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Preface to the Second Edition

Automorphism groups survey similarities on mathematical systems, which appear nearly

in all mathematical branches, such as those of algebra, combinatorics, geometry,· · · and

theoretical physics, theoretical chemistry, etc.. In geometry, configurations with high

symmetry born symmetrical patterns, a kind of beautiful pictures in aesthetics. Naturally,

automorphism groups enable one to distinguish systems by similarity. More automor-

phisms imply more symmetries of that system. This fact has established the fundamental

role of automorphism groups in modern sciences. So it is important for graduate students

knowing automorphism groups with applications.

The first edition of this book is in fact consisting of my post-doctoral reports in Chi-

nese Academy of Sciences in 2005, not self-contained and notsuitable as a textbook for

graduate students. Many friends of mine suggested me to extend it to a textbook for

graduate students in past years. That is the initial motivation of this edition. Besides, I

also wish to survey applications of Smarandache’s notion with combinatorics, i.e., math-

ematical combinatorics to automorphism groups of maps, surfaces and Smarandache ge-

ometries in this edition. The two objectives advance me to complete this self-contained

book.

Indeed, there are many ways for introducing automorphism groups. I plan them for

graduate students both in combinatorics and geometry. The materials in this book include

groups with actions, graphs with symmetries, graphs on surfaces with enumeration, reg-

ular maps, isometries on finitely or infinitely pseudo-Euclidean spaces and an interesting

notion for developing mathematical sciences in 21th century, i.e. the CC conjecture.

Contents in in this book are outlined following.

Chapters 1 and 2 are an introduction to groups. Topics such asthose of groups and
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subgroups, regular representations, homomorphism theorems, structures of finite Abelian

groups, transitive groups, automorphisms of groups, characteristic subgroups,p-groups,

primitive groups, regular normal subgroups are discussed and a few useful results, for ex-

amples, these Burnside lemma, Sylow theorem and O’Nan-Scott theorem are established.

Furthermore, an elementary introduction to multigroups and permutation multigroups, in-

cluding locally or globally transitive groups, locally or globally regular groups can be also

found in Chapters 1 and 2.

For getting automorphism groups of graphs, these symmetricgraphs, including vertex-

transitive graphs, edge-transitive graphs, arc-transitive graphs and semi-arc transitive graphs

are introduced in Chapter 3. Indeed, the automorphism groupof a normally Cayley graph

or GRR of a finite group can be completely determined. For classifying maps on sur-

faces underlying a graphG, one needs to consider the action of semi-arc automorphism

group Aut1
2
G on its semi-arc setX1

2
G. Such groups are not very different from that of

automorphism group ofG. In fact, Aut1
2
G = AutG if G is loop-free. This chapter also

discuses multigroup action graphs, which make a few resultson globally transitive groups

in Chapter 2 simple.

As a preparing for combinatorial maps with applications to Klein surfaces, Chapter

4 is mainly on surfaces, including both topological surfaces and Klein surfaces. Indeed,

Sections 4.1-4.3 can be used to an introduction on topological surfaces and Sections 4.4-

4.5 on Klein surfaces. These fundamental techniques or results on surfaces, such as those

of classifying theorem of surfaces by elementary operations, Seifert-Van Kampen theo-

rem, fundamental groups of surfaces, NEC groups and automorphism groups of Klein

surfaces are well discussed in this chapter.

Chapters 5-7 are an introduction on algebraic maps, i.e., graphs on surfaces, partic-

ularly, automorphisms of maps. The rotation embedding scheme on graphs and its con-

tribution to algebraic maps can be found in Sections 5.1-5.2. Then map groups, regular

maps and the technique for constructing regular maps by triangle groups are interpreted

in Sections 5.3-5.5.

Chapter 6 concentrates on lifting automorphisms of maps by that of voltage assign-

ment technique. A condition for a group being that of a liftedmap and a combinatorial

refinement of the Hurwitz theorem on Riemann surfaces are gotten in Sections 6.1-6.4.

After that, Section 6.5 concerns the order of an automorphism of Klein surfaces by that

of map, which is an interesting problem in Klein surfaces.
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The objective of Chapter 7 is to find presentations of automorphisms of maps un-

derlying a graph. A general condition for a graph group beingthat of map is established

in the first section. Then all these presentations for automorphisms of maps underlying a

complete graph, a semi-regular graph or a bouquet are found,which are useful for enu-

merating maps underlying such a graph.

Applying results in Chapter 7 enables one to classify maps, i.e., enumerating rooted

maps or maps underlying a graph in Chapter 8. These enumerating results on rooted

maps underlying a graph are presented in Sections 8.1-8.2 by group action. It is worth

to celebrate that a sum-free formula for rooted maps underlying a graph is found by the

action semi-arc automorphism group of graph. Then a generalscheme for enumerating

maps underlying a graph is established in Section 8.3. By applying this scheme and those

presentations of automorphisms of maps in Chapter 7, these complete maps, semi-regular

maps and one-vertex maps are enumerated in Sections 8.4-8.6, respectively.

Chapter 9 turns on a special kind of automorphisms, i.e., isometries on Smarandache

geometry, a mixed geometry with an axiom validated or invalided, or only invalided but in

at least two distinct ways. A formally definition with examples for such geometry can be

found in Sections 9.1-9.2. Then all isometries on finitely or infinitely pseudo-Euclidean

spaces (Rn, µ) are determined in Sections 9.3-9.4. It should be noted that for the finite

case, all such isometries can be combinatorially characterized by graphs embedded in the

Euclidean spaceRn.

The final chapter concentrates on an important notion for developing mathematical

sciences in 21th century, i.e., the CC conjecture appeared in Chapter 5 of the first edition

in 2005. That is the originality ofmathematical combinatorics. Its contributions to math-

ematics and physics are introduced, and research problems are presented in this chapter.

These interested readers are referred to [Mao25] for its further applications to geometry

or Riemann geometry.

This edition was began to prepare in 2009. Many colleagues and friends of mine

have given me enthusiastic support and endless helps in writing. Here I must mention

some of them. On the first, I would like to give my sincerely thanks to Dr.Perze for his

encourage and endless help. Without his encourage, I would do some else works, can not

investigate mathematical combinatorics for years and finish this edition. Second, I would

like to thank Professors Feng Tian, Yanpei Liu, Mingyao Xu, Jiyi Yan, Fuji Zhang and

Wenpeng Zhang for them interested in my research works. Their encouraging and warm-
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hearted supports advance this book. Thanks are also given toProfessors Han Ren, Yanqiu

Huang, Junliang Cai, Rongxia Hao, Wenguang Zai, Goudong Liu, Weili He and Erling

Wei for their kindly helps and often discussing problems in mathematics altogether. Par-

tially research results of mine were reported at Chinese Academy of Mathematics & Sys-

tem Sciences, Beijing Jiaotong University, Beijing Normaluniversity, East-China Normal

University and Hunan Normal University in past years. Some of them were also reported

at The 2ndand3rd Conference on Graph Theory and Combinatorics of Chinain 2006

and 2008. My sincerely thanks are also give to these audiences discussing mathematical

topics with me in these periods.

Of course, I am responsible for the correctness all of these materials presented here.

Any suggestions for improving this book or solutions for open problems in this book are

welcome.

L.F.Mao

June 24, 2011
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There are many wonderful things in nature, but the most wonderful
of all is man.

Sophocles, an ancient Greek dramatist



CHAPTER 1.

Groups

A groupis surely the laws of combinations on its symbols, an important con-

ception of mathematics. One classifies groups into two categories, i.e., theab-

stract groupsandpermutation groups. Its application fields includes physics,

chemistry, biology, crystallography,..., etc.. Now it hasbecome a fundamental

of all branches of mathematical sciences. For introducing readers to abstract

groups, these algebraic systems, groups with subgroups, regular representa-

tion, homomorphism theorems, Abelian groups with structures, multigroups

and submultigroups with elementary properties are discussed in this chapter,

where multigroups are generalized algebraic systems of groups by Smaran-

dache multi-space, i.e., a union of groups, different two by two.



2 Chap.1 Groups

§1.1 SETS

1.1.1 Set.A setS is a category consisting of parts, i.e., a collection of objects possessing

with a propertyP. Usually, a setS is denoted by

S = { x | x possesses the propertyP }.

If an elementx possesses the propertyP, we say thatx is an element of the setS, denoted

by x ∈ S. On the other hand, if an elementy does not possesses the propertyP, then it

is not an element ofS, denoted byy < S.

For examples,

Z+ = {1, 2, · · · , n, · · ·},

P = {cities with more than 2 million peoples in China},

E = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

are 3 sets by definition, and the numbern ≥ 1, city with more than 2 million peoples in

China and point (x, y) with 0 ≤ x, y ≤ 1 are elements of setsZ+,P andE, respectively.

Let S,T be two sets. These binary operationsunion S∪ T andintersection S∩ T of

setsS andT are defined by

S
⋃

T = {x|x ∈ S or x ∈ T}, S
⋂

T = {x|x ∈ S andx ∈ T}.

These operations∪ and∩ have the following laws.

Theorem 1.1.1 Let X,T and R be sets. Then

(i) X
⋃

X = X and X
⋂

X = X;

(ii ) X
⋃

T = T
⋃

X and X
⋂

T = T
⋂

X;

(iii ) X
⋃

(T
⋃

R) = (X
⋃

T)
⋃

R and X
⋂

(T
⋂

R) = (X
⋂

T)
⋂

R;

(iv) X
⋃

(T
⋂

R) = (X
⋃

T)
⋂

(X
⋃

R),

X
⋂

(T
⋃

R) = (X
⋂

T)
⋃

(X
⋂

R).

Proof These laws (i)-(iii ) can be verified immediately by definition. For the law (iv),

let x ∈ X
⋃

(T
⋂

R) = (X
⋃

T)
⋂

(X
⋃

R). Thenx ∈ X or x ∈ T
⋂

R, i.e., x ∈ T and

x ∈ R. Now if x ∈ X, we know thatx ∈ X ∪ T and x ∈ X ∪ R. Whence, we get that



Sec.1.1 Sets 3

x ∈ (X
⋃

T)
⋂

(X
⋃

R). Otherwise,x ∈ T
⋂

R, i.e., x ∈ T andx ∈ R. We also get that

x ∈ (X
⋃

T)
⋂

(X
⋃

R).

Conversely, for∀x ∈ (X
⋃

T)
⋂

(X
⋃

R), we know thatx ∈ X
⋃

T andx ∈ X
⋃

R,

i.e., x ∈ X or x ∈ T and x ∈ R. If x ∈ X, we get thatx ∈ X
⋃

(T
⋂

R). If x ∈ T and

x ∈ R, we also get thatx ∈ X
⋃

(T
⋂

R). Therefore,X
⋃

(T
⋂

R) = (X
⋃

T)
⋂

(X
⋃

R) by

definition.

Similarly, we can also get the lawX ∩ T = X ∪ T. �

Let S1 andS2 be two sets. If for∀x ∈ S1, there must bex ∈ S2, then we say that

S1 is a subsetof S2, denoted byS1 ⊆ S2. A subsetS1 of S2 is proper, denoted by

S1 ⊂ S2 if there exists an elementy ∈ S2 with y < S1 hold. It should be noted that the

void (empty) set∅ is a subset of all sets by definition. All subsets of a setS naturally

form a setP(S), called thepower setof S.

Now letS be a set andX ∈P(S). We define the complementX of X ⊂ S to be

X = { y | y ∈ S buty < X}.

Then we know the following result.

Theorem 1.1.2 LetS be a set, S,T ⊂ S. Then

(i) X ∩ X = ∅ andX ∪ X = S;

(ii ) X = X;

(iii ) X ∪ T = X ∩ T andX ∩ T = X ∪ T.

Proof The laws (i) and (ii ) can be immediately verified by definition. For (iii ), let

x ∈ X ∪ T. Thenx ∈ S but x < X ∪ T, i.e., x < X andx < T. Whence,x ∈ X andx ∈ T.

Therefore,x ∈ X ∩ T. Now for ∀x ∈ X ∩ T, there must bex ∈ X andx ∈ T, i.e., x ∈ S

but x < X andx < T. Hence,x < X ∪ T. This fact implies thatx ∈ X ∪ T. By definition,

we find thatX ∪ T = X ∩ T. Similarly, we can also get the lawX ∩ T = X ∪ T. This

completes the proof. �

1.1.2 Cardinality. A mapping f from a setS to T is a subset ofS × T such that for

∀x ∈ S, | f (∩({x} × T)| = 1, i.e., f ∩ ({x} × T) only has one element. Usually, we denote

a mappingf from S to T by f : S → T and f (x) the second component of the unique

element off ∩ ({x} × T), called theimageof x under f .
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A mapping f : S → T is calledinjection if for ∀y ∈ T, | f ∩ (S × {y})| ≤ 1 and

surjectionif | f ∩ (S×{y})| ≥ 1. If it is both injection and surjection, i.e.,| f ∩ (S×{y})| = 1,

then it is called abijectionor a 1− 1 mapping.

Definition 1.1.1 Let S , T be two sets. If there is a bijection f: S → T, then the

cardinality of S is equal to that of T . Particularly, if T= {1, 2, · · · , n}, the cardinal

number, usually called the order of S is defined to be n, denoted by |S| = n.

Definition 1.1.2 A set S is finite if and only if c(S) < ∞. Otherwise, S is infinite.

Definition 1.1.3 A set S is countable if there is a bijection f: S→ Z+.

By this definition, one can enumerate all elements ofS by an infinite sequence

s1, s2, · · · , sn, · · ·. TheseZ+, P andE in Subsection 1.1.1 are countable, finite and infi-

nite set, respectively. Generally, we have the following result.

Theorem 1.1.3 A set S is infinite if and only if it contains a countable subset.

Proof If S contains a countable subset, by Definition 1.1.3 it is infinite. Now if S is

infinite, chooses1 ∈ S, s2 ∈ S \ {s1}, s3 ∈ S \ {s1, s2}, ..., sn ∈ S \ {s1, s2, · · · , sn−1},.... By

assumption,S is infinite, so for any integern ≥ 1, the setS \ {s1, s2, · · · , sn−1} can never

be empty. Therefore, we can always choose an elementsn from it and this process will

never stop until we get an infinite sequences1, s2, · · · , sn, · · ·, a countable subset ofS. �

Theorem 1.1.4 The setR of all real numbers is not countable.

Proof Assume there is an enumerationr1, r2, · · · , rn, · · · of all real numbers. Then list

the decimal expansion of these numbers after the decimal point in their enumerated order

in a square array:

r1 = · · · .a11a12a13a14 · · ·
r2 = · · · .a21a22a23a24 · · ·
r3 = · · · .a31a32a33a34 · · ·
r4 = · · · .a41a42a43a44 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · ,

whereamn is thenth digit after the decimal point ofrm. Then we construct a new real

numberζ between 0 and 1 as follows:

Let thebth digit bn in the decimal expansion ofb be ann − 1 if ann , 0 and 1 if

ann = 0. Thenb = .b1b2b3b4 · · · is the decimal expansion ofb, which is a real number by
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definition but differs from thenth numberrn of the enumeration in thenth decimal place

for any integern ≥ 1. Whence,b is not in the sequencer1, r2, · · · , rn, · · ·. This contradicts

our assumption. �

1.1.3 Subset Enumeration.Let S be a countable set, i.e.,

S = {s1, s2, · · · , sn, · · ·}.

We adopt the following convention for subsets.

Convention 1.1.1 For a subset S= {si1, si2, · · · , sil } of S, l ≥ 1, assign it to a monomial

si1si2 · · · sil .

Applying this convention, we can find the generator of subsets of a setS.

Theorem1.1.5 Under Convention1.1.1, the generator of elements in the power setP(S)

is

G(P(S)) =
∑

ǫs=0 or 1

∏

s∈s
sǫs.

Proof Let T = {si1, si2, · · · , sl}, l ≥ 1 be an element inP(S). Then it is the term

si1si2 · · · sl in G(P(S)). Conversely, letsi1 si2 · · · sk, k ≥ 1 be a term inG(P(S)). Then it

is the subset{si1, si2, · · · , sk} by Convention 1.1.1. �

For a finite setS, we can get a closed formula for counting its subsets following.

Theorem 1.1.6 LetS be a finite set. Then the number of its subsets is

|P(S)| = 2|S|.

Proof Notice that for any integeri, 1 ≤ i ≤ |S|, there are


|S|
i

 subsets of cardinal-

ity i in S. Therefore, we find that

|P(S)| =
|S|∑

i=1


|S|
i

 = 2|S|. �
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§1.2 GROUPS

1.2.1 Algebra System.LetA be a nonempty set. Abinary operation onA is a bijection

o : A × A → A . Thuso associates each ordered pair (a, b) of elements ofA with an

elemento(a, b) that ofA . For simplicity, we writea ◦ b for o(a, b) and refer to◦ as a

binary operation onA . A setA associated with a binary operation◦ is called to be an

algebraic system, denoted by (A ; ◦).
If A is finite, letA = {x1, x2, · · · , xn}, we can present an algebraic system (A ; ◦)

easily by operation table following.

◦ x1 x2 · · · xn

x1 x1 ◦ x1 x1 ◦ x2 · · · x1 ◦ xn

x2 x2 ◦ x1 x2 ◦ x2 · · · x2 ◦ xn

· · · · · · · · · · · · · · ·
xn xn ◦ x1 xn ◦ x2 · · · xn ◦ xn

Table 1.2.1

For example, letK = {1, α, β, γ} with an operation◦ determined by the following

table.

◦ 1 α β γ

1 1 α β γ

α α 1 γ β

β β γ 1 α

γ γ β α 1

Table 1.2.2

Then we easily get that

1 ◦ 1 = α ◦ α = β ◦ β = γ ◦ γ = 1,

1 ◦ α = α ◦ 1 = α, 1◦ β = β ◦ 1 = β, 1◦ γ = γ ◦ 1 = γ,

α ◦ β = β ◦ α = γ, α ◦ γ = γ ◦ α = β, β ◦ γ = γ ◦ β = α

by Table 1.2.2. Notice thatx◦ (y◦ z) = (x◦ y) ◦ zandx◦ y = y◦ x for ∀x, y, z ∈ K in Table

1.2.2. These properties enables us to introduce the associativeand commutative laws for

operation following.
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Definition 1.2.1 An algebraic system(A ; ◦) is associative if for∀a, b, c ∈ A ,

(a ◦ b) ◦ c = a ◦ (b ◦ c).

An associative system(A ; ◦) is usually called a semigroup. A system(A ; ◦) is Abelian if

for ∀a, b ∈ A ,

a ◦ b = b ◦ a.

There are many non-Abelian systems. For example, letMn(R) be alln× n matrixes

with matrix multiplication◦. We have known that the equality

A ◦ B = B ◦ A

does not always hold for∀A, B ∈ Mn(R) from linear algebra. Whence, (Mn(R), ◦) is a non-

Abelian system. Notice that each element associated with the element 1n×n is unchanging

in Mn(R). Such an element is called to be a unit defined following, which also enables us

to introduce the inverse element of an element in (A , ◦).

Definition 1.2.2 Let (A ; ◦) be an algebraic system. An element1l ∈ A (or 1r ∈ A , or

1 ∈ A ) is called to be a left unit (or right unit, or unit) if for∀a ∈ A

1l ◦ a = a (or a ◦ 1r = a, or 1 ◦ a = a ◦ 1 = a).

Definition 1.2.3 Let (A ; ◦) be an algebraic system with a unit1A . An element b∈ A is

called to be a right inverse of a∈ A if a ◦ b = 1A .

Certainly, there are algebra systems without unit. For example, letH = {a, b, c, d}
with an operation· determined by the following table.

· a b c d

a b c a d

b c d b a

c a b d c

d d a c b

Table 1.2.3

Then (H, ·) is an algebraic system without unit.
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1.2.2 Group. A group is an algebraic associative system with unit and inverse elements,

formally defined in the following.

Definition 1.2.4 An algebraic system(G ; ◦) is a group if conditions(1)-(3) following

hold:

(1) (x ◦ y) ◦ z= x ◦ (y ◦ z), ∀x, y, z ∈ G ;

(2) ∃1G ∈ G such that1G ◦ x = x ◦ 1G = x, x∈ G ;

(3) ∀x ∈ G , ∃y ∈ G such that x◦ y = y ◦ x = 1G .

A group (G ; ◦) is Abelianif it is itself Abelian, i.e., an additional condition (4) fol-

lowing holds:

(4) ∀x, y ∈ G, x◦ y = y ◦ x, ∀x, y ∈ G .

For example, the system (K; ◦) determined by Table 1.2.2 is such an Abelian group,

usually calledKlein 4-group. More examples of groups are shown following.

Example 1.2.1(Groups of Numbers) LetZ,Q,R andC denote respectively sets of all

integers, rational numbers, real numbers and complex numbers and+, · the ordinary

addition, multiplication. Then we know

(1) (Z;+), (Q;+), (R;+) and (C;+) are four Abelian infinite groups with identity 0

and inverse−x for ∀x ∈ Z,Q,R or C;

(2) (Z \ {0}; ·), (Q \ {0}; ·), (R \ {0}; ·) and (C \ {0}; ·) are four Abelian infinite groups

with identity 1 and inverse 1/x for ∀x ∈ Z,Q,R or C.

(3) Let n be an integer. Define an equivalent relation∼ onZ following:

a ∼ b⇔ a ≡ b(modn).

Denoted byi the equivalent class includingi. We getn equivalent classes0, 1, · · · , n− 1.

Let Zn = {0, 1, · · · , n− 1}. Then (Zn;+) is an Abeliann-group with identity0, inverse

−x for x ∈ Zn and (Zn \ {0}; ·) an Abelian (n − 1)-group with identity1, inverse1/x for

x ∈ Zn \ {0}, where1/x denotes the equivalent class including such 1/x with x · (1/x) ≡
1(modn).

Example1.2.2(Groups of Matrixes) LetGL(n,R) be the set of all invertiblen×n matrixes

with coefficients inR and+, · the ordinary matrix addition and multiplication. Then

(1) (GL(n,R);+) is an Abelian infinite group with identity 0n×n, then×n zero matrix
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and inverse−A for A ∈ GL(n,R), where−A is the matrix replacing each entrya by −a in

matrix A.

(2) (GL(n,R); ·) is a non-Abelian infinite group ifn ≥ 2 with identity 1n×n, then× n

unit matrix and inverseA−1 for A ∈ GL(n,R), whereA · A−1 = 1n×n. For its non-Abelian,

let n = 2 for simplicity and

A =


1 2

2 1

 , B =


2 −3

3 1

 .

Calculations show that


1 2

2 1

 ·


2 −3

3 1

 =


8 −1

7 −5

 ,


2 −3

3 1

 ·


1 2

2 1

 =

−4 1

5 7

 .

Whence,A · B , B · A.

Example 1.2.3(Groups of Linear Transformation) LetV be ann-dimensional vector

space overR andGL(V,R) the set of all bijection linear transformation ofV. We have

known that each bijection linear transformation ofV is associated with a non-singular

n×n matrix and the composition◦ of two such transformations is correspondent with that

of matrixes if a fixed basis ofV is chosen. Therefore, (GL(V,R); ◦) is a group by Example

1.2.2.

Example 1.2.4(Isometries ofE2) Let E2 be a Euclidean plane. There are three basic

isometries inE2, i.e.,rotationsabout a point,reflectionsin a line andtranslationsmoving

a point (x, y) to (xa, y+ b) for some fixeda, b ∈ R. We have know that any isometry is a

rotation, a reflection, a translation, or their product.

If X is a bounded subset ofE2, for example, the regular polygon shown in Fig.1.2.1

in the next page, then it is clear that an isometry leavingX invariant must be a rotation

or a reflection, can not be a translation. In this case, the rotations that leaveX invariant

are about the center ofX through angles 2πi/n for n = 0, 1, 2, · · · , n− 1. The reflections

which preserveX are lines joining opposite vertices ifn ≡ 0(mod2) (see Fig.1.2.1) or

lines through a vertex and the midpoint of the opposite edge if n ≡ 1(mod2).

Let ρ be a rotation about the center ofX through angles 2π/n from the vertex 1

in counterclockwise andτ a reflection joining the vertex 1 with its opposite vertex if

n ≡ 0(mod2) or midpoint of its opposite edge ifn ≡ 1(mod2).
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Fig.1.2.1

Then we know that

ρn = 1X, τ
2 = 1X, τ

−1ρτ = ρ−1.

We thereafter get the isometry groupDn of regularn-polygon to be

Dn = {ρiτ j |0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1}.

This group is usually called thedihedral groupof order 2n.

Definition 1.2.5 Let (G ; ◦), (H ; ·) be groups. A bijectionφ : G →H is an isomorphism

if

φ(a ◦ b) = φ(a) · φ(b)

for ∀a, b ∈ G . If such an isomorphismφ exists, the group(G ; ◦) is called to be isomorphic

to (H ; ·), denoted by(G ; ◦) ≃ (H ; ·).

Example1.2.5 Each group pair in the following is isomorphic.

(1) (〈x〉 ; ·), xn = 1 with (Zn;+);

(2) Klein 4-group in Table 2.2 with Z2 × Z2;

(3) GL(V,R), dimV = n with (GL(n,R); ·).

1.2.3 Group Property. Elementary properties of groups are listed following.

P1. There is only one unit1G in a group(G ; ◦).

In fact, if there are two units 1G and 1′G in (G ; ◦), then we get 1G = 1G ◦ 1′G = 1′G , a

contradiction.
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P2. There is only one inverse a−1 for a ∈ G in a group(G ; ◦).

If a−1
1 , a

−1
2 both are the inverses ofa ∈ G , then we get thata−1

1 = a−1
1 ◦ a ◦ a−1

2 = a−1
2 ,

a contradiction.

P3. (a−1)−1 = a, a ∈ G .

This is by the definition of inverse, i.e.,a ◦ a−1 = a−1 ◦ a = 1G .

P4. If a ◦ b = a ◦ c or b◦ a = c ◦ a, where a, b, c ∈ G , then b= c.

If a◦b = a◦ c, thena−1 ◦ (a◦b) = a−1 ◦ (a◦ c). According to the associative law, we

get thatb = 1G ◦ b = (a−1 ◦ a) ◦ b = a−1 ◦ (a◦ c) = (a−1 ◦ a) ◦ c = 1G ◦ c = c. Similarly, if

b ◦ a = c ◦ a, we can also getb = c.

P5. There is a unique solution for equations a◦ x = b and y◦ a = b in a group(G ; ◦) for

a, b ∈ G .

In fact, x = a−1 ◦ b andy = b ◦ a−1 are such solutions.

Denote byan = a ◦ a ◦ · · · ◦ a︸          ︷︷          ︸
n

. Then the following property is obvious.

P6. For any integers n,m and a, b ∈ G , an◦am = an+m, (an)m = anm. Particularly, if (G ; ◦)
is Abelian, then(a ◦ b)n = an ◦ bn.

Definition 1.2.6 Let (G ; ◦) be a group, a∈ G . If there exists a least integer k≥ 0 with

ak = 1G , such k is called the order of a and denoted by o(a) = k. If there are no positive

power of a equal to1G , a has order infinity.

Theorem 1.2.1 Let (G ; ◦) be a group, x∈ G and o(x) = k. Then

(1) xl = 1G if and only if k|l;
(2) if o(x) < +∞, xl = xm if and only if k|l −m, and if o(x) = +∞, then xl = xm if and

only if l = m.

Proof If k|l, let l = kd for an integerd. Then

xl = xkd = (xk)d = 1d
G = 1G .

Conversely, ifk is not a divisor ofl, let l = kd+ r for integersd andr, 0 < r < k− 1.

Then we know that

xl = xkd+r = xkd ◦ xr = 1G ◦ xr
, 1G

by the definition of order. So we get (1).
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Notice thatxl = xm if and only if xl−m = 1G , i.e., l − m|k by (1). Furthermore, if

o(x) = +∞, thenxl = xm only if l = m by definition. We get conclusion (2). �

1.2.4 Subgroup. Let H be a subset of a group (G ; ◦). If (H ; ◦) is a group itself, then

it is called asubgroupof (G ; ◦), denoted byH ≤ G . If H ≤ G but H , G , thenH

is called aproper subgroupof G , denoted byH < G . We know a criterion of subgroups

following.

Theorem1.2.2 LetH be a subset of a group(G ; ◦). Then(H ; ◦) is a subgroup of(G ; ◦)
if and only ifH , ∅ and a◦ b−1 ∈H for ∀a, b ∈H .

Proof By definition if (H ; ◦) is a group itself, thenH , ∅, there isb−1 ∈ H and

a ◦ b−1 is closed inH , i.e.,a ◦ b−1 ∈H for ∀a, b ∈H .

Now if H , ∅ anda ◦ b−1 ∈H for ∀a, b ∈H , then,

(1) there exists anh ∈H and 1G = h ◦ h−1 ∈H ;

(2) if x, y ∈H , theny−1 = 1G ◦ y−1 ∈H and hencex ◦ (y−1)−1 = x ◦ y ∈H ;

(3) the associative lawx ◦ (y ◦ z) = (x ◦ y) ◦ z for x, y, z ∈ H is hold in (G ; ◦). By

(2), it is also hold inH . Thus (H ; ◦) is a group. �

Corollary 1.2.1 LetH1 ≤ G andH2 ≤ G . ThenH1 ∩H2 ≤ G .

Proof Obviously, 1G = 1H1 = 1H2 ∈H1∩H2. SoH1∩H2 , ∅. Let x, y ∈H1∩H2.

Applying Theorem 1.2.2, we get that

x ◦ y−1 ∈H1, x ◦ y−1 ∈H2.

Whence,

x ◦ y−1 ∈H1 ∩H2.

Thus, (H1 ∩H2; ◦) is a subgroup of (G ; ◦). �

Let X be a subset of a group (G ; ◦). Define the subgroup〈X〉 generated byX to be

the intersection of all subgroups of (G ; ◦) which containsX. Notice that there will be one

such subgroup, i.e., (G ; ◦) at least. So〈X〉 is a subgroup of (G ; ◦) by Corollary 1.2.1. A

subgroup generated by one elementx ∈ G ; ◦) is usually called acyclic group, denoted by

〈x〉. The next result determines the form of each element in the subgroup〈X〉.

Theorem 1.2.3 Let X be a nonempty subset of a group(G ; ◦). Then〈X〉 is the set of all

elements of the form xǫ11 xǫ22 · · · x
ǫs
s , where xi ∈ X, ǫi = ±1 and s≥ 0 (if s = 0, this product

is interpreted to be1G ).
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Proof Let S denote the set of all such elements. Applying Theorem 1.2.2, we know

that (S; ◦) is a subgroup of (G ; ◦). It is clear thatX ⊂ S. Whence,〈X〉 ⊂ S. But by

definition, it is obvious thatS ⊂ 〈X〉. So we get thatS = 〈X〉. �.

For a finite subgroupH of (G ; ◦), the criterion of Theorem 1.2.2 can be simplified

to the following.

Theorem 1.2.4 LetH be a finite subset of a group(G ; ◦). Then(H ; ◦) is a subgroup of

(G ; ◦) if and only ifH , ∅ and a◦ b ∈H for ∀a, b ∈H .

Proof The necessity is clear. We prove the sufficiency. By Theorem 1.2.2, we only

need to checkb−1 ∈ H in this case. In fact, letb ∈ H . Then we getbm ∈ H for any

integerm ∈ Z+ by assumption. ButH is finite. Whence, there are integersk, l, k , l

such thatbk = bl. Not loss of generality, we assumek > l. Thenbk−l−1 = b−1 ∈ H .

Whence, (H ; ◦) is a subgroup of (G ; ◦). �

Definition 1.2.7 Let (G , ◦) be a group,H ≤ G and a∈ G . Define

a ◦H = {a ◦ h|h ∈H }

and

H ◦ a = {h ◦ a|h ∈H },

called the left or right coset ofH , respectively.

Because the behavior of left coset is the same of that the right. We only discuss the

left coset following.

Theorem 1.2.5 LetH ≤ G with an operation◦ and a, b ∈ G . Then

(1) for ∀b ∈ a ◦H , a◦H = b ◦H ;

(2) a ◦H = b ◦H if and only if b−1 ◦ a ∈H ;

(3) a ◦H = b ◦H or a ◦H ∩ b ◦H = ∅.

Proof (1) If b ∈ a ◦H , then there exists an elementh ∈ H such thatb = a ◦ h.

Therefore,b ◦H = (a ◦ h) ◦H = a ◦ (h ◦H = a ◦H .

(2) If a ◦ =b ◦H , then there exist elementsh1, h2 ∈ H such thata ◦ h1 = b ◦ h2.

Whence,b−1 ◦ a = h2 ◦ h−1
1 ∈ H . Conversely, ifb−1 ◦ a ∈ H , then there existsh ∈ H

such thatb−1◦a = h, i.e.,a ∈ b◦H . Applying the conclusion (1), we geta◦H = b◦H .

(3) In fact, if a ◦H ∩ b ◦H , ∅, let c ∈ (a ◦H ∩ b ◦H ). Then,c ◦H = a ◦H

andc ◦H = b ◦H by the conclusion (1). Therefore,a ◦H = b ◦H . �
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Let us denote byG /H all these left (or right) cosets andG : H the resulting sets

by selecting an element from each left coset ofH , called theleft coset representation.

By Theorem 1.2.5, we get that

G =
⋃

t∈G :H

t ◦H

and∀g ∈ G can be uniquely written in the formt ◦ h for t ∈ G : H , h ∈ H . Usually,

|G : H | is called theindexof H in G . For such indexes, we have a theorem following.

Theorem 1.2.6 (Lagrange)LetH ≤ G . Then|G | = |H ||G : H |.

Proof Let

G =
⋃

t∈G :H

t ◦H .

Notice thatt1 ◦H ∩ t2 ◦H = ∅ if t1 , t2 and|t ◦H | = |H |. We get that

|G | =
∑

t∈G :H

t ◦H = |H ||G : H |. �

Generally, we know the following theorem for indexes of subgroups. In fact, Theo-

rem 1.2.6 is just its a special case ofK = {1K }, thetrivial group.

Theorem 1.2.7 LetK ≤H ≤ G with an operation◦. Then(G : H )(H : K ) is a left

coset representation ofK in G . Thus

|G : K | = |G : H ||H : K |.

Proof Let G =
⋃

t∈G :H
t ◦H andH =

⋃
u∈H :K

u ◦K . Whence,

G =
⋃

t∈G :H , u∈H :K

t ◦ u ◦K .

We show that all these cosetst ◦ u◦K are distinct. In fact, ift ◦ u◦K = t′ ◦ u′ ◦K for

somet, t′ ∈ G : H , u, u′ ∈ H : K , thent−1 ◦ t′ ∈ H andt ◦H = t′ ◦H by Theorem

1.2.5. By the uniqueness of left coset representations inG : H , we find thatt = t′.

Consequently,u ◦K = u′ ◦K . Applying the uniqueness of left coset representations in

H : K , we get thatu = u′. �

Let H ≤ G andK ≤ G with an operation◦. Define

H G = {h ◦ g|h ∈H , g ∈ G }.
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The subgroupsH andK are said to bepermuteif H G = G H . Particularly, if for

∀g ∈ G , g ◦ H = H ◦ g, such subgroupsH are very important, called thenormal

subgroupsof (G ; ◦), denoted byH ⊳ G .

Theorem 1.2.8 Let (G ; ◦) be a group andH ≤ G . Then the following three statements

are equivalent.

(1) x ◦H =H ◦ x for ∀x ∈ G ;

(2) x−1 ◦H ◦ x =H for ∀x ∈ G ;

(3) x−1 ◦ h ◦ x ∈H for ∀x ∈ G and h∈H .

Proof For (1)⇒ (2), multiply both sides of (1) byx−1, we get (2). The (2)⇒ (3)

is clear by definition. Now for (3)⇒ (1), let h ∈ H and x ∈ G . Then we find that

h ◦ x = x ◦ (x−1 ◦ h ◦ x) ∈ x ◦H and x ◦ h = (x−1)−1 ◦ h ◦ x ∈ H ◦ x. Therefore,

x ◦H =H ◦ x. �

Obviously,{1G } ⊳G andG ⊳G . A group (G ; ◦) is calledsimpleif there are no normal

subgroups different from ({1G }; ◦) and (G ; ◦) in (G ; ◦).
Although it is an arduous work for determining all subgroups, or normal subgroups

of a given group. But there is little difficulty in the case of cyclic groups.

Theorem 1.2.9 LetG = 〈x〉 andH ≤ G with an operation◦. Then

(1) if G is infinite,H is either infinite cyclic or trivial;

(2) if G is finite,H is cyclic of order dividing n. Conversely, to each positive divisor

d of n, there is exactly one subgroup of order d, i.e.,
〈
xn/d

〉
.

Proof (1) If H is trivial, the conclusion is obvious. So letH , {1H }. Then there

is a minimal positive numberk such thatH contains some positive powerxk
, 1H .

Obviously,
〈
xk

〉
⊂H . If xt ∈H , we writet = kq+ r, where 0≤ r ≤ k− 1. Then we find

thatxr = (xk)−q ◦ xt ∈H . Contradicts the minimality ofk. Whence,r = 0 andk|t. Hence

xt ∈
〈
xk

〉
andH =

〈
xk

〉
. If G is infinite, thenx has infinite order, as doesxk. Therefore,

H is also infinite.

(2) Let o(x) = n. Then|H | dividesn by Theorem 1.2.6. Conversely, supposed|n.

Theno(xn/d) = d and |
〈
xn/d

〉
| = d. If there is another subgroup〈xs〉 of orderd. Then

xsd = 1H andn|sd. Consequently, we getn/d dividess. Whence,〈xs〉 ≤
〈
xn/d

〉
. But they

both have the same orderd, so〈xs〉 =
〈
xn/d

〉
. �

Certainly, every subgroup of a cyclic group is normal. The following result com-
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pletely determines simply cyclic groups.

Theorem 1.2.10 A cyclic group〈x〉 is simple if and only if o(x) is prime.

Proof The sufficiency is immediately by Theorems 1.2.6 and 1.2.9. Moreover,〈x〉
should be finite. Otherwise, the subgroup

〈
x2

〉
would be its a normal subgroup, contradicts

to the assumption. By Theorem 1.2.9, we know thato(x) must be a prime number. �

1.2.5 Symmetric Group. LetΩ = {a1, a2, · · · , an} be ann-set. ApermutationonΩ is a

bijectionσ : Ω → Ω. The cardinality|Ω| of Ω is called thedegreeof such a permutation

σ. Denoted byaσi the image ofσ(ai) for 1 ≤ i ≤ n. Thenσ can be also represented by

σ =


a1 a2 · · · an

aσ1 aσ2 · · · aσn

 .

Usually, we adoptΩ = {1, 2, · · · , n} for simplicity. In this case, we representσ by

σ =


1 2 · · · n

1σ 2σ · · · nσ

 .

Letσ, τ be two permutations onΩ. The productστ is defined by

iστ = (σ)τ, for i = 1, 2, · · · , n.

For example, let

σ =


1 2 3 4

2 4 1 3

 , τ =


1 2 3 4

2 1 4 3

 .

Then we get that

στ =


1 2 3 4

2 4 1 3




1 2 3 4

2 1 4 3

 =


1 2 3 4

1 3 2 4

 .

Letσ be a permutation onΩ such that

aσ1 = a2, a
σ
2 = a3, · · · , aσm−1 = am, a

σ
m = a1

and fixes each elementΩ \ {a1, a2, · · · , am}. We call such a permutationσ a m-cycle,

denoted it by (a1, a2, · · · , am) and its elements by [σ]. If m= 1,σ is the identity; ifm= 2,

i.e., (a1, a2), such aσ is calledinvolution.
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Theorem 1.2.11 Any permutationσ can be written as a product of disjoint cycles, and

these cycles are unique.

Proof Let σ be a permutation onΩ = {1, 2, · · · , n}. Choose an elementa ∈ Ω.

Construct a sequence

a = aσ
0
, aσ, aσ

2
, · · · , aσk

, · · · ,

whereaσ
k ∈ Ω for any integerk ≥ 0. Whence, there must be a least positive integerm

such thataσ
m
= aσ

i
, 0 ≤ i < m. Now if i , 0, we get that (aσ

m−1
)σ = (aσ

i−1
)σ. But

aσ
m−1
, aσ

i−1
by assumption. Whence,aσ

m
= (aσ

m−1
)σ , (aσ

i−1
)σaσ

i
, a contradiction. So

i = 0, i.e.,aσ
m
= a, or in other words,τ1 = (a, aσ, aσ

2
, · · · , aσm−1

) is anm-cycle.

If Ω\ [τ1] = ∅, thenm= n andσ is ann-cycle. Otherwise, we can chooseb ∈ Ω\ [τ1]

and get as-cycleτ2 = (b, bσ, · · · , bσs−1
).

Similarly, if chooseΩ \ ([τ1] ∪ [τ2] , ∅, choosec in it and find al-cycle τ3 =

(c, cσ, · · · , cσl−1
).

Continue this process. Because of the finiteness ofΩ, we finally get an integert and

cyclesτ1, τ2, · · · , τt such thatΩ \ ([τ1] ∪ [τ2] ∪ · · · ∪ [τt] = ∅ andσ = τ1τ2 · · · τt with

disjoint cyclesτi, 1 ≤ i ≤ t. The uniqueness ofτi, 1 ≤ i ≤ t is clear by their construction.

�

Notice that

(a1, a2, · · · , am) = (a1, a2)(a1, a2) · · · (a1, am).

We can always represent a permutation by product of involutions by Theorem 1.2.11. For

example,

σ =


1 2 3 4 5

2 3 1 5 4

 = (1, 2, 3)(4, 5)

= (1, 2)(1, 3)(4, 5) = (2, 3)(1, 2)(4, 5)

= (2, 3)(1, 2)(1, 3)(4, 5)(1, 3).

Definition 1.2.8 A permutation is odd (even) if it can be presented by a productof odd

(even) involutions.

Theorem 1.2.12 The property of odd or even of a permutationσ is uniquely determined

byσ itself.
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Proof Let P be a homogeneous polynomial with form

P =
∏

1≤i< j≤n

(xi − xj).

Clearly, any permutation leavesP unchanged as to its sign. For example, the involution

(x1x2) changes (x1−x2) into its negative (x2−x1), interchanges (x1−xj) with (x2−xj), j > 2

and leaves the other factor unchanged. Whence, it changesP to −P. This fact means that

an odd (even) permutationσ always changesP to−P (P), only dependent onσ itself. �

The next result is clear by definition.

Theorem 1.2.13 All permutations and all even permutations onΩ form groups, called

the symmetric group SΩ or alternating group AΩ, respectively.

Let τ, σ be permutations onΩ andσ = (a1, a2, · · · , am). A calculation shows that

τστ−1 = (aτ1, a
τ
2, · · · , aτm).

Generally, if

σ = σ1σ2 · · ·σs

is written a product of disjoint cycles for an integers≥ 1, Then

τστ−1 = σ′1σ
′
2 · · ·σ′s,

where theσ′i is obtained fromσi replacing each entrya in σi by τ(a).

1.2.6 Regular Representation.Let (G ; ◦) be a group with

G = {a1 = 1G , a2, · · · , an}.

For∀ai ∈ G , we know these elements

a1 ◦ ai, a2 ◦ ai, · · · , an ◦ ai

or

a−1
i ◦ a1, a

−1
i ◦ a2, · · · , a−1

i ◦ an

still in G . Whence, they are both rearrangements ofa1, a2, · · · , an. We get permutations

σai =


a1 a2 · · · an

a1 ◦ ai a2 ◦ ai · · · an ◦ ai

 =


a

a ◦ ai

 ,
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τai =


a1 a2 · · · an

a−1
i ◦ a1 a−1

i ◦ a2 · · · a−1
i ◦ an

 =


a

a−1
i ◦ a

 .

In this way, we get two sets ofn permutations

RG = {σa1, σa2, · · · , σan} and LG = {τa1, τa2, · · · , τan}.

Notice that each permutationς in RG or LG is fixed-free, i.e.,aς = a, a ∈ Ω only if ς = 1G .

We sayRG , LG theright or left regular representationof G , respectively. The cardinality

|G | = n is called thedegreeof RG or LG .

Example 1.2.6 Let K = {1, α, β, γ} be the Klein 4-group with an operation◦ determined

by Table 1.2.2. Then we get elementsσ1, σα, σβ, σγ in RK as follows.

σ1 = (1)(α)(β)(γ),

σα =


1 α β γ

α 1 γ β

 = (1, α)(β, γ),

σβ =


1 α β γ

β γ 1 α

 = (1, β)(α, γ),

σγ =


1 α β γ

γ β α 1

 = (1, γ)(α, β),

That is,

RK = {(1)(α)(β)(γ), (1, α)(β, γ), (1, β)(α, γ), (1, γ)(α, β)}.

Theorem 1.2.14 RG and LG both are subgroups of the symmetric group SG .

Proof Applying Theorem 1.2.4, we only need to prove that for two integersi, j, 1 ≤
i, j ≤ n, σaiσaj ∈ RG andτaiτaj ∈ LG . In fact,

σaiσaj =


a

a ◦ ai




a

a ◦ a j

 =


a

a ◦ ai ◦ a j

 = σai◦aj ∈ RG ,

τaiτaj =


a

a−1
i ◦ a




a

a−1
j ◦ a

 =


a

a−1
j ◦ a−1

i ◦ a



=


a

(ai ◦ a j)−1 ◦ a

 = τai◦aj ∈ LG .
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Therefore,RG andLG both are subgroups ofSG . �

The importance ofRG andLG are shown in the proof of next result.

Theorem 1.2.15(Cayley) Any groupG is isomorphic to a subgroup of SG .

Proof Let (G ; ◦) be a group withG = {a1 = 1G , a2, · · · , an}. Define mappings

f : G → RG andh : G → LG by f (ai) = σai , h(ai) = τai . Then f andh both are

one-to-one because off (ai) , f (a j), h(ai) , h(a j) if ai , a j. By the proof of Theorem

1.2.14, we know that

f (ai ◦ a j) = σai◦aj = σaiσaj = f (ai) f (a j),

h(ai ◦ a j) = τai◦aj = τaiτaj = h(ai)h(a j)

for integers 1≤ i, j ≤ n. So f andh are isomorphisms by definition. Consequently,G is

respective isomorphic to permutationsRG andLG . Both of them are subgroups ofSG by

Theorem 1.2.14. �

§1.3 HOMOMORPHISM THEOREMS

1.3.1 Homomorphism. Let (G ; ◦), (G ′; ·) be groups. A mappingφ : G → G ′ is a

homomorphismif

φ(a ◦ b) = φ(a) · φ(b)

for ∀a, b ∈ G . A homomorphismφ is called to be amonomorphismor epimorphismif

it is one-to-one or surjective. Particularly, ifφ is a bijection, such a homomorphismφ is

nothing but anisomorphismby definition.

Now letφ be a homomorphism. Define theimageImφ andkernelKerφ respectively

as follows:

Imφ ≡ G φ = { φ(g) | g ∈ G },

Kerφ = { g | φ(g) = 1G , g ∈ G }.

For example, let (Z;+) and (Zn;+) be groups defined in Example 1.2.1. Define

φ : Z→ Zn by φ(x) = x(modn). Thenφ is a surjection from (Z;+) to (Zn;+).

Let φ : G → H be a homomorphism. Some elementary properties of homomor-

phism are listed following.
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H1. φ(xn) = φn(x) for all integers n, x∈ G , whence,φ(1G ) = 1H andφ(x−1) = φ−1(x).

By induction, this fact is easily proved forn > 0. If n = 0, byφ(x) = φ(x ◦ 1G ) =

φ(x) ·φ(1G ), we know thatφ(1G ) = 1H . Now letn < 0. Then 1H = φ(1G ) = φ(xn ◦ x−n) =

φ(xn) · φ(x−n), i.e.,φ(xn) = φ−1(x−n) = (φ−n(x))−1 = φn(x).

H2. o(φ(x))|o(x), x ∈ G .

In fact, Leto(x) = k. Thenxk = 1G . Applying the property H1, we get that

φk(x) = φ(xk) = φ(1G ) = 1H .

By Theorem 1.2.1, we get thato(φ(x))|o(x).

The following property is obvious by definition.

H3. If x ◦ y = y ◦ x, thenφ(x) · φ(y) = φ(y) · φ(x).

H4. Imφ ≤H and Kerφ⊳ G .

This is an immediately conclusion of Theorems 1.2.2 and 1.2.8.

Theorem 1.3.1 A homomorphismφ : G → H is an isomorphism if and only ifKerφ =

{1G }.

Proof The necessity is clear. We prove the sufficiency. Let Kerφ = {1G }. We prove

thatφ is a bijection. If not, letφ(x) = φ(y) for two different elementx, y ∈ G , then

φ(x ◦ y−1) = φ(x) · φ−1(y) = 1H

by definition. Therefore,x ◦ y−1 ∈ Kerφ, i.e., x ◦ y−1 = 1G . Whence, we getx = y, a

contradiction. �

1.3.2 Quotient Group. Let (G ; ◦) be a group,H1,H2,H3 ≤ G . Define themultiplica-

tion and inverse of set by

H1H2 = { x ◦ y | x ∈H1, y ∈H2 } and H −1
1 = { x−1 | x ∈H1 }.

It is clear thatH1(H2H3) = (H1H2)H3. By this definition, the criterion for a subset

H ⊂ G to be a subgroup ofG can be written by

H H −1 ⊂H .
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Now we can consider this operation inG /H and determinewhen it is a group.

Generally, for∀a, b ∈ G , we do not always get

(a ◦H )(b ◦H ) ∈ G /H

unlessH ⊳ G . In fact, we have the following result forG /H .

Theorem 1.3.2 G /H is a group if and only ifH is normal.

Proof If H is a normal subgroup, then

(a ◦H )(b ◦H ) = a ◦ (H ◦ b) ◦H = a ◦ (b ◦H ) ◦H = (a ◦ b) ◦H

by the definition of normal subgroup. This equality enables us to check laws of a group

following.

(1) Associative laws inG /H .

[(a ◦H )(b ◦H )](c ◦H ) = [(a ◦ b) ◦ c] ◦H = [a ◦ (b ◦ c)] ◦H

= (a ◦H )[(b ◦H )(c ◦H )].

(2) Existence of identity element 1G /H in G /H .

In fact, 1G /H = 1 ◦H =H .

(3) Inverse element for∀x ◦H ∈ G /H .

Because of (x−1 ◦H )(x ◦H ) = (x−1 ◦ x) ◦H =H = 1G /H , we know the inverse

element ofx ◦H ∈ G /H is x−1 ◦H .

Conversely, ifG /H is a group, then fora ◦H , b ◦H ∈ G /H , we have

(a ◦H )(b ◦H ) = c ◦H .

Obviously,a ◦ b ∈ (a ◦H )(b ◦H ). Therefore,

(a ◦H )(b ◦H ) = (a ◦ b) ◦H .

Multiply both sides bya−1, we get that

H ◦ b ◦H = b ◦H .

Notice that 1G ∈H , we know that

b ◦H ⊂H ◦ b ◦H = b ◦H ,
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i.e.,b◦H ◦ b−1 ⊂H . Consequently, we also findb−1 ◦H ◦ b ⊂H if replaceb by b−1,

i.e.,H ⊂ b ◦H ◦ b−1. Whence,

b−1 ◦H ◦ b =H

for ∀b ∈ G . Namely,H is a normal subgroup ofG . �

Definition 1.3.1 If G /H is a group under the set multiplication, we say it is a quotient

group ofG byH .

1.3.3 Isomorphism Theorem. If H is a normal subgroup ofG , by Theorem 1.3.2 we

know thatG /H is a group. In this case, the mappingφ : G → G /H determined by

φ(x) = x ◦H is a homomorphism because

φ(x ◦ y) = (x ◦ y) ◦H = (x ◦H )(y ◦H ) = φ(x)φ(y)

for all x, y ∈ G . It is clear that Imφ = G /H and Kerφ = H . Such aφ is called to be

natural homomorphismof groups. Generally, we know the following result.

Theorem 1.3.3(First Isomorphism Theorem)If φ : G → H is a homomorphism of

groups, then the mappingς : x ◦ Kerφ→ φ(x) is an isomorphism fromG /Kerφ to Imφ.

Proof We have known that Kerφ ⊳ G by the property (H4) of homomorphism. So

G /Kerφ is a group by Theorem 1.3.2. Applying Theorem 1.3.1, we only need to check

that Kerς = {1G /Kerφ}. In fact, x ◦ Kerφ ∈ Kerς if and only if x ∈ Kerφ. Thusς is an

isomorphism from fromG /Kerφ to Imφ. �

Particularly, if Imφ = H , we get a conclusion following, usually called thefunda-

mental homomorphism theorem.

Corollary 1.3.1(Fundamental Homomorphism Theorem)If φ : G → H is an epimor-

phism, thenG /Kerφ is isomorphic toH .

Theorem1.3.4(Second Isomorphism Theorem)LetH ≤ G andN ⊳G . ThenH ∩N ⊳

G and x◦ (H ∩N )→ x ◦N is an isomorphism fromH /H ∩N to H N /N .

Proof Clearly, the mappingτ : x→ x◦N is an epimorphism fromH to N H /N

with Kerτ =H ∩N . Applying Theorem 1.3.3, we know that it is an isomorphism from

H /H ∩N to H N /N . �

Theorem 1.3.5(Third Isomorphism Theorem)Let M ,N ⊳ G with N ≤M . Then

M /N ⊳ G /N and(G /N )/(M /N ) ≃ G /M .
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Proof Define a mappingϕ : G /N → G /M by ϕ(x ◦N ) = x ◦M . Then

ϕ[(x ◦N ) ◦ (y ◦N )] = ϕ[(x ◦ y) ◦N ] = (x ◦ y) ◦M

= (x ◦M ) ◦ (y ◦M ) = ϕ(x ◦N ) ◦ ϕ(y ◦N )

and Kerϕ = M /N , Imϕ = G /M . Soϕ is an epimorphism. Applying Theorem 1.3.3,

we know thatϕ is an isomorphism from (G /N )/(M /N ) to G /M . �

§1.4 ABELIAN GROUPS

1.4.1 Direct Product. An Abelian groupis such a group (G ; ◦) with the commutative

law a ◦ b = b ◦ a hold for a, b ∈ G . The structure of such a group can be completely

characterized bydirect product of subgroupsfollowing.

Definition 1.4.1 Let (G ; ◦) be a group. If there are subgroups A, B ≤ G such that

(1) for ∀g ∈ G , there are uniquely a∈ A and b∈ B such that g= a ◦ b;

(2) a ◦ b = b ◦ a for a∈ A and b∈ B, then we say(G ; ◦) is a direct product of A and

B, denoted byG = A⊗ B.

Theorem 1.4.1 If G = A⊗ B, then

(1) A ⊳ G and B⊳ G ;

(2) G = AB;

(3) A∩ B = {1G }.

Conversely, if there are subgroups A, B ofG with conditions (1)-(3) hold, thenG = A⊗B.

Proof If G = A ⊗ B, by definition we immediately get thatG = AB. If there is

c ∈ A∩ B with c , 1G , we get

c = c ◦ 1G , c ∈ A, 1G ∈ B

and

c = 1G ◦ c, 1G ∈ A, c ∈ B,

contradicts the uniqueness of direct product. SoA∩ B = {1G }.
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Now we proveA ⊳ G . For∀a ∈ A, g ∈ G , by definition there are uniquelyg1 ∈ A,

g2 ∈ B such thatg = g1 ◦ g2. Therefore,

g−1 ◦ a ◦ g = (g1 ◦ g2)
−1 ◦ a ◦ (g1 ◦ g2) = g−1

2 ◦ g−1
1 ◦ a ◦ g1 ◦ g2

= g−1
1 ◦ a ◦ g1 ◦ g−1

2 ◦ g2 = g−1
1 ◦ a ◦ g1 ∈ A.

SoA ⊳ G . Similarly, we getB ⊳ G .

Conversely, if there are subgroupsA, B of G with conditions (1)-(3) hold, we prove

G = A⊗B. For∀g ∈ G , byG = AB there area ∈ A andb ∈ B such thatg = a◦b. If there

area′ ∈ A, b′ ∈ B also withg = a′ ◦ b′, then

a′−1 ◦ a = b′ ◦ b−1 ∈ A∩ B.

But A∩B = {1G }. Whence,a′−1◦a = b′ ◦b−1 = 1G , i.e.,a = a′ andb = b′. So the equality

g = a ◦ b is unique.

Now we provea ◦ b = b ◦ a for a ∈ A andb ∈ B. Notice thatA ⊳ G andB ⊳ G , we

know that

a ◦ b ◦ a−1 ◦ b−1 = a ◦ (b ◦ a−1 ◦ b−1) ∈ A

and

a ◦ b ◦ a−1 ◦ b−1 = (a ◦ b ◦ a−1) ◦ b−1 ∈ B.

But A∩ B = {1G }. So

a ◦ b ◦ a−1 ◦ b−1 = 1G , i.e., a ◦ b = b ◦ a.

By Definition 1.4.1, we know thatG = A⊗ B. �

Generally, we define thesemidirect productof two groups as follows:

Definition 1.4.2 Let G andH be two subgroups of a group(T ; ◦), α : H → AutG a

homomorphism. Define the semidirect productG ⋊α H of G andH respect toα to be

G ⋊α H = {(g, h)|g ∈ G , h ∈H }

with operation· determined by

(g1, h1) · (g2, h2) = (g1 ◦ gα(h1)−1

2 , h1 ◦ h2).

Clearly, ifα is the identity homomorphism, then the semidirect productG ×α H is

nothing but the direct productG ⊗H .
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Definition 1.4.3 Let (G ; ◦) be a group. If there are subgroups A1,A2, · · · ,As ≤ G such

that

(1) for ∀g ∈ G , there are uniquely ai ∈ Ai, 1 ≤ i ≤ s such that

g = a1 ◦ a2 ◦ · · · ◦ as;

(2) ai ◦a j = a j ◦ai for a ∈ Ai and b∈ A j, where1 ≤ i, j ≤ s, i , j, then we say(G ; ◦)
is a direct product of A1,A2, · · · ,As, denoted by

G = A1 ⊗ A2 ⊗ · · · ⊗ As.

Applying Theorem 1.4.1, by induction we can easily get the following result.

Theorem 1.4.2 If A1,A2, · · · ,As ≤ G , thenG = A1 ⊗ A2 ⊗ · · · ⊗ As if and only if

(1) Ai ⊳ G , 1 ≤ i ≤ s;

(2) G = A1A2 · · ·As;

(3) (A1 · · ·Ai−1Ai+1 · · ·As) ∩ Ai = {1G }, 1 ≤ i ≤ s.

1.4.2 Basis.Let G = 〈a1, a2, · · · , as〉 be an Abelian group with an operation◦. If

ak1
1 ◦ ak2

2 ◦ · · · ◦ aks
s = 1G

for integersk1, k2, · · · , ks implies thataki
i = 1G , i = 1, 2, · · · , s, then sucha1, a2, · · · , as

are called abasisof the Abelian group (G ; ◦), denoted byB(G ) = {a1, a2, · · · , as}. The

following properties on basis of a group are clear by definition.

B1. If G = A ⊗ B andB(A) = {a1, a2, · · · , as}, B(B) = {b1, b2, · · · , bt}, thenB(G ) =

{a1, a2, · · · , as, b1, b2, · · · , bt}.

B2. If B(G ) = {a1, a2, · · · , as} and A = 〈a1, a2, · · · , al〉, B = 〈al+1, al+2, · · · , as〉, where

1 < l < s, thenG = A⊗ B.

An importance of basis is shown in the next result.

Theorem 1.4.3 Any finite Abelian group has a basis.

Proof Let G = 〈a1, a2, · · · , ar〉 be an Abelian group with an operation◦. If r = 1,

thenG is a cyclic group with a basisB(G ) = {a1}.
Assume our conclusion is true for generators less thanr. We prove it is also true for

r generators. Let

ak1
1 ◦ ak2

2 ◦ · · · ◦ akr
r = 1G (1− 1)
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for integersk1, k2, · · · , kr . Definem = min{k1, k2, · · · , kr}. Without loss of generality, we

assumem= k1. If m= 1, we find that

a1 = a−k2
2 ◦ a−k3

3 ◦ · · · ◦ a−kr
r .

Hence,G = 〈a2, a3, · · · , ar〉 and the conclusion is true by the induction assumption.

So we can assume our conclusion is true for the power ofa1 less thanm and find

integersti, si for i = 2, · · · , r such that

ki = tim+ si , 0 ≤ si < m.

Let

a∗1 = a1 ◦ at2
2 ◦ · · · ◦ atr

r . (1− 2)

Substitute (1− 2) into (1− 1), we know that

(a∗1)
m ◦ as2

2 ◦ · · · ◦ asr
r = 1G .

If there is an integeri, 1 ≤ i ≤ r such thatsi , 0, then by the induction assumption,G has

a basis. So we can assume that

s2 = s3 = · · · = sr = 0

and get

(a∗1)
m = 1G .

Notice that

a1 = a∗1 ◦ a−t2
2 ◦ · · · ◦ a−tr

r .

Whence,G =
〈
a∗1, a2, · · · , ar

〉
. Now we prove that

G =
〈
a∗1

〉 ⊗ 〈a2, · · · , ar〉 .

For this objective, we only need to check that

〈
a∗1

〉 ∩ 〈a2, · · · , ar〉 = {1G }.

In fact, leta ∈
〈
a∗1

〉
∩ 〈a2, · · · , ar〉. Then we know that

a = (a∗1)
l = (a1 ◦ at2

2 ◦ · · · ◦ atr
r )l = al2

2 ◦ · · · ◦ alr
r .
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Therefore,

al
1 ◦ at2l−l2

2 ◦ · · · ◦ atr i−lr
r = 1G (1− 3)

By the Euclidean algorithm, we can always find an integerd such that

0 ≤ l − dm< m.

By equalities (1− 1) and (1− 3), we get that

al−dm
1 ◦ at2l−l2−dm

2 ◦ · · · ◦ atr i−lr−dm
r = 1G .

By the induction assumption, we must havel − dm= 0. So

a = (a∗1)
l = (a∗1)

dm = 1G .

Whence, we get that

G =
〈
a∗1

〉 ⊗ 〈a2, · · · , ar〉 .

By the induction assumption again, let〈a2, · · · , ar〉 = 〈b2〉 ⊗ · · · ⊗ 〈br〉. We know that

G =
〈
a∗1

〉 ⊗ 〈b2〉 ⊗ · · · ⊗ 〈br〉 .

This completes the proof. �

Corollary 1.4.1 Any finite Abelian group is a direct product of cyclic groups.

1.4.3 Finite Abelian Group Structure. Theorem 1.4.3 enable us to know that a finite

Abelian group is the direct product of its cyclic subgroups.In fact, the structure of a

finite Abelian group is completely determined by its order. That is the objective of this

subsection.

Definition 1.4.4 Let p be a prime number,(G ; ◦) a group, g∈ G andH ≤ G . Then g

is called a p-element, orH a p-subgroup if o(g) = pk or |H | = pl for some integers

k, l ≥ 0.

Definition 1.4.5 Let (G , ◦) be a group with|G | = pαn, (p, n) = 1. Then each subgroup

H ≤ G with |H | = pα is called a Sylow p-subgroup of(G ; ◦).

Theorem 1.4.4 Let (G ; ◦) be a finite Abelian group with|G | = pα1
1 pα2

2 · · · p
αs
s , where

p1, p2, · · · , ps are prime numbers, different two by two. Then

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈as〉
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with o(ai) = pαi for 1 ≤ i ≤ s.

Proof By Corollary 1.4.1, a finite Abelian group is a direct product of cyclic groups,

i.e.,

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈ar〉 .

If there is an integeri, 1 ≤ i ≤ r such thato(ai) is not a prime power, leto(ai) =

pβ1

i1
pβ2

i2
· · · pβil

il
with pi j ∈ {pi , 1 ≤ i ≤ s}, βi j > 0 for 1 ≤ j ≤ l. We prove thatai can be

uniquely written asai = b1◦b2◦ · · ·◦bl such thato(b j) = p
βi j

i j
, bi ◦b j = b j ◦bi, 1≤ i, j ≤ l.

Now let o(ai) = m1m2 with (m1,m2) = 1. By a result in elementary number theory,

there are integersu1, u2 such thatu1m1 + u2m2 = 1. Whence,au1m1+u2m2
i = au1m1

i ◦ au2m2
i =

au2m2
i ◦ au1m1

i . Choosec1 = au2m2
i andc2 = au1m1

i . Thencm1
1 = 1G andcm2

2 = 1G . Whence,

o(c1)|m1, o(c2)|m2. Becausec1 ◦ c2 = c2 ◦ c1 and (o(c1), o(c2)) = 1, we know thatm1m2 =

o(ai) = o(c1◦c2) = o(c1)o(c2). So there must beo(c1) = m1 ando(c2) = m2. Repeating the

previous process, we finally get elementsb1, b2, · · · , bl ∈ G such thatai = b1 ◦ b2 ◦ · · · ◦ bl

with o(b j) = p
βi j

i j
, bi ◦ b j = b j ◦ bi, 1≤ i, j ≤ l.

Whence, we can assume that the order of each cyclic group in the direct product

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈ar〉 .

is a prime power. Now if the order of
〈
ai1

〉
,
〈
ai2

〉
,· · ·, 〈

aik

〉
are all with a same basepi,

replacingai1 ◦ ai2 ◦ · · · ◦ aik by ai we get a direct product

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈as〉

with o(ai) = pαi
i , 1 ≤ i ≤ l. �

Theorem 1.4.5 Let (G ; ◦) be a finite Abelian p-group. If

G = A1 ⊗ A2 ⊗ · · · ⊗ Ar and G = B1 ⊗ B2 ⊗ · · · ⊗ Bs,

where Ai , B j are cyclic p-groups for1 ≤ i ≤ r, 1 ≤ j ≤ s, then s= r and there is a

bijection̟ : {A1,A2, · · · ,Ar } → {B1, B2, · · · , Br} such that|Ai | = |̟(Ai)|, 1 ≤ i ≤ r.

Proof We prove this result by induction on|G |. If |G | = p, the conclusion is clear.

DefineGp = {a ∈ G |ap = 1G } andG p = {ap|a ∈ G }. Notice that

G = A1 ⊗ A2 ⊗ · · · ⊗ Ar .

If ai ∈ Ai is the generator ofAi, 1 ≤ i ≤ r, thenB(G ) = {a1, a2, · · · , ar}. Let o(ai) = pei .

Without loss of generality, we can assume thate1 ≥ e2 ≥ · · · ≥ er ≥ 1. ThenB(Gp) =
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{ape1−1

1 , ape2−1

2 , · · · , aper−1

r } and |Gp| = pr . If e1 = e2 = · · · = er = 1, thenG p = {1G }.
Otherwise, lete1 ≥ e2 ≥ · · · ≥ em > em+1 = · · · = er = 1. ThenB(G p) = {ap

1, a
p
2, · · · , a

p
m}.

Now let bi ∈ Bi be its a generator for 1≤ i ≤ s. ThenB(G ) = {b1, b2, · · · , bs}. Let

o(bi) = pfi , 1 ≤ i ≤ swith f1 ≥ f2 ≥ · · · ≥ fs. Similarly, we know that|Gp| = ps. Sos= r.

Now if G p = {1G }, there must bef1 = f2 = · · · = fs = 1. Otherwise, ifG p
, {1G }, let

f1 ≥ f2 ≥ · · · ≥ fm′ > fm′+1 = · · · = fs = 1. ThenB(G p) = {bp
1, b

p
2, · · · , b

p
m′}. Notice that

|G p| < |G |, by the induction assumption, we get thatm = m′ andei = fi for 1 ≤ i ≤ r.

Therefore,o(ai) = o(bi) for 1 ≤ i ≤ r. Now define̟ : {A1,A2, · · · ,Ar } → {B1, B2, · · · , Br}
by̟(Ai) = Bi, 1≤ i ≤ r. We get|Ai | = |̟(Ai)| for integers 1≤ i ≤ r. �

Combining Theorems 1.4.4 and 1.4.5, we get the fundamental theorem of finite

Abelian groups following.

Theorem 1.4.6 Any finite Abelian group(G ; ◦) is a direct product

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈as〉

of cyclic p-groups uniquely determined up to their cardinality.

These cardinalities| 〈a1〉 |, | 〈a2〉 |, · · · , | 〈as〉 | in Theorem 1.4.6 are defined to be the

invariantsof Abelian group (G ; ◦), denoted by InvarG . Then we immediately get the

following conclusion by Theorem 1.4.6.

Corollary 1.4.2 LetG ,H be finite Abelian groups. ThenG ≃H if and only ifInvarG =

InvarH .

§1.5 MULTIGROUPS

1.5.1 MultiGroup. Let G̃ be a set with binary operations̃O. A pair (G̃ ; Õ) is analgebraic

multi-systemif for ∀a, b ∈ G̃ and◦ ∈ Õ, a ◦ b ∈ G̃ provideda ◦ b existing.

We consider algebraic multi-systems in this section.

Definition 1.5.1 For an integer n≥ 1, an algebraic multi-system(G̃ ; Õ) is an n-multigroup

if there areG1,G2, · · · ,Gn ⊂ G̃ , Õ = {◦i, 1 ≤ i ≤ n} with

(1) G̃ =
n⋃

i=1
Gi;

(2) (Gi; ◦i) is a group for1 ≤ i ≤ n.
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For∀◦ ∈ Õ, denoted byG◦ the group (G ; ◦) andG max
◦ themaximal group(G ; ◦), i.e.,

(G max
◦ ; ◦) is a group but (G max

◦ ∪ {x}; ◦) is not for∀x ∈ G̃ \ G max
◦ in (G̃ ; Õ).

Definition 1.5.2 Let (G̃1; Õ1) and(G̃2; Õ2) be multigroups. Then(G̃1; Õ1) is isomorphic to

(G̃2; Õ2), denoted by(ϑ, ι) : (G̃1; Õ1) → (G̃2; Õ2) if there are bijectionsϑ : G̃1 → G̃2 and

ι : Õ1→ Õ2 such that for a, b ∈ G̃1 and◦ ∈ Õ1,

ϑ(a ◦ b) = ϑ(a)ι(◦)ϑ(b)

provided a◦b existing in(G̃1; Õ1). Such isomorphic multigroups are denoted by(G̃1; Õ1) ≃
(G̃2; Õ2)

Clearly, if (G̃1; Õ1) is ann-multigroup with (ϑ, ι) an isomorphism, the image of (ϑ, ι)

is also ann-multigroup. Now let (ϑ, ι) : (G̃1; Õ1)→ (G̃2; Õ2) with G̃1 =
n⋃

i=1
G1i , G̃2 =

n⋃
i=1

G2i,

Õ1 = {◦1i, 1 ≤ i ≤ n} andÕ2 = {◦2i, 1 ≤ i ≤ n}, then for◦ ∈ Õ, G max
◦ is isomorphic to

ϑ(G )max
ι(◦) by definition. The following result shows that its converse is also true.

Theorem 1.5.1 Let (G̃1; Õ1) and(G̃2; Õ2) be n-multigroups with

G̃1 =

n⋃

i=1

G1i, G̃2 =

n⋃

i=1

G2i,

Õ1 = {◦i1, 1 ≤ i ≤ n}, Õ2 = {◦i2, 1 ≤ i ≤ n}. If φi : G1i → G2i is an isomorphism for each

integer i, 1 ≤ i ≤ n with φk|G1k∩G1l = φl |G1k∩G1l for integers1 ≤ k, l ≤ n, then(G̃1; Õ1) is

isomorphic to(G̃2; Õ2).

Proof Define mappingsϑ : G̃1→ G̃2 andι : Õ1→ Õ1 by

ϑ(a) = φi(a) if a ∈ Gi ⊂ G̃ andι(◦1i) = ◦2i for each integer 1≤ i ≤ n.

Notice thatφk|G1k∩G1l = φl |G1k∩G1l for integers 1≤ k, l ≤ n. We know thatϑ, ι both are

bijections. Leta, b ∈ G1s for an integers, 1 ≤ s≤ n. Then

ϑ(a ◦1s b) = φs(a ◦1s b) = φs(a) ◦2s φs(b) = ϑ(a)ι(◦1s)ϑ(b).

Whence, (ϑ, ι) : (G̃1; Õ1)→ (G̃1; Õ1). �

1.5.2 Submultigroup. Let (G̃ ; Õ) be a multigroup,H̃ ⊂ G̃ andO ⊂ Õ. If (H̃ ; O) is

multigroup itself, then (H ; O) is called asubmultigroup, denoted by (̃H ; O) ≤ (G̃ ; Õ).

Then the following criterion is obvious for submultigroups.
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Theorem 1.5.2 An multi-subsystem(H̃ ; O) of a multigroup(G̃ ; Õ) is a submultigroup if

and only ifH̃ ∩ G◦ ≤ G max
◦ for ∀◦ ∈ O.

Proof By definition, if (H̃ ; O) is a multigroup, then for∀◦ ∈ O, H̃ ∩G◦ is a group.

Whence,H̃ ∩ G◦ ≤ G max
◦ .

Conversely, ifH̃ ∩ G◦ ≤ G max
◦ for ∀◦ ∈ O, thenH̃ ∩ G◦ is a group. Therefore,

(H̃ ; O) is a multigroup by definition. �

Applying Theorem 1.2.2, we get corollaries following.

Corollary 1.5.1 An multi-subsystem(H̃ ; O) of a multigroup(G̃ ; Õ) is a submultigroup

if and only if a◦ b−1 ∈ H̃ ∩ G max
◦ for ∀◦ ∈ O and a, b ∈ H̃ provided a◦ b existing in

(H̃ ; O).

Particularly, ifO = {◦}, we get a conclusion following.

Corollary 1.5.2 Let ◦ ∈ Õ. Then(H ; ◦) is submultigroup of a multigroup(G̃ ; Õ) for

H ⊂ G̃ if and only if(H ; ◦) is a group, i.e., a◦ b−1 ∈H for a, b ∈H .

A multigroup (G̃ ; Õ) is said to be asymmetric n-multigroupif there areS1,S2,

· · · ,Sn ⊂ G̃ , Õ = {◦i, 1 ≤ i ≤ n} with

(1) G̃ =
n⋃

i=1
Si;

(2) (Si; ◦i) is a symmetric groupSΩi for 1 ≤ i ≤ n. We call then-tuple (|Ω1|, |Ω2|, · · · , |Ωn||)
thedegree of the symmetric n-multigroup(G̃ ; Õ).

Now let multigroup (G̃ ; Õ) be an-multigroup withG1,G2, · · · ,Gn ⊂ G̃ , Õ = {◦i, 1 ≤
i ≤ n}. For any integeri, 1 ≤ i ≤ n. Let G◦i = {ai1 = 1G◦i

, ai2, · · · , ain◦i
}. For ∀aik ∈ G◦i ,

define

σaik =


ai1 ai2 · · · ain

ai1 ◦ aik ai2 ◦ aik · · · ain◦i
◦ aik

 =


a

a ◦ aik

 ,

τaik =


ai1 ai2 · · · ain◦i

a−1
ik ◦ ai1 a−1

ik ◦ ai2 · · · a−1
ik ◦ ain◦i

 =


a

a−1
ik ◦ a



Denote byRGi = {σai1, σai2, · · · , σain◦i
} and LGi = {τai1, τai2, · · · , τain◦i

} and×r
i or ×l

i the

induced multiplication inRGi or LGi . Then we get two sets of permutations

RG̃ =

n⋃

i=1

{σai1, σai2, · · · , σain◦i
} and LG =

n⋃

i=1

{τai1, τai2, · · · , τain◦i
}.
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We sayRG̃ , LG̃ the right or left regular representationof G̃ , respectively. Similar to

Theorem 1.2.15, theCayleytheorem, we get the following representation result for multi-

groups.

Theorem 1.5.3 Every multigroup is isomorphic to a submultigroup of symmetric multi-

group.

Proof Let multigroup (G̃ ; Õ) be an-multigroup with G1,G2, · · · ,Gn ⊂ G̃ , Õ =

{◦i, 1 ≤ i ≤ n}. For any integeri, 1 ≤ i ≤ n. By Theorem 1.2.14, we know that

RGi andLGi both are subgroups of the symmetric groupSGi for any integer 1≤ i ≤ n.

Whence, (RG̃ ; Or) and (LG̃ ; Ol) both are submultigroup of symmetric multigroup by defi-

nition, whereOr = {×r
i |1 ≤ i ≤ n} andOl = {×l

i |1 ≤ i ≤ n}.
We only need to prove that (̃G ; Õ) is isomorphic to (RG̃ ; Or). For this objective,

define a mapping (f , ι) : (G̃ ; Õ)→ (RG̃ ; Or) by

f (aik) = σaik and ι(◦i) = ×r
i

for integers 1≤ i ≤ n. Such a mapping is one-to-one by definition. It is easily to see that

f (ai j ◦i aik) = σai j◦iaik = σai j ×r
i σaik = f (ai j )ι(◦i) f (aik)

for integers 1≤ i, k, l ≤ n. Whence, (f , ι) is an isomorphism from (̃G ; Õ) to (RG̃ ; Or).

Similarly, we can also prove that (̃G ; Õ) ≃ (LG̃ ; Ol). �

1.5.3 Normal Submultigroup. A submultigroup (H̃ ; O) of (G̃ ; Õ) is normal, denoted

by (H̃ ; O) ⊳ (G̃ ; Õ) if for ∀g ∈ G̃ and∀◦ ∈ O

g ◦ H̃ = H̃ ◦ g,

whereg ◦ H̃ = {g ◦ h|h ∈ H̃ providedg ◦ h existing} andH̃ ◦ g is similarly defined.

Then we get a criterion for normal submultigroups of a multigroup following.

Theorem 1.5.4 Let (H̃ ; O) ≤ (G̃ ; Õ). Then(H̃ ; O) ⊳ (G̃ ; Õ) if and only if

H̃ ∩ G max
◦ ⊳ G max

◦

for ∀◦ ∈ O.

Proof If H̃ ∩ G max
◦ ⊳ G max

◦ for ∀◦ ∈ O, theng ◦ H̃ = H̃ ◦ g for ∀g ∈ G max
◦ by

definition, i.e., all suchg ∈ G̃ andh ∈ H̃ with g◦h andh◦g defined. So (̃H ; O)⊳(G̃ ; Õ).
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Now if (H̃ ; O) ⊳ (G̃ ; Õ), it is clear thatH̃ ∩ G max
◦ ⊳ G max

◦ for ∀◦ ∈ O. �

For a normal submultigroup (̃H ; O) of (G̃ ; Õ), we know that

(a ◦ H̃ )
⋂

(b · H̃ ) = ∅ or a ◦ H̃ = b · H̃ .

In fact, if c ∈ (a ◦ H̃ )
⋂

(b · H̃ ), then there existsh1, h2 ∈ H̃ such that

a ◦ h1 = c = b · h2.

Soa−1 andb−1 exist inG max
◦ andG max

· , respectively. Thus,

b−1 · a ◦ h1 = b−1 · b · h2 = h2.

Whence,

b−1 · a = h2 ◦ h−1
1 ∈ H̃ .

We find that

a ◦ H̃ = b · (h2 ◦ h1) ◦ H̃ = b · H̃ .

This fact enables one to find a partition of̃G following

G̃ =
⋃

g∈G̃ ,◦∈Õ

g ◦ H̃ .

Choose an elementh from eachg ◦ H̃ and denoted byH all such elements, called the

representationof a partition ofG̃ , i.e.,

G̃ =
⋃

h∈H,◦∈Õ

h ◦ H̃ .

Define thequotient setof G̃ by H̃ to be

G̃ /H̃ = {h ◦ H̃ |h ∈ H, ◦ ∈ O}.

Notice thatH̃ is normal. We find that

(a ◦ H̃ ) · (b • H̃ ) = H̃ ◦ a · b • H̃ = (a · b) ◦ H̃ • H̃ = (a · b) ◦ H̃

in G̃ /H̃ for ◦, •, · ∈ Õ, i.e., (G̃ /H̃ ; O) is an algebraic system. It is easily to check that

(G̃ /H̃ ; O) is a multigroup by definition, called thequotient multigroupof G̃ by H̃ .
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Now let (G̃1; Õ1) and (G̃2; Õ2) be multigroups. A mapping pair (φ, ι) with φ : G̃1→ G̃2

andι : Õ1→ Õ2 is ahomomorphismif

φ(a ◦ b) = φ(a)ι(◦)φ(b)

for ∀a, b ∈ G and◦ ∈ Õ1 provideda ◦ b existing in (G̃1; Õ1). Define theimageIm(φ, ι)

andkernelKer(φ, ι) respectively by

Im(φ, ι) = { φ(g) | g ∈ G̃1 },

Ker(φ, ι) = { g | φ(g) = 1G◦ , g ∈ G̃1 , ◦ ∈ Õ2}.

Then we get the following isomorphism theorem for multigroups.

Theorem 1.5.5 Let (φ, ι) : (G̃1; Õ1)→ (G̃2; Õ2) be a homomorphism. Then

G̃1/Ker(φ, ι) ≃ Im(φ, ι).

Proof Notice that Ker(φ, ι) is a normal submultigroup of (̃G1; Õ1). We prove that the

induced mapping (σ,ω) determined by (σ,ω) : x ◦ Ker(φ, ι) → φ(x) is an isomorphism

from G̃1/Ker(φ, ι) to Im(φ, ι).

Now if (σ,ω)(x1) = (σ,ω)(x2), then we get that (σ,ω)(x1◦x−1
2 ) = 1G◦ providedx1◦x−1

2

existing in (G̃1; Õ1), i.e., x1 ◦ x−1 ∈ Ker(φ, ι). Thusx1 ◦ Ker(φ, ι) = x2 ◦ Ker(φ, ι), i.e., the

mapping (σ,ω) is one-to-one. Whence it is a bijection from̃G1/Ker(φ, ι) to Im(φ, ι).

For∀a ◦ Ker(φ, ι), b ◦ Ker(φ, ι) ∈ G̃1/Ker(φ, ι) and· ∈ Õ1, we get that

(σ,ω)[a ◦ Ker(φ, ι) · b • Ker(φ, ι)]

= (σ,ω)[(a · b) ◦ Ker(φ, ι)] = φ(a · b)

= φ(a)ι(·)φ(b) = (σ,ω)[a ◦ Ker(φ, ι)]ι(·)(σ,ω)[b • Ker(φ, ι)].

Whence, (σ,ω) is an isomorphism from̃G1/Ker(φ, ι) to Im(φ, ι). �

Particularly, let (̃G2; Õ2) be a group in Theorem 1.5.4, we get a generalization of the

fundamental homomorphism theorem, i.e., Corollary 1.3.1 following.

Corollary 1.5.3 Let (G̃ ; Õ) be a multigroup and(ω, ι) : (G̃ ; Õ)→ (A ; ◦) an epimorphism

from (G̃ ; Õ) to a group(A ; ◦). Then

G̃ /Ker(ω, ι) � (A ; ◦).
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1.5.4 Abelian Multigroup. For an integern ≥ 1, ann-multigroup (G̃ ; Õ) is Abelianif

there areA1,A2, · · · ,An ⊂ G̃ , Õ = {◦i, 1 ≤ i ≤ n} with

(1) G̃ =
n⋃

i=1
Ai;

(2) (Ai; ◦i) is Abelian for integers 1≤ i ≤ n.

For∀◦ ∈ Õ, a commutative set ofG max
◦ is defined by

C(G◦) = {a, b ∈ G max
◦ |a ◦ b = b ◦ a}.

Such a set is calledmaximalif C(G◦)∪ {x} for x ∈ G max
◦ \C(G◦) is not commutative again.

Denoted byZmax(G◦) the maximal commutative set ofG max
◦ . Then it is clear thatZmax(G◦)

is an Abelian subgroup ofG max
◦ .

Theorem 1.5.6 An n-multigroup(G̃ ; Õ) is Abelian if and only if there are Zmax(G◦) for

∀◦ ∈ Õ such that

G̃ =
⋃

◦∈Õ

Zmax(G◦).

Proof If G̃ =
⋃
◦∈Õ

Zmax(G◦), it is clear that (̃G ; Õ) is Abelian sinceZmax(G◦) is an

Abelian subgroup ofG max
◦ . Now if (G̃ ; Õ) is Abelian, then there areA1,A2, · · · ,An ⊂ G̃ ,

Õ = {◦i, 1 ≤ i ≤ n} such that

G̃ =
n⋃

i=1

Ai

and (Ai; ◦i) is an Abelian group for 1≤ i ≤ n. Whence, there exists a maximal commuta-

tive setZmax(G◦i ) ⊂ G max
◦ such thatAi ⊂ Zmax(G◦i ). Consequently, we get that

G̃ =
n⋃

i=1

Zmax(G◦i ).

This completes the proof. �

Combining Theorems 1.5.6 with 1.4.6, we get the structure of finite Abelian multi-

group following.

Theorem 1.5.7 A finite multigroup(G̃ ; Õ) is Abelian if and only if there are generators

a◦i , 1 ≤ i ≤ s◦ for ∀◦ ∈ Õ such that

G̃ =
⋃

◦∈Õ

〈
a◦1

〉 ⊗ 〈
a◦2

〉 ⊗ · · · ⊗
〈
a◦s◦

〉
.



Sec.1.5 Multi-Groups 37

1.5.5 Bigroup. A bigroup is nothing but a 2-multigroup. There are many examples of

bigroups in algebra. For example, these natural number field(Q;+, ·), real number num-

ber field (R;+, ·) and complex number field (C;+, ·) are all Abelian bigroups. Generally,

a field (F;+, ·) is an algebraic systemF with two operations+, · such that

(1) (F;+) is an Abeilan group with identity 0;

(2) (F \ {0}; ·) is an Abelian group;

(3) a · (b+ c) = a · b+ a · c for ∀a, b, c ∈ F.

Thus a field is an Abelian 2-group with an additional condition (3) called thedis-

tributive lawfollowing.

Definition 1.5.3 A bigroup(C ;+, ·) is distributive if

a · (b+ c) = a · b+ a · c

hold for all a, b, c ∈ B.

Theorem1.5.8 Let (C ;+, ·) be a distributive bigroup of order≥ 2 with C = A1∪A2 such

that (A1;+) and(A2, ·) are groups. Then there must be A1 , A2.

Proof Denoted by 0+, 1· the identities in groups (A1;+), (A2, ·), respectively. If

A1 = A2 = C , we get 1+, 1· ∈ A1 andA2. Because (A2, ·) is a group, there exists an inverse

element 0−1
+ in A2 such that 0−1

+ · 0+ = 1·. By the distributive laws, we know that

a · 0+ = a · (0+ + 0+) = a · 0+ + a · 0+

hold for∀a ∈ C . Whence,a · 0+ = 0+. Particularly, leta = 0−1
+ , we get that 0−1

+ · 0+ = 0+,

which means that 0+ = 1·. But if so, we must get that

a = a ◦ 1◦ = a ◦ 0+ = 0+,

contradicts to the assumption|C | ≥ 2. �

Theorem 1.5.8 implies the following conclusions.

Corollary 1.5.3 Let (G ; ◦) be a non-trivial group. Then there are no operations· , ◦ on

G such that(G ; ◦, ·) is a distributive bigroup.

Corollary 1.5.4 Any bigroup(C ; ◦, ·) of order≥ 2 with groups(C ; ◦) and (C , ·) is not

distributive.
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Corollary 1.5.4 enables one to classify bigroups into the following categories:

Class 1. ({1C };+, ·), i.e., which is a union of two trivial groups({1C };+) and({1C }; ·).

Class 2. Non-distributive bigroups of order≥ 2.

This kind of bigroup is easily found. Let (G1; ◦) and (G2; ·) be two groups without

the definitiona ◦ b · c anda · b◦ for a, b, c ∈ C , whereC = G1 ∪ G2. Then (C ; ◦, ·) is a

non-distributive bigroup with order≥ 2.

Class 3. Distributive bigroups of order≥ 2.

In fact, any field is such a distributive Abelian bigroup. Certainly, we can find a more

general result for the existence of finite distributive bigroups.

Theorem 1.5.9 There are finite distributive Abelian bigroups(C ;+, ·) of order≥ 2 with

groups(A1;+) and(A2, ·) such thatC = A1∪A2 for |A1−A2| = |C | −m, where(m+1)||C |.

Proof In fact, let (F ;+, ·) be a field. Then (F ;+) and (F \ {0+}; ·) both are Abelian

group. Applying Theorem 1.4.6, we know that there are subgroups (A′2; ·) of (F \ {0+}; ·)
with orderm, where (m+1)||C |. Obviously,C = A1∪A′2. So (F ;+, ·) is also a distributive

Abelian bigroup with groups (A1;+) and (A′2, ·) such thatC = A1 ∪ A2 and |A1 − A2| =
|C | −m. �

A group (H ; ◦) (or (H ; ·)) is maximumin a bigroup (G ; ◦, ·) if there are no groups

(T ; ◦) (or (T ; ·)) in (G ; ◦, ·) such that|H | < |T |. Combining Theorem 1.5.9 with Corol-

laries 1.5.3 and 1.5.4, we get the following result on fields.

Theorem1.5.10 A field(F ;+, ·) is a distributive Abelian bigroup with maximum groups

(F ;+) and(F \ {0+}; ·).

1.5.6 Constructing Multigroup. There are many ways to get multigroups. For example,

let G be a set. Definen binary operations◦1, ◦2, · · · , ◦n such that (G ; ◦i) is a group for any

integeri, 1 ≤ i ≤ n. Then (G ; {◦i, 1 ≤ i ≤ n}) is a multigroup by definition. In fact, the

structure of a multigroup is dependent on its combinatorialstructure, i.e., its underlying

graph, which will be discussed in Chapter 3. In this subsection, we construct multigroups

only by one group or one field.

Construction 1.5.1 Let (G ; ◦) be a group andSG the symmetric group onG . For∀a, b ∈
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G and

ω =


a

aω

 ∈ SG ,

define a binary operation◦ω onG ω = G by

a ◦ω b = (aω
−1 ◦ bω

−1
)ω

for ∀a, b ∈ G , Clearly, (G ω; ◦ω) is a group andω : (G ; ◦) → (G ω; ◦ω) is an isomorphism.

Now for an integern ≥ 1, choosen permutationsω1, ω2, · · · , ωn. Then we get a multi-

group (G ; {◦ωi |1 ≤ i ≤ n}), where groups (G ; ◦ωi) is isomorphic to (G ; ◦ω j) for integers

1 ≤ i, j ≤ n. Therefore, we get the following result of multigroups.

Theorem 1.5.11 There is a multigroupP such that each of its group is isomorphic to

others inP.

Construction 2.5.2 Let (F ;+, ·) be a field andSF the symmetric group acting onF .

For∀c, d ∈ G andω ∈ SF , define a binary operation◦ω onF ω = F by

a+ω b = (aω
−1
+ bω

−1
)ω

and

a ·ω b = (aω
−1 · bω−1

)ω

for ∀a, b ∈ G . Choosen permutationsς1, ς2, · · · , ςn ∈ SF . Then we get a multigroup

F̃ = (F ; {+ςi , 1 ≤ i ≤ n}, {·ςi , 1 ≤ i ≤ n}),

which enables us immediately to get a result following.

Theorem 1.5.12 There is a multigroup(F ; {+i , 1 ≤ i ≤ n}, {·i ; 1 ≤ i ≤ n}) such that

for any integer i,(F ;+i, ·i) is a field and it is isomorphic to(F ;+ j, · j) for any integer

j, 1 ≤ i, j ≤ n.

§1.6 REMARKS

1.6.1 There are many standard books on abstract groups, such as those of [BiM1], [Rob1],

[Wan1], [Xum1] and [Zha1] for examples. In fact, the materials in Sections 1.1-1.4 are
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mainly extracted from references [BiM1] and [Wan1] as an elementary introduction to

groups.

1.6.2 For an integern ≥ 1, aSmarandache multi-spaceis a union of spacesA1,A2, · · · ,An

different two by two. LetAi , 1 ≤ i ≤ n be mathematical structures appeared in sciences,

such as those of groups, rings, fields, metric spaces or physical fields, we therefore get

multigroups, multrings, multfields, multmetric spaces or physical multi-fields. The mate-

rial of Section 1.5 is on multigroups with new results. More results on multi-spaces can be

found in references [Mao4]-[Mao10], [Mao20], [Mao24]-[Mao25] and [Sma1]-[Sma2].

1.6.3 The conceptions of bigroup and sub-bigroup were first appeared in [Mag1] and

[MaK1]. Certainly, they are special cases of multigroup andsubmultigroup, i.e., special

cases of Smarandache multi-spaces. More results on bigroups can be found in [Kan1].

In fact, Theorems 1.5.2-1.5.5 are the generalization of results on bigroups appeared in

[Kan1].

1.6.4 The applications of groups to other sciences are mainly by surveying symmetries of

objects, i.e., the action groups. For this objective, an elementary introduction has been ap-

peared in Subsection 1.2.6, i.e., regular representation of group. In fact, those approaches

can be only surveying global symmetries of objects. For locally surveying symmetries,

we are neededlocally action groups, which will be introduced in the following chapter.



CHAPTER 2.

Action Groups

Action groups, i.e., group actions on objects are the oldestform, also the

origin of groups. The action idea enables one to measure similarity of ob-

jects, classify algebraic systems, geometrical objects bygroups, which is the

fountain of applying groups to other sciences. Besides, it also allows one to

find symmetrical configurations, satisfying the aesthetic feeling of human be-

ings. Topics covered in this chapter including permutationgroups, transitive

groups, multiply transitive groups, primitive and non-primitive groups, auto-

morphism groups of groups andp-groups. Generally, we globally measure

the symmetry of an object by group action. If allowed the action locally, then

we need the conception of locally action group, i.e., actionmulti-group, a

generalization of group actions to multi-groups discussedin this chapter.
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§2.1 PERMUTATION GROUPS

2.1.1 Group Action. Let (G ; ◦) be a group andΩ = {a1, a2, · · · , an}. By aright actionof

G onΩ is meant a mappingρ : Ω × G → Ω such that

(x, g1 ◦ g2)ρ = ((x, g1)ρ, g2)ρ and (x, 1G )ρ = x.

It is more convenient to writexg instead of (x, g)ρ. Then the defining equations become

xg1g2 = (xg1)g2 and x1G = x, x ∈ Ω, g1, g2 ∈ G .

For a fixedg ∈ G , the inverse mapping ofx→ xg is x→ xg−1
. Whence.x→ xg is a

permutation ofΩ. Denote this permutation bygγ. Then (g1 ◦ g2)γ mapsx to xg1g2, as does

gγ1g
γ

2. We find that (g1 ◦ g2)γ = gγ1gγ2. Therefore, the group action determines a homomor-

phismγ : G → SΩ. Such a homomorphismγ is called apermutation representationof G

onΩ.

Two permutation representations of a groupγ : G → SX andδ : G → SX of a group

G on X andY are said to beequivalentif there exists a bijectionθ : X→ Y such that

θgδ = gγθ, i.e., xθg
δ

= xgγθ

for all x ∈ X andg ∈ G . Particularly, ifX = Y, then there are someθ ∈ SX such that

gδ = θ−1gγθ. Certainly, we do not distinguish equivalent representations of permutation

groups in the view of action.

Let γ : G → SΩ be a permutation representation ofG on Ω. The cardinality of

Ω is called thedegreeof this representation. A permutation representation isfaithful if

Kerγ = {1G }. So the subgroupsP of SΩ are particularly important, calledpermutation

groups. Fora ∈ Ω andτ ∈P, we usually denote the image ofa underτ by aτ,

τ =


a1 a2 · · · an

aτ1 aτ2 · · · aτn

 =


a

aτ

 .

As a special case of equivalent representations of groups, let P1 andP2 be two

permutation groups action onΩ1, Ω2, respectively. Asimilarity from P1 to P2 is a pair

(γ, θ) consisting of an isomorphismγ : P1→P2 and a bijectionθ : Ω1→ Ω2 which are

related by

πθ = θπγ, i.e., aπθ = aθπ
γ



Sec.2.1 Permutation Groups 43

for all a ∈ Ω1 andπ ∈ P1. Particularly, ifΩ1 = Ω2, this equality means thatπγ = θ−1πθ

for ∀π, θ ∈ for ∀π ∈P1.

