamadl for deal-
ing with relations among objectives, combinatorics mushred in the past
century, particularly in catering to the need of computégrsce and children
games. However, an even more important work for mathenaatisito apply

it to other mathematics and other sciences besides justda@imbinatorial
behavior for objectiveddow can it contributes more to the entirely mathemat-
ical science, not just in various games, but in metric mathtes? What is a
right mathematical theory for the original face of our warld have brought
a heartening conjecture for advancing mathematics in 2005\ mathemat-
ical science can be reconstructed from or made by combiraization after

a long time speculation on combinatorics, also a bringirmuaBmarandache
multi-space for mathematics. This conjecture is not just hn open prob-
lem, but more like a deeply thought for advancing the modeathematics.
i.e., themathematical combinatoriggsulting in the combinatorial conjecture
for mathematics. For example, maps and graphs embeddedfanesicon-
tribute more and more to other branch of mathematics andsesediscussed
in Chapters 1 8.
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§10.1 CC CONJECTURE ON MATHEMATICS

10.1.1 Combinatorial Speculation. Modern science has so advanced that to find a
universal genus in the society of sciences is nearly imptessiThereby a scientist can
only give his or her contribution in one or several fields. Thee thing also happens for
researchers in combinatorics. Generally, combinatoeetsdwith twofold:

Question1.1. to determine or find structures or properties of configuratigsuch as those
structure results appeared in graph theory, combinatamalps and design theory,..., etc..

Question1.2. to enumerate configurations, such as those appeared in themtion of
graphs, labeled graphs, rooted maps, unrooted maps and icamalial designs,...,etc..

Consider the contribution of a question to science. We caars¢e mathematical
guestions into three ranks:

Rank 1 they contribute to all sciences.
Rank 2 they contribute to all or several branches of mathematics.

Rank 3 they contribute only to one branch of mathematics, for ins¢a just to the graph
theory or combinatorial theory.

Classical combinatorics is justrank 3 mathematic®y this view. This conclusion
is despair for researchers in combinatorics, also for meabsyago Whether can combi-
natorics be applied to other mathematics or other sciend@8®ther can it contributes
to human’s lives, not just in games?

Although become a universal genus in science is nearly isiplesour world is a
combinatorial world A combinatorician should stand on all mathematics anctadhges,
not just on classical combinatorics and with a real comloinalt notion, i.e.,combine
different fields into a unifying fieJdsuch as combine fiierent or even anti-branches in
mathematics or science into a unifying science for its foeedf research. This notion
requires us answering three questions for solving a cortdmiahproblem beforeWhat
is this problem working for? What is its objective? What $sdbntribution to science or
human’s societyAfter these works be well done, modern combinatorics catieghpo
all sciences and all sciences are combinatorialization.

10.1.2 CC Conjecture. There is a prerequisite for the application of combinasric
to other mathematics and other sciences, i.e, to introdageus metrics into combina-
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torics, ignored by the classical combinatorics since theytlae fundamental of scientific
realization for our world. For applying combinatorics tdet branch of mathematics, a
good idea is to pullback measures on combinatorial obje@maignored by the classical
combinatorics and reconstructed or make combinatoria¢igdization for the classical
mathematics, such as those of algebra, Euclidean geordéterential geometry, Rie-
mann geometry, metric geometries; and the mechanics, theoretical physics, This
notion naturally induces the combinatorial conjecturenfiathematics, abbreviated @
conjecturefollowing.

Conjecture 10.1.1(CC Conjecture)The mathematical science can be reconstructed from
or made by combinatorialization.

Remark 10.1.1 We need some further clarifications for this conjecture.

(1) This conjecture assumes that one can select finite catdrial rulers and ax-
ioms to reconstruct or make generalization for classicdheraatics.

(2) The classical mathematics is a particular case in thebgwatorialization of
mathematics, i.e., the later is a combinatorial genenabiaaf the former.

(3) We can make one combinatorialization offeient branches in mathematics and
find new theorems after then.

Therefore, a branch in mathematics can not be ended if it bialkaen combinato-
rialization and all mathematics can not be ended if its coratorialization has not com-
pleted. There is an assumption in one’s realization of outdyae.,science can be made
by mathematicalizatignwhich enables us get a similar combinatorial conjecturelfe
science.

Conjecture 10.1.2(CCS ConjectureBcience can be reconstructed from or made by com-
binatorialization.