2.1.2 Stabilizer. ThestabilizerPa andorbit aP of an elementa in P are respectively

defined as follows:

Pa = { σ | aσ = a, σ ∈P } and aP = { b | aσ = b, σ ∈P }.

Then we know the following result.

Theorem2.1.1 LetP be a permutation group acting onΩ, x, y ∈P and a, b ∈ Ω. Then

(1) aP ∩ bP = ∅ or aP = bP , i.e., all orbits forms a partition ofΩ;

(2) Pa is a subgroup ofP and if b= ax, thenPb = x−1Pax. Moreover, if ax = by,

then xPa = yPa;

(3) |aP | = |P : Pa|, particularly, if P is finite, then|P | = |Pa||aP | for ∀a ∈ Ω.

Proof If c ∈ aP , then there isz ∈P such thatc = az. Whence,

cP = {cx|x ∈P} = {azx|x ∈P} = aP .

SoaP ∩ bP = ∅ or aP = bP . Notice that an elementa ∈P lies in at least one obitaP ,

we know that all obits forms a partition of the setΩ. This proves (1).

For (2), it is clear that 1P ∈Pa and forx, y ∈Pa, xy−1 ∈Pa. SoPa is a subgroup

of P by Theorem 1.2.2. Now if b = ax, then we know that

y ∈Pb⇔ axy = ax⇔ xyx−1 ∈Pa,

i.e.,y ∈ x−1Pax, Whence,x−1Px =Pb. Finally,

ax = ay⇔ axy−1
= a⇔ xy−1 ∈Pa⇔ xPa = yPa.

So (2) is proved.

Applying the conclusion (2), we know that there is a bijection between the distinct

elements inaP and right cosets ofPa in P. Therefore|aP | = |P : Pa|. Particularly, if

P is finite, then|aP | = |P : Pa| = |P |/|Pa|. So we get that|P | = |Pa||aP |. �

Now let∆ ⊂ Ω. We define thepointwise stabilizerandsetwise stabilizerrespectively

by

P(∆) = { σ | aσ = a, a ∈ ∆ andσ ∈P }
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and

P{∆} = { σ | ∆σ = ∆, σ ∈P }.

It is clear thatP(∆) andP{∆} are subgroups ofP. By definition, we know that

P(∆) =
⋂

a∈∆
Pa,

and

P(∆1∪∆2) =P(∆1)

⋂
P(∆1) = (P(∆1))(∆2).

Applying Theorem 2.1.1, for a, b ∈ Ω we also know that

|P : Pa,b| = |aP ||bPa| = |bP ||aPb|.

Clearly,P(∆) ≤P{∆}. Furthermore, we have the following result.

Theorem 2.1.2 P(∆) ⊳ P{∆}.

Proof Let g ∈P(∆) andh ∈P{∆}. We prove thath−1gh∈P(∆). In fact, leta ∈ ∆, we

know thatah−1 ∈ ∆. Therefore,

ah−1gh = [(ah−1
)g]h = [ah−1

]h = a.

Whence,h−1gh ∈P(∆). �

2.1.3 Burnside Lemma. For counting the number of orbital setsOrb(Ω) of Ω under the

action ofP, the following result, usually calledBurnside Lemmais useful.

Theorem 2.1.3(Cauchy-Frobenius Lemma)LetP be a permutation group action onΩ.

Then

|Orb(Ω)| = 1
|P |

∑

x∈P
| f ix(x)|,

wherefix(x) = {a ∈ Ω|ax = a}.

Proof Define a setA = {(a, x) ∈ Ω×P |ax = a}. We count the number of elements of

A in two ways. Assuming the orbits ofΩ under the action ofP areΩ1,Ω2, · · · ,Ω|Orb(Ω)|.

Applying Theorem 2.1.1(3), we get that

|A | =
|Orb(Ω)|∑

i=1

∑

a∈Ωi

Pa

=

|Orb(Ω)|∑

i=1

∑

a∈Ωi

|P |
|Ωi |
=

|Orb(Ω)|∑

i=1

|P | = |Orb(Ω)||P |.
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By definition,|A | = ∑
x∈P
|fix(x)|. Therefore,

|Orb(Ω)| = 1
|P |

∑

x∈P
|fix(x)|.

This completes the proof. �

Notice that|fix(x)| remains constant on each conjugacy class ofP, we get the fol-

lowing conclusion by Theorem 2.1.3.

Corollary 2.1.1 Let P be a permutation group action onΩ with conjugacy classes

C1,C2, · · · ,Ck. Then

|Orb(Ω)| = 1
|P |

k∑

i=1

|Ci ||fix(xi)|,

where xi ∈ Ci.

Example 2.1.1 LetP = {σ1, σ2, σ3, σ4, σ5, σ6σ7, σ8} be a permutation group action on

Ω = {1, 2, 3, 4, 5, 6, 7, 8}, where

σ1 = 1P , σ2 = (1, 4, 3, 2)(5, 8, 7, 6),

σ3 = (1, 3)(2, 4)(5, 7)(6, 8), σ4 = (1, 2, 3, 4)(5, 6, 7, 8),

σ5 = (1, 7, 3, 5)(2, 6, 4, 8), σ6 = (1, 8, 3, 6)(2, 7, 4, 5),

σ7 = (1, 5, 3, 7)(2, 8, 4, 6), σ8 = (1, 6, 3, 8)(2, 5, 4, 7).

Calculation shows that

fix(1) = fix(2) = fix(3) = fix(4) = fix(5) = fix(6) = fix(7) = fix(8) = {1P},

Applying Theorem 2.1.3, the number of obits ofΩ under the action ofP is

|Orb(Ω)| = 1
|P |

∑

x∈P
|fix(x)| = 1

8
×

8∑

i=1

1 = 1.

In fact, for∀i ∈ Ω, the orbit ofi under the action ofP is

iP = {1, 2, 3, 4, 5, 6, 7, 8}.

§2.2 TRANSITIVE GROUPS

2.2.1 Transitive Group. A permutation groupP action onΩ is transitiveif for x, y ∈ Ω,

there exists a permutationπ ∈P such thatxπ = y. Whence, a transitive groupP only has
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one obit, i.e.,Ω under the action ofP. A permutation groupP which is not transitive is

calledintransitive. According to Theorem 2.1.1, we get the following result for transitive

groups.

Theorem 2.2.1 Let P be a transitive group acting onΩ, a ∈ Ω. Then|P | = |Ω||Pa|,
i.e., |P : Pa| = |Ω|.

A permutation groupP action onΩ is said to besemi-regularif Pa = {1P} for

∀a ∈ Ω. Furthermore, ifP is transitive, Such a semi-regular group is calledregular.

Corollary 2.2.1 LetP be a regular group action onΩ. Then|P | = |Ω|.

Particularly, we know the following result for Abelian transitive groups.

Theorem 2.2.2 Let P be a transitive group action onΩ. If it is Abelian group, it must

be regular.

Proof Let a ∈ Ω andπ ∈P. Then (Pa)π =Paπ by Theorem 2.1.1(2). ButPa ⊳P

becauseP is Abelian. We know thatPa = Paπ for ∀π ∈ P. By assumption,P is

transitive. It follows that ifaπ = a, thenbπ = b for ∀b ∈ Ω. ThusPa = {1P}. �

2.2.2 Multiply Transitive Group. Let P be a permutation group acting onΩ =

{a1, a2, · · · , an} and

Ωk = {(a1, a2, · · · , ak)|ai ∈ Ω, 1 ≤ i ≤ k}.

DefineP act onΩk by

(a1, a2, · · · , ak)
π = (aπ1, a

π
2, · · · , aπk), π ∈P .

If P acts transitive onΩk, thenP is said to bek-transitiveonΩ. The following result is

a criterion on multiply transitive groups.

Theorem 2.2.3 For an integer k> 1, a transitive permutation groupP acting onΩ is

k-transitive if and only if for a fixed element a∈ Ω, Pa is (k− 1)-transitive onΩ \ {a}.

Proof Assume thatP is k-transitive acting onΩ and

(a1, a2, · · · , ak−1), (b1, b2, · · · , bk−1) ∈ Ω \ {a}.

Thenai , a , bi for 1 ≤ i ≤ k − 1. Notice thatP is k-transitive. There is a permutation

π such that

(a1, a2, · · · , ak−1, a)π = (b1, b2, · · · , bk−1, a).
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Thusπ fixesa and maps (a1, a2, · · · , ak−1) to (b1, b2, · · · , bk−1), which shows thatPa acts

(k− 1)-transitively onΩ \ {a}.
Conversely, letPa is (k−1)-transitive onΩ\{a}, (a1, a2, · · · , ak), (b1, b2, · · · , bk) ∈ Ωk.

By the transitivity ofP acting onΩ, there exist elementsπ, π′ ∈P such thataπ1 = a and

bπ
′

1 = a. BecausePa is (k− 1)-transitive onΩ \ {a}, there is an elementσ ∈Pa such that

((aπ2)
σ, · · · , (aπk)σ) = (bπ

′−1

2 , · · · , bπ′−1

k ).

Whence,aπσi = bπ
′−1

i , i.e.,aπσπ
′

i = bi for 2 ≤ i ≤ k. Sinceσ ∈ Pa, we know thataπσπ
′

1 =

aσπ
′
= aπ

′
= b1. Therefore, the elementπσπ′ maps (a1, a2, · · · , ak) to (b1, b2, · · · , bk). �

A simple calculation shows that

|Ωk| = n(n− 1) · · · (n− k+ 1).

Applying Theorems 2.2.1 and 2.2.3, we get the next conclusion.

Theorem 2.2.4 LetP be k-transitive onΩ. Then

n(n− 1) · · · (n− k+ 1)||P |.

2.2.3 Sharplyk-Transitive Group. A transitive groupP onΩ is said to besharply

k-transitiveif P acts regularly onΩk, i.e., for twok-tuples inΩk, there is a unique permu-

tation inP mapping onek-tuple to another. The following is an immediately conclusion

by Theorem 2.1.1.

Theorem 2.2.5 A k-transitive groupP acting onΩ with |Ω| = n is sharply k-transitive

if and only if |P | = n(n− 1) · · · (n− k+ 1).

These symmetric and alternating groups are examples of multiply transitive groups

shown in the following.

Theorem 2.2.6 Let n≥ 1 be an integer andΩ = {1, 2, · · · , n}. Then

(1) SΩ is sharply n-transitive;

(2) If n ≥ 3, the alternating group AΩ is sharply(n− 2)-transitive group of degree n.

Proof For the claim (1), it is obvious by definition. We prove the claim (2). First, it

is easy to find thatAΩ is transitive. Notice that ifΩ = {1, 2, 3}, AΩ is generated by (1, 2, 3).

It is regular and therefore sharply 1-transitive. Whence, the claim is true forn = 3. Now
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assume this claim is true for all integers< n. Let n ≥ 4 and defineH to be the stabilizer

of n. ThenH acts on the setΩ \ {n}, produce all even permutations. By induction,H is

(n−3)-transitive group onΩ \ {n}. Applying Theorem 2.2.3, AΩ is (n−2)-transitive. Thus

|AΩ| = 1
2(n!) = n(n− 1) · · ·3. By Theorem 2.2.5, it is sharply (n− 2)-transitive. �

More sharply multiply transitive groups are shown following. The reader is referred

to references [DiM1] and [Rob1] for their proofs.

Sharply 2, 3-transitive group. Let F be aGalois field GF(q) with q = pm for a prime

numberp. DefineX = F ∪ {∞} and think it as the projective line consisting ofq+ 1 lines.

Let L(q) be the set of all functionsf : X→ X of the form

f (x) =
ax+ b
cx+ d

for a, b, c, d ∈ F with ad − bc , 0, where the symbol∞ is subject to rulersx + ∞ =
∞, ∞/∞ = 1, etc. Then it is easily to verify thatL(q) is a group under the functional

composition. DefineH(q) to be the stabilizer of∞ in L(q), which is consisting of all

functionsx→ ax+ b, a , 0. ThenH(q) is sharply 2-transitive onGF(q) of degreeq and

L(q) is sharply 3-transitive onF ∪ {∞} of degreeq+ 1.

Particularly, ifc = d = 0, i.e., for a linear transformationa and a vectorv ∈ Fd, we

define theaffine transformation

ta,v : Fd → Fd by ta,v : u→ ua+ v.

Then the set of allta,v form theaffine group AGLd(q) of dimensionald ≥ 1.

Sharply 4, 5-transitive group LetΩ = {1, 2, 3, · · · , 11, 12} and

ϕ = (4, 5, 6)(7, 8, 9)(10, 11, 12), χ = (4, 7, 10)(5, 8, 11)(6, 9, 12),

ψ = (5, 7, 6, 10)(8, 9, 12, 11), ω = (5, 8, 6, 12)(7, 11, 10, 9),

π1 = (1, 4)(7, 8)(9, 11)(10, 12), π2 = (1, 2)(7, 10)(8, 11)(9, 12);

π3 = (2, 3)(7, 12)(8, 10)(9, 11).

DefineM11 = 〈ϕ, χ, ψ, ω, π1, π2, π3〉 andM12 = 〈ϕ, χ, ψ, ω, π1, π2〉, called Mathieu groups.

Then M11 is sharply 5-transitive of degree 12 with order 95040, andM12 is sharply 4-

transitive of degree 11 onΩ \ {3} with order 7920.
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Theorem 2.2.7(Jordan) For an integer k≥ 4, let P be a sharply k-transitive group of

degree n which is neither symmetric nor alternating groups.Then either k= 4 and n= 11,

or k = 5 and n= 12.

Combining Examples 2.2.1, 2.2.2 with Theorem 2.2.7, we know that there are sharply

k-transitive group of finite degree if and only if 1≤ k ≤ 5.

§2.3 AUTOMORPHISMS OF GROUPS

2.3.1 Automorphism Group. An automorphismof a group (G ; ◦) is an isomorphism

from G to G . All automorphisms of a group form a group under the functional compo-

sition, i.e.,θς(x) = θ(ς(x)) for x ∈ G . Denoted by AutG , which is a permutation group

action onG itself. We discuss this kind of permutation groups in this section.

Example2.3.1 LetG = {e, a, b, c} be an Abelian 4-group with operation· determined by

the following table.

· e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Table 2.3.1

We determine the automorphism group AutG . Notice thate is the identity element of

G . By property (H1) of homomorphism, ifθ is an automorphism onG , thenθ(e) = e.

Whence, there are six cases for possibleθ following:

θ1 =


e a b c

e a b c

 , θ2 =


e a b c

e a c b

 ,

θ3 =


e a b c

e b a c

 , θ4 =


e a b c

e b c a

 ,
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θ5 =


e a b c

e c a b

 , θ6 =


e a b c

e c b a

 .

It is easily to check that all theseθi , 1 ≤ i ≤ 6 are automorphisms of (G ; ·). We get the

automorphism group

AutG = {θ1, θ2, θ3, θ4, θ5, θ6}.

Let x, g ∈ G . An elementxg = g−1 ◦ x ◦ g is called theconjugateof x by g. Define a

mappinggτ : G → G bygτ(x) = xg. Then (x◦y)g = xg◦yg andgτ(g−1)τ = 1AutG = (g−1)τgτ.

So gτ ∈ AutG , i.e., an automorphism on (G ; ◦). Such an automorphismgτ is called

the inner automorphismof (G ; ◦) induced byg. It is easily to check that all such inner

automorphisms form a subgroup of AutG , denoted by InnG .

Theorem 2.3.1 Let (G ; ◦) be a group. Then the mappingτ : G → AutG defined by

τ(x) = gτ(x) = xg for ∀x ∈ G is a homomorphism with imageInnG and kernel the set of

elements commutating with every element ofG .

Proof By definition, we know thatx(g◦h)τ = (g◦h)−1◦x◦(g◦h) = h−1◦g−1◦x◦g◦h =
(xgτ)hτ . So (g ◦ h)τ = gτhτ, which means thatτ is a homomorphism.

Notice thatgτ = 1AutG is equivalent tog−1◦x◦g = x by definition. Namely,g◦x = x◦g
for ∀x ∈ G . This completes the proof. �

Definition 2.3.1 The center Z(G ) of a group(G ; ◦) is defined by

Z(G ) = {x ∈ G |x ◦ g = g ◦ x f or all g ∈ G }.

Then Theorem 2.3.1 can be restated as follows.

Theorem 2.3.2 Let (G ; ◦) be a group. Then Z(G ) ⊳ G andG /Z(G ) ≃ InnG .

The properties of inner automorphism group InnG induced it to be a normal sub-

group of AutG following.

Theorem 2.3.3 Let (G ; ◦) be a group. ThenInnG ⊳ AutG .

Proof Let g ∈ G andh ∈ AutG . Then for∀x ∈ G ,

hgτh−1(x) = hgτ(h−1(x)) = h(g−1 ◦ h−1(x) ◦ g)

= h−1(g) ◦ x ◦ h(g) = xh(g) ∈ InnG .
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Whence, InnG ⊳ AutG . �

Definition 2.3.2 The quotient groupAutG /InnG is usually called the outer automor-

phism group of a group(G ; ◦).

Similarly, we can also consider the conjugating relation between subgroups of a

group.

Definition 2.3.3 Let (G ; ·) be a group,H,H ⊳ G . ThenH1 is conjugated toH2 if there

is x ∈ G such that

x−1 ·H · x =H2.

Definition 2.3.4 Let (G ; ◦) be a group,H ⊳ G . The normalizer NG (H ) of H in (G ; ◦)
is defined by

NG (H ) = { x ∈ G | x−1 ◦H ◦ x =H }.

Theorem 2.3.4 The set of conjugates ofH in G has cardinality|G : NG (H )|.

Proof Notice that|G : NG (H )| is the number of left cosets ofNG (H ) in G . Now if

a−1 ◦H ◦ a = b−1 ◦H ◦ b, then

b ◦ a−1 ◦H ◦ a ◦ b−1 =H .

That is,

(a ◦ b)−1 ◦H ◦ (a ◦ b) =H .

By definition,a ◦ b ∈ NG (H ). This completes the proof. �

Definition 2.3.5 Let (G ; ◦) be a group,H ⊳ G and a, b ∈ G . If there is an element x∈ G

such that x−1 ◦ a ◦ x = b, a and b is called to be conjugacy. The centralizer ZG (a) of a in

G is defined by

ZG (a) = {{g ∈ G |g−1 ◦ a ◦ g = a}}.

It is easily to check thatZG (a) is a subgroup ofG .

Theorem2.3.5 Let (G ; ◦) be a group and a∈ G . Then the number of conjugacy elements

to a inG is |G : ZG (a)|.

Proof We only need to prove that ifx−1 ◦ a◦ x = y−1 ◦ a◦ y, thenx◦ y−1 ∈ ZG (a). In

fact, if x−1 ◦a◦ x = y−1 ◦a◦ y, theny◦ x−1 ◦a◦ x◦ y = a, i.e., (x◦ y−1)−1 ◦a◦ (x◦ y−1) = a.

Therefore,x ◦ y−1 ∈ ZG (a). �
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A relation between the center and normalizer of subgroup of agroup is determined

in the next result.

Theorem 2.3.6 Let (G ; ◦) be a group,H ≤ G . Then Z(H ) ⊳ NG (H ).

Proof If g ∈ NG (H ), let gτ denote the mappingh → g−1 ◦ h ◦ h. It is clear an

automorphism ofH . Furthermore,τ : NG (H ) → AutH is a homomorphism with

kernelZ(H ). Then this result follows from Theorem 1.3.3. �

2.3.2 Characteristic Subgroup. Let (G ; ◦) be a group,H ≤ G andg ∈ AutG . By

definition, there must beg(H ) ≃ H but g(H ) , H in general. Ifg(H ) = H for

∀g ∈ AutG , then such a subgroup is particular and called acharacteristic subgroupof

(G ; ◦). For example, the center of a group is in fact a characteristic subgroup by Definition

2.3.1.

According to the definition of normal subgroup, For∀h ∈ InnG , a subgroupH of

a group (G ; ◦) is norma if and only ifh(H ) = H for ∀h ∈ InnG . So a characteristic

subgroup must be a normal subgroup. But the converse is not always true.

Example2.3.2 LetD8 = {e, a, a2, a3, b, b · a, b · a2, b · a3} be a dihedral group of order 8

with an operation· determined by the following table.

· e a a2 a3 b a · b a2 · b a3 · b
e e a a2 a3 b a · b a2 · b a3 · b
a a a2 a3 e a· b a2 · b a3 · b b

a2 a2 a3 e a a2 · b a3 · b b a· b
a3 a3 e a a2 a3 · b b a· b a2 · b
b b a3 · b a2 · b a · b a2 a e a3

a · b a · b b a3 · b a2 · b a3 a2 a e

a2 · b a2 · b a · b b a3 · b e a3 a2 a

a3 · b a3 · b a2 · b a · b b a e a3 a2

Table 2.3.2

Notice that all subgroups ofD8 are normal anda is a unique element of degree 2. So

(
〈
a2

〉
; ◦) is a characteristic subgroup ofD8.

Now let 〈b〉 = {e, b, a2, a2 · b}. Clearly, it is a subgroup ofD8. We prove it is not a

characteristic subgroup ofD8. In fact, letφ : D → D be a one-to-one mapping defined by
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e→ e, a→ a, a2→ a2, a3→ a3,

b→ a · b, a · b→ a2 · b, a2 · b→ a3 · b, a3 · b→ b.

Thenφ is an automorphism. But

φ(〈b〉) = {e, a · b, a2, a3 · b} , 〈b〉 .

Therefore, it is not a characteristic subgroup ofD8.

The following result is clear by definition.

Theorem 2.3.7 If G1 ≤ G is a characteristic subgroup ofG andG2 ≤ G1 a characteristic

subgroup ofG1, thenG2 is also a characteristic subgroup ofG .

2.3.3 Commutator Subgroup. Let (G ; ◦) be a group anda, b ∈ G . The element

[a, b] = a−1 ◦ b−1 ◦ a ◦ b

is called thecommutatorof a andb. Obviously, a group (G ; ◦) is commutative if and only

if [ a, b] = 1G for ∀a, b ∈ G . Thecommutator subgroupis generated by all commutators

of (G ; ◦), denoted byG ′ or [G ,G ], i.e.,

G ′ = 〈 [a, b] | a, b ∈ G 〉 .

Theorem 2.3.8 [Sn,Sn] = An.

Proof Notice that we can always represent a permutation by productof involutions.

By the definition of commutator, it is obvious that [Sn,Sn] ⊂ An. Now for∀g ∈ An we can

always write it asg = (as11, as21)(as12, as22) · · · (as1m, as2m) with m≡ 0(mod2) by definition,

whereasi j ∈ {1, 2, · · · , n} for i = 1, 2 and 1≤ j ≤ m. Calculation shows that

(i, j)( j, k) = ( j, k)(i, j)( j, k)(i, j) = [( j, k), (i, j)]

if i , j, j , k and

(i, j)(k, l) = (i, j)( j, k)( j, k)(k, l) = [( j, k), (i, j)][(k, l), ( j, k)]

if i, j, k, l are all distinct. Whence, each element inAn can be written as a product of

elements in [Sn,Sn], i.e., An ⊂ [Sn,Sn]. �

A commutator subgroup is always a characteristic subgroup,such as those shown in

the next result.
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Theorem2.3.9 Any commutator subgroup of a group(G ; ◦) is a characteristic subgroup.

Proof Let φ ∈ G . We proveφ(G ′) = G ′. In fact, for∀a, b ∈ G , we know that

φ([a, b]) = φ(a−1 ◦ b−1 ◦ a ◦ b)

= φ(a−1) ◦ φ(b−1) ◦ φ(a) ◦ φ(b)

= φ−1(a) ◦ φ−1(b) ◦ φ(a) ◦ φ(b) = [φ(a), φ(b)].

Whence,G ′ is a characteristic subgroup of (G ; ◦). �

Corollary 2.3.1 Any non-commutative group(G ; ◦) has a non-trivial characteristic sub-

group.

Proof If (G ; ◦) is non-commutative, then there are elementsa, b ∈ G such that

[a, b] , 1G . Whence, it has a non-trivial characteristic subgroupG ′ at least. �

The most important properties of commutator subgroups is the next.

Theorem 2.3.10 Let (G ; ◦) be a group. Then

(1) The quotient groupG /G ′ is commutative;

(2) The quotient groupG /H is commutative forH ⊳ G if and only ifH ≥ G ′.

Proof (1) Let a, b ∈ G . Then

(a ◦ G ′)−1 ◦ (b ◦ G ′)−1 ◦ (a ◦ G ′) ◦ (b ◦ G ′)

= a−1 ◦ G ′ ◦ b−1 ◦ G ′ ◦ a ◦ G ′ ◦ b ◦ G ′

= (a−1 ◦ b−1 ◦ a ◦ b) ◦ G ′ = G ′.

Therefore,a ◦ G ′ ◦ b ◦ G ′ = b ◦ G ′ ◦ a ◦ G ′.

(2) Notice thatG /H is commutative if and only if fora, b ∈ G ,

a ◦H ◦ b ◦H = b ◦H ◦ a ◦H .

This equality is equivalent to

(a ◦H )−1 ◦ (b ◦H )−1 ◦ (a ◦H ) ◦ (b ◦H ) =H ,

i.e., (a−1 ◦ b−1 ◦ a ◦ b) ◦H =H . Whence, we find that [a, b] = a−1 ◦ b−1 ◦ a ◦ b ∈H ,

which means thatH ≥ G ′. �
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§2.4 P-GROUPS

As one applying fields of permutations to abstract groups, wediscussp-groups in this

section.

2.4.1 Sylow Theorem. By definition, a Sylowp-subgroup of a group (G , ◦) with |G | =
pαn, (p, n) = 1 is essentially a subgroup with maximum orderpα. Suchp-subgroups are

important for knowing the structure of finite groups, for example, the structure Theorems

1.4.4-1.4.6 for Abelian groups.

Theorem 2.4.1(Sylow’s First Theorem)Let (G ; ◦) be a finite group, p a prime number

and |G | = pαn, (p, n) = 1. Then for any integer i, 1 ≤ i ≤ α, there exists a subgroup of

order pi, particularly, the Sylow subgroup always exists.

Proof The proof is by induction on|G |. Clearly, our conclusion is true forn = 1.

Assume it is true for all groups of order≤ pαn.

Denoted byz the order of centerZ (G ). Notice thatZ (G ) is a Abelian subgroup

of G . If p|z, there exists an elementa of order p by Theorem 1.4.6. So〈a〉 is a normal

subgroup ofG with order p. We get a quotient groupG / 〈a〉 with order pα−1n < n.

By the induction assumption, we know that there are subgroups Pi/ 〈a〉 of order pi , i =

1, 2, · · · , α − 1 in G / 〈a〉. SoPi , i = 1, 2, · · · , α − 1 are subgroups of orderpi+1 in G .

Now if p 6 |z, let C1,C2, · · · ,Cs be conjugacy classes ofG . Notice thatp||G | but p 6 |z.
By

|G | = |Z (G )| +
s∑

i=1

|Ci |,

we know that there must be an integerl, 1 ≤ i ≤ s such thatp 6 ||Cl |. Let b ∈ Cl. Then

NG (b) = {g ∈ G |g−1 ◦ b ◦ g = b}

is a subgroup ofG with index

|G : ZG (b)| = hl > 1.

Sincepα andZG (b) < pαn, by the induction assumption we know that there are subgroups

of orderpi for 1 ≤ i ≤ α in ZG (b) ≤ G . �

Corollary 2.4.1 Let (G ; ◦) be a finite group and p a prime number. If p||G |, then there

are elements of order p in(G ; ◦).
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Theorem 2.4.2(Sylow’s Second Theorem)Let (G ; ◦) be a finite group, p a prime with

p||G |. Then

(1) If np is the number of Sylow p-subgroups inG , then np ≡ 1(modp);

(2) All Sylow subgroups are conjugate in(G ; ◦).

Proof Let P,P1,P2, · · · ,Pr be all Sylowp-subgroups inG . Notice that a conjugacy

subgroup of Sylowp-subgroup is still a Sylow subgroup ofG . For ∀a ∈ G , define a

permutation

σa =


P P1 · · · Pr

a−1 ◦ P ◦ a a−1 ◦ P1 ◦ a · · · a−1 ◦ Pr ◦ a

 .

andSp = {σa|a ∈ P}. ThenSp is a homomorphic image ofP. It is also ap-subgroup.

If Pk is invariant under the actionSp for an integer 1≤ k ≤ r, thena◦Pk = Pk ◦a for

∀a ∈ P. Whence,PPk is a p-subgroup ofG . But P,Pk are Sylowp-subgroups ofG . We

getPPk = P = Pk, contradicts to the assumption. So allPk, 1 ≤ k ≤ r are not invariant

under the action ofSp exceptP. By Theorem 2.1.1, we know that|PSp

k |||Sp| for 1 ≤ k ≤ r.

Let P
Sp

k1
,P

Sp

k2
, · · · ,PSp

kt
be a partition of{P1,P2, · · · ,Pr}. Then

np = 1+ r = 1+
t∑

i=1

|PSp

ki
| ≡ 1(modp).

This is the conclusion (1).

For the conclusion (2), assume there ares conjugate subgroups toP. Similarly, we

know that s ≡ 1(modp). If there exists another conjugcy class in which there ares1

Sylow p-subgroups, we can also finds1 ≡ 1(modp), a contradiction. So there are just

one conjugate class of Sylowp-subgroups. This fact enables us to know that all Sylow

subgroups are conjugate in (G ; ◦). �

Corollary 2.4.2 Let P be a Sylow p-subgroup of(G ; ◦). Then

(1) P ⊳ G if and only if P is uniquely the Sylow p-subgroup of(G ; ◦);
(2) P is uniquely the Sylow p-subgroup of NG (P).

Theorem 2.4.3(Sylow’s Third Theorem)Let (G ; ◦) be a finite group, p a prime with

p||G |. Then each p-subgroup A is a subgroup of a Sylow p-subgroup of(G ; ◦).

Proof Let σa be the same in the proof of Theorem 2.4.2 andSA = {σa|a ∈ A}.
Consider the action ofSA on Sylowp-subgroups{P,P1, · · · ,Pr }. Similar to the proof of
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Theorem 2.4.2(1), we know that|PSA
k |||SA| for 1 ≤ k ≤ r. Because ofr ≡ 0(modp).

Whence, there are at least one obit with only one Sylowp-subgroups. Let it bePl. Then

for ∀a ∈ A, a−1 ◦ Pl ◦ a = Pl. SoAPl is a p-subgroup. Notice thatPl ≤ APl . We get that

APl = Pl, i.e.,A ≤ Pl. �

2.4.2 Application of Sylow Theorem. Sylow theorems enables one to know thep-

subgroup structures of finite groups.

Theorem 2.4.4 Let P be a Sylow p-subgroup of(G ; ◦). Then

(1) If NG (P) ≤H ≤ G , thenH = NG (H );

(2) If N ⊳ G , then P∩ N is a sylow p-subgroup of(N; ◦) and PN/N is a Sylow

p-subgroup of(G/N; ◦).

Proof (1) Let x ∈ NG (H ). BecauseP ≤ H⊳NG (H ), we know thatx−1◦P◦x ≤H .

Clearly,P andx−1 ◦ P ◦ x are both Sylowp-subgroup ofH . By Theorem 2.4.2, there is

an elementh ∈ H such thatx−1 ◦ P ◦ x = h−1 ◦ P ◦ h. Whence,x ◦ h−1 ∈ NG (P) ≤ H .

Sox ∈H , i.e.,H = NG (H ).

(2) Notice thatPN is a union of cosetsa◦ P, a ∈ N andN a union of cosetsb◦ (P∩
N), b ∈ N. Now leta, b ∈ N. By

a ◦ P = b ◦ P⇔ a−1 ◦ b ∈ P⇔ a−1 ◦ b ∈ N ∩ P⇔ a ◦ N ∩ P = b ◦ N ∩ P,

we get that|N : P∩N| = |PN : P|, which is prime top. SinceN∩P, NP/N are respective

p-subgroups ofN or G /N by Theorem 1.2.6, this relation implies that they must be Sylow

p-subgroup ofN or G /N. �

Theorem 2.4.5(Fratini) Let N ⊳ G and P a Sylow p-subgroup of(N; ◦). ThenG =

NG (P)N.

Proof Choosea ∈ G . SinceN ⊳ G , we know thata−1 ◦ P ◦ a ≤ N, which implies

thata−1 ◦ P ◦ a is also a Sylowp-subgroup of (N; ◦). According to Theorem 2.4.2, there

is b ∈ N such thatb−1 ◦ (a−1 ◦ P ◦ a) ◦ b = P. Whence,a ◦ b ∈ NG (P), i.e.,a ∈ NG (P)N.

ThusG = NG (P)N. �

As we known, a finite group with prime powerpα for an integerα is called ap-group

in group theory. Forp-groups, we know the following results.

Theorem 2.4.6 Let (G ; ◦) be a non-trivial p-group. Then Z(G ) > {1G }.
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Proof Let |G | = pm, m an integer andC1 = {1G },C2, · · · ,Cs conjugate classes ofG .

By
s∑

i=1

|Ci | = |G | = pm,

we know that|Ci | = 1 or a multiple ofp by Theorem 2.4.5. But |C1| = 1. Whence, there

are at least an integerk, 1 ≤ k ≤ s such that|Ck| = 1, i.e.,Ck = {a}. Thena ∈ Z(G ). �

Theorem 2.4.7 Let p be a prime number. A group(G ; ◦) of order p or p2 is Abelian.

Proof If |G | = p, thenG = 〈a〉 with ap = 1G by Theorem 1.2.6.

Now let |G | = p2. If there is an elementb ∈ G with o(b) = p2, thenG = 〈b〉, a cyclic

group of orderp2 by Theorem 1.2.6. If suchb does not exist, by Theorem 2.4.6 Z(G ) >

{1G }, we can always choose 1G , a ∈ Z(G ) andb ∈ G \ Z(G ). Theno(a) = o(b) = p by

Theorem 1.2.6. We get thatZ(G ) = 〈a〉 andG /Z(G ) = 〈b ◦ Z(G )〉. Whence,G = 〈a, b〉
with a ◦ b = b ◦ a ando(a) = o(b) = p. So it is Abelian. �

For groups of orderpq or p2q, we have the following result.

Theorem2.4.8 Let p, q be odd prime numbers, p, q. Then groups(G ; ◦) of order pq or

p2q are not simple groups.

Proof By Sylow’s theorem, we know that there arenp ≡ 1(modp) Sylowq-subgroups

P in (G ; ◦). Let np = 1+ kp for an integerk.

If |G | = pq, p ≥ q, we get thatp(1+ kp)|pq, i.e., 1+ kp|q. Sok = 0 and there is only

one p-subgroupP in (G ; ◦). We know thatP ⊳ G . Similarly, if p ≤ q, then the Sylow

q-subgroupQ ⊳ G . So a group of orderpq is not simple.

If |G | = p2q andp ≥ q, then 1+kp|q implies thatk = 0, and the only onep-subgroup

P ⊳ G . Otherwise,p ≤ q, we know 1+ lq|p2. Notice thatp ≤ q, we know thatnq = 1 or

p2. But if nq = p2, i.e., lq = p2 − 1, we get thatq|(p− 1)(p + 1). Whence,q = p+ 1. It

is impossible sincep andp+ 1 can not both be prime numbers. Sonq = 1. Let Q be the

only one Sylowq-subgroup in (G ; ◦). ThenQ⊳G . Therefore, a group of orderp2q is not

simple. �

2.4.3 Listing p-Group. For listing p-groups, we need a symbol

(
λ

p

)
, i.e., theLegendre

symbolin number theory. For a primep 6 |λ, the number
(
λ
p

)
is defined by

(
λ

p

)
=


1, if x2 ≡ λ(modp) has solution;

−1, if x2 ≡ λ(modp) has no solution.
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We have known that (
λ

p

)
≡ λ

p−1
2 (modp)

and the well-knownGauss reciprocity law
(
q
p

) (
p
q

)
= (−1)

(p−1)(q−1)
4

for prime numbersp andq in number theory, .

Completely list allp-groups is a very difficult work. Today, we can only list those of

p-groups with small power. For example, thesep-groups of orderspn for 1 ≤ n ≤ 4 are

listed in Tables 2.4.1− 2.4.4 without proofs.

|G | p-group Abelian?

p (1) 〈a〉, ap = 1G Yes

p2 (1) 〈a〉, ap2
= 1G Yes

(2) 〈a, b〉, ap = bp = 1G , a ◦ b = b ◦ a Yes

(1) 〈a〉, ap3
= 1G Yes

(2) 〈a, b〉, ap2
= bp = 1G , a ◦ b = b ◦ a Yes

(3) 〈a, b, c〉, ap = bp = cp = 1G , a ◦ b = b ◦ a,

a ◦ c = c ◦ a, b ◦ c = c ◦ b Yes

p3 (4) 〈a, b〉, ap2
= bp = 1G , b−1 ◦ a ◦ b = a1+p No

(p , 2) (5) 〈a, b, c〉, ap = bp = cp = 1G ,a ◦ b = b ◦ a ◦ c,

c ◦ a = a ◦ c, c ◦ b = b ◦ c No

Table 2.4.1

For p = 2, these 2-groups of order 23 are completely listed in Table 2.4.2.

|G | 2-group Abelian?

(1) 〈a〉, a8 = 1G Yes

(2) 〈a, b〉, a4 = b2 = 1G , a ◦ b = b ◦ a Yes

23 (3) 〈a, b, c〉, a2 = b2 = c2 = 1G , a ◦ b = b ◦ a,

a ◦ c = c ◦ a, b ◦ c = c ◦ b Yes

(4) Q8 = 〈a, b〉, a4 = 1G , b2 = a2 b−1 ◦ a ◦ b = a−1 No

(5) D8 = 〈a, b〉, a4 = b2 = 1G , b−1 ◦ a ◦ b = a−1 No

Table 2.4.2
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|G | p-group Abelian?

(1) 〈a〉, a4 = 1G Yes

(2) 〈a, b〉, ap3
= bp = 1G , Yes

p4 (3) 〈a, b〉, ap2
= bp2

= 1G , Yes

p , 2 (4) 〈a, b, c〉, ap2
= bp = cp = 1G , Yes

(5) 〈a, b, c, d〉, ap = bp = cp = dp = 1G 〈a, b〉,
ap3
= bp = 1G , Yes

(1) 〈a, b〉, ap3
= bp = 1G , b−1 ◦ a ◦ b = a1+p2

No

(2) 〈a, b〉, ap2
= bp2

= 1G , b−1 ◦ a ◦ b = a1+p No

(3) 〈a, b, c〉, ap2
= bp = cp = 1G , [a, b] = [a, c] = 1G ,

[b, c] = ap No

(4) 〈a, b, c〉, ap2
= bp = cp = 1G , [a, b] = [b, c] = 1G ,

[a, c] = ap No

(5) 〈a, b, c〉, ap2
= bp = cp = 1G , [a, b] = [a, c] = 1G ,

[a, c] = b No

p4 (6) 〈a, b, c〉, ap2
= bp = cp = 1G , b−1 ◦ a ◦ b = a1+p,

p , 2 c−1 ◦ a ◦ c = a ◦ b, c−1 ◦ b ◦ c = b No

(7) 〈a, b, c〉, ap2
= bp = 1G , cp = ap, b−1 ◦ a ◦ b = a1+p,

c−1 ◦ a ◦ c = a ◦ b, c−1 ◦ b ◦ c = b No

(8) 〈a, b, c〉, ap2
= bp = 1G , cp = aλp,

(
λ
p

)
= −1

c−1 ◦ a ◦ c = a ◦ b, c−1 ◦ b ◦ c = b, b−1 ◦ a ◦ b = a1+p, No

(9) 〈a, b, c, d〉, ap2
= bp = cp = dp = 1G , [c, d] = a,

[a, b] = [a, c] = [a, d] = [b, c] = [b, d] = 1G , No

(10-1)〈a, b, c, d〉, p > 3, ap = bp = cp = dp = 1G ,

[a, b] = [a, c] = [a, d] = [b, c] = 1G ,

d−1 ◦ b ◦ d = a ◦ b, d−1 ◦ c ◦ d = b ◦ c No

(10-2)〈a, b, c〉, p = 3, a9 = b3 = c3 = 1G , [a, b] = 1G ,

c−1 ◦ a ◦ c = a ◦ b, c−1 ◦ b ◦ c = a−3 ◦ b No

Table 2.4.3

For groups of order 2n, the situation is more complex. For example, there are 6 types

for n = 3, 14 types forn = 4, 31 types forn = 5 and 267 types forn = 6. Generally, we

do not know the relation for the number of types withn. We have listed 2-groups of order
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23 in Table 2.4.2. Similarly, these non-Abelian 2-groups of order 24 are listed in Table

2.4.4 following.

|G | 2-group Abelian?

(1) 〈a, b〉, a8 = b2 = 1G , b−1 ◦ a ◦ b = a−1 No

(2) 〈a, b〉, a8 = b2 = 1G , b−1 ◦ a ◦ b = a3 No

(3) 〈a, b〉, a8 = b2 = 1G , b−1 ◦ a ◦ b = a5 No

(4) 〈a, b〉, a8 = 1G , b2 = a4, b−1 ◦ a ◦ b = a−1 No

24 (5) 〈a, b〉, a4 = b4 = 1G , b−1 ◦ a ◦ b = a−1 No

(6) 〈a, b, c〉, a4 = b2 = c2 = 1G , b−1 ◦ a ◦ b = a,

c−1 ◦ a ◦ c = a, [b, c] = a2 No

(7) 〈a, b, c〉, a4 = b2 = c2 = 1G , b−1 ◦ a ◦ b = a,

c−1 ◦ a ◦ c = a−1, [b, c] = a2 No

(8) 〈a, b, c〉, a4 = b2 = 1G , c2 = a2, b−1 ◦ a ◦ b = a,

c−1 ◦ a ◦ c = a−1, [b, c] = 1G No

(9) 〈a, b, c〉, a4 = b2 = c2 = 1G , b−1 ◦ a ◦ b = a,

c−1 ◦ a ◦ c = a ◦ b, [b, c] = 1G No

Table 2.4.4

A complete proof for listing results in Tables 2.4.1-2.4.4 can be found in references,

for example, [Zha1] or [Xum1].

§2.5 PRIMITIVE GROUPS

2.5.1 Imprimitive Block. Let P be a permutation group action onΩ. A proper subset

A ⊂ Ω, |A| ≥ 2 is called animprimitive blockof P if for ∀π ∈ P, eitherA = Aπ

or A ∩ Aπ = ∅. If such blocksA exist, we sayP imprimitive. Otherwise, it is called

primitive, i.e.,P has no imprimitive blocks.

Example2.5.1 LetP be a permutation group generated by

g = (1, 2, 3, 4, 5, 6) and h = (2, 6)(3, 5).

Notice thatP is transitive onΩ = {1, 2, 3, 4, 5, 6} and hg = g5h. There are only 12
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elements with formglhm, wherel = 0, 1, 2, 3, 4, 5 andm= 0, 1. LetA = {1, 4}. Then

{1, 4}g = {2, 5}, {1, 4}g2
= {3, 6},

{1, 4}g3
= {1, 4}, {1, 4}h = {1, 4}.

Whence,Aτ = A or Aτ ∩ A = ∅ for ∀τ ∈P, i.e.,A is an imprimitive block.

The following result is followed immediately by Theorem 2.1.1 on primitive groups.

Theorem2.5.1 LetP be a transitive group actin onΩ, A an imprimitive block ofP and

H the subgroup of allπ in P such that Aπ = A. Then

(1) The subsets Aτ, τ ∈P : H form a partition ofΩ;

(2) |Ω| = |A||P : H|.

Proof Let a ∈ Ω andb ∈ A. By the transitivity ofP onΩ, there is a permutation

π ∈ P such thata = bπ. Writing π = στ with σ ∈ H andτ ∈ P : H, we find that

a = (bσ)τ ∈ Aτ. Whence,Ω is certainly the union ofAτ, τ ∈ H. Now if Aτ ∩ Aτ′
, ∅, then

A∩ (Aτ′)τ
−1
, ∅. Consequently,A = (Aτ′)τ

−1
andτ′τ−1 ∈ H. But τ, τ′ ∈P : H, we get that

τ = τ′. SoAτ, τ ∈P : H is a partition ofΩ. Thus we establish (1).

Notice that|A| = |Aτ| for τ ∈ P : H. We immediately get that|Ω| = |A||P : H| by

(1). �

2.5.2 Primitive Group. Applying Theorem 2.3.1, the following result on primitive

groups is obvious.

Theorem 2.5.2 A transitive group of prime degree is primitive.

These multiply at least 2-transitive groups constitute a frequently encountered prim-

itive groups shown following.

Theorem 2.5.3 Every2-transitive group is primitive.

Proof Let P be a 2-transitive group action onΩ. If it is imprimitive, then there

exists an imprimitive blockA of P. Whence we can find elementsa, b ∈ A andc ∈ Ω\A.

By the 2-transitivity, there is an elementπ ∈ P such that (a, b)π = (a, c). Soa ∈ A∩ Aπ.

Consequently,A = Aπ. But this will implies thatc = bπ ∈ A, a contradiction. �

Let (G ; ◦) be a group. A subgroupH < G is maximalif there are no subgroups

K < G such thatH < K < G . The next result is a more valuable criterion on primitiv-

ity of permutation groups.
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Theorem2.5.4 A transitive groupP action onΩ is primitive if and only ifPa is maximal

for ∀a ∈ Ω.

Proof If Pa is not maximal, then there exists a subgroupH of P such thatPa <

H < P. Define a subset ofΩ by

A = {aτ|τ ∈H }.

Then |A| ≥ 2 because ofH > Pa. First, if A = Ω, then for∀π ∈ P we can find

an elementσ ∈ H such thataπ = aσ. Thusπσ−1 ∈ Pa, which givesπ ∈ H and

H = P. Now if there isπ ∈ P with A∩ Aπ
, ∅ hold, then there areσ1, σ2 ∈ H such

that aσ1 = aσ2π. Thusσ−1
1 ∈ Pa < H . Whence,π ∈ H , which implies thatA = Aπ.

Therefore,A is an iprimitive block andP is imprimitive.

Conversely, letA be an imprimitive block ofP. By the transitivity ofP onΩ, we

can assume thata ∈ A. Define

H = {π ∈P |Aπ = A, π ∈P}.

ThenH ≤ G . Forb, c ∈ A, there is aπ ∈ G such thatbπ = c. Thusc ∈ A∩ Aπ. Whence,

A = Aπ and π ∈ H by definition. Therefore,H is transitive onA. Consequently,

A = |H : Ha|. Now if π ∈P, thena = aπ ∈ A∩ Aπ. SoA = Aπ andπ ∈H . Thereafter,

Pa < H andPa = Ha. Applying Theorem 2.1.1, we know that|Ω| = |P : Pa| and

|A| = |H : Ha| = |H : Pa|. SoPa < H < P andPa is not maximal inP. �

Corollary 2.5.1 Let P be a transitive group action onΩ. If there is a proper subset

A ⊂ Ω, |A| ≥ 2 such that

a ∈ A, aπ ∈ A⇒ Aπ = A

for π ∈P, thenP is imprimitive.

Proof By Theorem 2.5.4, we only need to prove thatPa < P{A} < P, i.e.,Pa is

not maximal ofP. In fact,Pa ≤P{A} is obvious by definition. Applying the transitivity

of P, for ∀b ∈ A there is an elementσ ∈ P such thataσ = b. Clearly,σ ∈ P{A}, but

σ <Pa. Whence,Pa < P{A}.

Now let c ∈ Ω \ A. Applying the transitivity ofP again, there is an elementτ ∈P
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such thataτ = c. Clearly,τ ∈ G butτ < G{A}. So we finally get that

Pa < P{A} < P ,

i.e.,Pa is not maximal inP. �

Theorem 2.5.5 LetP be a nontrivial primitive group action onΩ. If N ⊳ P, thenN

is transitive onΩ.

Proof Let a ∈ Ω andA = {aτ|τ ∈ N }. Notice that (aσ)π = (aπ)σ
π

andσπ ∈ N if

π ∈P, σ ∈ N . ThusAπ is an obit containingaπ. Whence,A = Aπ or a∩ Aπ = ∅, which

implies thatA is an imprimitive block. This is impossible becauseP is primitive onΩ.

Whence,A = Ω, i.e.,N is transitive onΩ. �

Theorem 2.5.5 also implies the next result for imprimitive groups.

Corollary 2.5.2 Let P be a transitive group action onΩ with a non-transitive normal

subgroupN . ThenP is imprimitive.

The following result relates primitive groups with simple groups.

Theorem2.5.6 LetP be a nontrivial primitive group action onΩ. If there is an element

x ∈ Ω such thatPx is simple, then there is a subgroupN ⊳ P action regularly onΩ

unlessP is itself simple.

Proof If P is not simple, then there is a proper normal subgroupN ⊳ P. Consider

N ∩Px, which is a normal subgroup ofPx. Notice thatPx is simple. We know that

N ∩Px =Px or {1P}.
Now if N ∩Px =Px, thenPx ≤ N . Applying Theorem 2.5.5, we know thatN is

transitive onΩ. Whence,N < Px sincexς = x for ∀ς ∈Px, i.e.,Px is not transitive on

Ω. By Theorem 2.5.4, there must beN =P, a contradiction. Whence,N ∩Px = {1P}.
Applying the transitivity ofN onΩ, we immediately get thatNy = {1P} for ∀y ∈ Ω, i.e.,

N acts regularly onΩ. �

2.5.3 Regular Normal Subgroup. Theorem 2.5.5 shows the importance of normal

subgroups of primitive groups. In fact, we can determine allregular normal subgroups of

multiply transitive groups. First, we prove the next result.

Theorem 2.5.7 Let (G ; ◦) be a nontrivial finite group andP = AutG .
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(1) If P is transitive, then(G ; ◦) is an elementary Abelian p-group for some prime

p;

(2) If P is 2-transitive, then either p= 2 or |G | = 3;

(3) If P is 3-transitive, then|G | = 4;

(4) P can not be4-transitive.

Proof (1) Let p be a prime dividing|G |. Then there exists an elementx of order

p by Corollary 2.4.1. By the transitivity we know that every element inG \ {1G } is the

form xτ, τ ∈ P and hence of orderp also. ThusG is a finite p-group and its center

Z(G ) is nontrivial by Theorem 2.4.6. By definition,Z(G ) is characteristic in (G ; ◦) and

thus is invariant inG . Applying the transitivity ofP enables us to know thatZ(G ) = G .

Whence,G is an elementary Abelianp-groups.

(2) If p > 2, let x ∈ G with x , 1G . Thusx , x−1. If there is also an elementy ∈ G ,

y , 1G , x, x−1, then the 2-transitivity assures us of aτ ∈ P such that (x, x−1)τ = (x, y).

Plainly, this fact implies thaty = x−1, a contradiction. Therefore,G = {1G , x, x−1} and

|G | = 3.

(3) If P is 3-transitive onG \{1G }, the later must has 3 elements at least, i.e.,|G | ≥ 4.

Applying (2) we know thatG is an elementary Abelian 2-group. LetH = {1, x, y, x ◦ y}
be a subgroup of order 4. If there is an elementz ∈ G \H , thenx ◦ z, y ◦ z andx ◦ y ◦ z

are distinct. So there must be an automorphismτ ∈P such that

xτ = x ◦ z, yτ = y ◦ zand (x ◦ y)τ = x ◦ y ◦ z

by the 3-transitivity ofP onG . However, these relations imply thatz= 1G , a contradic-

tion. Whence,H = G .

(4) If P were 4-transitive, it would be 3-transitive and|G | = 4 by (3), which excludes

the possibility of 4-transitivity. Whence,P can not be 4-transitive. �

By Theorem 2.5.7, the regular normal subgroups of multiply transitive groups can

be completely determined.

Theorem2.5.8 LetP be a k-transitive group of degree n with k≥ 2 andN a nontrivial

regular normal subgroup ofP. Then,

(1) If k = 2, then n= |N | = pm andN is an elementary Abelian p-group for some

prime p and integer m;

(2) If k = 3, then either p= 2 or n = 3;
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(3) If k = 4, then n= 4;

(4) k ≥ 5 is impossible.

Proof Clearly, 1< k ≤ n. Let P be ak-transitive group acting onΩ with |Ω| = n

anda ∈ Ω. By Theorem 2.2.3, we know thatPa is (k − 1)-transitive onΩ \ {a}.
Consider the action ofPa on N \ {1P} by conjugation. Now ifπ ∈ N \ {1P}, by

the regularity ofN we know thataπ , a. Thus there is a mappingΘ from N \ {1P} to

Ω \ {a} determined byΘ : π → aπ. Applying the regularity ofN again, we know that

Θ is injective. Besides, sinceN is transitive by Theorem 2.5.5, we know thatΘ is also

surjective. Whence,

Θ : N \ {1P} → Ω \ {a}

is a bijection.

Now let 1P , π ∈ P andσ ∈ Pa. Then we have that (aπ)σ = aπ
σ

, or (Θ(π))σ =

Θ(πσ). Thereafter, the permutation representations ofPa on N \ {1P} andΩ \ {a} are

equivalent. WhencePa is (k− 1)-transitive onN \ {1P}. Notice thatPa ≤ AutN . We

therefore know that AutN is (k− 1)-transitive onN \ {1P} also. By Theorem 2.5.7, we

immediately get all these conclusions (1)− (4). �

2.5.4 O’Nan-Scott Theorem. The main approach in classification of primitive groups

is to study the subgroup generated by the minimal subgroups,i.e., thesocleof a group

defined following.

Definition 2.5.1 Let (G ; ◦) be a group. A minimal normal subgroup of(G ; ◦) is such a

normal subgroup(N ; ◦), N , {1G } which does not contain other properly nontrivial

normal subgroup ofG .

Definition 2.5.2 Let (G ; ◦) be a group with all minimal normal subgroupsN1,N2, · · · ,
Nm. The soclesoc(G ) of (G ; ◦) is determined by

soc(G ) = 〈N1,N2, · · · ,Nm〉 .

Then we know the following results on socle of finite groups without proofs.

Theorem 2.5.9 Let (G ; ◦) be a nontrivial finite group. Then

(1) If K is a minimal normal subgroup and L a normal subgroup of(G ; ◦), then either

K ≤ L or 〈K, L〉 = K × L;
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(2) There exist minimal normal subgroups K1,K2, · · · ,Km of (G ; ◦) such that

soc(G ) = K1 × K2 × · · · × Km;

(3) Every minimal normal subgroup K of(G ; ◦) is a direct product K= T1 × T2 ×
· · ·×Tk, where these Ti , 1 ≤ i ≤ k are simple normal subgroups of K which are conjugate

under(G ; ◦);
(4) If these subgroup Ki , 1 ≤ i ≤ m in (2) are all non-Abelian, then K1,K2, · · · ,Km

are the only minimal normal subgroups of(G ; ◦). Similarly, if these Ti , 1 ≤ i ≤ k in (3)

are non-Abelian, then they are the only minimal normal subgroups of K.

Theorem 2.5.10 Let P be a finite primitive group of SΩ and K a minimal normal sub-

group ofP. Then exactly one of the following holds:

(1) For some prime p and integer d, K is a regular elementary Abelian group of

order pd, andsoc(P) = K = ZG (K), where ZG (K) is the centralizer of K inP;

(2) K is a regular non-Abelian group, ZG (K) is a minimal normal subgroup ofP

which is permutation isomorphic to K, andsoc(P) = K × ZG (K);

(3) K is non-Abelian, ZG (K) = {1P} andsoc(P) = K.

Particularly, for the socle of a primitive group, we get the following conclusion.

Corollary 2.5.3 LetP be a finite primitive group of SΩ with the socle H. Then

(1) H is a direct product of isomorphic simple groups;

(2) H is a minimal normal subgroup ofNSΩ(H). Moreover, if H is not regular, then

it is the only minimal normal subgroup ofNSΩ(H).

Let Ω and∆ be two sets or groups. Denoted by Fun(Ω,∆) the set of all functions

fromΩ into ∆. For two groupsK , H acting on a non-empty setΩ, thewreath product

K wrΩ H of K by H with respect to this action is defined to be the semidirect product

Fun(Ω,K ) ⋊ H , whereH acts on the group Fun(Ω,K ) is determined by

f γ(a) = f (aγ
−1

) for all f ∈ Fun(Ω,K ), a ∈ Ω andγ ∈H .

and the operation· in Fun(Ω,K ) ×H is defined to be

( f1, g1) · ( f2, g2) = ( f1 f
g−1

1
2 , g1g2).

Usually, the groupB = {( f , 1H )| f ∈ Fun(Ω,K )} is called thebase groupof the wreath

productK wrΩ H .
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A permutation groupP acting onΩ with the socleH is said to bediagonal type

if P is a subgroup of the normalizerNSΩ(H) such thatP contains the base groupH =

T1 × T2 × · · · × Tm. Then by Theorem 2.5.9 these groupsT1,T2, · · · ,Tm are the only

minimal normal subgroups ofH and H ⊳ P. So P acts by conjugation on the set

{T1,T2, · · · ,Tm}. Then we know the next result characterizing those primitive groups of

diagonal type without proof.

Theorem 2.5.11 Let P ≤ NSΩ(H) be a diagonal type group with the socle H= T1 ×
T2 × · · · × Tm. ThenP is primitive subgroup of SΩ either if

(1) m= 2; or

(2) m ≥ 3 and the action ofP by conjugation on{T1,T2, · · · ,Tm} of the minimal

normal subgroups of H is primitive.

Now we can present theO’Nan-Scott theoremfollowing, which characterizes the

structure of primitive groups.

Theorem 2.5.12(O’Nan-Scott Theorem)Let P be a finite primitive group of degree n

andH the socle ofP. Then either

(1) H is a regular elementary Abelian p-group for some prime p, n= pm = |H |
andP is isomorphic to a subgroup of the affine group AGLm(p); or

(2) H is isomorphic to a direct power Tm of a non-Abelian simple group T and one

of the following holds:

(i) m= 1 andP is isomorphic to a subgroup ofAutT;

(ii ) m≥ 2 andP is a group of diagonal type with n= |T |;
(iii ) m≥ 2 and for some proper divisor d of m and some primitive groupT with a so-

cle isomorphic to Td, P is isomorphic to a subgroup of the wreath productT wr SΩ, |Ω| =
m/d with the product action, and n= lm/d, where l is the degree ofT ;

(iv) m≥ 6, H is regular and n= |T |m.

A complete proof of the O’Nan-Scott theorem can be found in the reference [DiM1].

It should be noted that the O’Nan-Scott theorem is a useful result for research problems

related with permutation groups. By Corollary 2.5.3, a finite primitive groupP has a

socleH � Tm, a direct product ofm copies of some simple groupT. Applying this result

enables one to divide a problem into the following five types in general:
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1. Affine Type: H is an elementary Abelianp-group,n = pm andP is a subgroup of

AGLm(p) containing the translations.

2. Regular Non-Abelian Type: H andT are non-Abelian,n = |T |m, m≥ 6 and the group

P can be constructed as a twisted wreath product.

3. Almost Simple Type: H is simple andP ≤ AutH.

4. Diagonal Type: H = Tm with m ≥ 2, n = |T |m−1 andP is a subgroup of a wreath

product with the diagonal action.

5. Product Type: H = Tm with m= rs, s> 1. There is a primitive non-regular groupT

with socleTr and of type in Cases 3 or 4 such thatP is isomorphic to a subgroup of the

wreath productT wr S∆, |∆| = s with the product action.

All these types are contributed to applications of O’Nan-Scott theorem, particularly

for the classification of symmetric graphs in Chapter 3.

§2.6 LOCAL ACTION AND EXTENDED GROUPS

Let (G̃ ; Õ) be a multigroup withG̃ =
m⋃

i=1
Gi, Õ = {◦i |1 ≤ i ≤ m} andΩ̃ =

m⋃
i=1
Ωi a set. An

action(ϕ, ι) of (G̃ ; Õ) on Ω̃ is defined to be a homomorphism

(ϕ, ι) : (G̃ ; Õ)→
m⋃

i=1

SΩi

such thatϕ|Ωi : Gi → SΩi is a homomorphism, i.e., for∀x ∈ Ωi, ϕ(h) : x → xh with

conditions following hold,

xh◦ig = xhι(◦i)x
g, h, g ∈Hi

for any integer 1≤ i ≤ m. We sayϕ|Ωi thelocal actionof (ϕ, ι) onΩ̃ for integers 1≤ i ≤ m.

2.6.1 Local Action Group. If the multigroup (G̃ ; Õ) is in fact a permutation groupP

with Ω̃ =
m⋃

i=1
Ωi, we call such aP to be alocal action grouponΩi for integers 1≤ i ≤ m.

In this case, alocal actionof P on Ω̃ is determined by

ΩP
i = Ωi and (̃Ω \Ωi)

P = Ω̃ \ Ωi

for integers 1≤ i ≤ m.
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If the local action ofP on Ωi is transitive or regular, then we say it is alocally

transitive groupor locally regular grouponΩi for an integer 1≤ i ≤ m. We know the

following necessary condition for locally transitive or regular groups by Theorem 2.2.1

and Corollary 2.2.1.

Theorem 2.6.1 LetP be a group action oñΩ =
m⋃

i=1
Ωi andH ≤P. ThenH is locally

transitive only if there is an integer k0, 1 ≤ k0 ≤ m such that|Ωk0| | |H |. Furthermore, if

it is locally regular, then there is an integer l0, 1 ≤ l0 ≤ m such that|Ωi0 | = |H |.

Let P be a group locally acting oñΩ, whereΩ̃ =
m⋃

i=1
Ωi. If there are integers

k, i, k ≥ 2, 1 ≤ i ≤ msuch that the action ofP onΩi is k-transitive or sharplyk-transitive,

we say it is alocally k-transitive groupor locally sharply k-transitive groupon Ω̃. The

following necessary condition for locallyk-transitive or sharply groups is by Theorems

2.2.3– 2.2.5.

Theorem 2.6.2 LetP be a group action oñΩ =
m⋃

i=1
Ωi andH ≤P. ThenH is locally

k-transitive only if there is an integer i0, 1 ≤ i0 ≤ m such that for∀a ∈ Ωi0, Ha is

(k − 1)-transitive acting onΩ \ {a}. Particularly, |Ωi0 |(|Ωi0 | − 1) · · · (|Ωi0 | − k + 1) | |H |.
Furthermore, if it is locally sharply k-transitive, then there is an integer j0, 1 ≤ j0 ≤ m

such that|Ω j0|(|Ω j0 | − 1) · · · (|Ω j0| − k+ 1) = |H |.

Theorems 2.6.1 and 2.6.2 enables us to know what kind subgroups maybe locally

action groups.

Example2.6.1 LetP be a permutation group with

P = {1P , (1, 2, 3, 4, 5), (1, 4, 2, 5, 3), (1, 5,4, 3, 2)

(2, 3, 5, 4), (1, 3, 2, 5), (1, 5, 4,3), (1,2,4, 3), (1, 4,5,2)

(2, 4, 5, 3), (1, 4, 3, 5), (1, 2, 5,4), (1,5,2, 3), (1, 3,4,2)

(2, 5)(3, 4), (1, 5)(2, 4), (1, 4)(2, 3), (1, 3)(4, 5), (1,2)(3, 5)}

Then

H = {1P , (1, 2, 3, 4, 5), (1, 4, 2, 5, 3), (1,5,4, 3,2)},

T = {1P , (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}

both are subgroups ofP. Notice that|H | = 5, |T | = 4. We know thatH andT are

transitive acting onΩ = {1, 2, 3, 4, 5} and∆ = {1, 2, 3, 4}, respectively. But none of them

is k-transitive fork ≥ 2.
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Corollary 2.6.1 LetP be a group action oñΩ =
m⋃

i=1
Ωi, H ≤P. For integers i, 1 ≤ i ≤

m and k≥ 1, if |Ωi |(|Ωi | − 1)(|Ωi | − 2) · · · (|Ωi | − k+ 1) is not a divisor of|H |, then(H ; ◦)
is not locally k-transitive onΩi.

For a local action groupP on Ω̃ with Ω̃ =
m⋃

i=1
Ωi, if there is an integeri, 1 ≤ i ≤ m

such that the action ofP onΩi is primitive, we say it is alocally primitive groupon Ω̃.

The following condition for locally primitive group is by Theorems 2.5.4.

Theorem2.6.3 LetP be a local action group oñΩ =
m⋃

i=1
Ωi with H < P. Then(H ; ◦)

is locally primitive if and only if there is an integer l, 1 ≤ l ≤ m such thatH action on

Ωl is transitive andHa is maximal for∀a ∈ Ωl.

2.6.2 Action Extended Group. Conversely, letP be a permutation group action onΩ,

∆ a set with∆ ∩ Ω = ∅. A permutation group̃P action onΩ ∪ ∆ is anaction extended

of P onΩ if (P̃)∆ =P, andk-transitive extendedor primitive extendedif P̃ action on

Ω∪∆ is k-transitive for an integerk ≥ 1 or primitive. Particularly, if|∆| = 1, such a action

extended group is calledone-point extendedonP.

The following result is simple.

Theorem 2.6.4 LetP be a permutation group action onΩ, ∆ ∩Ω = ∅, k ≥ 1 an integer

andP̃ an extension ofP action on∆ ∪Ω. If

(1) P̃ is k-transitive on∆;

(2) there are k elements x1, x2, · · · , xk ∈ ∆ such that for l elements y1, y2, · · · , yl ∈ Ω,

where1 ≤ l ≤ k there exists an elementπl ∈ P̃ with

yπl
i = xi f or 1 ≤ i ≤ l but xπi = xi i f l + 1 ≤ i ≤ k,

hold, thenP̃ is k-transitive extended on∆ ∪ Ω.

Proof Let xi , yi , 1 ≤ i ≤ k be 2k elements inΩ ∪ ∆. Firstly, we prove that for any

choice ofx1, x2, · · · , xk ∈ Ω∪∆, there always exists an elementθ ∈ P̃ such that allxθi ∈ ∆
for 1 ≤ i ≤ k. If x1, x2, · · · , xk ∈ ∆, there are no words need to say. Not loss of generality,

we assume thatx1, x2, · · · , xs ∈ Ω but xs+1, xs+2, · · · , xk ∈ ∆ for an integer 1≤ s≤ k. Then

by the assumption (2), there is an elementπs ∈ P̃ such thatxπs
i ∈ ∆ for 1 ≤ i ≤ s but

xπs
i = xi for s+ 1 ≤ i ≤ k. Whence,xπs

i ∈ ∆ for 1 ≤ i ≤ k, i.e.,θ = πs is for our objective.

Similarly, there also exists an elementτ ∈ P̃ such thatyτi ∈ ∆ for 1 ≤ i ≤ k.
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Applying the assumption (1), there is an elementπ ∈ P̃ such that (xθi )
π = yτi for

integers 1≤ i ≤ k. Consequently, we know that

xθπτ
−1

i = yi for 1 ≤ i ≤ k.

This completes the proof. �

Particularly, if k = 1, we get the following conclusion for transitive extended by

Theorem 2.6.4.

Corollary 2.6.2 Let P be a permutation group action onΩ, ∆ ∩ Ω = ∅ and P̃ an

extension ofP action on∆ ∪Ω. If

(1) P̃ is transitive on∆;

(2) there is one element x∈ ∆ such that for any element y∈ Ω, there exists an

elementπ ∈ P̃ with yπ = x hold,

thenP̃ is transitive extended on∆ ∪Ω.

Furthermore, ifP̃ is one-point extended of̃P, we get the following result.

Corollary 2.6.3 Let P̃ be an one-point extension ofP action onΩ by x < Ω. For

∀y ∈ Ω, if there exists an elementπ ∈ P̃ such that yπ = x, thenP̃ is transitive extended

of P.

These conditions in Corollaries 2.6.2–2.6.3 is too strong. In fact, we improve condi-

tions in them as in the following result.

Theorem 2.6.5 LetP be a permutation group action onΩ with orbitsB1,B2, · · · ,Bm,

∆ ∩Ω = ∅ and

P̃ = 〈P; Q〉 ,

with Q = {(x, yi), 1 ≤ i ≤ m; (x′, z), x′ ∈ ∆, x′ , x}, where x∈ ∆, yi ∈ Bi, z = x or yi

for 1 ≤ i ≤ m. ThenP̃ is transitive extended. Furthermore, ifP is transitive onΩ or

∆ = {x}, i.e.,P̃ is one-point extension ofP, then

P̃ = 〈P; (x, y), (x′, z), x′ ∈ ∆, x′ , x〉 or 〈P; (x, yi), 1 ≤ i ≤ m〉

with y ∈ Ω, z= x or y is transitive extended ofP onΩ ∪ ∆ or Ω ∪ {x}.

Proof We only prove the first assertion since all others are then followed.
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Firstly, for ∀zi ∈ Bi , zj ∈ B j, let zσ1
i = yi and zσ2

j = yj, σi, σ j ∈ P. Then

z
σi (x,yi )(x,yj )σ j

i = zj. Now if x1, x2 ∈ ∆, by definitionx(x1,x)(x2,x)
1 = x2, or x(x1,x)(x,yi )(yi ,x2)

1 = x2,

or x(x1,yi )(x2,yi )
1 = x2, or x

(x1,yi )(yi ,x)(x,yj )(yj ,x2)
1 = x2 if ( x1, x), (x2, x), or (x1, x), (x, yi), (yi, x2), or

(x1, yi), (x2, yi), or (x1, yi), (yi , x), (x, yj), (yj, x2) ∈ P̃. Finally, if xi ∈ ∆ andzj ∈ B j, let

xσi = x andzςj = yj. Thenx
σ(x,yj )ς
i = zj.

Therefore,P̃ is transitive extended onΩ ∪ ∆. �

The k-transitive number̟ tran
k (P;∆) of a permutation groupP action onΩ by a

set∆ with ∆ ∩ Ω = ∅ is defined to be the minimum number of involutions appeared in

permutations presented by product of inventions added toP such thatP̃ is k-transitive

extended ofP onΩ∪∆. Particularly, ifk = 1, we abbreviate̟ tran
k (P;∆) to̟tran(P;∆).

We know the number̟ (P;∆) in the following result.

Theorem 2.6.6 Let P be a permutation group action onΩ with an orbital set Orb(Ω),

∆ ∩ Ω = ∅ andP̃ an extended action ofP on∆ ∪Ω. Then

̟tran(P;∆) = |∆| + |Orb(Ω)| − 1.

Furthermore, ifP is transitive orP̃ is one-point extension ofP, then

̟tran(P;∆) = |∆| or |Orb(Ω)|.

Proof Let x ∈ ∆ ∪ Ω be a chosen element. denoted byA[x] all elements determined

by

A[x] = { y| xπ = y, ∀π ∈ P̃}.

If P̃ is a transitive extended action ofP on∆∪Ω, there must beA[x] = ∆∪Ω. Enumer-

ating all inventions appeared in permutationsπ presented by product of inventions such

thatxπ = y ∈ A[x], we know that

̟tran(P;∆) ≥ |∆| + |Orb(Ω)| − 1.

Applying Theorem 2.6.5, we get that

̟tran(P;∆) ≤ |∆| + |Orb(Ω)| − 1.

Whence,

̟tran(P;∆) = |∆| + |Orb(Ω)| − 1.
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Notice that|Orb(Ω)| = 1 or |∆| = 1 if P is transitive orP̃ is one-point extension ofP.

We therefore find that

̟tran(P;∆) = |∆| or |Orb(Ω)|

if P is transitive orP̃ is one-point extended. �

Now we turn our attention to primitive extended groups. Applying Theorem 2.5.3,

we have the following result.

Theorem 2.6.7 Let P be a permutation group action onΩ and∆ a nonempty set with

∆ ∩ Ω = ∅. Then there exist primitive extended permutation groupsP̃ of P action on

Ω ∪ ∆ if |∆| ≥ 2 or |∆| = 1 butP is transitive onΩ.

Proof Let B1,B2, · · · ,Bm be orbits ofP action onΩ. Define

P̃ = 〈P; (x, yi), 1 ≤ i ≤ m; (x′, x), x′ ∈ ∆, x′ , x〉 ,

wherex ∈ ∆, yi ∈ Bi. ThenP̃ is 2-transitive extended ofP by Theorem 2.6.4 if |∆| ≥ 2.

Notice thatP̃x = P. If ∆ = {x} andP is transitive onΩ, we also know thatP̃ is

2-transitive extended ofP by Theorem 2.2.3. Whence, we know that̃P is primitive

extended ofP onΩ ∪ ∆ by Theorem 2.5.3 in each case. �

2.6.3 Action MultiGroup. Let P̃ be a permutation multigroup action oñΩ with P̃ =
m⋃

i=1
Pi , Ω̃ =

m⋃
i=1
Ωi and for each integeri, 1 ≤ i ≤ m, the permutation groupPi acts onΩi.

Such a permutation multigroup̃P is said to beglobally k-transitivefor an integerk ≥ 1

if for any twok-tuplesx1, x2, · · · , xk ∈ Ωi andy1, y2, · · · , yk ∈ Ω j, where 1≤ i, j ≤ m, there

are permutationsπ1, π2, · · · , πn such that

xπ1π2···πn
1 = y1, xπ1π2···πn

2 = yi , · · · , xπ1π2···πn
k = yk.

For simplicity, we abbreviate the globally 1-transitive tothatglobally transitiveof a per-

mutation multigroup.

Remark 2.6.1: There are no meaning if we define the globallyk-transitive on twok-

tuplesx1, x2, · · · , xk ∈ Ω̃, y1, y2, · · · , yk ∈ Ω̃ in a permutation multigroup̃P because there

are no definition for the actionsxπl if xl < Ωi butπ ∈Pi , 1 ≤ i ≤ m, where 1≤ l ≤ k.

Theorem 2.6.8 Let P̃ be a permutation multigroup action oñΩ with P̃ =
m⋃

i=1
Pi , Ω̃ =

m⋃
i=1
Ωi, where each permutation groupPi transitively acts onΩi for each integers1 ≤ i ≤
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m. ThenP̃ is globally transitive oñΩ if and only if for any integer i, 1 ≤ i ≤ m, there

exists an integer j, 1 ≤ j ≤ m, j , i such that

Ωi

⋂
Ω j , ∅.

Proof If P̃ is globally transitive action oñΩ, by definition forx ∈ Ωi andy < Ωi,

1 ≤ i ≤ m, there are elementsπ1, π2, · · · , πn ∈ P̃ such that

xπ1π2···πn = y.

Not loss of generality, we assumeπ1, π2, · · · , πl−1 ∈ Pi butπl , πl+1, · · · , πn < Pi, i.e., l be

the least integer such thatπl < Pi. Let πl ∈ P j. Notice thatPi, P j act onΩi andΩ j,

respectively. We get thatxπ1π2···πi ∈ Ωi ∩ Ω j, i.e.,

Ωi

⋂
Ω j , ∅.

Conversely, if for any integeri, 1 ≤ i ≤ m, there always exists an integerj, 1 ≤ j ≤
m, j , i such that

Ωi

⋂
Ω j , ∅,

let x ∈ Ωi andy < Ωi. Then there exist integersl1, l2, · · · , ls such that

Ωi

⋂
Ωl1 , ∅, Ωl1

⋂
Ωl2 , ∅, · · · ,Ωls−1

⋂
Ωls , ∅.

Let x, x1 ∈ Ωi
⋂
Ωl1, x2 ∈ Ωl1

⋂
Ωl2, · · ·, xs ∈ Ωls−1

⋂
Ωls, y ∈ Ωls andπ1 ∈ P1, π2 ∈ Pl1,

· · ·, πs−1 ∈ Pls−1, πs ∈ Pls such thatxπ1 = xl1, xπ2
l1
= xl2,· · ·, xπs−1

ls−1
= xls, xπs

ls
= y by the

transitivity ofPi, 1 ≤ i ≤ m. Therefore, we find that

xπ1π2···πs = y.

This completes the proof. �

The condition of transitivity on each permutationPi , 1 ≤ i ≤ m in Theorem 2.6.8 is

not necessary for the globally transitive of̃P on Ω̃, such as those shown in the following

example.

Example2.6.2 LetP̃ be a permutation multigroup action oñΩ with

P̃ =P1

⋃
P2 and Ω̃ = {1, 2, 3, 4, 5, 6, 7, 8}

⋃
{1, 2, 5, 6, 9, 10, 11, 12},
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whereP1 = 〈(1, 2, 3, 4), (5, 6, 7, 8)〉 andP2 = 〈(1, 5, 9, 10), (2, 6, 11, 12)〉, i.e.,

P1 = {1P1, (13)(24), (1, 2, 3, 4), (1, 4, 3, 2),

(5, 7)(6, 8), (5, 8, 7, 6), (5, 6, 7, 8),

(13)(24)(5, 7)(6, 8), (13)(24)(5, 6, 7, 8), (13)(24)(5, 8, 7, 6)

(1, 2, 3, 4)(5, 7)(6, 8), (1, 2, 3, 4)(5, 6,7,8), (1,2, 3,4)(5, 8, 7,6)

(1, 4, 3, 2)(5, 7)(6, 8), (1, 4, 3, 2)(5, 6,7,8), (1,4, 3,2)(5, 8, 7,6)}

and

P2 = {1P2, (1, 9)(5, 10), (1, 5, 9, 10), (1, 10, 9, 5)

(2, 11)(6, 12), (2, 6, 11, 12), (2, 12, 11, 6)

(1, 9)(5, 10)(2, 11)(6, 12), (1, 9)(5, 10)(2, 6, 11, 12), (1, 9)(5,10)(2, 12, 11, 6)

(1, 5, 9, 10)(2, 11)(6, 12), (1, 5, 9, 10)(2, 6,11,12), (1,5, 9, 10)(2, 12,11,6)

(1, 10, 9, 5)(2, 11)(6, 12), (1, 10, 9, 5)(2, 6,11,12), (1,10,9, 5)(2, 12,11,6).

Calculation shows that̃P is transitive oñΩ, i.e., for any element, for example 1∈ Ω̃,

1P̃ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Generally, we know the following result on the globally transitive of permutation

multigroup, a generalization of Theorem 2.6.8 motivated by Example 2.6.2.

Theorem 2.6.9 Let P̃ be a permutation multigroup action oñΩ with P̃ =
m⋃

i=1
Pi , Ω̃ =

m⋃
i=1
Ωi, where each permutation groupPi acts onΩi with orbitsBi j , 1 ≤ j ≤ |Orb(Ωi)| for

integers1 ≤ i ≤ m. ThenP̃ is globally transitive oñΩ if and only if for integer i, j, 1 ≤
i ≤ m, 1 ≤ j ≤ |Orb(Ωi)|, there exist integers k, 1 ≤ k ≤ m, 1 ≤ l ≤ |Orb(Ωk)|, k , i such

that

Ωi j

⋂
Ωkl , ∅.

Proof Define a multiset

Ω̃ =

m⋃

i=1

Ωi =

m⋃

i=1


|Orb(Ωi )|⋃

j=1

Bi j

 .

ThenPi acts on eachBi j is transitive by definition for 1≤ i ≤ m, 1 ≤ j ≤ |Orb(Ωi)| and

the result is followed by Theorem 2.6.8. �
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Counting elements in eachΩi , 1 ≤ i ≤ m, we immediately get the following conse-

quence by Theorem 2.6.9.

Corollary 2.6.3 Let P̃ be a permutation multigroup globally transitive action oñΩ

with P̃ =
m⋃

i=1
Pi, Ω̃ =

m⋃
i=1
Ωi, where each permutation groupPi acts onΩi with orbits

Bi j , 1 ≤ j ≤ |Orb(Ωi)| for integers1 ≤ i ≤ m. Then for any integer i, 1 ≤ i ≤ m,

|Ω̃ \Ωi | ≥ |Orb(Ωi)|,

particularly, if m= 2 then

|Ω1| ≥ |Orb(Ω2)| and |Ω2| ≥ |Orb(Ω1)|.

A permutation multigroupP̃ =
m⋃

i=1
Pi action onΩ̃ =

m⋃
i=1

is said to beglobally

primitive if there are no proper subsetsA ⊂ Ω̃, |A| ≥ 2 such that eitherA = Aπ or

A∩ Aπ = ∅ for ∀π ∈ P̃ providedaπ existing for∀a ∈ A.

Theorem 2.6.10 A permutation multigroup̃P =
m⋃

i=1
Pi action onΩ̃ =

m⋃
i=1

is globally

primitive if and only ifPi action onΩi is primitive for any integer1 ≤ i ≤ m.

Proof If P̃ action onΩ̃ is globally primitive, by definition we know that there are

no proper subsetsA ⊂ Ωi , |A| ≥ 2 such that eitherA = Aπ or A ∩ Aπ = ∅ for ∀π ∈ Pi,

where 1≤ i ≤ m. Whence, eachPi primitively acts onΩi.

Conversely, if eachPi action onΩi is primitive for integers 1≤ i ≤ m, then there

are no proper subsetsA ⊂ Ωi, |A| ≥ 2 such that eitherA = Aπ or A∩ Aπ = ∅ for ∀π ∈Pi

for 1 ≤ i ≤ m by definition. Now letπ ∈ Pi for an integeri, 1 ≤ i ≤ m. Notice thatAπ

is existing for∀A ⊂ Ω̃ if and only if A ⊂ Ωi. Consequently,̃P action onΩ̃ is globally

primitive by definition. �

Combining Theorems 2.6.10 with 2.5.4, we get the following consequence.

Corollary 2.6.4 Let P̃ =
m⋃

i=1
Pi be a permutation multigroup action oñΩ =

m⋃
i=1

, where

Pi is transitive and(Pi)a is maximal for∀a ∈ Ωi, 1 ≤ i ≤ m. ThenP̃ is globally

primitive action oñΩ.

§2.7 REMARKS

2.7.1 There are many monographs on action groups such as those of [Wie1] and [DiM1].

In fact, every book on group theory partially discusses action groups with applications.
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These materials in Sections 2.1, 2.2 2.3 and 2.5 are mainly extracted from [Wan1], [Rob1]

and [DiM1], particularly, the O’Nan-Scott theorem on primitive groups.

2.7.2 A central but difficult problem in group theory is to classify groups of ordern for

any integern ≥ 1. The Sylow’s theorem onp-groups enables one to see a glimmer on

classifyingp-groups. However, this problem is also difficult in general. Today, we can

only find the classification ofp-groups with small power (See [Xum1] and [Zha1] for

details). In fact, these techniques used for classifyingp-groups are nothing but the group

actions, i.e., application of action groups.

2.7.3 These permutation multigroups in Section 2.6 is in fact action multigroups, a kind

of Smarandache multi-spaces first discussed in [Mao21] and [Mao25]. These concep-

tions such as those of locallyk-transitive, locally primitive,k-transitive extended, prim-

itive extended, globally transitive and globally primitive are first presented in this book.

Certainly, there are many open problems on permutation multigroups, for example,for a

permutation groupP action onΩ, is there always an extended primitive action ofP on

Ω ∪ ∆ for a set∆, ∆ ∩Ω = ∅? Can we characterize such permutation groupsP or such

sets∆?

2.7.4 Theorems 2.6.8 and 2.6.9 completely determine the globally transitive multigroups.

However, we can also find a more simple characterization by graphs in Chapter 3, in where

we clarify the property of globally transitive is nothing but the connectedness on graphs.

In fact, these conditions in Theorems 2.6.8 and 2.6.9 are essentially enables one to find a

spanning tree, a kind of most simple connected graph onΩ̃.



CHAPTER 3.

Graph Groups

An immediate applying field of action groups is to that of graphs for them

easily to handle by intuition. By definition, a graph group isa subgroup of

the automorphism group of a graph viewed as a permutation group of its ver-

tices. In fact, graphs has a nice mathematical structure on objectives. Usu-

ally, the investigation on such structures enables one to find new important

results in mathematics. For example, the well-knownHigman-Sims group,

one of these 26 sporadic simple groups was found by that of graph groups

in 1968. Topics covered in the first 4 sections including graphs with opera-

tions, graph properties with results, Smarandachely graphproperties, graph

groups, vertex-transitive graphs, edge-transitive graphs, arc-transitive graphs,

semi-arc groups with semi-arc transitive graph,· · ·, etc.. A graph is itself

a Smarandache multi-space by definition, which naturally provide us a nice

source for get multigroups. In Section 3.5, we show how to get mutligroups

on graphs, also find new graph invariants by that of graph multigroups, which

will be useful for research graphs and getting localized symmetric graphs.
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§3.1 GRAPHS

3.1.1 Graph. A graph Gis an ordered 3-tuple (V,E; I ), whereV,E are finite sets,V , ∅
and I : E → V × V. Call V the vertex setandE the edge setof G, denoted byV(G)

and E(G), respectively. An elementsv ∈ V(G) is incidentwith an elemente ∈ E(G)

if I (e) = (v, x) or (x, v) for an x ∈ V(G). Usually, if (u, v) = (v, u), denoted byuv or

vu ∈ E(G) for ∀(u, v) ∈ E(G), thenG is called to be a graph without orientation and

abbreviated tograph for simplicity. Otherwise, it is called to be a directed graph with an

orientationu→ v on each edge (u, v).

The cardinal numbers of|V(G)| and|E(G)| are called itsorderandsizeof a graphG,

denoted by|G| andε(G), respectively.

Let G be a graph. We can represent a graphG by locating each vertexu in G by a

point p(u), p(u) , p(v) if u , v and an edge (u, v) by a curve connecting pointsp(u) and

p(v) on a planeR2, wherep : G→ P is a mapping from theV(G) to R2.

For example, a graphG = (V,E; I ) with V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4, e5,

e6, e7, e8, e9, e10} andI (ei) = (vi , vi), 1 ≤ i ≤ 4; I (e5) = (v1, v2) = (v2, v1), I (e8) = (v3, v4) =

(v4, v3), I (e6) = I (e7) = (v2, v3) = (v3, v2), I (e8) = I (e9) = (v4, v1) = (v1, v4) can be drawn

on a plane as shown in Fig.3.1.1.

v1 v2

v3v4

e1 e2

e3e4

e5

e6e7

e8

e9 e10

Fig. 3.1.1

LetG = (V,E; I ) be a graph. For∀e ∈ E, if I (e) = (u, u), u ∈ V, thene is called aloop,

For example, edgese1 − e4 in Fig.3.1.1. For non-loop edgese1, e2 ∈ E, if I (e1) = I (e2),

thene1, e2 are calledmultiple edgesof G. In Fig.3.1.1, edgese6, e7 ande9, e10 are multiple

edges. A graph issimpleif it is loopless without multiple edges, i.e.,I (e) = (u, v) implies

thatu , v, andI (e1) , I (e2) if e1 , e2 for ∀e1, e2 ∈ E(G). In the case of simple graphs, an

edge (u, v) is commonly abbreviated touv.
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A walk of a graphG is an alternating sequence of vertices and edgesu1, e1, u2, e2,

· · · , en, un with ei = (ui , ui+1) for 1 ≤ i ≤ n. The numbern is called thelength of the

walk. A walk is closedif u1 = un+1, andopened, otherwise. For example, the sequence

v1e1v1e5v2e6v3e3v3e7v2e2v2 is a walk in Fig.1.3.1. A walk is a trail if all its edges are

distinct and apath if all the vertices are distinct also. A closed path is usually called a

circuit or cycle. For example,v1v2v3v4 andv1v2v3v4v1 are respective path and circuit in

Fig.3.1.1.

A graphG = (V,E; I ) is connectedif there is a path connecting any two vertices in

this graph. In a graph, a maximal connected subgraph is called its acomponent.

Let G be a graph. For∀u ∈ V(G), theneighborhood NG(u) of the vertexu in G is

defined byNG(u) = {v|∀(u, v) ∈ E(G)}. The cardinal number|NG(u)| is called thevalency

of vertex uin G and denoted byρG(u). A vertexv with ρG(v) = 0 is anisolated vertex

andρG(v) = 1 apendent vertex. Now we arrange all vertices valency ofG as a sequence

ρG(u), ρG(v), · · · , ρG(w) with ρG(u) ≥ ρG(v) ≥ · · · ≥ ρG(w), and denote∆(G) = ρG(u),

δ(G) = ρG(w) and call then the maximum or minimum valency ofG, respectively. This

sequenceρG(u), ρG(v), · · · , ρG(w) is usually called thevalency sequenceof G. If ∆(G) =

δ(G) = r, such a graphG is called a r-regular graph. For example, the valency sequence

of graph in Fig.3.1.1 is (5, 5, 5, 5), which is a 5-regular graph.

By enumerating edges inE(G), the following equality is obvious.

∑

u∈V(G)

ρG(u) = 2|E(G)|.

A graphG with a vertex setV(G) = {v1, v2, · · · , vp} and an edge setE(G) = {e1, e2, · · · ,
eq} can be also described by those of matrixes. One such matrix isa p× q adjacency ma-

trix A(G) = [ai j ]p×q, whereai j = |I−1(vi , vj)|. Thus, the adjacency matrix of a graphG is

symmetric and is a 0, 1-matrix having 0 entries on its main diagonal ifG is simple. For

example, the matrixA(G) of the graph in Fig.3.1.1 is

A(G) =



1 1 0 2

1 1 2 0

0 2 1 1

2 0 1 1



LetG1 = (V1,E1; I1) andG2 = (V2,E2; I2) be two graphs. They areidentical, denoted

by G1 = G2 if V1 = V2,E1 = E2 and I1 = I2. If there exists a 1− 1 mappingφ : E1 →
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E2 andφ : V1 → V2 such thatφI1(e) = I2φ(e) for ∀e ∈ E1 with the convention that

φ(u, v) = (φ(u), φ(v)), then we say thatG1 is isomorphicto G2, denoted byG1 � G2 and

φ an isomorphismbetweenG1 andG2. For simple graphsH1,H2, this definition can be

simplified by (u, v) ∈ I1(E1) if and only if (φ(u), φ(v)) ∈ I2(E2) for ∀u, v ∈ V1.

For example, letG1 = (V1,E1; I1) andG2 = (V2,E2; I2) be two graphs with

V1 = {v1, v2, v3}, E1 = {e1, e2, e3, e4},

I1(e1) = (v1, v2), I1(e2) = (v2, v3), I1(e3) = (v3, v1), I1(e4) = (v1, v1)

and

V2 = {u1, u2, u3}, E2 = { f1, f2, f3, f4},

I2( f1) = (u1, u2), I2( f2) = (u2, u3), I2( f3) = (u3, u1), I2( f4) = (u2, u2),

i.e., those graphs shown in Fig.3.1.2.

u1

v2v3

e1

e2

e3

e4

G1

v1

u2u3

f1 f2

f3

f4

G2

Fig. 3.1.2

Define a mappingφ : E1
⋃

V1 → E2
⋃

V2 by φ(e1) = f2, φ(e2) = f3, φ(e3) =

f1, φ(e4) = f4 and φ(vi) = ui for 1 ≤ i ≤ 3. It can be verified immediately that

φI1(e) = I2φ(e) for ∀e ∈ E1. Therefore,φ is an isomorphism betweenG1 andG2, i.e.,

G1 andG2 are isomorphic.

A graphH = (V1,E1; I1) is asubgraphof a graphG = (V,E; I ) if V1 ⊆ V, E1 ⊆ E

andI1 : E1 → V1 × V1. We useH ≺ G to denote thatH is a subgraph ofG. For example,

graphsG1,G2,G3 are subgraphs of the graphG in Fig.3.1.3.

u1 u2

u3u4

G

u1 u2

u3 u4

u1 u2

u3 u4

G1 G2 G3

Fig. 3.1.3
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For a nonempty subsetU of the vertex setV(G) of a graphG, the subgraph〈U〉 of G

inducedby U is a graph having vertex setU and whose edge set consists of these edges

of G incident with elements ofU. A subgraphH of G is calledvertex-inducedif H � 〈U〉
for some subsetU of V(G). Similarly, for a nonempty subsetF of E(G), the subgraph〈F〉
induced byF in G is a graph having edge setF and whose vertex set consists of vertices

of G incident with at least one edge ofF. A subgraphH of G is edge-inducedif H � 〈F〉
for some subsetF of E(G). In Fig.3.1.3, subgraphsG1 andG2 are both vertex-induced

subgraphs〈{u1, u4}〉, 〈{u2, u3}〉 and edge-induced subgraphs〈{(u1, u4)}〉, 〈{(u2, u3)}〉. For

a subgraphH of G, if |V(H)| = |V(G)|, thenH is called aspanning subgraphof G. In

Fig.3.1.3, the subgraphG3 is a spanning subgraph of the graphG.

K(4, 4) K6

Fig.3.1.4

A graphG is n-partite for an integern ≥ 1, if it is possible to partitionV(G) into n

subsetsV1,V2, · · · ,Vn such that every edge joints a vertex ofVito a vertex ofV j, j , i, 1 ≤
i, j ≤ n. A complete n-partite graph Gis such ann-partite graph with edgesuv ∈ E(G) for

∀u ∈ Vi andv ∈ V j for 1 ≤ i, j ≤ n, denoted byK(p1, p2, · · · , pn) if |Vi | = pi for integers

1 ≤ i ≤ n. Particularly, if|Vi | = 1 for integers 1≤ i ≤ n, such a completen-partite graph

is calledcomplete graphand denoted byKn. In Fig.3.1.4, we can find the bipartite graph

K(4, 4) and the complete graphK6. Usually, a complete subgraph of a graph is called a

clique, and its ak-regular vertex-spanning subgraph also called ak-factor.

3.1.2 Graph Operation. A union G1
⋃

G2 of graphsG1 with G2 is defined by

V(G1

⋃
G2) = V1

⋃
V2, E(G1

⋃
G2) = E1

⋃
E2, I (E1

⋃
E2) = I1(E1)

⋃
I2(E2).

A graph consists ofk disjoint copies of a graphH, k ≥ 1 is denoted byG = kH. As an

example, we find that

K6 =

5⋃

i=1

S1.i
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for graphs shown in Fig.3.1.5 following

1

2 3
4

5
6

2

3
4

5

6
3

4
5

6
4

5

6
5

6

S1.5 S1.4 S1.3 S1.2 S1.1

Fig. 3.1.5

and generally,Kn =
n−1⋃
i=1

S1.i. Notice thatkG is a multigraph with edge multiplek for any

integerk, k ≥ 2 and a simple graphG.

A complementG of a graphG is a graph with vertex setV(G) such that vertices are

adjacent inG if and only if these are not adjacent inG. A join G1 +G2 of G1 with G2 is

defined by

V(G1 +G2) = V(G1)
⋃

V(G2),

E(G1 +G2) = E(G1)
⋃

E(G2)
⋃{(u, v)|u ∈ V(G1), v ∈ V(G2)}

and

I (G1 +G2) = I (G1)
⋃

I (G2)
⋃{I (u, v) = (u, v)|u ∈ V(G1), v ∈ V(G2)}.

Applying the join operation, we know thatK(m, n) � Km + Kn. A Cartesian product

G1×G2 of graphsG1 with G2 is defined byV(G1×G2) = V(G1)×V(G2) and two vertices

(u1, u2) and (v1, v2) of G1×G2 are adjacent if and only if eitheru1 = v1 and (u2, v2) ∈ E(G2)

or u2 = v2 and (u1, v1) ∈ E(G1). For example,K2 × P6 is shown in Fig.3.1.6 following.

u

v

1 2 3 4 5
K2

6

P6

K2 × P6

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

Fig.3.1.6
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3.1.3 Graph Property. A graph propertyP is in fact a graph family

P = {G1,G2,G3, · · · ,Gn, · · ·}

closed under isomorphism, i.e.,Gϕ ∈ P for any isomorphism on a graphG ∈ P. We

alphabetically list some graph properties and results without proofs following.

Colorable. A coloring of a graphG by colors inC is a mappingϕ : C →
V(G) ∪ E(G) such thatϕ(u) , ϕ(v) if u is adjacent or incident withv in G. Usually, a

coloringϕ|V(G) : C → V(G) is called avertex coloringandϕ|E(G) : C → E(G) anedge

coloring. A graphG is n-colorableif there exists a color setC for an integern ≥ |C |. The

minimum numbern for which a graphG is vertexn-colorable, edgen-colorable is called

the vertex chromatic numberor edge chromatic numberand denoted byχ(G) or χ1(G),

respectively. The following result is well-known for colorable of a graph.

Theorem 3.1.1 Let G be a connected graph. Then

(1) χ(G) ≤ ∆(+) + 1 and with the equality hold if and only if G is either an odd

circuit or a complete graph; (Brooks theorem)

(2) χ1(G) = ∆(G) or ∆(G) + 1; (Vizing theorem)

Theorem 3.1.1(2) enables one to classify graphs into Class 1, Class 2 byχ1(G) =

∆(G) or χ1(G) = ∆(G) + 1, respectively.

Connectivity. For an integerk ≥ 1, a graphG is said to bek-connectedif removing

elements inX ⊂ V(G)∪E(G) with |X| = k still remains a connected graphG−X. Usually,

we callG to bevertex k-connectedor edge k-connectedif X ⊂ V(G) or X ⊂ E(G) and

abbreviate vertexk-connected tok-connectedin reference. The minimum cardinal number

of X ⊂ V(G) or X ⊂ E(G) is defined to be theconnectivityor edge-connectivityof G,

denoted respective byκ(G), κ1(G). A fundamental result for characterizing connectivity

of a graph is the Menger theorem following.

Theorem 3.1.2(Menger) Let u and v be non-adjacent vertices in a graph G. Then the

minimum number of vertices that separate u and v is equal to that the maximum number

of internally disjoint u− v paths in G.

Then we can characterizek-connected ork-edge-connected graphs following.

Theorem 3.1.3 Let G be a non-trivial graph. Then
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(1) G is k-connected if and only if for∀u, v ∈ V(G), u , v, there are at least k

internally disjoint u− v paths in G. (Whinety)

(2) G is k-edge-connected if and only if for∀u, v ∈ V(G), u , v, there are at least k

edge-disjoint u− v paths in G.

Covering. A subsetW ⊂ V(G) ∪ E(G) is independentif any two element inW

is non-adjacent or non-incident. A vertex and an edge in a graph are said to becover

each other if they are incident and acoverof G is such a subsetU ⊂ V(G) ∪ E(G) such

that any element inV(G) ∪ E(G) \ U is incident to an element inU. If U ⊂ V(G) or

U ⊂ E(G), such an independent set is calledvertex independentor edge independentand

such a covering avertex coveror edge cover. Usually, we denote the minimum cardinality

of vertex cover, edge cover of a graphG by α(G) anα1(G) and the maximum cardinality

of vertex independent set, edge independent set byβ(G) andβ1(G), respectively.

Theorem 3.1.4(Gallai) Let G be a graph of order p without isolated vertices. Then

α(G) + β(G) = p and α1(G) + β1(G) = p.

A dominating set Dof a graphG is such a subsetD ⊂ V(G) ∪ E(G) such that every

element is adjacent to an element inD. If D ⊂ V(G) or D ⊂ E(G), such a dominating set

D of G is called avertexor edge dominating set. The minimum cardinality of vertex or

edge dominating set is denoted byσ(G) or σ1(G), called thevertexor edge dominating

number, respectively. The following is obvious by definition.

Theorem 3.1.5 Let G be a graph. Then

σ(G) ≤ α(G) and σ1(G) ≤ β1(G).

Decomposable.A decompositionof a graphG is subgraphsHi; 1 ≤ i ≤ mof G such

thatHi = 〈Ei〉 for some subsetEi ⊂ E(G) with Ei ∩ E j = ∅ for j , i, 1 ≤ j ≤ m, usually

denoted by

G =
m⊕

i=1

Hi .

If everyHi is a spanning subgraph ofG, such a decomposition is called afactorizationof

G into factorsHi; 1 ≤ i ≤ m. Furthermore, if everyHi is k-regular, such a decomposition

is calledk-factorableand eachHi is ak-factor ofG.
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u1 u2

u3

u4u5

u6

v1 v2

v3v4

G1 G2

Fig.3.1.7

For example, we know that

G1 = H1

⊕
H2, and G2 = F1

⊕
F2

⊕
F3

for graphsG1, G2 in Fig.3.1.8, whereH1 = 〈u1u4, u2u3, u5u6〉, h2 = 〈u1u6, u2u5, u3u4〉
andF1 = 〈v1v2, v3v4〉, F2 = 〈v1v4, v2v3〉, F3 = 〈v1v3, v2v4〉. Notice that everyHi or Fi is

1-regular. Such a spanning subgraph in a graphG is called aperfect matchingof G.

Theorem 3.1.6(Tutte) A non-trivial graph G has a perfect matching if and only if for

every proper subset S⊂ V(G),

ω(G− S) ≤ |S|,

whereω(H) denotes the number of odd components in a graph H.

Theorem 3.1.7(König) Every k-regular bipartite graph with k≥ 1 is 1-factorable.

Theorem 3.1.8(Petersen)A non-trivial graph G is2-factorable if and only if G is2n-

regular for some integer n≥ 1.

Embeddable. A graphG is said to be embeddable into a topological spaceT if there

is a 1−1 continuous mappingf : G→ T with f (p) , f (q) if p, q < V(G). Particularly, if

T is a Euclidean planeR2, we say thatG is aplanar graph. In a planar graphG, its face

is defined to be that regionF in which any simple curve can be continuously deformed in

this region to a single pointp ∈ F. For example, the graph in Fig.3.1.8 is a planar graph.

v1 v2

v3v4

u1 u2

u3u4

Fig.3.1.8
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whose faces areF1 = u1u2v3u4u1, F2 = v1v2v3v4v1, F3 = u1v1v2u2u1, F4 = u2v2v3u3u2,

F5 = u3v3v4u4u3 andF6 = u4v4v1u1u4. It should be noted that each boundary of a face

in this planar graph is a circuit. Such an embedding graph is called astrong embedded

graph.

Theorem3.1.9(Euler) Let G be a planar graph with p vertices, q edges and r faces. Then

p− q+ r = 2.

An elementary subdivisionof a graphG is such a graph obtained fromG by removing

some edgee= uvand adding a new vertex and two edgesuw, vw. A subdivisionof a graph

G is a graph by a succession of elementary subdivision. Define agraphH homeomorphic

from that ofG if either H � G or H is isomorphic to a subdivision ofG. The following

result characterizes planar graphs.

Theorem 3.1.10(Kuratowski) A graph is planar if and only if it contains no subgraphs

homeomorphic with K5 or K(3, 3).

Theorem 3.1.11(The Four Color Theorem)Every planar graph is4-colorable.

Travelable. A graphG is eulerianif there is a closed trail containing all edges and

is hamiltonianif there is a circuit containing all vertices ofG. For example, the graph in

Fig.3.1.6 is with a hamiltonian circuitC = v1v2v3v4u4u3u2u2v1, but it is not eulerian. We

know a necessary and sufficient condition for eulerian graphs following.

Theorem3.1.12(Euler)A graph G is eulerian if and only ifρG(v) ≡ 0(mod2), ∀v ∈ V(G).

But for hamiltonian graphs, we only know some sufficient conditions. For example,

the following results.

Theorem 3.1.13(Chvátal and Erdös)Let G be a graph with at least3 vertices. Ifκ(G) ≥
β(G), then G is hamiltonian.

A closure C(G) of a graphG is the graph obtained by recursively joining pairs of

non-adjacent vertices whose valency sum is at least|G|. Then we know the next result.

Theorem 3.1.14(Bondy and Chätal)A graph is hamiltonian if and only if its closure is

hamiltonian.

Theorem 3.1.15(Tutte) Every4-connected planar graph is hamiltonian.
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3.1.4 Smarandachely Graph Property. A graph propertyP is Smarandachelyif it

behaves in at least two different ways on a graph, i.e., validated and invalided, or only

invalided but in multiple distinct ways. Such a graph with atleast one Smarandachely

graph property is called aSmarandachely graph. Here, we only alphabetically list some

Smarandachely graph properties and results with some open problems following.

Smarandachely Coloring. Let Λ be a subgraph of a graphG. A Smarandachely

Λ-coloring of a graphG by colors inC is a mappingϕΛ : C → V(G) ∪ E(G) such

thatϕ(u) , ϕ(v) if u andv are elements of a subgraph isomorphic toΛ in G. Similarly,

a SmarandachelyΛ-coloring ϕΛ|V(G) : C → V(G) or ϕΛ|E(G) : C → E(G) is called

a vertex SmarandachelyΛ-coloring or anedge SmarandachelyΛ-coloring. A graphG

is Smarandachely nΛ-colorableif there exists a color setC for an integern ≥ |C |. The

minimum numbern for which a graphG is Smarandachely vertexnΛ-colorable, Smaran-

dachely edgen Λ-colorable is called thevertex Smarandachely chromaticΛ-numberor

edge Smarandachely chromaticΛ-numberand denoted byχΛ(G) or χΛ1 (G), respectively.

Particularly, ifΛ = P2, i.e., an edge, then a vertex SmarandachelyΛ-coloring or an edge

SmarandachelyΛ-coloring is nothing but the vertex coloring or edge coring of a graph.

This implies thatχΛ(G) = χ(G) andχΛ1 (G) = χ1(G) if Λ = P2. But in general, the

SmarandachelyΛ-coloring of a graphG is different from that of its coloring. For exam-

ple, χP2(Pn) = χ
P2
1 = 2, χPk(Pn) = k, χPk

1 (Pn) = k − 1 for any integer 1≤ k ≤ n and a

SmarandachelyP3-coloring onP7 can be found in Fig.3.1.9 following.

1 2 3 1 2 3 1

Fig.3.1.9

For the starS1,n and circuitCn for integers 1≤ k ≤ n, we can easily find that

χPk(S1,n) =



2 if k = 2,

n+ 1 if k = 3,

1 if 4 ≤ k ≤ n,

χ
Pk
1 (S1,n) =



1 if k = 2,

n if k = 3,

1 if 4 ≤ k ≤ n
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and

χPk(Cn) = χ
Pk
1 (Cn) =

= min{k+ (i − 1)+ si , 1 ≤ i ≤ n− k | n ≡ si(modk + i − 1), 0 ≤ si < k+ i − 1}.

The following result is known by definition.

Theorem 3.1.16 Let H be a connected graph. Then

(1) χH(nH) = |V(H)| and χH
1 (nH) = |E(H)|, particularly, χG(G) = |V(G)| and

χG
1 (G) = |E(G)|;

(2) χH(G) = χH
1 (G) = 1 if H ⊀ G.

Generally, we present the following problem.

Problem 3.1.1 For a graph G, determine the numbersχΛ(G) andχΛ1 (G) for subgraphs

Λ ≺ G.

Smarandachely Decomposition. Let P1 and P2 be graphical properties. A

Smarandachely(P1,P2)-decompositionof a graphG is a decomposition ofG into sub-

graphsG1,G2, · · · ,Gl ∈P such thatGi ∈P1 or Gi <P2 for integers 1≤ i ≤ l.

If P1 or P2 = {all graphs}, a Smarandachely (P1,P2)-decomposition of a graphG

is said to be aSmarandachelyP-decomposition. Particularly, ifE(Gi) ∩ E(G j) ≤ k and

∆(Gi) ≤ d for integers 1≤ i, j ≤ l, such a SmarandachelyP-decomposition is called a

Smarandache graphoidal (k, d)-coverof a graphG.

Furthermore, ifd = ∆(G) or k = |G|, i.e., a Smarandachely graphoidal (k,∆(G))-

cover withP = {path} or a Smarandachely graphoidal (k,∆(G))-cover withP = {tree}
is called aSmarandachely path k-coveror a Smarandache graphoidal tree d-coverof a

graphG for integersk, d ≥ 1. The minimum cardinalities of Smarandachely (P1,P2)-

decomposition and Smarandache graphoidal (k, d)-cover of a graphG are denoted by

ΠP1,P2(G), Π(k,d)
P (G), respectively.

Problem 3.1.3 For a graph G and propertiesP, P1, P2, determineΠP1,P2(G) and

Π
(k,d)
P (G).

We only know partially results for Problem 3.1.3. For example,

Π
(1,∆(G))
P (T) = π(T) =

k
2
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for a treeT with k vertices of odd degree and

Π
(1,∆(G))
P (Wn) =


6 if n = 4,⌊

n
2

⌋
+ 3 if n ≥ 5

for a wheelWn = K1 +Cn−1 appeared in references [SNM1]-[SNM2].

Smarandachely Embeddable. Let T1 andT2 be two topological spaces. A graph

G is said to beSmarandachely (T1,T2)-embeddableinto topological spacesT1 andT2 if

there exists a decompositionG = F
⊕

H1

⊕
H2, whereF is a subgraph ofG with a given

propertyP, H1,H2 are spanning subgraphs ofG with two 1− 1 continuous mappings

f : H1 → T1 andg : H2 → T2 such thatf (p) , f (q) andg(p) , g(q) if p, q < V(G).

Furthermore, ifT1 orT2 = ∅, i.e., a Smarandachely (T , ∅)-embeddable graphG is such a

graph embeddable inT if we remove a subgraph ofG with a propertyP. Whence, we

know the following result for Smarandachely embeddable graphs by definition.

Theorem 3.1.17 Let T be topological space, G a graph andP a graphical property.

Then G is Smarandachely embedable inT if and only if there is a subgraph H≺ G such

that G− H is embeddable inT .

Particularly, ifT is the Euclidean planeR2 andF a 1-factor, such a Smarandachely

embeddable graphG is called to be aSmarandachely planar graph. For example, al-

though the graphK3,3 is not planar, but it is a Smarandachely planar graph shown in

Fig.3.1.10, whereF = {u1v1, u2v2, u3v3}.

u1 u2 u3

v1
v2 v3

Fig.3.1.10

Problem 3.1.4 Let T be a topological space. Determine which graph G is Smaran-

dachelyT -embeddable.

The following result is an immediately consequence of Theorem 3.1.10.
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Theorem3.1.18 A graph G is Smarandachely planar if and only if there exists a1-factor

F ≺ G such that there are no subgraphs homeomorphic to K5 or K3,3 in G− F.

§3.2 GRAPH GROUPS

3.2.1 Graph Automorphism. LetG1 andG2 be two isomorphic graphs. IfG1 = G2 = G,

an isomorphism betweenG1 andG2 is called to be anautomorphismof G. It should be

noted that all automorphisms of a graphG form a group under the composition operation,

i.e.,φθ(x) = φ(θ(x)), wherex ∈ E(G)
⋃

V(G). Such a graph is called theautomorphism

groupof G and denoted by AutG.

G AutG order

Pn Z2 2

Cn Dn 2n

Kn Sn n!

Km,n(m, n) Sm× Sn m!n!

Kn,n S2[Sn] 2n!2

Table 3.2.1

It can be immediately verified that AutG ≤ Sn, wheren = |G|. In Table 3.2.1, we

present automorphism groups of some graphs. But in general,it is very hard to present

the automorphism group AutG of a graphG.

3.2.2 Graph Group. Let (Γ; ◦) be a group. Then (Γ; ◦) is said to be agraph groupif

there is a graphG such that (Γ, ◦) is isomorphic to a subgroup of AurG. Frucht proved

that for any finite group(Γ; ◦) there are always exists a graph G such thatΓ � AutG in

1938. Whence, the set of automorphism groups of graphs is equal to that of groups.

Let S ⊂ Γ with 1Γ < S andS−1 = {x−1|x ∈ S} = S. A Cayley graph G= Cay(Γ : S)

of Γ onS ⊂ Γ is defined by

V(G) = Γ;

E(G) = {(g, h)|g−1 ◦ h ∈ S}.

Then we know the following result.
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Theorem3.2.1 Let (Γ; ◦) be a finite group, S⊂ Γ,S−1 = S and1Γ < S . ThenLΓ ≤ AutX,

where X= Cay(Γ : S).

Proof For ∀g ∈ Γ, we prove that the left representationτg : x → g−1 ◦ x of g for

∀x ∈ Γ is an automorphism ofX. In fact, by

(g−1 ◦ x)−1 ◦ (g−1 ◦ y) = x−1 ◦ g ◦ g−1 ◦ y = x−1 ◦ y,

we know that

τg(x, y) = (τg(x), τg(y)),

i.e.,τg ∈ Aut(Cay(G : S)). Whence, we get thatLΓ ≤ Cay(Γ : S). �

A Cayley graph Cay(Γ : S) is called to benormal if LΓ ⊳ Aut(Cay(G : S)), which

was introduced by Xu for the study of arc-transitive or half-transitive graphs in [Xum2].

The importance of this conception on Cayley graphs can be found in the following result.

Theorem 3.2.2 A Cayley graphCay(Γ : S) of a finite group(Γ; ◦) on S⊂ Γ is normal if

and only ifAut(rmCay(Γ : S)) = LΓ ◦ Aut(Γ,S), whereAut(G,S) = {α ∈ AutΓ|Sα = S}.

Proof Notice that the normalizer ofLΓ in the symmetric groupSΓ is LΓ ◦AutΓ. We

get that

NAut(Cay(Γ:S))(LΓ) = LΓ ◦ AutΓ
⋂

Aut(Cay(Γ : S)) = LΓ ◦ (AutΓ
⋂

A1Γ).

That isNAut(Cay(Γ:S))(LΓ) = LΓ ◦ Aut(Γ,S). Whence, Cay(Γ : S) is normal if and only if

Aut(Cay(Γ : S)) = LΓ ◦ Aut(Γ,S). �

The following open problem presented by Xu in [Xum2] is important for finding the

automorphism group of a graph.

Problem 3.2.1 Determine all normally Cayley graphs for a finite group(Γ; ◦).

Today, we have know a few results partially answer Problem 3.2.1. Here we only list

some of them without proof. The first result shows that all finite groups have a normal

representation except for two special families.

Theorem 3.2.3([WWX1]) There is a normal Cayley graph for a finite group except for

groups Z4 × Z2 and Q8 × Zm
2 for m≥ 0.

For Abelian groups, we know the following result for the normality of Cayley graphs.
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Theorem3.2.4([YYHX]) Let X= Cay(Γ : S) be a connected Cayley graph of an Abelian

group (Γ; ◦) on S with the valency of X at most4. Then X is normal except for graphs

listed in Table3.2.2 following.

row Γ S X

1 Z4 Γ \ {1Γ} 2K4

2 Z4 × Z2 = 〈a〉 × 〈b〉 {a, a−1, b} Q3

(cube)

3 Z6 = 〈a〉 {a, a3, a5} K3,3

4 Z3
2 = 〈u〉 × 〈v〉 × 〈w〉 {w,wu,wv,wuv} K4,4

5 Z4 × Z2 = 〈a〉 × 〈b〉 {a, a2, a3, b} Q3

(complement cube)

6 Z4 × Z2 = 〈a〉 × 〈b〉 {a, a−1, a2b, b} K4,4

7 Z4 × Z2
2 = 〈a〉 × 〈b〉 × 〈c〉 {a, a−1, a3, b} Q4

(4-dimensional cube)

8 Z6 × Z2 = 〈a〉 × 〈b〉 {a, a−1, a3, b} K3,3 × K2

9 Z4 × Z4 = 〈a〉 × 〈b〉 {a, a−1, b, b−1} C4 ×C4

10 Zm × Z2 = 〈a〉 × 〈b〉, m≥ 3 {a, ab, a−1, a−1b} Cm[2K1]

11 Z4m = 〈a〉, m≥ 2 {a, a2m+1, a−1, a2m−1} C2m[2K1]

12 Z5 = 〈a〉 Γ \ {1Γ} K5

11 Z10 = 〈a〉 {a, a3, a7, a9} K5,5 − 5K2

Table 3.2.2

3.2.3 Γ-Action. Let Γ be a group of a graphG. Generally, there are three cases ofΓ

action onG shown in the following.

Γ-Action on Vertex Set. In this case,Γ acts on the vertex setV(G) with or-

bits V1,V2, · · · , Vm, wherem ≤ |V(G)|. For example, letCn be a circuit withV(Cn) =

{v1, v2, · · · , vn}. We have known its automorphism group by Table 3.2.1 to be

Dn = {ρiτ j |0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1}

with

ρn = 1Dn, τ2 = 1Dn, τ−1ρτ = ρ−1,
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such as the presentation in Example 1.2.4. Now let

Γ1 = 〈ρ〉 and Γ2 = 〈τ〉 .

Then we know that there are only one orbit ofΓ1 action onCn, i.e., {v1, v2, · · · , vn}. But

there are
[n
2

]
orbits if n ≡ 1(mod2) or

[n
2

]
+ 1 orbitsn ≡ 0(mod2). For example, letτ

a reflection joining the vertexv1 with its opposite vertex ifn ≡ 0(mod2) or midpoint of

its opposite edge ifn ≡ 1(mod2). Then we know the orbits ofΓ2 action onV(Cn) to be

V1 = {v1},V2 = {vn/2}; Vi = {vi , vn−i} for 1 < i <
n
2

if n ≡ 0(mod2) orV1 = {v1}; Vi =

{vi , vn−i} for 1 < i <
n+ 1

2
if n ≡ 1(mod2).

A graph G is called to beΓ-transitive or Γ-semiregularfor its a groupΓ if Γ is

transitive or semi-regular action onV(G). Particularly, ifΓ = AutG, aΓ-transitive graph

G is called atransitive graph. By definition, aΓ-transitive graphG for any subgroup

∀Γ ≤ AutG must be a transitive graph. But the inverse is not always true. For example,

Γ1 is transitive action onCn in the previous example. Consequently it is a transitive graph

butΓ2 is not transitive onV(G).

A simple calculation shows that the order of aΓ-semiregular graphG is multiple of

length of its orbits. Letn ≡ 0(mod2). If we chooseτ to be a reflection joining the midpoint

v1vn with that midpoint ofvn/2vn/2+1 in the previous example, thenΓ2 is Γ2-semiregular

action onV(G). In this case, there are
n
2

orbits of length 2, i.e.,Vi = {vi, vn−i+1} for

1 ≤ i ≤ n
2

.

Γ-Action on Edge Set. TheΓ-action onE(G) is an action

ϕ(x, y) = (ϕ(x), ϕ(y)) ∈ E(G) for ∀(x, y) ∈ E(G)

induced by an automorphismϕ ∈ Γwith orbitsE1,E2, · · · ,El, wherel ≤ |E(G)|. Naturally,

all orbits ofΓ action onE(G) form a partition ofE(G).

Consider the graphG1 shown in Fig.3.1.5. In this case, it is easily find thatD6 =

{ρiτ j |0 ≤ i ≤ 5, 0 ≤ j ≤ 1}with ρ6 = 1D6, τ
2 = 1D6, τ

−1ρτ = ρ−1 is its a graph group, where

τ is a reflection joining the midpointu1v6 with that midpoint ofu3u4. The orbitsE1,E2 of

D6 action onE(G1) are listed in the following.

E1 = {u1u2, u2u3, u3u4, u4u5, u5u6, u6u1}, E2 = {u1u4, u2u5, u3u4}.

A graphG is called to beedgeΓ-transitivefor its a groupΓ if Γ is transitive onE(G).

Particularly, ifΓ = AutG, an edgeΓ-transitive graphG is called anedge-transitive graph.
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Certainly, an edgeΓ-transitive graphG for any subgroup∀Γ ≤ AutG must be an edge-

transitive graph. But the inverse is not always true. For example, the complete graphKn

for an integern ≥ 3 is an edge-transitive graph with AutKn = Sn. LetΓ = 〈σ〉, whereσ ∈
AutKn with σn = 1Sn. ThenKn is not edgeΓ-transitive since|Γ| = n <

n(n− 1)
2

= |E(Kn)|.
By Theorem 2.2.1, Γ can not be transitive onE(Kn).

Γ-Action on Arc Set. Denoted byX(G) = {(u, v)|uv ∈ E(G)} the arc set of a graph

G. TheΓ-action onX(G) is an action onX(G) induced by

ϕ(x, y) = (ϕ(x), ϕ(y)) ∈ X(G) for ∀(x, y) ∈ X(G)

for an automorphismϕ ∈ Γ. Similarly, a graphG is called to bearc Γ-transitivefor its a

graph groupΓ if Γ is transitive onX(G), and to bearc-transitiveif AutG is transitive on

X(G). The following result is obvious by definition.

Theorem 3.2.5 Any arcΓ-transitive graph G is an edgeΓ-transitive graph. Conversely,

an edgeΓ-transitive graph G is arcΓ-transitive if and only if there are involutionsθ ∈ Γ
such that(x, y)θ = (y, x) for ∀(x, y) ∈ E(G).

§3.3 SYMMETRIC GRAPHS

3.3.1 Vertex-Transitive Graph. There are many vertex-transitive graphs. For example,

by Theorem 3.2.1 we know that all Cayley graphs is vertex-transitive.

Theorem 3.3.1 Any Cayley graph Cay(Γ : S) on S⊂ Γ is vertex-transitive.

Denoted by (Zn;+) the additive groupmodulen with Zn = {0, 1, 2, · · · , n − 1}. A

circulant graphis a Cayley graphCay(Zn : S) for S ⊂ Sn. Theorem 3.3.1 implies that

Cayley graphs are a subclass of vertex-transitive graphs. But if the order|V(G)| of a

vertex-transitive graphG is prime, Turner showed each of them is a Cayley graph, i.e.,

the following result in 1967.

Theorem 3.3.2 If G is a vertex-transitive graph of prime order p, then it is acirculant

graph.

Proof Let V(G) = {u0, u1, · · · , up−1} andH the stabilizer ofu0. Suppose thatσi ∈
AutG is such an element thatσi(u0) = ui. Applying Theorem 2.2.1, we get that|AutG| =
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|H||uAutG
0 | = p|H|. Thusp||AutG|. By Sylow’s theorem, there is a subgroupK = {1, θ, · · · ,

θp−1} of orderp in AutG. Relabeling the verticesu0, u1, · · · , up−1 by v0, v1, · · · , vp−1 so that

θ(vi) = vi+1 andθ(vp−1) = v0 for 0 ≤ i ≤ p−2. Suppose (v0, v1) ∈ E(G). Then by definition,

(vi , v2i) = (v0, vi)θ
i
, (v2i , v3i) = (vi , v2i)θ

i
, · · ·, (v(p−1)i , v0) = (v(p−2)i , v(p−1)i)θ

i ∈ E(G). Thus

v0viv2i · · · v(p−1)i forms a circuit inG. Now if we write vi as i and defineS = {i|(v0, vi) ∈
E(G)}, thenG is nothing but the circulant graphCay(Zp : S). �

It should be noted thatnot every every vertex-transitive graph is a Cayley graph. For

example, the Petersen graph shown in Fig.3.3.1 is vertex-transitive but it is not a Cayley

graph (See [Yap1] for details).
u1

u2

v1

u3u4

u5

v2

v3v4

v5

Fig.3.3.1

However, there is a constructing way shown in Theorem 3.3.4 following such that every

vertex-transitive graph almost likes a Cayley graph, foundby Sabidussi in 1964. For

proving this result, we need the following result first.

Theorem 3.3.3 Let H be a subgroup of a finite group(Γ; ◦) and S a subset ofΓ with

S−1 = S, S ∩ H = ∅. If G is a graph with vertex set V(G) = Γ/H and edge set

E(G) = {(x◦H , y◦H )|x−1 ◦y ∈H SH }, called the group-coset graph ofΓ/H respect

to S and denoted by G(Γ/H : S), then G is vertex-transitive.

Proof First, we claim the graphG is well-defined. This assertion need us to show

that if (x ◦ H , y ◦ H ) ∈ E(G) and x1 ∈ x ◦ H , y1 ∈ y ◦ H , then there must be

(x1 ◦H , y1 ◦H ) ∈ E(G). In fact, there areh, g ∈H such thatx1 = x ◦ h andy1 = y ◦ g

by definition. Notice that

x−1 ◦ y ∈H SH ⇒ (x ◦ h)−1 ◦ (y ◦ g) ∈H SH ⇒ x−1
1 ◦ y1 ∈H SH .

Whence, (x ◦H , y ◦H ) ∈ E(G) implies that (x1 ◦H , y1 ◦H ) ∈ E(G).

Now for eachg ∈ Γ, define a permutationφg on V(G) = Γ/H by φg(x ◦ H ) =
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g ◦ x ◦H for x ◦H ∈ Γ/H . Then by

x−1 ◦ y ∈H SH ⇒ (g ◦ x)−1 ◦ (g ◦ y) ∈H SH ⇒ φ−1
g (x) ◦ φg(y) ∈H SH ,

we find that (x◦H , y◦H ) ∈ E(G) implies that (φg(x)◦H , φg(y)◦H ) ∈ E(G). Therefore,

φg is an automorphism ofG.

Finally, for anyx ◦H , y ◦H ∈ V(G), let g = y ◦ x−1. Thenφg(x ◦H ) = y ◦ x−1 ◦
(x ◦H ) = y ◦H . Whence,G is vertex-transitive. �

Now we can prove the Sabidussi’s representation theorem forfinite groups following.

Theorem 3.3.4 Let G be a vertex-transitive graph andH = (AutG)u the stabilizer of a

vertex u∈ V(G) with the composition operation◦. Then G is isomorphic with the group-

coset graph G(AutG/H : S), where S is the set of automorphismsσ of G such that

(u, σ(u)) ∈ E(G).

Proof By definition, we are easily find thatS−1 = S and S ∩ H = ∅. Define

π : AutG/H → G by π(x ◦H ) = x(u), wherex ◦H ∈ Γ/H . We show thatπ is a

mapping. In fact, letx ◦H = y ◦H . Then there ish ∈H such thaty = x ◦ h. So

π(y ◦H ) = y(u) = (x ◦ h)(u) = x(h(u)) = x(u) = π(x ◦ (H)).

Now we show thatπ is in fact a graph isomorphism following.

(1) π is 1− 1. Otherwise, letπ(x ◦H ) = π(y ◦ ). Thenx(u) = y(u) ⇒ y−1 ◦ x(u) =

u⇒ y−1 ◦ x ∈H ⇒ y ∈ x ◦H ⇒ x ◦H = y ◦H .

(2) π is onto. Let v ∈ V(G). Notice thatG is vertex-transitive. There existsz ∈ AutG

such thatz(u) = v, i.e.,π(z◦H ) = z(u) = v.

(3)π preserves adjacency in G. By definition, (x◦H , y◦H ) ∈ E(G(AutG/H ,S))⇔
x−1 ◦ y ∈H SH ⇔ x−1 ◦ y = h ◦ z◦ g for someh, g ∈H , z ∈ S⇔ h−1 ◦ x−1 ◦ y ◦ g−1 =

z⇔ (u, h−1 ◦ x−1 ◦ y ◦ g−1(u)) ∈ E(G) ⇔ (u, x−1 ◦ y(u)) ∈ E(G) ⇔ (x(u), y(u)) ∈ E(G) ⇔
(π(x ◦H ), π(y ◦H )) ∈ E(G).

Combining (1)-(3), the proof is completes. �

Theorem 3.3.4 enables one to know which vertex-transitive graphG is a Cayley

graph. By Theorem 2.1.1(2), we know that any two stabilizers (AutG)u, (AutG)v for u, v ∈
V(G) are conjugate in AutG. Consequently, (AutG)u is normal if and only if (AutG)u =

{1AutG}. By definition, the group-coset graphG(AutG/H : S) in Theorem 3.3.4 is a
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Cayley graph if and only if AutG/H is a quotient group. But this just means thatH ⊳

AutG by Theorem 1.3.2. Combining these facts, we get the necessary and sufficient

condition for a vertex-transitive graph to be a Cayley graphby Theorem 3.3.4 following.

Theorem 3.3.5 A vertex-transitive graph G is a Cayley graph if and only if the action of

AutG on V(G) is regular.

Generally, let (Γ; ◦) be a finite group. A graphG is called to be agraphical regular

representation(GRR) ofΓ if AutG � Γ and AutG acts regularly transitive onV(G). Such

a groupΓ is called to have a GRR. We needed to answer the following problem.

Problem 3.3.1 Determine each finite groupΓ with a GRR.

A simple case for Problem 3.3.1 is finite Abelian groups. We know the following

result due to Chao and Sabidussi in 1964.

Theorem3.3.6 Let G be a graph with an Abelian automorphism groupAutG acts transi-

tively on V(G). ThenAutG acts regularly transitive on V(G) andAutG is an elementary

Abelian2-group.

Proof According to Theorem 2.2.2, we know that AutG acts regularly transitive

on V(G). Now since AutG acts regularly onV(G), G is isomorphic to a Cayley graph

Cay(AutG : S). Because AutG is Abelian,τ : g → g−1 is an automorphism of AutG

and fixesS setwise. It can be shown that this automorphism is an automorphism of

Cay(AutG : S) fixing the identity element of AutG. Whence,g = τ(g) = g−1 by the fact

of regularity for everyg ∈ AutG. So AutG is an elementary 2-groups. �

Theorem 3.3.6 claims that an Abelian groupΓ has a GRR only ifΓ = Zn
2 for some

integersn ≥ 1. In fact, by the work of McAndrew in 1965, we know a complete answer

for Problem 3.3.1 in this case following.

Theorem 3.3.7 An Abelian groupΓ has a GRR if and only ifΓ = Zn
2 for n = 1 or n ≥ 5.

A generalized dicylic group(Γ; ◦) is a non-Abelian group possing a subgroup (H ; ◦)
of index 2 and an elementγ of order 4 such thatγ−1◦h◦γ = h−1 for ∀h ∈H . By following

the work of Imrich, Nowitz, Watkins, Babai, etc., Hetzel andGodsil respective answered

Problem 3.3.1 for solvable groups and non-solvable groups. They get the following result

(See [God1]-[God2] and [Cam1] for details) independently.
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Theorem3.3.8 A finite group(Γ; ◦) possesses no GRR if and only if it is an Abelian group

of exponent greater than2, a generalized dicyclic group, or one of13 exceptional groups

following:

(1) Z2
2,Z

3
2,Z

4
2;

(2) D6,D8,D10;

(3) A4;

(4)
〈
a, b, c|a2 = b2 = c2 = 1Γ, a ◦ b ◦ c = b ◦ c ◦ a = c ◦ a ◦ b

〉
;

(5)
〈
a, b|a8 = b2 = 1Γ, b ◦ a ◦ b = b5

〉
;

(6)
〈
a, b, c|a3 = b2 = c3 = (a ◦ b)2 = (c ◦ b)2 = 1Γ, a ◦ c = c ◦ a

〉
;

(7)
〈
a, b, c|a3 = b3 = c3 = 1Γ, a ◦ c = c ◦ a, b ◦ c = c ◦ b, c = a−1 ◦ b−1 ◦ a ◦ b

〉
;

(8) Q8 × Z3,Q8 × Z4.

3.3.2 Edge-Transitive Graph. Certainly, the edge-transitive graphs are closely related

with vertex-transitive graphs by definition. We can easily obtain the following result.

Theorem 3.3.9 Let G be an edge-transitive graph without isolated vertices. Then

(1) G is vertex-transitive, or

(2) G is bipartite with two vertex-orbits under the actionAutG on V(G) to be its

vertex bipartition.

Proof Choose an edgee = uv ∈ E(G). Denoted byV1 andV2 the orbits ofu and

v under the action of AutG on V(G). Then we know thatV1 ∪ V2 = V(G) by the edge-

transitivity ofG. Our discussion is divided into toe cases following.

Case1. If V1 ∩ V2 , ∅, thenG is vertex-transitive.

Let x andy be any two vertices ofG. If x, y ∈ V1 or x, y ∈ V1, for example,x, y ∈ V1,

then there existσ, ς ∈ AutG such thatσ(u) = x andς(u) = y. Thusςσ−1 is such an

automorphism withςσ−1(x) = y. If x ∈ V1 andy ∈ V2, let w ∈ V1 ∩ V2. By assumption,

there areφ, ϕ ∈ AutG such thatφ(x) = ϕ(y) = w. Then we get thatϕ−1φ(x) = y, i.e.,G is

vertex-transitive.

Case2. If V1 ∩ V2 = ∅, thenG is bipartite.

Let x, y ∈ V1. If xy ∈ E(G), then there areσ ∈ AutG such thatσ(uv) = xy. But this

implies that one ofx, y in V1 and another inV2, a contradiction. Similarly, ifx, y ∈ V2,

thenxy < E(G). Whence,G is a bipartite graph. �
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We get the following consequences by this result.

Corollary 3.3.1 Let G be a regular edge-transitive graph with an odd degree d≥ 1. If

|G| ≡ 1(mod2), then G is vertex-transitive.

Proof Notice that ifG is bipartite, then|V1|d = |V2|d = ε(G). Whence,|G| =
|V1| + |V2| ≡ 0(mod2), a contradiction. �

Corollary 3.3.2 Let G be a regular edge-transitive graph of degree d≥ |G|/2. Then G is

vertex-transitive.

u1 u2

u3u4

u5 u6

Fig.3.3.2

In fact, there are many edge-transitive but not vertex-transitive graphs, and vertex-transitive

but not edge-transitive graphs. For example, the complete graphKn1,n2 with n1 , n2 is

edge-transitive but not vertex-transitive, and the graph shown in Fig.3.3.2 is a vertex-

transitive but not edge-transitive graph.

3.3.3 Arc-Transitive Graph. An s-arc of a graphG is a sequence of verticesv0, v1, · · · , vs

such that consecutive vertices are adjacent andvi−1 , vi+1 for 0 < i < s. For example, a

circuitCn is s-arc transitive for alls≤ n. A graphG is s-arc transitiveif AutG is transitive

on s-arcs. Fors≥ 1, it is obvious that ans-arc transitive graph is also (s−1)-arc transitive.

A 0-arc transitive graph is just the vertex-transitive, anda 1-arc transitive graph is usually

called to bearc-transitive graphor symmetric graph.

Tutte proved the following result fors-arc transitive cubic graphs in 1947 (See in

[Yap1] for its proof).

Theorem 3.3.10 Let G be a s-arc transitive cubic graph. Then s≤ 5.

Examples ofs-arc transitive cubic graphs fors≤ 5 can be found in [Big2] or [GoR1].

Now we turn our attention to symmetric graphs.

Let Zp = {0, 1, · · · , p− 1} be the cyclic group of orderp written additively. We know
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that AutZp is isomorphic toZp−1. For a positive divisorr of p−1, letHr denote the unique

subgroup of AutZp of orderr, Hr ≃ Zr . Define a graphG(p, r) of orderp by

V(G(p, r)) = Zp, E(G(p, r)) = {xy|x− y ∈ Hr }.

A classification of symmetric graph with a prime orderp was obtained by Chao. He

proved the following result in 1971.

Theorem 3.3.11 Let p be an odd prime. Then a graph G of order p is symmetric if and

only if G= pK1 or G = G(p, r) for some even divisor r of p− 1.

In the reference [PWX1] and [WaX1], we can also find the classification of symmet-

ric graphs of order a product of two distinct primes. For example, there are 12 classes

of symmetric graphs of order 3p, wherep > 3 is a prime, including 3pK1, pK3, 3G(p, r)

for an even divisorr of p − 1, G(3p, r) for a divisor of p − 1, G(p, r)[3K1], K3p and

other 6 classes, whereG(3p, r) is defined byV(G(3p, r)) = { xi | i ∈ Z3, x ∈ Zp } and

E(G(3p, r)) = { (xi , yi+1) | i ∈ Z3, x, y ∈ Zp andy− x ∈ Hr }.
A graphG is half-transitiveif G is vertex-transitive and edge-transitive, but not arc-

transitive. Tuute found the following result.

Theorem3.3.12 If a graph G is vertex-transitive and edge-transitive with aodd valency,

then G must be arc-transitive.

Proof Let uv ∈ E(G). Then we get two arcs (u, v) and (v, u). DefineΩ1 = (u, v)AutG =

{(u, v)g|g ∈ AutG} andΩ2 = (v, u)AutG = {(v, u)g|g ∈ AutG}. By the transitivity of AutG

on E(G), we know thatΩ1 ∪ Ω2 = A(G), whereA(G) denote the arc set ofG. If G is

not arc-transitive, there must beΩ1 ∩ Ω2 = ∅. Namely, there are nog ∈ AutG such that

(x, y)g = (y, x) for ∀(x, y) ∈ A(G). Now let Xv = {x|(v, x) ∈ Ω1} andYv = {y|(y, v) ∈ Ω1}.
ThenXv ∩ Yv = ∅. Whence,NG(v) = Xv ∪ Yv. This fact enables us to know the valency

of G is k = |Xv| + |Yv|. By the transitivity of AutG on V(G), we know that|Xv| = |Xu| and

|Yv| = |Yu| for ∀u ∈ V(G). So |E(G)| = |Xv||V(G)| = |Yv||V(G)|. We get that|Xv| = |Yv|, i.e.,

k is an even number, a contradiction. �

By Theorem 3.3.12, a half-transitive graph must has even valency. In 1970, Bouwer

constructed half-transitive graphs of valencyk for each even numberk > 2 and the mini-

mum half-transitive graph is a 4-regular graph with 27 vertices found by Holt in 1981. In

1992, Xu proved this minimum half-transitive graph is unique (See [XHLL1] for details).



Sec.3.4 Graph Semi-Arc Groups 103

§3.4 GRAPH SEMI-ARC GROUPS

3.4.1 Semi-Arc Set. Let G be a graph, maybe with loops and multiple edges,e = uv ∈
E(G). We dividee into two semi-arcs e+u , e

−
u (or e+u , e

+
v ), and call such a vertexu to be the

root vertexof e+u . Here, we adopt a convention following:

Convention 3.4.1 Let G be a graph. Then for e= uv ∈ E(G),


e−u = e+v if u , v,

e−u , e+v if u = v.

Denote byX1
2
(G) the set of all such semi-arcs of a graphG. We present a few

examples forX1
2
(G). Let D0.3.0,B3,K4 be the dipole, bouquet and the complete graph

shown in Fig.3.4.1.

D0,3,0 B3 K4

u v

O

u1 u2

u3 u4

e1

e2

e3

e1

e2

e3

Fig.3.4.1

Then, we know their semi-arc sets as follows:

X1
2
(D0.3.0) = {e1+

u , e
2+
u , e

3+
u , e

1+
v , e

2+
v , e

3+
v },

X1
2
(B3) = {e1+

O , e
2+
O , e

3+
O , e

1−
O , e

2−
O , e

3−
O },

X1
2
(K4) = {u1u

+
2 , u1u

−
2 , u1u

+
3 , u1u

−
3 , u1u

+
4 , u1u

−
4 , u2u

+
3 , u2u

−
3 , u2u

+
4 , u2u

−
4 , u3u

+
4 , u3u

−
4}.

Notice that the Convention 3.4.1 and these examples show that we can represent all

semi-arcs of a graphG by elements inV(G) ∪ E(G) ∪ {+,−} in general, and all semi-arcs

of G can be represent by elements inV(G) ∪ E(G) ∪ {+} or by elements inV(G) ∪ {+}
if and only if G is a graph without loops, or neither with loops or multiple edges, i.e., a

simple graphG.

Two semi-arce◦u, f •v with ◦, • ∈ {+,−} are saidincidentif u = v, e, f with ◦ = • =



104 Chap.3 Graph Groups

+, or e = f , u , v with ◦ = •, or e = f , u = v with ◦ = +, • = −. For example,e2+
u and

e2+
v in D0.3.0, e2+

O ande2−
O in B3 in Fig.3.4.1 both are incident.

3.4.2 Graph Semi-Arc Group. We have know the conception of automorphism of a

graph in Section 3.1. Generally, anautomorphismof a graphG on V(G)
⋃

E(G) is an

1− 1 mapping (ξ, η) onG such that

ξ : V(G)→ V(G), η : E(G)→ E(G)

satisfying that for any incident elementse, f , (ξ, η)(e) and (ξ, η)( f ) are also incident. Cer-

tainly, all such automorphisms of a graphG also form a group, denoted by AutG.

We generalize this conception to that of the semi-arc setX1
2
(G). The semi-arc auto-

morphism of a graph was first appeared in [Mao1], and then applied for the enumeration

maps on surfaces underlying a graphΓ in [MaL3] and [MLW1], which is formally defined

following.

Definition 3.4.1 Let G be a graph. A1 − 1 mappingξ on X1
2
(G) is called a semi-arc

automorphism of the graph G if for∀e◦u, f •v ∈ X1
2
(G) with ◦, • ∈ {+,−}, ξ(e◦u) andξ( f •v ) are

incident if and only if e◦u and f•v are incident.

By Definition 3.4.1, all semi-arc automorphisms of a graph form a group under the

composition operation, denoted by Aut1
2
G, which is important for the enumeration of

maps on surfaces underlying a graph and determining the conformal transformations on a

Klein surface.

The Table 3.4.1 following lists semi-arc automorphism groups of a few well-known

graphs.

G Aut 1
2
G order

Kn Sn n!

Km,n(m, n) Sm× Sn m!n!

Kn,n S2[Sn] 2n!2

Bn Sn[S2] 2nn!

D0.n.0 S2 × Sn 2n!

Dn.k.l(k , l) S2[Sk] × Sn × S2[Sl] 2k+ln!k!l!

Dn.k.k S2 × Sn × (S2[Sk])2 22k+1n!k!2

Table 3.4.1
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In this table,D0.n.0 is a dipole graph with 2 vertices,n multiple edges andDn.k.l is a

generalized dipole graph with 2 vertices,n multiple edges, and one vertex withk bouquets

and another,l bouquets. This table also enables us to find some useful information for

semi-arc automorphism groups. For example, Aut1
2
Kn = AutKn = Sn, Aut1

2
Bn = Sn[S2]

but AutBn = Sn, i.e., Aut1
2
Bn , AutBn for any integern ≥ 1.

Comparing semi-arc automorphism groups in Table 3, 4, 1 with that of Table 3.2.1, it

is easily to find that the semi-arc automorphism group are thesame as the automorphism

group in the first two cases. Generally, we know a result related the semi-arc automor-

phism group with that of automorphism group of a graph, i.e.,Theorem 3.4.1 following.

For this objective, we introduce a few conceptions first.

For ∀g ∈ AutG, there is an induced action g| 12 on X1
2
(G), g : X1

2
(G) → X1

2
(G)

determined by

∀eu ∈ X1
2
(G), g(eu) = (g(e)g(u).

All induced action of the elements in AutG on X1
2
(G) is denoted by AutG| 12 . Notice that

AutG � AutG| 12 . We get the following result.

Theorem 3.4.1 Let G be a graph without loops. ThenAut 1
2
G = AutG| 12 .

Proof By the definition, we only need to prove that for∀ξ 1
2
∈ Aut 1

2
G, ξ = ξ 1

2
|G ∈

AutG andξ 1
2
= ξ| 12 . In fact, Lete◦u, f •x ∈ X1

2
(G) with ◦, • ∈ {+,−}, wheree = uv ∈ E(G),

f = xy ∈ E(G). Now if

ξ 1
2
(e◦u) = f •x ,

by definition, we know thatξ 1
2
(e◦v) = f •y . Whence,ξ 1

2
(e) = f . That is,ξ 1

2
|G ∈ AutG.

By assumption, there are no loops inG. Whence, we know thatξ 1
2
|G = 1AutG if and

only if ξ 1
2
= 1Aut 1

2
G. Soξ 1

2
is induced byξ 1

2
|G on X1

2
(G). Thus,

Aut 1
2
G = AutG| 12 . �

We have know that Aut1
2
Bn , AutBn for any integern ≥ 1. Combining this fact with

Theorem 3.4.1, we know the following.

Theorem 3.4.2 Let G be a graph. ThenAut 1
2
G = AutG| 12 if and only if G is a loopless

graph.

3.4.3 Semi-Arc Transitive Graph. A graphG is called to besemi-arc transitiveif

Aut 1
2
G is action transitively onX1

2
(G). For example, each ofKn, Bn−1 andD0.n.0 for any
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integern ≥ 2 is semi-arc transitive. We know the following result for semi-arc transitive

graphs.

Theorem 3.4.3 A graph G is semi-arc transitive if and only if it is arc-transitive.

Proof A semi-arc transitive graphG is arc-transitive by the definition of its preserv-

ing incidence of semi-arcs.

Conversely, letG be an arc-transitive graph. Lete+u and f +v ∈ X1
2
(G) with e = (u, x)

and f = (v, y). By assumption,G is arc-transitive. Consequently, there is an automor-

phismς ∈ AutG such thatς(u, x) = (v, y). Then it is easily to know thatς(e+u ) = f +v , i.e.,

G is semi-arc transitive. �

§3.5 GRAPH MULTIGROUPS

3.5.1 Graph Multigroup. There is a natural way for getting multigroups on graphs. Let

G be a graph,H ≺ G andσ ∈ AutG. Consider the localized actionσ|H of σ on H. In

general, this action must not be an automorphism ofH. For example, letG be the graph

shown in Fig.3.5.1 andH = 〈v1, v2, v3〉G.

v1

v2

v3 v4

v5

v6

Fig.3.5.1

Let σ1 = (v1, v3)(v4, v6)(v2)(v5) andσ2 = (v1, v6)(v2, v5)(v3, v4). Then it is clear that

σ1, σ2 ∈ AutG and

Hσ2 = 〈v1, v2, v3〉G = H and Hσ1 = 〈v4, v5, v6〉G , H.

Whence,σ1 is an automorphism ofH, butσ2 is not. In fact, let∀ς ∈ (AutG)H. Then

Hς = H, i.e.,ς|H is an automorphism ofH. Now define

AutGH = 〈 ς|H | ς ∈ (AutG)H 〉 .

Then AutGH is an automorphism group ofH.
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An extended actiong|G for an automorphismg ∈ AutHi is the action ofg on G by

introducing new actions ofg on G \ V(Hi), 1 ≤ i ≤ m. The previous discussion enables

one to get the following result.

Theorem 3.5.1 Let G be a graph and G=
m⊕

i=1
Hi a decomposition of G. Then for any

integer i, 1 ≤ i ≤ m, there is a subgroupPi ≤ AutHi such thatPi |G ≤ AutG, i.e.,

P̃ =
m⋃

i=1
Pi is a multigroup.

Proof ChoosePi = AutGHi for any integeri, 1 ≤ i ≤ m. Then the result follows.�

For a given decompositionG =
m⊕

i=1
Hi of a graphG, we can always get automorphism

multigroups AutmulG =
m⋃

i=1
Hi, Hi ≤ AutHi for integers 1≤ i ≤ m, which must not be

an automorphism group ofG. For its dependence on the structure ofG =
m⊕

i=1
Hi, such

a multigroup AutmulG is denoted by
m⊙

i=1
Hi in this book. Generally, the automorphism

multigroups of a graphG are not unique unlessG = K1. The maximal automorphism

multigroup of a graphG is AutmulG =
m⊙

i=1
AutHi and the minimal is that of AutmulG =

m⊙
i=1
{1AutHi }. We first determine automorphism groups ofG in these multigroups following.

Let G be a graph,H ≺ G andσ ∈ AutH, τ ∈ Aut(G \ V(H)). They are called to be

in coordinatingwith each other if the mappingg : G→ G determined by

g(v) =


σ(v), if v ∈ V(H),

τ(v), if v ∈ G \ V(H)

is an automorphism ofG for ∀v ∈ V(G). If such ag exists, we sayτ can beextendedto

G and denotedg by τG. Denoted by AutGH = { σG |σ ∈ AutH }. Then it is clear that

AutGH = AutGH|H ≺ AutH. We find the following result for the automorphism group of

a graph.

Theorem 3.5.2 Let G be a graph and H≺ G. Then the mappingφG : AutG → AutH

determined byφG(g) = g|H is a homomorphism, i.e.,AutG/KerφG ≃ AutGH.

Proof For any automorphismg ∈ AutG, by Theorem 3.5.1, there is a localized action

g|H such thatHg = H, g = g|H ∈ AutGH, i.e., such a correspondenceφG is a mapping. We

are needed to prove the equalityφG(ab) = φG(a)φG(b) holds for∀a, b ∈ AutG. In fact,

φG(a)φG(b) = a|GH b|GH = (ab)|GH = φG(ab)
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by the property of automorphism. Whence,φG is a homomorphism. Applying the homo-

morphism theorem of groups, we get AutG/KerφG ≃ KerφG. Notice that KerφG = AutGH.

We finally get that AutG/KerφG ≃ AutGH. �

If φG is onto or 1−1, then KerφG = 1AutG or AutH. We get the following consequence

by Theorem 3.5.2.

Corollary 3.5.1 Let G be a graph and H≺ G. If the homomorphismφ : AutG→ AutH

is onto or1− 1, thenAutG/Kerφ ≃ AutH or AutG ≃ AutGH.

For example, LetG be the graph shown in Fig.3.5.1 andH = 〈v1, v3, v4, v6〉G. Then

σ1|H = (v1, v3)(v4, v6) andσ2|H = (v1, v6)(v3, v4), i.e., the homomorphismφG : AutG →
AutGH is 1− 1 and onto. Whence, we know that

AutG ≃ AutGH = 〈σ1|H, σ2|H〉 .

Although it is very difficult for determining the automorphism group of a graphG in

general, it is easy for that of automorphism multigroups if the decompositionG =
m⊕

i=1
Hi

is chosen properly. The following result is easy obtained bydefinition.

Theorem 3.5.3 For any connected graph G,

AutEG =
⊙

(u,v)∈E(G)

S{u,v}

is an automorphism multigroup of G, where S{u,v} is the symmetric group action on the

vertices u and v.

Proof Certainly, any graphG has a decompositionG =
⊕

(u,v)∈E(G)
(u, v). Notice that

the automorphism on each edge (u, v) ∈ E(G) is that symmetric groupS{u,v}. Then the

assertion is followed. �

The automorphism multigroup AutEG is a graphical property by Theorem 3.5.3.

Furthermore, we know that AutEG is a graph invariant onG by the following result.

Theorem 3.5.4 Let G, H be two connected graphs. Then G is isomorphic to H if and

only if AutEG andAutEH are permutation equivalent, i.e., there is an isomorphismς :

AutEG→ AutEH and a1− 1 mappingι : E(G)→ E(H) such thatς(g)(ι(e)) = ι(g(e)) for

∀g ∈ AutG and e∈ E(G).
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Proof If G ≃ H, we are easily getting an isomorphismσ : V(G) → V(H), which

induces an isomorphismς : AutEG→ AutEH and a 1− 1 mappingι : E(G) → E(H) by

σ(u, v) = (σ(u), σ(v)) for ∀e= (u, v) ∈ E(G).

Now if there is an isomorphismς : AutEG→ AutEH and a 1−1 mappingι : E(G)→
E(H) such thatς(g)(ι(e)) = ι(g(e)) for ∀g ∈ AutG ande ∈ E(G), by definition

AutEG =
⊙

(u,v)∈E(G)

S{u,v},

we know that

ς :
⊙

(u,x)∈E(G) for x∈V(G)

S{u,x} →
⊙

(v,y)∈E(H) for y∈V(H)

S{v,y},

whereι : (u, x) ∈ E(G)→ (v, y) ∈ E(H). Whence,ς andι induce a 1− 1 mapping

σ :
⊕

(u,x)∈E(G) for x∈V(G)

(u, x)→
⊕

(v,y)∈E(H) for y∈V(H)

(v, y).

This fact implies thatσ : u ∈ V(G) → v ∈ V(H) if we represent the verticesu, v re-

spectively by those ofu �
⊕

(u,x)∈E(G) for x∈V(G)
(u, x) andv �

⊕
(v,y)∈E(H) for y∈V(H)

(v, y) in graphs

G andH, where the notationa � b means the definition ofa by that ofb. Essentially,

such a mappingσ : V(G)→ V(H) is an isomorphism between graphsG andH for easily

checking that

σ(u, x) = (σ(u), σ(x))

for ∀(u, x) ∈ E(G) by such representation of vertices in a graph. ThusG ≃ H. �

The decompositionG =
⊕

(u,v)∈E(G)
(u, v) is a K2-decomposition. Aclique decomposi-

tion of a graphG is such a decompositionG =
m⊕

i=1
Kni , whereKni is a maximal complete

subgraph inG for integers 1≤ i ≤ m. We have know AutKni = Sni from Table 3.2.1.

Whence, we know the following result on automorphism multigroups of a graph.

Theorem3.5.5 Let G=
m⊕

i=1
Kni be a clique decomposition of a graph G. ThenAutmulG =

m⊙
i=1

Hi is an automorphism multigroup of G, whereHi ≤ SV(Kni )
.

Proof Notice that AutKni = Sni . Whence, AutmulG =
m⊙

i=1
Hi is an automorphism

multigroup ofG for eachHi ≤ SV(Kni )
. �
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Similar to that of Theorem 3.5.4, we also know that the maximal automorphism

multigroup AutclG =
m⊙

i=1
SV(Kni )

is also a graph invariant following.

Theorem 3.5.6 Let G, H be two connected graphs. Then G is isomorphic to H if and

only if AutclG andAutclH are permutation equivalent.

Proof This result is an immediately consequence of Theorem 3.5.4 by applying the

fact SV(Kn) = 〈(v1, v2), (v1, v3), · · · , (v1, vn)〉 if V(Kn) = {v1, v2, · · · , vn}. �

3.5.2 Multigroup Action Graph. Let P̃ be a multigroup action on a set̃Ω. For two

elementsa, b ∈ Ω̃, if there is an elementσ∈̃P such thataσ = b, we can represent this

relation by a directed edge (a, b) shown in Fig.3.5.2 following:-a b
σ

Fig.3.5.2

Applying this notion to all elements iñΩ, we get the action graph. Anaction graph

G[P̃; Ω̃] of P̃ on Ω̃ is a directed graph defined by

V(G[P̃; Ω̃]) = Ω̃,

E(G[P̃; Ω̃]) = { (a, b) | ∀a, b ∈ Ω̃ and∃σ ∈ P̃ such thataσ = b }.

Sinceσ−1 always exists in a multigroup̃P, we also get thatbσ
−1
= a. So edges between

a andb in G[P̃; Ω̃] must be the case shown in Fig.3.5.3.-�a

σ

σ−1

b

Fig.3.5.3

Such edges (a, b) and (b, a) are calledparallel edges. For simplicity, we draw each parallel

edges (a, b) and (b, a) by a non-directed edgeab in the graphG[P̃ ; Ω̃], i.e.,

V(G[P̃; Ω̃]) = Ω̃,

E(G[P̃; Ω̃]) = { ab | ∀a, b ∈ Ω̃ and∃σ ∈ P̃ such thataσ = b }.
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Example 3.5.1 LetP = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} be a permutation group

action onΩ = {1, 2, 3, 4}. Then the action graphG[P;Ω] is the complete graphK4 with

labels shown in Fig.3.5.4,

1

2

34

α

α

β

β

γ

γ

Fig.3.5.4

in whereα = (1, 2)(3, 4), β = (1, 3)(2, 4) andγ = (1, 4)(2, 3).

Example3.5.2 LetP̃ be a permutation multigroup action oñΩ with

P̃ =P1

⋃
P2 and Ω̃ = {1, 2, 3, 4, 5, 6, 7, 8}

⋃
{1, 2, 5, 6, 9, 10, 11, 12},

whereP1 = 〈(1, 2, 3, 4), (5, 6, 7, 8)〉 andP2 = 〈(1, 5, 9, 10), (2, 6, 11, 12)〉. Then the ac-

tion graphG[P̃;Ω] of P̃ on Ω̃ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is shown in Fig.3.5.5,

in where labels on edges are removed. It should be noted that this action graph is in fact

a union graph of four complete graphsK4 with intersection vertices.

23

14 5

6 7

8

910

1112

Fig.3.5.5

These Examples 3.5.1 and 3.5.2 enables us to find the following result on the action

graphs of multigroups.
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Theorem 3.5.7 LetP̃ be a multigroup action on a set̃Ω with

P̃ =

m⋃

i=1

Pi and Ω̃ =
m⋃

i=1

Ωi ,

where each permutation groupPi acts onΩi with orbitsΩi1,Ωi2, · · · ,Ωisi for each integer

i, 1 ≤ i ≤ m. Then

G[P̃; Ω̃] =
m⋃

i=1


si⊕

j=1

K|Ωi j |



with intersections K|Ωi j∩Ωkl | only if for integers1 ≤ i , k ≤ m, 1 ≤ j ≤ si, l ≤ l ≤ sk.

Particularly, if m= 1, i.e.,P̃ is just a permutation group, then its action graph G[P̃ ; Ω̃]

is a union of complete graphs without intersections.

Proof Notice that for each orbitΩi j of Pi action onΩi, the subgraph of the action

graph is the complete graphK|Ωi j | andΩi j1 ∩ Ωi j2 = ∅ if j1 , j2, i.e.,,K|Ωi j1 | ∩ K|Ωi j2 | = ∅.
This result follows by definition. �

By Theorem 3.5.5, we are easily find the automorphism groups of the graph shown

in Fig.3.5.5, particularly the maximal automorphism group following:

AutclG[P̃; Ω̃] = S{1,2,3,4}
⊙

S{5,6,7,8}
⊙

S{1,5,9,10}
⊙

S{2,6,11,12}.

Generally, we get the following result.

Theorem3.5.8 LetP̃ be a multigroup action on a set̃ΩwithP̃ =
m⋃

i=1
Pi and Ω̃ =

m⋃
i=1
Ωi ,

where each permutation groupPi acts onΩi with orbitsΩi1,Ωi2, · · · ,Ωisi for each integer

i, 1 ≤ i ≤ m. Then the maximal automorphism group of G[P̃; Ω̃] is

AutclG[P̃; Ω̃] =
m⋃

i=1

si⊙

j=1

SΩi j .

Particularly, if |Ωi j ∩Ωkl| = 1 for i , k, 1 ≤ i, k ≤ m,1 ≤ j ≤ si, l ≤ l ≤ sk, then

AutclG[P̃; Ω̃] =
m⊙

i=1

si⊙

j=1

SΩi j .

Proof Notice that if|Ωi j ∩Ωkl| = 1 for i , k, 1≤ i, k ≤ m, 1≤ j ≤ si, l ≤ l ≤ sk, then

G[P̃; Ω̃] =
m⊕

i=1

si⊕

j=1

K|Ωi j |.

This result follows from Theorems 3.5.5 and 3.5.7. �
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3.5.3 Globally Transitivity. Let P̃ be a permutation multigroup action oñΩ. This

permutation multigroup̃P is said to beglobally k-transitivefor an integerk ≥ 1 if for

any twok-tuplesx1, x2, · · · , xk ∈ Ωi andy1, y2, · · · , yk ∈ Ω j, where 1≤ i, j ≤ m, there are

permutationsπ1, π2, · · · , πn ∈ P̃ such thatxπ1π2···πn
1 = y1, xπ1π2···πn

2 = yi , · · · , xπ1π2···πn
k = yk.

We have obtained Theorems 2.6.8-2.6.10 for characterizing the globally transitivity of

multigroups. In this subsection, we characterize it by the action graphs of multigroups.

First, we know the following result on globally 1-transitivity, i.e., the globally transitivity

of a multigroup.

Theorem 3.5.9 LetP̃ be a multigroup action on a set̃Ω with

P̃ =

m⋃

i=1

Pi and Ω̃ =
m⋃

i=1

Ωi ,

where each permutation groupPi acts onΩi for integers1 ≤ i ≤ m. ThenP̃ is globally

transitive action oñΩ if and only if G[P̃; Ω̃] is connected.

Proof Let x, y ∈ Ω̃. If P̃ is globally transitive action oñΩ, then there are elements

π1, π2, · · · , πn ∈ P̃ such thatxπ1π2···πn = y for an integern ≥ 1. Definev1 = xπ1, v2 =

xπ1π2, · · · , vn−1 = xπ1π2···πn−1. Notice thatv1, v2, · · · , vn−1 ∈ Ω̃. By definition, we conse-

quently find a walk (path)xv1v2 · · · vn−1y in the action graphG[P̃; Ω̃] for any two vertices

x, y ∈ V(G[P̃; Ω̃]), which implies thatG[P̃; Ω̃] is connected.

Conversely, ifG[P̃; Ω̃] is connected, for∀x, y ∈ V((G[P̃; Ω̃])) = Ω̃, let xu1 · · ·un−1y

be a shortest path connected the verticesx andy in G[P̃; Ω̃] for an integern ≥ 1. By

definition, there are must beπ1, π2, · · · , πn ∈ P̃ such thatxπ1 = u1, u
π2
1 = u2, · · · , uπn

n−1 = y.

Whence,

xπ1π2···πn = y.

ThusP̃ is globally transitive action oñΩ. �

For a multigroup actioñP action onΩ̃ with

P̃ =

m⋃

i=1

Pi and Ω̃ =
m⋃

i=1

Ωi ,

where each permutation groupPi acts onΩi for integers 1≤ i ≤ m, define

Ωk
i = { (x1, x2, · · · , xk) | xl ∈ Ω } and Ω̃k =

m⋃

i=1

Ωk
i
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for integersk ≥ 1 and 1≤ i ≤ m. Then we are easily proved thata permutation group

P action onΩ is k-transitive if and only ifP action onΩk is transitive for an integer

k ≥ 1. Combining this fact with that of Theorem 3.5.9, we get the following result on the

globallyk-transitivity of multigroups.

Theorem 3.5.10 LetP̃ be a multigroup action on a set̃Ω with

P̃ =

m⋃

i=1

Pi and Ω̃ =
m⋃

i=1

Ωi ,

where each permutation groupPi acts onΩi for integers 1≤ i ≤ m. ThenP̃ is globally

k-transitive action oñΩ for an integerk ≥ 1 if and only ifG[P̃; Ω̃k] is connected.

Proof Replacing̃Ω by Ω̃k in the proof of Theorem 3.5.9 and applying the fact that a

permutation groupP action onΩ is k-transitive if and only ifP action onΩk is transitive

for an integerk ≥ 1, we get our conclusion. �

Applying the action graphG[P̃; Ω̃] and G[P̃; Ω̃k], we can also characterize the

globally primitivity or other properties of permutation multigroups by graph structure.

All of those are laid the reader as exercises.

§3.6 REMARKS

3.6.1 For catering to the need of computer science, graphs were outof games and turned

into graph theoryin last century. Today, it has become a fundamental tool for dealing

with relations of events applied to more and more fields, suchas those of algebra, topol-

ogy, geometry, probability, computer science, chemistry,electrical network, theoretical

physics,· · · and real-life problems. There are many excellent monographs for its theo-

retical results with applications, such as these references [ChL1], [Whi1] and [Yap1] for

graphs with structures, [GrT1], [MoT1] and [Liu1] for graphs on surfaces.

3.6.2 The conception ofSmarandachely graph propertyin Subsection 3.1.4 is presented

by Smarandache systemsor Smarandache’s notion, i.e., such a mathematical system in

which there is a rule that behaves in at least two different ways, i.e., validated and in-

valided, or only invalided but in multiple distinct ways (See [Mao2]-[Mao4], [Mao25]

and [Sma1]-[Sma2] for details). In fact, there are two ways to look a graph with more



Sec.3.6 Remarks 115

than one edges as a Smarandachely graph. One is by its graphical structure. Another

is by graph invariants on it. All of those Smarandachely conceptions are new and open

problems in this subsection are valuable for further research.

3.6.3 For surveying symmetries on graphs, automorphisms are needed, which is permu-

tations on graphs. This is the closely related place of groups with that of graphs. In fact,

finite graphs are a well objectives for applying groups, particularly for classifying sym-

metric graphs in recent two decades. To determining the automorphism groups AutG of

a graphG is an important but more difficult problem, which enables one to enumerating

maps on surfaces underlyingG, or find regular maps on surfaces (See following chapters

in this book). Sections 3.2-3.3 present two ways already known. One is the GRR of finite

group. Another is the normally Cayley graphs for finite groups. More results and exam-

ples can be found in references [Big2], [GoR1], [Xum2], [XHL1] and [Yap1] for further

reading.

3.6.4 A hypergraphΛ is a triple (V, f ,E) with disjoints V, E and f : E → P(V),

where each element inV is called thevertexand that inE is called theedgeof Λ. If

f : E → V × V, then a hypergraphΛ is nothing but just a graphG. Two elements

x ∈ V, e ∈ E of a hypergraph (V, f ,E) are called to beincident if x ∈ f (e). Two hy-

pergraphsΛ1 = (V1, f1,E1) andΛ1 = (V2, f2,E2) areisomorphicif there exists bijections

p : E1 → E2, q : V1 → V2 such thatq[ f1(e)] = f2(p(e)) holds for∀e ∈ E. Particularly,

if Λ1 = Λ2, i.e., isomorphism between a hypergraphΛ, such an isomorphism is called

an automorphismof Λ. All automorphisms of a hypergraphΛ form a group, denoted

by AutΛ. For hypergraphs, we can also introduce conceptions such asthose of vertex-

transitive, edge-transitive, arc-transitive, semi-arc transitive and primitive by the action of

AutΛ on Λ and get results for symmetric hypergraphs. As we known, there are nearly

none such results found in publication.

3.6.5 The semi-arc automorphism of a graph is firstly introduced in[Mao1] and [Mao2]

for enumerating maps on surfaces underlying a graph. Besides of these two references,

further applications of this conception can be found in [Mao5], [MaL3], [MLW1] and

[Liu4]. It should be noted that the semi-arc automorphism iscalledsemi-automorphism

of a graph in [Liu4]. In fact, the semi-arc automorphism group of a graphG is the induced

action of AutG on semi-arcs ofG if G is loopless. Thus is the essence of Theorems 3.4.1

and 3.4.2. But if G has loops, the situation is very different. So the semi-arc automorphism
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group of a graph is valuable at least for enumerating maps on surface underlying a graphG

with loops because we need the semi-arc automorphism group,not just the automorphism

group ofG in this case.

3.6.6 Considering the local symmetry of a graph, graphs can be seenas the sources of

permutation multigroups. In fact, automorphism of a graph surveys its globally symmetry.

But this can be only applied for that of fields understood by mankind. For the limitation

of recognition, we can only know partially behaviors of World. So a globally symmetry

in one’s eyes is localized symmetry in the real-life World. That is the motivation of

multigroups. Although to determine the automorphism of a graph is very difficult, it is

easily to determine the automorphism multigroups in many cases. Theorems 3.5.3 and

3.5.5 are such typical examples. It should be noted that Theorems3.5.4 and 3.5.6 show

that the automorphism multigroups AutEG and AutclG are new invariants on graphs. So

we can survey localized symmetry of graphs or classify graphs by the action of AutEG

and AutclG.



CHAPTER 4.

Surface Groups

Thesurface groupis generated by loops on a surface with or without bound-

ary. There are two disguises for a surface group in mathematics. One is the

fundamental group in topology and another is the non-Euclidean crystallo-

graphic group, shortly NEC group in geometry. Both of them can be viewed

as an action group on a planar region, enables one to know the structures of

surfaces. Consequently, topics covered in this chapter consist of two parts

also. Sections 4.1.-4.3 are an introduction to topological surfaces, includ-

ing topological spaces, classification theorem of compact surfaces by that

of polygonal presentations under elementary transformations, fundamental

groups, Euler characteristic,· · ·, etc.. These sections 4.4 and 4.5 consist a

general introduction to the theory of Klein surfaces, including the antiana-

lytic functions, planar Klein surfaces, NEC groups and automorphism groups

of Klein surfaces,· · ·, etc.. All of these are the preliminary for finding au-

tomorphism groups of maps on surfaces or Klein surfaces in the following

chapters.
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§4.1 SURFACES

4.1.1 Topological Space.Let T be a set. Atopologyon a setT is a collectionC of

subsets ofT , calledopen setssatisfying properties following:

(T1) ∅ ∈ C andT ∈ C ;

(T2) if U1,U2 ∈ C , thenU1 ∩ U2 ∈ C ;

(T3) the union of any collection of open sets is open.

For example, letT = {a, b, c} andC = {∅, {b}, {a, b}, {b, c},T }. ThenC is a topology

onT . Usually, such a topology on a discrete set is called adiscrete topology, otherwise,

a continuous topology. A pair (T ,C ) consisting of a setT and a topologyC on T is

called atopological spaceand each element inT is called apointof T . Usually, we also

useT to indicate a topological space if its topology is clear in the context. For example,

the Euclidean spaceRn for an integern ≥ 1 is a topological space.

For a pointu in a topological spaceT , its anopen neighborhoodis an open setU

such thatu ∈ U in T and aneighborhoodin T is a set containing some of its open

neighborhoods. Similarly, for a subsetA of T , a setU is an open neighborhoodor

neighborhoodof A if U is open itself or a set containing some open neighborhoods of

that set inT . A basisin T is a collectionB of subsets ofT such thatT = ∪B∈BB and

B1, B2 ∈ B, x ∈ B1 ∩ B2 implies that∃B3 ∈ B with x ∈ B3 ⊂ B1 ∩ B2 hold.

Let T be a topological space andI = [0, 1] ⊂ R. An arc a in T is defined to be a

continuous mappinga : I → T . We calla(0), a(1) the initial point and end point ofa,

respectively. A topological spaceT is connectedif there are no open subspacesA andB

such thatS = A∪ B with A, B , ∅ and calledarcwise-connectedif every two pointsu, v

in T can be joined by an arca in T , i.e.,a(0) = u anda(1) = v. An arca : I → T is

a loop based atp if a(0) = a(1) = p ∈ T . A —it degenerated loopex : I → x ∈ S, i.e.,

mapping each element inI to a pointx, usually called apoint loop.

A topological spaceT is calledHausdorff if each two distinct points have disjoint

neighborhoods andfirst countableif for each p ∈ T there is a sequence{Un} of neigh-

borhoods ofp such that for any neighborhoodU of p, there is ann such thatUn ⊂ U. The

topology is calledsecond countableif it has a countable basis.

Let {xn} be a point sequence in a topological spaceT . If there is a pointx ∈ T such

that for every neighborhoodU of u, there is an integerN such thatn ≥ N impliesxn ∈ U,

then{un} is saidconvergesto u or u is a limit point of {un} in the topological spaceT .
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4.1.2 Continuous Mapping. For two topological spacesT1 andT2 and a pointu ∈ T1,

a mappingϕ : T1 → T2 is calledcontinuous at uif for every neighborhoodV of ϕ(u),

there is a neighborhoodU of u such thatϕ(U) ⊂ V. Furthermore, ifϕ is continuous at

each pointu in T1, thenϕ is called acontinuous mappingonT1.

For examples, the polynomial functionf : R → R determined byf (x) = anxn +

an−1xn−1 + · · · + a1x + a0 and the linear mappingL : Rn → Rn for an integern ≥ 1 are

continuous mapping. The following result presents properties of continuous mapping.

Theorem 4.1.1 LetR, S andT be topological spaces. Then

(1) A constant mapping c: R → S is continuous;

(2) The identity mapping Id: R → R is continuous;

(3) If f : R → S is continuous, then so is the restriction f|U of f to an open subset

U of R;

(4) If f : R → S and g: S → T are continuous at x∈ R and f(x) ∈ S , then so

is their composition mapping g f: R → T at x.

Proof The results of (1)-(3) is clear by definition. For (4), noticethat f andg are

respective continuous atx ∈ R and f (x) ∈ S . For any open neighborhoodW of point

g( f (x)) ∈ T , g−1(W) is opened neighborhood off (x) in S . Whence,f −1(g−1(W)) is an

opened neighborhood ofx in R by definition. Therefore,g( f ) is continuous atx. �

A refinement of Theorem 4.1.1(3) enables us to know the following criterion for

continuity of a mapping.

Theorem 4.1.2 Let R and S be topological spaces. Then a mapping f: R → S is

continuous if and only if each point ofR has a neighborhood on which f is continuous.

Proof By Theorem 4.1.1(3), we only need to prove the sufficiency of condition. Let

f : R → S be continuous in a neighborhood of each point ofR andU ⊂ S . We show

that f −1(U) is open. In fact, any pointx ∈ f −1(U) has a neighborhoodV(x) on which f

is continuous by assumption. The continuity off |V(x) implies that (f |V(x))−1(U) is open in

V(x). Whence it is also open inR. By definition, we are easily find that

( f |V(x))
−1(U) = {x ∈ R | f (x) ∈ U} = f −1(U)

⋂
V(x),

in f −1(U) and containsx. Notice thatf −1(U) is a union of all such open sets asx ranges

over f −1(U). Thus f −1(U) is open followed by this fact. �
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For constructing continuous mapping on a union of topological spacesX , the fol-

lowing result is a very useful tool, called theGluing Lemma.

Theorem 4.1.3 Assume that a topological spaceX is a finite union of closed subsets:

X =
n⋃

i=1
Xi. If for some topological spaceY , there are continuous maps fi : Xi → Y that

agree on overlaps, i.e., fi |Xi
⋂

X j = f j |Xi
⋂

X j for all i , j, then there exists a unique continuous

f : X → Y with f |Xi = fi for all i.

Proof Obviously, the mappingf defined by

f (x) = fi(x), x ∈ Xi

is the unique well defined mapping fromX to Y with restrictionsf |Xi = fi hold for all i.

So we only need to establish the continuity off onX . In fact, if U is an open set inY ,

then

f −1(U) = X
⋂

f −1(U) = (
n⋃

i=1

Xi)
⋂

f −1(U)

=

n⋃

i=1

(Xi

⋂
f −1(U)) =

n⋃

i=1

(Xi

⋂
f −1
i (U)) =

n⋃

i=1

f −1
i (U).

By assumption, eachfi is continuous. We know thatf −1
i (U) is open inXi. Whence,

f −1(U) is open inX . Thus f is continuous onX . �

Let X be a topological space. A collectionC ⊂P(X ) is called to be acoverof X

if ⋃

C∈C
C = X .

If each set inC is open, thenC is called anopened coverand if |C| is finite, it is called

a finite coverof X . A topological space iscompactif there exists a finite cover in its

any opened cover andlocally compactif it is Hausdorff with a compact neighborhood for

its each point. As a consequence of Theorem 4.1.3, we can apply the gluing lemma to

ascertain continuous mappings shown in the next.

Corollary 4.1.1 Let LetX and Y be topological spaces and{A1,A2, · · · ,An} be a fi-

nite opened cover of a topological spaceX . If a mapping f : X → Y is continuous

constrained on each Ai, 1 ≤ i ≤ n, then f is a continuous mapping.

4.1.3 Homeomorphic Space. Let S and T be two topological spaces. They are

homeomorphicif there is a 1− 1 continuous mappingϕ : S → T such that the inverse
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mapingϕ−1 : T → S is also continuous. Such a mappingϕ is called ahomeomorphic

or topologicalmapping. A few examples of homeomorphic spaces can be found in the

following.

Example4.1.1 Each of the following topological space pairs are homeomorphic.

(1) A Euclidean spaceRn and an opened unitn-ball Bn = { (x1, x2, · · · , xn) | x2
1+ x2

2+

· · · + x2
n < 1 };

(2) A Euclidean planeRn+1 and a unit sphereSn = { (x1, x2, · · · , xn+1) | x2
1+ x2

2+ · · ·+
x2

n+1 = 1 } with one pointp = (0, 0, · · · , 0, 1) on it removed.

In fact, define a mappingf from Bn to Rn for (1) by

f (x1, x2, · · · , xn) =
(x1, x2, · · · , xn)

1−
√

x2
1 + x2

2 + · · · + x2
n

for ∀(x1, x2, · · · , xn) ∈ Bn. Then its inverse is

f −1(x1, x2, · · · , xn) =
(x1, x2, · · · , xn)

1+
√

x2
1 + x2

2 + · · · + x2
n

for ∀(x1, x2, · · · , xn) ∈ Rn. Clearly, bothf and f −1 are continuous. SoBn is homeomorphic

to Rn. For (2), define a mappingf from Sn − p to Rn+1 by

f (x1, x2, · · · , xn+1) =
1

1− xn+1
(x1, x2, · · · , xn).

Its inversef −1 : Rn+1→ Sn − p is determined by

f −1(x1, x2, · · · , xn+1) = (t(x)x1, · · · , t(x)xn, 1− t(x)),

where

t(x) =
2

1+ x2
1 + x2

2 + · · · + x2
n+1

.

Notice that bothf and f −1 are continuous. ThusSn − p is homeomorphic toRn+1.

4.1.4 Surface. For an integern ≥ 1, ann-dimensional topological manifoldis a second

countable Hausdorff space such that each point has an open neighborhood homeomorphic

to an openn-dimensional ballBn = {(x1, x2, · · · , xn)|x2
1+x2

2+· · ·+x2
n < 1} in Rn. We assume

all manifolds is connected considered in this book. A 2-manifold is usually calledsurface

in literature. Several examples of surfaces are shown in thefollowing.
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Example4.1.1 These 2-manifolds shown in the Fig.4.1.1 are surfaces with boundary.

rectangle cylinderplane torus

Fig.4.1.1

Example4.1.2 These 2-manifolds shown in the Fig.4.1.2 are surfaces without boundary.

sphere torus

Fig.4.1.2

By definition, we can always distinguish the right-side and left-side when one object

moves along an arc on a surfaceS. Now let N be a unit normal vector of the surfaceS.

Consider the result of a normal vector moves along a loopL on surfaces in Fig.4.1.1 and

Fig.4.1.2. We find the direction ofN is unchanged as it come back at the original pointu.

For example, it moves on the sphere and torus shown in the Fig.4.1.3 following.

L

u u
6 6
sphere torus

O

Fig.4.1.3
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Such loopsL in Fig.4.1.3 are calledorientation-preserving. However, there are also loops

L in surfaces which are not orientation-preserving. In such case, we get the opposite

direction ofN as it come back at the original pointv. Such a loop is calledorientation-

reversing. For example, the process (1)-(3) for getting the famous Möbius strip shown in

Fig.4.1.4, in where the loopL is an orientation-reversing loop.

A

B

E

A’

B’

E’

(1)

A

B

E

A’

B’

E’

(2)
A

E

B
(3)

K
v

N

L

Fig.4.1.4

A surfaceS is defined to beorientableif every loop onS is orientation-preserving.

Otherwise,non-orientableif there at least one orientation-reversing loop onS. Whence,

the surfaces in Examples 4.1.1-4.1.2 are orientable and the Möbius strip are non-orientable.

It should be noted that the boundary of a Möbius strip is a closed arc formed byAB′ and

A′B. Gluing the boundary of a Möbius strip by a 2-dimensional ball B2, we get a non-

orientable surface without boundary, which is usually calledcrosscapin literature.

4.1.5 Quotient Space.A natural way for constructing surfaces is by the quotient space

from a surface. For introducing such spaces, letX , Y be a topological spaces and

π : X → Y be a surjective and continuous mapping. A subsetU ⊂ Y is defined to be

open if and only ifπ−1(U) is open inX . Such a topology onY is called thequotient

topologyinduced byπ, andπ is called a quotient mapping. It can be shown easily that the

quotient topology is indeed a topology onY .

Let∼ be an equivalent relation onX . Denoted by [q] the equivalence class for each

q ∈ X and letX / ∼ be the set of equivalence classes. Now letπ : X → X / ∼ be

the natural mapping sending each elementq to the equivalence class [q]. ThenX / ∼
together with the quotient topology determined byπ is called thequotient spaceandπ
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theprojection. For example, the Möbius strip constructed in Fig.4.1.4 is in fact a quotient

spaceX / ∼, whereX is the rectangleAEBA′E′B′, and

π(x) =


x′ if |xA′| = |x′A′|, x ∈ AB, y ∈ A′B′,

x if x ∈X \ (AB∪ A′B′).

Applying quotient spaces, we can also construct surfaces without boundary. For ex-

ample, aprojective planeis defined to be the quotient space of the 2-sphere by identifying

every pair of diametrically opposite points, i.e.,X = {(x1, x2, x3)|x2
1 + x2

2 + x2
3 = 1} with

π(−x1,−x2,−x3) = (x1, x2, x3).

Now let X be a rectangleABA′B′ shown in Fig.4.1.5. Then different identification

of points onAB with A′B′ andAA′ with BB′ yields different surfaces without boundary

shown in Fig.4.1.5,

A A

B

BB

AA

A’

B’

A’

B’

A’

B’

- 6
-
-6 6

-
�

6 ?
-
-

6 ?
B

sphereS2 torusT2

projection planeP2 Klein bottleK2

a a a a

b

b

a aa a

b

b

b

b

Fig.4.1.5

where the projectionπ is determined by

π(x) =


x′ if |xA′| = |x′A′|, x ∈ AB′B, y ∈ A′AB,

x if x ∈X \ (AB∪ A′B′ ∪ AA′ ∪ BB′)
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in the sphere,

π(x) =



x′ if |xA′| = |x′B′|, x ∈ AA′, x′ ∈ BB′,

x” if |xA| = |x′A′|, x ∈ AB, x′ ∈ A′B′,

x if x ∈X \ (AB∪ A′B′ ∪ AA′ ∪ BB′)

in the torus,

π(x) =


x′ if |xB| = |x′A′|, x ∈ BAA′, x′ ∈ A′B′B,

x if x ∈X \ (AB∪ A′B′ ∪ AA′ ∪ BB′)

in the projection plane and

π(x) =



x′ if |xA′| = |x′B′|, x ∈ AA′, x′ ∈ BB′,

x” if |xA| = |x”B′|, x ∈ AB, x′ ∈ A′B′,

x if x ∈X \ (AB∪ A′B′ ∪ AA′ ∪ BB′)

in the Klein bottle, respectively.

$4.2 CLASSIFICATION THEOREM

4.2.1 Connected Sum.Let S1, S2 be disjoint surfaces. Aconnected sumof S1 andS2,

denoted byS1#S2 is formed by cutting a circular hole on each surface and then gluing the

two surfaces along the boundary of holes.

- --
-6 ? -

-666 ??? 66 ??
A

B

A’

B’

A(A’)

A

B

C

D

A’

B’

C’

D’

C

D

C’

D’
D

C

D’

C’

B(B’)

(1) (2) (3)

I

II
II

I

Fig.4.2.1

For example, we show that a Klein bottle constructed in Fig.4.1.5 is in fact the connected

sum of two Möbius strips in Fig.4.2.1, in where, (1) is the Klein bottle in Fig.4.1.5. It

should be noted that the rectanglesCDC′D′ andDACC′B′D′ are two Möbius strips after

we cutABA′B′ alongCC′, DD′ and then glue alongAB, A′B′ in (3).
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For a precise definition of connected sum, letD1 ⊂ S1 andD2 ⊂ S2 be closed 2-

dimensional discs, i.e., homeomorphic toB
2
= {(x1, x2)|x2

1 + x2
2 ≤ 1} with boundary∂D1,

∂D2 homeomorphic toS1 = {(x1, x2)|x2
1 + x2

2 = 1}. Notice that each∂Di homeomorphic to

S1 for i = 1, 2. Leth1 : ∂D1 → S1 andh1 : ∂D2 → S1 be such homeomorphisms. Then

h−1
2 h1 : ∂D1 → ∂D2, i.e., there always exists a homeomorphism∂D1 → ∂D2. Chosen

a homoeomorphismh : ∂D1 → ∂D2, thenS1#S2 is defined to be the quotient space

(S1 ∪ S2)/h. By definition, S1#S2 is clearly a surface and does not dependent on the

choice ofD1,D2 andh.

Example 4.2.1 The following connected sums of orientable or non-orientable surfaces

are orientable or non-orientable surfaces.

(1) A connected sumT2#T2# · · ·#T2
︸             ︷︷             ︸

n

of n toruses is orientable. Particularly,T2#T2

is called the double torus.

(2) A connected sumP2#P2# · · ·#P2
︸            ︷︷            ︸

k

of k projection planes is non-orientable. Partic-

ularly, K2 = P2#P2 as we shown in Fig.4.2.1.

4.2.2 Polygonal Presentation. A triangulation of a surfaceS consisting of a finite

family of closed subsets{T1,T2, · · · ,Tn} that coversS with Ti ∩ T j = ∅, a vertexv or an

entire edgee in common, and a family of homeomorphismsφi : T′i → Ti, where eachT′i
is a triangle in the planeR2, i.e., a compact subset bounded by 3 distinct straight lines.

The images of vertices and edges of the triangleT′i underφi are called also thevertices

andedges, respectively. For example, a triangulation of the Möbiusstrip can be found in

Fig.4.2.2.

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

? 6
Fig.4.2.2

In fact, there are many non-isomorphic triangulation for a surface, which is the central

problem of enumerative theory of maps (See [Liu2]-[Liu4] for details). T.Radó proved

the following result in 1925.
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Theorem 4.2.1(Radó) Any compact surface S admits a triangulation.

The proof of this theorem is not difficult but very tedious. We will not present it

here. The reader can refers references, such as those of [AhS1] and [Lee1] for details.

The following result is fundamental for classifying surfaces without boundary.

Theorem 4.2.2 Let S be a compact surface with a triangulationT . Then S is homeo-

morphic to a quotient surface by identifying edge pairs of triangles inT .

Proof Let T = {Ti; 1 ≤ i ≤ n be a triangulation ofS. Our proof is divided into two

assertions following:

(A1) Let v be a vertex ofT . Then there is an arrangement of triangles with v as a

vertex in cyclic order Tv1,T
v
2, · · · ,Tv

ρ(v) such that Ti and Ti+1 have an edge in common for

integers1 ≤ i ≤ ρ(v) (modρ(v)).

Define anequivalenceon two trianglesTv
i ,T

v
j by that ofTv

i andTv
j have exactly an

edge in common inT . It is clear that this relation is indeed an equivalent relation onT .

Denote by [T ] all such equivalent classes inT . Then if |[T ]| = 1, we get the assertion

(A1). Otherwise,|[T ]| ≥ 2, we can choose [Tv
s], [T

v
l ] ∈ [T ] such that [Tv

s] ∩ [Tv
l ] = {v} in

T . Whence, there is a neighborhoodWv of v small enough such thatWv−v is disconnected.

But by the definition of surface, there is a neighborhoodWv of v homeomorphic to an open

sphereB2 in S. Consequently,Wv − v is connected for any neighborhoodWv of v small

enough, a contradiction.

(A2) Each edge is an edge of exactly two triangles.

First, each edge is an edge of two triangles at least inT , i.e., there are no vertices

x on an edge ofTi for an integer,i, 1 ≤ i ≤ n with a neighborhoodWx homeomorphic

to an open ballB2. Otherwise, a loopL encircledx in Ti −Wx can not be continuously

contracted to the point inTi. But it is clear that any loop inTi −Wx for neighborhoodsWx

of x small enough can be continuously contracted to a point inTi −Wx for any pointx on

an edge ofTx, a contradiction.

Second, each edge is exactly an edge of two triangles. Noticethat we can continu-

ously subdivide a triangulation such that trianglesT with a common edgeeare contained

in anǫ-neighborhood of a point inT. Not loss of generality, we assumeT is such a trian-

gulation ofS. By applying Jordan curve theorem, i.e.,the moving of any closed curve C on

S2 reminds two connected components W1, W2 with W1∩W2 = C, we know that each edge
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is exactly an edge of two triangles inT . In fact, letee11e21, ee12e22, · · · , ees1es1 be trian-

gles contained in anǫ-neighborhoodW with a common edgee, wheree, e1i , e2i, 1 ≤ i ≤ s

are edges of these triangles. ThenW − ee11e21 has two connected components by Jordan

curve theorem. One of them is the interior of triangleee11e21 and another isW−Te, where

Te is the triangle with boundaryee11e21. So there must bes= 2.

Combining assertions (A1)-(A2), we consequently get the result. �

According to Theorem 4.2.2, we know that a compact surface can be presented by

identifying edges of triangles, where each edge is exactly an edge of two triangles. Gen-

erally, letA be a set. Aword is defined to be an orderedk-tuple of elementsa ∈ A with

the forma or a−1. A polygonal presentation, denoted by

W = 〈 A |W1,W2, · · · ,Wk 〉

is a finite setA together with finitely many wordsW1, W2, · · · ,Wk in A such that each ele-

ment ofA appears in at least one words. A polygonal presentation〈A |W1,W2, · · · ,Wk〉 is
called asurface presentationif each elementa ∈ A occurs exactly twice inW1,W2, · · · ,Wk

with the forma or a−1. We call elementsa ∈ A to beedges, Wi, 1 ≤ i ≤ k to befaces

of S and vertices appeared in each faceverticesif each words is represented by a poly-

gon on the planeR2. It can be known that a surface is orientable if and only if thetwo

occurrences of each elementa ∈ A are with different power, otherwise, non-orientable.

For example, letS be the torusT2 with short sidea and length sideb in Fig.4.1.5.

Then we get its polygonal presentationT2 =
〈
a, b|aba−1b−1

〉
. Generally, Theorem 4.2.2

enables one knowing that the existence of polygonal presentation for compact surfacesS,

at least by triangles, i.e., each wordsW is length of 3 inA .

4.2.3 Elementary Equivalence. Let A be a set of English alphabets, the minuscules

a, b, c, · · · ∈ A but the Greek alphabetsα, β, γ, · · · < A , S = 〈A |W1,W2, · · · ,Wk〉 be a

surface presentation and let the capital lettersA, B, · · · be sections of successive elements

in order andA−1, B−1, · · · in reserving order in wordsW. For two wordsW1,W2 in S, the

notationW1W2 denotes the word formed by concatenatingW1 with W2 in order. We adopt

the convention that (a−1)−1 = a in this book.

Define operations El.1–El.6, calledelementary transformationsonS following:

El.1(Relabeling): Changing all occurrences of a byα < A , interchanging all oc-
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currences of two elements a and b, or interchanging all occurrences a and a−1, i.e.,

〈A |aAbB,W2, · · · ,Wk〉 ↔ 〈A |bAaB,W2, · · · ,Wk〉 ,〈
A |aAa−1B,W2, · · · ,Wk

〉
↔

〈
A |a−1Aa,W2, · · · ,Wk

〉
or

〈
A |aA, a−1B, · · · ,Wk

〉
↔

〈
A |a−1A, aB, · · · ,Wk

〉
.

El.2(Subdividing or Consolidating)Replacing every occurrence of a byαβ and a−1

byβ−1α−1, or vice versa, i.e.,

〈
A |aAa−1B,W2, · · · ,Wk

〉
↔

〈
A |αβAβ−1α−1B,W2, · · · ,Wk

〉
〈
A |aA, a−1B, · · · ,Wk

〉
↔

〈
A |αβA, β−1α−1B, · · · ,Wk

〉
.

El.3(Reflecting) Reversing the order of a word W= a1a2 · · ·am, i.e.,

〈A |a1, a2 · · ·am,W2, · · · ,Wk〉 ↔
〈
A |a−1

m · · ·a−1
2 a−1

1 ,W2, · · · ,Wk

〉
.

El.4(Rotating) Changing the order of a word W= a1a2 · · ·am by rotating, i.e.,

〈A |a1, a2 · · ·am,W2, · · · ,Wk〉 ↔ 〈A |ama1 · · ·am−1,W2, · · · ,Wk〉 .

El.5(Cutting or Pasting)If the length of W1,W2 are both not less than2, then

〈A |W1W2, · · · ,Wk〉 ↔
〈
A |W1γ, γ

−1W2, · · · ,Wk

〉
.

El.6(Folding or Unfolding) If the length of W1 is at least3, then

〈
A |W1δδ

−1,W2, · · · ,Wk

〉
↔ 〈A |W1,W2, · · · ,Wk〉 .

Let S1 andS2 be two surface presentations. IfS1 can be conversed to that ofS2 by

a series of elementary transformationsπ1, π2, · · · , πm in El.1 − −El.6, we sayS1 andS2

to beelementary equivalentand denote byS1 ∼El S2. It is obvious that the elementary

equivalence is indeed an equivalent relation on surface presentations. The following result

is fundamental for applying surface presentations to that of classifying compact surfaces.

Theorem 4.2.3 Let S1 and S2 be compact surfaces with respective presentationsS1, S2.

If S1 ∼El S2, then S1 is homeomorphic to S2.

Proof By the definition of elementary transformation, it is clear that each pairs of

cutting and pasting, folding and unfolding, subdividing and consolidating are inverses of

each other. Whence, we are only need to prove our result for one of such pairs.
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Cutting. Let P1 andP2 be convex polygons labeled byW1γ andγ−1W2, respectively

andP be a convex polygon labeled byW1W2. Not loss of generality, we assume these are

the only words in their respective presentations. Letπ : P1 ∪ P2/ ∼→ S1 andπ′ : P/ ∼→
S2 be the quotient mappings. The line segment going from the terminal vertex ofW1 in

P to its initial vertex lies inP by convexity, labeled this line segment byγ. Such as those

shown in Fig.4.2.3 following.