A typical example for the combinatorialization of classicathematics is the com-
binatorial surface theory, i.e., a combinatorial theonydorfaces discussed in Chapter 4.
Combinatorially, a surfac8 is topological equivalent to a polygon with even number of
edges by identifying each pairs of edges along a given dareon it. If label each pair of
edges by a lettez, e € &, a surfaces is also identifying to a cyclic permutation such that
each edge, e € & just appears two times i, one ise and another ig™. Leta,b,c,---
denote the letters i& andA, B, C, - - - the sections of successive letters in a linear order on
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a surfaces (or a string of letters o). Then, a surface can be represented as follows:
S = (""AaasB3a_1,Ca"')3

where,a € &, A, B, C denote a string of letters. Define three elementary tramsftions
as follows:

(O) (Aaa',B)e (AB)
(0y) (i) (AabBbtal)e (AcB,c?;
(i) (Aa,bB,ab) e (AcB,0);
(O3) (i) (A,aB,C,al,D)e (B,aAD,alC)
(i) (Aa,B,CaD)e (B,aACHaDbDM).
If a surfaceS can be obtained fror8, by these elementary transformatiddsOs,

we say thasS is elementary equivalent wit§,, denoted byS ~g So. Then we can get
the classification theorem of compact surface as follows:

Any compact surface S is homeomorphic to one of the follostangdard surfaces:
(Po) the sphere: ad;
(Pn) the connected sum of m> 1 tori:

aybya; by tayhyasthyt - - - agbna; byt

(Qn) the connected sum of m> 1 projective planes:

A1a1a2a2 - - - Andn.

We have known what is a map in Chapter 5. By the view of combnmtmaps,
these standard surfac®g, P,, Q, for n > 1 is nothing but the bouqud, on a locally
orientable surface with just one face. Therefore, the mepaathing but the combinato-
rialization of surfaces.

10.1.3 CC Problems in Mathematics. Many open problems are motivated by the CC
conjecture. Here we present some of them.

Problem 10.1.1 Simple-Connected Riemann Surfacelhe uniformization theorem on
simple connected Riemann surfaces is one of those beawtsults in Riemann surfaces
stated as follows ([FaK1]).
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Theorem 10.1.1 If S is a simple connected Riemann surface, ttseis conformally
equivalent to one and only one of the following three:

(1) CUeo;

2 ¢;

(3) A={zeCllZ <1}
We have proved in Chapter 5 that any automorphism of map i®ooal. Therefore, we
can also introduced the conformal mapping between maps, Tibey can one define the
conformal equivalence for maps enabling us to get the umization theorem of maps?
What is the correspondence class maps with the three tya@) Riemann surfaces?

Problem 10.1.2 Riemann-Roch Theorem.Let S be a Riemann surface. divisoron

k
a(P;
=[]
i=1

with P; € S, a(P;) € Z. Denote byDiv(S) the free commutative group on the pointsSn

S is a formal symbol

and define )

degl/ = Z a(P)).

i=1
Denote byH(S) the field of meromorphic function of. Then forvVf € H(S) \ {0}, f
determines a divisorf() € Div(S) by

(f) _ l_[ POrde’

PeS
where, if we writef(2) = Z'g(2) with g holomorphic and non-zero at= P, then the

ordpf = n. ForY;, = [] PP U, = T] PP e Div(S), call Uy > U, if a1(P) >
PeS PeS
a»(P). Now we define a vector space

L(U) = {f e H(S)I(f) = U, U € Div(S)}
Q(U) = {w|w is an abelian dif ferential witliw) > U}.
Then the Riemann-Roch theorem says that([WLC1])
dim(L(U™)) = degll — g(S) + 1 + dimQ(S).

Comparing with the divisors and their vector space, theedsa cycle space and cocycle
space in graphical space theory ([Liul]). Th&hat is their relation? whether can one
rebuilt the Riemann-Roch theorem by maps, i.e., find itgetiséorm?
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Problem 10.1.3 Combinatorial Construction of Algebraic Cuve. A complex plane
algebraic curveC; is a homogeneous equatid(ix, y, z) = 0 in P,C = (C?\ (0, 0,0))/ ~,
wheref (X, Y, 2) is a polynomial inx, y andz with codficients inC. The degree of (x,y, 2)
is defined to be thdegree of the curvg,. For a Riemann surfac®, a well-known result is
that ((WSY1])there is a holomorphic mapping: S — P,C such thaty(S) is a complex
plane algebraic curve and

(d(¥(S)) - 1)[@(¥(S)) - 2)
> :

a(S) =

By definition, we have known that a combinatorial map is orfasi# with genus. Then
whether can one get an algebraic curve by all edges in a maganéke operations on
the vertices or edges of the map to get plane algebraic cuitfegiven k-multiple points?
and therhow do one find the equatior{X y, z) = 0?