W1 W1

W2 W2
γ K
K

γ γ
pasting

cutting

Fig.4.2.3

Applying the gluing lemma, there is a continuous mappingf : P1 ∪ P2 → P that takes

each edge ofP1 or P2 to the edge inP with a corresponding label, and whose restriction

to P1 or P2 is a homeomorphism, i.e.,f is a quotient mapping. Becausef identifying two

edges labeled byγ andγ−1 but nothing else, the quotient mappingπ ◦ f andπ′ makes the

same identifications. So their quotient spaces are homeomorphic.

a

b

c

e

e
a

b

ce
	U - �R � -K?folding

unfolding

Fig.4.2.4

If k ≥ 3, extendingf by declaring it to be the identity on the respective polygonsand

processed as above, we also get the result.

Folding. Similarly, we can ignore the additional wordsW2, · · · ,Wk. If the length of

W1 is 2, subdivide it and then perform the folding transformation and then consolidate.

So we can assume the length ofW1 is not less than 3. First, letW1 = abcandP, P′ be

convex polygons with edge labelsabcee−1 andabc, respectively. Letπ : P → S1 and

π′ : P′ → S2 be the quotient mappings. Now adding edges inP, P′, turns them into
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polyhedra, such as those shown in Fig.4.2.4. There is a continuous mappingf : P→ P′

that takes each edge ofP to that the edge ofP′ with the same label. Thenπ′ ◦ f andπ are

quotient mappings that make the same identifications.

If the length≥ 4 of W1, we can writeW1 = Abc for some sectionA of length at least

2. Cutting alonga we obtain
〈
A , b, c, e|Abcee−1

〉
∼El

〈
A , a, b, c, e|Aa−1, abcee−1

〉

and processed as before to get the result.

Subdividing. Similarly, let P1, P2 be distinct polygons with sectionsa or a−1 and

P′1, P′2 with sections replacinga by αβ anda−1 by β−1α−1 in P1 andP2. Such as those

shown in Fig.4.2.5.

subdividing

consolidating

a

6
α

β

aK
�

Fig.4.2.5

Certainly, there is a continuous mappingf : P1 ∪ P2 → P′1 ∪ P′2 that takes each edge of

P1,P2 to that the edge ofP′1,P
′
2 with the same label, and the edge with labela to the edge

with labelαβ in P′1 ∪ P′2. Thenπ′ ◦ f : P1 ∪ P2/ ∼→ S1 andπ : P′1 ∪ P′2/ ∼→ S2 are

quotient mappings that make the same identifications.

If a or a−1 appears twice in a polygonP, the proof is similar. ThusS1 is homeomor-

phic toS2 in each case. �

4.2.4 Classification Theorem. Let S be a compact surface with a presentationS =
〈A |W1,W2, · · · ,Wk〉 and letA, B, · · · be sections of successive elements in a wordW in S.

Theorems 4.2.1–4.2.3 enables one to classify compact surfaces as follows.

Theorem 4.2.4 Any connected compact surface S is either homeomorphic to a sphere,

or to a connected sum of tori, or to a connected sum of projective planes, i.e., its sur-

face presentationS is elementary equivalent to one of the standard surface presentations

following:
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(1) The sphere S2 =
〈
a|aa−1

〉
;

(2) The connected sum of p tori

T2#T2# · · ·#T2
︸             ︷︷             ︸

p

=

〈
ai , bi, 1 ≤ i ≤ p |

p∏

i=1

aibia
−1
i b−1

i

〉
;

(3) The connected sum of q projective planes

P2#P2 · · ·#P2
︸           ︷︷           ︸

q

=

〈
ai , 1 ≤ i ≤ q |

q∏

i=1

ai

〉
.

Proof Let S = 〈A |W1,W2, · · · ,Wk〉. For establishing this theorem, we first prove

several claims on elementary equivalent presentations of surfaces following.

Claim 1. There is a word W inA such that

S = 〈 A |W1,W2, · · · ,Wk 〉 ∼El 〈 A |W 〉 .

If k ≥ 2, we can concatenateW1,W2, · · · ,Wk by elementary transformationsEl.1 −
El.6. In fact, by definition, there is an elementa only appears once inW1. ThusW1 = Aa

and a does not appears inA. Not loss of generality, leta or a−1 appears inW2, i.e.,

W2 = Baor W2 = a−1B. Applying El.1− El.6, we know that

S = 〈 A | Aa, Ba,W3, · · · ,Wk 〉

∼El

〈
A | Aa, a−1B−1,W3, · · · ,Wk

〉
∼El

〈
A | AB−1,W3, · · · ,Wk

〉
.

S =
〈
A | Aa, a−1B,W3, · · · ,Wk

〉
∼El 〈 A | AB,W3, · · · ,Wk 〉 .

Furthermore, by induction onk we know thatS is elementary equivalent to a surface just

with one wordW if k ≥ 2. Thus

S = 〈 A |W1,W2, · · · ,Wk 〉 ∼El 〈 A |W 〉 .

Claim 2.
〈

A | AaBbCa−1Db−1E
〉
∼El

〈
A | ADCBEaba−1b−1

〉
.

In fact, byEl.1− El.6, we know that
〈
A | AaBbCa−1Db−1E

〉
∼El

〈
A ∪ {δ} | Db−1EAaδ, δ−1BbCa−1

〉

∼El

〈
A ∪ {δ} \ {b} | EAaδDCa−1δ−1B

〉
∼El

〈
A ∪ {δ} | Aaδb, b−1DCa−1δ−1BE

〉

∼El

〈
A | bAaBEb−1DCa−1

〉
∼El

〈
A ∪ {δ} | AaBEδ, δ−1b−1DCa−1b

〉

∼El

〈
A ∪ {δ} \ {a} | BEδAbδ−1b−1DC

〉
∼El

〈
A ∪ {δ} | Aba, a−1δ−1b−1DCBEδ

〉

∼El

〈
A ∪ {δ} \ {b} | ADCBEδaδ−1a−1

〉
∼El

〈
A | ADCBEaba−1b−1

〉
.
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Claim 3. 〈 A | AcBcC〉 ∼El

〈
A | AB−1Ccc

〉
.

By El.1− El.6, we find that

〈 A | AaBaC〉 ∼El

〈
A ∪ {δ} | Aaδ, δ−1BaC

〉

∼El

〈
A ∪ {δ} | δAa, a−1B−1δC−1

〉
∼El

〈
A ∪ {δ} \ {a} | δAB−1δC−1

〉

∼El

〈
A ∪ {δ} | AB−1δa, a−1C−1δ

〉
∼El

〈
A ∪ {δ} | aAB−1δ, δ−1Ca

〉

∼El

〈
A | AB−1Caa

〉
.

Claim 4.
〈
A | Accaba−1b−1

〉
∼El 〈 A | Accaabb〉.

Applying El.1− El.6 and Claim 3, we get that

〈
A | Accaba−1b−1

〉
∼El

〈
A ∪ {δ} | a−1b−1Acδ, δ−1cab

〉

∼El

〈
A ∪ {δ} | δa−1b−1Ac, c−1δb−1a−1

〉
∼El

〈
A ∪ {δ} \ {c} | δa−1b−1Aδb−1a−1

〉

∼El

〈
A ∪ {δ} \ {c} | Aδb−1a−1δa−1b−1

〉
.

Applying Claim 3, we therefore have

〈
A | Accaba−1b−1

〉
∼El

〈
A ∪ {δ} \ {c} | Aδaδ−1ab−1b−1

〉

∼El

〈
A ∪ {δ} \ {c} | Aδδb−1b−1aa

〉
∼El 〈 A | Accaabb〉 .

Now we can prove the classification for connected compact surfaces. If|A | = 1, let

A = {a}, then we get

S =
〈

a | aa−1
〉

or 〈 a | aa 〉 ,

i.e., the sphere or the projective plane. If|A | ≥ 2, by Claim 1 we are only needed to

prove the classification for compact surfaces with one word,i.e.,S = 〈 a |W 〉. Our proof

is divided into two cases following.

Case1. There are no elements a∈ A such that W= AaBaC.

In this case, there are sectionsA, B,C,D,E of W such thatW = AaBbCa−1Db−1E

or W = AaBbCb−1Da−1E. If there are no elementsa, b such thatW = AaBbCa−1Db−1E,

thenW must be the form of· · · cG(a1H1b1b−1
1 H−1

1 a−1
1 ) · · · (alHlblb−1

l H−1
l a−1

l )G−1d−1 · · ·. By

the elementary transformationEl.5, we finally get thatS ∼El

〈
A | aa−1

〉
, the sphere. Not

loss of generality, we will assume that this case never appears in our discussion, i.e., for

∀a ∈ A , there are always existsb ∈ A such thatW = AaBbCa−1Db−1E. In this case, by
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Claim 2 we know thatS ∼El

〈
A | ADCBEaba−1b−1

〉
. Notice that elements inADCBE

also satisfy the condition of Case 1. So we can applying Claim2 repeatedly and finally

get that

S ∼El

〈
A |

p∏

i=1

aibiaib
−1
i

〉

for an integerp ≥ 1.

Case2. There are elements a∈ A such that W= AaBaC.

In this case, by Claim 3 we know thatS ∼El

〈
A |AB−1Caa

〉
. Applying Claim 3 to

AB−1C repeatedly, we finally get that

S ∼El

〈
A | H

s∏

i=1

aiai

〉

for an integers ≥ 1 such that there are no elementsb ∈ H such thatH = DbCbE. Thus

each elementx ∈ A \ {ai; 1 ≤ i ≤ s} appearsx at one time andx−1 at another. Similar to

the discussion of Case 1, we know that

S ∼El

〈
A | H

s∏

i=1

aiai

〉
∼El

〈
A |

s∏

i=1

aiai

t∏

i=1

xjyj x
−1
j y−1

〉

for some integerss, t by applying Claim 2. Applying Claim 4 also, we finally get that

S ∼El

〈
A | H

s∏

i=1

aiai

〉
∼El

〈
A |

q∏

i=1

aiai

〉
,

for an integerq = s+ 2t. This completes the proof. �

Notice that each step in the proof of Theorem 4.2.4 does not change the orientability

of a surfaceS with a presentationS. We get the following conclusion.

Corollary 4.2.1 A surface S is orientable if and only if it is elementary equivalent to the

sphere S2 or the connected sum T2#T2# · · ·#T2
︸             ︷︷             ︸

p

of p tori.

4.2.5 Euler Characteristic. Let S = 〈 A |W1,W2, · · · ,Wk 〉 be a surface presentation

andπ : 〈 A |W1,W2, · · · ,Wk 〉 → S a projection by identifyinga with a−1 for ∀a ∈ A .

TheEuler characteristicof S is defined by

χ(S) = |V(S)| − |E(S)| + |F(S)|,
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whereV(S),E(S) andF(S) are respective the set of vertex set, edge set and face set ofthe

surfaceS. We are easily knowing that|E(S)| = |A |, |F(F )| = k and|V(S)| the number of

orbits of vertices in polygonsW1,W2, · · · ,Wk underπ. The Euler characteristic of a sur-

face is topological invariant. Furthermore, it is unchangeby elementary transformations.

Theorem 4.2.5 If S1 ∼El S2, thenχ(S1) = χ(S2), i.e., the Euler characteristic is an

invariant under elementary transformations.

Proof Let 〈 A |W1,W2, · · · ,Wk 〉 be a presentation of a surfaceS. We only need

to prove each elementaryEl.1 − El.6 onS does not change the valueχ(S). Notice the

elementary transformationsEl.1(Relabeling),El.3(Reflecting) andEl.4(Rotating) leave

the numbers of vertices, edges and faces unchanged. Consequently, χ(S) is invariant

underEl.1, El.3 − El.4. We only need to check the result for elementary transforma-

tions El.2(Subdividing or Consolidating),El.5(Cutting or Pasting) andEl.6(Folding or

Unfolding). In fact, El.2(Subdividing or Consolidating) increase or decrease boththe

number of edges and the number of vertices by 1, leaves the number of faces unchanged,

El.5(Cutting or Pasting) increases or decreases both the number of edges and the number

of faces by 1, leaves the number of vertices unchanged andEl.6(Folding or Unfolding)

increases or decreases the number of edges and the number of vertices, leaves the number

of faces unchanged. Whence,χ(S) is invariant under these elementary transformations

El.1− El.6. This completes the proof. �

Applying Theorems 4.2.4 and 4.2.5, we get the Euler characteristic of connected

compact surfaces following.

Theorem 4.2.6 Let S be a connected compact surface with a presentationS. Then

χ(S) =



2, if S ∼El S2,

2− 2p, if S ∼El T2#T2# · · ·#T2
︸             ︷︷             ︸

p

,

2− q, if S ∼El P2#P2# · · ·#P2
︸            ︷︷            ︸

q

.

Proof Notice that the numbers of vertices, edges and faces of a surfaceS are re-

spective|V(S)| = 2, |E(S)| = 1, |F(S)| = 1 if S =
〈
a|aa−1

〉
(See Fig.4.1.5 for de-

tails), |V(S)| = 1, |E(S)| = 2p, |F(S)| = 1 if S =
〈

ai, bi, 1 ≤ i ≤ p |
p∏

i=1
aibia−1

i b−1
i

〉
and

|V(S)| = 1, |E(S)| = q, |F(S)| = 1 if S =
〈

ai, 1 ≤ i ≤ q |
q∏

i=1
ai

〉
. By definition, we know
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that

χ(S) =



2, if S ∼El S2,

2− 2p, if S ∼El T2#T2# · · ·#T2
︸             ︷︷             ︸

p

,

2− q, if S ∼El P2#P2# · · ·#P2
︸            ︷︷            ︸

q

by Theorem 4.2.5. Applying Theorems 4.2.4, the conclusion is followed. �

The numbersp andq is usually defined to be thegenusof the surfaceS, denoted

by g(S). Theorem 4.2.6 implies thatg(S) = 0, p or q if S is elementary equivalent to the

sphere, the connected sum ofp tori or the connected sum ofq projective plane.

$4.3 FUNDAMENTAL GROUPS

4.3.1 Homotopic Mapping. Let T1,T2 be two topological spaces and letϕ1, ϕ2 : T1→
T2 be two continuous mappings. If there exists a continuous mapping H : T1 × I → T2

such that

H(x, 0) = ϕ1(x) and H(x, 1) = ϕ2(x)

for ∀x ∈ T1, thenϕ1 andϕ2 are calledhomotopic, denoted byϕ1 ≃ ϕ2. Furthermore, if

there is a subsetA ⊂ T such that

H(a, t) = ϕ1(a) = ϕ2(a), a ∈ A, t ∈ I ,

thenϕ1 andϕ2 are calledhomotopic relative to A. Clearly,ϕ1 is homotopic toϕ2 if A = ∅.

Theorem 4.3.1 For two topological spacesT ,J , the homotopic≃ on the set of all

continuous mappings fromT toJ is an equivalent relation, i.e, all homotopic mappings

to a mapping f is an equivalent class, denoted by[ f ].

Proof Let f , g, h be continuous mappings fromT to J , f ≃ g andg ≃ h with

homotopic mappingsH1 andH2. Then we know that

(1) f ≃ f if chooseH : I × I → T by H(t, s) = f (t) for ∀s ∈ I .

(2) g ≃ f if chooseH(t, s) = H1(t, 1− s) for ∀s, t ∈ I which is obviously continuous.

(3) DefineH(t, s) = H2H1(t, s) for ∀s, t ∈ I by

H(t, s) = H2H1(t, s) =


H1(x, 2t), if 0 ≤ t ≤ 1

2,

H2(x, 2t − 1), if 1
2 ≤ t ≤ 1.
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Notice thatH1(x, 2t) = H1(x, 1) = g(x) = H2(x, 2t − 1) if t = 1
2. Applying Theorem 4.1.3,

we know the continuousness ofH1H2. Whence,f ≃ h. �

Theorem 4.3.2 If f1, f2 : T →J and g1, g2 : J → L are continuous mappings with

f1 ≃ f2 and g1 ≃ g2, then f1 ◦ g1 ≃ f2 ◦ g2.

Proof AssumeF : f1 ≃ f2 andG : g1 ≃ g2 are homotopies. Define a new homotopy

H : T × I → L by H(x, t) = G(F(x, t), t). ThenH(x, 0) = G( f1(x), 0) = g1( f1(x)) for

t = 0 andH(x, 1) = G( f2(x), 1) = g2( f2(x)) for t = 1. ThusH is a homopoty fromg1 ◦ f1

to g2 ◦ f2. �

We present two examples for homotopies of topological spaces.

Example4.3.1 Let f , g : R→ R2 determined by

f (x) = (x, x2), g(x) = (x, x)

andH(x, t) = (x, x2 − tx2 + tx). ThenH : R × I → R is continuous withH(x, 0) = f (x)

andH(x, 1) = g(x). Whence,H : f ≃ g.

Example4.3.2 Let f , g : T → R2 be continuous mappings from a topological spaceT

to R2. Define a mappingH : T × I → T by

H(x, t) = (1− t) f (x) + tg(x), x ∈ T .

Clearly,H is continuous withH(x, 0) = f (x) andH(x, 1) = g(x). Therefore,H : f ≃ g.

Such a homotopyH is called astraight-line homotopybetweenf andg.

4.3.2 Fundamental Group. Particularly, leta, b : I → T be two arcs witha(0) = b(0)

anda(1) = b(1) in a topological spaceT . In this case,a ≃ b implies that there exists a

continuous mapping

H : I × I → S

such thatH(t, 0) = a(t), H(t, 1) = b(t) for ∀t ∈ I by definition.

Now let a andb be two arcs in a topological spaceT with a(1) = b(0). A product

arc a · b of a with b is defined by

a · b(t) =


a(2t), if 0 ≤ t ≤ 1

2,

b(2t − 1), if 1
2 ≤ t ≤ 1

and an inverse mapping ofa by a = a(1− t).
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Notice thata·b : I → T anda : I → T are continuous by Corollary 4.1.1. Whence,

they are indeed arcs by definition, called theproduct arcof a with b and theinverse arc

of a. Sometimes it is needed to distinguish the orientation of anarc. We say the arca

orientation-preservingand its inversea orientation-reversing.

Let a, b be arcs in a topological spaceT . Properties on product of arcs following

are hold obviously by definition.

(P1) a = a;

(P2) b · a = a · b providingab existing;

(P3) ex = ex, wherex = e(0) = e(1).

Theorem 4.3.3 Let a, b, c and d be arcs in a topological space S . Then

(1) a ≃ b if a ≃ b;

(2) a · b ≃ c · d if a ≃ b, c≃ d with a· c an arc.

proof Let H1 be a homotopic mapping froma to b. Define a continuous mapping

H′ : I × I → S by H′(t, s) = H1(1 − t, s) for ∀t, s ∈ I . Then we find thatH′(t, 0) = a(t)

andH′(t, 1) = b(t). Whence, we get thata ≃ b, i.e., the assertion (1).

For (2), letH2 be a homotopic mapping fromc to d. Define a mappingH : I × I → S

by

H(t, s) =


H1(2t, s), if 0 ≤ t ≤ 1

2,

H2(2t − 1, s), if 1
2 ≤ t ≤ 1.

Notice thata(1) = c(0) andH1(1, s) = a(1) = c(0) = H2(0, s). Applying Corollary 4.1.1,

we know thatH is continuous. Therefore,a · b ≃ c · d. �

For a topological spaceT , x0 ∈ T , let π1(T , x0) be a set consisting of equivalent

classes of loops based atx0. Define an operation◦ in π1(T , x0) by

[a] ◦ [b] = [a · b] and [a]−1 = [a−1].

Then we know thatπ1(T , x0) is a group shown in the following result.

Theorem 4.3.4 π1(T , x0) is a group.

Proof We check each condition of a group forπ1(T , x0). First, it is closed under

the operation◦ since [a] ◦ [b] = [a · b] is an equivalent class of loopa · b based atx0 for

∀[a], [b] ∈ π1(T , x0).
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Now let a, b, c : I → T be three loops based atx0. By definition we know that

(a · b) · c(t) =



a(4t), if 0 ≤ t ≤ 1
4,

b(4t − 1), if 1
4 ≤ t ≤ 1

2,

c(2t − 1), if 1
2 ≤ t ≤ 1.

and

a · (b · c)(t) =



a(2t), if 0 ≤ t ≤ 1
2,

b(4t − 2), if 1
2 ≤ t ≤ 3

4,

c(4t − 3), if 3
4 ≤ t ≤ 1.

Define a functionH : I × I → T by

H(t, s) =



a(
4t

1+ s
), if 0 ≤ t ≤ s+ 1

4
,

b(4t − 1− s), if
s+ 1

4
≤ t ≤ s+ 2

4
,

c(1− 4(1− t)
2− s

), if
s+ 2

4
≤ t ≤ 1.

ThenH is continuous by applying Corollary 4.1.1, H(t, 0) = ((a · b) · c)(t) andH(t, 1) =

(a · (b · c))(t). Thereafter, we know that ([a] ◦ [b]) ◦ [c] = [a] ◦ ([b] ◦ [c]).

Now let ex0 : I → x0 ∈ T be the point loop atx0. Then it is easily to check that

a · a ≃ ex0, a · a ≃ ex0

and

ex0 · a ≃ a, a · ex0 ≃ a.

We conclude thatπ1(T , x0) is a group with a unit [ex0] and an inverse element [a−1]

for any [a] ∈ π1(S, x0) by definition. �

Let T be a topological space,x0, x1 ∈ T and £ an arc fromx0 to x1. For ∀[a] ∈
π1(T , x0), we know that £◦ [a] ◦ £−1 ∈ π1(T , x1) (see Fig.4.31.1 below). Whence, the

mapping £# = £ ◦ [a] ◦ £−1 : π1(T , x0)→ π1(T , x1).� *
x0

x1
£

[a]

Fig.4.3.1
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Then we know the following result.

Theorem4.3.5 LetT be a topological space. If x0, x1 ∈ T and£ is an arc from x0 to x1

in T , thenπ1(T , x0) ≃ π1(T , x1).

Proof We have known that £# : π1(T , x0) → π1(T , x1). For [a], [b] ∈ π1(T , x0),

[a] , [b], we find that

£#([a]) = £ ◦ [a] ◦ £−1
, £ ◦ [b] ◦ £−1 = £#([b]),

i.e., £# is a 1− 1 mapping. Choose [c] ∈ π1(T , x0). Then

£#([a]) ◦ £#([c]) = £ ◦ [a] ◦ £−1 ◦ £ ◦ [b] ◦ £−1 = £ ◦ [a] ◦ ex1 ◦ [a] ◦ £−1

= £ ◦ [a] ◦ [b] ◦ £−1 = £#([a] ◦ [b]).

Therefore, £# is a homomorphism.

Similarly, £−1
# = £−1 ◦ [a] ◦ £ is also a homomorphism fromπ1(T , x1) to π1(T , x0)

and £−1
# ◦ £# = [ex1], £# ◦ £−1

# = [ex0] are the identity mappings betweenπ1(T , x0) and

π1(T , x1).Hence, £# is an isomorphism formπ1(T , x0) to π1(T , x1). �

Theorem 4.3.5 implies the fundamental group of a arcwise-connected space T is

independent on the choice of base pointx0. Whence, we can denote the fundamental

group ofT by π1(T ). If π1(T ) = {[ex0]}, thenT is called to be asimply connected

space. For example, the Euclidean spaceRn, n-ball Bn are simply connected spaces for

n ≥ 2. We determine the fundamental groups of graphs embedded intopological spaces

in the followiing.

Theorem4.3.6 Let G be an embedded graph on a topological space S and T a spanning

tree in G. Thenπ1(G) = 〈 T + e | e∈ E(G \ T) 〉.

Proof We prove this assertion by induction on the number ofn = |E(T)|. If n = 0,

G is a bouquet, then each edgee is a loop itself. A closed walk onG is a combination of

edgese in E(G), i.e.,π1(G) = 〈 e | e ∈ E(G) 〉 in this case.

Assume the assertion is true forn = k, i.e.,π1(G) = 〈 T + e | e ∈ E(G \ T) 〉. Con-

sider the case ofn = k + 1. For any edgêe ∈ E(T), we consider the embedded graph

G/̂e, which means continuously to contractê to a pointv in S. A closed walk onG

passes or not througĥe in G is homotopic to a walk passes or not throughv in G/̂e for

κ(T) = 1. Therefore, we conclude thatπ1(G) = 〈 T + e | e∈ E(G \ T) 〉 by the induction

assumption. �
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4.3.3 Seifert-Van Kampen Theorem. For a subsetA of B, an inclusion mapping i:

A→ B is defined byi(a) = a for ∀a ∈ A. A subsetA of a topological spaceX is called a

deformation retractof X if there exists a continuous mappingr : X→ A and a homotopy

f : X × I → X such that

f (x, 0) = x, f (x, 1) = r(x), ∀x ∈ X and f (a, t) = a,∀a ∈ A and t ∈ I .

we have the following result.

Theorem 4.3.7 If A is a deformation retract of X, then the inclusion mappingi : A→ X

induces an isomorphism ofπ1(A, a) ontoπ1(X, a) for any a∈ A.

Proof Let i∗ : π1(A, a) → π1(X, a) andr∗ : π1(X, a) → π1(A, a) be induced homo-

morphisms byi andr. We conclude thatr∗i∗ is the identity mapping ofπ1(A, a). Notice

that ir is homotopic to the identity mappingX → X relative to{a}. We know thati∗r∗ is

the identity mapping ofπ1(X, a). Thusi∗ : π1(A, a)→ π1(X, a) is an isomorphism. �

Generally, to determine the fundamental groupπ1(T ) of a topological spaceT is not

easy, particularly for finding its presentation. For this objective, a useful tool is the Seifert-

Van Kampen theorem. Its modern form is presented by homomorphisms following.

Theorem 4.3.8(Seifert and Van-Kampen)Let X= U ∪V with U, V open subsets and let

X, U, V, U∩V be non-empty arcwise-connected with x0 ∈ U ∩V and H a group. If there

are homomorphisms

φ1 : π1(U, x0)→ H and φ2 : π1(V, x0)→ H

and

π1(U ∩ V, x0)

π1(U, x0)

π1(X, x0)

π1(V, x0)

H

-
- ?6- -i1

i2

φ1

φ2

?6j1

j2

Φ

with φ1 · i1 = φ2 · i2, where i1 : π1(U ∩ V, x0) → π1(U, x0), i2 : π1(U ∩ V, x0) → π1(V, x0),

j1 : π1(U, x0) → π1(X, x0) and j2 : π1(V, x0) → π1(X, x0) are homomorphisms induced by
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inclusion mappings, then there exists a unique homomorphismΦ : π1(X, x0) → H such

thatΦ · j1 = φ1 andΦ · j2 = φ2.

The classical form of the Seifert-Van Kampen theorem is by the following.

Theorem 4.3.9(Seifert and Van-Kampen theorem, Classical Version)Let X = U ∪ V

with U, V open subsets and let X, U, V, U ∩ V be non-empty arcwise-connected with

x0 ∈ U ∩ V, inclusion mappings i1, j1, i2, j2 as the same in Theorem4.3.7. If

j : π1(U, x0) ∗ π1(V, x0)→ π1(X, x0)

is an extension homomorphism of j1 and j2, then j is an epimorphism with kernelKer j

generated by i−1
1 (g)i2(g), g ∈ π1(U ∩ V, x0), i.e.,

π1(X, x0) ≃
π1(U, x0) ∗ π1(V, x0)[

i−1
1 (g) · i2(g)| g ∈ π1(U ∩ V, x0)

] ,

where[A] denotes the minimal normal subgroup of a groupG included A⊂ G .

A complete proof of the Seifert-Van Kampen theorem can be found in references,

such as those of [Lee1] [Mas1] or [Mun1]. By this result, we immediately get the follow-

ing conclusions.

Corollary 4.3.1 Let X1,X2 be two open sets of a topological space X with X= X1 ∪ X2,

X2 simply connected and X,X1 and X0 = X1 ∩ X2 non-empty arcwise-connected, then for

∀x0 ∈ X0,

π1(X, x0) ≃
π1(X1, x0)

[ (i1)π([a])|[a] ∈ π1(X0, x0) ]
.

Corollary 4.3.2 Let X1,X2 be two open sets of a topological space X with X= X1 ∪ X2.

If there X,X1,X2 are non-empty arcwise-connected and X0 = X1 ∩ X2 simply connected,

then for∀x0 ∈ X0,

π1(X, x0) ≃ π1(X1, x0)π1(X2, x0).

Corollary 4.3.2 can be applied to find the fundamental group of an embedded graph,

particularly, a bouquetBn =

n⋃

i=1

Li consisting ofn loopsLi , 1 ≤ i ≤ n again following,

which is the same as in Theorem 4.3.6.

Let x0 be the common point inBn. Forn = 2, letU = B2−{x1}, V = B2−{x2}, where

x1 ∈ L1 andx2 ∈ L2. ThenU ∩ V is simply connected. Applying Corollary 3.1.2, we get

that

π1(B2, x0) ≃ π1(U, x0)π1(V, x0) ≃ 〈L1〉 〈L2〉 = 〈L1, L2〉 .
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Generally, letxi ∈ Li , Wi = Li − {xi} for 1 ≤ i ≤ n and

U = L1

⋃
W2

⋃
· · ·

⋃
Wn and V =W1

⋃
L2

⋃
· · ·

⋃
Ln.

ThenU
⋂

V = S1.n, an arcwise-connected star. Whence,

π1(Bn,O) = π1(U,O) ∗ π1(V,O) ≃ 〈L1〉 ∗ π1(Bn−1,O).

By induction induction, we finally find the fundamental group

π1(Bn,O) = 〈Li , 1 ≤ i ≤ n〉 .

4.3.4 Fundamental Group of Surface.Applying the Seifert-Van Kampen theorem and

the classification theorem of connected compact surfaces, we can easily get the funda-

mental groups following, usually called thesurface groupsin literature.

Theorem 4.3.10 The fundamental groupsπ1(S) of compact surfaces S are respective

π1(S) =



〈 1 〉 , the trivial group if S ∼El S2;〈
a1, b1, · · · , ap, bp |

p∏
i=1

aibia−1
i b−1

i = 1

〉
if S ∼El T2#T2# · · ·#T2

︸             ︷︷             ︸
p

;

〈
c1, c2, · · · , cq |

q∏
i=1

c2
i = 1

〉
if S ∼El P2#P2# · · ·#P2

︸            ︷︷            ︸
q

,

Proof If S ∼El S2, then it is clearly thatπ1(S) is trivial. Whence, we considerS is

elementary equivalent to the connected sum ofp tori or q projective planes following.

Case 1. S ∼El T2#T2# · · ·#T2
︸             ︷︷             ︸

p

.

Let S =
〈

a1, b1, · · · , ap, bp |
p∏

i=1
aibia−1

i b−1
i

〉
be the surface representation ofS. By

Theorem 4.2.2, we can representS by a 4p-gon on the plane with sides identified in pairs

such as those shown in Fig.4.3.2(a). By the identification, these edgesa1, b1, a2, b2, · · · , ap, bp

become circuits, and any two of them intersect only in the base point x0. Now let

U = S \ {y}, the complement of the centery and letV be the image of the interior of

the 4p-gon under the identification. ThenU, V both are arewise-connected. Furthermore,

the union of circuitsa1, b1, a2, b2, · · · , ap, bp is a deformation retract ofU, andV is simply

connected. Therefore,

π1(V, x1) = 〈 1 |∅ 〉 , π1(U, x0) =
〈
α1, β1, α2, β2, · · · , αp, βp | ∅

〉
,
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whereα1, β1, α2, β2, · · · , αp, βp are circuits represented bya1, b1, a2, b2, · · · , ap, bp, respec-

tively. � i
� �

3
R

�Wx0 x1 y

- ?�d

a1

b1

a−1
1 b−1

1

ap
bp

a−1
p

b−1
p

c

�*
 RM �x0

x1
d

y

- ?� c

a1

a1

a2

a2

aq

aq

(a) (b)

Fig.4.3.2

Notice thatU ∩ V has the homotopy type of circuit. Whence,π1(U ∩ V, x1) is an

infinite cyclic group generatedγ, the equivalent class of a loopc around the pointy once

with

φ1(γ) =
p∏

i=1

α′iβ
′
i (α
′
i )
−1(β′i )

−1,

whereα′i = d−1αid, β′i = d−1βid for integers 1≤ i ≤ p.

Applying Corollary 4.3.1, we immediately get that

π1(S) =

〈
α′1, β

′
1, · · · , α′p, β′p |

p∏

i=1

α′iβ
′
i (α
′
i )
−1(β′i )

−1 = 1

〉

≃
〈

a1, b1, · · · , ap, bp |
p∏

i=1

aibia
−1
i b−1

i = 1

〉
.

Case 2. S ∼El P2#P2# · · ·#P2
︸            ︷︷            ︸

p

.

The proof is similar to that of Case 1. In this case,S is presented by identify-

ing in pairs sides of a 2q-gon with sidesa1, a1, a2, a2, · · · , aq, aq, such as those shown

in Fig.4.3.2(b). Similarly chooseU,V as them in Case 1. Then the union of circuits

a1, a2, · · · , aq is a deformation retract ofU, andV is simply connected. Therefore,

π1(V, x1) = 〈 1 |∅ 〉 , π1(U, x0) =
〈
α1, α2, · · · , αq | ∅

〉
,

whereα1, α2, · · · , αq are circuits represented bya1, a2, · · · , aq, respectively andπ1(U ∩
V, x1) is an infinite cyclic group generatedγ, the equivalent class of a loopc around the



Sec.4.4 NEC Groups 145

pointy once with

φ1(γ) =
q∏

i=1

(α′i )
2,

whereα′i = d−1αid for integers 1≤ i ≤ q. Whence,

π1(S) =

〈
α1, α2, · · · , αq |

q∏

i=1

(α′i )
2 = 1

〉

≃
〈

c1, c2, · · · , cq |
q∏

i=1

c2
i = 1

〉

by applying Corollary 4.3.1. �

Corollary 4.3.3 The fundamental groups of the torus T2 and projective plane P2 are

π1(T2) = 〈 a, b | ab= ba 〉 and π1(P2) =
〈

a | a2 = 1
〉
, respectively.

$4.4 NEC GROUPS

We show how to construct a polygon used in last section on a Klein surface, i.e., funda-

mental region of a non-Euclidean crystallographic group, abbreviated to NEC group in

this section. Thus will be used in next chapter.

4.4.1 Dianalytic Function. Let C be the complex plane,A ⊂ C a open subset and

f : A→ C a mapping. As usual, we writez = x+ iy ∈ C, x, y ∈ R, i =
√
−1, z = x− iy

and f (z) = u(x, y) + iv(x, y) for certain functionsu, v : A→ R of C2. Then by definition,

we know that

∂ f
∂z
=
∂u
∂z
+ i

∂v
∂z
=
∂u
∂x
∂x
∂z
+ i

∂u
∂y
∂y
∂z
+ i

(
∂v
∂x
∂x
∂z
+ i

∂v
∂y
∂y
∂z

)
,

∂ f
∂z
=
∂u
∂z
+ i

∂v
∂z
=
∂u
∂x
∂x
∂z
+ i

∂u
∂y
∂y
∂z
+ i

(
∂v
∂x
∂x
∂z
+ i

∂v
∂y
∂y
∂z

)
.

Notice thatx =
z+ z

2
andy =

i(z− z)
2

, we know that

∂x
∂z
=
∂x
∂z
=

1
2
,
∂y
∂z
= −1

2
i and

∂y
∂z
=

1
2

i.

Whence,

∂ f
∂z
=

1
2

(
∂u
∂x
− i

∂u
∂y
+ i

∂v
∂x
+
∂v
∂y

)
and

∂ f
∂z
=

1
2

(
∂u
∂x
+ i

∂u
∂y
+ i

∂v
∂x
− ∂v
∂y

)
.
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Particularly, letf : A → C be determined byf : z = x + iy → f (z) = u(x, y) − iv(x, y).

Then we get the fundamental equalities following:

∂ f
∂z
=

(
∂ f
∂z

)
,

∂ f
∂z
=

(
∂ f
∂z

)
. (4− 1)

Let C+ = { z | Imz ≥ 0 }. A mapping f : A −→ C (or C+) is called to beanalytic

on A if
∂ f
∂z
= 0 (Cauchy-Riemann equation) andantianlyticon A if

∂ f
∂z
= 0. A mapping

f : A → C (or C+) is dianalytic if its restriction to every connected component ofA

is analytic or antianalytic. The following properties of dianalytic mappings is clearly by

formulae (4-1) and definition.

(P1) A mapping f: A→ C (or C+) is analytic if and only iff is antianalytic;

(P2) If a mapping f : A → C (or C+) is both analytic and antianalytic, then f is

constant;

(P3) If f : A → B ⊂ C (or C+) and g : B → C (or C+) are both analytic or

antianalytic, then the composition g◦ f : A→ C (or C+) is analytic. Otherwise, g◦ f is

antianalytic.

Example 4.4.1 Let a, b, c, d ∈ R, c , 0 andA = C \ {−d/c}. Clearly, the mapping

f : A → C determined byf (z) =
az+ b
cz+ d

for ∀z ∈ A is analytic. Whence, the mapping

f : A→ C determined byf (z) =
az+ b
cz+ d

for ∀z ∈ A is antianalytic by (P1).

Let f (z) = u(x, y) + iv(x, y). Calculation shows that

det



∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


= ǫ


(
∂u
∂x

)2

+

(
∂v
∂y

)2 ,

whereǫ = 1 if f is analytic and−1 if f is antianalytic. This fact implies that an analytic

function preserves orientation but that an antianalytic one reverses the orientation.

4.4.2 Klein Surface. A Klein surfaceis a topological surfaceS together with a family

Σ = { (Ui , φi) | i ∈ Λ } such that

(1) { Ui | i ∈ Λ } is an open cover ofS;

(2) φi : Ui → Ai is a homeomorphism onto an open subsetAi of C or C+;

(3) thetransition functionsof Σ defined in the following are dianalytic:

φi j = φiφ
−
j : φ j(Ui

⋂
U j) −→ φi(Ui

⋂
U j), i, j ∈ Λ.
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Usually, the familyΣ is called to be anatlasand each (Ui , φi) acharton S, which is

positiveif φi(Ui) ⊂ C+. Theboundaryof S is determined by

∂S = {x ∈ S| there existsi ∈ I , x ∈ Ui , φi(x) ∈ R andφi(Ui) ⊆ C+}.

Particularly, if each transition functionφi j is analytic, such a Klein surface is called a

Riemann surfacein literature. Denote respectively byk(S), g(S) andχ(S) the number

of connected components of∂S, the genus and the Euler characteristic ofS, where if

∂S , ∅, we define its genusg(S) to be the genus of the compact surface obtained by

attaching a 2-dimensional discB
2

to each boundary component ofS. Then by applying

Theorem 4.2.6, we know the following result.

Theorem 4.4.1 Let S be a Klein surface. Then

χ(S) =


2− 2g(S) − k(S) if S is orientable,

2− g(S) − k(S) if S is non− orientable.

Proof Let S̃ be a surface without boundary, i.e.,∂S = ∅ with a definite triangulation.

We remove the interior of one triangleT to form a new surfaceS′. Clearly, V(S′) =

V(S),E(S′) = E(S) andF(S′) = F(S) \ {T}. Whence,χ(S′) = χ(S) − 1. Continuous

this process, we finally get thatχ(S′) = χ(S) − k if we removek triangles oñS. Then we

know the result by Theorem 4.2.6. �

Some important examples of Klein surfaces are shown in the following.

Example 4.4.2 Let H = { z ∈ C | Imz> 0 } andD = { z ∈ C | |z| < 1 } be respectively the

upper half plane and the unit disc inC shown in Fig.4.4.1 following.

-6
H

Imz

Rez

(a)

-|z| < 1
O

O

(b)

Fig.4.4.1

Choose atlas{(U = H, φ = 1H)} and{(U = D, φ = 1D)} on H andD, respectively. Then
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we know that both of them are Klein surfaces without boundary. Such Klein surfaces will

be always denoted byH andD in this book.

Example 4.4.3 The surfaceC+ with a structure induced by the analytic atlas{(C, 1C)} is
a Klein surface with boundary∂C+ = R.

Example4.4.4 LetC = C∪{∞} and∆ = C+∪{∞}. Then they are compact Klein surfaces

with atlas

Σ1 = {(U1 = C, φ1 = 1C), (U2 = C{0}, φ2 = z−1)},

Σ2 = {(U1 = C+, φ1 = 1C+), (U2 = ∆{0}, φ2 = z−1)},

respectively. Clearly,∂C = ∅ and∂∆ = R ∪ {∞}.

4.4.3 Morphism of Klein Surface. Let A be a subset ofC+, defineA = { z ∈ C | z ∈ A }.
A folding mappingis the continuous mappingΦ : C → C+ determined byΦ(x + iy) =

x+ i|y|. Clearly,Φ is an open mapping andΦ−1(A) = A∪ A. Particularly,Φ−1(R) = R.

Let S andS′ be Klein surfaces. Amorphism f: S→ S′ from S to S′ is a continuous

mapping such that

(1) f (∂S) ⊆ ∂S′;

(2) for ∀s ∈ S, there exist charts (U, φ) and (V, ψ) at pointss and f (s), respectively

and an analytic functionF : φ(U) → C such that the following diagram

U V-
φ(U)
? - C - C+

?f

F Φ

φ ψ (4− 2)

commutes. It should be noted that in the case of Riemann surfaces, we only deal with

orientation-preserving morphisms, in which the diagram (4−2) is replaced by the diagram

(4− 3) following.

U V-
φ(U)
? - ψ(V)

(4− 3)

F
?f

φ ψ
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Let S andS′ be Klein surfaces andf : S → S′ a morphism. If f is a homeomor-

phism, thenS andS′ are called to beisomorphic. Such a morphismf is isomorphism

betweenS andS′. Particularly, ifS = S′, such af is calledautomorphismof a Klein sur-

faceS. Similarly, all automorphisms ofS form a group with respect to the composition

of automorphisms, denoted by AutS. We present an example of automorphisms between

Klein surfaces following.

Example 4.4.5 Let H andD be Klein surfaces constructed in Example 4.4.2 and a map-

ping byρ(z) = (z+ i)/(iz+ 1). Thenρ : D→ H is well-defined because ifz= x+ iy ∈ D,

so there must bex2 + y2 < 1 and consequently

ρ(z) =
2x+ i(1− x2 − y2)

x2 + (1− y)2
∈ H.

Furthermore, it is analytic, particularly continuous by definition. For s ∈ D, we choose

(U = D, 1D) and (V = H, 1H) to be charts ats ∈ D andρ(s) ∈ H, respectively. Then

Φρ = ρ for ρ(D) ⊂ H ⊂ C+ and the following diagram is commute.

U V-
φ(U)
? - C - C+

?ρ

F = ρ Φ

1U 1V

Whence,ρ is a morphism between from Klein surfacesD to H. Now if g : H → C is

defined byg(z) =
z− i
1− iz

, theng ◦ ρ = 1H. Becauseρ is onto, Img ⊂ D andρg = 1H, we

know thatρ is an isomorphism of Klein surfaces.

4.4.4 Planar Klein Surface. Let H = { z ∈ C | Imz > 0 } be a planar Klein surface

defined in Example 4.4.2 and let PGL(n,G) be the subgroup of GL(n,R) determined by

all A ∈ GL(n,R) with DetA , 0. Now for A =


a b

c d

 ∈ PGL(2,R) with real entries,

we associate a mappingfA : H → H determined by

fA(z) =



az+ b
cz+ d

if DetA > 0,

az+ b
cz+ d

if DetA < 0.

Clearly, fA ∈ AutH and fA = fcA for any non-zeroc ∈ R. Hence, the mappingA → fA

embeds PGL(2,R) in AutH. We prove this mapping is also surjective. In fact, letf ∈
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AutH and letρ : D → H be the isomorphism determined in Example 4.4.5. Notice that

f is analytic, and so the same holds true forg = ρ−1 ◦ f ◦ ρ. Applying the maximum

principle of analytic function,g(z) =
z− α
1− αz

for someα ∈ D, µ ∈ C with |µ| = 1. Hence,

f (z) =
az+ b
cz+ d

for some a, b, c, d ∈ C.

Becausef (H) = H, we know thatf (R \ {−d/c}) ⊂ R by continuity, and it is easy to

see that we can choose real numbersa, b, c, d. Notice thatf (i) ∈ H implies that DetA =

ad− bc> 0.

If f reverses the orientation, leth : H → H be a mapping determined byh(z) =

− f (z). Notice thath is an automorphism ofH, i.e.,h ∈ AutH and it preserves the orienta-

tion. We know that

f (z) =
az+ b
cz+ d

for some a, b, c, d ∈ R with DetA = ad− bc< 0.

Whence, we get the following result for the automorphism group of H.

Theorem 4.4.2 Let H = { z ∈ C | Imz> 0 }. Then

(1) AutH = PGL(2,R);

(2) AutH is a topological group, i.e.,AutH is both a topological space and a group

with a continuous mapping∀ f ◦ g−1 for f , g ∈ AutH.

4.4.5 NEC Group. A subgroupΓ of AutH is said to bediscreteif it is discrete as a

topological subspace of AutH. Such a discrete groupΓ is called to be anon-Euclidean

crystallographic group(shortly NEC group) if the quotient spaceH/Γ is compact.

Notice that there exist just two matrixesA, B ∈ GL(2,R) such thatfA, fB for any

f ∈∈ AutH with |DetA| = |DetB| = 1, i.e.,B = −A, DetA = −DetA and TrB = −TrA.

Define Detf = DetA and Trf = TrA, respectively. Then we classifyf ∈ AutH into 3

classes with conditions following:

Hyperbolic. Detf = 1 and|Tr f | > 2.

Elliptic. Detf = 1 and|Tr f | < 2.

Parabolic. Detf = 1 and|Tr f | = 2.

Furthermore,f is called aglide refectionif Det f = −1, |Tr f | , 0 or a refection if

Detf = −1, |Tr f | = 0. Denote by Aut+H the subgroup of AutH formed by all orien-

tation preserving elements in AutH. Then it is clear that [AutH : Aut+H] = 2. Call
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an NEC groupΓ to beFuchsianif Γ ≤ Aut+H. Otherwise, aproper NEC group. For

any NEC groupΓ, the subgroupΓ+ = Γ ∩ Aut+H is always a Fuchsian group, called the

canonical Fuchsian subgroup.

Calculation shows the following result is hold.

Theorem 4.4.3 Extend each fA ∈ AutH to f̃ on C ∪ {∞} in the natural way for A=
a b

c d

 ∈ PGL(2,R) by

f̃A(z) =



−d/c i f z= ∞,
∞ i f z = −d/c,
az+ b
cz+ d

i f DetfA = 1, z, ∞,−d/c,

az+ b
cz+ d

i f DetfA = −1, z, ∞,−d/c.

Let f ∈ AutH andFix f = {z ∈ C ∪ {∞}| f̃ (z) = z}. Then

Fix f =



two points onR ∪ {∞} i f f is hyperbolic or glide re f ection,

one point onR ∪ {∞} i f isparabolic,

two non− real con jugate points i f f is elliptic,

a circle or a line perpendicular toR i f f is a re f lection.

Let Γ be an NEC group. Afundamental regionfor Γ is a closed subsetF of H

satisfying conditions following:

(1) If z ∈ H, then there existsg ∈ Γ such thatg(z) ∈ F;

(2) If z ∈ H and f , g ∈ Γ verify f (z), g(z) ∈ IntF, then f = g;

(3) The non-Euclidean area ofF \ IntF is zero, i.e.,

µ(F \ IntF) =
∫ ∫

F\IntF

dxdy
y2
= 0.

The existence of fundamental region for an NEC group can be seen by the following

construction for theDirichlet regionwith centerp.

Construction 4.4.1 LetΓ be an NEC group. We construct its fundamental region in the

following. First, we show that there exists a pointp ∈ H such thatg(p) , p for 1Γ , g ∈ Γ.
In fact, we can assume the existence of an upper half Euclidean line l perpendicular toR

such thatl , Fix(γ) for everyγ ∈ Γ. Otherwise, we can get a sequence{xn|n ∈ N}
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convergent to a pointa ∈ H, lying on a Euclidean line parallel toR, and the upper half

Euclidean lineln perpendicular toR and passing throughxn verifiesln = Fix(γn) for some

γn ∈ Γ. Consequently,γn , γm if n , m and lim{γn(a)} = lim{γn(xn)} = lim{xn} = a,

contradicts to the continuity of the mappingo : AutH × H → H determined byo( f , x) =

f (x) for f ∈ AutH, x ∈ H.

Choose a sequence{yn|n ∈ N} of pointsH lying on l convergent to some pointb ∈ H.

By assumption, there exists a sequence of pairwise distincttransformations{gn|n ∈ N} ⊂ Γ
such thatgn(yn) = yn for everyn ∈ N, which leads to a contradiction as before.

Now it is easy to check that

F = Fp = {z ∈ H|d(z, p) ≤ d(g(z), p) for eachg ∈ Γ}

is a fundamental region ofΓ, whered(u, v) is the non-Euclidean distance betweenu

andv, i.e.,

d(u, v) =
∫

Cu,v

(dx2 + dy2)1/2

y
,

Cu,v being the geodesic joiningu andv, i.e., a circle or a line orthogonal toR. ThenFp

verifies conditions (1)-(3):

(1) Letzbe a point inH. SinceΓ is discrete, the orbitOz of zunderΓ is closed. Thus

there existsw ∈ Oz such thatd(w, p) ≤ d(w′, p) for eachw′ ∈ Oz. If w = g(z), g ∈ Γ, then

it is clear thatg(z) = w ∈ Fp.

(2) Obviously that

IntFp = {z ∈ H|d(z, p) < d(g(z), p), for eachg ∈ Γ \ {1H}}.

Thenz ∈ H, f , g ∈ Γ and f (z), g(z) ∈ IntFp imply that for f , g,

d( f (z), p) < d(g f−1( f (z), p)) = d(g(z), p), d(g(z), p) < d( f g−1(g(z), p)) = d( f (z), p),

a contradiction. Thus,f = g.

(3) This is follows easily from the fact that the boundary ofFp is a convex polygon

with a finite number of sides in the non-Euclidean metric.

Usually, a fundamental regionF of an NEC group verifying conditions following is

calledregular:

(1) F is a bounded convex polygon with a finite number of sides in thenon-Euclidean

metric;
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(2) F is homeomorphic to a closed disc;

(3) F \ IntF is a closed Jordan curve and there are finite vertices onF \ IntF which

divide it into the following classeseof Jordan arcs:

(3.1) e= F ∩ gF, whereg ∈ Γ is a reflection;

(3.2) e= F ∩ gF, whereg ∈ Γ, g2
, 1H;

(3.3) e for which there exists an elliptic transformationg ∈ Γ, g2 = 1Γ such that

e∪ ge= F ∩ gF;

(4) If F, gF do not have an edge in common for ag ∈ Γ, thenF ∩ gF has just one

point.

Then we know the following conclusion.

Theorem 4.4.4 For any NEC groupΓ, there exist regular fundamental regions, such as

Fp for example.

Construction 4.4.2 Let F be a regular fundamental region of an NEC groupΓ. For a

given g ∈ Γ, gF is said to be aface. Clearly, the mappingΓ → {faces} determined by

g→ gF is a bijection andH =
⋃
g∈Γ

gF. In fact,{gF|g ∈ Γ} is a tessellation ofH.

(1) Given a sidee of F, let ge be the unique transformation for whichgeF meetsF

in the edgee, i.e., e = F ∩ geF. then{ge|e ∈ sides ofΓ} is a set of generators ofγ. In

fact, for ∀g ∈ Γ there exists a sequence of elementsg1 = 1H, g − 2, · · · , gn+1 in Γ such

thatgiF meetgi+1F one to another in a side, saygi(ei), whereei is a side ofF. Clearly,

gi(gei f ) = gi+1F and sogi+1 = gigei for 1 ≤ i ≤ n. Consequently,g = ge1ge2 · · ·gen for

some sidese1, e2, · · · , en of F.

(2) First, we label sides of type (3.1). Afterward, if we labele a side of type (3.2)

or (3.3), the sidege is labelede′ if g ∈ Γ+, ande∗ if g ∈ Γ \ Γ+. We write down the labels

of the sides in counter-clockwise order and say (e, e′), (e, e∗) pair sides. In this way, we

obtain the surface symbols, which enables one to determine the presentation ofΓ and the

topological structureH/Γ, such as those claimed in Theorem 4.2.2.

(3) Let a and â be pair sides and letg ∈ Γ be an element such thatg−1(a) = â.

For a hyperbolic arcf joining two vertices ofF and splittingF into two regionsA andB

containinga and̂a, respectively,A∪gB is a new fundamental region ofΓ which has a new

pair sidesb andb̂ with b̂ = g−1(b) instead ofa andâ and suitably relabeled other sides.

Repeating this procedure in suitable way one can arrive to a fundamental region with the



154 Chap.4 Surface Groups

following side labelings

ξ1ξ
′
1 · · · ξrξ

′
rǫε1γ10 · · ·γ1s1ε

′
1 · · · εkγk0 · · ·γkskε

′
kα1β1α

′
1β
′
1 · · ·αpβpα

′
pβ
′
p (4− 4)

ξ1ξ
′
1 · · · ξrξ

′
rǫε1γ10 · · · γ1s1ε

′
1 · · · εkγk0 · · · γkskε

′
kδ1δ

′
1 · · · δqδ

′
q (4− 5)

according toH/Γ orientable or not.

(4) Identify points on pair side, we get thatH/Γ is a sphere withk disc removed and

p handles orq crosscups added if (4− 3) or (4− 4) holds.

(5) For getting the defining relations forΓ, consider the faces meeting at each vertex

of F. Notice thatΓ is discrete. The number of these faces is finite. Choose one ofvertices

of Γ and letl = L0, L1, · · · , Ln, Ln+1 = L be the corresponding chain faces. Obviously,

there existg1, · · · , gn of elements ofΓ such that

L1 = g1L, L2 = g2g1L, · · · , L = Ln+1 = gn · · ·g1L.

Whence, every vertex induces a relation

gngn−1 · · ·g2g1 = 1H.

It turns out that these relations of this type andg2
e = 1H coming from such sides ofF fixed

by a unique nontrivial elementge ∈ Γ form all defining relations ofΓ.

(6) As we get a surface symbol (4− 4) or (4− 5) and using procedures described in

(1) and (5), we find the presentation ofΓ following:

Generators: xi, 1 ≤ i ≤ r;

ei , 1 ≤ i ≤ k;

ci j , 1 ≤ i ≤ k, 1 ≤ j ≤ si;

ai, bi, 1 ≤ i ≤ p in the case (4− 4);

di, 1 ≤ i ≤ q in the case (4− 5).

Relations:

xm−i
i = 1Γ, 1 ≤ i ≤ r;

e−1
i ci0eicisi = 1Γ, 1 ≤ i ≤ k;

c2
i, j−1 = c2

i j = (ci, j−1ci j )ni j = 1;

x1 · · · xre1 · · ·ek[a1, b1] · · · [ap, bp] = 1 in case (4− 4);

x1 · · · xre1 · · ·ekd2
1 · · ·d2

q = 1 in case (4− 5),



Sec.4.4 NEC Groups 155

wherea, b, c, d, e, x correspond to these transformations induced by edgesα, β, γ, δ, ε, ξ,

[ai , bi] = aibia−1
i b−1

i andmi, n j are numbers of faces meetingF at common vertices for

sides (ξi , ξ
′
i ) and (γi, j−1, γi j ), respectively.

For an NEC groupΓ with the previous presentation, we define thesignatureσ(Γ) of

Γ by

σ(Γ) = (g;±; [m1, · · · ,mr ]; {(n11, · · · , n1s1), · · · , (nk1, · · · , nksk)}),

and itshyperbolic areaµ(Γ) by

µ(Γ) =

αg+ k− 2+
r∑

i=1

(1− 1
mi

) +
1
2

k∑

i=1

si∑

j=1

(1− 1
ni j

)

 ,

whereg = p, the sign+ andα = 2 in (4− 4) org = q, the sign− andα = 1 in (4-5), i.e.,

orientable in the first and non-orientable otherwise. It hasbeen shown thatµ(Γ) is just the

hyperbolic area of the fundamental ofΓ and independent on its choice.

Usually, if r = 0, si = 0 ork = 0, we denote these [m1, · · · ,mr ], (ni1, · · · , nisi ) by [−],

(−) or {−}, respectively. For example,

σ(Γ) = (g;±; [−]; {(−), · · · , (−)︸        ︷︷        ︸
k

})

if r = 0 and si = 0. Such an NEC group is called to be asurface group. Partic-

ularly, if k = 0, i.e., these fundamental groups in Theorem 4.3.10, the signature is

σ(Γ) = (g;±; [−]; (−)). Clearly, the area of a surface groupΓ is µ(Γ) = 2π(αg+ k− 2).

Theorem 4.4.5(Hurwitz-Riemann formula)Let Γ be a NEC subgroup of a NEC group

Γ′. Then
µ(Γ)
µ(Γ′)

= [Γ′ : Γ].

Proof Notice thatΓ is a discrete as a subgroup ofΓ′. By definition,H/Γ′ andH/Γ

are compact, soΓ′ andΓ have compact fundamental regionsF′ andF. Let h1, · · · , hk ∈ Γ′

be the coset representatives ofΓ, wherek = [Γ′ : Γ]. Then It is easily to know that

F = h1(F′) ∪ · · · ∪ hk(F′). Consequently,

µ(Γ) = area(F) =
k∑

i=1

area(hi(F
′)) = k× area(F′) = k× µ(Γ′).

Thus,
µ(Γ)
µ(Γ′)

= [Γ′ : Γ]. �
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$4.5 AUTOMORPHISMS OF KLEIN SURFACES

4.5.1 Morphism Property. We prove the automorphism group of a Klein surface is finite

in this section. For this objective, we need to characterizemorphisms of Klein surfaces in

the first.

Theorem 4.5.1 Let f : S → S′ be a non-constant morphism and(U, φ), (V, ψ) two

charts in S and S′ with f(U) ⊂ V, ψ(V) ⊂ C+. Then there exists a unique analytic

mapping F: φ(U)→ C such that the following diagram

U V-
φ(U)
? - C - ψ(V)

?f

F Φ

φ ψ

commutes.

Proof First, if there are two non-constant analytic mappingsF, F′ : φ(U)→ C such

thatΦF = ΦF′, thenF = F′ or F = F′. Let Y ⊂ F−1(C \ R) be a nonempty connected

set. ChooseM1 = {x ∈ Y|F(x) = F′(x)} andM2 = {x ∈ Y|F(x) = F′(x)}. ThenM1 andM2

are closed and disjoint withY = M1 ∪ M2, which enables one to getM1 = Y or M2 = Y.

If M2 = Y, F must be both analytic and antianalytic onY. ThusF |Y is constant, and soF

is constant by the properties of analytic functions, a contradiction. Whence,F = F′.

Now suppose that we can coverU by {U j | j ∈ J} such that there are analytic mappings

F j : φ(U j)→ C with the following diagram

U V-
φ(U)
? - C - ψ(V)

?f

F j Φ

φ ψ

commutes. Then these mappingsF j glue together will produce a functionF that we are

looking for. So we only need to find such mappingsF j.

By definition, forx ∈ U andy = f (x) ∈ V, there exist charts (Ux, φx and (Vy, ψy) and

an analytic mappingFx with Ux ⊂ U, Vy ⊂ V such that the following diagram commutes:
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Ux Vy-
φx(Ux)

? - C - ψy(Vy)
?f

Fx Φ

φx ψy

We construct a mappingF∗x such that the following diagram also commutes:

Ux Vy-
φx(Ux)

? - C - ψy(Vy)
?f

F∗x Φ

φx ψy

In fact, for any givenu ∈ φ(Ux), we know thatFxφxφ
−1(u) ∈ Φ−1(Imψy) = ψy(Vy)∪ψy(Vy).

Consider (ψψ−1
y )∧ : ψy(Vy) ∪ ψy(Vy) → C. Then according withφxφ

−1 andψψ−1
y were

analytic or antianalytic, we takeF∗x or F∗x to be (ψψ−1
y )∧Fxφxφ

−1. Then we get suchF j as

one wish. �

A fundamental result concerning the behavior of morphisms under composition is

shown in the following.

Theorem 4.5.2 Let S,S′ and S′′ be Klein surfaces and f: S → S′, g : S′ → S′′

continuous mappings such that f(∂S) ⊂ ∂S′, g(∂S′) ⊂ ∂S′′. Consider the following

assertions:

(1) f is a morphism;

(2) g is a morphism;

(3) g ◦ f is a morphism.

Then (1) and (2) imply (3). Furthermore, if f is surjective, (1) and (3) imply (2), and if f

is open, (2) and (3) imply (1).

The proof of Theorem 4.5.2 is not difficult. Consequently, we lay it to the reader as

an exercise.

Corollary 4.5.1 Let S and S′ be topological surfaces and f: S → S′ a continuous

mapping. Then
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(1) If S′ is a Klein surface, then there is at most one structure of Klein surface on S

such that f is a morphism.

(2) If f is surjective and S is a Klein surface, then there exists at most one structure

of Klein surface on S′ such that f is a morphism.

4.5.2 Double Covering of Klein Surface. Let S be a Klein surface with atlas
∑
=

{(ui, φi)|i ∈ I }. SupposeS is not a Riemann surface and define

U′i = Ui × {i} × {1} and U′′i = Ui × {i} × {−1},

wherei runs overI . We identify some points in

X =


⋃

i∈I
U′i


⋃

⋃

i∈I
U′′i

 .

(1) For i ∈ I andDi = ∂S ∩ Ui, identify Di × {i} × {1} with Di × {i} × {−1}.
(2) For (j, k) ∈ I × I such thatU j meetsUk, let W be a connected component in

U j ∩ Uk. Identify W × { j} × {δ} with W × {k} × {δ} for δ = ±1 if φ jφ
−1
k : φk(W) → C

is analytic, andW × { j} × {δ} with W × {k} × {−δ} for δ = ±1 if φ jφ
−1
k : φk(W) → C is

antianalytic.

PutSC = X/{identificationsabove}. For eachi ∈ I , let φ′i : U′i → C determined by

φ′i (x, i, 1) = φi(x) andφ′′i : U′′i → C determined byφ′i (x, i,−1) = φi(x). Obviously, if

p : X → SCdenotes the canonical projection andŨi = p(U′i ∪ U′′i ), the family{Ũi |i ∈ I }
is an open cover ofSC. Furthermore, each mapping̃φi : Ũi → C defined bỹφi(u) = φ′(u)

if u ∈ U′i or φ̃i(u) = φ′′(u) if u ∈ U′′i is a homeomorphism onto its image. Thus
∑

C =

{(Ũi , φ̃i |i ∈ I )} is an analytic atlas onSC. Clearly,∂SC = ∅. Whence,SC is a Riemann

surface by construction.

We claim that there exists a morphismf : SC → S and an antianalytic mapping

σ : SC → SC such that fσ = f andσ2 = 1S. In fact, it is suffices to determine

f : SC → S by f : u = p(v, i, δ) → v for v ∈ Ui andδ = ±1. It should be noted that each

fibers of f has one or two points and we define

σ : SC → SC : u→


u if | f −1( f (u))| = 1,

f −1( f (u)) if | f −1( f (u))| = 2.

Such a triple (SC, f , σ) is called thedouble coverof S.

We know the following result due to Alling-Greenleaf ([BEGG]):
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Theorem 4.5.3 Let g be a morphism from a Riemann surface S onto a Klein surface S′

with the double cover(S′C, f ′, σ). Then there exists a unique morphism g′ : S→ S′C such

that f′g′ = g.

4.5.3 Discontinuous Action. Let S be a Klein surface andG ≤ AutS. We sayG

acts discontinuouslyon S if each pointx ∈ S possesses a neighborhoodU such that

GU is finite. Furthermore,G is said to beacts properly discontinuouslyon S if it acts

discontinuously onS satisfying conditions following:

(1) For∀x, y ∈ S with x < yG, there are open neighborhoodsU andV at pointsx

andy such that there are nof ∈ G with U ∩ f (V) , ∅;
(2) Forx ∈ S, 1S , f ∈ Gx and the mappingφx fφ−1

x is analytic restricted suitably,x

is isolated in Fix(f ).

For the existence of properly discontinuously groups, we know the following result

as an example.

Theorem 4.5.4 Every discrete subgroupΓ of AutH acts properly discontinuously on H.

Proof First, the stabilizerΓ of eachx ∈ H is finite. Otherwise, let{ fn|n ∈ Z+} ⊂ Γx

such thatfn , fm if n , mand so lim
n→∞
{ fn(x)|n ∈ Z+} = x. But thenΓ must be not discrete.

Now let N be the set of natural numbersm such thatH contains the Euclidean ball

Bm with centerx and radius 1/m. LetΓm = ΓBm. Then there must be

Γx =
⋂

n∈Z+
Γm.

In fact, if f < Γx, take open disjoint neighborhoodsU andV of x and f (x). If m is bigger

enough,Bm ⊂ U, f (Bm) ⊂ V. Thus there must bef < Γm. On the other hand, iff ∈ Γx,

then there is an integerm0 such that for any integerm≥ n0, Bm = f (Bm). This establishes

the previous equality.

(1) Γ acts discontinuously onH. Assume that eachΓm is infinite. Then the finiteness

of Γx and the above equality imply that

Γm1 % Γm2 % · · ·

for some sequence{mk|k ∈ Z+} ⊂ Z+. Choosefk ∈ Γmk \ Γmk+1. Clearly, fk , fl if k , l.

However, if we takex ∈ Bmk ∩ fk(Bmk) andy ∈ Bmk with xk = f (yk), then

lim
k→∞
{xk|k ∈ Z+} = x = lim

k→∞
{yk|k ∈ Z+}.
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So lim
k→∞
{ f (xk)|k ∈ Z+} = x, which contradicts the discreteness ofΓ.

(2) For x, y ∈ H, x < yAutH, there are neighborhoodsU of x andV of y such that

there are nof ∈ G with U ∩ f (V) , ∅. In fact, letP be the set of numbersm ∈ Z+ such

that the ballsBm andB′m of radius 1/m with centersx andy, respectively, are contained

in H. We prove that there are nof ∈ Γ with Bm ∩ f (B′m) , ∅ for all m ∈ P. Denoted by

Dm = { f ∈ Γ|Bm ∩ f (B′m) , ∅}. Clearly,
⋂

m∈P
Dm = ∅. Otherwise, for somef ∈ Γ there

are pointsxm ∈ Bm andym ∈ B′m with f (ym) = xm, m ∈ P, which implies f (y) = x, i.e.,

x ∈ yAutH, a contradiction. So we have

Dm1 % Dm2 % · · ·

for some sequence{mk|k ∈ Z+} ⊂ P. Choosefk ∈ Dmk \ Dmk+1. then we know that

lim
k→∞
{ fk(y)|k ∈ Z+} = x, fk , fl if k , l, contradicts the discontinuousness ofΓ.

(3) Given 1H , f ∈ Γ, f has the form

f (z) =
az+ b
cz+ d

, (b, c, d− a) , (0, 0, 0).

Thus Fix(f ) \ {x} is finite, i.e.,x is isolated in Fix(f ). �

The importance of these properly discontinuously groups onKlein surfaces is im-

plied in the next result.

Theorem 4.5.5 Let G be a subgroup ofAutS which acts properly discontinuously on the

Klein surface S . Then S′ = S/G admits a unique structure of Klein surface such that

π : S→ S′ is a morphism.

A complete prof of Theorem 4.5.5 can be found in [BEGG1]. Applying Theorems

4.5.4 and 4.5.5 to the planar Klein surfaceH, we know the following conclusion.

Theorem 4.5.6 For a discrete subgroupΓ of AutH, the quotient H/Γ admits a unique

structure of Klein surface such that the canonical projection H→ H/Γ is a morphism of

Klein surfaces. Particularly, this holds true ifΓ is an NEC group.

Generally, we also know the following result with proof in [BEGG1], which enables

one to find Klein surfaces on topological surfaces with genus≥ 3.

Theorem 4.5.7 If S is a Klein surface and2g(S) + k(S) ≥ 3 if S is orientable, or

g(S) + k(S) ≥ 3 otherwise. Then there exists a surface NEC groupΓ such that S and

H/Γ are isomorphic Klein surfaces and SC = H/Γ+, whereΓ+ is a subgroup formed by
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orientation preserving elements inΓ. In fact, |Γ : Γ+| = 2. Furthermore, ifπ′ : H → H/Γ

be the canonical projection, i.e,Γ = 〈 f ∈ AutH|π′ f = π′〉.

According to this theorem, we can construct Klein surfaces on compact surfacesS

unlessS is the sphere, torus, projective plane or Klein bottle.

4.5.4 Automorphism of Klein Surface. LetS andS′ be compact Klein surfaces. Denote

by Isom(S′,S) all isomorphisms fromS′ to S. If they satisfy these conditions in Theorem

4.5.6, then they can be represented byH/Γ′, H/Γ for some NEC groupΓ′ andΓ. Let

π : H → H/Γ andπ′ : H → H/Γ′ be the canonical projections and

A(Γ′, Γ) = {g ∈ AutH|π′(x) = π′(y) if and only if πg(x) = πg(y)}.

Then we know the following result.

Theorem 4.5.8 Let g∈ AutH. The following statements are equivalent:

(1) g ∈ A(Γ′, Γ);

(2) there is a uniquêg ∈ Isom(H/Γ′,H/Γ) with the following commutative diagram:

H H

S′ S

--? ?g

ĝ

π′ π

(3) Γ′ = g−1Γg.

Proof (1) ⇒ (2). For x′ = π′(x) ∈ S′, defineĝ(x′) = ĝπ′(x) = πg(x). Applying

Theorem 4.5.2, we know that̂g is a homeomorphism onH by the definition ofA(Γ, Γ′).

(2)⇒ (3). Applying Theorem 4.5.7, if f ∈ Γ′ andh = g f g−1, then

πh = πg f g−1 = ĝπ′ f g−1 = ĝπ′g−1 = πgg−1 = π,

i.e.,h ∈ Γ and soΓ′ ⊂ g−1Γg. Conversely, ifh ∈ g−1Γg, thenghg−1 ∈ Γ, i.e.,πghg−1 = π.

So ĝπ′h = ĝπ′. Notice that̂g is bijective. We knowπ′h = π′, i.e.,h ∈ Γ.
(3) ⇒ (1). Let x, y ∈ H with π′(x) = π′(y) andy = f (x) for some f ∈ Γ′ = g−1Γg.

Now h = g f g−1 ∈ Γ. Notice thathg= g f andπh = π. We find that

π(g(y)) = π(g( f (x))) = π(h(g(x))) = π(g(x)).

The converse is similarly proved. �
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Theorem 4.5.9 Let S= H/Γ and S′ = H/Γ′. Then

(1) S and S′ are isomorphic if and only ifΓ andΓ′ are conjugate inAutH.

(2) AutS ≃ NAutH(Γ)/Γ, where NAutH(Γ) is the normalizer ofΓ in AutH.

Proof Obviously,S andS′ are isomorphic if and only ifA(Γ, Γ′) , ∅. By Theorem

4.5.8, we get the assertion (1).

For (2), we prove first that the mappingA(Γ, Γ′) → Isom(S′,S) is surjective. In

fact, if S andS′ are Riemann surfaces, letφ ∈ Isom(S′,S) and (H, π) and (H′, pi′) be

the universal coverings ofS andS′, respectively. Then by the Monodromy theorem and

Theorem 4.5.2, there existsg ∈ AutH such that the following diagram is commutative.

H H

S′ S

--? ?g

φ

π′ π

It is clear thatg ∈ A(Γ, Γ′). Soφ = ĝ by Theorem 4.5.8.

Generally, let f : SC → S and f ′ : S′C → S′ be the double coverings with the

corresponding antianalytic involutionsσ : SC → SC andσ′ : S′c → S′C. By Theorem

4.5.3, there existsψ ∈ Isom(S′C,SC) such that the following diagram

S′C SC

S′ S

--? ?φ

φ

f ′ f

is commutative. Letp : H → SC andp′ : H → S′C be the canonical projections. As we

shown for Riemann surfaces, there existsg ∈ AutH such that the following diagram

H H

S′C SC

--? ?g

φ

p′ p

is commutative. Now up to the identifications ofS with H/Γ and S′ with H/Γ′, the

mappingsπ′ = f ′p′ : H → S′ andπ = f p : H → S are the canonical projections, which

enables us to obtain a commutative diagram following.
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H H

S′ S

--? ?g

φ

π′ π

Applying Theorem 4.5.8 again, we know thatg ∈ A(Γ, Γ′) andφ = ĝ. Now letS = S′. It

follows thatA(Γ, Γ′) = NAutH(Γ). Thus

µ : NAutH(Γ) → Aut(S) determined by µ(g) = ĝ

is a surjective mapping. We prove it is also an epimorphism. In fact, letg1, g2 ∈ A(Γ, Γ′)

with ĝ1, ĝ2 such thatπg1 = ĝ1π andπg2 = ĝ2π. Thenπ(g1g2) = ĝ1πg2 = (̂g1ĝ2)π. But

g1g2 ∈ Γ, we know thatπ(g1g2) = ĝ1g2π. Whence,̂g1ĝ2 = ĝ1ĝ2 by Theorem 4.5.8. Thusµ

is an epimorphism. Finally, we check that Kerµ = Γ. Clearly, if g ∈ Γ, we haveπg = π,

i.e.,

H H

S S

--? ?g

1S

π π

By Theorem 4.5.8, we get̂g = 1S. Sog ∈ Kerµ. Conversely,̂g = 1S implies thatπg = π.

Thusg ∈ Γ. This completes the proof. �

Theorem 4.5.10 Let f, g ∈ Aut+H \ {1H}. If f g = g f , thenFix( f ) = Fix(g).

Proof Not loss of generality, we assume that 1≤ |Fix( f )| ≤ |Fix|(g) ≤ 2. By

f g = g f , we conclude thatg(Fix( f )) = Fix( f ) and f (Fix(g)) = Fix(g).

Now if Fix( f ) = {x0}, theng(x0) = x0, and ifg(y) = y we know f (y) = y, .i.e.,y = x0.

Thus Fix(f ) = Fix(g) in this case.

If Fix( f ) = x0, y0, then{g(x0), g(y0)} = {x0, y0}. Whence, either Fix(f ) = Fix(g) or

Fix( f ) , Fix(g) with g(x0) = y0, g(y0) = x0. In the second case, choosez0 ∈ Fix(g) \
Fix( f ). Notice thatx0, y0 andz0 are distinct fixed points ofg2. We know thatg2 = 1H.

Let A ∈ GL(2,R) with DetA = 1 such thatg = fA. Then byg2 = 1H, we get that

A2 = ±I and so the minimal polynomial ofA , ±I is x2 + 1. Consequently,g(z) = −1/z

and Fix(g) = {±i}. Since f (H) = H and f (Fix(g)) = Fix(g), we get f (i) = i, and so

f (−i) = −i. Thus Fix(f ) = Fix(g). �

The following result shows thatNAutH(Γ) is also an NEC group.
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Theorem 4.5.11 LetΓ be an NEC group. Then NAutH(Γ) in AutH is also an NEC group.

Proof Noticeπ : H → H/Γ. We immediately find the compactness ofH/NAutH(Γ)

from H underπ. Because AutH is a topological group, we only need to check that the

identity {1H} is an open subset inNAutH(Γ).

We claim that there exist 1H , h1, h2 ∈ Γ+ such that Fix(h1) , Fix(h2). In fact, let

h1 ∈ Γ+ defined byh1(z) = r0z for somer0 ∈ R. Then Fix(h1) = {0,∞}. If there are

anotherh ∈ Γ+, h , h1 such that Fix(h) = {0,∞}, then

Γ+ ⊂ A = { f : H → H| f (z) = rz, r ∈ R+, z ∈ C}.

SinceH/Γ+ is compact, the same holds forH/A ≈ (0, 1), a contradiction.

Now let CAutH(h1, h2) = {h ∈ AutH|hhi = hih, i = 1, 2}. We prove thatCAutH(h1, h2)

is trivial. Applying Theorem 4.5.10, if there are 1H , h ∈ CAutH(h1, h2) ∩ Aut+H,

then Fix(h1) = Fix(h) = Fix(h2), a contradiction. On the other hand, if there areh ∈
CAutH(h1, h2) \ Aut+H, thenh2 = 1H, and soh(z) = −z. Now hhi = hih implies that

hi(z) = −1/z for i = 1, 2, also a contradiction. Thus the mappingζi : NAutH(Γ) → Γ by

g→ ghig−1 are well-defined and continuous withζi(1H) = hi.

SinceΓ is discrete, we can find open neighborhoodsV1, V2 of 1H in NAutH(Γ) such

that ζi(Vi) ⊂ {hi}, i.e., ghig−1 = hi, i = 1, 2 for eachg ∈ V = V1 ∩ V2. In other words,

V ⊂ CAutH(h1, h2) = {1H}. Thus{1H} = V is open inNAutH(Γ). �

A group of automorphism of a Klein surfaceS is a subgroup of AutS. We get the

following consequence by Theorem 4.5.11.

Corollary 4.5.2 A group G≤ AutS with S= H/Γ if and only if G≃ Γ′/Γ for some NEC

groupΓ′ with Γ⊳ Γ′.

Proof Applying Theorem 4.5.11, G is a subgroup ofNAutH(Γ)/Γ. So there is a

subgroupΓ′ of NAutH(Γ) containingΓ such thatH/Γ′ is compact. NoticeΓ′ is also discrete.

Whence,Γ′ is a NEC group. �

Now we prove the main result of this section.

Theorem4.5.12 Let S be a compact Klein surface with conditions in Theorem4.5.7 hold.

ThenAutS is finite.

Proof Let S = H/Γ. By Theorem 4.5.10, NAutH(Γ) is an NEC group. Applying

Theorem 4.4.5, we know AutS is finite by that of the group index [NAutH(Γ) : Γ]. �
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$4.6 REMARKS

4.6.1 Topology, including both thepoint topologyand thealgebraic topologyhas become

one of the fundamentals of modern mathematics, particularly for geometrical spaces.

Among them, the simplest is the surfaces fascinating mathematicians in algebra, geome-

try, mathematical analysis, combinatorics,· · ·, and mechanics. There are many excellent

graduated textbooks on topology, in which the reader can findmore interested materials,

for examples, [Mas1]-[Mas2] and [Mun1].

4.6.2 Similar to Theorem 4.2.4 on compact surface without boundary, we can classify

compact surface with boundary and prove the following result.

Theorem 4.6.1 Let S be a connected compact surface with k≥ 1 boundaries. Then its

surface presentation is elementary equivalent to one of thefollowing:

(1) Sphere with k≥ 1 holes

aa−1c1B1c
−1
1 c2B2c

−1
2 · · · ckBkc

−1
k ;

(2) Connected sum of p tori with k≥ 1 holes

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·apbpa
−1
p b−1

p c1B1c
−1
1 c2B2c

−1
2 · · · ckBkc

−1
k ;

(3) Connected sum of q projection planes with k≥ 1 holes

a1a2 · · ·aqc1B1c
−1
1 c2B2c

−1
2 · · · ckBkc

−1
k .

4.6.3 The conception of fundamental group was introduced by H.Poincaré in 1895. Sim-

ilarly, replacing equivalent loops of dimensional 1 based at x0 by equivalent loops of

dimensionald, we can extend this conception for characterize those higher dimensional

topological spaces with resemble structure of surface.

4.6.4 The conception of Klein surface was introduced by Alling andGreenleaf in 1971

concerned with real algebraic curves, correspondence withthat ofRiemann surfacecon-

cerned with complex algebraic curves (See [All1] for details). The materials in Sections

4.5.4 and 4.5.5 are mainly extracted from the reference [BEGG1]. Certainly, all Rie-

mann surfaces are orientable. Their surface group is usually called theFuchsian group

constructed similarly to that of Construction 4.4.2. It should be noted that each surface
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in Construction 4.4.2 for an NEC group maybe with boundary. This construction also

establishes the relation of surfaces with that of NEC groups, enables one to research au-

tomorphisms of Kleins surface by that of combinatorial maps.



CHAPTER 5.

Map Groups

A map groupis a subgroup of an automorphism group of map, which is also a

kind of geometrical group, i.e., a subgroup of triangle groups. There are two

ways for such groups in literature. One is by combinatorial techniques. An-

other is the classical by that of algebraic techniques. Bothof them have their

self-advantages and covered in this chapter. The materialsin Sections 5.1–

5.2 are an elementary introduction to combinatorial maps. By the discussion

of Chapter 4, we explain how to embed a graph and how to characterize an

embedding of graph on surface in Section 5.1, particularly these techniques

related to algebraic maps, such as those of rotation system,band decompo-

sition of surface, traveling ruler and orientability algorithm in Section 5.1.

This way naturally introduce the reader to understand the correspondence be-

tween embeddings and maps, and the essence of notationsα, β andP, or

flags in an algebraic map (Xα,P). The automorphisms of map with prop-

erties are discussed in Section 5.3, characterized by behavior of maps or the

semi-arc automorphism of its underlying graph. The materials in Sections

5.4–5.5 concentre on regular maps, both by combinatorial and algebraic tech-

niques, which are closely related combinatorics with geometry and algebra.

By explaining how to get a regular tessellation of a plane, a geometrical way

for constructing regular maps by triangle group is introduced in Section 5.5.

After generalizing the conception of surface to multisurfaceS̃ in section 5.5,

we also show how to construct maps̃M on multisurfaces̃S such that the pro-

jection of M̃ on each surface of̃S is a regular map.
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§5.1 GRAPHS ON SURFACES

5.1.1 Cell Embedding. Let G be a connected graph with vertex setV(G) and edge set

E(G) andS a surface. An 2-cell embeddingof G onS is geometrical defined to be a con-

tinuous 1−1 mappingτ : G→ S such that each component inS−τ(G) homeomorphic to

an open 2-disk. Certainly, the imageτ(G) is contained in the 1-skeleton of a triangulation

of the surfaceS. Usually, components inS− τ(G) are called faces. For example, we have

shown an embedding ofK4 on the sphere and Klein bottle in Fig.5.1.1(a) and Fig.5.1.1(b)

respectively. 6 66-
� u3

2

2

(b)(a)

u1

u2

u4u3

u1 u2

1
u4

1

Fig.5.1.1

For v ∈ V(G), denote byNe
G(v) = {e1, e2, · · · , eρ(v)} all the edges incident with the

vertex v. A permutation one1, e2, · · · , eρ(v) is said apure rotation. All pure rotations

incident withv is denoted by̺ (v). A pure rotation systemof the graphG is defined to be

ρ(G) = {̺(v)|v ∈ V(G)}.

For example, the pure rotation systems for embeddings ofK4 on the sphere and Klein

bottle are respective

ρ(K4) = {(u1u4, u1u3, u1u2), (u2u1, u2u3, u2u4), (u3u1, u3u4, u3u2), (u4u1, u4u2, u4u3)},
ρ(K4) = {(u1u2, u1u3, u1u4), (u2u1, u2u3, u2u4), (u3u2, u3u4, u3u1), (u4u1, u4u2, u4u3)}

and intuitively, we can get a pure rotation system for each embedding ofK4 on a locally

orientable surfaceS.

In fact, there is a relation between these pure rotation systems of a graphG and its

embeddings on orientable surfacesS, called therotation embedding scheme, observed

and used by Dyck in 1888, Heffter in 1891 and then formalized by Edmonds in 1960

following.
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Theorem 5.1.1 Every embedding of a graph G on an orientable surface S induces a

unique pure rotation systemρ(G). Conversely, Every pure rotation systemρ(G) of a graph

G induces a unique embedding of G on an orientable surface S .

Proof If there is a 2-cell embedding ofG on an orientable surfaceS, by the definition

of surface, there is a neighborhoodDu on S for u ∈ V(G) which homeomorphic to a

dimensional 2 discϕ : Du → {(x1, x2) ∈ R2|x2
1+ x2

2 < 1} such that each edge incident with

u possesses segment not inDu. Denoted by∂Du = {(x1, x2) ∈ R2|x2
1 + x2

2 = 1} and let the

counterclockwise order of intersection points of edgesuv, v ∈ NG(u) with that of∂Du be

pv1, pv2, · · · , pvρ(u) . Define a pure rotation ofu by ̺(u) = (uv1, uv2, · · · , uvρ(u)). Then we get

a pure rotation systemρ(G) = {̺(u), u ∈ V(G)}.
Conversely, assume that we are given a pure rotation systemρ(G). We show that this

determines a 2-cell embedding ofG on a surface. LetD denote the digraph obtained by

replacing each edgeuv ∈ G with (u, v) and (v, u). Define a mappingπ : E(D) → E(D)

by π(u, v) = ̺(v)(v, u), which is 1− 1, i.e., a permutation onE(D). Whenceπ can be

expressed as a product of disjoint cycles. Each cycle is an orbit of π action onD(E0.

Thus the orbits partition the setE(D). Assume

F : (u, v)(v,w) · · · (z, u)

is such a orbit under the action ofπ, simply written as

F : (u, v,w, · · · , z, u).

Notice this implies atraveling ruler, i.e., beginning atu and proceed along (u, v) to v,

the next arc we encounter after (u, v) in a counterclockwise direction aboutv is ρ(v)(v, u).

Continuing this process we finally arrive at the arc (z, u), return tou and get the boundary

of a 2-cell.

Let F1, F2, · · · , Fl be all 2-cells obtained by the traveling ruler onE(D). Applying

Theorem 4.2.2, we know it is a polygonal representation of an orientable surfaceS by

identifying arc pairs (u, v) with (v, u) in E(D). �

According to this theorem, we get the number of embeddings ofa graph on orientable

surfaces following.

Corollary 5.1.1 The number of embeddings of a connected graph G on orientablesur-

faces is
∏

v∈V(G)

(ρ(v) − 1)!.
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5.1.2 Rotation System.For a 2-cell embedding of a graphG on a surfaceS, its embed-

ded vertex and face can be viewed as 0 and 2-disks, and its embedded edge can be viewed

as a 1-band defined as a topological spaceB with a homeomorphismh : I × I → B, where

I = [0, 1], the unit interval. The arcsh(I × {i}) for i = 0, 1 are called theendsof B, and

the arcsh({i} × I ) for i = 0, 1 are called thesidesof B. A 0-band or 2-band is just a

homeomorphism of the unit disk. Aband decompositionof the surfaceS is defined to be

a collectionB of 0-bands, 1-bands and 2-bands with conditions following hold:

(1) The different bands intersect only along arcs in their boundary;

(2) The union of all the bands isS, i.e.,
⋃

B∈B
B = S;

(3) The ends of each 1-band are contained in a 0-band;

(4) The sides of each 1-band are contained in a 2-band;

(5) The 0-bands are pairwise disjoint, and the 2-bands are pairwise disjoint.

For example, a band decomposition of the torus is shown in Fig.5.1.2, which is an

embedding of the bouquetB2 on T2.

O -
-6 6

e1

e2

Fig.5.1.2

A band decomposition is calledlocally orientableif each 0-band is assigned an ori-

entation. Then a 1-band is calledorientation-preservingif the direction induced on its

ends by adjoining 0-bands are the same as those induced by oneof the two possible orien-

tations of the 1-band. Otherwise, the 1-band is calledorientation-reversing, such as those

shown in Fig.5.1.3 following.

Orientation-preserving band Orientation-reversing band

Fig.5.1.3
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An edgee in a graphG embedded on a surfaceS associated with a locally ori-

entable band decomposition is said to betype0 if its corresponding 1-band is orientation-

preserving, andtype2, otherwise. A walk in this associated graph istype1 if it has an

odd number of type 1 edges andtype0, otherwise.

For such a graphG associated with a locally orientable band decomposition, we

define arotation systemρL(v) of v ∈ V(G) to be a pair (J(v), λ), whereJ(v) is a pure

rotation system andλ : E(G) → Z2 is determined byλ(e) = 0 orλ(e) = 1 if e is type0 or

type1 edge, respectively. For simplicity, we denote the pairs (e, 0) and (e, 1) by e ande1,

respectively. The rotation systemρL(G) of G is defined by

ρL(G) = {(J(v), λ)|J(v) ∈ ρ(G), λ : E(G)→ Z2}.

For example, the rotation system of the complete graphK4 on the Klein bottle shown in

Fig.5.1.1(b) is

ρL(K4) = {(u1u2, u1u
1
3, u1u4), (u2u1, u2u3, u2u4), (u3u2, u3u4, u3u

1
1), (u4u1, u4u2, u4u3)}.

It should be noted that the traveling ruler in the proof of Theorem 5.1.1 can be gener-

alized for finding 2-cells, i.e., faces in both of a graph embedded on an orientable or

non-orientable surface following.

Generalized Traveling Ruler. Not loss of generality, assume that there are no 2-valent

vertices inG.

(1) Choose an initial vertexv0 of G, a first edgee1 incident withv0 andv1 be the

other end ofe1.

(2) The second edgee2 in the boundary walk is the edge after (respective, before)e1

at v1 if e1 is type 0 (respective, type 1). If the edgee1 is a loop, thene2 is the edge after

(respective, before) the other occurrence ofe1 at v1.

(3) In general, if the walk traced so far ends with edgeei at vertexvi, then the next

edgeei+1 is the edge after (respective, before)ei at vertexvi if the walk is type 0 (respec-

tive, type 1).

(4) The boundary walk is finished at edgeen if the next two edges in the walk would

bee1 ande2 again.

For example, calculation shows that the faces ofK4 embedded on the Klein bottle

shown in fig.5.1.1(b) is

F1 = (u1, u2, u3, u4, u1), F2 = (u1, u3, u4, u2, u3, u1, u4, u2, u1).
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The general scheme for embedding graphs on locally orientable surfaces was used

extensively by Ringel in the 1950s and then formally proved by Stahl in 1978 following

([Sta1]-[Sta2]).

Theorem 5.1.2 Every rotation system on a graph G defines a unique locally orientable

2-cell embedding of G→ S . Conversely, every2-cell embedding of a graph G→ S

defines a rotation system for G.

Proof The proof is the same as that of Theorem 5.1.1 by replacing the traveling ruler

with that of the generalized traveling ruler. �

For any embedding of a graphG on a surfaceS with a band decompositionB, we

can always find a spanning treeT of G such that every edge on this tree is type 0 by the

following algorithm.

Orientability Algorithm. Let T be a spanning tree ofG.

(1) Choose a root vertexu for T and an orientation for the 0-band ofu0.

(2) For each vertexu1 adjacent tou0 in T, choose the orientation for the 0-band ofu1

so that the edge ofT from u0 to u1 is type 0.

(3) If ui andui+1 for an integer are adjacent inT and the orientation atui has been

already determined but that ofui+1 has not been determined yet, choose an orientation at

ui+1 such that the type of the edge fromui to ui+1 is type 0.

(4) Continuous the process onT until every 0-band has an orientation.

Combining the orientability algorithm with that of Theorem5.1.2, we get the number

of embeddings of a graph on locally orientable surfaces following.

Corollary 5.1.2 Let G be a connected graph. Then the number of embeddings of G on

locally orientable surfaces is

2β(G)
∏

v∈V(G)

(ρ(v) − 1)!

and the number of embeddings of G on the non-orientable surfaces is

(2β(Γ) − 1)
∏

v∈V(Γ)

(ρ(v) − 1)!,

whereβ(G) = |E(G)| − |V(G)| + 1 is the Betti number of G.

5.1.3 Equivalent Embedding. Two embeddings (J1, λ1), (J2, λ2) of a graphG on a

locally orientable surfaceS are called to beequivalentif there exists an orientation-
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preserving homeomorphismτ of the surfaceS such thatτ : J1 → J2, andτλ = λτ.

If (J1, λ1) = (J2, λ2) = (J , λ), then such an orientation-preserving homeomorphism

mapping (J1, λ1) to (J2, λ2) is called an automorphism of the embedding (J , λ). Clearly,

all automorphisms of an embedding (J , λ) form a group under the composition operation

of mappings, denoted by Aut(J , λ).

For example, the two embeddings ofK4 shown in Fig.5.1.4(a) and (b) are equivalent,-
-
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u2u3

u4
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Fig.5.1.4

where the orientation-preserving homeomorphismh is determined by

h(u1) = u1, h(u2) = u3, h(u3) = u2 andh(u4) = u4.

The following result is immediately gotten by definition.

Theorem 5.1.3 Let (J , λ) be an embedding of a connected graph G on a locally ori-

entable surface S . Then

Aut(J , λ) ≤ AutG.

5.1.4 Euler-Poincaŕe Characteristic. Applying Theorems 4.2.5-4.2.6, we get the Euler-

Poincaré characteristic of an embedded graphG on a surfaceS following.

Theorem 5.1.4 Let G be a graph embedded on a surface S . Then

ν(G) − ε(G) + φ(G) = χ(S),

where,ν(G), ε(G) andφ(G) are the order, size and the number of faces of the embedded



174 Chap.5 Map Groups

graph G on S , andχ(S) is the Euler-Poincaré characteristic of S determined by

χ(S) =



2 i f S ∼El S2,

2− 2p i f S ∼El T2#T2# · · ·#T2
︸             ︷︷             ︸

p

,

2− q i f S ∼El P2#P2# · · ·#P2
︸            ︷︷            ︸

q

.

§5.2 COMBINATORIAL MAPS

5.2.1 Combinatorial Map. The embedding characteristic of a graphG on surfacesS,

particularly, Theorems 5.1.1-5.1.2 and the generalized traveling ruler present embryonic

maps. In fact, a map is nothing but a graph cellularly embedded on a surface. That

is why one can enumerates maps by means of embedded graphs on surfaces. In 1973,

Tutte found an algebraic representation for the embedding of graphs on locally orientable

surfaces (see [Tut1]-[Tut2] for details), which completely transfers 2-cell partitions of

surfaces to permutations in algebra.

Let G be an embedded graph on a surfaceS with a band decompositionB ande ∈
E(G). Then the bandBe of e is a topological spaceB with a homeomorphismh : I× I → B

and sidesh({i} × I ) for i = 0, 1. For characterizing its embedding behavior, i.e., initial and

end vertices, left and right sides of 1-bandBe, a natural idea is to introduce quadricells for

e, such as those shown in Fig.5.2.1 following,

.....................................................................u v
Be

u v-- ��
Kxe

xe

αxe

βxe

αβxe

-
Fig.5.2.1

where we denote one quarter beginning at the vertexu of Be by xe and its reflective quar-

ters on the symmetric axise, on the perpendicular mid-line ofe and on the central point

of eby αxe, βxe andαβxe, respectively.

Let K = {1, α, β, αβ}. ThenK is a 4-element group under the composition operation

by definition with

α2 = 1, β2 = 1, αβ = βα,
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called theKlein group. The action ofK on an edgee∈ E(G) is defined to be

Ke= {xe, αxe, βxe, αβxe},

called thequadricellsof e. Notice that Theorems 5.1.1-5.1.2 and the generalize traveling

ruler claim the embedded graphG on surfaceS is correspondent with

ρL(G) = {(J(v), λ)|J(v) ∈ ρ(G), λ : E(G)→ Z2}.

Whence, if we turn 1-bands to quadricells fore ∈ E(G), the rotation system̺(u) at a

vertexu becomes to two cyclic permutations (xe1, xe2, · · · , xeρ(u)), (αxe1, αxeρ(u) , · · · , αxe2) if

NG(u) = {e1, e2, · · · , eρ(u)}. By definition,Kxe1 ∩ Kxe2 = ∅ if e1 , e2. We therefore get a

set

Xα,β =
⋃

e∈E(G)

Kxe =
⊕

e∈E(G)

{xe, αxe, βxe, αβxe}.

Define a permutation

P =
∏

u∈V(G)

(xe1, xe2, · · · , xeρ(u))(αxe1, αxeρ(u) , · · · , αxe2) =
∏

u∈V(G)

Cv · (αC−1
v α−1),

called thebasic permutationon Xα,β, i.e., Pkx , αx for any integerk ≥ 1, x ∈
Xα,β, whereCv = (xe1, xe2, · · · , xeρ(u)). This permutation also make one understanding

the embedding ofG on surfaceS if we view a vertexu ∈ V(G) as the conjugate cycles

C · (αC−1α−1) = (xe1, xe2, · · · , xeρ(u))(αxe1, αxeρ(u) , · · · , αxe2) and an edgee as the quadricell

Kxe. We have two claims following.

Claim 1. αPα−1 =P−1.

Let P =
∏

u∈V(G)
(xe1, xe2, · · · , xeρ(u))(αxe1, αxeρ(u) , · · · , αxe2). Calculation shows that

αPα = α


∏

u∈V(G)

(xe1, xe2, · · · , xeρ(u))(αxe1, αxeρ(u) , · · · , αxe2)

α
−1

=
∏

u∈V(G)

(
α(xe1, xe2, · · · , xeρ(u))α

−1
)
·
(
α(αxe1, αxeρ(u) , · · · , αxe2)α

−1
)

=
∏

u∈V(G)

(αxe1, αxe2, · · · , αxeρ(u))(xe1, xeρ(u) , · · · , xe2) =P−1.

Claim 2. The group〈α, β,P〉 is transitive onXα,β.

For ∀x, y ∈ Xα,β, assume they are the quadricells of edgese1 ande2. By the con-

nectedness ofG, we know that there is a pathP = e1e2 · · ·es connectede′ ande′′ in G for
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an integers ≥ 0. Notice that edgese′ with e1 ande′′ with es are adjacent. Not loss of

generality, letPk1 x = xe1 andPk2 xes = y. Then we know that

(αβ)sxe1 = xes, or αxes, or βxes or αβxes.

Whence, we must have that

Pk2(αβ)sPk1x = y, or Pk2α(αβ)sPk1x = y, or

Pk2β(αβ)sPk1 x = y, or Pk2α(αβ)s+1Pk1 x = y.

Notice thatPk2(αβ)sPk1, Pk2α(αβ)sPk1, Pk2β(αβ)sPk1 andPk2α(αβ)s+1Pk1 are ele-

ments in the group〈α, β,P〉. Thus〈α, β,P〉 is transitive onXα,β.

Claims 1 and 2 enable one to define a mapM algebraically following.

Definition 5.2.1 Let X be finite set, K= {1, α, β, αβ} the Klein group and

Xα,β =
⊕

x∈X
{x, αx, βx, αβx}.

Then a map M is defined to be a pair(Xα,β,P), whereP is a basic permutation action

onXα,β such that the following axioms hold:

Axiom 1. αP =P−1α;

Axiom 2. The groupΨJ = 〈α, β,P〉 with J = {α, β,P} is transitive onXα,β.

Notice that Axiom 2 enables one to decomposeP to a production of conjugate

cyclesCv andαC−1
v α−1 correspondent to the vertices of theM, i.e.,

P =
∏

v∈V(M)

Cv · αC−1
v α−1.

We present an example for maps correspondent to embedded graphs following.

Example 5.2.1 The embedded graphK4 on the toursT2 shown in Fig.5.2.2 following

can be algebraic represented by a map (Xα,β,P) with Xα,β = {x, y, z, u, v,w, αx, αy, αz,

αu, αv, αw, βx, βy, βz, βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} and

P = (x, y, z)(αβx, u,w)(αβz, αβu, v)(αβy, αβv, αβw)

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv).
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1

1

2 2?*Y� + s
x

y
z

u

v

w

-
-

6 6
Fig 5.2.2

Its four vertices are

u1 = {(x, y, z), (αx, αz, αy)}, u2 = {(αβx, u,w), (βx, αw, αu)},
u3 = {(αβz, αβu, v), (βz, αv, βu)}, u4 = {(αβy, αβv, αβw), (βy, βw, βv)}.

and its six edges are{e, αe, βe, αβe}, where,e∈ {x, y, z, u, v,w}.

5.2.2 Dual Map. Let M = (Xα,β,P) be a map. Notice that

αPα−1 =P−1 ⇒ β(Pαβ)β−1 = (Pαβ)−1

andΨJ = 〈α, β,P〉 is transitive onXβ,α also. We known thatM∗ = (Xβ,α,Pαβ) is also a

map by definition, called thedual mapof M. Now the generalized traveling ruler becomes

Traveling Ruler on Map. For ∀x ∈ Xα,β, the successor of x is the element y afterαβx

in P, thus each face of M is a pair of conjugate cycles in the decomposition

Pαβ =
∏

f∈V(M∗)

C∗ · (βC−∗β−1),

i.e., a vertex of its dual map M∗. The length of a face f of M is called the valency of f .

Example5.2.2 The faces ofK4 embedded on torus shown in Fig.5.2.2 are respective

f1 = (x, u, v, αβw, αβx, y, αβv, αβz)(βx, αz, αv, βy, αx, αw, βv, βu),

f2 = (αy, βw, αu, βz)(αβy, z, αβu,w).

By the definitions of mapM with its dual M∗, we immediately get the following

results according to Theorems 5.1.1-5.1.2.

Theorem 5.2.1 Every map M= (Xα,β,P) defines a unique locally orientable2-cell

embedding of G→ S with

V(G) = {{ C · αC−1α−1 | C ∈ C }}, E(G) = { Kx | x ∈ X }
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and the face set F(G) determined by cycle pairs{F, βFβ−1} in the decomposition ofPαβ.

Conversely, every2-cell embedding of a graph G→ S defines a map M= (Xα,β,P)

determined by

Xα,β =
⋃

e∈E(G)

Kxe =
⊕

e∈E(G)

{xe, αxe, βxe, αβxe}

and

P =
∏

u∈V(G)

(xe1, xe2, · · · , xeρ(u))(αxe1, αxeρ(u) , · · · , αxe2),

if NG(u) = {e1, e2, · · · , eρ(u)}.

By Theorem 5.2.1, the embedded graphG (the mapM) correspondent to the mapM

(the embedded graphG) is called theunderlying graph of M(map underlying G), denoted

by G(M) andM(G), respectively.

Theorem 5.2.2 Let M = (Xα,β,P) be a map. Then its Euler-Poincaré characteristic is

χ(M) = ν(M) − ε(M) + φ(M),

whereν(M), ε(M), φ(M) are the number of vertices, edges and faces of the map M, re-

spectively.

Example 5.2.2 The Euler-Poincaré characteristicχ(M) of the map shown in Fig.5.2.2 is

χ(M) = ν(M) − ε(M) + φ(M) = 4− 6+ 2 = 0.

5.2.3 Orientability. For defining a map (Xα,β,P) is orientable or not, we first prove the

following result.

Theorem 5.2.3 Let M = (Xα,β,P) be a map. Then the number of orbits of the group

ΨL = 〈αβ,P〉 action onXα,β with L = {αβ,P} is at most2.

Proof Notice that|ΨJ : ΨL| = 2, i.e.,〈α, β,P〉 = 〈αβ,P〉⋃α 〈αβ,P〉. For x, y ∈
X , if there are no elementsh ∈ Ψl such thatxh = y, by Axiom 2 there must be an element

θ ∈ ΨJ with xθ = y. Clearly,θ ∈ αΨL. Let θ = αh. Thenαxh = y andβx = y, i.e., x, αβx

in one orbit andαx, βx in another. This fact enables us to know the number of orbits of

ΨL action onXα,β is 2. �

If a mapM = (Xα,β,P) is on an orientable surface, i.e., each 1-band is type 0, then

any x ∈ Xα,β can be not transited toαx by the generalized traveling ruler on its edges,
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i.e., the number of orbits ofΨL action onXα,β is 2. This fact enables us to introduce the

orientability of map following.

Definition 5.2.2 A map M= (Xα,β,P) is non-orientable if it satisfies Axiom3 following,

otherwise, orientable.

Axiom 3. The groupΨL = 〈αβ,P〉 is transitive onXα,β.

Definition 5.2.3 Let M be a map on a surface S . Then the genus g(S) is called the genus

of M, i.e.,

g(M) =



0 i f S ∼El S2,

p i f S ∼El T2#T2# · · ·#T2
︸             ︷︷             ︸

p

,

q i f S ∼El P2#P2# · · ·#P2
︸            ︷︷            ︸

q

.

It can be shown that the number of orbits of the groupΨL action onXα,β = {x, y, z, u, v,
w, αx, αy, αz, αu, αv, αw, βx, βy, βz, βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} in Fig.5.2.2

is 2. Whence, it is an orientable map and the genusg(M) satisfies

2− 2g(M) = ν(M) − ε(M) + φ(M) = 4− 6+ 2 = −2.

Thusg(M) = 1, i.e.,M is on the torusT2, being the same with its geometrical meaning.

5.2.4 Standard Map. A mapM is standardif it only possesses one vertex and one face.

We show that all the standard surfaces in Chapter 4 is standard maps. From Theorem

4.2.4 we have known the standard surface presentations as follows:

(1) The sphereS2 =
〈
a|aa−1

〉
;

(2) The connected sum ofp tori

T2#T2# · · ·#T2
︸             ︷︷             ︸

p

=

〈
ai, bi, 1 ≤ i ≤ p |

p∏

i=1

aibia
−1
i b−1

i

〉
;

(3) The connected sum ofq projective planes

P2#P2 · · ·#P2
︸           ︷︷           ︸

q

=

〈
ai, 1 ≤ i ≤ q |

q∏

i=1

ai

〉
.

All of these surface presentations is in fact maps, i.e.,

(1′) The sphereO0 = (Xα,β,P) with Xα,β(O0) = {a, αa, βa, αβa} andP(O0) =

(a, αβa)(αa, β);
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(2′) The connected sum ofp tori Op = (Xα,β,P) with

Xα,β(Op) =


p⋃

i=1

{ai, αai, βai, αβai}

⋃

p⋃

i=1

{bi, αbi, βbi, αβbi}
 ,

P(Op) = (a1, b1, αβa1, αβb1, a2, b2, αβa2, αβb2, · · · , ap, bp, αβap, αβbp)

(αa1, βbp, βap, αbp, αap, · · · , βb2, βa2, αb2, αa2, βb1, βa1, αb1).

(3′) The connected sum ofq projective planesNq = (Xα,β,P) with

Xα,β(Nq) =
p⋃

i=1

{ai, αai, βai, αβai},

P(Nq) = (a1, βa1, a2, βa2, · · · , ap, βap)(αa1, αβap, αap, · · · , αβa2, αa2, αβa1).

Then we know the following result.

Theorem 5.2.4 These maps O0, Op and Nq are standard maps. Furthermore,

(1) The map Op is orientable with genus g(Op) = p for integers p≥ 0;

(2) The map Nq is non-orientable with genus g(Nq) = q for integers q≥ 1.

Proof Clearly,ν(Op) = 1 andν(Nq) = 1 by definition. Calculation shows that

P(O0)αβ = (a, αβa)(αa, βa);

P(Op)αβ = (a1, αβb1, αβa1, b1, a2, αβb2, αβa2, b2, · · · , ap, αβbp, αβap, bp)

(βa1, βbp, αap, αbp, βap, · · · , βb2, αa2, αb2, βa2, βb1, αa1, αb1);

P(Nq)αβ = (a1, αa1, a2, αa2, · · · , aq, αaq)(βa1, αβaq, βaq, · · · , αβa2, βa2, αβa1).

Therefore, there only one face inOp andNq. Consequently, they are standard maps for

integersp ≥ 0 andq ≥ 1.

Obviously, the number of orbits ofΨL action onXα,β(Op) is 2, but that onXα,β(Op) is

1. Whence,Op is orientable for integersp ≥ 0 andNq is non-orientable for integersq ≥ 1.

Calculation shows that the Euler-Poincaré characteristics ofOp andNq are respective

χ(Op) = 1− 2p+ 1 and χ(Nq) = 1− q+ 2.

Whence,g(Op) = p andg(Nq) = q. �

By the view of map, the standard surface presentation in Theorem 4.2.4 is nothing

but the dual maps (Xα,β,P) of bouquetsB2p, Bq on T2#T2# · · ·#T2
︸             ︷︷             ︸

p

or P2#P2# · · ·#P2
︸            ︷︷            ︸

q
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with

P(B2p) = (a1, αβb1, αβa1, b1, a2, αβb2, αβa2, b2, · · · , ap, αβbp, αβap, bp)

(βa1, βbp, αap, αbp, βap, · · · , βb2, αa2, αb2, βa2, βb1, αa1, αb1);

P(Bq) = (a1, αa1, a2, αa2, · · · , aq, αaq)(βa1, αβaq, βaq, · · · , αβa2, βa2, αβa1).

For example, we have shown this dual relation in Fig.5.2.3 for p = 1 andq = 2

following.

O O

-
-

6 6
a

b

αβa

αβb

6-
? � a

βa
b

βb

-6� ? -6� ?a

αβbαβa

b a

αab

αb

Fig.5.2.3

In fact, the embedded graphB2 on torus and Klein bottle are maps (Xα,β,P), where

Xα,β(B2) = {a, αa, βa, αβa, b, αb, βb, αβb}, P = (a, αβb, αβa, b)(αa, αb, βa, βb), Pαβ =

(a, b, αβa, αβb)(αa, βb, βa, αb) on the torus, andP = (a, αa, b, αb)(βa, αβb, βb, αβa),

Pαβ = (a, βa, b, βb)(αa, αβb, αb, αβa) on the Klein bottle, respectively.

§5.3 MAP GROUPS

5.3.1 Isomorphism of Maps. Let M1 = (X 1
α,β,P1) andM2 = (X 2

α,β,P2) be maps. If

there exists a bijection

ξ : X 1
α,β →X 2

α,β

such that for∀x ∈X 1
α,β

,

ξα(x) = αξ(x), ξβ(x) = βξ(x) and ξP1(x) = P2ξ(x).

Such a bijectionξ is called anisomorphismfrom mapsM1 to M2.

Clearly, ξ−1α(y) = αξ−1(y), ξ−1β(y) = βξ−1(y) and ξ−1P(y) = Pξ−1(y) for y ∈
X 2

α,β
. Thus the bijectionξ−1 : X 2

α,β
→ X 1

α,β
is an isomorphism from mapsM2 to M1.
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Whence, we can just say suchM1 andM2 are isomorphic without distinguishing that the

isomorphismξ is from M1 to M2 or from M2 to M1 if necessary.

Theorem 5.3.1 Let M1 and M2 be isomorphic maps. Then

(1) M1 is orientable if and only if M2 is orientable;

(2) ν(M1) = ν(M2), ε(M1) = ε(M2) andφ(M1) = φ(M2), particularly, the Euler-

Poincaré characteristicsχ(M1) = χ(M2).

Proof Let M1 = (X 1
α,β
,P1), M2 = (X 2

α,β
,P2), τ : X 1

α,β
→ X 2

α,β
an isomorphism

from M1 to M2 and x1, x2 ∈ X 1
α,β

such that there exists aσ ∈ Ψ1
L = 〈αβ,P1〉 with

σ(x1) = x2. Then There must beτστ−1(τ(x1)) = τ(x2), i.e., τΨ1
Lτ
−1 = 〈αβ,P2〉 = Ψ2

L.

Whence,Ψ1
L is not transitive onX 1

α,β
if and only if Ψ2

L is not transitive onX 2
α,β

. That is

the conclusion (1).

For (2), letx1 be an element in the conjugate pairC · (αC−1α−1) of P1 andy1 an

element inC′ · (αC
′−1α−1) of P2. It is easily know thatτ(C · (αC−1α−1)) = C′ · (αC

′−1α−1)

and τ({x1, αx1, βx1, αβx1}) = {y1, αy1, βy1, αβy1}, i.e., τ : Kx1 → Ky1. Whence,τ is

an bijection betweenV(M1) andV(M2), E(M1) and E(M2). Thusν(M1) = ν(M2) and

ε(M1) = ε(M2).

By definition, we know thatτ(P1αβ) = (P2αβ)τ. So similarly we know thatτ is

also a bijection between the vertices, i.e., faces ofM1 andM2. Consequently, we get that

φ(M1) = φ(M2). �

For∀x ∈Xα,β, let vx, ex and fx be the vertex, edge and face containing the quadricell

x in a mapM = (Xα,β,P). The triple (vx, ex, fx) is called aflag incident with that of xin

M. Denoted byF (M) all flags in a mapM. Then we get the following result by the proof

of Theorem 5.3.1.

Corollary 5.3.1 Let M1 and M2 be isomorphic maps. Then there is a bijection between

flag setsF (M1) andF (M2).

Theorem 5.3.2 A map M1 = (X 1
α,β,P1) is isomorphic to M2 = (X 2

α,β,P2) if and only if

the dual map M∗1 = (X 1
β,α
,P1αβ) is isomorphic to that of M∗2 = (X 2

β,α
,P2αβ).

Proof Let τ : X 1
α,β → X 2

α,β be an isomorphism fromM1 to M2. Thenτα − ατ,
τβ = βτ andτP1 = P2τ. Consequently,τ(P1αβ) = P2τ(αβ) = (P2αβ)τ. Notice that

X 1
α,β = X 1

β,α andX 2
α,β = X 2

β,α. We therefore know thatτ is an isomorphism betweenM∗1
andM∗2. �
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Applying isomorphisms between maps, an alternative approach for determining equiv-

alent embeddings and maps on locally orientable surfaces underlying a graph can be de-

fined as follows:

For a given mapM underlying a graphG, it is obvious that AutM|G ≤ Aut 1
2
G.

Whence, we can extend the action of∀g ∈ Aut 1
2
G on V(G) to that ofg| 12 onXα,β with

X = E(G) by defining that for∀x ∈ Xα,β, if xg = y, then

xg|
1
2
= y, (αx)g|

1
2
= αy, (βx)g|

1
2
= βy and (αβx)g|

1
2
= αβy.

Then we can characterize equivalent embeddings and isomorphic maps following.

Theorem 5.3.3 Let M1 = (Xα,β,P1) and M2 = (Xα,β,P2) be maps underlying a graph

G. Then

(1) M1 and M2 are equivalent if and only if there is an elementζ ∈ Aut 1
2
G such that

Pζ

1 =P2.

(2) M1 and M2 are isomorphic if and only if there is an elementζ ∈ Aut 1
2
G such that

Pζ

1 =P2 or Pζ

1 =P−1
2 .

Proof Let κ be an equivalence between embeddingsM1 andM2. Then by definition,

κ must be an isomorphism between mapsM1 and M2 induced by an automorphismι ∈
AutG. Notice that

AutG � AutG| 12 ≤ Aut 1
2
G.

We know thatι ∈ Aut 1
2
G.

Now if there is aζ ∈ Aut 1
2
G such thatPζ

1 =P2, then∀ex ∈ X1
2
(G), ζ(ex) = ζ(e)ζ(x).

Assume thate = (x, y) ∈ E(G), then by convention, we know that ifex = e ∈ Xα,β, there

must beey = βe. Now by the definition of automorphism on the semi-arc setX1
2
(G), if

ζ(ex) = fu, where f = (u, v), then there must beζ(ey) = fv. Notice thatX1
2
(G) = Xβ. We

therefore know thatζ(ey) = ζ(βe) = β f = fv. Now extend the action ofζ on X1
2
(G) to

Xα,β by ζ(αe) = αζ(e). We get that∀e ∈Xα,β,

αζ(e) = ζα(e), βζ(e) = ζβ(e) andPζ

1(e) =P2(e).

So the extend action ofζ onXα,β is an isomorphism between the mapM1 andM2, which

preserve the orientation onM1 andM2. Whence,ζ is an equivalence between the mapM1

andM2. That is the assertion (1).
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For the assertion (2), if there is an elementζ ∈ Aut 1
2
G such thatPζ

1 =P2, then the

mapM1 is isomorphic toM2. If Pζ

1 =P−1
2 , then there must bePζα

1 =P2. SoM1 is also

isomorphic toM2. This is the sufficiency of (2).

Let ξ be an isomorphism between mapsM1 andM2. Then for∀x ∈Xα,β,

αξ(x) = ξα(x), βξ(x) = ξβ(x) andPξ

1(x) =P2(x).

By convention, the condition

βξ(x) = ξβ(x) andPξ

1(x) =P2(x)

is just the condition of an automorphismξ or αξ on X1
2
(G). Whence, the assertion (2) is

also true. �

5.3.2 Automorphism of Map. If M1 = M2 = M, such an isomorphism betweenM1 and

M2 is called anautomorphismof M, which surveys symmetries on a map.

Example5.3.1 Let M = (Xα,β,P) be a map with

Xα,β(B2) = {a, αa, βa, αβa, b, αb, βb, αβb}

and

P = (a, αβb, αβa, b)(αa, αb, βa, βb),

i.e., the bouquetB2 on the torus shown in Fig.5.3.1 following.

O

-
-6 6-6� ? a

αβbαβa

b

Fig.5.3.1

We determine its automorphisms following. Define

τ1 =


a αa βa αβa b αb βb αβb

αa a αβa βa βb αβb b αb



= (a, αa)(βa, αβa)(b, βb)(αb, αβb),
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τ2 =


a αa βa αβa b αb βb αβb

βa αβa a αa αb b αβb βb



= (a, βa)(αa, αβa)(b, αb)(βb, αβb),

τ3 =


a αa βa αβa b αb βb αβb

αβa βa αa a αβb βb αb b



= (a, αβa)(αa, βa)(b, αβb)(αb, βb),

τ4 =


a αa βa αβa b αb βb αβb

b αb βb αβb αβa βa αa a



= (a, b, αβa, αβb)(αa, αb, βa, βb),

τ5 =


a αa βa αβa b αb βb αβb

αb b αβb βb αa a αβa βa



= (a, αb)(αa, b)(βa, αβb)(αβa, βb),

τ6 =


a αa βa αβa b αb βb αβb

βb αβb b αb βa αβa a αa



= (a, βb)(αa, αβb)(βa, b)(αβa, αb),

τ7 =


a αa βa αβa b αb βb αβb

αβb βb αb b a αa βa αβa



= (a, αβb, αβa, b)(αa, βb, βa, αb).

We are easily to verify that these permutations 1Xα,β
, τi , 1 ≤ i ≤ 7 are automorphisms of

the mapM shown in Fig.5.3.1.

Theorem 5.3.4 All automorphisms of a map M= (Xα,β,P) form a group.

Proof Let τ, τ1 andτ2 be automorphisms ofM. Then we know thatτα = ατ, τβ =

βτ, τP =Pτ andτ1α = ατ1, τ1β = βτ1, τ1P =Pτ1. Clearly, 1Xα,β
is an automorphism

of M andτ−1α = ατ−1, τ−1β = βτ−1, τ−1P = Pτ−1, i.e.,τ−1 is an automorphism ofM.

Furthermore, it is easily to know that

(ττ1)α = α(ττ1), (ττ1)β = β(ττ1) and (ττ1)P =P(ττ1),

i.e.,ττ1 is also an automorphism ofM with

x(ττ1)τ2 = xτ(τ1τ2)

for ∀x ∈Xα,β, i.e., (ττ1)τ2 = τ(τ1τ2). So all automorphisms form a group by definition.�
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Such a group formed by all automorphisms of a mapM is called theautomorphism

groupof M, denoted by AutM and any subgroupΓ of automorphism groups of maps is

called amap group.

Theorem 5.3.5 Any map groupΓ is fixed-free.

Proof Let M = (Xα,β,P) be a map,x ∈ Xα,β andΓ ≤ AutM. If xσ = x, we prove

that

σ = 1Xα,β
.

In fact, for∀y ∈ Xα,β, by definitionΨJ = 〈α, β,P〉 is transitive onXα,β, there exists an

elementh ∈ ΨJ such thatxh = y. Hence,

yσ = xσh = xhσ = xh = y,

i.e.,σ fixes all elements inXα,β. �

For a group (Γ; ◦), denoted byZΓ(H) = { g ∈ Γ| g ◦ h ◦ g−1 = h,∀h ∈ H } the

centralizer ofH in (Γ; ◦) for H ≤ Γ. Then we are easily to get the following result for

automorphism group of map.

Theorem 5.3.6 Let M = (Xα,β,P) be a map. ThenAutM = ZSXα,β
(〈α, β,P〉), where

SXα,β
is the symmetric group onXα,β.

Proof Let ∀τ ∈ AutM be an automorphism. Then we know thatτα = ατ, τβ = βτ

and τP = Pτ by definition. Whence,τ ∈ ZSXα,β
(〈α, β,P〉). Conversely, forσ ∈

ZSXα,β
(〈α, β,P〉), It is clear thatσα = ασ, σβ = βσ andσP =Pσ by definition. �

A characterizing for automorphism group of map can be found in the following.

Theorem 5.3.7 Let M = (Xα,β,P) be a map with A= AutM and v∈ V(M). Then the

stabilizer Av is isomorphic to a subgroup H≤
〈
Cv

〉
generated byCv = Cv · αC−1

v α−1, i.e.,

a product of conjugate pair of cycles inP.

Proof By Theorem 2.1.1, if g ∈ Av, we know thatgCvg−1 = Cg(v) = Cv. That is

gCv = Cvg. Whence, ifw is a quadricell inCv, theng(w) is also so. Denote the constraint

action of an automorphismg ∈ Av on elements inCv by g. Notice thatCv is a product of

conjugate pairs of cycles inP. There must be an integeri such thatg(w) = C
i

v. Choose

x = C
j

v(w) be a quadricell inCv. Then

g(x) = gC
i

v(w) = C
i+ j

v (w) = C
i

v(x).
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Whence,g = C
i

v. Define a homomorphismθ : Av →
〈
Cv

〉
by θ(a) = g for ∀g ∈ Av.

Then it is also a monomorphism by Theorem 5.3.5. ThusAv is isomorphic to a subgroup

H ≤
〈
Cv

〉
. �

Applying isomorphisms between maps, similar to that of Theorem 5.3.3 we can also

characterize automorphisms of a map by extended actions of semi-arc automorphisms of

its underlying graph following.

Theorem 5.3.8 Let M = (Xα,β,P) be a map underlying graph G, g∈ Aut1
2
G. Then the

extend action g| 12 of g onXα,β with X = E(G) is an automorphism of map M if and only if

∀v ∈ V(M), g| 12 preserves the cyclic order of v.

Proof Let g| 12 ∈ AutM be extended byg ∈ Aut1
2
G with ug = v for u, v ∈ V(M). Let

u = (x1, x2, · · · , xρ(u))(αxρ(u), · · · , αx2, αx1),

v = (y1, y2, · · · , yρ(v))(αyρ(v), · · · , αy2, αy1).

Then there must be

(x1, x2, · · · , xρ(u))
g|

1
2
= (y1, y2, · · · , yρ(v)) or

(x1, x2, · · · , xρ(u))
g|

1
2
= (αyρ(v), · · · , αy2, αy1).

Without loss of generality, we assume that (x1, x2, · · · , xρ(u))g|
1
2
= (y1, y2, · · · , yρ(v)). Thus,

(g| 12 (x1), g|
1
2 (x2), · · · , g|

1
2 (xρ(u))) = (y1, y2, · · · , yρ(v)).

Whence,g| 12 preserves the cyclic order of vertices in the mapM.

Conversely, if the extend actiong| 12 of g ∈ Aut 1
2
G onXα,β preserves the cyclic order

of each vertex inM, i.e.,∀u ∈ V(G),∃v ∈ V(G) such thatug|
1
2
= v. Let

P =
∏

u∈V(M)

u.

Then

Pg|
1
2
=

∏

u∈V(M)

ug|
1
2
=

∏

v∈V(M)

v =P .

Whence, the extend actiong| 12 is an automorphism of mapM. �

Combining Corollary 5.3.1 and Theorem 5.3.5 enables us to get the following result.
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Theorem 5.3.9 Let M = (Xα,β, β) be a map withνi of vertices andφi faces of valency

i, i ≥ 1. Then

|AutM| | (2iνi, 2 jφ j ; i ≥ 1, j ≥ 1),

where(2iνi, 2 jφ j ; i ≥ 1, j ≥ 1) denotes the greatest common divisor of2iνi, 2 jφ j for an

integer pair i, j ≥ 1.

Proof LetΛi and∆ j respectively be the sets of quadricells incident with a vertex of

valencyi or incident with a face of valencyj for integersi, j ≥ 1. Consider the action

of AutM onΛi and∆ j. By Corollary 5.3.1, such an action is closed inΛi or ∆ j. Then

applying Theorem 2.1.1(3), we know that

|AutM| = |(AutM)x||xAutM | = |xAutM |

for ∀x ∈ Λi for |(AutM)x| = 1 by Theorem 5.3.5. Therefore, the length of each orbit of

AutM action onΛi or ∆ j is the same|AutM|. Notice that|Λi | = 2iνi and|∆ j | = 2 jφ j. We

get that

|AutM| | |Λi | = 2iνi and |AutM| | |∆ j | = 2 jφ j

for any integer pairsi, j ≥ 1. Thus

|AutM| | (2iνi, 2 jφ j ; i ≥ 1, j ≥ 1). �

Corollary 5.3.2 Let M = (Xα,β,P) be a map with vertex valency k and face valency l.

Then|AutM| | (2k|M|, 2l|M∗|), where M∗ is the dual of M. Particularly,|AutOp| | 2p and

|AutOp| | 2p for standard maps Op and Nq.

By Theorem 5.3.9, we can get automorphism groups AutM of mapM in sometimes.

Example 5.3.2 Let M = (Xα,β,P) be the map shown in Fig.5.2.2, i.e.,K4 on torus with

one face length 4 and another 8. By Theorem 5.3.9, there must be|AutM| | (4×3, 8, 4) = 4,

i.e., |AutM| ≤ 4. Define

σ1 = (x, αx)(βx, αβx)(y, αz)(αy, z)(βz, αβz)(αβz, βy)

(v, βv)(αv, αβv)(u, αw)(αu,w)(βu, αβw)(αβu, βw)

and

σ2 = (x, βx)(αx, αβx)(y, αw)(αy,w)(βy, αβw)(αβy, βw)

(v, αv)(βv, αβb)(z, αu)(αz, u)(βz, αβu)(αβz, βu).
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It can be verifies thatσ1 andσ2 both are automorphisms ofM andσ2
1 == 1Xα,β

and

σ2
2 = 1Xα,β

. So AutM = 〈σ1, σ2〉.

Example 5.3.3 We have construct automorphisms 1Xα,β
andτi , 1 ≤ i ≤ 7 for the map

shown in Fig.5.3.1 in Example 5.3.1. Consequently, we get that

AutM = {1Xα,β
, τ1, τ2, τ3, τ4, τ5, τ6, τ7}

by Corollary 5.3.2.

Notice that

2
∑

i≥1

iνi = 2
∑

i≥1

iφi = |Xα,β|

for a mapM = (Xα,β,P). Therefore, we get the following conclusion.

Corollary 5.3.3 For any map M= (Xα,β,P), |AutM| | |Xα,β| = 4ε(M).

Proof Applying Theorem 5.3.9, we know that

|AutM| |
∑

i≥1

2iνi and |AutM| |
∑

i≥1

2iφi.

Because of

2
∑

i≥1

iνi = 2
∑

i≥1

iφi = |Xα,β|,

we immediately get that|AutM| | |Xα,β| = 4ε(M). �

Now we determine automorphisms of standard maps on surfaces.

Theorem 5.3.10 Let Op = (Xα,β(Op),P(Op)) be an orientable standard map with

Xα,β(Op) =


p⋃

i=1

{ai, αai, βai, αβai}

⋃

p⋃

i=1

{bi , αbi, βbi, αβbi}
 ,

P(Op) = (a1, b1, αβa1, αβb1, a2, b2, αβa2, αβb2, · · · , ap, bp, αβap, αβbp)

(αa1, βbp, βap, αbp, αap, · · · , βb2, βa2, αb2, αa2, βb1, βa1, αb1).

and letNq = (Xα,β,P) be a non-orientable map with

Xα,β(Nq) =
p⋃

i=1

{ai, αai, βai, αβai},

P(Nq) = (a1, βa1, a2, βa2, · · · , ap, βap)(αa1, αβap, αap, · · · , αβa2, αa2, αβa1).
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Define

τs = P4s(Op), 0 ≤ s≤ p− 1,

σ =

p∏

i=1

(ai, αai)(bi , βbi)(αβai, βai)(αβbi, αbi),

θ =

p∏

i=1

(ai, αβbi)(αai , βbi), ς =

p∏

i=1

(ai , αβai)(bi , αβbi)

and

ηl =P2l(Nq), 0 ≤ l ≤ q− 1; ϑ =

q∏

i=1

(ai , αβai)(αai, βai).

Then

AutOp = 〈θ, σ, ς, τs, 1 ≤ s≤ p− 1〉 and AutNq ≥ 〈ϑ, ηl , 1 ≤ l ≤ q− 1〉 .

Proof It is easily to verify thatxα = αx, xβ = βx, xP(Op) = P(Op)x if

x ∈ {θ, σ, ς, τs, 1 ≤ s ≤ p − 1} and yα = αy, yβ = βy, yP(Nq) = P(Nq)y if

y ∈ {ϑ, ηl , 1 ≤ l ≤ q − 1}. Thus AutOp ≥ 〈θ, σ, ς, τs, 1 ≤ s≤ p− 1〉 and AutNq ≥
〈ϑ, ηl , 1 ≤ l ≤ q− 1〉. Notice that| 〈θ, σ, ς, τs, 1 ≤ s≤ p− 1〉 | = 8p = |Xα,β(Op)|. Ap-

plying Corollary 5.3.3, AutOp = 〈θ, σ, ς, τs, 1 ≤ s≤ p− 1〉 is followed. �

5.3.3 Combinatorial Model of Klein Surface. For a complex algebraic curve, a very

important problem is to determine its birational automorphisms. For curveC of genus

g ≥ 2, Schwarz proved that Aut(C) is finite in 1879 and then Hurwitz proved|Aut(C)| ≤
84(g − 1), seeing [FaK1] for details. As observed by Riemann, the groups of birational

automorphisms of complex algebraic curves are the same as the automorphism groups of

compact Riemann surfaces which can be combinatorially dealt with the approach of maps

on surfaces. Jones and Singerman proved the following result in [JoS1].

Theorem 5.3.11 If M is an orientable map of genus p, thenAutM is isomorphic to a

group of conformal transformations of a Riemann surface.

Notice that the automorphism group of Klein surface possesses the same represen-

tation as that of Riemann surface by Theorem 4.5.7. This enables us to get a result likely

for Klein surfaces following.

Theorem 5.3.12 If M is a locally orientable map on a Klein surface S , thenAutM

is isomorphic to a group of conformal transformations of a Klein surface, particularly,

AutM ≤ AutS .
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Proof According to Theorem 4.5.7, there exists a NEC groupΓ such that AutS ≃
NΩ(Γ)/Γ, whereΩ = AutH = PGL(2,R) being the automorphism group of the upper half

planeH. BecauseM is embeddable on Klein surfaceS, so there is a fundamental region

F, a polygon inH such that{gF|g ∈ Γ} is a tessellation ofH, i.e.,S is homeomorphic to

H/Γ. By Constructions 4.4.1-4.4.2, we therefore know that AutM ≤ NΩ(Γ)/Γ, i.e., AutM

is a subgroup of conformal transformation of Klein surfaceS. �

§5.4 REGULAR MAPS

5.4.1 Regular Map. A regular map M= (Xα,β,P) is such a map that its automorphism

group AutM is transitive onXα,β, i.e., |AutM| = 4ε(M). For example, the map discussed

in Example 5.3.2 is such a regular map, but that map in Example 5.3.1 is not.

If M is regular, then AutM is transitive on vertices, edges and faces ofM by Corollary

5.3.1. This fact enables us to get the following result.

Theorem5.4.1 Let M be a regular map with vertex valency k≥ 3 and face valency l≥ 3,

called a type(k, l) regular maps. Then kν(M) = lφ(M) = 2ε(M) and

g(M) =



1+

(
(k− 2)(l − 2)− 4

4l

)
ν(M), i f M is orientable;

2+

(
(k− 2)(l − 2)− 4

2l

)
ν(M), i f M is non− orientable.

Proof Let νk = ν(M), φl = φ(M) andνi = φ j = 0 if i , k, j , l in the equalities

2
∑

i≥1

iνi = 2
∑

i≥1

iφi = |Xα,β| = 4ε(M),

we immediately get thatkν(M) = lφ(M) = 2ε(M).

Substituteε(M) =
k
2
ν(M) andφ(M) =

k
l
ν(M) in the Euler-Poincaré genus formulae

g(M) =



2+ ε(M) − ν(M) − φ(M)
2

, if M is orientable

2+ ε(M) − ν(M) − φ(M), if M is non− orientable.

We get that

g(M) =



1+

(
(k− 2)(l − 2)− 4

4l

)
ν(M), if M is orientable;

2+

(
(k− 2)(l − 2)− 4

2l

)
ν(M), if M is non− orientable.

�
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This theorem enables us to find type (k, l) regular maps on orientable or non-orientable

surfaces with small genus following.

Corollary 5.4.1 A map M is regular of g(M) = 0 if and only if G(M) = Cl , l ≥ 1 or the

1-skeleton of the five Platonic solids.

Proof If k = 2 thenν(M) = ε(M) = l andφ(M) = 2. Whence,M is a map underlying

a circuitCl on the sphere. Indeed, such a mapM is regular by the fact AutM = 〈ρ, α〉,
whereρ is the rotation about the center ofCl through angles 2π/l from a chosen vertex

u0 ∈ V(Cl) with ρl = 1Xα,β
.

Let k ≥ 3. Then by Theorem 5.4.1, we get that

1+

(
(k− 2)(l − 2)− 4

4l

)
ν(M) = 0, i.e., (k − 2)(l − 2) < 4

by Theorem 5.4.1, i.e., (k, l) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3), which are just the Pla-

tonic solids shown in Fig.5.4.1 following. �

tetrahedron hexahedron octahedron

dodecahedron icosahedron

(3,3) (3,4) (4,3)

(3,5) (5,3)

Fig.5.4.1

Corollary 5.4.2 There are infinite regular maps M of torus T2.

Proof In this case, we get (k − 2)(l − 2) = 4 by Theorem 5.4.1. Whence, (k, l) =

(3, 6), (4, 4), (6, 3). Indeed, there exist regular maps on torus for such integer pairs. For

regular map on torus with (3, 6) or (4, 4), see (a) or (b) in Fig.5.4.2. It should be noted

that the regular map on torus with (6, 3) is just the dual that of (3, 6) and we can construct

such regular maps of order 6s or 4s for integers ≥ 1. So there are infinite many such
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regular maps on torus. �-
-

6 61 2 3 4 5

1 2 3 4 5

1’ 1’

2’ 2’

1 2

1 2

1’ 1’

2’ 2’

(a) (b)

-
-

6 6
Fig.5.4.2

Corollary 5.4.3 There are finite regular maps on projective plane P2 with vertex valency≥
3 and face valency≥ 3.

Proof Similarly, we know that (k− 2)(l − 2) < 4 by Theorem 5.4.1, i.e., the possible

types ofM are (3, 3), (3, 4), (4, 3), (5, 3), (5, 3) and it can verified easily that there are no

(3, 3) regular maps onP2. Calculation shows that

(k, l) ν(M) ε(M) G(M) Existing? M Existing?

(3, 3) 2 3 Yes No

(3, 4) 4 6 Yes Yes

(4, 3) 3 6 Yes Yes

(3, 5) 10 15 Yes Yes

(5, 3) 6 15 Yes Yes

Therefore, regular maps on projective planeP2 with vertex valency≥ 3 and face valency≥
3 is finite. The regular maps of types ((3, 5)) and (3, 4) are shown in Fig.5.4.3. �

1

1

2

2

3 3? 6
5

5

4

4

1 2

2 1

(a) (b)

? 666
Fig.5.4.3
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The following result approves the existence of regular mapson every orientable sur-

face.

Theorem5.4.2 For any integer p≥ 0, there are regular maps on every orientable surface

of genus p.

Proof Applying Theorem 5.3.10, the standard mapOp is regular on the orientable

surface of genusp. Combining the result in Corollary 5.4.1, we get the conclusion. �

Notice that Theorem 4.5.2 has claimed that the automorphism group of a Klein sur-

face is finite. In fact, by Theorem 5.4.1, we can also determine the upper bound of AutM

for regular mapsM on a surface of genusg ≥ 2.

Theorem5.4.3 Let M be a regular map on a surface S of genus g≥ 2 with vertex valency

k ≥ 3 and face valency l≥ 3. Then

|AutM| ≤


168(g− 1), i f S is orientable,

84(g− 1), i f S is non− orientable.

and with the equality holds if and only if(k, l) = (3, 7) or (7, 3).

Proof By definition, a mapM = (Xα,β,P) on S is regular if and only if|AutM| =
|Xα,β| = 4ε(M). Substituteν(M) =

2
k
ε(M) in Theorem 5.4.1, we get that

|AutM| =



(
8kl

(k− 2)(l − 2)− 4

)
(g− 1), if S is orientable,

(
4kl

(k− 2)(l − 2)− 4

)
(g− 1), if S is non− orientable.

Clearly, the maximum value of
kl

(k− 2)(l − 2)− 4
is 21 occurring precisely at (k, l) = (3, 7)

or (7, 3). Therefore,

|AutM| ≤


168(g− 1), i f S is orientable,

84(g− 1), i f S is non− orientable.

and with the equality holds if and only if (k, l) = (3, 7) or (7, 3). �

5.4.2 Map NEC-Group. We have known thatΨJ = 〈α, β,P〉 acts transitively onXα,β,

i.e., xΨJ = Xα,β. Furthermore, ifM is regular, then its vertex valency and face valency

both are constant, sayn andm. Usually, such a regular mapM is called with type (n,m).

Then we get the presentation ofΨJ for M following

ΨJ =
〈
α, β,P | α2 = β2 =Pn = (Pαβ)m = 1Xα,β

〉
.
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We regard relations of the formP∞ = 1Xα,β
or (Pαβ)∞ = 1Xα,β

as vacuous. The free

groupΨ̃ generated byα, β,P, i.e., Ψ̃ = 〈α, β,P〉 is called theuniversal mapof M, a

tessellation of planar Klein surfaceH. It should be note thatΨJ is isomorphic to the NEC

group generated by facial boundaries ofM. Whence,M ≃ H/xΨJ = xΨ̃/xΨJ ≃ Ψ̃/ΨJ,

wherex is a chosen point inH. Applying Theorem 4.5.9, we get the following result.

Theorem 5.4.4 Let M = (Xα,β) be a regular map on a Klein surface S . ThenAutM ≃
NΨ̃(ΨJ)/ΨJ, where ÑΨ(ΨJ) is the normalizer ofΨJ in Ψ̃.

This result will be applied for constructing regular maps onsurfaces in Section 5.5.

5.4.3 Cayley Map. Let (Γ; ◦) be a finite group generated byS. A Cayley mapof Γ to S

with 1Γ < S andS−1 = S, denoted by CayM(Γ : S, r) is a map (Xα,β(Γ : S),P(Γ : S)),

where

Xα,β(Γ : S, r) = { gh, αgh, βgh, αβgh | g ∈ Γ, h ∈ S andg−1 ◦ h ∈ S },

P(Γ : S, r) =
∏

g∈Γ, h∈S
(gh, gr(h), gr2(h), · · · · · ·)(αgh, αgr−1(h), αgr−2(h), · · · · · ·)

with ταgh = ατgh, τβgh = βτgh for τ ∈ Γ, wherer : S → S is a cyclic permutation.

Clearly, the underlying graph of a Cayley map CayM(Γ : S, r) is Cay(Γ : S).

Example 5.4.1 Let (Γ; ◦) be the Klein groupΓ = {1, α, β, αβ}, S = {α, β, αβ} andr =

(α, β, αβ). Then the Cayley map CayM(Γ : S, r) is K4 on the plane shown in Fig.5.4.4.

α

1

βαβ

β αβ

α

α

βαβ

Fig.5.4.4

Theorem 5.4.5 Any Cayley mapCayM(Γ : S, r) is vertex-transitive. In fact, there is a

regular subgroup ofAutCayM(Γ : S, r) isomorphic toΓ.

Proof Consider the action of left multiplicationLΓ on vertices of CayM(Γ : S, r),
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i.e., Lσ : h → g ◦ h for g, h ∈ Γ. We have known it is transitive on vertices of Cayley

graph Cay(Γ : S) by Theorem 3.2.1. It only remains to show that such a permutation

Lg is a map automorphism of CayM(Γ : S, r). In fact, for gh ∈ Xα,β(Γ : S, r) we know

Lσαgh = σαgh = ασgh = αLσgh i.e.,Lσα = αLσ by definition. Similarly,Lσβ = βLσ.

Notice that ifg−1 ◦ h ∈ S, then (σ ◦ g)−1 ◦ (σ ◦ h) = g−1 ◦ h ∈ S, i.e., (Lσ(g))Lσ(h) ∈
Xα,β(Γ : S, r). Calculation shows that

LσP(Γ : S, r)L−1
σ

= Lσ
∏

g∈Γ, g−1◦h∈S

(gh, gr(h),gr2(h)
, · · ·)(αgh, αgr−1(h),αgr−2(h)

, · · ·)L−1
σ

=
∏

g∈Γ, g−1◦h∈S

(Lσ(g)Lσ(h), Lσ(g)Lσ(r(h)), · · ·)(αLσ(g)Lσ(h), αLσ(g)Lσ(r−1(h)), · · ·)

=
∏

g∈Γ, g−1◦h∈S
(σgσh, σgσr(h), σgσr2(h), · · ·)(ασgσh, ασg)σr−1(h), ασgr−2(σh), · · ·)

=
∏

s∈Γ, s−1◦t∈S

(st, sr(t), sr2(t), · · ·)(αst, αsr−1(t),αsr−2(t)
, · · ·) =P(Γ : S),

i.e., Lg is an automorphism of CayM(Γ : S, r). We have known thatLΓ ≃ Γ by Theorem

1.2.14. �

Although every Cayley map is vertex-transitive, there are non-regular Cayley maps

on surfaces. For example, let (Γ; ◦) be an Abelian group withΓ = {1Γ, a, b, c}, S = {a, b, c},
a2 = b2 = c2 = 1Γ, a ◦ b = b ◦ a = c, a ◦ c = c ◦ a = b, b ◦ c = c ◦ b = a andr = (a, b, c).

Then the Cayley map CayM(Γ : S, r) is K4 on the projective plane shown in Fig.5.4.5,

which is not regular. -
� a

1’

a

a

a

1Γ

1’

b

b
c

c

cb

Fig.5.4.5

Now we find regular maps in Cayley maps of finite groups. First,we need to prove

the following result.
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Theorem 5.4.6 Let CayM(Γ : S, r) be a Cayley map and letς be an automorphism of

group(Γ; ◦) such thatς|S = r l for an integer l, 1 ≤ l ≤ |S|, thenς ∈ (AutCayM(Γ : S, r))1Γ.

Proof Notice thatς is an automorphism of group (Γ; ◦). There must beς(1Γ) = 1Γ.

Let gh ∈ Xα,β(Γ : S, r). Theng−1 ◦ h ∈ S. Because ofς(g−1 ◦ h) = ς−1(g) ◦ ς(h) ∈ S, we

know that (ς(g), ς(h)) ∈ E(CayM(Γ : S, r)) andς(g)ς(h) ∈ Xα,β(Γ : S, r). We only need to

show thatς ∈ AutCayM(Γ : S, r). By definition, we know thatςα = ας andςβ = βς. We

verify ςP(Γ : S, r)ς−1 =P(Γ : S, r). Calculation shows that

ςP(Γ : S, r)ς−1

= ς
∏

g∈Γ, g−1◦h∈S

(gh, gr(h),gr2(h)
, · · ·)(αgh, αgr−1(h),αgr−2(h)

, · · ·)ς−1

=
∏

g∈Γ, g−1◦h∈S

(ς(g)ς(h), ς(g)ς(r(h)), · · ·)(ας(g)ς(h), ας(g)ς(r−1(h)), · · ·)

=
∏

g∈Γ, g−1◦h∈S

(ς(g)ς(h), ς(g)r(ς(h)), · · ·)(ας(g)ς(h), ας(g)r−1(ς(h)), · · ·)

=
∏

s∈Γ, g−1◦h∈S

(st, sr(t),sr2(t)
, · · ·)(αst, αsr−1(t),αsr−2(t)

, · · ·) =P(Γ : S)(Γ : S, r).

Thereforeς is an automorphism of map CayM(Γ : S, r), i.e.,ς ∈ (AutCayM(Γ : S, r))1Γ. �

The following result enables one to get regular maps in Cayley maps.

Theorem 5.4.7 Let CayM(Γ : S, r) be a Cayley map withτ ∈ AutΓ such thatτ|S = r.

ThenCayM(Γ : S, r) is an orientable regular map.

Proof According to Theorem 5.4.6, we know thatτ ∈ (AutM)1Γ . By Theorem

5.3.7, |(AutCayM(Γ : S, r))1Γ | divides|S|. But τ|S = r, a |S|-cycle, so that|(AutCayM(Γ :

S, r))1Γ | = |S|. Clearly, (AutCayM(Γ : S, r))1Γ is generated byτ. Applying Theorem 5.4.5,

(AutCayM(Γ : S, r)) is transitive onΓ = V(CayM(Γ : S, r)). Whence,

|AutCayM(Γ : S, r)| = |Γ||(AutCayM(Γ : S, r))1Γ | = |Γ||S| =
|Xα,β(Γ : S, r)|

2
.

Therefore, AutCayM(Γ : S, r) × 〈α〉 is transitive onXα,β(Γ : S, r). �

5.4.4 Complete Map. A complete map Mis such a map underlying a complete graph

Kn for an integern ≥ 3. We find regular maps in complete maps in this subsection. The

following result is an immediately conclusion of Theorem 5.3.5.

Theorem 5.4.8 There are no automorphismsσ in a complete map M= (Xα,β,P) fixing

more than one vertex unlessσ = 1Xα,β
.
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Proof If σ(u) = v, σ(v) = v for two verticesu, v ∈ V(M), let uv = {x, αx, βx, αβx},
then there must beσ(x) = x because ofuv ∈ V(M). Applying Theorem 5.3.5, we get the

conclusion. �

A Frobenius groupΓ is defined to be a transitive group action on a setΩ such that

only 1Γ has more than one fixed points inΩ. By Theorem 5.4.8, thus the automorphism

group AutM of a complete vertex-transitive mapM is necessarily Frobenius. For finding

complete regular map, we need a characterization due to Frobenius in 1902 following.

Theorem 5.4.9 Let Γ be a Frobenius group action onΩ with N∗ the set of fixed-free

elements ofΓ and N= N∗ ∪ {1Γ}. Then there are must be

(1) |N| = |Ω|;
(2) N is a regular normal subgroup ofΓ.

Theorem 5.4.10 Let Γ be a sharply2-transitive group action onΩ. Then|Ω| is a prime

power.

A complete proof of Theorems 5.4.9 and 5.4.10 can be found in [Rob1] by applying

the character theory on linear representations of groups. But if the condition thatΓx is

Abelian for a pointx ∈ Ω is added, Theorem 5.4.9 can be proved without characters of

groups. See [BiW1] for details.

Theorem 5.4.11 Let M be a complete map. ThenAutM acts transitively on the vertices

of M if and only if M is a Cayley map.

Proof The sufficiency is implied in Theorem 5.4.5. For the necessity, applying The-

orem 5.4.8 we know that AutM is a Frobenius group. Now by Theorem 5.3.7, (AutM)x

is isomorphic to a subgroup generated byCv = Cv · αC−1
v α−1, i.e., a product of conjugate

pair of cycles inP. Whence, we get a regular normal subgroupN of AutM by Theorem

5.4.9. LetΓ = Zn and define a bijectionσ : V(CayM(Zn,Zn \ {1}, r)) → N by σ(i) = ai,

whereai is the unique element transforming point 0 toi in N. Calculation shows that

r : N \ {1} → N \ {1} is given byr(ai) = aP(Zn,Zn\{1},r))(i) for i , 0. Thus we get a Cay-

ley mapCayM(Zn,Zn \ {1}, r). It can be verified that the bijectionσ is an automorphism

between mapsM andCayM(Zn,Zn \ {1}, r). �

Now we summarize all properties of AutM in the following obtained in previous on

regular mapM underlyingKn:
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(1) AutM is a Frobenius group of ordern(n− 1);

(2) AutM has a regular normal subgroup isomorphic toZm
p for a primep and an

integerm≥ 1, i.e.,n = pm;

(3) AutM is transitive on vertices, edges and faces ofM, and regular onXα,β;

(4) For∀v ∈ V(M), (AutM)v ≃ Zn−1.

We prove the main result on complete regular maps of this subsection following.

Theorem 5.4.12 A complete map M underlying Kn is regular on an orientable surface if

and only if n is a prime power.

Proof If M is regular on an orientable surface, then|AutM| = 4ε(Kn) = 2n(n − 1).

Whence,|AutM/ 〈α〉 | = n(n − 1), i.e., AutM/ 〈α〉 acts onαXα,β is Frobenius. Applying

Theorem 5.4.10, we know thatn is a prime power.

Conversely, ifn = pm, let Γ = Zm
p , i.e., the additive group inGF(n), wherep is

a prime andn a positive integer and lett ∈ Γ generate this multiplicative group. Take

Γ∗ = Γ − {0}, where0 is the identity ofZm
p andr : Γ∗ → Γ∗ determined byr(x) = tx for

x ∈ Γ∗. By definition, we know thatr is cyclic permutation on∆∗. We extendr from Γ∗ to

Γ by definingr(0) = 0. Notice thatr(x+y) = rx+ ry for x, y ∈ Γ. Such an extendedr is an

automorphism of groupΓ. Applying Theorem 5.4.7, we know that CayM(Γ : Γ∗, r) ≃ M

is a regular map on orientable surface. �

§5.5 CONSTRUCTING REGULAR MAPS BY GROUPS

5.5.1 Regular Tessellation.Let R2 be a Euclidean plane andp, q ≥ 3 be integers. We

know that the angle of a regularp-gon is (1− 2/p)π. If q suchp-gons fit together around

a common pointu ∈ R2, then the angle ofp-gons must be 2π/q. Thus

(
1− 2

p

)
π =

2π
q
, i.e., (p− 2)(q− 2) = 4.

We so get threeplanar regular tessellationsof type (p, q) on a Euclidean plane following:

(4, 4), (3, 6), (6, 3).

For example, a tessellation of type (4, 4) onR2 is shown in Fig.5.5.1.
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Fig.5.5.1

Now let S2 be a sphere. Consider regularp-gons onS2. The angle of a sphericalp-

gon is greater than (1− 2/p)π, and gradually increases this value toπ if the circum-radius

increases from 0 toπ/2. Consequently, if

(p− 2)(q− 2) < 4,

we can adjust the size of the polygon so that the angle is exactly 2π/q, i.e.,q suchp-gons

will fit together around a common pointv ∈ S2. This fact enables one to getspherical

tessellationsof type (p, q) following:

(2, q), (q, 2), (3, 3), (3, 4), (4, 3), (3, 5), (5, 3).

The type of (2, q) is formed byq lues joining the two antipodal points and the type (q, 2)

is formed by twoq-gons, each covering a hemisphere. All of these rest types ofspherical

tessellations are the blown up of these five Platonic solids shown in Fig.5.4.1.

Finally, let H2 be a hyperbolic plane. Consider the regularp-gons onH2. Then the

angle of such ap-gon is less than (1− 2/p)π, and gradually decreases this value to zero if

the circum-radius increases from 0 to∞. Now if

(p− 2)(q− 2) > 4,

we can adjust the size of the polygon so that the angle is exactly 2π/q. Thusq such

p-gons will fit together around a common pointw ∈ H2. This enables one to construct

a hyperbolic tessellationof type (p, q), which is an infinite collection of regularp-gons

filling the hyperbolic planeH2.

Consider a tessellation of type (p, q) drawn in thick lines and pick a point in the

interior of each face and call it the ıcenter of the face. In each face, join the center by

dashed and thin line segments with every point covered byq-gons and the midpoint of
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every edge, respectively. This structure of tessellation is called thebarycentric subdivision

of tessellation. Each of the triangle formed by a thick, a thin and a dashed sides is called

aflag, such as those shown in Fig.5.5.2. Denote all flags of a tessellation byF .

g Xg
Zg

Yg

Fig.5.5.2

A tessellation of type (p, q) is symmetrical by reflection in certain lines, which may

be a successive reflections of three types:X : g → Xg, Y : g → Yg andZ : g → Zg,

where for each flagg, the flagWgis such the unique flag different fromg that shares with

g the thin, the thick or the dashed sides depending onW = X, Y or Z. Obviously,

X2 = Y2 = Z2 = (XY)2 = (YZ)p = (ZX)q = 1 and XY = YX.

Furthermore, the group〈X,Y,Z〉 is transitive permutation group onF .

A tessellation of type (p, q) on surfaceS is naturally a mapM = (Xα,β,P) on S

with Xα,β = F . The behaviors ofX, Y andYZare more likely to those ofβ ,α andP on

M. But essentially,X , β, Y , α andYZ,P becauseX, Y andYZact on a giveng, not

on all g in F . SuchX, Y or YZ can be only seen as the localization ofβ, α or P on a

quadricellg of mapM.

5.5.2 Regular Map on Finite Group. Let (Γ; ◦) be a finite group with presentation

Γ =
〈

x, y, z | x2 = y2 = z2 = (x ◦ y)2 = (y ◦ z)p = (z◦ x)q = · · · = 1Γ
〉
,

where we assume that all exponents are true orders of the elements and dots indicate a pos-

sible presence of other relations in this subsection. Then aregular mapM = M(Γ; x, y, z)

of type (p, q) on group (Γ; ◦) is constructed as follows.
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Construction 5.5.1 Let g ∈ Γ. Consider a topological triangle, i.e., a flag labeled byg

with its thin, thick and dashed sides labeled by generatorsx, y andz, respectively. Such

as those shown in Fig.5.5.3.

x

y

z
g

Fig.5.5.3

For simplicity, we will identify such flags with their group element labels. Then for each

g ∈ Γ andw ∈ {x, y, z}, we identify the sides labeledw in the flagg andg ◦ w in such a

way that points on the thick, thin or dashed sides meet are identified as well. For example,

such an identification forg = x, y or z is shown in Fig.5.5.4.

g g◦ x
x x

y y

z z
g g◦ x

g ◦ y x

g

g ◦ y

z

x

y g ◦ z

y

z

g

g ◦ z

Fig.5.5.4

This way we get a connected surfaceS without boundary by Theorem 4.2.2. The cellular

decomposition ofS induced by the union of all thick segments forms a regular mapM =

M(Γ; x, y, z) of type (p, q). Such thick segments ofS consist of the underlying graph
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G(M) with vertices, edges and faces identified with the left cosets of subgroups generated

by 〈x, y〉, 〈y, z〉 and〈z, x〉 in the group (Γ; ◦), respectively. We therefore get the following

result by this construction.

Theorem 5.5.1 Let (Γ; ◦) be a finite group with a presentation

Γ =
〈

x, y, z | x2 = y2 = z2 = (x ◦ y)2 = (y ◦ z)p = (z◦ x)q = · · · = 1Γ
〉
.

Then there always exists a regular map M(Γ; x, y, z) of type(p, q) on (Γ; ◦).

Consider the actions of left and right multiplication ofΓ on flags ofM. By Construc-

tion 5.5.1, we have known that the right multiplication by generatorsx, y andz on a flag

g ∈ Γ gives the permutationsX, Y andZ defined in Fig.5.5.2. For the left multiplication

of Γ on flags ofM, we have an important result following.

Theorem 5.5.2 Let M = M(Γ; x, y, z) be a regular map of type(p, q) on a finite group

(Γ; ◦), whereΓ =
〈

x, y, z | x2 = y2 = z2 = (x ◦ y)2 = (y ◦ z)p = (z◦ x)q = · · · = 1Γ
〉
. Then

AutM = LΓ ≃ (Γ; ◦).

Proof Notice that if two flagsF andF′ are related by a homeomorphismh on S,

i.e., h : F → F′, thenh : F ◦ g → F′ ◦ g. Therefore, the left multiplication preserves

the cell structure ofM on S and induces an automorphism ofM. Whence,LΓ ≤ AutM.

Now Xα,β(M) = F (M) = Γ. By Corollary 5.3.3, there is|AutM| ≤ |Xα,β(M)| = |Γ|.
Consequently, there must be AutM = LΓ. By Theorem 1.2.15, LΓ ≃ (Γ; ◦). This

completes the proof. �

There is a simple criterion for distinguishing isomorphic mapsM(Γ1; x1, y1, z1) and

M(Γ2; x2, y2, z2) following.

Theorem 5.5.3 Two regular maps M(Γ1; x1, y1, z1) and M(Γ2; x2, y2, z2) are isomorphic if

and only if there is a group isomorphismφ : Γ1 → Γ2 such thatφ(x1) = x2, φ(y1) = y2

andφ(z1) = z2.

Proof If there is a group isomorphismφ : Γ1 → Γ2 such thatφ(x1) = x2, φ(y1) =

y2 and φ(z1) = z2, we extend this isomorphismφ from flags F (M(Γ1; x1, y1, z1)) to

F (M(Γ2; x2, y2, z2)) by

φ(uǫ11 uǫ22 · · ·u
ǫs
s ) = φ(uǫ11 )φ(uǫ22 ) · · ·φ(uǫs

s )
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for ui ∈ {x1, y1, z1}, ǫi ∈ {+,−} and integerss ≥ 1. Thenφ is an isomorphism between

M(Γ1; x1, y1, z1) andM(Γ2; x2, y2, z2) because it preserves the incidence of flags.

Conversely, ifφ is an isomorphism fromM(Γ1; x1, y1, z1) to M(Γ2; x2, y2, z2), then

it preserves the incidence of vertices, edges and faces. Whence it induces an isomor-

phism from flagsF (M(Γ1; x1, y1, z1)) to F (M(Γ2; x2, y2, z2)), i.e., a group isomorphism

φ : Γ1 → Γ2, which preserve the incidence of vertices, edges and faces if and only if

φ(x1) = x2, φ(y1) = y2 andφ(z1) = z2 by Construction 5.5.1. �

Similarly, it can be shown that a regular mapM(Γ, x′, y′, z′) is a dual ofM(Γ, x, y, z)

if and only if Γ′ = Γ andx′ = y, y′ = x. By this way, regular maps of small genus are

included in the next result.

Theorem 5.5.4 Let M = M(Γ, x, y, z) be a regular map on a finite groupΓ.

(A) If M is on the sphere S2, then

(1) Γ =
〈

x, y, z | x2 = y2 = z2 = (xy)2 = (yz)n = (zx)2 = 1Γ
〉
≃ Dn × Z2 and M is an

embedded n-dipoles with dual Cn on S2;

(2) Γ =
〈

x, y, z | x2 = y2 = z2 = (xy)2 = (yz)3 = (zx)3 = 1Γ
〉
≃ S4 and M is the tetra-

hedron, which is self-dual on S2;

(3) Γ =
〈

x, y, z | x2 = y2 = z2 = (xy)2 = (yz)4 = (zx)3 = 1Γ
〉
≃ S4 × Z2 and M is the

octahedron with dual cube on S2;

(4) Γ =
〈

x, y, z | x2 = y2 = z2 = (xy)2 = (yz)5 = (zx)2 = 1Γ
〉
≃ A5 × Z2 and M is the

icosahedron with dual dodecahedron on S2.

(B) If M is on the projective plane P2, let r = yz and s= zx, then

(1) Γ =
〈

x, y, z | x2 = y2 = z2 = (xy)2 = (yz)2n = (zx)3 = zsrn = 1Γ
〉
≃ D2n and M is

the embedded bouquet B2n with dual C2n on P2;

(2) Γ =
〈

x, y, z | x2 = y2 = z2 = (xy)2 = (yz)4 = (zx)3 = zrs−1r2s= 1Γ
〉
≃ S4 and M

is the embedded K(2)
3 with dual K4 on P2, where K(2)

3 is the graph K3 with double edges;

(3) Γ =
〈

x, y, z | x2 = y2 = z2 = (xy)2 = (yz)5 = (zx)3 = zr2sr−1sr−2s= 1Γ
〉
≃ A5

and M is the embedded K6 on P2.

(C) If M is on the torus T2, let b, c be integers, thenΓ =
〈

r, s | r4 = s4 = (rs)2 =

(rs−1)b(r−1s)c = 1Γ
〉

or
〈

r, s | r6 = s3 = (rs)2 = (rs−1r)b(s−1r2)c = 1Γ
〉

if bc(b − c) , 0

andΓ =
〈

r, s | r4 = s4 = (rs−1)b(r−1s)c = 1Γ
〉

or
〈

r, s | r6 = s3 = (rs−1r)b(s−1r2)c = 1Γ
〉

if bc(b− c) = 0.

A complete proof of Theorem 5.5.4 can be found in the reference [CoM1]. With the
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help of parallel program, orientable regular maps of genus 2to 15, and non-orientable

regular maps of genus 4 to 30 are determined in [CoD1]. Particularly, the regular maps

on a double-torus or a non-orientable surface of genus 4 are known in the following.

Theorem 5.5.5 M = M(Γ, x, y, z) be a regular map on a finite groupΓ, r = yz, s= zx

and t= xr.

(A) If M is orientable of genus2, thenΓ =
〈

r, s | r3 = s8 = (rs−3)2 = 1Γ
〉
, or〈

r, s | r4 = s6 = (rs−1)2 = 1Γ
〉
, or

〈
r, s | r4 = s8 = (rs−1)2 = rs3r−1s−1 = 1Γ

〉
, or

〈
r, s | r5

= s10 = s2r−3 = 1Γ
〉
, or

〈
r, s | r6 = s6 = r2s−4 = 1Γ

〉
, or

〈
r, s | r8 = s8 = rs−3 = 1Γ

〉
.

(B) If M is non-orientable of genus4, thenΓ =
〈

r, s, t | r4 = s6 = t2 = ts−1rs−1r−2

= 1Γ 〉, or
〈

r, s, t | r4 = s6 = t2 = (rs−2)2 = s2rs−1r−2t = 1Γ
〉
.

We have known that there are regular maps on every orientablesurface by Theorem

5.4.2, and there are no regular mapsM on non-orientable surfaces of genus 2, 3, 18, 24,

27, 39 and 48 in literature. Whether or not there are infinite non-orientable surfaces

which do not support regular maps is a problem for a long time.However, a general result

appeared in 2004 ([DNS1]), which completely classifies regular maps on non-orientable

surface of genusp+2 for an odd primep , 3, 7 and 13. For presenting this general result,

let ν(p) be the number of pairs of coprime integers (j, l) such thatj > l > 3, both j andl

are odd and (j − 1)(l − 1) = p+ 1 for a primep.

Theorem 5.5.6 Let p be an odd prime, p, 3, 7, 13 and letNp+2 be a non-orientable

surface of genus p+ 2. Then

(1) If p ≡ 1(mod 12), then there are no regular maps onNp+2;

(2) If p ≡ 5(mod 12), then, up to isomorphism and duality, there is exactly one

regular map onNp+2;

(3) If p ≡ −5(mod 12), then, up to isomorphism and duality, there areν(p) regular

maps onNp+2;

(4) If p ≡ −1(mod 12), then, up to isomorphism and duality,Np+2 supports exactly

ν(p) + 1 regular maps.

5.5.3 Regular Map on Finite Multigroup. Let P1,P2, · · · ,Pn be a family of topological

polygons with even sides for an integern ≥ 1. Denoted by∂Pi the boundary ofPi,
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1 ≤ i ≤ n. Define a projectionπ :
n⋃

i=1
Pi → (

n⋃
i=1

Pi)/ ∼ by


π(x1) , π(x2) , · · · , π(xn) if xi ∈ Pi \ ∂Pi , 1 ≤ i ≤ n,

π(y1) = π(y2) = · · · = π(yn) if yi ∈ ∂Pi , 1 ≤ i ≤ n,

i.e., π is an identification on boundaries ofP1,P2, · · · ,Pn. Such an identification space

(
n⋃

i=1
Pi)/ ∼ is called anm-multipolygonby n polygons and denoted bỹP. The cross section

of P̃ is shown in Fig.5.5.5(a). Sometimes, a multipolygon maybe homeomorphic to a

surface. For example, the sphereS2 is in fact a topological multipolygon of 2 polygons

shown in Fig.4.1.2.

It should be noted that the boundary of anm-multipolgonP̃ is the same as any of

its m-polygon. So we can also get the polygonal presentation of anm-multipolygon such

as we have done in Section 4.2. Similarly, an orientable or non-orientablemultisurface

S̃ is defined oñP by identifying side pairs of̃P. Certainly,S̃ =
n⋃

i=1
Pi/ ∼=

n⋃
i=1

Si, where

Si = Pi/ ∼ is a surface for integers 1≤ i ≤ n. The inclusion mappingπi : S̃ → Si

determined byπi(x) = x for x ∈ Si is called thenatural projection of̃S on Si.

By definition,∂P̃/ ∼ is a closed curve oñS, called thebase line, denoted byLB and

a multisurfacẽS possesses the hierarchical structure, i.e.,S̃ \ LB is disconnected union of

Pi \ ∂Pi, 1 ≤ i ≤ n. Such as those shown in Fig.5.5.5(b) for longitudinal and cross section

of a multitorus.

(a)
boundary boundary LB LB

(b)

Fig.5.5.5

Similarly considering maps on surfaceS, we can find such a decomposition ofS̃

with each components homeomorphic to a open disk of dimensional 2, i.e., a map̃M on

S̃. So a problem for maps on multisurfaces is presented in the following.

Problem 5.5.1 Determine maps̃M on S̃ =
n⋃

i=1

Si such thatπi(M̃) is a transitive map,

furthermore a regular map on Si for any integer i, 1 ≤ i ≤ n.

If S̃ is orientable, the answer is affirmed by Theorem 5.4.2 by applying to standard
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mapOp onSi for an integer 1≤ i ≤ n. We construct more such maps on finite multigroups

following.

Cayley Map on Multigroup. Let (G̃ ; Õ) be a multigroup withG̃ =
n⋃

i=1
Gi, Õ =

{◦i, 1 ≤ i ≤ n} such that (Gi; ◦i) is a finite group generated byAi = A−1
i , 1Gi < Ai

for integers 1≤ i ≤ n. Furthermore, we assume eachAi = A is minimal for integers

1 ≤ i ≤ n. WhenceA is an independent vertex set in Cayley graphs Cay(Gi : A). SuchA

is always existed if we choose the group (Gi; ◦i) = (G ; ◦) for integers 1≤ i ≤ n.

Let r : S → S be a cyclic permutation onA. For an integeri, 1 ≤ i ≤ n, we

construct a Cayley map CayM(Gi : A, r). Not loss of generality, assume that the genus of

CayM(Gil : A, r) is g for 1 ≤ l ≤ s. Particularly,s = n if (Gi; ◦i) = (G ; ◦) for integers

1 ≤ i ≤ n. Now let S̃ be a multisurface consisting ofs surfacesS1,S2, · · · ,Ss of genusg.

We place each element ofA on the base lineLB of S̃. Then the map

CayM(G̃ : A, r) =
s⋃

j=1

CayM(Gi j : A, r)

is such a map thatπi j : CayM(G̃ : A, r)→ CayM(Gi j : A, r). We therefore get the following

result.

Theorem 5.5.7 For any integers g≥ 0, n ≥ 1, if there is a Cayley mapCayM(Γ : A, r)

of genus g, then there is a map̃M on multisurfacẽS =
n⋃

i=1

Si consisting of n surfaces of

genus g such thatπi(M̃) is a Cayley map, i.e., a transitive map, particularly, theseis a

mapM̃ on S̃ such thatπi(M̃) = CayM(Γ : A, r) for integers1 ≤ i ≤ n.

Regular Map on Triangle Multigroup. Let Γ̃ =
n⋃

i=1
(Γi; ◦i) be a multigroup, where

(Γi; ◦i) is a finite triangle group withΓi =
〈
xi , y, zi |x2

i = y2 = z2
i = (xi ◦i yi)2 = (yi ◦i zi)pi =

(zi ◦i xi)qi = · · · = 1Γ〉 for integers 1≤ i ≤ n. Then there is a regular mapM(Γi; xi , y, zi)

correspondent to (Γi; ◦i) by Construction 5.5.1.

Not loss of generality, assume that the genus ofM(Γi j ; xi j , y, zi j ) is p for integers

1 ≤ j ≤ k. Particularly,s= n if M(Γi ; xi, y, zi) = M(Γ; x, y, z) for integers 1≤ i ≤ n. Now

let S̃ be a multisurface consisting ofssurfacesS1,S2, · · · ,Ss of genusp. Choose a flagg

in M(Γi j ; xi j , y, zi j ) with thick sides ofg andg ◦i j x identifying with a segmentPQ on the

base lineLB of S̃ for integers 1≤ j ≤ s. Then the map̃M on S̃ defined by
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M̃ =
s⋃

j=1

M(Γi j ; xi j , y, zi j )

is such a map thatπi j : M̃ → M(Γi j ; xi j , y, zi j ), a regular map onSi j . This fact enables one

to get the following result.

Theorem 5.5.8 For any integers g≥ 0, n ≥ 1 and p, q ≥ 3, if there is a regular map

M(Γ; x, y, z) of genus g correspondent to a triangle groupΓ =
〈

x, y, z | x2 = y2 = z2 =

(x ◦ y)2 = (y ◦ z)p = (z◦ x)q = 1Γ
〉
, then there is a map̃M on multisurfacẽS =

n⋃

i=1

Si

consisting of n surfaces of genus g such thatπi(M̃) is a regular map M(Γi; xi , y, zi), par-

ticularly, there is a map̃M on S̃ such thatπi(M̃) = M(Γ; x, y, z) for integers1 ≤ i ≤ n.

§5.6 REMARKS

5.6.1 A topological mapM is essentially a decomposition of a surfaceS with com-

ponents homeomorphic to 2-disk, which can be also characterized by the embedding of

graphG[M] on S. Many mathematicians had contributed to the foundation of map theory,

such as those of Tutte in [Tut1], Jones and Singerman in [JoS1], Vince in [Vin1]-[Vn2]

and Bryant and Singerman in [BrS1] characterizing a map by qurdricells or flags. They

are essentially equivalent. There are many excellent bookson these topics today. For

example, [GrT1] and [Whi1] on embedding and topological maps, [MoT1] on the topo-

logical behavior of embeddings and [Liu2]-[Liu4] on algebraic maps with enumerative

theory.

5.6.2 Although it is difficult to determine the automorphism group of a graph in general,

it is easy to find the automorphism group of a map. By Theorem 5.3.6, the automorphism

group of mapM = (Xα,β,P) is the centralizer of the group〈α, β,P〉 in the symmetric

groupSXα,β
. In fact, there is an efficient algorithm for getting an automorphism group

of map with complexity not bigger thanO(ε2(M)). See [Liu1], [Liu3]-[liu4] for details.

Besides, a few mathematicians also characterized automorphism group of map by that of

its underlying graph. This enables one to know that the automorphism group of map is an

extended action subgroup of the semi-arc automorphism group of its underlying graph.

See also [Mao2] and [MLW1] for details.
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5.6.3 The research of regular maps, beginning for searching stellated polyhedra of sym-

metrical beauty, is more early than that of general map, which appeared firstly in the work

of Kepler in 1619. The well-known such polyhedra are the five Platonic polyhedra. There

are two equivalent definitions for regular map by let the automorphism group of mapM

transitive on its quadricells or flags. Both of them makes thelargest possible on auto-

morphisms of a map, i.e., transitive and fixed-free. This enables one knowing that the

automorphism group of a map is transitive on its vertices, edges and faces, and also its

upper bound of regular maps of genus≥ 2. For many years, one construct regular maps

by that of symmetric graphs, such as those of Cayley graphs, complete graphs, cubic

graph and Paley graph on surfaces. The materials in references [Big1]-[Big2], [BiW1]

and [JaJ1] are typical such examples.

Such as those discussions in the well-know book [CoM1] on discrete group with

geometry. A more efficient way for constructing regular map is by that of the triangle

groupΓ =
〈

x, y, z | x2 = y2 = z2 = (xy)2 = (yz)p = (zx)q = 1Γ
〉
. In fact, by the barycentric

subdivision of map on surface, a regular mapM is unique correspondent to a triangle

groupΓ and vice vera. This correspondence turns the question of finding regular maps to

that of classifying or constructing such triangle groups and enables one to classify regular

maps of small genus. For example, the classification of regular maps onNp+2 for an odd

prime p in [DNS1] is by this way, and the classification of regular maps for orientable

genus from 2 to 15, non-orientable from 4 to 30 in [CoD1] is also by this way with the

help of parallel program.

5.6.4 A multisurfaceS̃ is introduced for characterizing hierarchical structuresof topo-

logical space. Besides this structure, its base lineLB is common and the same as that of

standard surfaceOp or Nq. We have shown that there is a map̃M on S̃ such that its projec-

tion on any surface of̃S is a regular map by applying Cayley maps on finite groups, and

by regular maps on finite triangle group. Besides for regularmap, we can also consider

embedding question on multisurfacẽS. Since all genus of surface in a multisurfaceS̃ is

the same, we define the genusg(S̃) of S̃ to be the genus of its surface.

Let G be a connected graph. Define its orientable or non-orientable genus̃γO
m(G),

γ̃N
m(G) on multisurfacẽS consisting ofm surfacesS by

γ̃O
m(G) = min{ g(S̃) |G is 2− cell embeddable on orinetable multisurfaceS̃},

γ̃N
m(G) = min{ g(S̃) |G is 2− cell embeddable on orinetable multisurfaceS̃}.
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Then we are easily knowing that̃γO
1 (G) = γ(G) and γ̃N

1 (G) = γ̃(G) by definition. The

problems for embedded graphs following are particularly interesting for researchers.

Problem 5.6.1 Let n,m ≥ 1 be integers. DeterminẽγO
m(G) and γ̃N

m(G) for a connected

graph G, particularly, the complete graph Kn and the complete bipartite graph Kn,m.

Problem 5.6.2 Let G be a connected graph. Characterize the embedding behavior of G

on multisurfacẽS , particularly, those embeddings whose every facial walk is a circuit,

i.e, a strong embedding of G oñS .

The enumeration of non-isomorphic objects is an important problem in combina-

torics, particular for maps on surface. See [Liu2] and [Liu4] for details. Similar problems

for multisurface are as follows.

Problem 5.6.3 Let S̃ be a multisurface. Enumerate embeddings or maps onS̃ by param-

eters, such as those of order, size, valency of rooted vertexor rooted face,· · ·.

Problem 5.6.4 Enumerate embeddings on multisurfaces for a connected graph G.

For a connected graphG, its orientable, non-orientable genus polynomialgm[G](x),

g̃m[G](x) is defined to be

gm[G](x) =
∑

i≥0

gO
mi(G)xi and g̃m[G](x) =

∑

i≥0

gN
mi(G)xi ,

wheregO
mi(G), gN

mi(G) are the numbers ofG on orientable or non-orientable multisurface

S̃ consisting ofm surfaces of genusi.

Problem5.6.5 Let m≥ 1be an integer. Determine gm[G](x) andg̃m[G](x) for a connected

graph G, particularly, for the complete or complete bipartite graph, the cube, the ladder,

the bouquet,· · ·.



CHAPTER 6.

Lifting Map Groups

The voltage assignment technique on graphs or maps is in facta construction

of regular coverings of graphs or maps, i.e., covering spaces in lower dimen-

sional cases. For such covering spaces, an interesting problems is that finding

conditions on the assignment so that an automorphism of graph or map is also

an automorphism of the lifted graph or map, and then apply this technique

to finding regular maps or solving problems on Klein surfaces. For these ob-

jectives, we introduce topological covering spaces, covering mappings first,

and then voltage graphs and maps in Section 6.1. The lifting map group is

discussed in the following section. These conditions such as those of locally

invariant,AJ-uniform andAJ-compatible, and furthermore, a condition for a

finite group to be that of a map by voltage assignment can be found in Section

6.2, which enables one finding a formulae related the Euler-Poincaré charac-

teristic with parameters on maps or its quotient maps. Theseformulae enables

us to discussing the minimum or maximum order of automorphisms of a map,

i.e., conformal transformations realizable by maps M on Riemann or Klein

surfaces in Section 6.5. Section 6.4 presents a combinatorial generalization of

the famous Hurwitz theorem on orientation-preserving automorphism groups

of Riemann surfaces, which enables us to get the upper or lower bounds of

automorphism groups of Klein surfaces. All these discussions support a con-

jecture in forewords of Chapter 5 in [Mao2], i.e., CC conjecture discussed in

the last chapter of this book.
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§6.1 VOLTAGE MAPS

6.1.1 Covering Space.Let S be a topological space. Acovering spacẽS of S consisting

of a spacẽS with a continuous mappingp : S̃→ S such that any pointx ∈ S possesses an

arcwise connected neighborhoodUx, and any arcwise connected component ofp−1(Ux)

is mapped topologically ontoUx by p. Such an opened neighborhoodsUx is called an

elementary neighborhoodandp aprojectionfrom S̃ to S.

Definition 6.1.1 Let S,T be topological spaces, x0 ∈ S, y0 ∈ T and f : (T, y0) → (S, x0)

a continuous mapping. If(S̃, p) is a covering space of S ,̃x0 ∈ S̃ , x0 = p(x̃0) and there

exists a mapping fl : (T, y0) → (S̃, x̃0) such that f = f l ◦ p, then fl is a lifting of f ,

particularly, if f is an arc, fl is called a lifting arc.

The following result asserts the lifting of an arc is uniquely dependent on the initial

point.

Theorem 6.1.1 Let (S̃, p) be a covering space of S ,̃x0 ∈ X̃ and p(x̃0) = x0. Then there

exists a unique lifting arc fl : I → S̃ with initial point x̃0 for each arc f : I → S with

initial point x0.

A complete proof of Theorem 6.1.1 can be found in references [Mas1] or [Mun1],

which applied the property of Lebesgue number on metric space.

Theorem 6.1.2 Let (S̃, p) be a covering space of S ,x̃0 ∈ S̃ and p(x̃0) = x0. Then

(1) the induced homomorphism p∗ : π(S̃, x̃0)→ π(S, x0) is a monomorphism;

(2) for x̃ ∈ p−1(x0), the subgroups p∗π(S̃, x̃0) are exactly a conjugacy class of sub-

groups ofπ(S, x0).

Proof Applying Theorem 6.1.1, for x̃0 ∈ S andp(x̃0) = x0, there is a unique mapping

on loops from̃S with base point̃x0 to S with base pointx0. Now letLi : I → S̃, i = 1, 2

be two arcs with the same initial pointx̃0 in S̃. We prove that ifpL1 ≃ pL2, thenL1 ≃ L2.

Notice thatpL1 ≃ pL2 implies the existence of a continuous mappingH : I × I → S

such thatH(s, 0) = pl1(s) andH(s, 1) = pL2(s). Similar to the proof of Theorem 3.10, we

can find numbers 0= s0 < s1 < · · · < sm = 1 and 0= t0 < t1 < · · · < tn = 1 such that each

rectangle [si−1, si] × [t j−1, t j] is mapped into an elementary neighborhood inS by H.

Now we construct a mappingG : I × I → S̃ with pG = H,G(0, 0) = x̃0 hold by the

following procedure.
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First, we can chooseG to be a lifting ofH over [0, s1] × [0, t1] sinceH maps this

rectangle into an elementary neighborhood ofp(x̃0). Then we extend the definition ofG

successively over the rectangles [si−1, si] × [0, t1] for i = 2, 3, · · · ,m by taking care that it

is agree on the common edge of two successive rectangles, which enables us to getG over

the stripI × [0, t1]. Similarly, we can extend it over these rectanglesI × [t1, t2], [t2, t3], · · ·,
etc.. Consequently, we get a liftingHl of H, i.e.,L1 ≃ L2 by this construction.

Particularly, ifL1 andL2 were two loops, we get the induced monomorphism homo-

morphismp∗ : π(S̃, x̃0)→ π(S, x0). This is the assertion of (1).

For (2), supposẽx1 and x̃2 are two points of̃S such thatp(x̃1) = p(x̃2) = x0. Choose

a classL of arcs inS̃ from x̃1 to x̃2. Similar to the proof of Theorem 3.1.7, we know that

L = L[a]L−1, [a] ∈ π(S̃, x̃1) defines an isomorphismL : π(S̃, x̃1) → π(S̃, x̃2). Whence,

p∗(π(S̃, x̃1)) = p∗(L)π(S̃, x̃2)p∗(L−1). Notice thatp∗(L) is a loop with a base pointx0. We

know thatp∗(L) ∈ π(S, x0), i.e., p∗π(S̃, x̃0) are exactly a conjugacy class of subgroups of

π(S, x0). �

Theorem 6.1.3 If (S̃, p) is a covering space of S , then the sets p−1(x) have the same

cardinal number for all x∈ S .

Proof For any pointsx1 andx2 ∈ S, choosing an arcf in S with initial point x1 and

terminal pointx2. Applying f , we can define a mappingΨ : p−1(x1) → p−1(x2) by the

following procedure.

For∀y1 ∈ p−1(x1), we lift f to an arcf l in S̃ with initial point y1 such thatp f l = f .

Denoted byy2 the terminal point off l. DefineΨ(y1) = y2.

By applying the inverse arcf −1, we can defineΨ−1(y2) = y1 in an analogous way.

Therefore,ψ is a 1− 1 mapping formp−1(x1) to p−1(x2). �

Usually, this cardinal number of the setsp−1(x) for x ∈ S is called thenumber of

sheetsof the covering space (̃S, p) on S. If |p−1(x)| = n for x ∈ S, we also say it an

n-sheeted covering.

6.1.2 Covering Mapping. Let M̃ = (X̃α,β, P̃) andM = (Xα,β,P) be two maps. The

mapM̃ is called to be covered by mapM if there is a mappingπ : X̃α,β → Xα,β such that

∀x ∈ X̃α,β,

απ(x) = πα(x), βπ(x) = πβ(x) andπP̃(x) =Pπ(x).

Such a mappingπ is called acovering mapping. For∀x ∈ Xα,β, define thequadricell set



214 Chap.6 Lifting Map Groups

π−1(x) by

π−1(x) = {x̃|x̃ ∈ (X̃α,β andπ(x̃) = x}.

Then we konw the following result.

Theorem6.1.4 Letπ : X̃α,β →Xα,β be a covering mapping. Then for any two quadricells

x1, x2 ∈ Xα,β,
(1) |π−1(x1)| = |π−1(x2)|.
(2) If x1 , x2, thenπ−1(x1)

⋂
π−1(x2) = ∅.

Proof (1) By the definition of a map, forx1, x2 ∈ Xα,β, there exists an element

σ ∈ ΨJ =< α, β,P > such thatx2 = σ(x1).

Sinceπ is an covering mapping from̃M to M, it is commutative withα, β andP.

Whence,π is also commutative withσ. Therefore,

π−1(x2) = π
−1(σ(x1)) = σ(π−1(x1)).

Notice thatσ ∈ ΨJ is an 1− 1 mapping onXα,β. Hence,|π−1(x1)| = |π−1(x2)|.
(2) If x1 , x2 and there exists an elementy ∈ π−1(x1)

⋂
π−1(x2), then there must be

x1 = π(y) = x2. Contradicts the assumption. �

Then we know the following result.

Theorem6.1.5 Letπ : X̃α,β →Xα,β be a covering mapping. Thenπ is an isomorphism if

and only ifπ is a 1− 1 mapping.

Proof If π is an isomorphism between the mapsM̃ = (X̃α,β, P̃) andM = (Xα,β,P),

then it must be an 1− 1 mapping by the definition, and vice via. �

A covering mappingπ from M̃ to M naturally induces a mappingπ∗ by the condition

following:

∀x ∈Xα,β, g ∈ AutM̃, π∗ : g→ πgπ−1(x).

Whence, we have the following result.

Theorem 6.1.6 If π : X̃α,β → Xα,β is a covering mapping, then the induced mappingπ∗

is a homomorphism fromAutM̃ to AutM.

Proof First, we prove that for∀g ∈ AutM̃ andx ∈ Xα,β, π∗(g) ∈ AutM. Notice that

for ∀g ∈ AutM̃ andx ∈Xα,β,

πgπ−1(x) = π(gπ−1(x)) ∈Xα,β
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and∀x1, x2 ∈Xα,β, if x1 , x2, thenπgπ−1(x1) , πgπ−1(x2). Otherwise, let

πgπ−1(x1) = πgπ−1(x2) = x0 ∈Xα,β.

Then we must have thatx1 = πg−1π−1(x0) = x2, which contradicts to the assumption.

By definition, forx ∈ Xα,β we have that

π∗α(x) = πgπ−1α(x) = πgαπ−1(x) = παgπ−1(x) = απgπ−1(x) = απ∗(x),

π∗β(x) = πgπ−1β(x) = πgβπ−1(x) = πβgπ−1(x) = βπgπ−1(x) = βπ∗(x).

Now π(P̃) =P. We therefore get that

π∗P(x) = πgπ−1P(x) = πgP̃π−1(x) = πP̃gπ−1(x) =Pπgπ−1(x) = Pπ∗(x).

Consequently,πgπ−1 ∈ AutM, i.e.,π∗ : AutM̃ → AutM.

Now we prove thatπ∗ is a homomorphism from Aut̃M to AutM. In fact, for∀g1, g2 ∈
AutM̃, we have that

π∗(g1g2) = π(g1g2)π
−1 = (πg1π

−1)(πg2π
−1) = π∗(g1)π

∗(g2).

Whence,π∗ : AutM̃ → AutM is a homomorphism. �

6.1.3 Voltage Map with Lifting. Let G be a connected graph and (Γ; ◦) a group. For

each edgee ∈ E(G), e = uv, an orientationon e is such an orientation one from u to

v, denoted bye = (u, v), called theplus orientationand itsminus orientation, from v

to u, denoted bye−1 = (v, u). For a given graphG with plus and minus orientation on

edges, avoltage assignmentonG is a mappingσ from the plus-edges ofG into a groupΓ

satisfyingσ(e−1) = σ−1(e), e ∈ E(G). These elementsσ(e), e ∈ E(G) are called voltages,

and (G, σ) avoltage graphover the group (Γ; ◦).
For a voltage graph (G, σ), its lifting Gσ = (V(Gσ),E(Gσ); I (Gσ)) is defined by

V(Gσ) = V(G) × Γ, (u, a) ∈ V(G) × Γ abbreviated toua;

E(Gσ) = {(ua, va◦b)|e+ = (u, v) ∈ E(G), σ(e+) = b}

and

I (Gσ) = {(ua, va◦b)|I (e) = (ua, va◦b) i f e = (ua, va◦b) ∈ E(Gσ)}.
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This is a|Γ|-sheet covering of the graphG. For example, letG = K3 andΓ = Z2.

Then the voltage graph (K3, σ) with σ : K3 → Z2 and its lifting are shown in Fig.6.1.1.

u

w

10

0
(G, σ)

v

u0

u1

v0

v1

w0

w1

Gσ

Fig.6.1.1

We can find easily that there is a unique lifting path inΓl with an initial point x̃ for

each path with an initial pointx in Γ, and for∀x ∈ Γ, |p−1(x)| = 2.

For finding a homomorphism between Klein surfaces, voltage maps are extensively

used, which is introduced by Gustin in 1963 and extensively used by Youngs in 1960s for

proving the Heawood map coloring theorem and generalized byGross in 1974 ([GrT1]).

By applying voltage graphs, the 2-factorable graphs are enumerated in [MaT2] also.

Now we present a formally algebraic definition for voltage maps, not using geomet-

rical intuition following.

Definition 6.1.2 Let M = (Xα,β,P) be a map and(Γ; ◦) a finite group. A pair(M, ϑ) is a

voltage map with group(Γ; ◦) if ϑ : Xα,β → Γ, satisfying conditions following:

(1) For ∀x ∈ Xα,β, ϑ(αx) = ϑ(x), ϑ(αβx) = ϑ(βx) = ϑ−1(x);

(2) For ∀F = (x, y, · · · , z)(βz, · · · , βy, βx) ∈ F(M), the face set of M,ϑ(F) =

ϑ(x)ϑ(y) · · ·ϑ(z) and 〈ϑ(F)|F ∈ F (u), u ∈ V(M)〉 = Γ, whereF (u) denotes all the faces

incident with vertex u.

For a voltage map (M, ϑ), define

Xαϑ,βϑ =Xα,β × Γ,

Pϑ =
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M)

∏

g∈Γ
(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg)

and

αϑ =
∏

x∈Xα,β, g∈Γ

(xg, αxg), βϑ =
∏

x∈Xα,β, g∈Γ
(xg, βxgϑ(x)),

whereug denotes the element (u, g) ∈ Xα,β × Γ.
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Then it can be shown immediately thatMϑ = (Xαϑ,βϑ ,Pϑ) also satisfies the condi-

tions of map, and with the same orientation as mapM. Whence, we define the lifting map

of a voltage map in the following definition.

Definition 6.1.3 Let (M, ϑ) be a voltage map with group(Γ; ◦). Then the map Mϑ =

(Xϑ
α,β
,Pϑ) is defined to be the lifting map of(M, ϑ).

There is a natural projectionπ : Mϑ → M from the lifted mapMϑ to M by π(xg) = x

for ∀g ∈ Γ andx ∈Xα,β(M), which means thatMϑ is a |Γ|-coverM. Denote by

π−1(x) = { xg ∈ Xα,β(M
ϑ) | g ∈ Γ },

called thefiber over x ∈ Xα,β(M). For a vertexv = (C)(αCα−1) ∈ V(M), let {C} denote

the set of quadricells in cycleC. Then the following result is obvious by definition.

Theorem 6.1.7 The numbers of vertices and edges in a lifting map Mϑ of voltage map

(M, ϑ) with group(Γ; ◦) are respectively

ν(Mϑ) = ν(M)|Γ| and ε(Mϑ) = ε(M)|Γ|.

Theorem 6.1.8 Let F = (C∗)(αC∗α−1) be a face in the map M. Then there are|Γ|/o(F)

faces in the lifting map Mϑ with group (Γ; ◦) of length |F |o(F) lifted from the face F,

where o(F) denotes the order of
∏

x∈{C}
ϑ(x) in group(Γ; ◦).

Proof Let F = (u, v · · · ,w)(βw, · · · , βv, βu) be a face in the mapM andk is the length

of F. Then, for∀g ∈ Γ the conjugate cycles

(C∗)ϑ = (ug, vgϑ(u), · · · , ugϑ(F), vgϑ(F)ϑ(u), · · · ,wgϑ(F)2, · · · ,wgϑo(F)−1(F))

β(ug, vgϑ(u), · · · , ugϑ(F), vgϑ(F)ϑ(u), · · · ,wgϑ(F)2, · · · ,wgϑo(F)−1(F))
−1β−1.

is a face inMϑ with lengthko(F) by definition. Therefore, there are|Γ|/o(F) faces in the

lifting map Mϑ. �

We therefore get the Euler-Poincaré characteristic of a lifted map following.

Theorem 6.1.9 The Euler-Poincaré characteristicχ(Mϑ) of the lifting map Mϑ of a volt-

age map(M, ϑ) with group(Γ; ◦) is

χ(Mϑ) = |Γ|(χ(M) +
∑

m∈O(F(M))

(−1+
1
m

)),
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whereO(F(M)) denotes the set of faces in M of order o(F).

Proof According to the Theorems 6.1.7 and 6.1.8, the lifting mapMϑ has|Γ|ν(M)

vertices,|Γ|ε(M) edges and|G| ∑
m∈O(F(M))

1
m

faces. Therefore, we know that

χ(Mϑ) = ν(Mϑ) − ε(Mϑ) + φ(Mϑ)

= |Γ|ν(M) − |Γ|ε(M) + |Γ|
∑

m∈O(F(M))

1
m

= |G|(χ(M) − φ(M) +
∑

m∈O(F(M))

1
m

)

= |G|(χ(M) +
∑

m∈O(F(M))

(−1+
1
m

)). �

§6.2 GROUP BEING THAT OF A MAP

6.2.1 Lifting Map Automorphism. Let (M, σ) be a voltage map withσ : Xα,β → Γ, u ∈
V(M) andW = x1x2 · · · xk a walk encoded by the corresponding sequence of quadricells

xi , i = 1, 2, · · · , k in M, i.e., the qudricell afterxi is Pαβxi by the traveling ruler onM.