Problem 10.1.4 Classification os-Manifolds by Map. We have classified the closed
s-manifolds by maps in the last chapter. For the genswalnifolds, their correspon-
dence combinatorial model is the map on surfaces with baynftaunded by Bryant and
Singerman in 1985. The later is also related to that of madyrzups of spaces and need
to investigate further itself. Now the questions are

(1) How can one combinatorially classify the general s-madgadby maps with
boundary?

(2) How can one find the automorphism group of an s-manifold?

(3) How can one know the numbers of non-isomorphic s-manifelitds,or without
roots?

(4) Find rulers for drawing an s-manifold on surface, such as, ibrus, the projec-
tive plane or Klein bottle, not just the plane.

Theses-manifolds only apply such triangulations of surfaces witex valency in
{5, 6, 7}. Thenwhat is its geometrical meaning of other maps, sucllasgular maps on
surfaceslt is already known that the later is related to the Gausssgoosblem of curves
([Liu1]).

Problem 10.1.5 Gauss Mapping.In the classical dierential geometry, &auss map-
pingamong surfaces is defined as follows([Carl]):

Definition 10.1.1 LetS c R® be a surface with an orientatiod. The mapping N S —
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R® takes its value in the unit sphere
S ={(xy,) eR¥+y+Z =1

along the orientatioN. The map N S — S?, thus defined, is called the Gauss mapping.

We know that for a poinP € S such that the Gaussian curvatdé) # 0 andV a
connected neighborhood Bfwith K does not change sign,

whereA s the area of aregioB c V andN(A) is the area of the image &by the Gauss
mappingN : S — S?. Now the questions are

(1) What is its combinatorial meaning of the Gauss mapping? Horedlizes it by
maps?

(2) how we can define various curvatures for maps and rebuilt &selts in the
classical diferential geometry?

Problem 10.1.6 Gauss-Bonnet TheoremLet S be a compact orientable surface. Then

| fs Kdor = 211(S),

whereK is Gaussian curvature @ This is the famou&auss-Bonnet theorefar com-
pact surface (JWLC1], [WSY1]). This theorem should has a boratorial form. Now
the questions are

(1) How can one define various metrics for combinatorial mapshsas those of
length, distance, angle, area, curvature,?

(2) Can one rebuilt the Gauss-Bonnet theorem by maps for dimeals? or higher
dimensional compact manifolds without boundary?

§10.2 CC CONJECTURE TO MATHEMATICS

10.2.1 Contribution to Algebra. By the view of combinatorics, algebra can be seen
as a combinatorial mathematics itself. The combinatopgatslation can generalize it by
the means of combinatorialization. For this objective, aaandachely multi-algebraic
system is combinatorially defined in the following definitio
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Definition 10.2.1 For any integers m > 1and 1 < i < n, let A be a set with an
operation set @A) such that(A;, O(A)) is a complete algebraic system. Then the union

A, om))
i=1

is called an n multi-algebra system.

An example of multi-algebra systems is constructed by aefadlditive group. Now
let n be an integerZ; = ({0,1,2,---,n — 1},+) an additive grouprfodh) andP =
(0,1,2,---,n—1) a permutation. For any integef < i < n- 1, define

Z.1 = P'(Zy)

satisfying that ifk + | = min Z;, thenP'(K) +; P'(I) = P'(m) in Z1, where+; denotes the
binary operation; : (P'(K), P'(1)) — P'(m). Then we know that

n

|z

i=1
is ann multi-algebra system .

The conception of multi-algebra systems can be extensivedyl for generalizing
conceptions and results for these existent algebraictates; such as those of groups,
rings, bodies, fields and vector spaces, etc.. Some of them are explained in the fol-
lowing.

—_ n
Definition 10, 2.2 LetG = |J G; be a closed multi-algebra system with a binary operation
i=1

set AG) = {x;,1 < i < n}. If for any integerj1 < i < n, (G;; %) is a group and for

Vx,y,z € G and any two binary operation$x” and “o” , x # o, there is one operation,
for example the operatior satisfying the distribution law to the operatidfv” provided

their operation results existing, i.e.,

XX (yo2) = (Xxy)o(xx2),
(Yo XX=(yxX)o(zxX),
thenG is called a multi-group.

For a multi-group G, O(G)), G; ¢ G andO(G;) c O(G), call (G, O(G;)) a sub-
multi-groupof (G, O(G)) if G; is also a multi-group under the operationsO(G;), de-
noted byG; < G. For two setsA andB, if AN B = 0, we denote the unioAJ B by
AP B. Then we get a generalization of the Lagrange theorem oe fim@up following.
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Theorem 10.2.1 For any sub-multi-grougH of a finite multi-groupG, there is a repre-
sentation set T, E G, such that

éz@xﬁ.