Define thenet voltageonW to be the product

σ(W) = σ(x1) ◦ σ(x2) ◦ · · · ◦ σ(xk)

and the local voltage groupΓ(u) by

Γ(u) = { σ(W) |W is a closed walk based at a quadricellu }.

By Definition 6.1.2, we know thatΓ(u) = Γ for ∀u ∈ Xα,β(M). For x ∈ Xα,β, denote

by Π(M, x) the set of all such closed walks based atx. ThenΠ(M, x) = π1(M, x), the

fundamental group ofM based atx.

Let σ1, σ2 : Xα,β → Γ be two voltage assignments on a mapM = (Xα,β,P) and

idM an identity transformation onXα,β, i.e., both ofMσ1 andMσ2 are|Γ|-covers ofM with

natural projectionsπ1 : Mσ1 → M andπ2 : Mσ2 → M on M. Then we know

Xα,β(M
σ1) =Xα,β(M

σ2) = { xg | x ∈Xα,β(M), g ∈ Γ }

by definition. Thenσ1, σ2 are said to beequivalentif there exists an isomorphismτ :

Mσ1 → Mσ2 that makes the following diagram
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? ?

Mσ1 Mσ2

M

τ

M-idM

π1 π2

commutate. The following result is fundamental.

Theorem 6.2.1 Let σ1, σ2 : Xα,β → Γ be two voltage assignments on a map M=

(Xα,β,P), u ∈ Xα,β(M). Thenσ1, σ2 are equivalent if and only if there exists an auto-

morphismτ of groupΓ such that

τσ1(W) = σ2(W)

for every closed walk W in M based at u.

Proof Choose a closed walkW in mapM based atu. If σ1 andσ2 are equivalent,

then there exists an automorphismτ : Mσ1 → Mσ2 such thatτ(Wσ1) = Wσ2. Define

τ∗ : Γ → Γ by τ∗ : τσ1(W) → σ2(W). Let W′ be another closed walk inM based atu.

Notice thatWW′ is also a closed walk based atu in M. We find that

τσ1(WW′) = τσ1(W)τσ1(W
′) = σ2(W)σ2(W

′),

i.e., τ∗(σ1(W)σ1(W′)) = τ∗(σ1(W))τ∗(σ1(W′)). Thusτ∗ is an automorphism ofΓ. By

definition, we are easily get thatτ∗σ1(W) = σ2(W).

Conversely, if there exists an automorphismτ′ ∈ AutΓ such thatτ′σ1(W) = σ2(W)

for every closed walkW in M based atu, let τ : Xα,β(Mσ1) → Xα,β(Mσ1) be determined

by τ : Wτ′σ1 →Wσ2, i.e,τ′σ1W(τ′σ1)−1 = σ2Wσ−1
2 . Then it is easily to know that

τ (Pαβ)σ1 τ−1 = (τ′σ1)


∏

(x,···,z)(αz,···,αx)∈V(M), g∈Γ
(xg, · · · , zg)(αzg, · · · , αxg)

 (τ′σ1)
−1

=
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M), g∈Γ
τ′σ1(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg)(τ

′σ1)
−1

=
∏

(x,···,z)(αz,···,αx)∈V(M), g∈Γ
σ2(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg)σ

−1
2

= (Pαβ)σ2
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i.e.,

Pσ1τ = τPσ2

and

ασ1τ = τασ2, βσ1τ = τβσ1.

Thusτ is an isomorphism fromMσ1 to Mσ2 by definition. Whence, we know thatσ1 and

σ2 are equivalent. �

Such an isomorphismτ from Mσ1 to Mσ2 induced by an automorphismτ′ of M is

called a lifted isomorphism ofτ′. Particularly, ifσ1 = σ2 = σ, a lifted isomorphism from

Mσ1 to Mσ2 is called alifted automorphismof τ′. Theorem 6.2.1 enables one to get the

following result.

Theorem 6.2.2 An automorphismφ of voltage map M with assignmentσ→ Γ is a lifted

automorphism of map Mσ if and only if every closed walk W with net voltageσ(W) = 1Γ

implies thatσ(φ(W)) = 1Γ in (M, σ).

Furthermore, letM = (Xα,β,P) be a map, (Γ; ◦) a finite group andA ≤ AutM, a

map group. We say that a voltage assignmentσ : Xα,β → Γ is locally A -invariant at a

quadricellu if, for ∀τ ∈ A and every walkW ∈ Π(M, u), we have

σ(W) = 1Γ ⇒ σ(τ(W)) = 1Γ.

Particularly, a voltage assignment islocally τ-invariant for τ ∈ AutM if it is locally in-

variant respect to the group〈τ〉 generated byτ. Then Theorem 6.2.2 implies the following

conclusion.

Corollary 6.2.1 Let M = (Xα,β,P) be a map with a voltage assignmentσ : Xα,β → Γ,
π : Mσ → M andA ≤ AutM. ThenA ≤ AutMσ if and only ifσ is locallyA -invariant.

Notice that a mapM = (Xα,β,P) is regular if |AutM| = |Xα,β|. We know the

following result by Corollary 6.2.1.

Corollary 6.2.2 Let M be a regular map with a locallyAutM-invariant voltage assign-

mentσ : Xα,β → Γ. Then Mσ is also regular.

Proof Notice that the actioñg : uh → ug◦h naturally induced an automorphism on

fiberπ−1(u) of Mσ for ∀u ∈ α,β andg ∈ Γ. Now all automorphisms ofM are lifted toMσ.

Whence,|AutMσ| = |Γ||AutM| = 4|Γ|ε(M) = |Xα,β(Mσ)|. ThusMσ is a regular map. �



Sec.6.2 Group being That of a Map 221

6.2.2 Map Exponent Group. Let M = (Xα,β,P) be a map. An integerk is anexponent

of M if the mapMk = (Xα,β,Pk) is isomorphic toM, i.e., there exists a permutationτ on

Xα,β such thatτα = ατ, τβ = βτ andτPk = Pτ. Such a permutationτ ∈ Aut 1
2
G[M] is

called an isomorphism associated with exponentk.

If k is an exponent ofM, thenPk is also a basic permutation onXα,β with Axioms

1− 2 hold. So gcd(k, ρM(v)) = 1 for v ∈ V(M). Consequently,k must be a coprime with

the ordero(P) of P, the least common multiple of valencies of vertices inM.

Obviously, 1 is an exponent ofM. On the other hand, the integer−1 is an exponent

if M is isomorphic to its mirror (Xα,β,P−1). Now let l ≡ k(modo(P)) andk an exponent

of M. ThenP l = Pk. Thus l is also an exponent ofM. Let k, l be two exponents

associated with isomorphismsτ, θ, respectively. Then

Pklθτ = (Pk)lθτ = θP lτ = θτP ,

i.e., kl is also an exponent ofM associated with isomorphismθτ ∈ Aut 1
2
G[M]. We

therefore find the following result.

Theorem 6.2.3 Let M be a map. Then all residue classes of exponentsmod(o(P)) of M

form a group, and all isomorphisms associated with exponents of M form a subgroup of

Aut 1
2
G[M], denoted byEx(M) andExo(M), respectively.

Now let (Γ; ◦) be a finite group and letι : Γ → Ex(M), Ψ : Exo(M) → Ex(M) be

homomorphisms with KerΨ = AutM = A. Denote byAJ = Ψ
−1(J), whereJ = ι(Γ). Then

thederived map Mσ,ι is a map (Xασ,ι,βσ,ι ,Pσ,ι) with

Xασ,ι,βσ,ι =Xα,β × Γ

and

Pσ,ι =
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M), g∈Γ

(
(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg)

)ι(g)
,

ασ,ι =
∏

x∈Xα,β, g∈Γ

(xg, αxg), βσ,ι =
∏

x∈Xα,β, g∈Γ
(xg, βxgϑ(x)).

A voltage assignmentσ : Xα,β(M) → Γ is calledAJ-uniform if for every u-based

closed walkW on M with σ(W) = 1Γ and every isomorphismτ ∈ AJ, one hasσ(τ(W)) =

1Γ. Similarly, an exponent homomorphismτ of M is AJ-compatiblewith σ if for every

u-based walkW and everyτ ∈ AJ, one always hasισ(W) = ισ(τ(W)). Then we have the

following result.
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Theorem 6.2.4 Let M be an orientable regular map,σ : Xα,β(M)→ Γ a voltage assign-

ment andι : Γ → Ex(M) with ι(Γ) = J. Then Mσ,ι is an orientable regular map ifσ is

AJ-uniform andτ is AJ-compatible withσ.

A complete proof of theorem 6.2.4 was established in [NeS2]. Certainly, the reader

can find more results on constructing regular maps by graphs in [NeS1]-[NeS2].

6.2.3 Group being That of a Lifted Map. A permutation groupΓ action onΩ is called

fixed-freeif Γx = 1Γ for ∀x ∈ Ω. We have the following result on fixed-free permutation

group.

Lemma 6.2.1 Any automorphism groupΓ of a map M= (Xα,β,P) is fixed-free onXα,β.

Proof Notice thatΓ ≤ AutM, we get thatΓx ≤ (AutM)x for ∀x ∈ Xα,β. We have

known that (AutM)x = 1Γ. Whence, there must be thatΓx = 1Γ, i.e.,Γ is fixed-free. �

Notice that the automorphism group of a lifted map has a obvious subgroup deter-

mined by the following lemma.

Lemma 6.2.2 Let Mϑ be a lifted map of a voltage assignmentϑ : Xα,β → Γ. ThenΓ is

isomorphic to a fixed-free subgroup ofAutMϑ on V(Mϑ).

Proof For ∀g ∈ Γ, we prove that the induced actiong∗ : Xαϑ,βϑ → Xαϑ,βϑ by

g∗ : xh→ xgh is an automorphism of mapMϑ.

In fact,g∗ is a mapping onXαϑ,βϑ and for∀xu ∈Xαϑ,βϑ, we know thatg∗ : xg−1u→ xu.

Now if for xh, yf ∈ Xαϑ,βϑ , xh , yf , we have thatg∗(xh) = g∗(yf ). Thusxgh = yg f

by the definition. So we must havex = y andgh = g f , i.e., h = f . Whence,xh = yf ,

contradicts to the assumption. Therefore,g∗ is 1− 1 onXαϑ,βϑ.

We prove that forxu ∈Xαϑ,βϑ, g∗ is commutative withαϑ, βϑ andPϑ. Notice that

g∗αϑxu = g∗(αx)u = (αx)gu = αxgu = αg∗(xu);

g∗βϑ(xu) = g∗(βx)uϑ(x) = (βx)guϑ(x) = βxguϑ(x) = β
ϑ(xgu) = β

ϑg∗(xu)

and

g∗Pϑ(xu)

= g∗
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M)

∏

u∈G
(xu, yu, · · · , zu)(αzu, · · · , αyu, αxu)(xu)

= g∗yu = ygu
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=
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M)

∏

gu∈G
(xgu, ygu, · · · , zgu)(αzgu, · · · , αygu, αxgu)(xgu)

= Pϑ(xgu) =Pϑg∗(xu).

Therefore,g∗ is an automorphism of the lifted mapMϑ.

To see thatg∗ is fixed-free onV(M), choose∀u = (xh, yh, · · · , zh)(αzh, · · · , αyh, αxh) ∈
V(M), h ∈ Γ. If g∗(u) = u, i.e.,

(xgh, ygh, · · · , zgh)(αzgh, · · · , αygh, αxgh) = (xh, yh, · · · , zh)(αzh, · · · , αyh, αxh),

assume thatxgh = wh, wherewh ∈ {xh, yh, · · · , zh, αxh, αyh, · · · , αzh}. By definition, there

must be thatx = w andgh= h. Therefore,g = 1Γ, i.e.,∀g ∈ Γ, g∗ is fixed-free onV(M).

Defineτ : g∗ → g. Thenτ is an isomorphism between the action of elements inΓ on

Xαϑ,βϑ and the groupΓ itself. �

According to Lemma 6.2.1, for a given mapM and a groupΓ ≤ AutM, we define a

quotient map M/Γ = (Xα,β/Γ,P/Γ) as follows.

Xα,β/Γ = {xΓ|x ∈Xα,β},

wherexΓ denotes the orbit ofΓ action onx in Xα,β and

P/Γ =
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M)

(xΓ, yΓ, · · ·)(· · · , αyΓ, αxΓ)

sinceΓ action onXα,β is fixed-free.

Such a mapM may be not a regular covering of its quotientM/Γ. We have the

following result characterizing fixed-free automorphism groups of map onV(M).

Theorem 6.2.5 An finite group(Γ; ◦) is a fixed-free automorphism group of map M=

(Xα,β,P) on V(M) if and only if there is a map(M/Γ, Γ) with a voltage assignment

ϑ : Xα,β/Γ→ Γ such that M� (M/Γ)ϑ.

Proof The necessity of the condition is already proved in the Lemma2.2.2. We only

need to prove its sufficiency.

Denote byπ : M → M/Γ the quotient mapping fromM to M/Γ. For each element of

π−1(xΓ), we give it a label. Choosex ∈ π−1(xΓ). Assign its labell : x→ x1Γ , i.e.,l(x) = x1Γ.

Since the groupΓ acting onXα,β is fixed-free, ifu ∈ π−1(xΓ) andu = g(x), g ∈ Γ, we label

u with l(u) = xg. Whence, each element inπ−1(xΓ) is labeled by a unique element inΓ.
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Now we assign voltages on the quotient mapM/Γ = (Xα,β/Γ,P/Γ). If βx = y, y ∈
π−1(yΓ) and the label ofy is l(y) = y∗h, h ∈ Γ, where,l(y∗) = 1Γ, then we assign a voltage

h on xΓ,i.e.,ϑ(xΓ) = h. We should prove this kind of voltage assignment is well-done,

which means that we must prove that for∀v ∈ π−1(xΓ) with l(v) = j, j ∈ Γ, the label ofβv

is l(βv) = jh. In fact, by the previous labeling technique, we know that the label ofβv is

l(βv) = l(βgx) = l(gβx) = l(gy) = l(ghy∗) = gh.

Denote byMl the labeled mapM on each element inXα,β. Whence,Ml
� M. By the

previous voltage assignment, we also know thatMl is a lifting of the quotient mapM/Γ

with the voltage assignmentϑ : Xα,β/Γ→ Γ. Therefore,

M � (M/Γ)ϑ.

This completes the proof. �

According to the Theorem 6.2.5, we get the following result for a group to be a map

group.

Theorem 6.2.6 If a groupΓ ≤ AutM is fixed-free on V(M), then

|Γ|(χ(M/Γ) +
∑

m∈O(F(M/Γ))

(−1+
1
m

)) = χ(M).

Proof By the Theorem 6.2.5, we know that there is a voltage assignmentϑ on the

quotient mapM/Γ such that

M � (M/Γ)ϑ.

Applying Theorem 6.1.9, we know the Euler characteristic of mapM is

χ(M) = |Γ|(χ(M/Γ) +
∑

m∈O(F(M/Γ))

(−1+
1
m

)). �

Theorem 6.2.6 has some applications for determining the automorphism group of a

map such as those of results following.

Corollary 6.2.3 If M is an orientable map of genus p,Γ ≤ AutM is fixed-free on V(M)

and the genus of the quotient map M/Γ is γ, then

|Γ| = 2p− 2

2γ − 2+
∑

m∈O(F(M/Γ))
(1− 1

m))
.
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Particularly, if M/Γ is planar, then

|Γ| = 2p− 2

−2+
∑

m∈O(F(M/Γ))
(1− 1

m))
.

Corollary 6.2.4 If M is a non-orientable map of genus q,Γ ≤ AutM is fixed-free on

V(M) and the genus of the quotient map M/Γ is δ, then

|Γ| = q− 2

δ − 2+
∑

m∈O(F(M/Γ))
(1− 1

m))
.

Particularly, if M/Γ is projective planar, then

|Γ| = q− 2

−1+
∑

m∈O(F(M/Γ))
(1− 1

m))
.

By applying Theorem 6.2.5, we can also find the Euler characteristic of the quotient

map, which enables us to get the following result for a group being that of map.

Theorem 6.2.7 If a groupΓ ≤ AutM, then

χ(M) +
∑

g∈Γ,g,1Γ

(|Φv(g)| + |Φ f (g)|) = |Γ|χ(M/Γ),

where,Φv(g) = {v|v ∈ V(M), vg = v}, Φ f (g) = { f | f ∈ F(M), f g = f }, and ifΓ is fixed-free

on V(M), then

χ(M) +
∑

g∈Γ,g,1Γ

|Φ f (g)| = |Γ|χ(M/Γ).

Proof By the definition of quotient map, we know that

φv(M/Γ) = orbv(Γ) =
1
|Γ|

∑

g∈Γ
|Φv(g)|

and

φ f (M/Γ) = orbf (Γ) =
1
|Γ|

∑

g∈Γ
|Φ f (g)|,

by applying the Burnside lemma. SinceΓ is fixed-free onXα,β by Lemma 6.1.4, we also

know that

ε(M/Γ) =
ε(M)
|Γ| .
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Applying the Euler-Poincaré formula for the quotient mapM/Γ, we get that
∑
g∈Γ
|Φv(g)|

|Γ| − ε(M)
|Γ| +

∑
g∈Γ
|Φ f (g)|

|Γ| = χ(M/Γ).

Whence, ∑

g∈Γ
|Φv(g)| − ε(M) +

∑

g∈Γ
|Φ f (g)| = |Γ|χ(M/Γ).

Notice thatν(M) = |Φv(1Γ)|, φ(M) = |Φ f (1Γ)| andν(M) − ε(M) + φ(M) = χ(M). We find

that

χ(M) +
∑

g∈Γ,g,1Γ

(|Φv(g)| + |Φ f (g)|) = |Γ|χ(M/Γ).

Furthermore, ifΓ is fixed-free onV(M), by Theorem 6.2.5 there is a voltage assign-

mentϑ on the quotient mapM/Γ such thatM � (M/G)ϑ. According to Theorem 6.1.7,

there must be

ν(M/Γ) =
ν(M)
|Γ| .

Whence,
∑
g∈Γ
|Φv(g)| = ν(M) and

∑
g∈Γ,g,1Γ

(|Φv(g)| = 0. Therefore, we get that

χ(M) +
∑

g∈Γ,g,1Γ

|Φ f (g)| = |Γ|χ(M/Γ). �

Consider the action properties of groupΓ on F(M), we immediately get some inter-

esting results following.

Corollary 6.2.5 If Γ ≤ AutM is fixed-free on V(M) and transitive on F(M), for example,

M is regular andΓ = AutM, then M/Γ is an one face map and

χ(M) = |Γ|(χ(M/Γ) − 1)+ φ(M).

Corollary 6.2.6 For an one face map M, ifΓ ≤ AutM is fixed-free on V(M), then

χ(M) − 1 = |Γ|(χ(M/Γ) − 1),

and |Γ|. Particularly, |AutM| is an integer factor ofχ(M) − 1.

Remark 6.2.1 For a one face planar map, i.e., the plane tree, the only fixed-free auto-

morphism group on its vertices is the trivial group by the Corollary 6.2.6.
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§6.3 MEASURES ON MAPS

On the classical geometry, a central question is to determine the measures on objects,

such as those of the distance, angle, area, volume, curvature, . . .. For maps being that of

a combinatorial model of Klein surfaces, we also wish to introduce various measures on

maps and then enlarge its application to more branches of mathematics.

6.3.1 Angle on Map. For a mapM = (Xα,β,P), x ∈ Xα,β, the permutation pair

{(x,Px), (αx,P−1αx)} is called anangle of M incident with x introduced by Tutte in

[Tut1]. We prove that any automorphism of a map is a conformalmapping and affirm the

Theorem 5.3.12 in Chapter 5 again in this section.

We define theangle transformationΘ of a mapM = (Xα,β,P) by

Θ =
∏

x∈Xα,β

(x,Px).

Then we have

Theorem 6.3.1 Any automorphism of map M= (Xα,β,P) is conformal.

Proof By the definition, for∀g ∈ AutM we know that

αg = gα, βg = gβ andPg = gP .

Therefore, for∀x ∈Xα,β,

Θg(x) = (g(x),Pg(x))

and

gΘ(x) = g(x,Px) = (g(x),Pg(x)).

Whence, we get that for∀x ∈Xα,β, Θg(x) = gΘ(x). SoΘg = gΘ,i.e.,gΘg−1 = Θ.

Since for∀x ∈Xα,β, gΘg−1(x) = (g(x),Pg(x)) andΘ(x) = (x,P(x)), we get that

(g(x),Pg(x)) = (x,P(x)).

Thusg is a conformal mapping. �

6.3.2 Non-Euclid Area on Map. For a voltage map (M, σ) with a assignmentσ :

Xα,β(M)→ Γ, its non-Euclid areaµ(M, Γ) is defined by

µ(M, Γ) = 2π(−χ(M) +
∑

m∈O(F(M))

(−1+
1
m

)).
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Particularly, since any mapM can be viewed as a voltage map (M, 1Γ), we get the non-

Euclid area of a mapM

µ(M) = µ(M, 1Γ) = −2πχ(M).

Notice that the area of a map is only dependent on the genus of the surface. We know

the following result.

Theorem 6.3.2 Two maps on one surface S have the same non-Euclid area.

By the non-Euclid area, we find theRiemann-Hurwitz formulafor map in the fol-

lowing.

Theorem 6.3.3 If Γ ≤ AutM is fixed-free on V(M), then

|Γ| = µ(M)
µ(M/Γ, ϑ)

,

whereϑ is constructed in the proof of the Theorem6.2.5.

Proof According to the Theorem 6.2.6, we know that

|Γ| = −χ(M)

−χ(M) +
∑

m∈O(F(M))
(−1+ 1

m)

=
−2πχ(M)

2π(−χ(M) +
∑

m∈O(F(M))
(−1+ 1

m))
=

µ(M)
µ(M/Γ, ϑ)

. �

As an interesting result, we can obtain the same result for the non-Euclid area of a

triangle as in the classical differential geometry following, seeing [Car1] for details.

Theorem 6.3.4 The non-Euclid areaµ(∆) of a triangle∆ on surface S with internal

anglesη, θ, σ is

µ(∆) = η + θ + σ − π.

Proof According to the Theorems 4.2.1 and 6.2.5, we can assume that there exists

a triangulationM with internal anglesη, θ, σ on S, and with an equal non-Euclid area on

each triangular disk. Then

φ(M)µ(∆) = µ(M) = −2πχ(M)

= −2π(ν(M) − ε(M) + φ(M)).
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SinceM is a triangulation, we know that 2ε(M) = 3φ(M). Notice that the sum of all the

angles in the triangles on the surfaceS is 2πν(M). We get that

φ(M)µ(∆) = −2π(ν(M) − ε(M) + φ(M)) = (2ν(M) − φ(M))π

=

φ(M)∑

i=1

[(η + θ + σ) − π] = φ(M)(η + θ + σ − π).

Whence,µ(∆) = η + θ + σ − π. �

§6.4 A COMBINATORIAL REFINEMENT OF HURIWTZ THEOREM

6.4.1 Combinatorially Huriwtz Theorem. In 1893, Hurwitz obtained a famous result

on orientation-preserving automorphism groups Aut+S of Riemann surfacesS ([BEGG1],

[FaK1] and [GrT1]) following:

For a Riemann surface S of genus g(S) ≥ 2, Aut+S ≤ 84(g(S) − 1).

We have established the combinatorial model for Klein surfaces, especially, the Riemann

surfaces by maps. Thenwhat is its combinatorial counterpart? What can we know the

bound for the automorphisms group of map?

For a given graphΓ, a graphical propertyP is defined to be a family of its subgraphs,

such as, regular subgraphs, circuits, trees, stars, wheels, · · ·. Let M = (Xα,β,P) be a map.

Call a subsetA of Xα,β has the graphical propertyP if its underlying graph of possesses

propertyP. Denote byA(P,M) the set of all theA subset with propertyP in the mapM.

For refining the Huriwtz theorem, we get a general combinatorial result in the fol-

lowing.

Theorem 6.4.1 Let M = (Xα,β,P) be a map. Then for∀H ≤ AutM,

[|vH ||v ∈ V(M)] | |H|

and

|H| | |A||A(P,M)|,

where�[a, b, · · ·] denotes the least common multiple ofa, b, · · ·.

Proof According to Theorem 2.1.1(3), for∀v ∈ V(M), |H| = |Hv||vH |. So |vH | | |H|.
Whence,

[|vH ||v ∈ V(M)] | |H|.
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We have know that the action ofH onXα,β is fixed-free by Theorem 5.3.5, i.e.,∀x ∈Xα,β,

there must be|Hx| = 1. We consider the action of the automorphism groupH onA(P,M).

Notice that ifA ∈ A(P,M), then for∀g ∈ H, Ag) ∈ A(P,M), i.e., AH ⊆ A(P,M).

Thus the action ofH onA(P,M) is closed. Whence, we can classify the elements in

A(P,M) by H. For ∀x, y ∈ A(P,M), definex ∼ y if and only if there is an element

g, g ∈ H such thatxg = y.

Since|Hx| = 1, i.e.,|xH | = |H|, each orbit ofH action onXα,β has a same length|H|.
By the previous discussion, the action ofH onA(P,M) is closed. Therefore, the length

of each orbit ofH action onA(P,M) is |H|. Notice that there are|A||A(P,M)| quadricells

inA(P,M). We get that

|H| | |A||A(P,M)|.

This completes the proof. �

Choose the propertyP to be tours with each edge appearing at most 2 in the mapM.

Then we get the following results by the Theorem 6.4.1.

Corollary 6.4.1 LetT r2 be the set of tours with each edge appearing 2 times. Then for

H ≤ AutM,

|H| | (l|T r2|, l = |T | = |T |
2
≥ 1, T ∈ T r2, ).

LetT r1 be the set of tours without repeat edges. Then

|H| | (2l|T r1|, l = |T | =
|T |
2
≥ 1, T ∈ T r1, ).

Particularly, denote byφ(i, j) the number of faces in M with facial length i and singular

edges j, then

|H| | ((2i − j)φ(i, j), i, j ≥ 1),

where,(a, b, · · ·) denotes the greatest common divisor of a, b, · · ·.

Corollary 6.4.2 LetT be the set of trees in the map M. Then for H≤ AutM,

|H| | (2lt l, l ≥ 1),

where tl denotes the number of trees with l edges.

Corollary 6.4.3 Let vi be the number of vertices with valence i. Then for H≤ AutM,

|H| | (2ivi, i ≥ 1).
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6.4.2 Application to Klein Surface. Theorem 6.4.1 is a combinatorial refinement of the

Hurwitz theorem. Applying it, we can get the automorphism group of map as follows.

Theorem 6.4.2 Let M be an orientable map of genus g(M) ≥ 2 and Γ+ ≤ Aut+M,

Γ ≤ AutM. Then

|Γ+| ≤ 84(g(M) − 1) and |Γ| ≤ 168(g(M) − 1).

Proof Define the average vertex valenceν(M) and the average face valenceφ(M) of

a mapM by

ν(M) =
1

ν(M)

∑

i≥1

iνi,

φ(M) =
1

φ(M)

∑

j≥1

jφ j,

where,ν(M),φ(M),φ(M) andφ j denote the number of vertices, faces, vertices of valencei

and faces of valencej, respectively. Then we know thatν(M)ν(M) = φ(M)φ(M) = 2ε(M).

Whence,ν(M) =
2ε(M)

ν(M)
andφ(M) =

2ε(M)

φ(M)
. According to the Euler formula, we have

that

ν(M) − ε(M) + φ(M) = 2− 2g(M),

where,ε(M), g(M) denote the number of edges and genus of the mapM. We get that

ε(M) =
2(g(M) − 1)

(1− 2
ν(M)
− 2

φ(M)
)
.

Choose the integersk = ⌈ν(M)⌉ andl = ⌈φ(M)⌉. We find that

ε(M) ≤ 2(g(M) − 1)

(1− 2
k −

2
l )
.

Because of 1− 2
k
− 2

l
> 0, Sok ≥ 3, l >

2k
k− 2

. Calculation shows that the minimum

value of 1− 2
k
− 2

l
is

1
21

and attains the minimum value if and only if (k, l) = (3, 7) or

(7, 3). Therefore,

ε(M ≤ 42(g(M) − 1)).

According to the Theorem 6.4.1 and its corollaries, we know that|Γ| ≤ 4ε(M) and if

Γ+ is orientation-preserving, then|Γ+| ≤ 2ε(M). Whence,

|Γ| ≤ 168(g(M) − 1))
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and

|Γ+| ≤ 84(g(M) − 1)),

with equality hold if and only ifΓ = Γ+ = AutM, (k, l) = (3, 7) or (7, 3). �

For the automorphism of Riemann surface, we have

Corollary 6.4.4 For any Riemann surfaceS of genus g≥ 2,

4g(S) + 2 ≤ |Aut+S| ≤ 84(g(S) − 1)

and

8g(S) + 4 ≤ |AutS| ≤ 168(g(S) − 1).

Proof By the Theorems 5.3.11 and 6.4.2, we know the upper bound for|AutS| and

|Aut+S|. Now we prove the lower bound. We construct a regular mapMk = (Xk,Pk) on

a Riemann surface of genusg ≥ 2 as follows, wherek = 2g+ 1.

Xk = {x1, x2, · · · , xk, αx1, αx2, · · · , αxk, βx1, βx2, · · · , βxk, αβx1, αβx2, · · · , αβxk}

Pk = (x1, x2, · · · , xk, αβx1, αβx2, · · · , αβxk)(βxk, · · · , βx2, βx1, αxk, · · · , αx2, αx1).

It can be shown thatMk is a regular map, and its orientation-preserving automorphism

group Aut+Mk =< Pk >. Calculation shows that ifk ≡ 0(mod2), Mk has 2 faces, and if

k ≡ 1, Mk is an one face map. Therefore, By Theorem 5.3.11, we get that

|Aut+S| ≥ 2ε(Mk) ≥ 4g+ 2,

and

|AutS| ≥ 4ε(Mk) ≥ 8g+ 4. �

For the non-orientable case, we can also get the bound for theautomorphism group

of a map.

Theorem 6.4.3 Let M be a non-orientable map of genus g′(M) ≥ 3. Then forΓ+ ≤
Aut+M,

|Γ+| ≤ 42(g′(M) − 2)

and forΓ ≤ AutM,

|Γ| ≤ 84(g′(M) − 2),
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with the equality hold if and only if M is a regular map with vertex valence3 and face

valence7 or vice via.

Proof Similar to the proof of the Theorem 6.4.2, we can also get that

ε(M ≤ 21(g′(M) − 2))

and with equality hold if and only ifΓΓ = AutM and M is a regular map with vertex

valence 3, face valence 7 or vice via. According to the Corollary 6.4.3, we get that

|Γ| ≤ 4ε(M)

and

|Γ+| ≤ 2ε(M).

Whence, forΓ+ ≤ Aut+M,

|Γ+| ≤ 42(g′(M) − 2)

and forΓ ≤ AutM,

|Γ| ≤ 84(g′(M) − 2)

with the equality hold if and only ifM is a regular map with vertex valence 3 and face

valence 7 or vice via. �

Similar to Hurwtiz theorem for that of Riemann surfaces, we can also get the upper

bound of Klein surfaces underlying a non-orientable surface.

Corollary 6.4.5 For a Klein surfaceK underlying a non-orientable surface of genus

q ≥ 3,

|Aut+K| ≤ 42(q− 2)

and

|AutK| ≤ 84(q− 2).

§6.5 THE ORDER OF AUTOMORPHISM OF KLEIN SURFACE

6.5.1 The Minimum Genus of a Fixed-Free Automorphism. Harvey [Har1] in 1966,

Singerman [Sin1] in 1971 and Bujalance [Buj1] in 1983 considered the order of an au-

tomorphism of a Riemann surface of genusp ≥ 2 and a compact non-orientable Klein
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surface without boundary of genusq ≥ 3. Their approach is by using the Fuchsian groups

or NEC groups for Klein surfaces. Their approach is by applying theRiemann-Hurwitz

equation, i.e., Theorem 4.4.5. Here we restate it in the following:

LetΓ be an NEC graph andΓ′ a subgroup ofΓ with finite index. Then

µ(Γ′)
µ(Γ)

= [Γ : Γ′],

where,µ(Γ) is the non-Euclid area of groupΓ defined by

µ(G) = 2π[ηg+ k− 2+
r∑

i=1

(1− 1/mi) + 1/2
k∑

i=1

si∑

j=1

(1− 1/ni j )]

if the signature of the groupΓ is

σ = (g;±; [m1, · · · ,mr ]; {(n11,···,n1s1
), · · · , (nk1, · · · , nks)}),

where,η = 2 if sign(σ) = + andη = 1 otherwise.

Notice that we have introduced the conception of non-Euclidarea for the voltage

maps and have gotten the Riemann-Hurwitz equation in Theorem 6.2.6 for a group action

fixed-free on vertices of map. Similarly, we can find the minimum genus of a fixed-free

automorphism of a map on its vertex set by the voltage assignment technique on one of

its quotient map and get the maximum order of an automorphismof map.

Lemma 6.5.1 Let N =
k∏

i=1
pr i

i , p1 < p2 < · · · < pk be the arithmetic decomposition of an

integer N and mi ≥ 1,mi |N for i = 1, 2, · · · , k. Then for any integer s≥ 1,

s∑

i=1

(1− 1
mi

) ≥ 2(1− 1
p1

)⌊ s
2
⌋.

Proof If s≡ 0(mod2), it is obvious that

s∑

i=1

(1− 1
mi

) ≥
s∑

i=1

(1− 1
p1

) ≥ (1− 1
p1

)s.

Assume thats ≡ 1(mod2) and there aremi j , p1, j = 1, 2, · · · , l. If the assertion is not

true, we must have that

(1− 1
p1

)(l − 1) >
l∑

j=1

(1− 1
mi j

) ≥ (1− 1
p2

)l.
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Whence,

(1− 1
p1

)l > (1− 1
p2

)l + 1− 1
p1

> (1− 1
p1

)l,

a contradiction. Therefore, we get that

s∑

i=1

(1− 1
mi

) ≥ 2(1− 1
p1

)⌊ s
2
⌋. �

Lemma 6.5.2 For a map M = (Xα,β,P) with φ(M) faces and N=
k∏

i=1
pr i

i , p1 < p2 <

· · · < pk, the arithmetic decomposition of an integer N, there existsa voltage assignment

ϑ : Xα,β → ZN such that for∀F ∈ F(M), o(F) = p1 if φ(M) ≡ 0(mod2) or there exists a

face F0 ∈ F(M) such that o(F) = p1 for ∀F ∈ F(M) \ {F0}, but o(F0) = 1.

Proof Assume thatf1, f2, · · · , fn are then faces of the mapM, wheren = φ(M). By

the definition of voltage assignment, ifx, βx or x, αβx appear on one facefi , 1 ≤ i ≤ n

altogether, then they contribute toϑ( fi) only with ϑ(x)ϑ−1(x) = 1ZN. Whence, not loss of

generality, we only need to consider the voltagexi j on the common boundary among the

facesfi and f j for 1 ≤ i, j ≤ n. Then the voltage assignment on then faces are

ϑ( f1) = x12x13 · · · x1n,

ϑ( f2) = x21x23 · · · x2n,

· · · · · · · · · · · · · · · · · ·

ϑ( fn) = xn1xn2 · · · xn(n−1).

We wish to find an assignment onM which can enables us to get as many faces as possible

with the voltage of orderp1. Not loss of generality, we chooseϑp1( f1) = 1ZN in the first.

To makeϑp1( f2) = 1ZN, choosex23 = x−1
13, · · · , x2n = x−1

1n . If we have gottenϑp1( fi) = 1ZN

andi < n if n ≡ 0(mod2) or i < n− 1 if n ≡ 1(mod2), we can choose that

x(i+1)(i+2) = x−1
i(i+2), x(i+1)(i+3) = x−1

i(i+3), · · · , x(i+1)n = x−1
in ,

which also makeϑp1( fi+1) = 1ZN .

Now if n ≡ 0(mod2), this voltage assignment makes each facefi, 1 ≤ i ≤ n satisfying

thatϑp1( fi) = 1ZN. But if n ≡ 1(mod2), it only makesϑp1( fi) = 1ZN for 1 ≤ i ≤ n− 1, but

ϑ( fn) = 1ZN. This completes the proof. �
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Now we can find a result on the minimum genus of a fixed-free automorphism of

map by Lemmas 6.5.1-6.5.2 following.

Theorem6.5.1 Let M = (Xα,β,P) be a map and N= pr1
1 · · · p

rk
k , p1 < p2 < · · · < pk the

arithmetic decomposition of integer N. Then for any voltageassignmentϑ : Xα,β → ZN,

(1) If M is orientable, the minimum genus gmin of the lifted map Mϑ which admits a

fixed-free automorphism on V(Mϑ) of order N is

gmin = 1+ N{g(M) − 1+ (1−
∑

m∈O(F(M))

1
p1

)⌊φ(M)
2
⌋}.

(2) If M is non-orientable, the minimum genus g′min of the lifted map Mϑ which

admits a fixed-free automorphism on V(Mϑ) of order N is

g′min = 2+ N{g(M) − 2+ 2(1− 1
p1

)⌊φ(M)
2
⌋}.

Proof (1) According to Theorem 6.2.5, we know that

2− 2g(Mϑ) = N{(2− 2g(M)) +
∑

m∈O(F(M))

(−1+
1
m

)}.

Whence,

2g(Mϑ) = 2+ N{2g(M) − 2+
∑

m∈O(F(M))

(1− 1
m

)}.

Applying Lemmas 6.5.1 and 6.5.2, we get that

gmin = 1+ N{g(M) − 1+ (1− 1
p1

)⌊φ(M)
2
⌋}

. (2) Similarly, by Theorem 6.2.1, we know that

2− g(Mϑ) = N{(2− g(M)) +
∑

m∈O(F(M))

(−1+
1
m

)}.

Whence,

g(Mϑ) = 2+ N{g(M) − 2+
∑

m∈O(F(M))

(1− 1
m

)}.

Applying Lemmas 6.5.1 and 6.5.2, we get that

g′min = 2+ N{g(M) − 2+ 2(1− 1
p1

)⌊φ(M)
2
⌋}. �
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6.5.2 The Maximum Order of Automorphisms of a Map. For the maximum order of

automorphisms of a map, we have the following result.

Theorem 6.5.2 The maximum order Nmax of automorphisms g of an orientable map M

with genus≥ 2 is

Nmax ≤ 2g(M) + 1

and the maximum order N′max of automorphisms g of a non-orientable map with genus≥ 3

is

N′max ≤ g(M) + 1,

where g(M) denotes the genus of map M.

Proof According to Theorem 6.2.3, denote byΓ = 〈g〉, we get that

χ(M) +
∑

g∈Γ,g,1Γ

(|Φv(g)| + |Φ f (g)|) = |Γ|χ(M/Γ),

where,Φ f (g) = {F |F ∈ F(M), Fg = F} andΦv(g) = {v|v ∈ V(M), vg = v}. Notice

that a vertex ofM is a pair of conjugacy cycles inP, and a face ofM is a pair of

conjugacy cycles inPαβ. If g , 1Γ, direct calculation shows thatΦ f (g) = Φ f (g2) and

Φv(g) = Φv(g2). Whence,

∑

g∈Γ,g,1Γ

|Φv(g)| = (|Γ| − 1)|Φv(g)|

and

∑

g∈Γ,g,1Γ

|Φ f (g)| = (|Γ| − 1)|Φ f (g)|.

Therefore, we get that

χ(M) + (|Γ| − 1)|Φv(g)| + (|Γ| − 1)|Φ f (g)| = |Γ|χ(M/Γ).

Whence,

χ(M) − (|Φv(g)| + |Φ f (g)|) = |Γ|(χ(M/Γ) − (|Φv(g)| + |Φ f (g)|)).
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If χ(M/G) − (|Φv(g)| + |Φ f (g)|) = 0, i.e.,χ(M/Γ) = |Φv(g)| + |Φ f (g)| ≥ 0, then we get

thatg(M) ≤ 1 if M is orientable org(M) ≤ 2 if M is non-orientable. Contradicts to the

assumption. Therefore,χ(M/Γ) − (|Φv(g)| + |Φ f (g)|) , 0. Whence, we get that

|Γ| =
χ(M) − (|Φv(g)| + |Φ f (g)|)
χ(M/Γ) − (|Φv(g)| + |Φ f (g)|) = H(v, f ; g).

Notice that|Γ|, χ(M)− (|Φv(g)|+ |Φ f (g)|) andχ(M/G)− (|Φv(g)|+ |Φ f (g)|) are integers. We

know that the functionH(v, f ; g) takes its maximum value atχ(M/Γ)−(|Φv(g)|+|Φ f (g)|) =
−1 sinceχ(M) ≤ −1. But in this case, we get that

|Γ| = |Φv(g)| + |Φ f (g)| − χ(M) = 1+ χ(M/Γ) − χ(M).

We divide our discussion into two cases.

Case1. M is orientable.

Sinceχ(M/Γ) + 1 = (|Φv(g)| + |Φ f (g)|) ≥ 0, we know thatχ(M/Γ) ≥ −1. Whence,

χ(M/Γ) = 0 or 2. We get that

|Γ| = 1+ χ(M/Γ) − χ(M) ≤ 3− χ(M) = 2g(M) + 1.

That is, Nmax≤ 2g(M) + 1.

Case2. M is non-orientable.

In this case, sinceχ(M/Γ) ≥ −1, we know thatχ(M/Γ) = −1, 0, 1 or 2. Whence,

we get that

|Γ| = 1+ χ(M/Γ) − χ(M) ≤ 3− χ(M) = g(M) + 1.

This completes the proof. �

According to this theorem, we get the following result for the order of an automor-

phism of a Klein surface without boundary by the Theorem 5.3.12, which is even more

better than the results already known.

Corollary 6.5.1 The maximum order of conformal transformations realizableby maps M

on a Riemann surface of genus≥ 2 is 2g(M) + 1 and the maximum order of conformal

transformations realizable by maps M on a non-orientable Klein surface of genus≥ 3

without boundary is g(M) + 1.
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The maximum order of an automorphism of map can be also determined by its un-

derlying graph as follows.

Theorem 6.5.3 Let M be a map underlying graph G and let omax(M, g), omax(G, g) be the

maximum orders of orientation-preserving automorphisms in AutM and inAut 1
2
G. Then

omax(M, g) ≤ omax(G, g),

and the equality holds for at least one such mapM underlying graphG.

The proof of the Theorem 6.5.3 will be delayed to the next chapter after we proved

Theorem 7.1.1. By this result, we find some interesting conclusions following.

Corollary 6.5.2 The maximum order of orientation-preserving automorphisms of a com-

plete mapKn, n ≥ 3 is at most n.

Corollary 6.5.3 The maximum order of orientation-preserving automorphisms of a plane

treeT is at most|T | − 1 and attains the upper bound only if the underlying tree is a star.

§6.6 REMARKS

6.6.1 The lifted graph of a voltage graph (G, σ) with σ : X1
2
(G) → Γ is in fact a regular

covering of 1-complexG constructing dependent on a group (Γ; ◦). This technique was

extensively applied to coloring problem, particularly, its dual, i.e., current graph for deter-

mining the genus of complete graphKn on surface. The reference [GrT1] is an excellent

book systematically dealing with voltage graphs. One can also find the combinatorial

counterparts of a few important results, such as those of theRiemann-Hurwitz equation

andAlexander’s theoremon branch points in Riemann geometry in this book. Certainly,

the references [Liu1] and [Whi1] also partially discuss voltage graphs. A similar consid-

eration for non-regular covering space presents the following problem:

Problem 6.6.1 Apply the voltage assignment technique for constructing non-regular cov-

ering of graphs or maps.

6.6.2 The technique of voltage graphs and voltage maps is essentially a discrete realiza-

tion of regular covering spaces with dimensional 1 or 2. Manyresults on covering spaces

can be found the combinatorial counterparts in voltage graphs or maps. For example,
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Theorem 6.1.1 asserts that ifπ : S̃ → S is a covering projection, then for any arcf in S

with initial point x0 there exists a unique lifting arcf l with initial point x̃0 in S̃. In voltage

graphs, we know its combinatorial counterpart following.

Theorem 6.6.1 Let W be a walk with initial vertex u∈ V(G) in a voltage graph(G, σ)

with assignmentσ : X1
2
(G) → Γ and g∈ Γ. then there is a unique lifting of W that starts

at ug in Gσ.

Certainly, there are many such results by finding the combinatorial counterparts, for

example in voltage graphs or maps for results known in topology or geometry. The book

[MoT1] can be seen as a discrete deal with surface geometry, i.e., combinatorics on sur-

face geometry. These results in Sections 4 and 5 are also suchkind results. Generally, a

combinatorial speculation for mathematical science will finally arrived at theCC conjec-

ture for developing mathematics discussed in the final chapter ofthis book.

6.6.3 For a map (M, σ) with voltage assignmentσ : Xα,β(M) → Γ, it is easily to know

that the group (Γ; ◦) is a map group ofMσ action closed in each fiberπ−1(x) for x ∈
Xα,β(M), i.e.,Γ ≤ AutMσ. In this way, one can get regular maps in lifted maps. Such a

role of voltage maps is known in Theorem 6.2.2, which enables one to get regular maps by

voltage assignments. Similarly, the exponent group Ex(M) of map and the construction

of derived mapMσ,ι also enables one to find more regular maps. The reader is refereed to

[Ned1] and [NeS1] for its techniques.

6.6.4 Theorem 6.2.5 is an important result related the quotient map with that ofvoltage

assignment, which enables one to find relations between voltage group, Euler-Poincarè

characteristic and fixed point sets. Theorems 6.2.6 and 6.2.7 are such results. This theo-

rem is in fact a generalization of a result on voltage graph following, obtained by Gross

and Tucker in 1974.

Theorem 6.6.2 Let A be a group acting freely on a graph̃G and let G be the resulting

quotient graph. Then there is an assignmentσ of voltages inA to the quotient graph G

and a labeling of the vertices of̃G by the elements of V(G) × A such thatG̃ = Gσ and

that the given action ofA onG̃ is the natural left action ofA on Gσ.

6.6.5 For applying ideas of maps to metric mathematics, various metrics on maps are need

to introduce besides angles and non-Euclid area discussed in Section 3. For example,

the length and arc length, the circumference, the volume andthe curvature,· · ·, which
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needs one to speculate the classical mathematics by combinatorics, i.e., combinatorially

reconstruct such a mathematical science.

6.6.6 We have know that maps can be viewed as a combinatorial model of Klein surfaces

in Chapter 5. Usually, a problem is difficult in Klein surface but it is easy for its counter-

part in combinatorics, such as those in Corollary 6.5.1. Further applying this need us to

solve the following problem.

Problem 6.6.2 Determine these behaviors of Klein surfaces S , such as automorphisms

that can not be realizable by maps M on S .

As we known, there are few results on Problem 6.6.1 in publication. But it is funda-

mental for applying combinatorial technique to metric mathematics.



CHAPTER 7.

Map Automorphisms Underlying a Graph

A complete classification of non-equivalent embeddings of graphG on sur-

faces or mapsM = (Xα,β,P) underlyingG requires to find permutation

presentations of automorphisms ofG on Xα,β. For this objective, an alter-

nate approach is to consider the induced action of semi-arc automorphisms

of graphG(M) on quadricellsXα,β. In fact, the automorphism group AutM

is nothing but consisting of all such automorphismsg|Xα,β thatPg|Xα,β
= P.

Topics covered in this chapter include a necessary and sufficient characteris-

tic for a subgroup ofG being that of map and permutation presentations for

automorphisms of maps underlying a complete graph, a semi-regular graph

or a bouquet. Certainly, these presentations of complete maps or semi-regular

maps can be also applied to maps underlying wheelsK1 +Cn or GRR graphs

of a finite group (Γ; ◦). All of these permutation presentations are typical ex-

amples for characterizing the behavior of map groups, and can be also applied

for the enumeration of non-isomorphic maps in Chapter 8.
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§7.1 A CONDITION FOR GRAPH GROUP BEING THAT OF MAP

7.1.1 Orientation-Preserving or Reversing. Let G = (V,E) be a connected graph.

Its automorphism is denoted by AutG. Choose the base set of maps underlyingG to be

X = E. Then its quadricellsXα,β is defined by

Xα,β =
⋃

x∈X
{x, αx, βx, βαβx},

where,K = {1, α, β, αβ} is the Klein 4-elements group. For∀g ∈ AutG, aninduced action

g|Xα,β of g onXα,β is defined as follows:

For ∀x ∈Xα,β, if xg = y, then define(αx)g = αy, (βx)g = βy and(αβx)g = αβy.

Let M = (Xα,β,P) be a map. According to the Theorem 5.3.8, for an automorphismg ∈
AutM, letg|V(M) : u→ v, u, v ∈ V(M). If ug = v, theng is called anorientation-preserving

automorphismand if ug = v−1, such ag is called anorientation-reversing automorphism.

For anyg ∈ AutM, it is obvious thatg|G is orientation-preserving or orientation-reversing,

and the product of two orientation-preserving or orientation-reversing automorphisms is

orientation-preserving, but the product of an orientation-preserving with an orientation-

reversing automorphism is orientation-reversing.

For a subgroupΓ ≤ AutM, defineΓ+ ≤ Γ being the orientation-preserving sub-

group of H. Then it is clear that the index ofΓ+ in Γ is 2. Let v be a vertex with

v = (x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1). Denote by〈v〉 the cyclic group generated byv.

Then we get a property following for automorphisms of a map.

Lemma 7.1.1 LetΓ ≤ AutM be an automorphism group of map M. Then∀v ∈ V(M),

(1) If ∀g ∈ Γ, g is orientation-preserving, thenΓv ≤ 〈v〉 is a cyclic group;

(2) Γv ≤ 〈v〉 × 〈α〉.

Proof (i) Let M = (Xα,β,P). For any∀g ∈ G, sinceg is orientation-preserving, we

know thatvh = v for ∀v ∈ V(M), h ∈ Γv. Assume

v = (x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1).

Then

[(x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1)]
h = (x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1).
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Therefore, ifh(x1) = xk+1, 1 ≤ k ≤ ρ(v), then

h = [(x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1)]
k = vk.

Now if h(x1) = αxρ(v)−k+1, 1 ≤ k ≤ ρ(v), then

h = [(x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1)]
kα = vkα.

But if h = vkα, we know thatvh = vα = v−1, i.e.,h is not orientation-preserving. Whence,

h = vk, 1 ≤ k ≤ ρ(v), i.e., every element inΓv is a power ofv. Let ξ be the least power of

elements inΓv. ThenΓv =
〈
vξ

〉
≤ 〈v〉 is a cyclic group generated byvξ.

(2) For∀g ∈ Gv, vg = v, i.e.,

[(x1, x2, · · · , xρ)(αxρ, αxρ−1, · · · , αx1)]
g = (x1, x2, · · · , xρ)(αxρ, αxρ−1, · · · , αx1).

Similar to the proof of (1), we know that there exists an integer s, 1 ≤ s ≤ ρ such that

g = vs or g = vsα. Consequently,g ∈ 〈v〉 or g ∈ 〈v〉α, i.e.,

Γv ≤ 〈v〉 × 〈α〉 . �

Lemma 7.1.2 Let G be a connected graph. IfΓ ≤ AutΓ, and∀v ∈ V(G), Γv ≤ 〈v〉 × 〈α〉,
then the action ofΓ onXα,β is fixed-free.

Proof Choose a quadricellx ∈ Xα,β. We prove thatΓx = {1Xα,β
}. In fact, if g ∈ Γx,

thenxg = x. Particularly, the incident vertexu is stable under the action ofg, i.e.,ug = u.

Let

u = (x, y1, · · · , yρ(u)−1)(αx, αyρ(u)−1, · · · , αy1),

then because ofΓu ≤ 〈u〉 × 〈α〉, we get that

xg = x, yg
1 = y1, · · · , yg

ρ(u)−1 = yρ(u)−1

and

(αx)g = αx, (αy1)
g = αy1, · · · , (αyρ(u)−1)

g = αyρ(u)−1,

thus for any quadricelleu incident with the vertexu, eg
u = eu. According to the definition

of induced action AutG onXα,β, we know that

(βx)g = βx, (βy1)
g = βy1, · · · , (βyρ(u)−1)

g = βyρ(u)−1
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and

(αβx)g = αβx, (αβy1)
g = αβy1, · · · , (αβyρ(u)−1)

g = αβyρ(u)−1.

Whence, for any quadricelly ∈Xα,β, if the incident vertex ofy is w, then by the connect-

edness of graphG, there is a pathP(u,w) = uv1v2 · · · vsw connecting the verticesu and

w in G. Not loss of generality, we assume thatβyk is incident with the vertexv1. Since

(βyk)g = βyk andΓv1 ≤ 〈v1〉 × 〈α〉, we know that for any quadricellev1 incident with the

vertexv1, eg
v1 = ev1.

Similarly, if a quadricellevi incident with the vertexvi is stable under the action ofg,

i.e., (evi )
g = evi , then we can prove that any quadricellevi+1 incident with the vertexvi+1 is

stable under the action ofg. This process can be well done until we arrive the vertexw.

Therefore, we know that any quadricellew incident with the vertexw is stable under the

action ofg. Particularly, we get thatyg = y.

Therefore,g = 1Γ. Whence,Γx = {1Γ}. �

7.1.2 Group of a Graph Being That of Map. Now we obtain a necessary and sufficient

condition for a subgroup of a graph being that an automorphism group of map underlying

this graph.

Theorem 7.1.1 Let G be a connected graph. IfΓ ≤ AutG, thenΓ is an automorphism

group of map underlying graph G if and only if for∀v ∈ V(G), the stabilizerΓv ≤ 〈v〉×〈α〉.

Proof According to Lemma 7.1.1(ii ), the condition of Theorem 7.1.1 is necessary.

Now we prove its sufficiency.

By Lemma 7.1.2, we know that the action ofΓ on Xα,β is fixed-free, i.e., for∀x ∈
Xα,β, |Γx| = 1Xα,β

. Whence, the length of orbit ofx under the action ofΓ is |xΓ| = |Γx||xΓ| =
|Γ|, i.e., for∀x ∈Xα,β, the length of orbit ofx under the action ofΓ is |Γ|.

Assume that there ares orbitsO1,O2, · · · ,Os in V(Γ) under the action ofΓ, where,

O1 = {u1, u2, · · · , uk},
O2 = {v1, v2, · · · , vl},
· · · · · · · · · · · · · · · · · ·,
Os = {w1,w2, · · · ,wt}.

We construct a conjugatcy permutation pair for every vertexin the graphG such that their

productP is stable under the action ofΓ.

Notice that for∀u ∈ V(G), because of|Γ| = |Γu||uΓ|, we know that [k, l, · · · , t] | |Γ|.
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First, we determine the conjugatcy permutation pairs for each vertex in the orbitO1.

Choose any vertexu1 ∈ O1. Assume that the stabilizerΓu1 is {1Xα,β
, g1, g2g1, · · · ,

m−1∏
i=1

gm−i},

where,m = |Γu1 | and the quadricells incident with vertexu1 is Ñ(u1) in the graphG. We

arrange the elements iñN(u1) as follows.

Choose a quadricellua
1 ∈ Ñ(u1). We applyΓu1 action onua

1 andαua
1, respectively.

Then we get a quadricell setA1 = {ua
1, g1(ua

1), · · · ,
m−1∏
i=1

gm−i(ua
1)} andαA1 = {αua

1, αg1(ua
1), · · · ,

α
m−1∏
i=1

gm−i(ua
1)}. By the definition of a graph automorphism action on its quadricells, we

know thatA1
⋂
αA1 = ∅. Arrange the elements inA1 as

−→
A1 = ua

1, g1(ua
1), · · · ,

m−1∏
i=1

gm−i(ua
1).

If Ñ(u1) \ A1
⋃
αA1 = ∅, then the arrangement of elements iñN(u1) is

−→
A1. If

Ñ(u1) \ A1
⋃
αA1 , ∅, choose a quadricellub

1 ∈ Ñ(u1) \ A1
⋃
αA1. Similarly, apply-

ing the groupΓu1 acts onub
1, we get thatA2 = {ub

1, g1(ub
1), · · · ,

m−1∏
i=1

gm−i(ub
1)} andαA2 =

{αub
1, αg1(ub

1), · · · , α
m−1∏
i=1

gm−i(ub
1)}. Arrange the elements inA1

⋃
A2 as

−−−−−−−→
A1

⋃
A2 = ua

1, g1(u
a
1), · · · ,

m−1∏

i=1

gm−i(u
a
1); ub

1, g1(u
b
1), · · · ,

m−1∏

i=1

gm−i(u
b
1).

If Ñ(u1)\(A1
⋃

A2
⋃
αA1

⋃
αA2) = ∅, then the arrangement of elements inA1

⋃
A2 is

−−−−−−−→
A1

⋃
A2. Otherwise,Ñ(u1)\(A1

⋃
A2

⋃
αA1

⋃
αA2) , ∅. We can choose another quadri-

cell uc
1 ∈ Ñ(u1) \ (A1

⋃
A2

⋃
αA1

⋃
αA2). Generally, If we have gotten the quadricell sets

A1,A2, · · · ,Ar , 1 ≤ r ≤ 2k, and the arrangement of element in them is
−−−−−−−−−−−−−−−−−−−−→
A1

⋃
A2

⋃
· · ·

⋃
Ar ,

if Ñ(u1) \ (A1
⋃

A2
⋃ · · ·⋃ Ar

⋃
αA1

⋃
αA2

⋃ · · ·⋃αAr) , ∅, we can choose an element

ud
1 ∈ Ñ(u1) \ (A1

⋃
A2

⋃ · · ·⋃ Ar
⋃
αA1

⋃
αA2

⋃ · · ·⋃αAr) and define the quadricell set

Ar+1 = {ud
1, g1(u

d
1), · · · ,

m−1∏

i=1

gm−i(u
d
1)}

αAr+1 = {αud
1, αg1(u

d
1), · · · , α

m−1∏

i=1

gm−i(u
d
1)}

and the arrangement of elements inAr+1 is

−−−→
Ar+1 = ud

1, g1(u
d
1), · · · ,

m−1∏

i=1

gm−i(u
d
1).
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Now define the arrangement of elements in
r+1⋃
j=1

A j to be

−−−−→
r+1⋃

j=1

A j =

−−−−→r⋃

i=1

Ai;
−−−→
Ar+1.

Whence,

Ñ(u1) = (
k⋃

j=1

A j)
⋃

(α
k⋃

j=1

A j)

andAk is obtained by the action of the stabilizerΓu1 onue
1. At the same time, the arrange-

ment of elements in the subset
k⋃

j=1
A j of Ñ(u1) to be

−−−−→
k⋃

j=1

A j.

We define the conjugatcy permutation pair of the vertexu1 to be

̺u1 = (C)(αC−1α),

where�
C = (ua

1, u
b
1, · · · , ue

1; g1(u
a
1), g1(u

b
1), · · · , g1(u

e
1), · · · ,

m−1∏

i=1

(ua
1),

m−1∏

i=1

(ub
1), · · · ,

m−1∏

i=1

(ue
1)).

For any vertexui ∈ O1, 1 ≤ i ≤ k, assume thath(u1) = ui, whereh ∈ G, we define the

conjugatcy permutation pair̺ui of the vertexui to be

̺ui = ̺
h
u1
= (Ch)(αC−1α−1).

SinceO1 is an orbit of the actionG onV(Γ), then we get that

(
k∏

i=1

̺ui )
Γ =

k∏

i=1

̺ui .

Similarly, we can define the conjugatcy permutation pairs̺v1, ̺v2, · · · , ̺vl , · · · , ̺w1,

̺w2, · · · , ̺wt of vertices in the orbitsO2, · · · ,Os. We also have that

(
l∏

i=1

̺vi )
Γ =

l∏

i=1

̺vi .

· · · · · · · · · · · · · · · · · · · · ·

(
t∏

i=1

̺wi )
Γ =

t∏

i=1

̺wi .



248 Chap.7 Map Automorphisms Underlying a Graph

Now define the permutation

P = (
k∏

i=1

̺ui ) × (
l∏

i=1

̺vi ) × · · · × (
t∏

i=1

̺wi ).

Since allO1,O2, · · · ,Os are the orbits ofV(G) under the action ofΓ, we get that

PΓ = (
k∏

i=1

̺ui )
Γ × (

l∏

i=1

̺vi )
Γ × · · · × (

t∏

i=1

̺wi )
Γ

= (
k∏

i=1

̺ui ) × (
l∏

i=1

̺vi ) × · · · × (
t∏

i=1

̺wi ) =P .

Whence, if let mapM = (Xα,β,P)�thenΓ is an automorphism ofM. �

For the orientation-preserving automorphisms, we know thefollowing result.

Theorem 7.1.2 Let G be a connected graph. IfΓ ≤ AutG, thenΓ is an orientation-

preserving automorphism group of map underlying graph G if and only if for∀v ∈ V(G),

the stabilizerΓv ≤ 〈v〉 is a cyclic group.

Proof According to Lemma 7.1.1(i)�we know the necessary. Notice that the ap-

proach of construction the conjugatcy permutation pair in the proof of Theorem 7.1.1 can

be also applied in the orientation-preserving case. We knowthatΓ is also an orientation-

preserving automorphism group of mapM. �

Corollary 7.1.1 For any positive integer n, there exists a vertex transitivemap M un-

derlying a circultant such that Zn is an orientation-preserving automorphism group of

M.

By Theorem 7.1.2, we can prove the Theorem 6.5.3 now.

The Proof of Theorem6.5.3

Since every subgroup of a cyclic group is also a cyclic group,we know that any cyclic

orientation-preserving automorphism group of the graphG is an orientation-preserving

automorphism group of a map underlyingΓ by Theorem 7.1.2. Whence, we get that

omax(M, g) ≤ omax(G, g). �

Note7.1.1 Gardiner et al. proved in [GNSS1] that if add an additional condition in The-

orem 7.1.1, i.e,Γ is transitive on the vertices inG, then there is a regular map underlying

the graphG.
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§7.2 AUTOMORPHISMS OF A COMPLETE GRAPH ON SURFACES

7.2.1 Complete Map. A map is called acomplete mapif its underlying graph is a

complete graph. For a connected graphG, the notationsEO(G),EN(G) andEL(G) denote

the embeddings ofΓ on the orientable surfaces, non-orientable surfaces and locally sur-

faces, respectively. For∀e = (u, v) ∈ E(G), its quadricellKe = {e, αe, βe, αβe} can be

represented byKe= {uv+, uv−, vu+, vu−}.
Let Kn be a complete graph of ordern. Label its vertices by integers 1, 2, · · · , n. Then

its edge set is{i j |1 ≤ i, j ≤ n, i , j i j = ji } and

Xα,β(Kn) = {i j+ : 1 ≤ i, j ≤ n, i , j}
⋃
{i j− : 1 ≤ i, j ≤ n, i , j},

α =
∏

1≤i, j≤n,i, j

(i j+, i j−),

β =
∏

1≤i, j≤n,i, j

(i j+, i j+)(i j−, i j−).

We determine all automorphisms of complete maps of ordern and find presentations

for them in this section.

First, we need some useful lemmas for an automorphism of map induced by an

automorphism of its underlying graph.

Lemma 7.2.1 Let G be a connected graph and g∈ AutG. If there is a map M∈ EL(G)

such that the induced action g∗ ∈ AutM, then for∀(u, v), (x, y) ∈ E(G),

[lg(u), lg(v)] = [lg(x), lg(y)] = constant,

where, lg(w) denotes the length of the cycle containing the vertex w in thecycle decompo-

sition of g.

Proof According to the Lemma 6.2.1, we know that the length of a quadricelluv+ or

uv− under the actiong∗ is [lg(u), lg(v)]. Sinceg∗ is an automorphism of map, therefore,g∗

is semi-regular. Whence, we get that

[lg(u), lg(v)] = [lg(x), lg(y)] = constant. �

Now we consider conditions for an induced automorphism of map by that of graph

to be an orientation-reversing automorphism of map.

Lemma 7.2.2 If ξα is an automorphism of map, thenξα = αξ.
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Proof Sinceξα is an automorphism of map, we know that

(ξα)α = α(ξα).

That is, ξα = αξ. �

Lemma 7.2.3 If ξ is an automorphism of map M= (Xα,β,P), thenξα is semi-regular on

Xα,β with order o(ξ) if o(ξ) ≡ 0(mod2) and2o(ξ) if o(ξ) ≡ 1(mod2).

Proof Sinceξ is an automorphism of map by Lemma 7.2.2, we know that the cyclic

decomposition ofξ can be represented by

ξ =
∏

k

(x1, x2, · · · , xk)(αx1, αx2, · · · , αxk),

where,
∏

k denotes the product of disjoint cycles with lengthk = o(ξ).

Therefore, ifk ≡ 0(mod2), then

ξα =
∏

k

(x1, αx2, x3, · · · , αxk)

and ifk ≡ 1(mod2), then

ξα =
∏

2k

(x1, αx2, x3, · · · , xk, αx1, x2, αx3, · · · , αxk).

Whence,ξ is semi-regular acting onXα,β. �

Now we can prove the following result for orientation-reversing automorphisms of

maps.

Lemma 7.2.4 For a connected graph G, letK be all automorphisms inAutG whose

extending action onXα,β, X = E(G) are automorphisms of maps underlying graph G.

Then for∀ξ ∈ K , o(ξ∗) ≥ 2, ξ∗α ∈ K if and only if o(ξ∗) ≡ 0(mod2).

Proof Notice that by Lemma 7.2.3, if ξ∗ is an automorphism of map underlying

graphG, thenξ∗α is semi-regular acting onXα,β.

Assumeξ∗ is an automorphism of mapM = (Xα,β,P). Without loss of generality,

we assume that

P = C1C2 · · ·Ck,

where,Ci = (xi1, xi2, · · · , xi j i ) is a cycle in the decomposition ofξ|V(G) andxit = {(ei1, ei2,

· · · , eiti )(αei1, αeiti , · · · , αei2)} and.

ξ|E(G) = (e11, e12, · · · , es1)(e21, e22, · · · , e2s2) · · · (el1, el2, · · · , elsl ).
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and

ξ∗ = C(αC−1α),

where,C = (e11, e12, · · · , es1)(e21, e22, · · · , e2s2) · · · (el1, el2, · · · , elsl ). Now sinceξ∗ is an

automorphism of map, we get thats1 = s2 = · · · = sl = o(ξ∗) = s.

If o(ξ∗) ≡ 0(mod2), define a mapM∗ = (Xα,β,P∗) with

P∗ = C∗1C
∗
2 · · ·C∗k,

where,C∗i = (x∗i1, x
∗
i2, · · · , x∗i j i ), x∗it = {(e∗i1, e∗i2, · · · , e∗iti )(αe∗i1, αe∗iti , · · · , e

∗
i2)} ande∗i j = epq.

Takee∗i j = epq if q ≡ 1(mod2) ande∗i j = αepq if q ≡ 0(mod2). Then we get thatMξα = M.

Now if o(ξ∗) ≡ 1(mod2), by Lemma 7.2.3, o(ξ∗α) = 2o(ξ∗). Therefore, any chosen

quadricells (ei1, ei2, · · · , eiti ) adjacent to the vertexxi1 for i = 1, 2, · · · , n, where,n = |G|, the

resultant mapM is unstable under the action ofξα. Whence,ξα is not an automorphism

of map underlying graphG. �

7.2.2 Automorphisms of Complete Map.We determine all automorphisms of complete

maps of ordern by applying the previous results. Recall that the automorphism group of

Kn is the symmetry group of degreen, that is, AutKn = SV(Kn).

Theorem 7.2.1 All orientation-preserving automorphisms of non-orientable complete

maps of order n≥ 4 are extended actions of elements in

E[s
n
s ] , E

[1,s
n−1

s ]
,

and all orientation-reversing automorphisms of non-orientable complete maps of order

n ≥ 4 are extended actions of elements in

αE
[(2s)

n
2s ]
, αE

[(2s)
4
2s ]
, αE[1,1,2],

where,Eθ denotes the conjugatcy class containing elementθ in the symmetry group of

degree n.

Proof First, we prove that an induced permutationξ∗ on a complete map of order

n by an elementξ ∈ SV(Kn) is a cyclic order-preserving automorphism of non-orientable

map, if and only if

ξ ∈ Es
n
s

⋃
E

[1,s
n−1

s ]
.
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Assume the cycle index ofξ is [1k1, 2k2, ..., nkn]. If there exist two integerski , kj , 0

andi, j ≥ 2, i , j, then in the cyclic decomposition ofξ, there are two cycles

(u1, u2, ..., ui) and (v1, v2, ..., vj).

Since

[lξ(u1), l
ξ(u2)] = i and [lξ(v1), l

ξ(v2)] = j

and i , j, we know thatξ∗ is not an automorphism of embedding by Theorem 5.3.8.

Whence, the cycle index ofξ must be the form of [1k, sl].

Now if k ≥ 2, let (u), (v) be two cycles of length 1 in the cycle decomposition ofξ.

By Theorem 5.3.8, we know that

[lξ(u), lξ(v)] = 1.

If there is a cycle (w, ...) in the cyclic decomposition ofξ whose length greater or equal to

2, we get that

[lξ(u), lξ(w)] = [1, lξ(w)] = lξ(w).

According to Lemma 7.2.1, we get thatlξ(w) = 1, a contradiction. Therefore, the cycle

index ofξ must be the forms of [sl] or [1, sl]. Whence,sl = n or sl+ 1 = n. Calculation

shows thatl = n
s or l = n−1

s . That is, the cycle index ofξ is one of the following three

types [1n], [1, s
n−1

s ] and [s
n
s ] for some integers≥ 1.

Now we only need to prove that for each elementξ in E
[1,s

n−1
s ]

andE[s
n
s ] , there exists

an non-orientable complete mapM of ordern with the induced permutationξ∗ being its

cyclic order-preserving automorphism of surface. The discussion are divided into two

cases.

Case 1. ξ ∈ E[s
n
s ]

Assume the cycle decomposition ofξ beingξ = (a, b, · · · , c) · · · (x, y, · · · , z) · · · (u, v,
· · · ,w), where the length of each cycle isk and 1≤ a, b, · · · , c, x, y, · · · , z, u, v, · · · ,w ≤ n.

In this case, we construct a non-orientable complete mapM1 = (X1
α,β
,P1) by defining

X 1
α,β = {i j+ : 1 ≤ i, j ≤ n, i( j}

⋃
{i j− : 1 ≤ i, j ≤ n, i , j},

P1 =
∏

x∈{a,b,···,c,···,x,y,···,z,u,v,···,w}
(C(x))(αC(x)−1α),
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where

C(x) = (xa+, · · · , xx∗, · · · , xu+, xb+, xy+, · · · , · · · , xv+, xc+, · · · , xz+, · · · , xw+),

xx∗ denotes an empty position and

αC(x)−1α = (xa−, xw−, · · · , xz−, · · · , xc−, xv−, · · · , xb−, xu−, · · · , xy−, · · ·).

It is clear thatM ξ∗

1 = M1. Therefore,ξ∗ is an cyclic order-preserving automorphism

of mapM1.

Case 2. ξ ∈ E
[1,s

n−1
s ]

We assume the cyclic decomposition ofξ being that

ξ = (a, b, ..., c)...(x, y, ..., z)...(u, v, ...,w)(t),

where, the length of each cycle isk beside the final cycle, and 1≤ a, b...c, x, y..., z,

u, v, ...,w, t ≤ n. In this case, we construct a non-orientable complete mapM2 = (X 2
α,β
,P2)

by defining

X 2
α,β = {i j+ : 1 ≤ i, j ≤ n, i , j}

⋃
{i j− : 1 ≤ i, j ≤ n, i , j},

P2 = (A)(αA−1)
∏

x∈{a,b,...,c,...,x,y,...z,u,v,...,w}
(C(x))(αC(x)−1α),

where

A = (ta+, tx+, ...tu+, tb+, ty+, ..., tv+, ..., tc+, tz+, ..., tw+),

αA−1α = (ta−, tw−, ...tz−, tc−, tv−, ..., ty−, ..., tb−, tu−, ..., tx−),

C(x) = (xa+, ..., xx∗, ..., xu+, xb+, ..., xy+, ..., xv+, ..., xc+, ..., xz+, ..., xw+)

and

αC(x)−1α = (xa−, xw−, .., xz−, ..., xc−, ..., xv−, ..., xy−, ..., xb−, xu−, ...).

It is also clear thatMξ∗

2 = M2. Therefore,ξ∗ is an automorphism of a mapM2 .

Now we consider the case of orientation-reversing automorphisms of complete maps.

According to Lemma 7.2.4, we know that an elementξα, whereξ ∈ SV(Kn) is an orientation-

reversing automorphism of complete map only if,

ξ ∈ E
[k

n1
k ,(2k)

n−n1
2k ]
.
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Our discussion is divided into two parts.

Case3. n1 = n.

Without loss of generality, we can assume the cycle decomposition of ξ has the

following form in this case.

ξ = (1, 2, · · · , k)(k+ 1, k+ 2, · · · , 2k) · · · (n− k+ 1, n− k+ 2, · · · , n).

Subcase3.1 k ≡ 1(mod2) andk > 1.

According to Lemma 7.2.4, we know thatξ∗α is not an automorphism of map since

o(ξ∗) = k ≡ 1(mod2).

Subcase3.2 k ≡ 0(mod2).

Construct a non-orientable mapM3 = (X 3
α,β
,P3), whereX3 = E(Kn) by

P3 =
∏

i∈{1,2,···,n}
(C(i))(αC(i)−1α),

where if i ≡ 1(mod2), then

C(i) = (i1+, ik+1+, · · · , in−k+1+, i2+, · · · , in−k+2+, · · · , i i∗, · · · , ik+, i2k+, · · · , in+),

αC(i)−1α = (i1−, in−, · · · , i2k−, ik−, · · · , ik+1−)

and if i ≡ 0(mod2), then

C(i) = (i1−, ik+1−, · · · , in−k+1−, i2−, · · · , in−k+2−, · · · , i i∗, · · · , ik−, i2k−, · · · , in−),

αC(i)−1α = (i1+, in+, · · · , i2k+, ik+, · · · , ik+1+),

where,i i∗ denotes the empty position, for example, (21, 22∗, 23, 24, 25) = (21, 23, 24, 25). It

is clear thatPξα

3 =P3, that is,ξα is an automorphism of mapM3.

Case 4. n1 , n.

Without loss of generality, we can assume that

ξ = (1, 2, · · · , k)(k+ 1, k+ 2, · · · , n1) · · · (n1 − k+ 1, n1 − k+ 2, · · · , n1)

× (n1 + 1, n1 + 2, · · · , n1 + 2k)(n1 + 2k+ 1, · · · , n1 + 4k) · · · (n− 2k+ 1, · · · , n)

Subcase4.1 k ≡ 0(mod2).
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Consider the orbits of 12+ andn1 + 2k+ 11+ under the action of〈ξα〉, we get that

|orb((12+)<ξα>)| = k

and

|orb(((n1 + 2k+ 1)1+)<ξα>)| = 2k.

Contradicts to Lemma 7.2.1.

Subcase4.2 k ≡ 1(mod2).

In this case, ifk , 1, thenk ≥ 3. Similar to the discussion of Subcase 3.1, we know

thatξα is not an automorphism of complete map. Whence,k = 1 and

ξ ∈ E[1n1 ,2n2] .

Without loss of generality, assume that

ξ = (1)(2)· · · (n1)(n1 + 1, n1 + 2)(n1 + 3, n1 + 4) · · · (n1 + n2 − 1, n1 + n2).

If n2 ≥ 2, and there exists a mapM = (Xα,β,P), assume a vertexv1 in M being

v1 = (1l12+, 1l13+, · · · , 1l1n+)(1l12−, 1l1n−, · · · , 1l13−)

where,l1i ∈ {+2,−2,+3,−3, · · · ,+n,−n} andl1i , l1 j if i , j. Then we get that

(v1)
ξα = (1l12−, 1l13−, · · · , 1l1n−)(1l12+, 1l1n+, · · · , 1l13+) , v1.

Whence,ξα is not an automorphism of mapM, a contradiction. Therefore,n2 = 1.

Similarly, we can also get thatn1 = 2. Whence,ξ = (1)(2)(34) andn = 4. We construct a

stable non-orientable mapM4 under the action ofξαby defining

M4 = (X 4
α,β,P4),

where,

P4 = (12+, 13+, 14+)(21+, 23+, 24+)(31+, 32+, 34+)(41+, 42+, 43+)

× (12−, 14−, 13−)(21−, 24−, 23−)(31−, 34−, 32−)(41−, 43−, 42−).

Therefore, all orientation-preserving automorphisms of non-orientable complete maps

are extended actions of elements in

E[s
n
s ] , E

[1,s
n−1

s ]
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and all orientation-reversing automorphisms of non-orientable complete maps are ex-

tended actions of elements in

αE
[(2s)

n
2s ]
, αE

[(2s)
4
2s ]

αE[1,1,2].

This completes the proof. �

According to the Rotation Embedding Scheme for orientable embedding of a graph,

presented by Heffter firstly in 1891 and formalized by Edmonds in [Edm1], an orientable

complete map is just the case of eliminating the sign+ and - in our representation for

complete maps. Whence, we get the following result for automorphism of orientable

complete maps.

Theorem 7.2.2 All orientation-preserving automorphisms of orientable complete maps

of order n≥ 4 are extended actions of elements in

E[s
n
s ] , E

[1,s
n−1

s ]

and all orientation-reversing automorphisms of orientable complete maps of order n≥ 4

are extended actions of elements in

αE
[(2s)

n
2s ]
, αE

[(2s)
4
2s ]
, αE[1,1,2],

where,Eθ denotes the conjugatcy class containingθ in SV(Kn).

Proof The proof is similar to that of Theorem 7.2.1. For completion, we only need

to construct orientable mapsMO
i , i = 1, 2, 3, 4 to replace non-orientable mapsMi, i =

1, 2, 3, 4 in the proof of Theorem 7.2.1. In fact, for orientation-preserving cases, we only

need to takeMO
1 , MO

2 to be the resultant maps eliminating the sign+ and - in M1, M2

constructed in the proof of Theorem 7.2.1. For the orientation-reversing cases, we take

MO
3 = (E(Kn)α,β,PO

3 ) with

P3 =
∏

i∈{1,2,···,n}
(C(i)),

where, ifi ≡ 1(mod2), then

C(i) = (i1, ik+1, · · · , in−k+1, i2, · · · , in−k+2, · · · , i i∗, · · · , ik, i2k, · · · , in),

and if i ≡ 0(mod2), then

C(i) = (i1, ik+1, · · · , in−k+1, i2, · · · , in−k+2, · · · , i i∗, · · · , ik, i2k, · · · , in)−1,
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wherei i∗ denotes the empty position andMO
4 = (E(K4)α,β,P4) with

P4 = (12, 13, 14)(21, 23, 24)(31, 34, 32)(41, 42, 43).

It can be shown that (MO
i )ξ

∗α = MO
i for i = 1, 2, 3 and 4. �

§7.3 MAP-AUTOMORPHISM GRAPHS

7.3.1 Semi-Regular Graph. A graph is called to be asemi-regular graphif it is simple

and its automorphism group action on its ordered pair of adjacent vertices is fixed-free,

which is considered in [Mao1] and [MLT1] for enumerating itsnon-equivalent embed-

dings on surfaces. A map underlying a semi-regular graph is called to be asemi-regular

map. We determine all automorphisms of maps underlying a semi-regular graph in this

section.

Comparing with the Theorem 7.1.2, we get a necessary and sufficient condition for

an automorphism of a graph being that of a map.

Theorem 7.3.1 For a connected graph G, an automorphismξ ∈ AutG is an orientation-

preserving automorphism of non-orientable map underlyinggraph G if and only ifξ is

semi-regular acting on its ordered pairs of adjacent vertices.

Proof According to Theorem 5.3.5, if ξ ∈ AutG is an orientation-preserving auto-

morphism of mapM underlying graphG, thenξ is semi-regular acting on its ordered pairs

of adjacent vertices.

Now assume thatξ ∈ AutG is semi-regular action on its ordered pairs of adjacent

vertices. Denote byξ|V(G), ξ|E(G)β the action ofξ on V(G) and on its ordered pairs of

adjacent vertices, respectively. By conditions in this theorem, we can assume that

ξ|V(G) = (a, b, · · · , c) · · · (g, h, · · · , k) · · · (x, y, · · · , z)

and

ξ|E(G)β = C1 · · ·Ci · · ·Cm,

where, letsa = |{a, b, · · · , c}|, · · ·, sg = |{g, h, · · · , k}|, · · ·, sx = |{x, y, · · · , z}|, thensa|C(a)| =
· · · = sg|C(g)| = · · · = sx|C(x)|, and C(g) denotes the cycle containingg in ξ|V(G) and

C1 = (a1, b1, · · · , c1, a2, b2, · · · , c2, · · · , asa, bsa, · · · , csa),
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Ci = (g1, h1, · · · , k1, g2, k2, · · · , k2, · · · , gsg, hsg, · · · , ksg),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Cm = (x1, y1, · · · , z1, · · · , x2, y2, · · · , z2, · · · , xsx, ysx, · · · , zsx).

Now for ∀ξ, ξ ∈ AutG, we construct a stable mapM = (Xα,β,P) under the action

of ξ as follows.

X = E(Γ)

and

P =
∏

g∈TV
ξ

∏

x∈C(g)

(Cx)(αC−1
x ).

Assume thatu = ξ f (g), and

NG(g) = {gz1, gz2, · · · , gzl }.

Obviously, all degrees of vertices inC(g) are same. Notices thatξ|NG(g) is circular acting

on NG(g) by Theorem 7.1.2. Whence, it is semi-regular acting onNG(g). Without loss of

generality, we assume that

ξ|NG(g) = (gz1, gz2, · · · , gzs)(gzs+1, gzs+2, · · · , gz2s) · · · (gz(k−1)s+1, gz(k−1)s+2, · · · , gzks),

where,l = ks. Choose

Cg = (gz1+, gzs+1+, · · · , gz(k−1)s+1+, gz2+, gzs+2+, · · · , gzs+, gz2s, · · · , gzks+).

Then,

Cx = (xz1+, xzs+1+, · · · , xz(k−1)s+1+, xz2+, xzs+2+, · · · , xzs+, xz2s, · · · , xzks+),

where,

xzi+ = ξ f (gzi+),

for i = 1, 2, · · · , ks. and

αC−1
x = (αxz1+, αxzs+1+, · · · , αxz(k−1)s+1+, αxzs+, αxz2s, · · · , αxzks+).

Immediately, we get thatMξ = ξMξ−1 = M by this construction. Whence,ξ is an

orientation-preserving automorphism of mapM. �
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By the rotation embedding scheme, eliminatingα on each quadricell in Tutte’s rep-

resentation of embeddings induces an orientable embeddingunderlying the same graph.

Since an automorphism of embedding is commutative withα andβ, we get the follow-

ing result for the orientable-preserving automorphisms oforientable maps underlying a

semi-regular graph.

Theorem 7.3.2 If G is a connected semi-regular graph, then for∀ξ ∈ AutG, ξ is an

orientation-preserving automorphism of orientable map underlying graph G.

According to Theorems 7.3.1 and 7.3.2, if G is semi-regular, i.e., each automor-

phism acting on the ordered pairs of adjacent vertices inG is fixed-free, then every auto-

morphism of graphG is an orientation-preserving automorphism of orientable map and

non-orientable map underlying graphG. We restated this result in the following.

Theorem 7.3.3 If G is a connected semi-regular graph, then for∀ξ ∈ AutG, ξ is an

orientation-preserving automorphism of orientable map and non-orientable map under-

lying graph G.

Notice that ifς∗ is an orientation-reversing automorphism of map, thenς∗α is an

orientation-preserving automorphism of the same map. By Lemma 7.2.4, if τ is an auto-

morphism of map underlying a graphG, thenτα is an automorphism of map underlying

this graph if and only ifo(τ) ≡ 0(mod2). Whence, we have the following result for

automorphisms of maps underlying a semi-regular graph

Theorem7.3.4 Let G be a semi-regular graph. Then all the automorphisms of orientable

maps underlying graphΓ are

g|Xα,β andαh|Xα,β , g, h ∈ AutG with o(h) ≡ 0(mod2).

and all the automorphisms of non-orientable maps underlying graph G are also

g|Xα,β andαh|Xα,β , g, h ∈ AutΓ with o(h) ≡ 0(mod2).

Theorem 7.3.4 will be used in Chapter 8 for the enumeration of maps on surfaces

underlying a semi-regular graph.

An circulant transitive graph of prime order is Cayley graphCay(Zp : S), B.Alspach

completely determined its automorphism group as follows([Als1]):
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If S = ∅, or S = Z∗p, thenAut(Cay(Zp : S)) =
∑

p, the symmetric group of degree p,

otherwise,

Aut(Cay(Zp : S)) = {Ta,b|a ∈ H, b ∈ Z∗p},

where Ta,b is the permutation on Zp which maps x to ax+b and H is the largest even order

subgroup of Z∗p such that S is a union of cosets of H.

We get a corollary from Theorem 7.3.4 for circulants of prime order.

Corollary 7.3.1 Every automorphism of a circulant graph G, not be a complete graph,

with prime order is an orientation-preserving automorphism of map underlying graph G

on orientable surfaces.

Proof According to Theorem 7.3.4, we only need proving that each automorphism

θ = ax+ b of the circulant graph Cay(Zp : S), Cay(Zp : S) , Kn is semi-regular acting

on its order pairs of adjacent vertices, wherep is a prime number. Now for an arcgsg =

(g, sg) ∈ A(Cay(Zp : S)), whereA(G) denotes the arc set of the graphΓ, we have that

(gsg)θ = (ag+ b)asg+b;

(gsg)θ
2
= (a(ag+ b) + b)a(asg+b)+b = (a2g+ ab+ b)a2sg+ab+b;

· · · · · · · · · · · · · · · · · · · · · · · · ;

(gsg)θ
o(a)
= (ao(a)g+ ao(a)−1b+ ao(a)−2b+ · · · + b)ao(a)sg+ao(a)−1b+ao(a)−2b+···+b

= (ao(a)g+
ao(a)b− 1

a− 1
)ao(a)sg+ ao(a)b−1

a−1 = gsg,

whereo(a) denotes the order ofa. Therefore,θ is semi-regular acting on the order pairs

of adjacent vertices of the graph Cay(Zp : S). �

For symmetric circulant of prime order, not being a completegraph, Chao proved

that the automorphism group is regular acting on its order pairs of adjacent vertices([Cha1]).

Whence, we get the following result.

Corollary 7.3.2 Every automorphism of a symmetric circulant graph G of primeorder

p, G , Kp, is an orientation-preserving automorphism of map on orientable surface

underlying graph G.

Now let sbe an even divisor ofq−1 andr a divisor ofp−1. ChooseH(p, r) =< a >

, t ∈ Z∗p be such thatt
s
2 ∈ −H(p, r) andu the least common multiple ofr and the order of

t in Z∗p. The graphG(pq; r, s, u) is defined as follows:

V(G(pq; r, s, u)) = Zq × Zp = {(i, x)|i ∈ Zq, x ∈ Zp}.
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E(G(pq; r, s, u)) = {((i.x), ( j, y))|∃l ∈ Z+such thatj − i = al , y− x ∈ tlH(p, r)}.

It is proved that the automorphism group ofG(pq; r, s, u) is regular acting on the

ordered pairs of adjacent pairs in [PWX1]. By Theorem 7.3.4, we get the following

result.

Corollary 7.3.3 Every automorphism of graph G(pq; r, s, u) is an orientation-preserving

automorphism of map on orientable surface underlying graphG(pq; r, s, u).

7.3.2 Map-Automorphism Graph. A graphG is a map-automorphism graphif all

automorphisms ofG is that of maps underlying graphG. Whence, every semi-regular

graph is a map-automorphism graph. According to Theorems 7.1.1-7.1.2, we know the

following result.

Theorem 7.3.5 A graph G is a map-automorphism graph if and only if for∀v ∈ V(G),

the stabilizer(AutG)v ≤ 〈v〉 × 〈α〉.

Proof By definition, G is a map-automorphism graph if all automorphisms ofG

are automorphisms of maps underlyingG, i.e., AutG is an automorphism group of map.

According to Theorems 7.1.1 and 7.1.2, we know that this happens if and only if for

∀v ∈ V(G), the stabilizer (AutG)v ≤ 〈v〉 × 〈α〉. �

We therefore get the following result again.

Theorem 7.3.6 Every semi-regular graph G is a map-automorphism graph.

Proof In fact, we know that (AutG)v = 1V(G) ≤ 〈v〉 × 〈α〉 for a semi-regular graphG.

By Theorem 7.3.5,G is a map-automorphism graph. �

Further application of Theorem 7.3.6 enables us to get the following result for vertex

transitive graphs.

Theorem 7.3.7 A Cayley graph X= Cay(Γ : S) is a map-automorphism graph if and

only if (AutX)1Γ ≤ (S), where(S) denotes a cyclic permutation on S . Furthermore, there

is a regular map underlyingCay(Γ : S) if (AutX)1Γ ≤ (S).

Proof Notice that a Cayley graph Cay(Γ : S) is transitive by Theorem 3.2.1. For

∀g, h ∈ V(Cay(Γ : S)), such a transitive automorphism isτ = g−1 ◦ h : g → h. We

therefore know that (AutX)g ≃ (AutX)h for g, h ∈ V(Cay(Γ : S)). Whence,X is a map-

automorphism graph if and only if (AutX)1Γ ≤ (S) by Theorem 7.3.6. In this case, there is
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a regular map underlying Cay(Γ : S) was verified by Gardiner et al. in [GNSS1], seeing

Note 7.1.1. �

Particularly, we get the following conclusion for map-automorphism graphs.

Corollary 7.3.4 A GRR graph of a finite group(Γ; ◦) is a map-automorphism graph.

Corollary 7.3.5 A Cayley mapCayM(Γ : S, r) is regular if and only if there is an auto-

morphismτ ∈ AutΓ such thatτ|S = r.

Proof This is an immediately conclusion of Theorems 5.4.7 and 7.3.7. �

A few map-automorphism graphs can be found in Table 7.3.1 following.

G AutG Map-automorphism Graph?

Pn Z2 Yes

Cn Dn Yes

Pn × P2 Z2 × Z2 Yes

Cn × P2 Dn × Z2 Yes

Table 7.3.1

§7.4 AUTOMORPHISMS OF ONE FACE MAPS

7.4.1 One-Face Map. A one face mapis such a map just with one face, which means

that the underlying graph of one face maps is the bouquets. Therefore, for determining

the automorphisms of one face maps, we only need to determinethe automorphisms of

bouquetsBn on surfaces. There is a well-know result for automorphisms of a map and its

dual in topological graph theory, i.e., the automorphism group of map is the same as its

dual.

A map underlying graphBn for an integern ≥ 1 has the formBn = (Xα,β,Pn) with

X = E(Bn) = {e1, e2, · · · , en} and

Pn = (x1, x2, · · · , x2n)(αx1, αx2n, · · · , x2),

where,xi ∈ X, βX or αβX and satisfying Axioms 1 and 2 in Section 5.2 of Chapter 5. For

a given bouquetBn with n edges, its semi-arc automorphism group is

Aut1
2
Bn = Sn[S2].
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From group theory, we know that each element inSn[S2] can be represented by (g; h1, h2,

· · · , hn) with g ∈ Sn andhi ∈ S2 = {1, αβ} for i = 1, 2, · · · , n. The action of (g; h1, h2, · · · , hn)

on a mapBn underlying graphBn by the following rule:

If x ∈ {ei, αei , βei, αβei}, then(g; h1, h2, · · · , hn)(x) = g(hi(x)).

For example, ifh1 = αβ, then, (g; h1, h2, · · · , hn)(e1) = αβg(e1), (g; h1, h2, · · · , hn)(αe1)

= βg(e1), (g; h1, h2, · · · , hn)(βe1) = αg(e1) and (g; h1, h2, · · · , hn)(αβe1) = g(e1).

The following result for automorphisms of a map underlying graphBn is obvious.

Lemma 7.4.1 Let (g; h1, h2, · · · , hn) be an automorphism of mapBn underlying a graph

Bn. Then

(g; h1, h2, · · · , hn) = (x1, x2, ..., x2n)
k

and if (g; h1, h2, · · · , hn)α is an automorphism of mapBn, then

(g; h1, h2, · · · , hn)α = (x1, x2, · · · , x2n)
k

for some integer k, 1 ≤ k ≤ n, where xi ∈ {e1, e2, · · · , en}, i = 1, 2, · · · , 2n and xi , xj if

i , j.

7.4.2 Automorphisms of One-Face Map.Analyzing the structure of elements in group

Sn[S2], we get the automorphisms of maps underlying graphBn by Theorems 7.3.1 and

7.3.2 as follows.

Theorem7.4.1 Let Bn be a bouquet with n edges ei for i = 1, 2, · · · , n. Then the automor-

phisms(g; h1, h2, · · · , hn) of orientable maps underlying Bn for n ≥ 1 are respectively

(O1) g ∈ E
[k

n
k ]
, hi = 1, i = 1, 2, · · · , n;

(O2) g ∈ E
[k

n
k ]

and i f g=
n/k∏

i=1

(i1, i2, · · · ik), where ij ∈ {1, 2, · · · , n}, n/k ≡ 0(mod2),

thenhi1 = (1, αβ), i = 1, 2, · · · , n
k and hi j = 1 f or j ≥ 2;

(O3) g ∈ E
[k2s,(2k)

n−2ks
2k ]

and i f g =
2s∏

i=1

(i1, i2, · · · ik)
(n−2ks)/2k∏

j=1

(ej1, ej2, · · · , ej2k), where

i j, ejt ∈ {1, 2, · · · , n}, thenhi1 = (1, αβ), i = 1, 2, · · · , s, hil = 1 f or l ≥ 2 and hjt =

1 f or t = 1, 2, · · · , 2k,

and the automorphisms(g; h1, h2, · · · , hn) of non-orientable maps underlying Bn for n ≥ 1

are respectively

(N1) g ∈ E
[k

n
k ]
, hi = 1, i = 1, 2, · · · , n;
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(N2) g ∈ E
[k

n
k ]

and i f g=
n/k∏

i=1

(i1, i2, · · · ik), where ij ∈ {1, 2, · · · , n}, n/k ≡ 0(mod2),

thenhi1 = (1, αβ), (1, β) with at least one hi01
= (1, β) for i = 1, 2, · · · , n

k and hi j = 1 f or j ≥
2;

(N3) g ∈ E
[k2s,(2k)

n−2ks
2k ]

and i f g =
2s∏

i=1

(i1, i2, · · · ik)
(n−2ks)/2k∏

j=1

(ej1, ej2, · · · , ej2k), where

i j, ejt ∈ {1, 2, · · · , n}, then hi1 = (1, αβ), (1, β) with at least one hi01
= (1, β) f or i =

1, 2, · · · , s and hil = 1 f or l ≥ 2 and hjt = 1, t = 1, 2, · · · , 2k, whereEθ denotes the

conjugacy class in symmetry group SV(Bn) containing the elementθ.

Proof By the structure of groupSn[S2], it is clear that the elements in the cases

(1), (2) and (3) are all semi-regular. We only need to construct anorientable or non-

orientable mapBn = (Xα,β,Pn) underlyingBn stable under the action of elements in

each case.

(1) g =
n/k∏

i=1

(i1, i2, · · · ik) andhi = 1, i = 1, 2, · · · , n, wherei j ∈ {1, 2, · · · , n}.

Choose

X 1
α,β =

n/k⋃

i=1

K{i1, i2, · · · , ik},

whereK = {1, α, β, αβ} and

P1
n = C1(αC−1

1 α−1)

with

C1 = ( 11, 21, · · · , (
n
k

)1, αβ11, αβ21, · · · , αβ(
n
k

)1, 12, 22, · · · , (
n
k

)2,

αβ12, αβ22, · · · , αβ(
n
k

)2, · · · , 1k, 2k, · · · , (
n
k

)k, αβ1k, αβ1k, · · · , αβ(
n
k

)k).

Then the mapB1
n = (X 1

α,β
,P1

n) is an orientable map underlying graphBn and stable under

the action of (g; h1, h2, · · · , hn).

For the non-orientable case, we chose

C1 =

(
11, 21, · · · , (

n
k

)1, β11, β21, · · · , β(
n
k

)1, 12, 22, · · · , (
n
k

)2,

β12, β22, · · · , β(
n
k

)2, · · · , 1k, 2k, · · · , (
n
k

)k, β1k, β1k, · · · , β(
n
k

)k

)
.

Then the mapB1
n = (X 1

α,β,P
1
n) is a non-orientable map underlying graphBn and stable

under the action of (g; h1, h2, · · · , hn).
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(2) g =
n/k∏

i=1

(i1, i2, · · · ik), hi = (1, β) or (1, αβ), i = 1, 2, · · · , n, n
k ≡ 0(mod2), where

i j ∈ {1, 2, · · · , n}.

If hi1 = (1, αβ) for i = 1, 2, · · · , n
k andhit = 1 for t ≥ 2, then

(g; h1, h2, · · · , hn) =
n/k∏

i=1

(i1, αβi2, · · ·αβik, αβi1, i2, · · · , ik).

Similar to the case of (1), letX 2
α,β =X 1

α,β and

P2
n = C2(αC−1

2 α−1)

with

C2 =

(
11, 21, · · · , (

n
k

)1, αβ12, αβ22, · · · , αβ(
n
k

)2, αβ1k, αβ2k,

· · · , αβ(
n
k

)k, αβ11, αβ21, · · · , αβ(
n
k

)1, 12, 22, · · · , (
n
k

)2, · · · , 1k, 2k, · · · , (
n
k

)k

)
.

Then the mapB2
n = (X 2

α,β,P
2
n) is an orientable map underlying graphBn and stable under

the action of (g; h1, h2, · · · , hn). For the non-orientable case, the construction is similar.

Now it only need to replace each elementαβi j by that ofβi j in the construction of the

orientable case ifhi j = (1, β).

(3) g =
2s∏

i=1

(i1, i2, · · · ik)
(n−2ks)/2k∏

j=1

(ej1, ej2, · · · , ej2k) andhi1 = (1, αβ), i = 1, 2, · · · , s,

hil = 1 for l ≥ 2 andh jt = 1 for t = 1, 2, · · · , 2k.

In this case, we know that

(g; h1, h2, · · · , hn) =
s∏

i=1

(i1, αβi2, · · ·αβik, αβi1, i2, · · · , ik)
(n−2ks)/2k∏

j=1

(ej1, ej2, · · · , ej2k).

Denote byp the number (n− 2ks)/2k. We construct an orientable mapB3
n = (X 3

α,β
,P3

n)

underlyingBn stable under the action of (g; h1, h2, · · · , hn) as follows.

Take

X 3
α,β =X 1

α,β and P3
n = C3(αC−1

3 α−1)

with

C3 =
(
11, 21, · · · , s1, e11, e21, · · · , ep1, αβ12, αβ22, · · · , αβs2,

e12, e22, · · · , ep2, · · · , αβ1k, αβ2k, · · · , αβsk, e1k, e2k, · · · ,

epk, αβ11, αβ21, · · · , αβs1, e1k+1, e2k+1, · · · , epk+1, 12, 22, · · · ,

s2, e1k+2, e2k+2, · · · , epk+2, · · · , 1k, 2k, · · · , sk, e12k, e22k, · · · , ep2k

)
.
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Then the mapB3
n = (X 3

α,β
,P3

n) is an orientable map underlying graphBn and stable under

the action of (g; h1, h2, · · · , hn).

Similarly, replacing each elementαβi j by βi j in the construction of the orientable

case ifhi j = (1, β), a non-orientable map underlying graphBn and stable under the action

of (g; h1, h2, · · · , hn) can be also constructed. This completes the proof. �

We will apply Theorem 7.4.1 for the enumeration of one face maps on surfaces in

Chapter 8.

§7.5 REMARKS

7.5.1 An automorphism of mapM is an automorphism of graph underlying that ofM.

But the conversely is not always true. Any map automorphism is fixed-free, i.e., semi-

regular, particularly, an automorphism of regular map is regular. This fact enables one

to characterize those automorphisms of maps underlying a graph. Certainly, there is an

naturally induced actiong|Xα,β for an automorphismg ∈ AutG of graphG on quadricells

in maps underlyingG, i.e.,

(αx)g = αy, (βx)g = βy, (αβx)g = αβy

if xg = y for ∀x ∈ Xα,β(M(G)). Consider the action of AutG on Xα,β(M(G)). Then we

get the following result by definition.

Theorem 7.5.1 An automorphism g of G is a map automorphism if and only if there is a

map M(G) stabilized under the action of g|Xα,β.

Theorems 7.1.1 and 7.1.2 enables one to characterize such map automorphisms in

another way, i.e., the following.

Theorem 7.5.2 An automorphism g∈ AutG of graph G is an automorphism of map

underlying G if and only if〈g〉v ≤ 〈v〉 × 〈α〉 for ∀v ∈ V(G).

7.5.2 We get these permutation presentations for automorphisms of maps underlying a

complete graph, a semi-regular graph and a bouquet, which enables us to calculate the

stabilizerΦ(g) of g on maps underlying such a graph in Chapter 8. A general problem is

the following.
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Problem 7.5.1 Find a permutation presentation for map automorphisms induced by such

automorphisms of a graph G on quadricellsXα,β with base set X= E(G), particularly,

find such presentations for complete bipartite graphs, cubes, generalized Petersen graphs

or regular graphs in general.

7.5.3 We had introduced graph multigroup for characterizing the local symmetry of a

graph, i.e., letG be a connected graph,H ≤ G a connected subgraph andτ ∈ AutG.

Similarly, consider the induced action ofτ on Xα,β with base setX = E(H). Then the

following problem is needed to answer.

Problem 7.5.2 Characterize automorphisms of maps underlying H induced byauto-

morphisms of graph G, or verse via, characterize automorphisms of maps underlying G

induced by automorphisms of graph H by introducing the action of AutH on G\ H with

a stabilizer H.



CHAPTER 8.

Enumerating Maps on Surfaces

There are two kind of maps usually considered for enumeration in literature.

One is the rooted map, i.e., a quadricell on map marked beforehand. Such a

map is symmetry-freed, i.e., its automorphism group is trivial. Another is the

map without roots marked. The enumeration of maps on surfaces underlying

a graph can be carried out by the following programming:

STEP 1. Determine all automorphismsg of maps underlying graphG;

STEP 2. Calculate the the fixing setΦ1(g) or Ψ2(g) for each automorphism

g ∈ Aut 1
2
G;

STEP 3. Enumerate the maps on surfaces underlying graphG by Burnside

lemma.

This approach is independent on the orientability of maps. So it enables one to

enumerate orientable or non-orientable maps on surfaces both. The roots dis-

tribution and a formula for rooted maps underlying a graph are included in the

first two sections. Then a general enumeration scheme for maps underlying a

graph is introduced in Section 3. By applying this scheme, the enumeration

formulae for maps underlying a complete graph, a semi-regular graph or a

bouquet are obtained by applying automorphisms of maps determined in last

chapter in Sections 8.3-8.6, respectively.
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§8.1 ROOTS DISTRIBUTION ON EMBEDDINGS

8.1.1 Roots on Embedding.A root of am embeddingM = (Xα,β,P) of graphG is an

element inXα,β. A root r is called ani-root if it is incident with a vertex of valencyi. Two

i-roots r1, r2 aretransitiveif there existsτ ∈ AutM such thatτ(r1) = r2. An enumerator

v(D, x) and theroot polynomials r(M, x), r(M(D), x) of M are defined by

v(D, x) =
∑

i≥1

ivi x
i;

r(M, x) =
∑

i≥1

r(M, i)xi,

wherer(M, i) denotes the number of non-transitive i-roots inM and

r(M(D), x) =
∑

M∈M(D)

r(M, x).

Theorem 8.1.1 For any embedding M (orientable or non-orientable),

r(M, i) =
2ivi

|AutM| ,

where vi denotes the number of vertices with valency i in M.

Proof Let U be all i-roots onM. SinceUAutM = U, AutM is also a permutation

group acting onU, andr(M, i) is the number of orbits inU under the action of AutM.

It is clear that|U | = 2ivi. For ∀r ∈ U, (AutM)r is the trivial group by Theorem 5.3.5.

According to Theorem 2.1.1(3), |AutM| = |(AutM)r ||rAutM |, we get that|rAutM | = |AutM|.
Thus the length of each orbit inU under this action has|AutM| elements. Whence,

r(M, i) =
|U |
|AutM| =

2ivi

|AutM| . �

Applying Theorem 8.1.1, we get a relation betweenv(D, x) andr(M, x) following.

Theorem 8.1.2 For an embedding M (orientable or non-orientable ) with valency se-

quence D,

r(M, x) =
2v(D, x)
|AutM| .

Proof By Theorem 8.1.1, we know thatr(M, i) =
2ivi

|AutM| , wherevi denotes the

number of vertices of valencyi in M. So we have

r(M, x) =
∑

i≥1

r(M, i)xi
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=
∑

i≥1

2ivi

|AutM| =
2v(D, x)
|AutM| �

Let r(M) denotes the number of non-transitive roots on an embeddingM. As a by-

product, we getr(M) by Theorem 8.1.2 following.

Corollary 8.1.1 For a given embedding M,

r(M) =
4ε(M)
|AutM| ,

whereε(M) denotes the number of edges of M.

Proof According to Theorem 8.1.2, we know that

r(M) = r(M, 1) =
2v(D, 1)
|AutM| =

1
|AutM|

∑

i≥1

2ivi.

Notice
∑
i≥1

ivi = 2ε(M). We get that

r(M) =
4ε(M)
|AutM| . �

8.1.2 Root Distribution. Let G be a connected simple graph andD = {d1, d2, · · · , dv}
its valency sequence. For∀g ∈ AutG, there is an extended actiong|Xα,β acting onXα,β

with X = E(G). Define theorientable embedding indexθO(G) of G and theorientable

embedding indexθO(D) of D respectively by

θO(G) =
∑

M∈M(G)

1
|AutM| ,

θO(D) =
∑

G∈G(D)

∑

M∈M(G)

1
|AutM| ,

whereG(D) denotes the family of graphs with valency sequenceD. Then we have the

following results.

Theorem 8.1.3 For any connected simple graph G and a valency sequence D ,

θO(G) =

∏
d∈D(G)

(d− 1)!

2|AutG| and θO(D) =

∏
d∈D(G)

(d − 1)!

2|∆(D)| ,

where

|∆(D)|−1 =
∑

G∈G(D)

1
|AutG| .
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Proof Let W be the set of all embedings of graphG on orientable surfaces. Since

there is a bijection between the rotation scheme set̺(G) of G and W, it is clear that

|W| = |̺(G)| = ∏
d∈D(G)

(d − 1)!. Notice that every elementξ ∈ AutG naturally induces an

g|Xα,β action onW. Since for an embedingM, ξ ∈ AutM if and only if ξ ∈ (AutG× 〈α〉)M,

so AutM= (AutG× 〈α〉)M. By |AutG× 〈α〉 | = |(AutG× 〈α〉)M ||MAutG×〈α〉|, we get that

|MAutG×〈α〉| = |AutG× 〈α〉 |
|AutM| .

Therefore, we have that

θO(G) =
∑

M∈M(G)

1
|AutM|

=
1

|AutG× 〈α〉 |
∑

M∈M(G)

|AutG× 〈α〉 |
|AutM|

=
1

|AutG|
∑

M∈M(G)

|MAutG×〈α〉|

=
|W|

2|AutG| =

∏
d∈D(G)

(d − 1)!

2|AutG|

and

θO(D) =
∑

G∈G(D)

∏
d∈D(G)

(d − 1)!

2|AutG|)

=
1
2

∏

d∈D(G)

(d − 1)!(
∑

G∈G(D)

1
|AutG| )

=

∏
d∈D(G)

(d− 1)!

2|∆(D)| . �

Now we prove the main result of this subsection.

Theorem 8.1.4 For a given valency sequence D= {d1, d2, · · · , dv},

r(M(D), x) =

v(D, x)
∏

d∈D(G)
(d − 1)!

|∆(D)| .

where,

|∆(D)|−1 =
∑

G∈G(D)

1
|AutG| .
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Proof By the definition ofr(M(D), x), we know that

r(M(D), x) =
∑

M∈M(D)

r(M, x)

=
∑

G∈G(D)

∑

M∈M(G)

r(M, x).

According to Theorem 8.1.3, we know that

r(M(D), x) =
∑

G∈G(D)

∑

M∈M(G)

2v(D, x)
|AutM| = 2v(D, x)θ(D).

Whence,

θ(D) =

∏
d∈D(G)

(d− 1)!

2|∆(D)| .

Therefore, we finally get that

r(M(D), x) =

v(D, x)
∏

d∈D(G)
(d − 1)!

|∆(D)| . �

Corollary 8.1.2 For a connected simple graph G, let D(G) = {d1, d2, · · · , dv} be its valency

sequence. Then

r(M(G), x) =

v(D, x)
∏

d∈D(G)
(d − 1)!

|AutG| .

Corollary 8.1.4 The number of all non-transitive i-roots in embeddings underlying a

connected simple graph G is
ivi

∏
d∈D(G)

(d − 1)!

|AutG| ,

where vi denotes the number of vertices of valency i in G.

Corollary 8.1.5 The number r(M(G)) of non-transitive roots in embeddings of simple

graph G on orientable surfaces is

r(M(G)) =

2ε(G)
∏

d∈D(G)
(d− 1)!

|AutG| .

Proof According to Theorem 8.1.2 and Corollary 8.1.2, we know that

r(M(G)) = r(M(G), 1)

=

∏
d∈D(G)

(d− 1)!v(D, 1)

|AutG| .
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Notice thatv(D, 1) =
∑
i≥1

ivi = 2ε(M). So we find that

r(M(G)) =

2ε(G)
∏

d∈D(G)
(d − 1)!

|AutG| . �

Theorem 8.1.4 enables one to enumerate roots on edmeddings underlying a vertex-transitive

graphs, a symmetric graph,· · ·, etc. For example, we can apply Corollary 8.1.5 to count

the roots on embeddings underlying a complete graphKn. In this case, AutKn = SV(Kn),

so |AutKn| = n!. Therefore,

r(M(Kn)) =
n(n− 1)((n− 2)!)n

n!
= ((n− 2)!)n−1.

let n = 4. Calculation shows that there are eight non-transitive roots on embeddings

underlyingK4, shown in the Fig.8.1.1, in which each arrow represents a root.-
-

6 61

1

2 2- ?IR +3 ?6 -
-

6 61

1

2 2

Fig.8.1.1

8.1.3 Rooted Map. A rooted map Mr is such a mapM = (X ,P) with one quadricell

r ∈Xα,β is marked beforehand, which is introduced by Tutte for the enumeration of planar

maps. Two rooted mapsMr1
1 andMr2

2 are said to beisomorphicif there is an isomorphism

θ : M1 → M2 betweenM1 and< M2 such thatθ(r1) = r2, particularly, if M1 = M2 = M,

two rooted mapsMr1 and Mr2 are isomorphic if and only if there is an automorphism

τ ∈ AutM such thatτ(r1) = r2. All automorphisms of a rooted mapMr form a group,

denoted by AutMr . By Theorem 5.3.5, we know the following result.

Theorem 8.1.5 AutMr is a trivial group.

The importance of the idea introduced a root on map is that it turns any map to a

non-symmetry map. The following result enables one to enumerate rooted maps by that

of roots on maps.
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Theorem 8.1.6 For a map M= (Xα,β,P), the number of non-isomorphic rooted maps

is equal to that of non-transitive roots on map M.

Proof Let r1 andr2 be two non-transitive roots onM. ThenMr1 andMr2 are non-

isomorphic by definition. Conversely, ifMr1 and Mr2 are non-isomorphic, there are no

automorphismsτ ∈ AutM such thatτ(r1) = r2, i.e.,r1 andr2 are non-transitive. �.

Theorem 8.1.6 turns the enumeration of rooted maps by that of roots on maps.

Theorem 8.1.7 The number rO(G) of rooted maps on orientable surfaces underlying a

connected graph G is

rO(G) =

2ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut 1
2
G| ,

whereρ(v) denotes the valency of vertex v.

Proof Denotes the set of all non-isomorphic orientable maps with underlying graph

G byMO(G). According to Corollary 8.1.1 and Theorem 8.1.6, we know that

rO(G) =
∑

M∈MO(G)

4ε(M)
|AutM| .

Notice that every elementξ ∈ AutG1
2
× 〈α〉 natural induces an action onEO(G). By

Theorem 5.3.3, ∀M ∈ M(G), τ ∈ AutM if and only if, τ ∈ (AutG1
2
× 〈α〉)M. Whence,

AutM = (AutG1
2
× 〈α〉)M. According to Theorem 2.1.1(3), |AutG1

2
× 〈α〉 | = |(AutG1

2
×

〈α〉)M ||M
AutG 1

2
×〈α〉|. We therefore get that

|MAutG 1
2
×〈α〉| = 2|AutG|

|AutM| .

Whence,

rO(G) = 4ε(G)
∑

M∈MO(G)

1
|AutM|

=
4ε(G)

|AutG1
2
× 〈α〉 |

∑

M∈MO(G)

|AutG1
2
× 〈α〉 |

|AutM|

=
4ε(G)

|AutG1
2
× 〈α〉 |

∑

M∈MO(G)

|MAutG 1
2
×〈α〉|

=
4ε(G)|EO(G)|

2|AutG1
2
| =

2ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut 1
2
G| �
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By Theorems 3.4.1 and 8.1.7, we get a corollary for the number of rooted orientable

maps underlying a simple graph, which is the same as Corollary 8.1.5 following.

Corollary 8.1.6 The number rO(G) of rooted maps on orientable surfaces underlying a

connected simple graph G is

rO(G) =

2ε(H)
∏

v∈V(G)
(ρ(v) − 1)!

|AutG| .

For rooted maps on locally orientable surfaces underlying aconnected graphG, we

know the following result.

Theorem 8.1.8 The number rL(G) of rooted maps on surfaces underlying a connected

graph G is

rL(G) =

2β(G)+1ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut1
2
G| .

Proof The proof is similar to that of Theorem 8.1.7. In fact, by Corollaries 5.1.2,

8.1.1 and Theorem 8.1.6, letML(G) be the set of all non-isomorphic maps underlying

graphG. Then

rL(G) =
∑

M∈ML(G)

4ε(M)
|AutM| = 4ε(G)

∑

M∈ML(G)

1
|AutM|

=
4ε(G)

|AutG1
2
× 〈α〉 |

∑

M∈ML(G)

|AutG1
2
× 〈α〉 |

|AutM|

=
4ε(G)

|AutG1
2
× 〈α〉 |

∑

M∈ML(G)

|MAutG 1
2
×〈α〉|

=
4ε(G)|EL(G)|

2|AutG1
2
| =

2β(G)+1ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut1
2
G| .

This completes the proof. �

SincerL(G) = rO(G) + rN(G), we also get the numberrN(G) of rooted maps on

non-orientable surfaces underlying a connected graphG following.

Theorem8.1.9 The number rN(G) of rooted maps on non-orientable surfaces underlying

a connected graph G is

rN(G) =

(2β(G)+1 − 2)ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut1
2
G| .
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According to Theorems 8.1.8 and 8.1.9, we get the following table for the numbers

of rooted maps on surfaces underlying a few well-known graphs.

G rO(G) rN(G)

Pn n− 1 0

Cn 1 1

Kn (n− 2)!n−1 (2
(n−1)(n−2)

2 − 1)(n− 2)!n−1

Km,n(m, n) 2(m− 1)!n−1(n− 1)!m−1 (2mn−m−n+2 − 2)(m− 1)!n−1(n− 1)!m−1

Kn,n (n− 1)!2n−2 (2n2−2n+2 − 1)(n− 1)!2n−2

Bn
(2n)!
2nn! (2n+1 − 1)(2n)!

2nn!

Dpn (n− 1)! (2n − 1)(n− 1)!

Dpk,l
n (k , l) (n+k+l)(n+2k−1)!(n+2l−1)!

2k+l−1n!k!l!
(2n+k+l−1)(n+k+l)(n+2k−1)!(n+2l−1)!

2k+l−1n!k!l!

Dpk,k
n

(n+2k)(n+2k−1)!2

22kn!k!2
(2n+2k−1)(n+2k)(n+2k−1)!2

22kn!k!2

Table 8.1.1

§8.2 ROOTED MAP ON GENUS UNDERLYING A GRAPH

8.2.1 Rooted Map Polynomial. For a graphG with maximum valency≥ 3, assume

that r i(G), r̃ i(G), i ≥ 0 are respectively the numbers of rooted maps underlying graph

G on orientable surface of genusγ(G) + i − 1 or on non-orientable surface of genus

γ̃(G)+ i−1, whereγ(G) andγ̃(G) denote the minimum orientable genus and the minimum

non-orientable genus ofG, respectively. Therooted orientable map polynomial r[G](x) ,

rooted non-orientable map polynomialr̃[G](x) androoted total map polynomial R[G](x)

on genus are defined by

r[G](x) =
∑

i≥0

r i(G)xi ,

r̃[G](x) =
∑

i≥0

r̃ i(G)xi

and

R[G](x) =
∑

i≥0

r i(G)xi +
∑

i≥1

r̃ i(G)x−i .

We have known that the total number of orientable embeddingsof G is
∏

d∈D(G)
(d− 1)!

and non-orientable embeddings is (2β(G)−1)
∏

d∈D(G)
(d−1)! by Corollary 5.1.2, whereD(G)
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is its valency sequence. Similarly, letgi(G) andg̃i(G), i ≥ 0 respectively be the number

of embeddings ofG on the orientable surface with genusγ(G) + i − 1 and on the non-

orientable surface with genus̃γ(G) + i − 1. Theorientable genus polynomial g[G](x),

non-orientable genus polynomialg̃[G](x) andtotal genus polynomialG[G](x) of graphG

are defined respectively by

g[G](x) =
∑

i≥0

gi(G)xi ,

g̃[G](x) =
∑

i≥0

g̃i(G)xi

and

G[G](x) =
∑

i≥0

gi(G)xi +
∑

i≥1

g̃i(G)x−i .

All these polynomialsr[G](x), r̃[G](x), R[G](x) andg[G](x), g̃[G](x), G[G](x) are finite

by properties ofG on surfaces, for example, Theorem 5.1.2.

We establish relations betweenr[G](x) andg[G](x), r̃[G](x) and g̃[G](x), R[G](x)

andG[G](x) in the following result.

Theorem 8.2.1 For a connected graph G,

|Aut 1
2
G| r[G](x) = 2ε(G) g[G](x),

|Aut 1
2
G| r̃[G](x) = 2ε(G) g̃[G](x)

and

|Aut 1
2
G| R[G](x) = 2ε(G)G(x).

Proof For an integerk, denotes byMk(G,S) all the non-isomorphic maps on an

orientable surfaceS with genusγ(G) + k− 1. According to the Corollary 8.1.1, we know

that

rk(G) =
∑

M∈Mk(G,S)

4ε(M)
|AutM|

=
4ε(G)

|Aut 1
2
G× 〈α〉 |

∑

M∈Mk(G,S)

|Aut 1
2
G× 〈α〉 |
|AutM| .

Since|Aut 1
2
G× 〈α〉 | = |(Aut 1

2
G× 〈α〉)M ||M

Aut 1
2

G×〈α〉| and|(Aut 1
2
G× 〈α〉)M | = |AutM|,

we know that

rk(G) =
4ε(G)

|Aut 1
2
G× 〈α〉 |

∑

M∈Mk(G,S)

|MAut 1
2

G×〈α〉| = 2ε(G)gk(G)
|Aut 1

2
G| .
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Consequently,

|Aut 1
2
G| r[G](x) = |Aut 1

2
G|

∑

i≥0

ri(G)xi

=
∑

i≥0

|Aut 1
2
G|ri(G)xi

=
∑

i≥0

2ε(G)gi(G)xi = 2ε(G) g[G](x).

Similarly, letM̃k(G, S̃) be all non-isomorphic maps on an non-orientable surfaceS̃

with genus̃γ(G) + k− 1. Similar to the orientable case, we get that

r̃k(G) =
4ε(G)

|Aut 1
2
G× 〈α〉 |

∑

M∈M̃k(G,S̃)

|Aut 1
2
G× 〈α〉 |
|AutM|

=
4ε(G)

|Aut 1
2
G× 〈α〉 |

∑

M∈M̃k(G,S̃)

|MAut 1
2

G×〈α〉|

=
2ε(G)g̃k(G)
|Aut 1

2
G| .

Whence,

|Aut 1
2
G| r̃[G](x) =

∑

i≥0

|Aut 1
2
G|̃ri(G)xi

=
∑

i≥0

2ε(G)g̃i(G)xi = 2ε(G) g̃[G](x).

Notice that

R[G](x) =
∑

i≥0

r i(G)xi +
∑

i≥1

r̃ i(G)x−i

and

G[G](x) =
∑

i≥0

gi(G)xi +
∑

i≥1

g̃i(G)x−i .

We also get that

rk(G) =
2ε(G)gk(G)
|Aut 1

2
G| and r̃k(G) =

2ε(G)g̃k(G)
|Aut 1

2
G|

for integersk ≥ 0. Therefore, we get that

|Aut 1
2
G| R[G](x) = |Aut 1

2
G|(

∑

i≥0

ri(G)xi +
∑

i≥1

r̃i(G)x−i)

=
∑

i≥0

|Aut 1
2
G|ri(G)xi +

∑

i≥1

|Aut 1
2
G|̃ri(G)x−i

=
∑

i≥0

2ε(G)gi(G)xi +
∑

i≥0

2ε(G)g̃i(G)x−i = 2ε(G) G[G](x).
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This completes the proof. �

Corollary 8.2.1 Let G be a graph and s≥ 0 an integer. If rs(G) and gs(G) are the numbers

of rooted maps and embeddings on a locally orientable surface of genus s underlying

graph G, respectively. Then

rs(G) =
2ε(G)gs(G)
|Aut 1

2
G| .

8.2.2 Rooted Map Sequence.Corollary 8.2.1 can be used to find the implicit relations

amongr[G](x), r̃[G](x) or R[G](x) if the implicit relations amongg[G](x), g̃[G](x) or

G[G](x) are known, and vice via.

Denote the variable vector (x1, x2, · · ·) by x
¯
,

r
¯
(G) = (· · · , r̃2(G), r̃1(G), r0(G), r1(G), r2(G), · · ·),

g
¯
(G) = (· · · , g̃2(G), g̃1(G), g0(G), g1(G), g2(G), · · ·).

We call r
¯
(G) and g

¯
(G) therooted map sequenceand theembedding sequenceof graphG,

respectively.

Define a functionF(x
¯
, y
¯
) to bey-linear if it can be represented as the following form

F(x
¯
, y
¯
) = f (x1, x2, · · ·) + h(x1, x2, · · ·)

∑

i∈I
yi + l(x1, x2, · · ·)

∑

Λ∈O
Λ(y

¯
),

whereI denotes a subset of index andO a set of linear operators. Notice thatf (x1, x2, · · ·) =
F(x

¯
, 0
¯
), where 0

¯
= (0, 0, · · ·). We get the following general result.

Theorem 8.2.2 Let G be a graph family andH ⊆ G. If their embedding sequences

g
¯

(G), G ∈ H satisfy the equation

FH(x
¯
, g
¯

(G)) = 0, (4.1)

then the rooted map sequences r
¯
(G), G ∈ H satisfy the equation

FH(x
¯
,
|Aut 1

2
G|

2ε(G)
r
¯
(G)) = 0,

and vice via, if the rooted map sequences r
¯
(G), G ∈ H satisfy the equation

FH(x
¯
, r
¯
(G)) = 0, (4.2)
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then the embedding sequences g
¯

(G), G ∈ H satisfy the equation

FH (x
¯
,

2ε(G)
|Aut 1

2
G|g¯

(G)) = 0.

Furthermore, assume the function F(x
¯
, y
¯

) is y-linear and
2ε(G)
|Aut 1

2
G| , G ∈ H is a constant.

If the embedding sequences g
¯

(G), G ∈ H satisfy equation(4.1), then

F⋄H(x
¯
, r
¯
(G)) = 0,

where F⋄H(x
¯
, y
¯

) = F(x
¯
, y
¯

)+ (
2ε(G)
|Aut 1

2
G| − 1)F(x

¯
, 0
¯

) and vice via, if the rooted map sequences

g
¯

(G), G ∈ H satisfy equation(4.2), then

F⋆
H (x

¯
, g
¯

(G)) = 0.

where F⋆H = F(x
¯
, y
¯

) + (
|Aut 1

2
G|

2ε(Γ)
− 1)F(x

¯
, 0
¯

).

Proof According to the Corollary 8.2.1, for any integers ≥ o andG ∈ H , we know

that

rs(G) =
2ε(G)
|Aut 1

2
G| gs(G)

and

gs(G) =
|Aut 1

2
G|

2ε(G)
rs(G).

Therefore, if the embedding sequences g
¯
(G),G ∈ H satisfy equation (4.1), then

FH(x
¯
,
|Aut 1

2
G|

2ε(G)
r
¯
(G)) = 0,

and vice via, if the rooted map sequences r
¯
(G), G ∈ H satisfy equation (4.2), then

FH(x
¯
,

2ε(G)
|Aut 1

2
G|g¯

(G)) = 0.

Now assume thatFH(x
¯
, y
¯
) is ay-linear function with a form

FH(x
¯
, y
¯
) = f (x1, x2, · · ·) + h(x1, x2, · · ·)

∑

i∈I
yi + l(x1, x2, · · ·)

∑

Λ∈O
Λ(y

¯
),

whereO is a set of linear operators. IfFH (x
¯
, g
¯
(G)) = 0, that is

f (x1, x2, · · ·) + h(x1, x2, · · ·)
∑

i∈I , G∈H
gi(G) + l(x1, x2, · · ·)

∑

Λ∈O, G∈H
Λ(g

¯
(G)) = 0,



Sec.8.2 Rooted Maps on Genus Underlying a Graph 281

we get that

f (x1, x2, · · ·) + h(x1, x2, · · ·)
∑

i∈I , G∈H

|Aut 1
2
G|

2ε(G)
r i(G)

+ l(x1, x2, · · ·)
∑

Λ∈O, G∈H
Λ(
|Aut 1

2
G|

2ε(G)
r
¯
(G)) = 0.

SinceΛ ∈ O is a linear operator and
2ε(G)
|Aut 1

2
G| , G ∈ H is a constant, we also have

f (x1, x2, · · ·) +
|Aut 1

2
G|

2ε(G)
h(x1, x2, · · ·)

∑

i∈I , G∈H
r i(G)

+
|Aut 1

2
G|

2ε(G)
l(x1, x2, · · ·)

∑

Λ∈O, G∈H
Λ(r

¯
(G)) = 0,

that is,

2ε(G)
|Aut 1

2
G| f (x1, x2, · · ·) + h(x1, x2, · · ·)

∑

i∈I , G∈H
r i(G) + l(x1, x2, · · ·)

∑

Λ∈O, G∈H
Λ(r

¯
(G)) = 0.

Consequently, we get that

F⋄H (x
¯
, r
¯
(G)) = 0.

Similarly, if

FH (x
¯
, r
¯
(G)) = 0,

we can also get that

F⋆
H(x

¯
, g
¯
(G)) = 0.

This completes the proof. �

Corollary 8.2.2 LetG be a graph family andH ⊆ G. If the embedding sequences g
¯

(G)

of graph G∈ G satisfy a recursive relation

∑

i∈J, G∈H
a(i,G)gi(G) = 0,

where J is the set of index, then the rooted map sequences r
¯
(G) satisfy a recursive relation

∑

i∈J, G∈H

a(i, G)|Aut 1
2
G|

2ε(G)
r i(G) = 0,
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and vice via.

A typical example of Corollary 8.2.2 is the graph family bouquetsBn, n ≥ 1. Notice

that the following recursive relation for the numbergm(n) of embeddings of a bouquetBn

on an orientable surface with genusm for n ≥ 2 was found in [GrF2].

(n+ 1)gm(n) = 4(2n− 1)(2n− 3)(n− 1)2(n− 2)gm−1(n− 2)

+ 4(2n− 1)(n− 1)gm(n− 1)

with boundary conditions

gm(n) = 0 if m≤ 0 orn ≤ 0;

g0(0) = g0(1) = 1 andgm(0) = gm(1) = 0 for m≥ 0;

g0(2) = 4, g1(2) = 2, gm(2) = 0 for m≥ 1.

Since|Aut 1
2
Bn| = 2nn!, we get a recursive relation for the numberrm(n) of rooted

maps on an orientable surface of genusmunderlying graphBn by Corollary 8.2.2 follow-

ing.

(n2 − 1)(n− 2)rm(n) = (2n− 1)(2n− 3)(n− 1)2(n− 2)rm−1(n− 2)

+ 2(2n− 1)(n− 1)(n− 2)rm(n− 1)

with the boundary conditionsrm(n) = 0 if m≤ 0 orn ≤ 0;

r0(0) = r0(1) = 1 andrm(0) = rm(1) = 0 for m≥ 0;

r0(2) = 2, r1(2) = 1, gm(2) = 0 for m≥ 1.

Corollary 8.2.3 Let G be a graph family andH ⊆ G. If the embedding sequences

g
¯

(G), G ∈ G satisfy an operator equation

∑

Λ∈O, G∈H
Λ(g

¯
(G)) = 0,

whereO denotes a set of linear operators, then the rooted map sequences r
¯
(G), G ∈ H

satisfy an operator equation

∑

Λ∈O, G∈H
Λ(
|Aut 1

2
G|

2ε(G)
r
¯
(G)) = 0

and vice via.
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Let θ = (θ1, θ2, · · · , θk) ⊢ 2n, i.e.,
k∑

j=1
θ j = 2n with positive integersθ j. Kwak and

Shim introduced three linear operatorsΓ,Θ and∆ to find the total genus polynomial of

bouquetsBn, n ≥ 1 in [KwS1] defined as follows.

Denotes byzθ andz−1
θ
= 1/zθ the multivariate monomials

k∏
i=1

zθi and 1/
k∏

i=1
zθi , where

θ = (θ1, θ2, · · · , θk) ⊢ 2n. Then the linear operatorsΓ,Θ and∆ are defined respectively by

Γ(z±1
θ ) =

k∑

j=1

θ j∑

l=0

θ j{(
z1+lzθ j+1−l

zθ j

)zθ}±1,

Θ(z±1
θ ) =

k∑

j=1

(θ2
j + θ j)(

zθ j+2zθ
zθ j

)−1

and

∆(z±1
θ ) =

∑

1≤i< j≤k

2θiθ j[{(
zθ j+θi+2

zθ j zθi

)zθ}±1 + {(
zθ j+θi+2

zθ j zθi

)zθ}−1].

Denote bŷi[Bn](zj) the sum of all monomialzθ or 1/zθ taken over all embeddings ofBn

into an orientable or non-orientable surface, that is

î[Bn](zj) =
∑

θ⊢2n

iθ(Bn)zθ +
∑

θ⊢2n

ĩθ(Bn)z
−1
θ ,

where,iθ(Bn) andĩθ(Bn) denote the number of embeddings ofBn into orientable and non-

orientable surface of region typeθ. They found that

î[Bn+1](zj) = (Γ + Θ + ∆)î[Bn](zj) = (Γ + Θ + ∆)n(
1
z2
+ z2

1).

and

G[Bn+1](x) = (Γ + Θ + ∆)n(
1
z2
+ z2

1)|zj=x f or j≥1 and (C∗),

where, (C∗) denotes the condition

(C∗): replacing the power1+ n− 2i of x by i if i ≥ 0 and−(1+ n+ i) by−i if i ≤ 0.

Notice that
|Aut 1

2
Bn|

2ε(Bn)
=

2nn!
2n
= 2n−1(n− 1)!

andΓ,Θ,∆ are linear. By Corollary 8.2.3 we know that

R[Bn+1](x) =
(Γ + Θ + ∆)î[Bn](zj)

2nn!
|zj=x f or j≥1 and (C∗)

=
(Γ + Θ + ∆)n( 1

z2
+ z2

1)
n∏

k=1
2kk!

|zj=x f or j≥1 and (C∗).



284 Chap.8 Enumerating Maps on Surfaces

Calculation shows that

R[B1](x) = x+
1
x
;

R[B2](x) = 2+ x+
5
x
+

4
x2

;

R[B3](x) =
41
x3
+

42
x2
+

22
x
+ 5+ 10x

and

R[B4](x) =
488
x4
+

690
x3
+

304
x2
+

93
x
+ 14+ 70x+ 21x2.

§8.3 A SCHEME FOR ENUMERATING MAPS UNDERLYING A GRAPH

For a given graphG, denoted byEO(G),EN(G) andEL(G) the sets of embeddings ofG

on orientable surfaces, non-orientable surfaces and on locally orientable surfaces, respec-

tively. For determining the number of non-equivalent embeddings of a graph on sur-

faces and maps underlying a graph, another form of the Theorem 5.3.3 by group action is

needed, which is restated as follows.

Theorem 8.3.1 Let M1 = (Xα,β,P1) and M2 = (Xα,β,P2) be two maps underlying

graph G, then

(1) M1,M2 are equivalent if and only if M1, M2 are in one orbit ofAut 1
2
G action on

X1
2
(G);

(2) M1,M2 are isomorphic if and only if M1, M2 are in one orbit ofAut 1
2
G × 〈α〉

action onXα,β.

Now we can established a scheme for enumerating the number ofnon-isomorphic

maps and non-equivalent embeddings of a graph on surfaces byapplying the well-known

Burnside Lemma, i.e., Theorem 2.1.3 in the following.

Theorem 8.3.2 For a graph G, letE ⊂ EL(G), then the numbers n(E,G) andη(E,G) of

non-isomorphic maps and non-equivalent embeddings inE are respective

n(E,G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2

G

|Φ1(g)|,

η(E,G) =
1

|Aut 1
2
G|

∑

g∈Aut 1
2

G

|Φ2(g)|,



Sec.8.3 A Scheme for Enumerating Maps Underlying a Graph 285

where,Φ1(g) = {P |P ∈ E and Pg = P or Pgα = P}, Φ2(g) = {P |P ∈ E and

Pg =P}.

Proof Define the groupH = Aut 1
2
G × 〈α〉. Then by the Burnside Lemma and the

Theorem 8.3.1, we get that

n(E,G) =
1
|H|

∑

g∈H
|Φ1(g)|,

where,Φ1(g) = {P |P ∈ E andPg =P}. Now |H| = 2|Aut 1
2
G|. Notice that ifPg =P,

thenPgα
, P, and if Pgα = P, thenPg

, P. Whence,Φ1(g)
⋂
Φ1(gα) = ∅. We

have that

n(E,G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2

G

|Φ1(g)|,

whereΦ1(g) = {P |P ∈ E andPg =P or Pgα =P}.
Similarly,

η(E,G) =
1

|Aut 1
2
G|

∑

g∈Aut 1
2

G

|Φ2(g)|,

where,Φ2(g) = {P |P ∈ E andPg =P}. �

From Theorem 8.3.2, we get results following.

Corollary 8.3.1 The numbers nO(G), nN(G) and nL(G) of non-isomorphic orientable

maps, non-orientable maps and locally orientable maps underlying a graph G are re-

spectively

nO(G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2

G

|ΦO
1 (g)|; (8.3.1)

nN(G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2

G

|ΦN
1 (g)|; (8.3.2)

nL(G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2

G

|ΦL
1(g)|, (8.3.3)

where,ΦO
1 (g) = {P |P ∈ EO(G) andPg = P or Pgα = P}, ΦN

1 (g) = {P |P ∈ EN(G)

andPg =P or Pgα =P},ΦL
1(g) = {P |P ∈ EL(G) andPg =P or Pgα =P}.
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Corollary 8.3.2 The numbersηO(G), ηN(G) andηL(G) of non-equivalent embeddings of

graph G on orientable ,non-orientable and locally orientable surfaces are respectively

ηO(G) =
1

|Aut 1
2
G|

∑

g∈Aut 1
2

G

|ΦO
2 (g)|; (8.3.4)

ηN(G) =
1

|Aut 1
2
G|

∑

g∈Aut 1
2

G

|ΦN
2 (g)|; (8.3.5)

ηL(G) =
1

|Aut 1
2
G|

∑

g∈Aut 1
2

G

|ΦL
2(g)|, (8.3.6)

where,ΦO
2 (g) = {P |P ∈ EO(G) andPg =P},ΦN

2 (g) = {P |P ∈ EN(G) andPg =P},
ΦL

2(g) = {P |P ∈ EL(G) andPg =P}.

For a simple graphG, since Aut1
2
G = AutG by Theorem 3.4.1, the formula (8.3.4)

is just the scheme used for counting the non-equivalent embeddings of a complete graph,

a complete bipartite graph in references [MRW1], [Mul1]. For anasymmetric graph G,

that is, Aut1
2
G = idX1

2
(G), we get the numbers of non-isomorphic maps and non-equivalent

embeddings underlying graphG by the Corollaries 8.3.1 and 8.3.2 following.

Theorem 8.3.3 The numbers nO(G), nN(G) and nL(G) of non-isomorphic maps on ori-

entable, non-orientable surfaces or locally orientable surfaces underlying an asymmetric

graph G are respectively

nO(G) =

∏
v∈V(G)

(ρ(v) − 1)!

2
,

nL(G) = 2β(G)−1
∏

v∈V(G)

(ρ(v) − 1)!

and

nN(G) = (2β(G)−1 − 1
2

)
∏

v∈V(G)

(ρ(v) − 1)!,

where,β(G) is the Betti number of graph G.

The numbersηO(G), ηN(G) andηL(G) of non-equivalent embeddings underlying an

asymmetric graph G are respectively

ηO(G) =
∏

v∈V(G)

(ρ(v) − 1)!,
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ηL(G) = 2β(G)
∏

v∈V(G)

(ρ(v) − 1)!

and

ηN(G) = (2β(G) − 1)
∏

v∈V(G)

(ρ(v) − 1)!.

All these formulae are useful for enumerating non-isomorphic maps underlying a com-

plete graph, semi-regular graph or a bouquet on surfaces in sections following.

§8.4 THE ENUMERATION OF COMPLETE MAPS ON SURFACES

We first consider a permutation with its stabilizer. A permutation with the following form

(x1, x2, · · · , xn)(αxn, αx2, · · · , αx1) is called apermutation pair. The following result is

obvious.

Lemma 8.4.1 Let g be a permutation on setΩ = {x1, x2, · · · , xn} such that gα = αg. If

g(x1, x2, · · · , xn)(αxn, αxn−1, · · · , αx1)g
−1 = (x1, x2, · · · , xn)(αxn, αxn−1, · · · , αx1),

then

g = (x1, x2, · · · , xn)
k

and if

gα(x1, x2, · · · , xn)(αxn, αxn−1, · · · , αx1)(gα)−1 = (x1, x2, · · · , xn)(αxn, αxn−1, · · · , αx1),

then

gα = (αxn, αxn−1, · · · , αx1)
k

for some integerk, 1 ≤ k ≤ n.

Lemma 8.4.2 For each permutation g, g ∈ E
[k

n
k ]

satisfying gα = αg on setΩ =

{x1, x2, · · · , xn}, the number of stable permutation pairs inΩ under the action of g or

gα is
2φ(k)(n− 1)!
|E

[k
n
k ]
| ,

whereφ(k) denotes the Euler function.

Proof Denote the number of stable pair permutations under the action of g or gα

by n(g) andC the set of pair permutations. Define the setA = {(g,C)|g ∈ E
[k

n
k ]
,C ∈



288 Chap.8 Enumerating Maps on Surfaces

C and Cg = C or Cgα = C}. Clearly, for∀g1, g2 ∈ E[k
n
k ]

, we haven(g1) = n(g2).

Whence, we get that

|A| = |E
[k

n
k ]
|n(g). (8.4.1)

On the other hand, by the Lemma 8.4.1, for any permutation pairC = (x1, x2, · · · , xn)

(αxn, αxn−1, · · · , αx1), sinceC is stable under the action ofg, there must beg = (x1, x2, · · · , xn)l

or gα = (αxn, αxn−1, · · · , αx1)l, wherel = sn
k , 1 ≤ s ≤ k and (s, k) = 1. Therefore, there

are 2φ(k) permutations inE
[k

n
k ]

acting on it stable. Whence, we also have

|A| = 2φ(k)|C|. (8.4.2)

Combining (8.4.1) with (.4.2), we get that

n(g) =
2φ(k)|C|
|E

[k
n
k ]
| =

2φ(k)(n− 1)!
|E

[k
n
k ]
| . �

Now we can enumerate the unrooted complete maps on surfaces.

Theorem 8.4.1 The number nL(Kn) of complete maps of order n≥ 5 on surfaces is

nL(Kn) =
1
2

(
∑

k|n
+

∑

k|n,k≡0(mod2)

)
2α(n,k)(n− 2)!

n
k

k
n
k (n

k)!
+

∑

k|(n−1),k,1

φ(k)2β(n,k)(n− 2)!
n−1

k

n− 1
,

where,

α(n, k) =



n(n− 3)
2k

, if k ≡ 1(mod2);
n(n− 2)

2k
, if k ≡ 0(mod2),

and

β(n, k) =



(n− 1)(n− 2)
2k

, if k ≡ 1(mod2);
(n− 1)(n− 3)

2k
, if k ≡ 0(mod2).

andnL(K4) = 11.

Proof According to formula (8.3.3) in Corollary 8.3.1 and Theorem 7.2.1 for n ≥ 5,

we know that

nL(Kn) =
1

2|AutKn|
×



∑

g1∈E
[k

n
k ]

|Φ(g1)| +
∑

g2∈E
[(2s)

n
2s ]

|Φ(g2α)| +
∑

h∈E
[1,k

n−1
k ]

|Φ(h)|



=
1

2n!
×


∑

k|n
|E

[k
n
k ]
||Φ(g1)| +

∑

l|n,l≡0(mod2)

|E
[l

n
l ]
||Φ(g2α)| +

∑

l|(n−1)

|E
[1,l

n−1
l ]
||Φ(h)|

 ,



Sec.8.4 The Enumeration of Complete Maps on Surfaces 289

where,g1 ∈ E[k
n
k ]
, g2 ∈ E[l

n
l ]

andh ∈ E
[1,k

n−1
k ]

are three chosen elements.

Without loss of generality, we assume that an elementg, g ∈ E
[k

n
k ]

has the following

cycle decomposition.

g = (1, 2, · · · , k) (k + 1, k+ 2, · · · , 2k) · · ·
((n

k
− 1

)
k+ 1,

(n
k
− 1

)
k+ 2, · · · , n

)

and

P =
∏

1
×

∏
2
,

where

∏
1
=

(
1i21, 1i31, · · · , 1in1

) (
2i12, 2i32, · · · , 2in2

)
· · ·

(
ni1n, ni2n, · · · , ni(n−1)n

)
,

and ∏
2
= α

(∏
1

−1
)
α−1,

being a complete map which is stable under the action ofg, wheresi j ∈ {k+, k − |k =
1, 2, · · · , n}.

Notice that the quadricells adjacent to the vertex 1 can make2n−2(n − 2)! different

pair permutations and for each chosen pair permutation, thepair permutations adjacent to

the vertices 2, 3, · · · , k are uniquely determined sinceP is stable under the action ofg.

Similarly, for each pair permutation adjacent to the vertexk+1, 2k+1, · · · ,
(n
k
− 1

)
k

+1, the pair permutations adjacent tok + 2, k + 3, · · · , 2k, and 2k + 2, 2k + 3, · · · , 3k,· · ·,
and

(n
k
− 1

)
k + 2,

(n
k
− 1

)
k + 3, · · · , n are also uniquely determined becauseP is stable

under the action ofg.

Now for an orientable embeddingM1 of Kn, all the induced embeddings by ex-

changing two sides of some edges and retaining the others unchanged inM1 are the same

as M1 by the definition of maps. Whence, the number of different stable embeddings

under the action ofg gotten by exchangingx andαx in M1 for x ∈ U,U ⊂ Xβ, where

Xβ =
⋃

x∈E(Kn)
{x, βx} , is 2g(ε)− n

k , whereg(ε) is the number of orbits ofE(Kn) under the action

of g and we substract
n
k

because we can chosen 12+, k+ 11+, 2k+ 11+, · · · , n− k+ 11+ first

in our enumeration.

Notice that the length of each orbit under the action ofg is k for ∀x ∈ E(Kn) if k is

odd and is
k
2

for x = i i+
k
2 , i = 1, k + 1, · · · , n− k + 1, or k for all other edges ifk is even.

Therefore, we get that
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g(ε) =



ε(Kn)
k

, if k ≡ 1(mod2);
ε(Kn) − n

2

k
, if k ≡ 0(mod2).

Whence, we have that

α(n, k) = g(ε) − n
k
=



n(n− 3)
2k

, if k ≡ 1(mod2);
n(n− 2)

2k
, if k ≡ 0(mod2),

and

|Φ(g)| = 2α(n,k)(n− 2)!
n
k , (8.4.3)

Similarly, if k ≡ 0(mod2), we get also that

|Φ(gα)| = 2α(n,k) (n− 2)!
n
k (8.4.4)

for an chosen elementg,g ∈ E
[k

n
k ]
.

Now for ∀h ∈ E
[1,k

n−1
k ]

, without loss of generality, we assume thath = (1, 2, · · · , k)

(k + 1, k + 2, · · · , 2k) · · ·
((

n− 1
k
− 1

)
k+ 1,

(
n− 1

k
− 1

)
k+ 2, · · · , (n− 1)

)
(n). Then the

above statement is also true for the complete graphKn−1 with the vertices 1, 2, · · · , n− 1.

Notice that the quadricellsn1+, n2+, · · · , nn−1+ can be chosen first in our enumeration and

they are not belong to the graphKn−1. According to the Lemma 8.4.2, we get that

|Φ(h)| = 2β(n,k)(n− 2)!
n−1

k × 2φ(k)(n− 2)!
|E

[1,k
n−1

k ]
| , (8.4.5)

Where

β(n, k) = h(ε) =



ε(Kn−1)
k

− n− 1
k
=

(n− 1)(n− 4)
2k

, if k ≡ 1(mod2);
ε(Kn−1)

k
− n− 1

k
=

(n− 1)(n− 3)
2k

, if k ≡ 0(mod2).

Combining (8.4.3)− (8.4.5), we get that

nL(Kn) =
1

2n!
× (

∑

k|n
|E

[k
n
k ]
||Φ(g0)| +

∑

l|n,l≡0(mod2)

|E
[l

n
l ]
||Φ(g1α)|

+
∑

l|(n−1)

|E
[1,l

n−1
l ]
||Φ(h)|)
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=
1

2n!
× (

∑

k|n

n!2α(n,k)(n− 2)!
n
k

k
n
k (n

k)!
+

∑

k|n,k≡0(mod2)

n!2α(n,k)(n− 2)!
n
k

k
n
k (n

k)!

+
∑

k|(n−1),k,1

n!

k
n−1

k (n−1
k )!
× 2φ(k)(n− 2)!2β(n,k)(n− 2)!

n−1
k

(n−1)!

k
n−1

k ( n−1
k )!

)

=
1
2

(
∑

k|n
+

∑

k|n,k≡0(mod2)

)
2α(n,k)(n− 2)!

n
k

k
n
k (n

k)!
+

∑

k|(n−1),k,1

φ(k)2β(n,k)(n− 2)!
n−1

k

n− 1
.

For n = 4, similar calculation shows thatnL(K4) = 11 by consider the fixing set of

permutations inE
[s

4
s ]

, E
[1,s

3
s ]

, E
[(2s)

4
2s ]

, αE
[(2s)

4
2s ]

andαE[1,1,2]. �

For the orientable case, we get the numbernO(Kn) of orientable complete maps of

ordern as follows.

Theorem 8.4.2 The number nO((Kn) of complete maps of order n≥ 5 on orientable

surfaces is

nO(Kn) =
1
2

(
∑

k|n
+

∑

k|n,k≡0(mod2)

)
(n− 2)!

n
k

k
n
k (n

k)!
+

∑

k|(n−1),k,1

φ(k)(n− 2)!
n−1

k

n− 1
.

and n(K4) = 3.

Proof According to the algebraic representation of map, a mapM = (Xα,β,P) is

orientable if and only if for∀x ∈ Xα,β, x andαβx are in a same orbit ofXα,β under the

action of the groupΨI = 〈αβ,P〉. Now applying (8.3.1) in Corollary 8.3.1 and Theorem

7.2.1, similar to the proof of Theorem 8.4.1, we get the numbernO(Kn) for n ≥ 5 to be

nO(Kn) =
1
2

(
∑

k|n
+

∑

k|n,k≡0(mod2)

)
(n− 2)!

n
k

k
n
k (n

k)!
+

∑

k|(n−1),k,1

φ(k)(n− 2)!
n−1

k

n− 1
.

and for the complete graphK4, calculation shows thatn(K4) = 3. �

Notice thatnO(Kn) + nN(Kn) = nL(Kn). Therefore, we get also the numbernN(Kn)

of complete maps of ordern on non-orientable surfaces by Theorems 8.4.1 and 8.4.2

following.

Theorem8.4.3 The number nN(Kn) of complete maps of order n, n ≥ 5 on non-orientable

surfaces is

nN(Kn) =
1
2

(
∑

k|n
+

∑

k|n,k≡0(mod2)

)
(2α(n,k) − 1)(n− 2)!

n
k

k
n
k (n

k)!

+
∑

k|(n−1),k,1

φ(k)(2β(n,k) − 1)(n− 2)!
n−1

k

n− 1
,
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and nN(K4) = 8. Where,α(n, k) andβ(n, k) are the same as in Theorem8.4.1.

Forn = 5, calculation shows thatnL(K5) = 1080 andnO(K5) = 45 by Theorems 8.4.1

and 8.4.2. Forn = 4, there are 3 orientable complete maps and 8 non-orientablecomplete

maps shown in the Fig.8.4.1.
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Now consider the action of orientation-preserving automorphisms of complete maps,

determined in Theorem 7.2.1 on all orientable embeddings of a complete graph of order

n. Similar to the proof of the Theorem 8.4.2, we can get the number of non-equivalent

embeddings of a complete graph of ordern, which has been found in [Mao1] and it is the

same gotten by Mull et al. in [MRW1].
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§8.5 THE ENUMERATION OF MAPS UNDERLYING A SEMI-REGULAR GRAPH

8.5.1 Crosscap Map Group. For a given mapM = (Xα,β,P), its crosscap map group

is defined to be

T :=< τ|∀x ∈X , τ = (x, αx) >,

where,X = E(G). Consider the action ofT on M. For∀θ ∈ T , we define

Mθ := (Xα,β, θPθ−1);

MT := {Mθ|∀θ ∈ T }.

Then we have the following lemmas.

Lemma 8.5.1 Let G be a connected graph. Then for∀M ∈ ET(G), there exists an element

τ, τ ∈ T and an embedding M0,M0 ∈ EO(G) such that

M = Mτ
0 .

Lemma 8.5.2 For a connected graph G,

ET(G) = {Mτ|M ∈ EO(G), τ ∈ T }.

We need to classify maps inET(G). The following lemma is fundamental for this

objective.

Lemma 8.5.3 For maps M,M1 ∈ EO(G), if there exist g∈ AutG andτ ∈ T such that

(Mg)τ = M1, then there must be M1 isomorphic to M andτ ∈ TM1, and moreover, if

M1 = M, then g∈ AutM.

Proof We only need to prove that ifMg = Mτ
1, g ∈ AutG andτ ∈ T ,thenτ ∈ TM1.

Assume thatM = (Xα,β,P), M1 = (Xα,β,P1), P = CαC−1,P1 = C1αC−1
1 andτ = τS,

whereS ⊂ {C1}. For∀x ∈ {C}, a direct calculation shows that

Pg = · · · (x, , g(y1), g(y2), · · · , g(yt))(αx, αg(yt), · · · , αg(y1)) · · · ;

Pτ
1 = · · · (τx, τz1, τz2, · · · , τzs)(ατx, ατzs, · · · , ατz1) · · · , (8.5.1)

where

P = · · · (x, x1, x2, · · · , xs)(y, y1, y2, · · · , yt) · · · ;

P1 = · · · (x, z1, z2, · · · , zs)(αx, αzs, · · · , αz1)
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andg(y) = x, zi ∈ vx, i ∈ {1, 2, · · · , s}
Sinceg ∈ AutG, we know that

{y, y1, · · · , yt}g = {x, x1, · · · , xs}

= {x, z1, · · · , zs} (8.5.2)

andt = s. Now we consider two cases.

Case1. x < S.

In this case, we get thatPτ
1 = · · · (x, τz1, τz2, · · · , τzs)(αx, ατzs, · · · , ατz1) · · · , from

(8.5.2). SincePg =PτS
1 , we get thatg(y1) = τz1, g(y2) = τz2, · · · , g(ys) = τzs. According

to (8.5.2), we know thatg(y1) = z1, g(y2) = z2, · · · , g(ys) = zs. Therefore,z1 < S, z2 <

S, · · · , zs < S, that is{vx} 1 S.

Case2. x ∈ S.

In this case, we have thatPτ
1 = · · · (αx, τz1, τz2, · · · , τzs)(x, ατzs, · · · , ατz1) · · · , Be-

cause ofPg = PτS
1 , we get thatg(y1) = ατzs, g(y2) = ατzs−1, · · · , g(ys) = ατz1. Ac-

cording to (8.5.2) again, we find thatg(y1) = zs, g(y2) = zs−1, · · · , g(ys) = z1. Whence,

z1 ∈ S, z2 ∈ S, · · · , zs ∈ S, that is{vx} ⊂ S.

Combining the discussion of Cases 1 and 2, we know that there exists a vertex subset

V1 ⊂ V(G) such thatV1 = S. Whenceτ ∈ TM1. SinceMg = Mτ
1 = M1, we get thatM1 is

isomorphic toM.

Now if M1 = M, we also get thatMg = M. Therefore,g ∈ AutM �

We get the following result by Lemmas 8.5.1 - 8.3.1.

Theorem 8.5.1 Let G be a connected graph. Then

(1) For ∀MτS
1 ∈ MT1 ,M

τR
2 ∈ MT2 , where M1,M2 ∈ EO(G), if MτS

1 is isomorphic to

MτR
2 , then M1 is also isomorphic to M2.

(2) For a given M∈ EO(G), ∀MτS ,MτR ∈ MT , there exists an isomorphism g such

that g : MτS → MτR if and only if g∈ AutM andτR ∈ τg−1(S) · TM.

Proof (1) Assumeg ia an isomorphism betweenMτS
1 andMτR

2 , thus (MτS
1 )g = MτR

2 .

Since

g−1τSg = g−1(
∏

x∈S
(x, αx))g =

∏

x∈S
(g−1x, αg−1x)

=
∏

x∈g−1(S)

(x, αx) = τg−1(S),
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we get thatτSg = gτg−1(S). Whence,

(Mg
1)τg−1(S)·τ

−1
R = M2.

According to Lemma 8.5.3, M1 is isomorphic toM2.

(2) Notice that there must beg ∈ AutG. Since (MτS)g = MτR, we find that

(Mg)τg−1(S) ·τ
−1
R = M.

According to Lemma 8.5.3 again, we get that

g ∈ AutM and τR ∈ τg−1(S)T M.

On the other hand, if there existτ ∈ T andg ∈ AutM such thatτR = τg−1(S) · τ, then

(MτS)g = (Mg)τg−1(S) = Mτg−1(S) = MτR.

Therefore,g is an isomorphism betweenMτS andMτR. �

8.5.2 Enumerating Semi-Regular Map.We enumerate maps underlying a semi-regular

graph on orientable or non-orientable surfaces.

Lemma 8.5.4 Let G= (V,E) be a semi-regular graph. Then forξ ∈ AutG

|ΦO(ξ)| =
∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

and

|ΦL(ξ)| = 2|T
E
ξ
|−|TV

ξ
|
∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!,

where, TV
ξ
,TE

ξ
are the representations of orbits ofξ acting on V(G) and E(G) ,respectively

andξNG(x) the restriction ofξ to NG(x).

Proof According to Theorem 8.5.1, we know that

ET(G) = {Pτ|P ∈ EO(G), τ ∈ T }

Notice that ifMξ = M, thenMτξ = Mτ. Now since AutG is semi-regular acting onE(G),

we can assume that

ξ|V(G) = (a, b, · · · , c) · · · (d, e, · · · , f ) · · · (x, y, · · · , z)
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and

ξ|E(G) = (e11, e12, · · · , e1l1) · · · (ei1, ei2, · · · , eil i ) · · · (es1, es2, · · · , esls).

For a stable orientable embeddingM0 = (E(G)α,β,P0) under the action ofξ, it is clear

that

|Φ(MT0 , ξ)| = 2orb(ξ|E(G))−orb(ξ|V(G)),

whereorb(ξ)E(G) andorb(ξ|V(G)) are the number of orbits ofE(G), V(G) under the action

of ξ and we subtractorb(ξ|V(G)) because one of quadricells in verticesa, · · · , d, · · · , x can

be chosen first in our enumeration. Now sinceorb(ξ|E(G)) = |TE
ξ | andorb(ξ|V(G)) = |TV

ξ
|,

we get that

|Φ(MT0 , ξ)| = 2|T
E
ξ
|−|TV

ξ
|
.

Notice that if the rotation of the quadricells adjacent to the vertexa has been given,

then the rotations adjacent to the verticesb, · · · , c are uniquely determined if the cor-

respondence embedding is stable under the action ofξ. Similarly, if a rotation of the

quadricells adjacent to the verticesa, · · · , d, · · · , x have been given, then the mapM =

(E(G)α,β,P) is uniquely determined ifM is stable under the action ofξ. Sinceξ|NG(x) is

semi-regular, for∀x ∈ V(G) we can assume that

ξ|NG(x) = (xz1, xz2, · · · , xzs)(xzs+1, xzs+2, · · · , xz2s) · · · (xz(k−1)s+1, xz(k−1)s+2, · · · , xzks).

Consequently, we get that

|ΦO(ξ)| =
∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!. �

According to the Corollary 8.3.1, we get enumeration results following.

Theorem8.5.2 Let G be a semi-regular graph. Then the numbers of maps underlying the

graph G on orientable or non-orientable surfaces are respectively

nO(G) =
1

|AutG| (
∑

ξ∈AutG

λ(ξ)
∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

and

nN(G) =
1

|AutG| ×
∑

ξ∈AutG

(2|T
E
ξ
|−|TV

ξ
| − 1)λ(ξ)

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!,

whereλ(ξ) = 1 if o(ξ) ≡ 0(mod2)and
1
2

, otherwise.
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Proof By the Corollary 8.3.1, we know that

nO(G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2

G

|ΦO
1 (g)|

and

nL(G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2

G

|ΦT
1 (g)|.

According to the Theorem 7.3.4, all automorphisms of orientable maps underlying graph

G are respectively

g|Xα,β andαh|Xα,β , g, h ∈ AutG with o(h) ≡ 0(mod2).

and all the automorphisms of non-orientable maps underlying graphG are also

g|Xα,β andαh|Xα,β , g, h ∈ AutG with o(h) ≡ 0(mod2).

Whence, we get the number of orientable maps by the Lemma 8.5.4 as follows.

nO(G) =
1

2|AutG|
∑

g∈AutG

|ΦO
1 (g)|

=
1

2|AutG| {(
∑

ξ∈AutG

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

+
∑

ς∈AutG,o(ς)≡0(mod2)

∏

x∈TV
ς

(
d(x)

o(ς|NG(x))
− 1)!)

=
1

|AutG| (
∑

ξ∈AutG

λ(ξ)
∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!.

Similarly, we enumerate maps underlying graphG on locally orientable surface by

(8.3.3) in Corollary 8.3.1 following.

nL(G) =
1

2|AutG|
∑

g∈AutG

|ΦT
1 (g)|

=
1

2|AutG| (
|TE
ξ
|−|TV

ξ
|∑

ξ∈AutG

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

+
∑

ς∈AutG,o(ς)≡0(mod2)

2|T
E
ς |−|TV

ς |
∏

x∈TV
ς

(
d(x)

o(ς|NG(x))
− 1)!)

=
1

|AutG|
∑

ξ∈AutG

λ(ξ)2|T
E
ξ
|−|TV

ξ
|
∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!.
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Notice thatnO(G) + nN(G) = nL(G). We get the number of maps on non-orientable

surfaces underlying graphG to be

nN(G) = nL(G) − nO(G)

=
1

|AutG| ×
∑

ξ∈AutG

(2|T
E
ξ
|−|TV

ξ
| − 1)λ(ξ)

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

This completes the proof. �

Furthermore, ifG is k-regular, we get a simple result for the numbers of maps on

orientable or non-orientable surfaces following.

Corollary 8.5.1 Let G be a k-regular semi-regular graph. Then the numbers of maps on

orientable or non-orientable surfaces underlying graph G are respectively

nO(G) =
1

|AutG| ×
∑

g∈AutG

λ(g)(k− 1)!|T
V
g |

and

nN(G) =
1

|AutG| ×
∑

g∈AutG

λ(g)(2|T
E
g |−|TV

g | − 1)(k− 1)!|T
V
g |,

where,λ(ξ) = 1 if o(ξ) ≡ 0(mod2)and
1
2

, otherwise.

Proof Notice that for∀ξ ∈ AutG, ξ is semi-regular acting on ordered pairs of adja-

cent vertices ofG. Therefore,ξ is an orientation-preserving automorphism of map with

underlying graph ofG.

Assume that

ξV(G) = (a1, a2, · · · , as)(b1, b2, · · · , bs) · · · (c1, c2, · · · , cs).

It can be directly checked that for∀e ∈ E(G),

|e<ξ>| = s or
s
2
.

The later is true only if s is an even number. Therefore, we have that

∀x ∈ V(G), o(ξNΓ(x)) = 1.

Whence, we getnO(G) andnN(G) by Theorem 8.5.2. �

Similarly, if G = Cay(Zp : S) for a primep, we can also get closed formulas for the

number of maps underlying graphΓ.
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Corollary 8.5.2 Let G = Cay(Zp : S) be a connected graph of prime order p with

(p− 1, |S|) = 2. Then

nO(G,M ) =
(|S| − 1)!p + 2p(|S| − 1)!

p+1
2 + (p− 1)(|S| − 1)!

4p

and

nN(G,M ) =
(2

p|S|
2 −p − 1)(|S| − 1)!p + 2(2

p|S|−2p−2)
4 − 1)p(|S| − 1)!

p+1
2

2p

+
(2
|S|−2

2 − 1)(p− 1)(|S| − 1)!
4p

.

Proof We calculate|TV
g |, |TE

g | now. Sincep is a prime number, there arep−1 elements

of degreep, p elements of degree 2 and one element of degree 1. Therefore, we know

that

|TV
g | =



1, if o(g) = p
p+1
2 , if o(g) = 2

p, if o(g) = 1

and

|TE
g | =



|S|
2 , if o(g) = p
p|S|
4 , if o(g) = 2

p|S|
2 , if o(g) = 1

Notice that AutG = Dp and there arep elements order 2, one order 1 andp − 1 orderp.

Whence, we have

nO(G,M ) =
(|S| − 1)!p + 2p(|S| − 1)!

p+1
2 + (p− 1)(|S| − 1)!

4p

and

nN(G,M ) =
(2

p|S|
2 −p − 1)(|S| − 1)!p + 2(2

p|S|−2p−2)
4 − 1)p(|S| − 1)!

p+1
2

2p

+
(2
|S|−2

2 − 1)(p− 1)(|S| − 1)!
4p

.

By Corollary 8.5.1. �
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§8.6 THE ENUMERATION OF A BOUQUET ON SURFACES

8.6.1 Cycle Index of Group. Let (Γ; ◦) be a group. Itscycle index of a group, denoted

by Z(Γ; s1, s2, · · · , sn) is defined by

Z(Γ; s1, s2, · · · , sn) =
1
|G|

∑

g∈G
sλ1(g)

1 sλ2(g)
2 · · · sλn(g)

n ,

where,λi(g) is the number ofi-cycles in the cycle decomposition ofg. For the symmetric

groupSn, its cycle index is known to be

Z(Sn; s1, s2, · · · , sn) =
∑

λ1+2λ2+···+kλk=n

sλ1
1 sλ2

2 · · · s
λk
k

1λ1λ1!2λ2λ2! · · · kλkλk!
.

For example, we have thatZ(S2) =
s2
1+s2

2 . By a result of Polya ( See [GrW1] for details),

we know that the cycle index ofSn[S2] is

Z(Sn[S2]; s1, s2, · · · , s2n) =
1

2nn!

∑

λ1+2λ2+···+kλk=n

(
s2
1+s2

2 )λ1(
s2
2+s4

2 )λ2 · · · ( s2
k+s2k

2 )λk

1λ1λ1!2λ2λ2! · · · kλkλk!

8.6.2 Enumerating One-Vertex Map. For any integerk, k|2n, letJk be the conjugacy

class inSn[S2] with each cycle in the decomposition of a permutation inJk beingk-cycle.

According to Corollary 8.3.1, we need to determine the numbers|ΦO(ξ)| and |ΦL(ξ)| for

each automorphism of map underlyingBn.

Lemma 8.6.1 Let ξ =
2n/k∏
i=1

(C(i))(αC(i)α−1) ∈ Jk be a cycle decomposition ofξ, where

C(i) = (xi1, xi2, · · · , xik) is a k-cycle. Then

(1) If k , 2n, then

|ΦO(ξ)| = k
2n
k (

2n
k
− 1)!

and if k= 2n, then|ΦO(ξ)| = φ(2n).

(2) If k ≥ 3 and k, 2n, then

|ΦL(ξ)| = (2k)
2n
k −1(

2n
k
− 1)!

and

|ΦL(ξ)| = 2n(2n− 1)!

if ξ = (x1)(x2) · · · (xn)(αx1)(αx2) · · · (αxn)(βx1)(βx2) · · · (βxn)(αβx1)(αβx2) · · · (αβxn), and

|ΦL(ξ)| = 1



Sec.8.6 The Enumeration of Bouquet on Surfaces 301

if ξ = (x1, αβx1)(x2, αβx2) · · · (xn, αβxn)(αx1, βx1)(αx2, βx2) · · · (αxn, βxn), and

|ΦL(ξ)| = n!
(n− 2s)!s!

if ξ = ζ; ε1, ε2, · · · , εn and ζ ∈ E[1n−2s,2s] for some integer s,εi = (1, αβ) for 1 ≤ i ≤ s

andε j = 1 for s+ 1 ≤ j ≤ n, whereE[1n−2s,2s] denotes the conjugate class with the type

[1n−2s, 2s] in the symmetry group Sn, and

|ΦL(ξ)| = φ(2n)

if ξ = θ; ε1, ε2, · · · , εn andθ ∈ E[n1] andεi = 1 for 1 ≤ i ≤ n− 1, εn = (1, αβ), whereφ(t)

is the Euler function.

Proof (1) Notice that for a representation ofC(i), i = 1, 2, · · · , 2n
k

, because the

group〈Pn, αβ〉 is not transitive onXα,β, there is one and only one stable orientable map

Bn = (Xα,β,Pn) with X = E(Bn) andPn = C(αC−1α−), where,

C = (x11, x21, · · · , x2n
k 1, x21, x22, · · · , x2n

k 2, x1k, x2k, · · · , x2n
k k).

Counting ways for each possible order forC(i), i = 1, 2, · · · , 2n
k

and different representa-

tions forC(i), we know that

|ΦO(ξ)| = k
2n
k (

2n
k
− 1)!

for k , 2n.

Now if k = 2n, then the permutation is itself a map underlying graphBn. Whence,

its power is also an automorphism of this map. Therefore, we get that

|ΦO(ξ)| = φ(2n).

(2) For k ≥ 3 andk , 2n, because the group〈Pn, αβ〉 is transitive onXα,β or

not, we can interchangeC(i) by αC(i)−1α−1 for each cycle not containing the quadricell

x11. Notice that we get the same map if the two sides of some edges are interchanged

altogether or not. Whence, we find that

|ΦL(ξ)| = 2
2n
k −1k

2n
k −1(

2n
k
− 1)! = (2k)

2n
k −1(

2n
k
− 1)!.

Now if ξ = (x1, αβx1)(x2, αβx2) · · · (xn, αβxn)(αx1, βx1)(αx2, βx2) · · · (αxn, βxn), there

is one and only one stable map (Xα,β,P1
n) under the action ofξ, where

P1
n = (x1, x2, · · · , xn, αβx1, αβx2, · · · , αβxn)(αx1, βxn, · · · , βx1, αxn, · · · , αx1),
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which is orientable. Whence,|ΦL(ξ)| = |ΦO(ξ)| = 1.

If ξ = (x1)(x2) · · · (xn)(αx1)(αx2) · · · (αxn)(βx1)(βx2) · · · (βxn)(αβx1)(αβx2) · · · (αβxn),

we can interchange (αβxi) with (βxi) and obtain different embeddings ofBn on surfaces.

Whence,

|ΦL(ξ)| = 2n(2n− 1)!.

Now if ξ = (ζ; ε1, ε2, · · · , εn) andζ ∈ E[1n−2s,2s] for some integers, εi = (1, αβ) for

1 ≤ i ≤ s andε j = 1 for s+ 1 ≤ j ≤ n, we can not interchange (xi , αβxi) with (αxi , βxi)

to get different embeddings ofBn for it is just interchanging the two sides of one edge.

Consequently, we get that

|ΦL(ξ)| = n!
1n−2s(n− 2s)!2ss!

× 2s =
n!

(n− 2s)!s!
.

For ξ = (θ; ε1, ε2, · · · , εn), θ ∈ E[n1] andεi = 1 for 1≤ i ≤ n− 1, εn = (1, αβ), we can

not get different embeddings ofBn by interchanging the two conjugate cycles. Whence,

we get that

|ΦL(ξ)| = |ΦO(ξ)| = φ(2n).

This completes the proof. �

Now we enumerate maps on surfaces underlying graphBn by Lemma 8.6.1.

Theorem 8.6.1 For an integer n≥ 1, the number nO(Bn) of maps on orientable surfaces

underlying graph Bn is

nO(Bn) =
∑

k|2n,k,2n

k
2n
k −1(

2n
k
− 1)!

1

(2n
k )!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+ φ(2n)
∂(Z(Sn[S2]))

∂s2n
|s2n=0

Proof According to the formula (8.3.1) in Corollary 8.3.1, we know that

nO(Bn) =
1

2× 2nn!

∑

ξ∈Sn[S2]×≺α≻
|ΦT(ξ)|.

Since for∀ξ1, ξ2 ∈ Sn[S2], if there exists an elementθ ∈ Sn[S2] such thatξ2 = θξ1θ
−1,

then |ΦO(ξ1)| = |ΦO(ξ2)| and |ΦO(ξ)| = |ΦO(ξα)|. Notice that|ΦO(ξ)| has been gotten by

Lemma 8.6.1. Applying Lemma 8.6.1(1) and the cycle indexZ(Sn[S2]), we get that

nO(Bn) =
1

2× 2nn!
(

∑

k|2n,k,2n

k
2n
k −1(

2n
k
− 1)!|Jk| + φ(2n)|J2n|)
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=
∑

k|2n,k,2n

k
2n
k −1(

2n
k
− 1)!

1

(2n
k )!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+φ(2n)
∂(Z(Sn[S2]))

∂s2n
|s2n=0 �

Now we consider maps on non-orientable surfaces underlyinggraphBn. Similar to

the discussion of Theorem 8.6.1, we get the following enumeration result for the maps on

non-orientable surfaces.

Theorem 8.6.2 For an integer n≥ 1, the number nN(Bn) of maps on non-orientable

surfaces underlying graph Bn is

nN(Bn) =
(2n− 1)!

n!
+

∑

k|2n,3≤k<2n

(2k)
2n
k −1(

2n
k
− 1)!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+
1

2nn!
(
∑

s≥1

n!
(n− 2s)!s!

+ 4n(n− 1)!(
∂n(Z(Sn[S2]))

∂sn
2

|s2=0 − ⌊
n
2
⌋)).

Proof Similar to the proof of Theorem 8.6.1, applying formula (1.3.3) in Corollary

8.3.1 and Lemma 8.6.1(2), we get that

nL(Bn) =
(2n− 1)!

n!
+ φ(2n)

∂n(Z(Sn[S2]))
∂sn

2n

|s2n=0

+
1

2nn!
(
∑

s≥0

n!
(n− 2s)!s!

+ 4n(n− 1)!(
∂n(Z(Sn[S2]))

∂sn
2

|s2=0 − ⌊
n
2
⌋))

+
∑

k|2n,3≤k<2n

(2k)
2n
k −1(

2n
k
− 1)!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0.

Notice thatnO(Bn) + nN(Bn) = nL(Bn). Applying Theorem 8.6.1, we find that

nN(Bn) =
(2n− 1)!

n!
+

∑

k|2n,3≤k<2n

(2k)
2n
k −1(

2n
k
− 1)!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+
1

2nn!
(
∑

s≥1

n!
(n− 2s)!s!

+ 4n(n− 1)!(
∂n(Z(Sn[S2]))

∂sn
2

|s2=0 − ⌊
n
2
⌋)).

This completes the proof. �

Calculation shows that

Z(S1[S2]) =
s2

1 + s2

2
and

Z(S2[S2]) =
s4

1 + 2s2
1s2 + 3s2

2 + 2s4

8
,
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Whence, ifn = 2, calculation shows that there are 1 map on the plane, 2 maps on the

projective plane, 1 map on the torus and 2 maps on the Klein bottle. All of those maps are

non-isomorphic and the same as gotten by Theorems 8.6.1 and 8.6.2 shown in Fig.8.6.1.

1

1

2 2

1

1

2 2

11

2

2

3
3

4

4

5 5

-
-6 6 6 6-

� 6 6-
�

Fig.8.6.1

§8.7 REMARKS

8.7.1 The enumeration problem of maps was first introduced by Tutteon planar rooted

triangulation by solving a functional equation in 1962. After him, more and more papers

and enumeration result on rooted maps on surfaces published. For surveying such an

enumeration, the readers are refereed to references [Liu2]-[Liu4] for details.

8.7.2 The enumeration of rooted maps on surfaces is canonically byan analytic approach.

Usually, this approach for enumeration of rooted maps applies four steps as follows:

STEP 1. Decompose the set of rooted mapsM considered;

STEP 2. Define the enumeration functionfM on maps by parameters, such as those of

ordern(M), sizem(M), valency of rooted vertex or rooted face,· · · of maps, for example,

fM =
∑

M∈M
xn(M), fM =

∑

M∈M
xm(M), fM =

∑

M∈M
xn(M)ym(M) and fM =

∑

M∈M
xn(M)ym(M)zl(M)

are four enumeration functions respectively by ordern(M), sizem(M) and valency of

rooted vertexl(M) of map and then establish equations satisfied byfM.
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STEP 3. Find properly parametric expression for variablesx, y, z, · · ·.
STEP 4. Applying the Lagrange inversion, i.e., ifx = tφ(x) with φ(0) , 0, then

f (x) = f (0)+
∑

i≥1

ti

i!
di−1

dxi−1

(
φi d f

dx

)
|x=0

solves the equations for enumeration.

The importance of Theorems 8.1.7 and 8.1.8 is that they clarify the essence of the

enumeration of rooted maps on surfaces, i.e., a calculationof the summation

∑

G∈G

2ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut 1
2
G| or

∑

G∈G

2β(G)+1ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut 1
2
G|

whereG denotes a graph family. For example, we know that the number of rooted tree of

sizen is
(2n)!

n!(n+ 1)!
. Whence,

∑

T∈T (n)

∏
d∈D(T)

(d − 1)!

|AutT| =
(2n− 1)!
n!(n+ 1)!

,

whereT andD(T) denote sets of non-isomorphic trees of sizen and the valency sequence

of a treeT ∈ T , respectively.

Similarly, Theorem 8.2.1 implies the enumeration of rooted maps on a surfaceS of

genusi is in fact a calculation of the summation

∑

G∈G(S)

2ε(G)gi(G)
|Aut 1

2
G| ,

whereG(S) denotes a graph family embeddable onS. For example, We know that there

are
2(2n− 1)!(2n+ 1)!

(n+ 2)!(n+ 1)!!n!(n− 1)!

planar cubic hamiltonian rooted maps. Whence,

∑

G∈CH

2ε(G)g0(G)
|AutG| =

2(2n− 1)!(2n+ 1)!
(n+ 2)!(n+ 1)!!n!(n− 1)!

,

whereCH denotes the family of hamiltonian cubic.

8.7.3 By applying Burnside lemma, Biggs and White suggested a scheme for enumerat-

ing non-equivalent embeddings of a graphG on surfaces, i.e., orbits under the action of
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AutG on all embeddings ofG in [BiW1]. Such an action is in fact orientation-preserving.

Theorem 8.3.2 is a generalization of their result by considering the action of Aut1
2
G× 〈α〉

on all embeddings ofG on surfaces. This scheme enables one to find non-isomorphic

maps on surfaces underlying a graph. Indeed, complete maps,semi-regular maps and

one-vertex maps are enumerated in Sections 8.4-8.6. Certainly, there are more maps on

surfaces needed to enumerated, such as those of maps included in problems following.

Problem 8.7.1 Enumerate maps on surfaces underlying a vertex-transitive, an edge-

transitive or a regular graph, particularly, a Cayley graphCay(Γ : S).

Problem 8.7.2 Enumeration maps on surfaces underlying a graph G with knownAut 1
2
G,

such as those of Cn × P2 and Cm ×Cn ×Cl for integers n, m, l ≥ 1.

Problem 8.7.3 Enumerate a typical maps underlying a graph, for example, regular maps

or Cayley maps.

The enumeration of maps on surfaces underlying a graph also brings about problems

following on graphs.

Problem 8.7.4 Find a graph familyG on a surface S such that the number of non-

isomorphic maps underlying graph inG is summable.

Problem 8.7.5 For a surface S and an integer n≥ 2, determine the familyGn(S) embed-

dable on S with|Aut 1
2
| = n for ∀G ∈ Gn(S).



CHAPTER 9.

Isometries on Smarandache Geometry

We have known that classical geometry includes those of Euclid geometry,

Lobachevshy-Bolyai-Gauss geometry and Riemann geometry.Each of the

later two is proposed by denial the 5th postulate for parallel lines in Euclid

postulates on geometry. For generalizing classical geometry, a new geometry,

calledSmarandache geometrywas proposed by Smarandache in 1969, which

may enables these three geometries to be united in the same space altogether

such that it can be either partially Euclidean and partiallynon-Euclidean, or

non-Euclidean. Such a geometry is really a hybridization ofthese geome-

tries. It is important for destroying the law that all pointsare equal in status

and introducing contradictory laws in a same geometrical space. For an in-

troduction to such geometry, we formally define Smarandachegeometry, par-

ticularly, those of mixed geometries in Section 9.1, and classify s-manifolds,

a kind of Smarandache 2-manifolds by applying planar maps inSection 2.

After then, Sections 3 and 4 concentrate on the isometries onfinite or infi-

nite pseudo-Euclidean spaces (Rn, µ) by verifying the action of isometries of

Rn on (Rn, µ) for n ≥ 2. Certainly, all isometries on finite pseudo-Euclidean

spaces (Rn, µ) are automorphisms of (Rn, µ), and can be characterized combi-

natorially by that of maps on surfaces ifn = 2 or embedded graphs inRn if

n ≥ 3.



308 Chap.9 Isometries on Smarandache Geometry

§9.1 SMARANDACHE GEOMETRY

9.1.1 Geometrical Axiom. As we known, the Euclidean geometrical axiom system

consists of five axioms following:

(E1) There is a straight line between any two points.

(E2) A finite straight line can produce a infinite straight line continuously.

(E3) Any point and a distance can describe a circle.

(E4) All right angles are equal to one another.

(E5) If a straight line falling on two straight lines make theinterior angles on the

same side less than two right angles, then the two straight lines, if produced indefinitely,

meet on that side on which are the angles less than the two right angles.

The last axiom (E5) is usually replaced by:

(E5’) For a given line and a point exterior this line, there is one line parallel to this

line.

Then ahyperbolic geometryis replaced axiom (E5) by (L5) following

(L5) There are infinitely many lines parallel to a given line passing through an

exterior point,

and anelliptic geometryis replaced axiom (E5) by (R5) following:

There are no parallel to a given line passing through an exterior point.

9.1.2 Smarandache Geometry. These non-Euclidean geometries constructed in the

previous subsection implies that one can find more non-Euclidean geometries replacing

Euclidean axioms by non-Euclidean axioms. In fact, a Smarandache geometry is such a

geometry by denied some axioms (E1)-(E5) following.

Definition 9.1.1 A rule R ∈ R in a mathematical system(Σ;R) is said to be Smaran-

dachely denied if it behaves in at least two different ways within the same setΣ, i.e.,

validated and invalided, or only invalided but in multiple distinct ways.

Definition 9.1.2 A Smarandache geometry is such a geometry in which there are at

least one Smarandachely denied ruler and a Smarandache manifold (M;A) is an n-

dimensional manifold M that support a Smarandache geometryby Smarandachely denied

axioms inA.
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In a Smarandache geometry, points, lines, planes, spaces, triangles,· · · are called

respectivelys-points, s-lines, s-planes, s-spaces, s-triangles, · · · in order to distinguish

them from that in classical geometry.

Example 9.1.1 Let us consider a Euclidean planeR2 and three non-collinear pointsA, B

andC. Defines-points as all usual Euclidean points onR2 ands-lines any Euclidean line

that passes through one and only one of pointsA, B andC. Then such a geometry is a

Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points there exist

one line passing through them is now replaced by:one s-lineandno s-line. Notice that

through any two distincts-points D,E collinear with one ofA, B andC, there is one

s-line passing through them and through any two distincts-pointsF,G lying on AB or

non-collinear with one ofA, B andC, there is nos-line passing through them such as

those shown in Fig.9.1.1(a).

Observation 2. The axiom (E5) that through a point exterior to a given line there is

only one parallel passing through it is now replaced by two statements:one paralleland

no parallel. Let L be ans-line passes throughC and is parallel in the Euclidean sense to

AB. Notice that through anys-point not lying onAB there is ones-line parallel toL and

through any others-point lying onAB there is nos-lines parallel toL such as those shown

in Fig.9.1.1(b).

L

l1

l2

D

BA

C

E

(b)(a)

D C E

A BF G

l1

Fig.9.1.1

9.1.3 Mixed Geometry. In references [Sma1]-[Sma2], Smarandache introduced a

few mixed geometries, such as those of the paradoxist geometry, the non-geometry, the

counter-projective geometry and the anti-geometry by contradicts axioms (E1) − (E5)

in a Euclid geometry following. All of these geometries are examples of Smarandache

geometry.
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Paradoxist Geometry. In this geometry, its axioms consist of (E1)− (E4) and one of the

following:

(1) There are at least a straight line and a point exterior to it in this space for which

any line that passes through the point intersect the initialline.

(2) There are at least a straight line and a point exterior to it in this space for which

only one line passes through the point and does not intersectthe initial line.

(3) There are at least a straight line and a point exterior to it in this space for which

only a finite number of linesl1, l2, · · · , lk, k ≥ 2 pass through the point and do not intersect

the initial line.

(4) There are at least a straight line and a point exterior to it in this space for which

an infinite number of lines pass through the point (but not allof them) and do not intersect

the initial line.

(5) There are at least a straight line and a point exterior to it in this space for which

any line that passes through the point and does not intersectthe initial line.

Non-Geometry. The non-geometry is a geometry by denial some axioms of (E1)− (E5),

such as those of the following:

(E1−) It is not always possible to draw a line from an arbitrary point to another

arbitrary point.

(E2−) It is not always possible to extend by continuity a finite line to an infinite line.

(E3−) It is not always possible to draw a circle from an arbitrary point and of an

arbitrary interval.

(E4−) Not all the right angles are congruent.

(E5−) If a line cutting two other lines forms the interior angles of the same side of it

strictly less than two right angle, then not always the two lines extended towards infinite

cut each other in the side where the angles are strictly less than two right angle.

Counter-Projective Geometry. Denoted byP the point set,L the line set andRa relation

included inP×L. A counter-projective geometry is a geometry with these counter-axioms

(C1) − (C3) following:

(C1) There exist either at least two lines, or no line, that contains two given distinct

points.

(C2) Let p1, p2, p3 be three non-collinear points andq1, q2 two distinct points. Sup-

pose that{p1.q1, p3} and{p2, q2, p3} are collinear triples. Then the line containingp1, p2
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and the line containingq1, q2 do not intersect.

(C3) Every line contains at most two distinct points.

Anti-Geometry. A geometry by denial some axioms of the Hilbert’s 21 axioms ofEu-

clidean geometry.

§9.2 CLASSIFYING ISERI’S MANIFOLDS

9.2.1 Iseri’s Manifold. The idea of Iseri’s manifolds was based on a paper [Wee1] and

credited to W.Thurston. A more general idea can be found in [PoS1]. Such a manifold is

combinatorially defined in [Ise1] as follows:

An Iseri’s manifold is any collectionC(T, n) of these equilateral triangular disks

Ti , 1 ≤ i ≤ n satisfying the following conditions:

(1) Each edge e is the identification of at most two edges ei , ej in two distinct trian-

gular disks Ti ,T j , 1 ≤ i, j ≤ n and i, j;

(2) Each vertex v is the identification of one vertex in each of five, six or seven

distinct triangular disks.

The vertices of an Iseri’s manifold are classified by the number of the disks around

them. A vertex around five, six or seven triangular disks is called anelliptic vertex, a

Euclid vertexor ahyperbolic vertex, respectively.

An Iseri’s manifold is called closed if the number of triangular disks is finite and

each edge is shared by exactly two triangular disks, each vertex is completely around

by triangular disks. It is obvious that a closed Iseri’s manifold is a surface and its Euler

characteristic can be defined by Theorem 4.2.6.

Two Iseri’s manifoldsC1(T, n) andC2(T, n) are called to beisomorphicif there is an

1 − 1 mappingτ : C1(T, n) → C2(T, n) such that for∀T1,T2 ∈ C1(T, n), τ(T1
⋂

T2) =

τ(T1)
⋂
τ(T2). If C1(T, n) = C1(T, n) = C(T, n), τ is called anautomorphismof Iseri’s

manifoldC(T, n). All automorphisms of an Iseri’s manifold form a group under the com-

position operation, called the automorphism group ofC(T, n) and denoted by AutC(T, n).

9.2.2 A Model of Closed Iseri’s Manifold. For a closed Iseri’s manifoldC(T, n), we

can define a mapM by V(M) = {the vertices inC(T, n)}, E(M) = {the edges inC(T, n)}
andF(M) = {T,T ∈ C(T, n)}. ThenM is a triangular map with vertex valency∈ {5, 6, 7}.



312 Chap.9 Isometries on Smarandache Geometry

On the other hand, ifM is a triangular map on surface with vertex valency∈ {5, 6, 7}, we

can define an Iseri’s manifoldC(T, φ(M)) by

C(T, φ(M)) = { f | f ∈ F(M)}.

ThenC(T, φ(M)) is an Iseri’s manifold. Consequently, we get a result following.

Theorem 9.2.1 Let Ĉ(T, n),M(T, n) andM∗(T, n) be the set of Iseri’s manifolds with n

triangular disks, triangular maps with n faces and vertex valency∈ {5, 6, 7} and cubic

maps of order n with face valency∈ {5, 6, 7}. Then

(1) There is a bijection betweenM(T, n) andĈ(T, n);

(2) There is also a bijection betweenM∗(T, n) andĈ(T, n).

According to Theorem 9.2.1, we get the following result for the automorphisms of

an Iseri’s manifold following.

Theorem 9.2.2 Let C(T, n) be a closed s-manifold with negative Euler characteristic.

Then|AutC(T, n)| ≤ 6n and

|AutC(T, n)| ≤ −21χ(C(T, n)),

with equality hold only ifC(T, n) is hyperbolic, whereχ(C(T, n)) denotes the genus of

C(T, n).

Proof The inequality|AutC(T, n)| ≤ 6n is known by the Corollary 6.4.1. Similar to

the proof of Theorem 6.4.2, we know that

ε(C(T, n)) =
−χ(C(T, n))

1
3 −

2
k

,

wherek =
1

ν(C(T, n))

∑

i≥1

iνi ≤ 7 and with the equality holds only ifk = 7, i.e.,C(T, n) is

hyperbolic. �

9.2.3 Classifying Closed Iseri’s Manifolds.According to Theorem 9.2.1, we can clas-

sify closedIseri’s manifolds by that of triangular maps with valency in{5, 6, 7} as follows:

Classical Type:

(1) ∆1 = {5− regular triangular maps} (elliptic);

(2) ∆2 = {6− regular triangular maps}(euclid);
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(3) ∆3 = {7− regular triangular maps}(hyperbolic).

Smarandachely Type:

(4) ∆4 = {triangular maps with vertex valency 5 and 6} (euclid-elliptic);

(5) ∆5 = {triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);

(6) ∆6 = {triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);

(7) ∆7 = {triangular maps with vertex valency 5, 6 and 7} (mixed).

We prove each of these types is not empty following.

Theorem 9.2.3 For classical types∆1 − ∆3, there are

(1) ∆1 = {O20,P10};
(2) ∆2 = {Ti ,K j , 1 ≤ i, j ≤ +∞};
(3) ∆3 = {Hi , 1 ≤ i ≤ +∞},

where O20, P10 are shown in Fig.9.2.1, T3, K3 are shown in Fig.9.2.2and Hi is the Hurwitz

maps, i.e., triangular maps of valency7.
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Proof If M is a k-regular triangulation, we get that 2ε(M) = 3φ(M) = kν(M).

Whence, we have

ε(M) =
3φ(M)

2
and ν(M) =

3ε(M)
k

.

By the Euler-Poincare formula, we know that

χ(M) = ν(M) − ε(M) + φ(M) = (
3
k
− 1

2
)φ(M).

If M is elliptic, thenk = 5. Whence,χ(M) =
φ(M)

10
> 0. Therefore, ifM is orientable,

thenχ(M) = 2, Whence,φ(M) = 20, ν(M) = 12 andε(M) = 30, which is just the

mapO20. If M is non-orientable, thenχ(M) = 1, Whence,φ(M) = 10, ν(M) = 6 and

ε(M) = 15, which is the mapP10.

If M is Euclidean, thenk = 6. Thusχ(M) = 0, i.e.,M is a 6-regular triangulationTi

or K j for some integeri or j on the torus or Klein bottle, which is infinite.

If M is hyperbolic, thenk = 7. Whence,χ(M) < 0. M is a 7-regular triangulation,

i.e., the Hurwitz map. According to the results in [Sur1], there are infinite Hurwitz maps

on surfaces. This completes the proof. �

For these Smarandache Types, the situation is complex. But we can also obtain the

enumeration results for each of the types∆4 - ∆7. First, we prove a condition for the

numbers of vertex valency 5 with that of 7.

Lemma 9.2.1 LetC(T, n) be an Iseri’s manifold. Then

v7 ≥ v5 + 2

if χ(C(T, n)) ≤ −1 and

v7 ≤ v5 − 2

if χ(C(T, n)) ≥ 1, where vi denotes the number of vertices of valency i inC(T, n).

Proof Notice that we have know

ε(C(T, n)) =
−χ(C(T, n))

1
3 −

2
k

,

wherek is the average valency of vertices inC(T, n). Since

k =
5v5 + 6v6 + 7v7

v5 + v6 + v7

andε(C(T, n)) ≥ 3. Consequently, we get that
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(1) If χ(C(T, n)) ≤ −1, then

1
3
− 2v5 + 2v6 + 2v7

5v5 + 6v6 + 7v7
> 0,

i.e.,v7 ≥ v5 + 1. Now if v7 = v5 + 1, then

5v5 + 6v6 + 7v7 = 12v5 + 6v6 + 7 ≡ 1(mod2).

Contradicts to the fact that

∑

v∈V(G)

ρG(v) = 2ε(G) ≡ 0(mod2)

for a graphG. Whence there must be

v7 ≥ v5 + 2.

(2) If χ(C(T, n)) ≥ 1, then

1
3
− 2v5 + 2v6 + 2v7

5v5 + 6v6 + 7v7
< 0,

i.e.,v7 ≤ v5 − 1. Now if v7 = v5 − 1, then

5v5 + 6v6 + 7v7 = 12v5 + 6v6 − 7 ≡ 1(mod2).