XeT

For a sub-multi-groupd of G, x € O(H) andVg € G(x), if for Yh e H,
gxhxgleH,

then callH a normal sub-multi-groupof G. An order of operations iD(G) is said an
oriented operation sequencdenoted bﬁ(@). We get a generalization of the Jordan-
Holder theorem for finite multi-groups following.

—_ n
Theorem 10.2.2 For a finite multi-groupG = |J G; and an oriented operation sequence
i=1

6(5), the length of maximal series of normal sub-multi-groupseenstant, only depen-
dent onG itself.

A complete proof of Theorems 101 and 102.2 can be found in the reference
[Mao6]. Notice that if we choosa = 2 in Definition 102.2, G; = G, = G. ThenG
is a body. If Gi; x1) and Gy; x») both are commutative groups, thénis a field. For
multi-algebra systems with two or more operations on onevgeintroduce the concep-
tion of multi-rings and multi-vector spaces in the follogin

—_ m
Definition 10.2.3 LetR = |JR be a closed multi-algebra system with double binary
i=1
operation set R) = {(+i,%;),1 < i < m}. If for any integers,ij, i # j,1 <i,j < m,

(R +i,%i) isaring and foryx,y,z € R,
(X+iy)+jZ=X+ (Y+]2), (XXY)X;Z=XX;(YXj2)

and
XXi (Y+]2D) = XX Y+ XX Z (Y+j2) X X=YX| X+jZX; X

provided all their operation results exist, th&is called a multi-ring. If for any integer
1<i<m, (R +,X)isafiled, therR is called a multi-filed.
— k
Definition 10.2.4 LetV = |V, be a closed multi-algebra system with binary operation
i=1

— — k
set QV) = {(+i,+) |1 < i <m}andF = |J F; a multi-filed with double binary operation
i=1
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set OF) = {(+i, %) | 1 < i < k}. If for any integers,ij, 1 <i,j < kand¥a,b,c € V,
k ko € F,

(1) (Vi; +i, +) is a vector space on;mvith vector additiver; and scalar multiplication

(2) (a+ib)+jc = a+i(b+jc);

(3) (ki +i ky)-ja=ky +i (k2 -ja);
provided all those operation results exist, thénis called a multi-vector space on the
multi-filed F with a binary operation set (), denoted byV: F).

Similarly, we also obtained results for multi-rings and tiuector spaces to gener-
alize classical results in rings or linear spaces.

10.2.2 Contribution to Metric Space. First, we generalize classical metric spaces by
the combinatorial speculation.

—_— m
Definition 10.2.5 A multi-metric space is a uniokl = | J M; such that each Ms a space
i=1
with metricp; for Vi, 1 <i <m.

We generalized two well-known results in metric spaces.
—_ m
Theorem 10.2.3 LetM = [J M; be a completed multi-metric space. For adlisk se-
i=1
guenceB(en, Xn)}, Whereg, > 0forn=1,2,3,- -, the following conditions hold:
(1) B(Gl? Xl) ) B(EZ? X2) ) B(E3’ X3) ) B(€I’l? Xn) Doy

2) lim € = 0.
Nn—+oo

+00
Then B(en, X,) only has one point.
n=1

—_ m
Theorem10.2.4 LetM = | J M; be a completed multi-metric space and T a contraction
i=1

onM. Then
1<F (M) <m

A complete proof of Theorems 103 and 102.4 can be found in the reference
[Mao7]. Particularly, letn = 1. We get theBanach fixed-point theoreagain.

Corollary 10.2.1(Banach)Let M be a metric space and T a contraction on M. Then T
has just one fixed point.
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A Smarandache n-manifoid ann-dimensional manifold that supports a Smaran-
dache geometry. Now there are many approaches to constmata8dache manifolds
for n = 2. A general way is by the so calledap geometriesvithout or with boundary
underlying orientable or non-orientable maps.

Definition 10.2.6 For a combinatorial map M with each vertex valerc$, endow with

a real numberu(u),0 < wp(u) < p:ﬂ"(’u), to each vertex w € V(M). Call (M,u) a

map geometry without boundapyu) an angle factor of the vertex u and orientablle or

non-orientable if M is orientable or not.

Definition 10.2.7 For a map geometryM, u) without boundary and faces, ff,, - - -, f; €
F(M),1<1<¢(M)-1,if S(M)\{fy, fs,---, fi}is connected, then calM, )™ = (S(M)\
{fy, f2,-- -, fi},u) @ map geometry with boundary, f,, - - -, f;, where §M) denotes the
locally orientable surface underlying map M.

The realization for vertices, v,w € V(M) in a spaceR? is shown in Fig.2, where
om(Uu(u) < 2r for the vertexu, py (V)u(v) = 2 for the vertexv andpy (W)u(w) > 2 for
the vertexw, are called to be elliptic, Euclidean or hyperbolic, respety.

pm(Uu(u) < 27 pm(Uu(u) = 21 pm(Uu(u) > 21

Fig.10.2.1

Theorem 10.2.5 There are Smarandache geometries, including paradoxisingéries,
non-geometries and anti-geometries in map geometrieoutithr with boundary.

A proof of this result can be found in [Mao4]. Furthermore, gemeralize the ideas
in Definitions 102.6 and 102.7 to metric spaces and find new geometries.

Definition 10.2.8 Let U and W be two metric spaces with metriaV C U. ForYu e U, if
there is a continuous mappinrg: u — w(u), wherew(u) € R" for an integer nn > 1 such
that for any numbee > 0, there exists a number> 0 and a point ve W, p(u—V) < 6
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such thato(w(u) — w(v)) < €, then U is called a metric pseudo-space if£JW or a
bounded metric pseudo-space if there is a number Blsuch thatvw € W, p(w) < N,
denoted byU, w) or (U™, w), respectively.

For the casa = 1, we can also explain(u) being an angle function with @ w(u) <
41 as in the case of map geometries without or with boundary, i.e

w(u)(moddr), ifueWw,
w(u) = .
2r, ifueU\W (%)
and get some interesting metric pseudo-space geometrgsexample, leU = W =

Euclid plane= }, then we obtained some interesting results for pseudcegaometries
(2, w) as shown in results following ([Mao4]).

Theorem 10.2.6 In a pseudo-plang}, w), if there are no Euclidean points, then all
points of(3, w) is either elliptic or hyperbolic.

Theorem 10.2.7 There are no saddle points and stable knots in a pseudo-are
(2 ).
Theorem 10.2.8 For two constantgo, 6, po > 0 andby # O, there is a pseudo-plane
(2, w) with
w(p, ) = 2(m — g—‘;) or w(p, 0) = 2(1 + g)—‘}’o
such that
P =po

is a limiting ring in (3., w).

Now for anm-manifoldM™ andYu € M™, choosdJ = W = M™in Definition 102.8

for n = 1 andw(u) a smooth function. We get a pseudo-manifold geome#¥,w) on
M™. By definitions , avlinkowski normon M™ is a functionF : M™ — [0, +o0) such that

(1) F is smooth orM™\ {0};
(2) Fis 1-homogeneous, i.€(AU) = AF(U) forui e M™anda > 0;
(3) forVy e M™\ {0}, the symmetric bilinear forng, : M™ x M™ — Rwith
_ . 10°FAy+ SU+tV
gy(U, V) = E (yagt )|t=S=0

is positive definite and &insler manifoldis a manifoldM™ endowed with a function
F: TM™— [0, +00) such that
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(1) Fis smooth onf M™\ {0} = J{TxM™\ {0} : X € M™};

(2) Flrmm — [0, +0) is a Minkowski norm foivx € M™.

As a special case, we choos€X) = F(X) for X € M™, then M™, w) is aFinsler
manifold Particularly, ifw(X) = gx(y,y) = F2(x,y), then M™ w) is a Riemann mani-
fold. Therefore, we get a relation for Smarandache geometrigssRinsler or Riemann
geometry.

Theorem 10.2.9 There is an inclusion for Smarandache, pseudo-manifolasIEr and
Riemann geometries as shown in the following:

{S marandache geometrieso {pseudo- manifold geometrigs
> {Finsler geometry

> {Riemann geometty

§10.3 CC CONJECTURE TO PHYSICS

The progress of theoretical physics in last twenty yeare®@®20th century enables human
beings to probe the mystic cosmaghere are we came from? where are we going to?
Today, these problems still confuse eyes of human beingsorApanying with research
in cosmos, new puzzling problems also aro®éhether are there finite or infinite cos-
moses? Are there just one? What is the dimension of the &&i%a/Ve do not even know
what the right degree of freedom in the Universeas Witten said.

We are used to the idea that our living space has three dio/e1sength, breadth
andheight with time providing the fourth dimension of spacetime bygtein. Applying
his principle of general relativity, i.eall the laws of physics take the same form in any
reference systeand equivalence principle, i.¢here are no dference for physicalfects
of the inertial force and the gravitation in a field small egby Einstein got thequation
of gravitational field

R, — %Rg,v + A9y, = —8rGT,,.

whereR,, =R, = R!

uiv?

_ D B e o i
R;(fiv - W - X + F,uirlav - r,uvrlai’
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1 agmp agnp O0%mn
g _ T4pq _
Fon = 2 (au” T oum aup)

andR = g*R,,. Combining the Einstein’s equation of gravitational fieldlwthe cosmo-

logical principle i.e.,there are no dference at dferent points and gierent orientations
at a point of a cosmos on the metfi6l.y. , Friedmanngot a standard model of cosmos.
The metrics of the standard cosmos are

dr? .
d52 = —Czdt2 + az(t)[m + rz(dﬁz + S|n2 HdQOZ)]
and R(1)
t .
Ot =1, O = _m»gqﬁq& = —rsz(t) Sha?

The standard model of cosmos enables the birth of big banghebdhe Universe
in thirties of the 20th century. The following diagram deises the developing process of
our cosmos in dierent periods after the big bang.

finy fraction
ol & Second

Fig.4.1

10.3.1 M-Theory. The M-theory was established by Witten in 1995 for the unity o
those five already known string theories and superstringribg which postulates that
all matter and energy can be reducedbtanesof energy vibrating in an 11 dimensional
space, then in a higher dimensional space solve the Eifssegjoation of gravitational
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field under some physical conditions. Herdyraneis an object or subspace which can
have various spatial dimensions. For any integer 0, a p-branehas length inp di-
mensions. For example, al@aneis just a point or particle; a-braneis a string and a
2-braneis a surface or membrane;,.

We mainly discuss line elements infidirential forms in Riemann geometry. By a
geometrical view, thesp-branes in M-theory can be seenvadume elements in spaces
Whence, we can construct a graph model peoranes in a space and combinatorially
research graphs in spaces.

Definition 10.3.1 For each m-brand3 of a spaceR™, let (n1(B), nx(B). - - -, np(B)) be its
unit vibrating normal vector along these p directions and & — R* a continuous
mapping. Now construct a graph phagg w, A) by

V(g) = {p - branes ¢B)},

E(G) = {(q(B1), q(By))|there is an action betwedBy, and B,},

w(q(B)) = (nu(B), nz(B), - - -, np(B)),

and
A(q(By),q(B,)) = forces betweeB; andB,.

Then we get a graph phag€, w, A) in R*. Similarly, if m= 11, it is a graph phase for
the M-theory.

As an example for applying M-theory to find an acceleratingagsion cosmos of
4-dimensional cosmoses from supergravity compactifinatio hyperbolic spaces is the
Townsend-Wohlfarth type metiit which the line element is

ds = e ™O(-S8d + S2dxd) + r2e¥Vd, |

where
1
1) = In K(t) — t
o) = = (INK(t) - 34ot)
S2 = Kig midot
and

(m—1) sinfAoZ]t + ta]
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with ¢ = /3 +6/m. This solution is obtainable from space-like brane soluamd if
the proper times is defined byds = S3(t)dt, then the conditions for expansion and
acceleration ar%? >0 and‘é%? > 0. For example, the expansion factor i88if m = 7,
i.e., a really expanding cosmos.

According to M-theory, the evolution picture of our cosmterted as a perfect 11
dimensional space. However, this 11 dimensional space nstahie. The original 11
dimensional space finally cracked into two pieces, a 4 andm&rtsional subspaces. The
cosmos made the 7 of the 11 dimensions curled into a tinyd&lying the remaining 4

dimensions to inflate at enormous rates, the Universe atrtak fi

10.3.2 Combinatorial Cosmos. The combinatorial notion made the following combi-
natorial cosmos in the reference.

Definition 10.3.2 A combinatorial cosmos is constructed by a trifle A, T), where

and T = {t;;i > 0} are respectively called the cosmos, the operation or the 8at with
the following conditions hold.

(1) (@, A)is a Smarandache multi-space dependenton T, i.e., the S ®)) is
dependent on time parametefdr any integer ji > 0.
(2) For any integerji > 0, there is a sub-cosmos sequence

(S) QiD"'DQilDQiO

in the cosmogQ;, O;) and for two sub-cosmoség;;, O;) and (€, O)), if Q;; > Q;, then
there is a homomorphispy, o, : (2ij, O)) — (€1, O)) such that

(i) for Y(Qi1, O), (Qiz, Gi), (Qiz, O) € (S), if Qi1 D Qi D Qj3, then

PQi1.Qi3 = P10 © POi.Qiss

where “o” denotes the composition operation on homomorphisms.
(if) for Vg, h e &, if for any integer i,00.0,(9) = paq (h), then g= h.
(iii) for Vi, if there is an fe Q; with

pa.ana(f) = pa.ane(f))
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for integers j j, Qi N Q; # 0, then there exists an € Q such thatpg o, (f) = f; for any
integer i.

By this definition, there is just one cosmQsand the sub-cosmos sequence is
R*>DR®*>R?>R'>R={P}oR;>:--2R; DRy = {Q}.

in the stringM-theory. In Fig.103.2, we have shown the idea of the combinatorial cos-
mos.

Fig.10.3.2

For spaces of dimensional 5 or 6, it has been established andgal theory by
combinatorial notion (see [Papl]-[Pap2] for details). hmstdynamics, we look for a
solution in the Einstein’s equation of gravitational fietdd-dimensional spacetime with
a metric of the form

2
ds® = —n?(t,y, 2dt? + a(t, y, 2)d Z +b?(t, y, 2)dy? + d(t, y, 2)dZ
K

whered Y2 represents the 3-dimensional spatial sections metrickvith-1, 0, 1 respec-
tive corresponding to the hyperbolic, flat and elliptic gmcFor 5-dimensional space-
time, deletes the indefinitein this metric form. Now consider a 4-brane moving in a
6-dimensionabchwarzschild-ADS spacetinike metric can be written as

2
d< = —h(2)dt + éd > +h(2)dZ,
k
where

2
dr?
d Zk: =t r2d0Z, + (1 - kr2)dy?
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and 2 M
h(z) =k+ = E- 7
Then the equation of a 4-dimensional cosmos moving in a 6etpae is
5
4+ 3(0)? (6) 07— K 3K _ 2
; ) 364" " 8P R TR

by applying ttharmms-IsraeI conditiongor a moving brane. Similarly, for the case of
a(2) # b(z2), the equations of motion of the brane are

d2dR-dR  V1+ d?Re a n A
g 0 (dNR + == — (dd,n — Nd,d)R) = —(?(3(p +p)+ D),
+

K
“"zam ~Dprp-p),

ad
azb - K?G) A
g V1t d?Re = —?(P = 3(p- ).
where the energy-momentum tensor on the brane is
. , 1
Ty = 0T = 3Th
with T = diag(-p, p, p, p, P) and theDarmois-Israel conditions

[ V] - K(e) Vs

whereK,, is the extrinsic curvature tensor.
The combinatorial cosmos also presents new questions tbinatorics, such as:

(1) Embed a graph into spaces with dimensiongl
(2) Research the phase space of a graph embedded in a space;
(3) Establish graph dynamics in a space with dimenspdal - -, etc

For example, we have gotten the following result for graphspiaces.

Theorem 10.3.1 A graph G has a nontrivial including multi-embedding on seiseP, o
S
P, o --- D> Pgif and only if there is a block decomposition£ |+ G; of G such that for
i=1
any integerjl<i<s, |
(1) Gjis planar;

(2) for Yv e V(Gj), Ng(X) C ( U V(Gj)).

j=i-1

A complete proof of Theorem 181 can be found in [Mao4]. Further consideration
of combinatorial cosmos will enlarge the knowledge of camalorics and cosmology,
also get the combinatorialization for cosmological sceenc
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fundamental group 138

G

Gauss mapping 351
Gauss-Bonnet theorem 352
genus 136, 179

globally primitive 77
globally k-transitive 74, 113
globally transitive 74
graph 80

graph group 92

graph property 85
graphical regular representation 99
group 8

H

half-transitive graph 102
Hausdoft space 118
homeomorphic space 120
homomorphism 20
homotopic mapping 136
Huriwtz Theorem 229
hyperbolic area 155
hyperbolic point 329

379



380

hyperbolic vertex 310

hyperbolic tessellation 200

hypergraph 115

image 3, 20, 35
imprimitive block 61
imprimitive group 61
inclusion mapping 141
induced action 105
induced subgraph 83
infinite set 4

injection 4

inner automorphism 50
intersection set 2
inverse 7

involution 16

Iseri’'s manifold 310
isometry 318, 323
isomorphic graph 82
isomorphic group 10

isomorphic multigroup 31
isomorphic rooted map 272
isomorphism 20, 149, 181

K

kernel 20, 35

Klein 4-group 8, 175
Klein surface 146
k-factorable 86
k-transitive 46
k-transitive extended 71
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Legendre symbol 58

lifted automorphism 220
lifting arc 212

lifting graph 215

lifting map 217

limit point 118

linear conformal mapping 344
linear isometry 333

local action group 69

locally compact 120

locally transitive group 69
locally regular group 69
locally k-transitive group 70
locally sharplyk-transitive group 70
locally primitive group 71

loop 80

M

map 176

map geometry 356
map-automorphism graph 260
map exponent 221

map group 186

mapping 3

metric pseudo-space 357
metric space 317

minimal normal subgroup 66
morphism 148
multi-algebra system 353
multigroup 30

multiple edge 80
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multigroup action graph 110 orientable map 179
multi-metric space 355 orientable surface 123
multipolygon 206 orientation-preserving 123, 170, 242
multisurface 206 orientation-reversing 123, 170, 242
outer automorphism group 51
N
P
natural homomorphism 23
NEC group 150 paradoxist geometry 309
neighborhood 81,118 path 81
n-manifold 121 p-element 28
non-Euclid area of map 227 p-subgroup 28
non-Euclidean point 321, 335 permutation 16
non-geometry 309 permutation groups 42

non-orientable genus polynomial 276 permutation pair 286

non-orientable map 179 permutation representation 42
non-orientable surface 123 planar graph 87

norm 332 planar regular tessellation 199
norm-preserving mapping 344 point 118

normally Cayley graph 93 polygonal presentation 128
normalizer 51 power set 3

normal subgroups 15 primitive extended 71

normal submultigroup 33 primitive group 61

n-sheeted covering 213 projection 124,212

projective plane 124

O pseudo- Euclidean space 335

odd permutation 17 pure rotation 168

one face map 261

one-point extended 71 ©

opened cover 120 quadricell 175

order 11,80 guotient group 23
orientable embedding index 269 guotient multigroup 34

orientable genus polynomial 276 guotient space 123
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guotient topology 123

R

reflection 320, 334, 341
regular group 46

regular map 191

regular representation 19
Riemann manifold 358
Riemann surface 147
right action 42

root 268

rooted map 272

rooted map sequence 278
rooted orientable map polynomial 275
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semi-regular group 46
semi-regular graph 256
semi-regular map 256

sharply k-transitive group 47
similarity 42

simply connected space 140
simple graph 80

simple group 15

signature 155

size 80

s-line 308, 336

Smarandache geometry 307
Smarandache graphoidal cover 89
Smarandache graphoidal tree cover 89
Smarandache manifold 307

rooted non-orientable map polynomial 275

rooted total map polynomial 275
root polynomial 268

rotation 320, 334, 341

rotation embedding scheme 168
rotation matrix 336

rotation system 171

S

Schwarzschild-ADS spacetime 362
second countable 118

Seifert- Van Kampen theorem 141
set 2

semi-arc automorphism 104
semi-arc set 103

semi-arc transitive 105

semigroup 7

semidirect product 25

Smarandache multi-space 40
Smarandache plane 321
Smarandachely automorphism 317
Smarandachely chromatic number 89
Smarandachely coloring 89
Smarandachely decomposition 89
Smarandachely denied 307
Smarandachely embeddable graph 89
Smarandachely embedded graph 338
Smarandachely graph 89
Smarandachely map 325
Smarandachely path cover 89
Smarandachely property 89

socle 66

spanning subgraph 83

spherical tessellation 200

s-plane 308

s-space 308
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s-triangle 308

stabilizer 42

standard map 179
straight-line homotopy 137
subgraph 82

subgroup 12
submultigroup 31
subset 3

surface 121

surface group 143
surface presentation 128
surjection 4

Sylow p-subgroup 28

T

topology 118
total genus polynomial 276

Townsend-Wohlfarth type metric 360

trail 81

triangulation 126
transitive group 45
translation 320, 334, 340
transitive root 268

U

union set 2
unit 7
universal map 195

\%

valency 81
vertex chromatic number 85

vertex cover 86

vertex independent set 86
vertex set 80

voltage graph 215
voltage map 216

wW

walk 81

383



Linfan Mao is a researcher dChinese Academy of Mathematics
and System Sciencan honorary professor @eijing Institute of
Architectural Engineeringalso a deputy general secretary of the
China Tendering- Bidding Associatioim Beijing. He got his Ph.D

in Northern Jiaotong University in 2002 and finished his gost
toral report forChinese Academy of Scientef005. His research

interest is mainly on mathematical combinatorics and Sndaehe
multi-spaces with applications to sciences, includes d¢oatbrics,
algebra, topology, dierential geometry, theoretical physics and parallel usme

ABSTRACT: Automorphisms of a system survey its symmetry and appeatyn

all mathematical branches, such as those of algebra, catabics, geometry,- - and
theoretical physics or chemistry. The main motivation a$ thook is to present a sys-
temically introduction to automorphism groups on algegraphs, maps, i.e., graphs on
surfaces and geometrical structures with applicationgicBocovered in this book in-
clude elementary groups, symmetric graphs, graphs onces;feegular maps, lifted au-
tomorphisms of graphs or maps, automorphisms of maps wmagd graph with appli-
cations to map enumeration, isometries on Smarandacheeggoamd CC conjecture,
etc., which is suitable as a textbook for graduate studantsalso a valuable reference
for researchers in group action, graphs with groups, coatbiits with enumeration,
Smarandache multispaces, particularly, Smarandacheejgomith applications.

ISBN 9781599731544

7815991731