Also contradicts to the fact that

∑

v∈V(G)

ρG(v) = 2ε(G) ≡ 0(mod2)

for a graphG. Whence, there must be

v7 ≤ v5−2. �

Corollary 9.2.1 There are no Iseri’s manifoldsC(T, n) such that

|v7 − v5| ≤ 1,

wherevi denotes the number of vertices of valencyi in C(T, n).

Define an operatorΘ : M → M∗ on a triangulationM of a surface by
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Choose each midpoint on each edge in M and connect the midpoint in each triangle

as shown in Fig.9.2.3. Then the resultant M∗ is a triangulation of the same surface and

the valency of each new vertex is6.

Θ

M M∗

Fig. 9.2.3

Then we get the following result.

Theorem 9.2.4 For these Smarandache Types∆4-∆7, there are

(1) |∆5| ≥ 2;

(2) Each of|∆4|, |∆6| and |∆7| is infinite.

Proof For M ∈ ∆4, let k be the average valency of vertices inM. Since

k =
5v5 + 6v6

v5 + v6
< 6 and ε(M) =

−χ(M)
1
3
− 2

k

,

we have thatχ(M) ≥ 1. Calculation shows thatv5 = 6 if χ(M) = 1 andv5 = 12 if

χ(M) = 2. We can construct a triangulation with vertex valency 5, 6 on the plane and the

projective plane in Fig.9.2.4.

1

7

2
345

6

7

1
2

3 4
5

6

(a) (b)

�
-

Fig.9.2.4

Now let M be a map in Fig.9.2.4. ThenMΘ is also a triangulation of the same surface
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with vertex valency 5, 6 andMΘ , M. Whence,|∆4| is infinite.

For M ∈ ∆5, by the Lemma 9.2.1, we know thatv7 ≤ v5 − 2 if χ(M) ≥ 1 and

v7 ≥ v5 + 2 if χ(M) ≤ −1. We construct a triangulation on the plane and projective plane

in Fig.9.2.5.

1

1234
5

6

2

7

3 4
5

6

7
�

-
Fig.9.2.5

For M ∈ ∆6, we know thatk =
6v6 + 7v7

v6 + v7
> 6. Whence,χ(M) ≤ −1. Since

3φ(M) = 6v6 + 7v7 = 2ε(M), we get that

v6 + v7 −
6v6 + 7v7

2
+

6v6 + 7v7

3
= χ(M).

Therefore, we havev7 = −χ(M). Notice that there are infinite Hurwitz mapsM on sur-

faces. Then the resultant triangular mapM∗ is a triangulation with vertex valency 6, 7 and

M∗ , M. Thus|∆6| is infinite.

For M ∈ ∆7, we construct a triangulation with vertex valency 5, 6, 7 in Fig.9.2.6.

1
2

3

456

1

2

3

4

7

5 6
7-
�

Fig.9.2.6

Let M be one of the maps in Fig.9.2.6. Then the action ofΘ on M results infinite

triangulations of valency 5, 6 or 7. This completes the proof. �

For the set∆5, we have the following conjecture.

Conjecture 9.2.1 The number|∆5| is infinite.
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§9.3 ISOMETRIES OF SMARANDACHE 2-MANIFOLDS

9.3.1 Smarandachely Automorphism. Let (M;A) be a Smarandache manifold. By

definition a Smarandachely denied axiomA ∈ A can be considered as an action ofA

on subsetsS ⊂ M, denoted bySA. Now let (M1;A1) and (M2;A2) be two Smarandache

manifolds, whereA1,A2 are the Smarandachely denied axioms on manifoldsM1 andM2,

respectively. They are said to beisomorphicif there is 1− 1 mappingsτ : M1 → M2 and

σ : A1 → A2 such thatτ(SA) = τ(S)σ(A) for ∀S ⊂ M1 andA ∈ A1. Such a pair (τ, σ) is

called an isomorphism between (M1;A1) and (M2;A2). Particularly, ifM1 = M2 = M and

A1 = A2 = A, such an isomorphism (τ, σ) is called aSmarandachely automorphismof

(M,A). Clearly, all such automorphisms of (M,A) form an group under the composition

operation onτ for a givenσ. Denoted by Aut(M,A).

9.3.2 Isometry on R2. Let X be a set andρ : X × X→ R a metric onX, i.e.,

(1) ρ(x, y) ≥ 0 for x, y ∈ X, and with equality hold if and only ifx = y;

(2) ρ(x, y) = ρ(y, x) for x, y ∈ X;

(3) ρ(x, y) + ρ(y, z) ≥ ρ(x, z) for x, y, z ∈ X.

A setX with such a metricρ is called ametric space, denoted by (X, ρ).

Example9.3.1 Let R2 = { (x, y) | x, y ∈ R }. Define

ρ(x1, x2) =
√

(x1 − x2)2 + (y1 − y2)2

for x1 = (x1, y1), x2 = (x2, y2) ∈ R2. Then such aρ is a metric onR2. We verify conditions

(1)-(3) in the following.

Clearly, conditions (1) and (2) are consequence ofx2 = 0⇒ x = 0 andx2 = (−x)2

for x ∈ R. Now let (x1, y1), (x2, y2) and (x3, y3) be three points onR2 with

(x2, y2) = (x1 + a1, y1 + b1)

(x3, y3) = (x1 + a1 + a2, y1 + b1 + b2)

Then the condition (3) implies that

√
a2

1 + b2
1 +

√
a2

2 + b2
2 ≥

√
(a1 + a2)2 + (b1 + b2)2,

which can be verified to be hold immediately.
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An isometryof a metric space (X, ρ) is a bijective mappingφ : X→ X that preserves

distance, i.e.,ρ(φ(x), φ(y)) = ρ(x, y). Denote by Isom(X, ρ) the set of all isometries of

(X, ρ). Then we know the following.

Theorem 9.3.1 Isom(X, ρ) is a group under the composition operation of mapping.

Proof Clearly, 1X ∈ Isom(X) and ifφ ∈ Isom(X), thenφ−1 ∈ Isom(X). Furthermore,

if φ1, φ2 ∈ Isom(X), by definition we know that

ρ(φ1φ2(x), φ1φ2(y)) = ρ(φ2(x), φ2(y)) = ρ(x, y).

Whence,φ1φ2 is also an isometry, i.e.,φ1φ2 ∈ Isom(X). So Isom(X, ρ) is a group. �

Let ∆, ∆′ be two triangles onR2. They are said to becongruentif we can label their

vertices, for instance∆ = ABCand∆′ = A′B′C′ such that

|AB| = |A′B′|, |BC| = |B′C′|, |CA| = |C′A′|,

∠CAB= ∠C′A′B′, ∠ABC= ∠A′B′C′, ∠BCA= ∠B′C′A′.

Theorem 9.3.2 Let φ be an isometry onR2. Thenφ maps a triangle to its a congruent

triangle, preserves angles and maps lines to lines.

Proof Let∆ be a triangle with vertex labelsA, BandC onR2. Thenφ(∆) is congruent

with ∆ by the definition of isometry.

Notice that an angle∠ < π and an angle∠ > π can be realized respectively as an

angle∠CAB, or an exterior angle of a triangleABC. We have known thatφ(ABC) is

congruent withABC. Consequently,∠φ(C)φ(A)φ(B) = ∠CAB, i.e.,φ preserves angles in

R2. If ∠ = π, this result follows the law of trichotomy.

For a lineL in R2, let B, C be two distinct points onL, and letL′ be the line through

pointsB′ = φ(B) andC′ = φ(C). Then for any pointA ∈ R2, it follows that

φ(A) < φ(L) ⇔ A < L⇔ 0 ≤ ∠CAB< π

⇔ 0 < ∠C′φ(A)B′ < π⇔ φ(A) < L′.

Therefore,φ(L) = L′. �

The behavior of an isometry is completely determined by its action on three non-

collinear points shown in the next result.
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Theorem 9.3.3 An isometry ofR2 is determined by its action on three non-collinear

points.

Proof Let A, B, C be three non-collinear points onR2 and letφ1, φ2 ∈ Isom(R2)

have the same action onA, B, C. Thus

φ1(A) = φ2(A), φ1(B) = φ2(B), φ1(C) = φ2(C).

i.e.,,

φ−1
2 φ1(A) = A, φ−1

2 φ1(B) = B, φ−1
2 φ1(C) = C.

Whence, we must show that if there existsϕ ∈ Isom(R2) such thatϕ(A) = A, ϕ(B) =

B, ϕ(C) = C, thenϕ(P) = P for each pointP ∈ R2.

In fact, sinceϕ preserves distance andϕ(A) = A, it follows that P andϕ(P) are

equidistant fromA. Thusϕ(P) lies on the circleC1 centered atA with radius|AP|. Sim-

ilarly, ϕ(P) also lies on the circleC2 centered atB with radius |BP|. Whence,ϕ(P) ∈
C1 ∩ C2.

BecauseC1 andC2 are not concentric, they intersect in at most two points, such as

those shown in Fig.9.3.1 following.

A B

ϕ(P)

P

C1
C2

C

L

Fig.9.3.1

Notice thatP lies on both ofC1 andC2. ThusC1 ∩ C2 , ∅. Therefore,|C1 ∩ C2| = 1

or 2. If |C1 ∩ C2| = 1, thenϕ(P) = P. If |C1 ∩ C2| = 2, let L be the line throughA, B,

which is the perpendicular bisector ofϕ(P) andP, such as those shown in Fig.9.3.1. By

assumption,C < L, we get that|CP| , |Cϕ(P)|. Contradicts to the fact thatP, ϕ(P) are

equidistant fromC. Whence|C1 ∩ C2| = 1 and we get the conclusion. �
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There are three types of isometries onR2 listed in the following.

Translation T. A translationT is a mapping that moves every point ofR2 through

a constant distance in a fixed direction, i.e.,

Ta,b : R2→ R2, (x1, y1)→ (x1 + a, y1 + b),

where (a, b) is a constant vector. Call the direction of (a, b) theaxisof T and denoted by

T = Ta,b.

Rotation Rθ. A rotation R is a mapping that moves every point ofR2 through a

fixed angle about a fixed point, called thecenter. By taking the centerO to be the origin

of polar coordinates (r, θ), a rotationRθ : R2→ R2 is

R : (r, θ)→ (r, θ +̟),

where̟ is a constant angle,̟ ∈ R (mod2π). Denoted byR= Rθ.

ReflectionF. A reflectionF is a mapping that moves every point ofR2 to its mirror-

image in a fixed line. That lineL is called theaxisof F, denoted byF = F(L). Thus for a

point P in R2, if P ∈ L, thenF(P) = P, and ifP < L, thenF(P) is the unique point inR2

such thatL is the perpendicular bisector ofP andF(P).

Theorem 9.3.4 For a chosen line L and a fixed point O∈ L in R2, any elementϕ ∈
Isom(R2) can written uniquely in the form

ϕ = TRFǫ ,

where F denotes the reflection in L,ǫ = 0 or 1, R is the rotation centered at O, T∈ T, and

the subgroup of orientation-preserving isometries ofR2 consists of thoseϕ with ǫ = 0.

Proof Let T be the translation transferringO to ϕ(O). Clearly,T−1ϕ(O) = O. Now

let P ∈ L be a point withP , O. By definition,

0 < ρ(O,P) = ρ(T−1ϕ(O),T−1ϕ(P)) = ρ(O,T−1ϕ(P)),

there exists a rotationRcentered atO transferringP to T−1ϕ(P). ThusR−1T−1ϕ fixes both

pointsO andP.

Finally, let Q < L be a point. Then pointsQ andR−1T−1ϕ(Q) are equidistant both

from pointsO andP. Similar to the proof of Theorem 9.3.3, we know that pointsQ and
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R−1T−1ϕ(Q) are either equal or mirror-images inL. Chooseǫ = 0 if Q = R−1T−1ϕ(Q) and

ǫ = 1 if Q , R−1T−1ϕ(Q). Then the isometryFǫR−1T−1ϕ fixes non-collinear pointsO, P

andQ. According to Theorem 9.3.3, there must be

FǫR−1T−1ϕ = 1R2.

Thus

ϕ = TRFǫ .

For the uniqueness of the form, assume that

TRFǫ = T′R′Fδ,

whereǫ, δ ∈ {0, 1}, T, T′ ∈ T andR, R′ ∈ RO. Clearly,ǫ = δ by previous argument.

CancellingF if necessary, we get thatTR = T′R′. But then (T′)−1T = R′R−1 belongs

to RO ∩ T, i.e., a translation fixes pointO. Whence, it is the identity mapping 1r2. Thus

T = T′ andR= R′.

Notice thatT, R are orientation-preserving butF is orientation-reversing. It follows

thatTRFǫ is orientation-preserving or orientation-reversing according toǫ = 0 or 1. This

completes the proof. �

9.3.3 Finitely Smarandache2-Manifold. A point P on a Euclidean planeR2 is in fact

associated with a real numberπ. Generally, we consider a functionµ : R2 → [0, 2π) and

classify points onR2 into three classes following:

Elliptic Type. All points P ∈ R2 with µ(P) < π.

Euclidean Type. All points Q ∈ R2 with µ(P) = π.

Hyperbolic Type. All points U ∈ R2 with µ(P) > π.

Such a Euclidean planeR2 with elliptic or hyperbolic points is called aSmarandache

plane, denoted by (R2, µ) and these elliptic or hyperbolic points are callednon-Euclidean

points. A finitely Smarandache plane is such a Smarandache plane with finite non-

Euclidean points.

Let L be an s-line in a Smarandache plane (R2, µ) with non-Euclisedn pointsA1,A2,

· · · ,An for an integern ≥ 0. Itscurvature R(L) is defined by

R(L) =
n∑

i=1

(π − µ(Ai)).
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An s-lineL is calledEuclideanor non-Euclideanif R(L) = ±2π or , ±2π. The following

result characterizes s-lines on (R2, µ).

Theorem9.3.5 An s-line without self-intersections is closed if and only if it is Euclidean.

Proof Let (R2, µ) be a Smarandache plane and letL be a closed s-line without self-

intersections on (R2, µ) with verticesA1, A2, · · · ,An. From the Euclid geometry on plane,

we know that the angle sum of ann-polygon is (n− 2)π. Whence, the curvatureR(L) of

s-lineL is ±2π by definition, i.e.,L is Euclidean.

Now if an s-lineL is Euclidean, thenR(L) = ±2π by definition. Thus there exist

non-Euclidean pointsB1, B2, · · · , Bn such that
n∑

i=1

(π − µ(Bi)) = ±2π.

Whence,L is nothing but ann-polygon with verticesB1, B2, · · · , Bn on R2. Therefore,L

is closed without self-intersection. �

Furthermore, we find conditions for an s-line to be that of regular polygon onR2

following.

Corollary 9.3.1 An s-line without self-intersection passing through non-Euclidean points

A1,A2, · · · ,An is a regular polygon if and only if all points A1,A2, · · · ,An are elliptic with

µ(Ai) =

(
1− 2

n

)
π

or all A1,A2, · · · ,An are hyperbolic with

µ(Ai) =

(
1+

2
n

)
π

for integers1 ≤ i ≤ n.

Proof If an s-lineL without self-intersection passing through non-Euclideanpoints

A1,A2, · · · ,An is a regular polygon, then all pointsA1,A2, · · · ,An must be elliptic (hyper-

bolic) and calculation easily shows that

µ(Ai) =

(
1− 2

n

)
π or µ(Ai) =

(
1+

2
n

)
π

for integers 1≤ i ≤ n by Theorem 9.3.5. On the other hand, ifL is an s-line passing

through elliptic (hyperbolic) pointsA1,A2, · · · ,An with

µ(Ai) =

(
1− 2

n

)
π or µ(Ai) =

(
1+

2
n

)
π
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for integers 1≤ i ≤ n, then it is closed by Theorem 9.3.5. Clearly,L is a regular polygon

with verticesA1,A2, · · · ,An. �

Let ρ be the metric onR2 defined in Example 9.3.1. An isometryon a Smarandache

plane (R2, µ) is such an isometryτ : R2 → R2 with µ(τ(x)) = µ(x) for x ∈ R2. Clearly,

all isometries on (R2, µ) also form a group under the composition operation, denotedby

Isom(R2, µ). Corollary 9.3.1 enables one to determine isometries of finitely Smarandache

planes following.

Theorem 9.3.6 Let (R2, µ) be a finitely Smarandache plane. Then any isometryT of

(R2, µ) is generated by a rotation R and a reflection F onR2, i.e.,T = RFǫ with ǫ = 0, 1.

Proof Let T be an isometry on a finitely Smarandache plane (R2, µ). Then for a

point A on (R2, µ), the type ofA andT (A) must be the same withµ(T (A)) = µ(A) by

definition. Whence, if there is constant vector (a, b) ∈ R2 such thatTa,b : (R2, µ) →
(R2, µ) determined by

(x, y)→ (x+ a, y+ b)

is an isometry andA a non-Euclidean point in (R2, µ), then there are infinite non-Euclidean

pointsA, Ta,b(A), T2
a,b(A), · · · ,Tn

a,b(A), · · · , for integersn ≥ 1, contradicts the assumption

that (R2, µ) is finitely Smarandache. ThusT can be only generated by a rotation and a

refection. ThusT = RFǫ. Conversely, we are easily constructing a rotationR and a

reflectionF on (R2, µ). For example, a rotationR : θ → θ + π/2 centered atO and

a reflectionF in line L on a finitely Smarandache plane (R2, µ) is shown in Fig.9.3.2

(a) and (b) in which the labeling number on a pointP is µ(P) if µ(P) , π. Otherwise,

µ(P) = π if there are no a label forp ∈ R2. �

-6� ? π

2
O

π

2

π

2

π

2

π

2

(a)

O
� -π

2

π

2

π

2

π

2
L

(b)

Fig.9.3.2
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The classification on finitely Smarandache planes is the following result.

Theorem 9.3.7 Let k|n or k|(n− 1) and0 < d1 < d2 < · · ·dk an integer sequence. Then

there exist one and only one finitely Smarandache plane(R2, µ) with n non-Euclidean

points A1, A2, · · · ,An such that

Isom(R2, µ) ≃ D2k

and

ρ(O,Ai j ) = d j, µ(Ai j ) =

(
1− 2

k

)
, ( j − 1)k+ 1 ≤ i j ≤ jk; 1 ≤ j ≤ n

k

if k|n, or

ρ(O,Ai j ) = d j , µ(Ai j ) =

(
1− 2

k

)
, ( j − 1)k+ 1 ≤ i j ≤ jk; 1 ≤ j ≤ n− 1

k

with O= An if k|(n− 1).

Proof Choose̟ =
2π
k

and a rotationR̟ : (r, θ) → (r, θ + ̟) centered atO.

Assumek|n. LetP1,P2, · · · ,P n
k

be
n
k

concentrically regulark-polygons atO with radius

d1, d2, · · · , dk. Place pointsA1,A2, · · · ,Ak on vertices ofP1, Ak1,Ak+2, · · · ,A2k on vertices

of P2, · · ·, andAn−k+1,An−k+2, · · · ,An on vertices ofP n
k
, such as those shown in Fig.9.3.3.

O A1

A2A3

Ak

Ak+1

Ak+2Ak+3

A2k

An−k+1

An−k+2An−k+3

AnAn−1

Fig.9.3.3

Then we are easily know that

Isom(R2, µ) ≃ D2k.

For the uniqueness, letP′1,P′2, · · · ,P′nk be
n
k

concentrically regulark-polygons atO′

with radiusd1, d2, · · · , dk and verticesA′1,A
′
2, · · · ,A′n labeled likely that in Fig.9.3.3.
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ChooseTO′,O being a translation moving pointO′ to O andRA′1,A1 a rotation centered atO

movingA′1 to A1. Transfer it first byTO′,O and then byRA′1,A1. Then each non-Euclidean

point A′i coincides withAi for integers 1≤ i ≤ n, i.e., they are the same Smarandache

plane (R2, µ).

Similarly, we can get the result for the case ofk|(n− 1) by puttingO = An. �

9.3.4 Smarandachely Map. Let S be a surface associated withµ : x → [0, 2π) for

each pointx ∈ S, denoted by (S, µ). A point x ∈ S is calledelliptic, Euclideanor

hyperbolicif it has a neighborhoodUx homeomorphic to a 2-disk neighborhood of an

elliptic, Euclidean or a hyperbolic point in (R2, µ). Similarly, a line on (S, µ) is called an

s-line.

A map M = (Xα,β,P) on (S, µ) is calledSmarandachelyif all of its vertices is

elliptic (hyperbolic). Notice that these pendent verticesis not important because it can

be always Euclidean or non-Euclidean. We concentrate our attention to non-separated

maps. Such maps always exist circuit-decompositions. The following result characterizes

Smarandachely maps.

Theorem 9.3.8 A non-separated planar map M is Smarandachely if and only if there

exist a directed circuit-decomposition

E1
2
(M) =

s⊕

i=1

E(
−→
C i)

of M such that one of the linear systems of equations

∑

v∈V(
−→
C i )

(π − xv) = 2π, 1 ≤ i ≤ s

or ∑

v∈V(
−→
C i )

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable, where E1
2
(M) denotes the set of semi-arcs of M.

Proof If M is Smarandachely, then each vertexv ∈ V(M) is non-Euclidean, i.e.,

µ(v) , π. Whence, there exists a directed circuit-decomposition

E1
2
(M) =

s⊕

i=1

E(
−→
C i)
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of semi-arcs inM such that each of them is an s-line in (R2, µ). Applying Theorem 9.3.5,

we know that ∑

v∈V(
−→
C i )

(π − µ(v)) = 2π or
∑

v∈V(
−→
C i )

(π − µ(v)) = −2π

for each circuitCi , 1 ≤ i ≤ s. Thus one of the linear systems of equations

∑

v∈V(
−→
C i )

(π − xv) = 2π, 1 ≤ i ≤ s or
∑

v∈V(
−→
C i )

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable.

Conversely, if one of the linear systems of equations

∑

v∈V(
−→
C i )

(π − xv) = 2π, 1 ≤ i ≤ s or
∑

v∈V(
−→
C i )

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable, define a mappingµ : R2→ [0, 4π) by

µ(x) =


xv if x = v ∈ V(M),

π if x < v(M).

ThenM is a Smarandachely map on (R2, µ). This completes the proof. �

In Fig.9.3.4, we present an example of a Smarandachely planar maps withµ defined

by numbers on vertices.

π

2

π

2
π

2
π

2

π

2

π

2

π

2

π

2
π

2

Fig.9.3.4

Let ω0 ∈ (0, π). An s-lineL is callednon-Euclidean of typeω0 if R(L) = ±2π ± ω0.

Similar to Theorem 9.3.8, we can get the following result.
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Theorem 9.3.9 A non-separated map M is Smarandachely if and only if there exist a

directed circuit-decomposition

E1
2
(M) =

s⊕

i=1

E(
−→
C i)

of M into s-lines of typeω0, ω0 ∈ (0, π) for integers1 ≤ i ≤ s such that one of the linear

systems of equations

∑

v∈V(
−→
C i )

(π − xv) = 2π − ω0, 1 ≤ i ≤ s,

∑

v∈V(
−→
C i )

(π − xv) = −2π − ω0, 1 ≤ i ≤ s,

∑

v∈V(
−→
C i )

(π − xv) = 2π + ω0, 1 ≤ i ≤ s,

∑

v∈V(
−→
C i )

(π − xv) = −2π + ω0, 1 ≤ i ≤ s

is solvable.

9.3.5 Infinitely Smarandache2-Manifold. Notice that the functionµ : R2 → [0, 2π)

is not continuous if there are only finitely non-Euclidean points in (R2, µ). We consider

a continuous functionµ : R2 → [0, 2π) in this subsection, in which we meet infinite

non-Euclidean points.

-
6

x

y

O

l1
l2

r (s)

X
Y

φψ

δ

Fig.9.3.5

Let r : (a, b)→ R2 be a plane curveC parametrized by arc lengths, seeing Fig.9.3.5.

Notice thatµ(x) is an angle variant fromπ of a Euclidean point toµ(x) of a non-Euclidean
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x in finitely Smarandache plane. Consider points moves fromX to Y on r (s). Then the

variant of angles froml1 to l2 is δ = φ − ψ. Thusµ(x) =
dφ
ds

∣∣∣∣∣
x
. Define thecurvature R(C)

of curveC by

R(C) =
∫

C

dφ
ds
.

Then ifC is a closed curve onR2 without self-intersection, we get that

R(C) =
∫

C

dφ
ds
=

2πr∫

0

dφ
ds
= φ|2πr − φ|0 = 2π.

Let r = (x(s), y)(s)) be a plane curve inR2. Then

dx
ds
= cosφ,

dy
ds
= sinφ.

Consequently,

d2x
ds2
= − sinφ

dφ
ds
= −dy

ds
dφ
ds
,

d2y
ds2
= cosφ

dφ
ds
=

dx
ds

dφ
ds
.

Multiplying the first formula by−dy
ds

, the second by
dx
ds

on both sides and plus them, we

get that
dφ
ds
=

dx
ds

d2y
ds2
− d2x

ds2

dy
ds

by applying sin2 φ + cos2 φ = 1.

If r (t) = (x(t), y(t)) is a plane curveC parametrized byt, wheret maybe not the arc

length, since

s=

t∫

0

√(
dx
dt

)2

+

(
dy
dt

)2

dt,

we know that

ds
dt
=

√(
dx
dt

)2

+

(
dy
dt

)2

,
dx
ds
=

(
dx
dt

)
/

(
ds
dt

)
and

dy
ds
=

(
dy
dt

)
/

(
ds
dt

)
.

Whence,

dφ
ds
=

dx
dt

d2y
dt2
− d2x

dt2
dy
dt


(
dx
dt

)2

+

(
dy
dt

)2
3
2

.
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Consequently, we get the following result by definition.

Theorem9.3.10 A curve C determined byr = (x(t), y)(t)) exists in a Smarandache plane

(R2, µ) if and only if the following differential equation

dx
dt

d2y
dt2
− d2x

dt2
dy
dt


(
dx
dt

)2

+

(
dy
dt

)2
3
2

= µ

is solvable.

Example9.3.1 Let r (θ) = (cosθ, sinθ) (0 ≤ θ ≤ 2π) be a unit circleC onR2. Calculation

shows that
dx
dθ

d2y
dθ2
− d2x

dθ2

dy
dθ
= sin2 θ + cos2 θ = 1

and 
(
dx
dt

)2

+

(
dy
dt

)2
3
2

= sin2 θ + cos2 θ = 1.

Whence, the circleC exists in a Smarandache plane (R2, µ) if and only if µ(x, y) = 1 for

∀(x, y) ∈ C.

Example 9.3.2 Let r (t) = (a(t − sint), a(1− cost)) (0 ≤ t ≤ 2π) be a spiral line onR2.

Calculation shows that
dφ
ds
= − 1

4asin
t
2

.

Whence, this spiral line exists in a Smarandache plane (R2, µ) if and only if

µ(x, y) = − 1

4asin
t
2

for x = a(t − sint) andy = a(1− cost).

Now we turn our attention to isometries of Smarandache plane(R2, µ) with infinitely

Smarandache points. These points in (R2, µ) can be classified into three classes, i.e.,

elliptic points Vel, Euclidean points Veu andhyperbolic points Vhy following:

Vel = { u ∈ (R2, µ) | µ(u) < π },
Veu = { v ∈ (R2, µ) | µ(v) = π },
Vhy = { w ∈ (R2, µ) | µ(w) > π }.
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Theorem9.3.11 Let (R, µ) be a Smarandache plane. If Vel , ∅ and Vhy , ∅, then Veu , ∅.

Proof By assumption, we can choose pointsu ∈ Vel andv ∈ Vhy. Consider points on

line segmentuv in (R2, µ). Notice thatµ(u) < π andµ(v) > π. Applying the connectedness

of µ, there exists at least one pointw, w ∈ uv such thatµ(w) = π, i.e., w ∈ Veu by the

intermediate value theorem on continuous function. ThusVeu , ∅. �

Corollary 9.3.2 Let (R, µ) be a Smarandache plane. If Veu = ∅, then either all points of

(R2, µ) are elliptic or hyperbolic.

Corollary 9.3.2 enables one to classify Smarandache planes into classes following:

Euclidean Type. These Smarandache planes in which each point is Euclidean.

Elliptic Type. These Smarandache planes in which each point is elliptic.

Hyperbolic Type. These Smarandache planes in which each point is hyperbolic.

Smarandachely Type. These Smarandache planes in which there are elliptic, Eu-

clidean and hyperbolic points simultaneously. This type can be further classified into

three classes by Corollary 9.3.2:

(S1) Such Smarandache planes just containing elliptic and Euclidean points;

(S2) Such Smarandache planes just containing Euclidean andhyperbolic points;

(S3) Such Smarandache planes containing elliptic, Euclidean and hyperbolic points.

By definition, these isometries of a Euclidean planeR2, i.e., translation, rotation and

reflection exist also in Smarandache planes (R2, µ) of elliptic and hyperbolic types if we

let µ : R2 → [0, π) be a constant< π or > π. We concentrate our discussion on these

Smarandachely types.

X X X X

X X X X

X X X X

a

b

Fig.9.3.6
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For convenience, we respectively colour the elliptic, Euclidean and hyperbolic points

by colors red (R), yellow (Y) and white (W). For the cases (S1)or (S2), if there is an

isometry of translationTa,b on (R2, µ), then this Smarandache plane can be only the case

shown in Fig.9.3.6, whereX =R or W and all other points colored by Y. Whence, if there

is also a rotationRθ on (R2, µ), there must bea = b andθ = π/2 with center atX or

the center of one square. In this case, w can easily find a reflection F in a horizontal or a

vertical line passing through X. Whence, there are isometries of types translation, rotation

and reflection in cases (S1) and (S2).

O X U Z

X

U

Z

X

U

Z

XUZ

Fig.9.3.7

Furthermore, if there is an isometry of rotationRθ on (R2, µ), then this Smarandache

plane can be only the case shown in Fig.9.3.7, whereX, U, Z ∈ {R, W} and all other

points colored by Y. In this case, there are reflectionsF in lines passing through points O,

X and there are translationsTa,b on (R2, µ) only if θ = π/2 anda = b.

X X X X

X X X X

X X X X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

a

a

Fig.9.3.8



Sec.9.4 Isometries of Pseudo-Euclidean Spaces 333

Consider the case of (S3). In this case, if there is an isometry of translationTa,b

on (R2, µ), then this Smarandache plane can be only the case shown in Fig.9.3.8, where

X ∈ {R, W}, Z ∈ {R, W} \ {X} and all other points colored by Y. Now if there is an

isometry of rotationRθ on (R2, µ), there must bea = b andθ = π/2 centered at X, Z or

the center of one square.

Similarly, if there is an isometry of rotationRθ on (R2, µ) such as those shown in

Fig.9.3.7. Then there are reflectionsF in lines passing through points O, X. In this case,

there exist translationsTa,b on (R2, µ) only if θ = π/2 anda = b.

Summarizing up all the previous discussions, we get the following result on isome-

tries of Smarandache planes (R2, µ) with a continuous functionµ : R2→ [0, 2π).

Theorem 9.3.12 Let (R2, µ) be a Smarandachely type plane withµ : R2 → [0, 2π) a

continuous function. Then there are isometries of translation Ta,b and rotations Rθ only

if a = b and θ = π/2, and there are indeed such a Smarandache plane(R2, µ) with

isometries of types translation, rotation and reflection concurrently in each of classes

(S1)-(S3).

§9.4 ISOMETRIES OF PSEUDO-EUCLIDEAN SPACES

9.4.1 Euclidean Space.A Euclidean spaceon a real vector spaceE over a fieldF is a

mapping

〈 · · 〉 : E × E→ R with (e1, e2)→ 〈e1, e2〉 for ∀e1, e2 ∈ E

such that fore, e1, e2 ∈ E, α ∈ F

(A1) 〈e, e1 + e2〉 = 〈e, e1〉 + 〈e, e2〉;
(A2) 〈e, αe1〉 = α 〈e, e1〉;
(A3) 〈e1, e2〉 = 〈e2, e1〉;
(A4) 〈e, e〉 ≥ 0 and〈e, e〉 = 0 if and only ife= 0.

In an Euclidean spaceE, the number
√
〈e, e〉 is called itsnorm, denoted by‖e‖ for

abbreviation. It can be shown that

(1)
〈
0, e

〉
=

〈
e, 0

〉
= 0 for ∀e ∈ E;

(2)

〈
n∑

i=1
xie

1
i ,

m∑
j=1

yie
2
j

〉
=

n∑
i=1

m∑
i=1

xiyj

〈
e1

i , e
2
j

〉
, for es

i ∈ E, where 1≤ i ≤ max{m, n} and
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s= 1 or 2.

Certainly, lete1 = e2 = 0 in (A1), we find that
〈
e, 0

〉
= 0. Applying (A3), we get that〈

0, e
〉
= 0. This is the formula in (1). For (2), applying (A1)-(A2), we know that

〈 n∑

i=1

xie
1
i ,

m∑

j=1

yie
2
j

〉
=

m∑

j=1

〈 n∑

i=1

xie
1
i , yie

2
j

〉
=

m∑

j=1

yi

〈 n∑

i=1

xie
1
i , e

2
j

〉

=

m∑

j=1

yi

〈
e2

j ,

n∑

i=1

xie
1
i

〉
=

n∑

i=1

m∑

j=1

xiyi

〈
e2

j , e
1
i

〉

=

n∑

i=1

m∑

j=1

xiyi

〈
e1

i , e
2
j

〉
.

9.4.2 Linear Isometry on Euclidean Space.Let E be ann-dimensional Euclidean space

with normal basis{ǫ1, ǫ2, · · · , ǫn}, i.e.,
〈
ǫ i , ǫ j

〉
= 0 and|ǫ i | = 1 for integers 1≤ i, j ≤ n. A

linear isometry T: E→ E is such a transformation that

T(c1e1 + c2e2) = c1T(e1) + c2T(e2) and 〈T(e1),T(e2)〉 = 〈e1, e2〉

for e1, e2 ∈ E andc1, c2 ∈ F .

Theorem 9.4.1 Let E be an n-dimensional Euclidean space with normal basis{ǫ1, ǫ2,

· · · , ǫn} and T a linear transformation onE. Then T is an isometry onE if and only if

{T(ǫ1),T(ǫ2), · · · ,T(ǫn)} is a normal basis ofE.

Proof If T is a linear isometry, then
〈
T(ǫ i),T(ǫ j)

〉
=

〈
ǫ i , ǫ j

〉
= δi j by definition,

whereδi j = 1 if i = j and 0 otherwise. Whence,{T(ǫ1),T(ǫ2), · · · ,T(ǫn)} is a normal basis

of E.

Conversely, let{ǫ1, ǫ2, · · · , ǫn}, {T(ǫ1),T(ǫ2), · · · ,T(ǫn)} be normal basis ofE and

v ∈ E. Without loss of generality, assumev = a1ǫ1+a2ǫ2+ · · ·+anǫn. Then we know that

T(v) = a1T(ǫ1)+a2T(ǫ2)+ · · ·+anT(ǫn). Notice that
〈
T(ǫ i),T(ǫ j)

〉
= δi, j and

〈
ǫ i, ǫ j

〉
= δi j

for integers 1≤ i, j ≤ n. We get that

〈v, v〉 = a2
1, a

2
2 + · · · + a2

n and 〈T(v),T(v)〉 = a2
1, a

2
2 + · · · + a2

n.

Thus〈T(v),T(v)〉 = 〈v, v〉. �

A matrix A =
[
ai j

]
n×n

is called orthogonal ifAAt = In×n, whereAt is the transpose of

A if

a2
i1 + a2

i2 + · · · + a2
in = 1 and ai1a j1 + ai2a j2 + · · · + aina jn = 0
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for integers 1≤ i, j ≤ n, i , j.

Theorem 9.4.2 Let E be an n-dimensional Euclidean space with normal basis{ǫ1, ǫ2,

· · · , ǫn} and T a linear transformation onE determined byY
t
=

[
ai j

]
n×n

X
t
, whereX =

(ǫ1, ǫ2, · · · , ǫn) andY = (T(ǫ1),T(ǫ2), · · · ,T(ǫn)). Then T is a linear isometry onE if and

only if
[
ai j

]
n×n

is an orthogonal matrix.

Proof If T is a linear isometry onE, then
〈
T(ǫ i),T(ǫ j)

〉
=

〈
ǫ i, ǫ j

〉
= δi j . Thus

ai1a j1 + ai2a j2 + · · · + aina jn = δi j ,

i.e.,
[
ai j

]
n×n

is an orthogonal matrix by definition.

On the other hand, if
[
ai j

]
n×n

is an orthogonal matrix, then we are easily know that

{T(ǫ1),T(ǫ2), · · · ,T(ǫn)} is a normal basis ofE. Let b = b1ǫ1+b2ǫ2+ · · ·+bnǫn ∈ E. Then

T(b) = T(b1ǫ1 + b2ǫ2 + · · · + bnǫn) = b1T(ǫ1) + b2T(ǫ2) + · · · + bnT(ǫn).

Thus 〈
T(b),T(b)

〉
= b2

1 + b2
2 + · · · + b2

n =
〈
b, b

〉
,

i.e.,T is a linear isometry by definition. �

9.4.3 Isometry on Euclidean Space.Let E be ann-dimensional Euclidean space with

normal basis{ǫ1, ǫ2, · · · , ǫn}. As in the case ofR2 by the distance-preserving property, any

isometry onE is a composition of three isometries onE following:

Translation Te. A mapping that moves every point (x1, x2, · · · , xn) of E by

Te : (x1, x2, · · · , xn)→ (x1 + e1, x2 + e2, · · · , xn + en),

wheree= (e1, e2, · · · , en).

Rotation Rθ. A mapping that moves every point ofE through a fixed angle about a

fixed point. Similarly, taking the centerO to be the origin of polar coordinates (r, φ1, φ2,

· · · , φn−1), a rotationRθ1,θ2,···,θn−1 : E→ E is

Rθ1,θ2,···,θn−1 : (r, φ1, φ2, · · · , φn1)→ (r, φ1 + θ1, φ2 + θ2, · · · , φn1 + θn−1),

whereθi is a constant angle,θi ∈ R (mod2π) for integers 1≤ i ≤ n− 1.

ReflectionF. A reflectionF is a mapping that moves every point ofE to its mirror-

image in a fixed Euclidean subspaceE′ of dimensionaln−1, denoted byF = F(E′). Thus
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for a pointP in E, F(P) = P if P ∈ E′, and ifP < E′, thenF(P) is the unique point inE

such thatE′ is the perpendicular bisector ofP andF(P).

The following result is easily to know similar to the proof ofTheorem 9.3.4 by the

distance-preserving property of isometries.

Theorem 9.4.3 All isometries fixing the origin on a Euclidean spaceE are linear.

Whence, by Theorems 9.4.1-9.4.2, we get the following result.

Theorem 9.4.4 Any isometryI on a Euclidean spaceE is affine, i.e.,

Y
t
= λ

[
ai j

]
n×n

X
t
+ e,

whereλ is a constant number,
[
ai j

]
n×n

a orthogonal matrix ande a constant vector inE.

9.4.4 Pseudo-Euclidean Space.Let Rn = {(x1, x2, · · · , xn)} be a Euclidean space of di-

mensionalnwith a normal basisǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, · · · , 0), · · ·, ǫn = (0, 0, · · · , 1),

x ∈ Rn and
−→
V x, x

−→
V two vectors with end or initial point atx, respectively. Apseudo-

Euclidean space(Rn, µ) is such a Euclidean spaceRn associated with a mappingµ :
−→
V x→ x

−→
V for x ∈ Rn, such as those shown in Fig.9.4.1,- - - >

x x

−→
V x x

−→
V

−→
V x

x
−→
V

(a) (b)

Fig.9.4.1

where
−→
V x andx

−→
V are in the same orientation in case (a), but not in case (b). Such points in

case (a) are calledEuclideanand in case (b) non-Euclidean. A pseudo-Euclidean (Rn, µ)

is finite if it only has finite non-Euclidean points, otherwise,infinite.

Notice that a vector
−→
V can be uniquely determined by the basis ofRn.−→ For x ∈ Rn,

there are infinite orthogonal frames at pointx. Denoted byOx the set of all normal bases

at point x. Then apseudo-Euclidean space(R, µ) is nothing but a Euclidean spaceRn

associated with a linear mappingµ : {ǫ1, ǫ2, · · · , ǫn} → {ǫ′1, ǫ′2, · · · , ǫ′n} ∈ Ox such that

µ(ǫ1) = ǫ
′
1, µ(ǫ2) = ǫ

′
2, · · ·, µ(ǫn) = ǫ

′
n at pointx ∈ Rn. Thus if

−→
V x = c1ǫ1+c2ǫ2+ · · ·+cnǫn,

thenµ(x
−→
V) = c1µ(ǫ1) + c2µ(ǫ2) + · · · + cnµ(ǫn) = c1ǫ

′
1 + c2ǫ

′
2 + · · · + cnǫ

′
n.
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Without loss of generality, assume that

µ(ǫ1) = x11ǫ1 + x12ǫ2 + · · · + x1nǫn,

µ(ǫ2) = x21ǫ1 + x22ǫ2 + · · · + x2nǫn,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

µ(ǫn) = xn1ǫ1 + xn2ǫ2 + · · · + xnnǫn.

Then we find that

µ(x
−→
V) = (c1, c2, · · · , cn)(µ(ǫ1), µ(ǫ2), · · · , µ(ǫn))

t

= (c1, c2, · · · , cn)



x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn


(ǫ1, ǫ2, · · · , ǫn)

t.

Denoted by

[
x
]
=



x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn


=



〈µ(ǫ1), ǫ1〉 〈µ(ǫ1), ǫ2〉 · · · 〈µ(ǫ1), ǫn〉
〈µ(ǫ2), ǫ1〉 〈µ(ǫ2), ǫ2〉 · · · 〈µ(ǫ2), ǫn〉
· · · · · · · · · · · ·

〈µ(ǫn), ǫ1〉 〈µ(ǫn), ǫ2〉 · · · 〈µ(ǫn), ǫn〉


,

called therotation matrixof x in (Rn, µ). Thenµ :
−→
V x→ x

−→
V is determined byµ(x) =

[
x
]

for x ∈ Rn. Furthermore, such an rotation matrix
[
x
]

is orthogonal for pointsx ∈ Rn by

definition, i.e.,
[
x
] [

x
]t
= In×n. Particularly, ifx is Euclidean, then such an orientation ma-

trix is nothing butµ(x) = In×n. Summing up all these discussions, we know the following

result.

Theorem 9.4.5 If (Rn, µ) is a pseudo-Euclidean space, thenµ(x) =
[
x
]

is an n× n

orthogonal matrix for∀ x ∈ Rn.

Likewise that the case of (R2, µ), a lineL in pseudo-Euclidean space (Rn, µ) is usually

called ans-line. Define thecurvature R(L) of an s-lineL passing through non-Euclidean

pointsx1, x2, · · · , xm ∈ Rn for m≥ 0 in (Rn, µ) to be a matrix determined by

R(L) =
m∏

i=1

µ(xi)
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andEuclideanif R(L) = In×n, otherwise,non-Euclidean. It is obvious that a point in a

Euclidean spaceRn is indeed Euclidean by this definition. Furthermore, we immediately

get the following result for Euclidean s-lines in (Rn, µ).

Theorem9.4.6 Let(Rn, µ) be a pseudo-Euclidean space and L an s-line in(Rn, µ) passing

through non-Euclidean pointsx1, x2, · · · , xm ∈ Rn. Then L is closed if and only if L is

Euclidean.

Proof If L is a closed s-line, thenL is consisted of vectors
−−−→
x1x2,

−−−→
x2x3, · · ·,

−−−→
xnx1. By

definition,
−−−−→
xi+1xi∣∣∣∣
−−−−→
xi+1xi

∣∣∣∣
=

−−−−→
xi−1xi∣∣∣∣
−−−−→
xi−1xi

∣∣∣∣
µ(xi)

for integers 1≤ i ≤ m, wherei + 1 ≡ (modm). Consequently,

−−−→
x1x2 =

−−−→
x1x2

m∏

i=1

µ(xi).

Thus
m∏

i=1

µ(xi) = In×n, i.e.,L is Euclidean.

Conversely, letL be Euclidean, i.e.,
m∏

i=1

µ(xi) = In×n. By definition, we know that

−−−−→
xi+1xi∣∣∣∣
−−−−→
xi+1xi

∣∣∣∣
=

−−−−→
xi−1xi∣∣∣∣
−−−−→
xi−1xi

∣∣∣∣
µ(xi), i.e.,

−−−−→
xi+1xi =

∣∣∣∣
−−−−→
xi+1xi

∣∣∣∣
∣∣∣∣
−−−−→
xi−1xi

∣∣∣∣
−−−−→
xi−1xi µ(xi)

for integers 1≤ i ≤ m, wherei + 1 ≡ (modm). Whence, if
m∏

i=1

µ(xi) = In×n, then there

must be
−−−→
x1x2 =

−−−→
x1x2

m∏

i=1

µ(xi).

ThusL consisted of vectors
−−−→
x1x2,

−−−→
x2x3, · · ·,

−−−→
xnx1 is a closed s-line in (Rn, µ). �

Let n = 2. We consider the pseudo-Euclidean space (R2, µ) and find the rotation

matrixµ(x) for pointsx ∈ R2. Let θx be the angle formǫ1 to µǫ1. Then it is easily to know

that

µ(x) =


cosθ x sinθ x

sinθ x − cosθ x

 .
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Now if an s-lineL passing through non-Euclidean pointsx1, x2, · · · , xm ∈ R2, then Theo-

rem 9.4.6 implies that


cosθ x1 sinθ x1

sinθ x1 − cosθ x1




cosθ x2 sinθ x2

sinθ x2 − cosθ x2

 · · ·


cosθ xm sinθ xm

sinθ xm − cosθ xm

 = In×n.

Thus

µ(x) =


cos(θ x1 + θ x2 + · · · + θ xm) sin(θ x1 + θ x2 + · · · + θ xm)

sin(θ x1 + θ x2 + · · · + θ xm) cos(θ x1 + θ x2 + · · · + θ xm)

 = In×n.

Whence,θ x1 + θ x2 + · · · + θ xm = 2kπ for an integerk. This fact is in agreement with that

of Theorem 9.3.5.

An embedded graph Gon Rn is a 1− 1 mappingτ : G → Rn such that for∀e, e′ ∈
E(G), τ(e) has no self-intersection andτ(e), τ(e′) maybe only intersect at their end points.

Such an embedded graphG in Rn is denoted byGRn. For example, then-cubeCn is such

an embedded graph with vertex setV(Cn) = { (x1, x2, · · · , xn) | xi = 0 or 1 f or 1 ≤ i ≤ n }
and two vertices (x1, x2, · · · , xn)) and (x′1, x

′
2, · · · , x′n) are adjacent if and only if they are

differ exactly in one entry. We present twon-cubes in Fig.9.4.2 for n = 2 andn = 3.

(0,0) (0,1)

(1,1)(1,0)

n = 2

(0,0,0) (0,0,1)

(0,1,0)

(1,0,0)

(0,1,1)

(1,0,1)

(1,1,1)(1,1,0)

n = 3

Fig.9.4.2

An embedded graphGRn is calledSmarandachelyif there exists a pseudo-Euclidean

space (Rn, µ) with a mappingµ : x ∈ Rn → [
x
]

such that all of its vertices are non-

Euclidean points in (Rn, µ). Certainly, these vertices of valency 1 is not important for

Smarandachely embedded graphs. We concentrate our attention on embedded 2-connected

graphs.
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Theorem 9.4.7 An embedded2-connected graph GRn is Smarandachely if and only if

there is a mappingµ : x ∈ Rn→ [
x
]

and a directed circuit-decomposition

E1
2
=

s⊕

i=1

E(
−→
C i)

such that these matrix equations

∏

x∈V(
−→
C i )

Xx = In×n 1 ≤ i ≤ s

are solvable.

Proof By definition, if GRn is Smarandachely, then there exists a mappingµ : x ∈
Rn→ [

x
]
onRn such that all vertices ofGRn are non-Euclidean in (Rn, µ). Notice there are

only two orientations on an edge inE(GRn). Traveling onGRn beginning from any edge

with one orientation, we get a closed s-line
−→
C, i.e., a directed circuit. After we traveled

all edges inGRn with the possible orientations, we get a directed circuit-decomposition

E1
2
=

s⊕

i=1

E(
−→
C i)

with an s-line
−→
C i for integers 1≤ i ≤ s. Applying Theorem 9.4.6, we get

∏

x∈V(
−→
C i )

µ(x) = In×n 1 ≤ i ≤ s.

Thus these equations ∏

x∈V(
−→
C i )

Xx = In×n 1 ≤ i ≤ s

have solutionsXx = µ(x) for x ∈ V(
−→
Ci).

Conversely, if these is a directed circuit-decomposition

E1
2
=

s⊕

i=1

E(
−→
C i)

such that these matrix equations

∏

x∈V(
−→
C i )

Xx = In×n 1 ≤ i ≤ s
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are solvable, letXx = Ax be such a solution forx ∈ V(
−→
Ci), 1 ≤ i ≤ s. Define a mapping

µ : x ∈ Rn→ [
x
]

on Rn by

µ(x) =


Ax if x ∈ V(GRn),

In×n if x < V(GRn).

Then we get a Smarandachely embedded graphGRn in the pseudo-Euclidean space (Rn, µ)

by Theorem 9.4.6. �

Now letC(t) = (x1(t), x2(t), · · · , xn(t)) be a curve inRn, i.e.,

C(t) = x1(t)ǫ1 + x2(t)ǫ2 + · · · + xn(t)ǫn.

If it is an s-line in a pseudo-Euclidean space (Rn, µ), then

µ(ǫ1) =
x1(t)
|x1(t)|

ǫ1, µ(ǫ2) =
x2(t)
|x2(t)|

ǫ2, · · · , µ(ǫn) =
xn(t)
|xn(t)|

ǫn.

Whence, we get the following result.

Theorem 9.4.8 A curveC(t) = (x1(t), x2(t), · · · , xn(t)) with parameter t inRn is an s-line

of a pseudo-Euclidean space(Rn, µ) if and only if

µ(t) =



x1(t)

x2(t) O

O
. . .

xn(t)



.

9.4.5 Isometry on Pseudo-Euclidean Space.We have known Isom(Rn) =
〈
Te,Rθ,F

〉
.

An isometryτ of a pseudo-Euclidean space (Rn, µ) is an isometry onRn such thatµ(τ(x)) =

µ(x) for ∀x ∈ Rn. Clearly, all such isometries form a group Isom(Rn, µ) under composition

operation with Isom(Rn, µ) ≤ Isom(Rn). We determine isometries of pseudo-Euclidean

spaces in this subsection.

Certainly, if µ(x) is a constant matrix [c] for ∀x ∈ Rn, then all isometries onRn is

also isometries on (Rn, µ). Whence, we only discuss those cases with at least two values

for µ : x ∈ Rn→ [
x
]

similar to that of (R2, µ).

Translation. Let (Rn, µ) be a pseudo-Euclidean space with an isometry of transla-

tion Te, wheree = (e1, e2, · · · , en) andP, Q ∈ (Rn, µ) a non-Euclidean point, a Euclidean
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point, respectively. Thenµ(Tk
e(P)) = µ(P), µ(Tk

e(Q)) = µ(Q) for any integerk ≥ 0 by

definition. Consequently,

P, Te(P), T2
e(P), · · · , Tk

e(P), · · · ,

Q, Te(Q), T2
e(Q), · · · , Tk

e(Q), · · ·

are respectively infinite non-Euclidean and Euclidean points. Thus there are no isometries

of translations if (Rn, µ) is finite.

In this case, if there are rotationsRθ1,θ2,···,θn−1, then there must beθ1, θ2, · · · , θn−1 ∈
{0, π/2} and if θi = π/2 for 1≤ i ≤ l, θi = 0 if i ≥ l + 1, thene1 = e2 = · · · = el+1.

Rotation. Let (Rn, µ) be a pseudo-Euclidean space with an isometry of rotation

Rθ1,θ2,···,θn−1 andP, Q ∈ (Rn, µ) a non-Euclidean point, a Euclidean point, respectively. Then

µ(Rθ1,θ2,···,θn−1(P)) = µ(P), µ(Rθ1,θ2,···,θn−1(Q)) = µ(Q) for any integerk ≥ 0 by definition.

Whence,

P, Rθ1,θ2,···,θn−1(P), R2
θ1,θ2,···,θn−1

(P), · · · , Rk
θ1,θ2,···,θn−1

(P), · · · ,

Q, Rθ1,θ2,···,θn−1(Q), R2
θ1,θ2,···,θn−1

(Q), · · · , Rk
θ1,θ2,···,θn−1

(Q), · · ·

are respectively non-Euclidean and Euclidean points.

In this case, if there exists an integerk such thatθi |2kπ for all integers 1≤ i ≤
n− 1, then the previous sequences is finite. Thus there are both finite and infinite pseudo-

Euclidean space (Rn, µ) in this case. But if there is an integeri0, 1 ≤ i0 ≤ n − 1 such

thatθi0 6 | 2kπ for any integerk, then there must be either infinite non-Euclidean points or

infinite Euclidean points. Thus there are isometries of rotations in a finite non-Euclidean

space only if there exists an integerk such thatθi |2kπ for all integers 1≤ i ≤ n − 1.

Similarly, an isometry of translation exists in this case only if θ1, θ2, · · · , θn−1 ∈ {0, π/2}.

Reflection. By definition, a reflectionF in a subspaceE′ of dimensionaln− 1 is an

involution, i.e.,F2 = 1Rn. Thus if (Rn, µ) is a pseudo-Euclidean space with an isometry

of reflectionF in E′ and P, Q ∈ (Rn, µ) are respectively a non-Euclidean point and a

Euclidean point. Then it is only need thatP, F(P) are non-Euclidean points andQ, F(Q)

are Euclidean points. Therefore, a reflectionF can be exists both in finite and infinite

pseudo-Euclidean spaces (Rn, µ).

Summing up all these discussions, we get results following for finite or infinite

pseudo-Euclidean spaces.
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Theorem 9.4.9 Let (Rn, µ) be a finite pseudo-Euclidean space. Then there maybe isome-

tries of translations Te, rotations Rθ and reflections on(Rn, µ). Furthermore,

(1) If there are both isometries Te and Rθ, wheree = (e1, e2, · · · , en) and θ =

(θ1, θ2, · · · , θn−1), thenθ1, θ2, · · · , θn−1 ∈ {0, π/2} and if θi = π/2 for 1 ≤ i ≤ l, θi = 0

if i ≥ l + 1, then e1 = e2 = · · · = el+1.

(2) If there is an isometry Rθ1,θ2,···,θn−1, then there must be an integer k such thatθi | 2kπ

for all integers1 ≤ i ≤ n− 1.

(3) There always exist isometries by putting Euclidean and non-Euclidean points

x ∈ Rn with µ(x) constant on symmetric positions to E′ in (Rn, µ).

Theorem 9.4.10 Let (Rn, µ) be a infinite pseudo-Euclidean space. Then there maybe

isometries of translations Te, rotations Rθ and reflections on(Rn, µ). Furthermore,

(1) There are both isometries Te and Rθ with e = (e1, e2, · · · , en) and θ = (θ1, θ2,

· · · , θn−1), only if θ1, θ2, · · · , θn−1 ∈ {0, π/2} and if θi = π/2 for 1 ≤ i ≤ l, θi = 0 if i ≥ l + 1,

then e1 = e2 = · · · = el+1.

(2) There exist isometries of rotations and reflections by putting Euclidean and non-

Euclidean points in the orbitsx〈Rθ〉 andy〈F〉 with a constantµ(x) in (Rn, µ).

We determine isometries on (R3, µ) with a 3-cubeC3 shown in Fig.9.4.2. Let
[
a
]

be

an 3× 3 orthogonal matrix,
[
a
]
, I3×3 and letµ(x1, x2, x3) =

[
a
]

for x1, x2, x3 ∈ {0, 1},
otherwise,µ(x1, x2, x3) = I3×3. Then its isometries consist of two types following:

Rotations:

R1, R2, R3: these rotations throughπ/2 about 3 axes joining centres of opposite

faces;

R4, R5, R6, R7, R8, R9: these rotations throughπ about 6 axes joining midpoints of

opposite edges;

R10, R11, R12, R13: these rotations through about 4 axes joining opposite vertices.

ReflectionF: the reflection in the centre fixes each of the grand diagonal,reversing

the orientations.

Then Isom(R3, µ) = 〈Ri, F, 1 ≤ i ≤ 13〉 ≃ S4 × Z2. But if let
[
b
]

be another 3× 3

orthogonal matrix,
[
b
]
,

[
a
]

and defineµ(x1, x2, x3) =
[
a
]

for x1 = 0, x2, x3 ∈ {0, 1},
µ(x1, x2, x3) =

[
b
]

for x1 = 1, x2, x3 ∈ {0, 1} andµ(x1, x2, x3) = I3×3 otherwise. Then only

the rotationsR,R2,R3,R4 throughπ/2, π, 3π/2 and 2π about the axis joining centres of
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opposite face

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1,1)} and{(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)},

and reflectionF through to the plane passing midpoints of edges

(0, 0, 0)− (0, 0, 1), (0, 1, 0)− (0, 1, 1), (1, 0, 0)− (1, 0, 1), (1, 1, 0)− (1, 1, 1)

or (0, 0, 0)− (0, 1, 0), (0, 0, 1)− (0, 1, 1), (1, 0, 0)− (1, 1, 0), (1, 0, 1)− (1, 1, 1)

are isometries on (R3, µ). Thus Isom(R3, µ) = 〈R1, R2, R3, R4, F〉 ≃ D8.

Furthermore, let
[
ai
]
, 1 ≤ i ≤ 8 be orthogonal matrixes distinct two by two and de-

fineµ(0, 0, 0) =
[
a1

]
, µ(0, 0, 1) =

[
a2

]
, µ(0, 1, 0) =

[
a3

]
, µ(0, 1, 1) =

[
a4

]
, µ(1, 0, 0) =

[
a5

]
,

µ(1, 0, 1) =
[
a6

]
, µ(1, 1, 0) =

[
a7

]
, µ(1, 1, 1) =

[
a8

]
andµ(x1, x2, x3) = I3×3 if x1, x2, x3 , 0

or 1. Then Isom(R3, µ) is nothing but a trivial group.

§9.5 REMARKS

9.5.1 The Smarandache geometry is proposed by Smarandache by denial the 5th postu-

late for parallel lines in Euclidean postulates on geometryin 1969 (See [Sma1]-[Sma2]

for details). Then a formal definition on such geometry was suggested by Kuciuk and An-

tholy in [KuA1]. More materials and results on Smarandache geometry can be found in

references, such as those of [Sma1]-[Sma2], [Iser1]-[Iser2], [Mao4], [Mao25] and [Liu4].

9.5.2 For Smarandache 2-manifolds, Iseri constructed 2-manifolds by equilateral triangu-

lar disks on Euclidean planeR2. Such manifold can be really come true by paper model in

R3 for elliptic, Euclidean and hyperbolic cases ([Isei1]). Observing the essence of identifi-

cation 5, 6, 7 equilateral triangles in Iseri’s manifolds is in fact a mappingµ : R2→ 5π/3,

2π or 7π/3, a general construction for Smarandache 2-manifolds, i.e., map geometrywas

suggested in [Mao3] by applying a general mappingµ : R2 → [0, 2π) on vertices of a

map, and then proved such approach can be used for constructing paradoxist geometry,

anti-geometry and counter-geometry in [Mao4]. It should benoted that a more general

Smarandachen-manifold, i.e.,combinatorial manifoldwas combinatorially constructed

in [Mao15]. Moreover, a differential theory on such manifold was also established in

[Mao15]-[Mao17], which can be also found in the surveying monograph [Mao25].

9.5.3 All points are equal in status in a Euclidean spaceE. But it is not always true in
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Smarandache 2-manifolds and pseudo-Euclidean spaces. This fact means that not every

isometry ofRn is still an isometry of (Rn, µ). For finite Smarandache 2-manifolds or

pseudo-Euclidean space, we can determine isometries by a combinatorial approach, i.e.,

maps on surfaces or embedded graphs in Euclidean spaces. Butfor infinite Smarandache

2-manifolds or pseudo-Euclidean spaces, this approach is not always effective. However,

we have know all isometries of Euclidean spaces. Applying the fact that every isometry

of a pseudo-Euclidean space (Rn, µ) must be that ofRn, It is not hard for determining

isometries of a pseudo-Euclidean space (Rn, µ).

9.5.4 Let D : E→ E be a mapping on a Euclidean spaceE. If

‖D(x) − D()y‖ = ‖x− y‖

holds for allx, y ∈ E, thenD is called anorm-preserving mapping. Notice that Theorems

9.4.3 and 9.4.4 is established on the condition ofdistance-preserving. Whence, They are

also true for norm-preserving mapping, i.e., there exist a orthogonal matrix
[
ai j

]
n×n

, a

constant vectore and a constant numberλ such that

G = λ
[
ai j

]
n×n
+ e.

9.5.5 Let E be a Euclidean space andT : E → E be a linear mapping. If there exists a

real numberλ such that

〈T(v1),T(v2)〉 = λ2 〈v1, v2〉 ,

for all v1, v2 ∈ E, thenT is called alinear conformal mapping. It is easily to verify that

‖T(v)‖ = |λ|‖v‖

for v ∈ b f E. Such a linear conformal mappingT is indeed an angle-preserving mapping.

In fact, letv1, v2 be two vectors with angleθ. Then by definition

cos∠(T(v1), T(v2)) =
〈T(v1), T(v2)〉
‖T(v1)‖ ‖T(v2)‖

=
λ2 〈v1, v2〉
λ2‖v1‖ ‖v2‖

=
〈v1, v2〉
‖v1‖ ‖v2‖

= cosθ.

Thus∠(T(v1), T(v2)) = θ for 0 ≤ ∠(T(v1), T(v2)), θ ≤ π.

Problem9.5.1 Determine linear conformal mappings on finite or infinite pseudo-Euclidean

spaces(Rn, µ).
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9.5.6 For a Euclidean spacesE, a homeomorphismf : E → E is called adifferentiable

isometryor conformal differentiable mappingif there is an real numberλ such that

〈d f(v1), d f(v2)〉 = 〈v1, v2〉 or 〈d f(v1), d f(v2)〉 = λ2 〈v1, v2〉

for ∀ v1, v2 ∈ E. Then it is clear that the integral of a linear isometry is a differen-

tiable. and that of a linear conformal mapping is a differentiable conformal mapping by

definition. Thus the differentiable isometry or conformal differentiable mapping is a gen-

eralization of that linear isometry or linear conformal mapping, respectively. Whence, a

natural question arises on pseudo-Euclidean spaces following.

Problem 9.5.2 Determine all differentiable isometries and conformal differentiable map-

pings on a pseudo-Euclidean space(Rn, µ).



CHAPTER 10.

CC Conjecture

The main trend of modern sciences is overlap and hybrid, i.e., combining dif-

ferent fields into one underlying a combinatorial structure. This implies the

importance of combinatorics to modern sciences. As a powerful tool for deal-

ing with relations among objectives, combinatorics mushroomed in the past

century, particularly in catering to the need of computer science and children

games. However, an even more important work for mathematician is to apply

it to other mathematics and other sciences besides just to find combinatorial

behavior for objectives.How can it contributes more to the entirely mathemat-

ical science, not just in various games, but in metric mathematics? What is a

right mathematical theory for the original face of our world? I have brought

a heartening conjecture for advancing mathematics in 2005,i.e.,A mathemat-

ical science can be reconstructed from or made by combinatorializationafter

a long time speculation on combinatorics, also a bringing about Smarandache

multi-space for mathematics. This conjecture is not just like an open prob-

lem, but more like a deeply thought for advancing the modern mathematics.

i.e., themathematical combinatoricsresulting in the combinatorial conjecture

for mathematics. For example, maps and graphs embedded on surfaces con-

tribute more and more to other branch of mathematics and sciences discussed

in Chapters 1− 8.
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§10.1 CC CONJECTURE ON MATHEMATICS

10.1.1 Combinatorial Speculation. Modern science has so advanced that to find a

universal genus in the society of sciences is nearly impossible. Thereby a scientist can

only give his or her contribution in one or several fields. Thesame thing also happens for

researchers in combinatorics. Generally, combinatorics deals with twofold:

Question1.1. to determine or find structures or properties of configurations, such as those

structure results appeared in graph theory, combinatorialmaps and design theory,..., etc..

Question1.2. to enumerate configurations, such as those appeared in the enumeration of

graphs, labeled graphs, rooted maps, unrooted maps and combinatorial designs,...,etc..

Consider the contribution of a question to science. We can separate mathematical

questions into three ranks:

Rank 1 they contribute to all sciences.

Rank 2 they contribute to all or several branches of mathematics.

Rank 3 they contribute only to one branch of mathematics, for instance, just to the graph

theory or combinatorial theory.

Classical combinatorics is just arank 3 mathematicsby this view. This conclusion

is despair for researchers in combinatorics, also for me 5 years ago.Whether can combi-

natorics be applied to other mathematics or other sciences?Whether can it contributes

to human’s lives, not just in games?

Although become a universal genus in science is nearly impossible,our world is a

combinatorial world. A combinatorician should stand on all mathematics and all sciences,

not just on classical combinatorics and with a real combinatorial notion, i.e.,combine

different fields into a unifying field, such as combine different or even anti-branches in

mathematics or science into a unifying science for its freedom of research. This notion

requires us answering three questions for solving a combinatorial problem before.What

is this problem working for? What is its objective? What is its contribution to science or

human’s society?After these works be well done, modern combinatorics can applied to

all sciences and all sciences are combinatorialization.

10.1.2 CC Conjecture. There is a prerequisite for the application of combinatorics

to other mathematics and other sciences, i.e, to introduce various metrics into combina-
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torics, ignored by the classical combinatorics since they are the fundamental of scientific

realization for our world. For applying combinatorics to other branch of mathematics, a

good idea is to pullback measures on combinatorial objects again, ignored by the classical

combinatorics and reconstructed or make combinatorial generalization for the classical

mathematics, such as those of algebra, Euclidean geometry,differential geometry, Rie-

mann geometry, metric geometries,· · · and the mechanics, theoretical physics,· · ·. This

notion naturally induces the combinatorial conjecture formathematics, abbreviated toCC

conjecturefollowing.

Conjecture 10.1.1(CC Conjecture)The mathematical science can be reconstructed from

or made by combinatorialization.

Remark 10.1.1 We need some further clarifications for this conjecture.

(1) This conjecture assumes that one can select finite combinatorial rulers and ax-

ioms to reconstruct or make generalization for classical mathematics.

(2) The classical mathematics is a particular case in the combinatorialization of

mathematics, i.e., the later is a combinatorial generalization of the former.

(3) We can make one combinatorialization of different branches in mathematics and

find new theorems after then.

Therefore, a branch in mathematics can not be ended if it has not been combinato-

rialization and all mathematics can not be ended if its combinatorialization has not com-

pleted. There is an assumption in one’s realization of our world, i.e.,science can be made

by mathematicalization, which enables us get a similar combinatorial conjecture for the

science.

Conjecture 10.1.2(CCS Conjecture)Science can be reconstructed from or made by com-

binatorialization.

A typical example for the combinatorialization of classical mathematics is the com-

binatorial surface theory, i.e., a combinatorial theory for surfaces discussed in Chapter 4.

Combinatorially, a surfaceS is topological equivalent to a polygon with even number of

edges by identifying each pairs of edges along a given direction on it. If label each pair of

edges by a lettere, e ∈ E, a surfaceS is also identifying to a cyclic permutation such that

each edgee, e ∈ E just appears two times inS, one ise and another ise−1. Let a, b, c, · · ·
denote the letters inE andA, B,C, · · · the sections of successive letters in a linear order on
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a surfaceS (or a string of letters onS). Then, a surface can be represented as follows:

S = (· · · ,A, a, B, a−1,C, · · ·),

where,a ∈ E, A, B,C denote a string of letters. Define three elementary transformations

as follows:

(O1) (A, a, a−1, B)⇔ (A, B);

(O2) (i) (A, a, b, B, b−1, a−1)⇔ (A, c, B, c−1);

(ii ) (A, a, b, B, a, b)⇔ (A, c, B, c);

(O3) (i) (A, a, B,C, a−1,D)⇔ (B, a,A,D, a−1,C);

(ii ) (A, a, B,C, a,D)⇔ (B, a,A,C−1, a,D−1).

If a surfaceS can be obtained fromS0 by these elementary transformationsO1-O3,

we say thatS is elementary equivalent withS0, denoted byS ∼El S0. Then we can get

the classification theorem of compact surface as follows:

Any compact surface S is homeomorphic to one of the followingstandard surfaces:

(P0) the sphere: aa−1;

(Pn) the connected sum of n, n ≥ 1 tori:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·anbna
−1
n b−1

n ;

(Qn) the connected sum of n, n ≥ 1 projective planes:

a1a1a2a2 · · ·anan.

We have known what is a map in Chapter 5. By the view of combinatorial maps,

these standard surfacesP0,Pn,Qn for n ≥ 1 is nothing but the bouquetBn on a locally

orientable surface with just one face. Therefore, the maps are nothing but the combinato-

rialization of surfaces.

10.1.3 CC Problems in Mathematics. Many open problems are motivated by the CC

conjecture. Here we present some of them.

Problem 10.1.1 Simple-Connected Riemann Surface.The uniformization theorem on

simple connected Riemann surfaces is one of those beautifulresults in Riemann surfaces

stated as follows ([FaK1]).
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Theorem 10.1.1 If S is a simple connected Riemann surface, thenS is conformally

equivalent to one and only one of the following three:

(1) C⋃∞;

(2) C;

(3) △ = {z ∈ C||z| < 1}.

We have proved in Chapter 5 that any automorphism of map is conformal. Therefore, we

can also introduced the conformal mapping between maps. Then, how can one define the

conformal equivalence for maps enabling us to get the uniformization theorem of maps?

What is the correspondence class maps with the three type (1)-(3) Riemann surfaces?

Problem 10.1.2 Riemann-Roch Theorem.Let S be a Riemann surface. Adivisor on

S is a formal symbol

U =
k∏

i=1

Pα(Pi )
i

with Pi ∈ S, α(Pi) ∈ Z. Denote byDiv(S) the free commutative group on the points inS
and define

degU =
k∑

i=1

α(Pi).

Denote byH(S) the field of meromorphic function onS. Then for∀ f ∈ H(S) \ {0}, f

determines a divisor (f ) ∈ Div(S) by

( f ) =
∏

P∈S
PordP f ,

where, if we write f (z) = zng(z) with g holomorphic and non-zero atz = P, then the

ordP f = n. ForU1 =
∏
P∈S

Pα1(P),U2 =
∏
P∈S

Pα2(P), ∈ Div(S), callU1 ≥ U2 if α1(P) ≥
α2(P). Now we define a vector space

L(U) = { f ∈ H(S)|( f ) ≥ U,U ∈ Div(S)}

Ω(U) = {ω|ω is an abelian di f f erential with(ω) ≥ U}.

Then the Riemann-Roch theorem says that([WLC1])

dim(L(U−1)) = degU − g(S) + 1+ dimΩ(S).

Comparing with the divisors and their vector space, there iaalso cycle space and cocycle

space in graphical space theory ([Liu1]). Thenwhat is their relation? whether can one

rebuilt the Riemann-Roch theorem by maps, i.e., find its discrete form?
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Problem 10.1.3 Combinatorial Construction of Algebraic Curve. A complex plane

algebraic curveCl is a homogeneous equationf (x, y, z) = 0 in P2C = (C2 \ (0, 0, 0))/ ∼,

where f (x, y, z) is a polynomial inx, y andzwith coefficients inC. The degree off (x, y, z)

is defined to be thedegree of the curveCl. For a Riemann surfaceS, a well-known result is

that ([WSY1]) there is a holomorphic mappingϕ : S→ P2C such thatϕ(S) is a complex

plane algebraic curve and

g(S) =
(d(ϕ(S)) − 1)(d(ϕ(S)) − 2)

2
.

By definition, we have known that a combinatorial map is on surface with genus. Then

whether can one get an algebraic curve by all edges in a map or by make operations on

the vertices or edges of the map to get plane algebraic curve with given k-multiple points?

and thenhow do one find the equation f(x, y, z) = 0?

Problem 10.1.4 Classification ofs-Manifolds by Map. We have classified the closed

s-manifolds by maps in the last chapter. For the generals-manifolds, their correspon-

dence combinatorial model is the map on surfaces with boundary, founded by Bryant and

Singerman in 1985. The later is also related to that of modular groups of spaces and need

to investigate further itself. Now the questions are

(1) How can one combinatorially classify the general s-manifolds by maps with

boundary?

(2) How can one find the automorphism group of an s-manifold?

(3) How can one know the numbers of non-isomorphic s-manifolds,with or without

roots?

(4) Find rulers for drawing an s-manifold on surface, such as, the torus, the projec-

tive plane or Klein bottle, not just the plane.

Theses-manifolds only apply such triangulations of surfaces withvertex valency in

{5, 6, 7}. Thenwhat is its geometrical meaning of other maps, such as,4-regular maps on

surfaces.It is already known that the later is related to the Gauss cross problem of curves

([Liu1]).

Problem 10.1.5 Gauss Mapping. In the classical differential geometry, aGauss map-

pingamong surfaces is defined as follows([Car1]):

Definition 10.1.1 LetS ⊂ R3 be a surface with an orientationN. The mapping N: S →
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R3 takes its value in the unit sphere

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

along the orientationN. The map N: S → S2, thus defined, is called the Gauss mapping.

We know that for a pointP ∈ S such that the Gaussian curvatureK(P) , 0 andV a

connected neighborhood ofP with K does not change sign,

K(P) = lim
A→0

N(A)
A

,

whereA is the area of a regionB ⊂ V andN(A) is the area of the image ofB by the Gauss

mappingN : S → S2. Now the questions are

(1) What is its combinatorial meaning of the Gauss mapping? How to realizes it by

maps?

(2) how we can define various curvatures for maps and rebuilt the results in the

classical differential geometry?

Problem 10.1.6 Gauss-Bonnet Theorem.LetS be a compact orientable surface. Then
∫ ∫

S
Kdσ = 2πχ(S),

whereK is Gaussian curvature onS. This is the famousGauss-Bonnet theoremfor com-

pact surface ([WLC1], [WSY1]). This theorem should has a combinatorial form. Now

the questions are

(1) How can one define various metrics for combinatorial maps, such as those of

length, distance, angle, area, curvature,· · ·?
(2) Can one rebuilt the Gauss-Bonnet theorem by maps for dimensional2 or higher

dimensional compact manifolds without boundary?

§10.2 CC CONJECTURE TO MATHEMATICS

10.2.1 Contribution to Algebra. By the view of combinatorics, algebra can be seen

as a combinatorial mathematics itself. The combinatorial speculation can generalize it by

the means of combinatorialization. For this objective, a Smarandachely multi-algebraic

system is combinatorially defined in the following definition.
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Definition 10.2.1 For any integers n, n ≥ 1 and i, 1 ≤ i ≤ n, let Ai be a set with an

operation set O(Ai) such that(Ai ,O(Ai)) is a complete algebraic system. Then the union
n⋃

i=1

(Ai ,O(Ai))

is called an n multi-algebra system.

An example of multi-algebra systems is constructed by a finite additive group. Now

let n be an integer,Z1 = ({0, 1, 2, · · · , n − 1},+) an additive group (modn) and P =

(0, 1, 2, · · · , n− 1) a permutation. For any integeri, 0 ≤ i ≤ n− 1, define

Zi+1 = Pi(Z1)

satisfying that ifk+ l = m in Z1, thenPi(k) +i Pi(l) = Pi(m) in Zi+1, where+i denotes the

binary operation+i : (Pi(k),Pi(l))→ Pi(m). Then we know that
n⋃

i=1

Zi

is ann multi-algebra system .

The conception of multi-algebra systems can be extensivelyused for generalizing

conceptions and results for these existent algebraic structures, such as those of groups,

rings, bodies, fields and vector spaces,· · ·, etc.. Some of them are explained in the fol-

lowing.

Definition 10, 2.2 LetG̃ =
n⋃

i=1
Gi be a closed multi-algebra system with a binary operation

set O(G̃) = {×i , 1 ≤ i ≤ n}. If for any integer i, 1 ≤ i ≤ n, (Gi;×i) is a group and for

∀x, y, z ∈ G̃ and any two binary operations�×�and�◦�, × , ◦, there is one operation,

for example the operation× satisfying the distribution law to the operation�◦�provided

their operation results existing, i.e.,

x× (y ◦ z) = (x× y) ◦ (x× z),

(y ◦ z) × x = (y× x) ◦ (z× x),

thenG̃ is called a multi-group.

For a multi-group (̃G,O(G)), G̃1 ⊂ G̃ andO(G̃1) ⊂ O(G̃), call (G̃1,O(G̃1)) a sub-

multi-groupof (G̃,O(G)) if G̃1 is also a multi-group under the operations inO(G̃1), de-

noted byG̃1 � G̃. For two setsA andB, if A
⋂

B = ∅, we denote the unionA
⋃

B by

A
⊕

B. Then we get a generalization of the Lagrange theorem on finite group following.
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Theorem 10.2.1 For any sub-multi-group̃H of a finite multi-groupG̃, there is a repre-

sentation set T, T⊂ G̃, such that

G̃ =
⊕

x∈T
xH̃.

For a sub-multi-group̃H of G̃, × ∈ O(H̃) and∀g ∈ G̃(×), if for ∀h ∈ H̃,

g× h× g−1 ∈ H̃,

then callH̃ a normal sub-multi-groupof G̃. An order of operations inO(G̃) is said an

oriented operation sequence, denoted by
−→
O(G̃). We get a generalization of the Jordan-

Hölder theorem for finite multi-groups following.

Theorem 10.2.2 For a finite multi-groupG̃ =
n⋃

i=1
Gi and an oriented operation sequence

−→
O(G̃), the length of maximal series of normal sub-multi-groups isa constant, only depen-

dent onG̃ itself.

A complete proof of Theorems 10.2.1 and 10.2.2 can be found in the reference

[Mao6]. Notice that if we choosen = 2 in Definition 10.2.2, G1 = G2 = G̃. ThenG̃

is a body. If (G1;×1) and (G2;×2) both are commutative groups, theñG is a field. For

multi-algebra systems with two or more operations on one set, we introduce the concep-

tion of multi-rings and multi-vector spaces in the following.

Definition 10.2.3 Let R̃ =
m⋃

i=1
Ri be a closed multi-algebra system with double binary

operation set O(R̃) = {(+i ,×i), 1 ≤ i ≤ m}. If for any integers i, j, i , j, 1 ≤ i, j ≤ m,

(Ri;+i,×i) is a ring and for∀x, y, z ∈ R̃,

(x+i y) + j z= x+i (y+ j z), (x×i y) × j z= x×i (y× j z)

and

x×i (y+ j z) = x×i y+ j x×i z, (y+ j z) ×i x = y×i x+ j z×i x

provided all their operation results exist, theñR is called a multi-ring. If for any integer

1 ≤ i ≤ m, (R;+i,×i) is a filed, theñR is called a multi-filed.

Definition 10.2.4 Let Ṽ =
k⋃

i=1
Vi be a closed multi-algebra system with binary operation

set O(Ṽ) = {(+̇i, ·i) | 1 ≤ i ≤ m} andF̃ =
k⋃

i=1
Fi a multi-filed with double binary operation
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set O(F̃) = {(+i ,×i) | 1 ≤ i ≤ k}. If for any integers i, j, 1 ≤ i, j ≤ k and∀a, b, c ∈ Ṽ,

k1, k2 ∈ F̃,

(1) (Vi; +̇i, ·i) is a vector space on Fi with vector additivė+i and scalar multiplication

·i;
(2) (a+̇ib)+̇ jc = a+̇i(b+̇ jc);

(3) (k1 +i k2) · j a = k1 +i (k2 · j a);

provided all those operation results exist, thenṼ is called a multi-vector space on the

multi-filedF̃ with a binary operation set O(Ṽ), denoted by(Ṽ; F̃).

Similarly, we also obtained results for multi-rings and multi-vector spaces to gener-

alize classical results in rings or linear spaces.

10.2.2 Contribution to Metric Space. First, we generalize classical metric spaces by

the combinatorial speculation.

Definition 10.2.5 A multi-metric space is a unioñM =
m⋃

i=1
Mi such that each Mi is a space

with metricρi for ∀i, 1 ≤ i ≤ m.

We generalized two well-known results in metric spaces.

Theorem 10.2.3 Let M̃ =
m⋃

i=1
Mi be a completed multi-metric space. For anǫ-disk se-

quence{B(ǫn, xn)}, whereǫn > 0 for n = 1, 2, 3, · · ·, the following conditions hold:

(1) B(ǫ1, x1) ⊃ B(ǫ2, x2) ⊃ B(ǫ3, x3) ⊃ · · · ⊃ B(ǫn, xn) ⊃ · · ·;
(2) lim

n→+∞
ǫn = 0.

Then
+∞⋂
n=1

B(ǫn, xn) only has one point.

Theorem 10.2.4 Let M̃ =
m⋃

i=1
Mi be a completed multi-metric space and T a contraction

on M̃. Then

1 ≤# Φ(T) ≤ m.

A complete proof of Theorems 10.2.3 and 10.2.4 can be found in the reference

[Mao7]. Particularly, letm= 1. We get theBanach fixed-point theoremagain.

Corollary 10.2.1(Banach)Let M be a metric space and T a contraction on M. Then T

has just one fixed point.
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A Smarandache n-manifoldis ann-dimensional manifold that supports a Smaran-

dache geometry. Now there are many approaches to construct Smarandache manifolds

for n = 2. A general way is by the so calledmap geometrieswithout or with boundary

underlying orientable or non-orientable maps.

Definition 10.2.6 For a combinatorial map M with each vertex valency≥ 3, endow with

a real numberµ(u), 0 < µ(u) < 4π
ρM(u) , to each vertex u, u ∈ V(M). Call (M, µ) a

map geometry without boundary,µ(u) an angle factor of the vertex u and orientablle or

non-orientable if M is orientable or not.

Definition 10.2.7 For a map geometry(M, µ) without boundary and faces f1, f2, · · · , fl ∈
F(M), 1 ≤ l ≤ φ(M)−1, if S(M)\{ f1, f2, · · · , fl} is connected, then call(M, µ)−l = (S(M)\
{ f1, f2, · · · , fl}, µ) a map geometry with boundary f1, f2, · · · , fl, where S(M) denotes the

locally orientable surface underlying map M.

The realization for verticesu, v,w ∈ V(M) in a spaceR3 is shown in Fig.3.2, where

ρM(u)µ(u) < 2π for the vertexu, ρM(v)µ(v) = 2π for the vertexv andρM(w)µ(w) > 2π for

the vertexw, are called to be elliptic, Euclidean or hyperbolic, respectively.

u

u

u

ρM(u)µ(u) < 2π ρM(u)µ(u) = 2π ρM(u)µ(u) > 2π

Fig.10.2.1

Theorem 10.2.5 There are Smarandache geometries, including paradoxist geometries,

non-geometries and anti-geometries in map geometries without or with boundary.

A proof of this result can be found in [Mao4]. Furthermore, wegeneralize the ideas

in Definitions 10.2.6 and 10.2.7 to metric spaces and find new geometries.

Definition 10.2.8 Let U and W be two metric spaces with metricρ, W ⊆ U. For∀u ∈ U, if

there is a continuous mappingω : u→ ω(u), whereω(u) ∈ Rn for an integer n, n ≥ 1 such

that for any numberǫ > 0, there exists a numberδ > 0 and a point v∈ W, ρ(u− v) < δ
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such thatρ(ω(u) − ω(v)) < ǫ, then U is called a metric pseudo-space if U= W or a

bounded metric pseudo-space if there is a number N> 0 such that∀w ∈ W, ρ(w) ≤ N,

denoted by(U, ω) or (U−, ω), respectively.

For the casen = 1, we can also explainω(u) being an angle function with 0< ω(u) ≤
4π as in the case of map geometries without or with boundary, i.e.,

ω(u) =


ω(u)(mod4π), if u ∈W,

2π, if u ∈ U \W (∗)

and get some interesting metric pseudo-space geometries. For example, letU = W =

Euclid plane=
∑

, then we obtained some interesting results for pseudo-plane geometries

(
∑
, ω) as shown in results following ([Mao4]).

Theorem 10.2.6 In a pseudo-plane(
∑
, ω), if there are no Euclidean points, then all

points of(
∑
, ω) is either elliptic or hyperbolic.

Theorem 10.2.7 There are no saddle points and stable knots in a pseudo-planeplane

(
∑
, ω).

Theorem 10.2.8 For two constantsρ0, θ0, ρ0 > 0 and θ0 , 0, there is a pseudo-plane

(
∑
, ω) with

ω(ρ, θ) = 2(π − ρ0

θ0ρ
) or ω(ρ, θ) = 2(π +

ρ0

θ0ρ
)

such that

ρ = ρ0

is a limiting ring in (
∑
, ω).

Now for anm-manifoldMm and∀u ∈ Mm, chooseU =W = Mm in Definition 10.2.8

for n = 1 andω(u) a smooth function. We get a pseudo-manifold geometry (Mm, ω) on

Mm. By definitions , aMinkowski normon Mm is a functionF : Mm→ [0,+∞) such that

(1) F is smooth onMm \ {0};
(2) F is 1-homogeneous, i.e.,F(λu) = λF(u) for u ∈ Mm andλ > 0;

(3) for ∀y ∈ Mm \ {0}, the symmetric bilinear formgy : Mm× Mm→ R with

gy(u, v) =
1
2
∂2F2(y+ su+ tv)

∂s∂t
|t=s=0

is positive definite and aFinsler manifoldis a manifoldMm endowed with a function

F : T Mm→ [0,+∞) such that



Sec.10.3 CC Conjecture To Physics 359

(1) F is smooth onT Mm \ {0} = ⋃{TxMm \ {0} : x ∈ Mm};
(2) F |TxMm → [0,+∞) is a Minkowski norm for∀x ∈ Mm.

As a special case, we chooseω(x) = F(x) for x ∈ Mm, then (Mm, ω) is a Finsler

manifold. Particularly, ifω(x) = gx(y, y) = F2(x, y), then (Mm, ω) is a Riemann mani-

fold. Therefore, we get a relation for Smarandache geometries with Finsler or Riemann

geometry.

Theorem 10.2.9 There is an inclusion for Smarandache, pseudo-manifold, Finsler and

Riemann geometries as shown in the following:

{S marandache geometries} ⊃ {pseudo−mani f old geometries}

⊃ {Finsler geometry}

⊃ {Riemann geometry}.

§10.3 CC CONJECTURE TO PHYSICS

The progress of theoretical physics in last twenty years of the 20th century enables human

beings to probe the mystic cosmos:where are we came from? where are we going to?.

Today, these problems still confuse eyes of human beings. Accompanying with research

in cosmos, new puzzling problems also arose:Whether are there finite or infinite cos-

moses? Are there just one? What is the dimension of the Universe? We do not even know

what the right degree of freedom in the Universe is, as Witten said.

We are used to the idea that our living space has three dimensions: length, breadth

andheight, with time providing the fourth dimension of spacetime by Einstein. Applying

his principle of general relativity, i.e.all the laws of physics take the same form in any

reference systemand equivalence principle, i.e.,there are no difference for physical effects

of the inertial force and the gravitation in a field small enough., Einstein got theequation

of gravitational field

Rµν −
1
2

Rgµν + λgµν = −8πGTµν.

whereRµν = Rνµ = Rα
µiν,

Rα
µiν =

∂Γi
µi

∂xν
−
∂Γi

µν

∂xi
+ ΓαµiΓ

i
αν − ΓαµνΓi

αi ,
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Γg
mn =

1
2

gpq(
∂gmp

∂un
+
∂gnp

∂um
− ∂gmn

∂up
)

andR= gνµRνµ. Combining the Einstein’s equation of gravitational field with thecosmo-

logical principle, i.e., there are no difference at different points and different orientations

at a point of a cosmos on the metric104l.y. , Friedmanngot a standard model of cosmos.

The metrics of the standard cosmos are

ds2 = −c2dt2 + a2(t)[
dr2

1− Kr2
+ r2(dθ2 + sin2 θdϕ2)]

and

gtt = 1, grr = −
R2(t)

1− Kr2
, gφφ = −r2R2(t) sin2 θ.

The standard model of cosmos enables the birth of big bang model of the Universe

in thirties of the 20th century. The following diagram describes the developing process of

our cosmos in different periods after the big bang.

Fig.4.1

10.3.1 M-Theory. The M-theory was established by Witten in 1995 for the unity of

those five already known string theories and superstring theories, which postulates that

all matter and energy can be reduced tobranesof energy vibrating in an 11 dimensional

space, then in a higher dimensional space solve the Einstein’s equation of gravitational
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field under some physical conditions. Here, abraneis an object or subspace which can

have various spatial dimensions. For any integerp ≥ 0, a p-branehas length inp di-

mensions. For example, a 0-braneis just a point or particle; a 1-braneis a string and a

2-braneis a surface or membrane,· · ·.
We mainly discuss line elements in differential forms in Riemann geometry. By a

geometrical view, thesep-branes in M-theory can be seen asvolume elements in spaces.

Whence, we can construct a graph model forp-branes in a space and combinatorially

research graphs in spaces.

Definition 10.3.1 For each m-braneB of a spaceRm, let (n1(B), n2(B), · · · , np(B)) be its

unit vibrating normal vector along these p directions and q: Rm → R4 a continuous

mapping. Now construct a graph phase(G, ω,Λ) by

V(G) = {p− branes q(B)},

E(G) = {(q(B1), q(B2))|there is an action betweenB1 andB2},

ω(q(B)) = (n1(B), n2(B), · · · , np(B)),

and

Λ(q(B1), q(B2)) = f orces betweenB1 andB2.

Then we get a graph phase(G, ω,Λ) in R4. Similarly, if m= 11, it is a graph phase for

the M-theory.

As an example for applying M-theory to find an accelerating expansion cosmos of

4-dimensional cosmoses from supergravity compactification on hyperbolic spaces is the

Townsend-Wohlfarth type metricin which the line element is

ds2 = e−mφ(t)(−S6dt2 + S2dx2
3) + r2

Ce2φ(t)ds2
Hm
,

where

φ(t) =
1

m− 1
(ln K(t) − 3λ0t),

S2 = K
m

m−1 e−
m+2
m−1λ0t

and

K(t) =
λ0ζrc

(m− 1) sin[λ0ζ |t + t1|]
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with ζ =
√

3+ 6/m. This solution is obtainable from space-like brane solution and if

the proper timeς is defined bydς = S3(t)dt, then the conditions for expansion and

acceleration aredS
dς > 0 andd2S

dς2 > 0. For example, the expansion factor is 3.04 if m = 7,

i.e., a really expanding cosmos.

According to M-theory, the evolution picture of our cosmos started as a perfect 11

dimensional space. However, this 11 dimensional space was unstable. The original 11

dimensional space finally cracked into two pieces, a 4 and a 7 dimensional subspaces. The

cosmos made the 7 of the 11 dimensions curled into a tiny ball,allowing the remaining 4

dimensions to inflate at enormous rates, the Universe at the final.

10.3.2 Combinatorial Cosmos. The combinatorial notion made the following combi-

natorial cosmos in the reference.

Definition 10.3.2 A combinatorial cosmos is constructed by a triple(Ω,∆,T), where

Ω =
⋃

i≥0

Ωi, ∆ =
⋃

i≥0

Oi

and T = {ti; i ≥ 0} are respectively called the cosmos, the operation or the time set with

the following conditions hold.

(1) (Ω,∆) is a Smarandache multi-space dependent on T, i.e., the cosmos (Ωi ,Oi) is

dependent on time parameter ti for any integer i, i ≥ 0.

(2) For any integer i, i ≥ 0, there is a sub-cosmos sequence

(S) : Ωi ⊃ · · · ⊃ Ωi1 ⊃ Ωi0

in the cosmos(Ωi ,Oi) and for two sub-cosmoses(Ωi j ,Oi) and (Ωil ,Oi), if Ωi j ⊃ Ωil , then

there is a homomorphismρΩi j ,Ωil : (Ωi j ,Oi)→ (Ωil ,Oi) such that

(i) for ∀(Ωi1,Oi), (Ωi2,Oi), (Ωi3,Oi) ∈ (S), if Ωi1 ⊃ Ωi2 ⊃ Ωi3, then

ρΩi1,Ωi3 = ρΩi1,Ωi2 ◦ ρΩi2,Ωi3,

where�◦�denotes the composition operation on homomorphisms.

(ii ) for ∀g, h ∈ Ωi, if for any integer i,ρΩ,Ωi (g) = ρΩ,Ωi (h), then g= h.

(iii ) for ∀i, if there is an fi ∈ Ωi with

ρΩi ,Ωi
⋂
Ω j ( fi) = ρΩ j ,Ωi

⋂
Ω j ( f j)
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for integers i, j,Ωi
⋂
Ω j , ∅, then there exists an f∈ Ω such thatρΩ,Ωi ( f ) = fi for any

integer i.

By this definition, there is just one cosmosΩ and the sub-cosmos sequence is

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P} ⊃ R−7 ⊃ · · · ⊃ R−1 ⊃ R−0 = {Q}.

in the string/M-theory. In Fig.10.3.2, we have shown the idea of the combinatorial cos-

mos.

Fig.10.3.2

For spaces of dimensional 5 or 6, it has been established a dynamical theory by

combinatorial notion (see [Pap1]-[Pap2] for details). In this dynamics, we look for a

solution in the Einstein’s equation of gravitational field in 6-dimensional spacetime with

a metric of the form

ds2 = −n2(t, y, z)dt2 + a2(t, y, z)d
2∑

k

+b2(t, y, z)dy2 + d2(t, y, z)dz2

whered
∑2

k represents the 3-dimensional spatial sections metric withk = −1, 0, 1 respec-

tive corresponding to the hyperbolic, flat and elliptic spaces. For 5-dimensional space-

time, deletes the indefinitez in this metric form. Now consider a 4-brane moving in a

6-dimensionalSchwarzschild-ADS spacetime, the metric can be written as

ds2 = −h(z)dt2 +
z2

l2
d

2∑

k

+h−1(z)dz2,

where

d
2∑

k

=
dr2

1− kr2
+ r2dΩ2

(2) + (1− kr2)dy2
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and

h(z) = k+
z2

l2
− M

z3
.

Then the equation of a 4-dimensional cosmos moving in a 6-spacetime is

2
R̈
R
+ 3(

Ṙ
R

)2 = −3
κ4

(6)

64
ρ2 −

κ4
(6)

8
ρp− 3

κ

R2
− 5

l2

by applying theDarmois-Israel conditionsfor a moving brane. Similarly, for the case of

a(z) , b(z), the equations of motion of the brane are

d2ḋṘ− dR̈
√

1+ d2Ṙ2
−
√

1+ d2Ṙ2

n
(dṅṘ+

∂zn
d
− (d∂zn− n∂zd)Ṙ2) = −

κ4
(6)

8
(3(p+ ρ) + p̂),

∂za
ad

√
1+ d2Ṙ2 = −

κ4
(6)

8
(ρ + p− p̂),

∂zb
bd

√
1+ d2Ṙ2 = −

κ4
(6)

8
(ρ − 3(p− p̂)),

where the energy-momentum tensor on the brane is

T̂µν = hναT
α
µ −

1
4

Thµν

with Tα
µ = diag(−ρ, p, p, p, p̂) and theDarmois-Israel conditions

[Kµν] = −κ2
(6)T̂µν,

whereKµν is the extrinsic curvature tensor.

The combinatorial cosmos also presents new questions to combinatorics, such as:

(1) Embed a graph into spaces with dimensional≥ 4;

(2) Research the phase space of a graph embedded in a space;

(3) Establish graph dynamics in a space with dimensional≥ 4, · · ·, etc..

For example, we have gotten the following result for graphs in spaces.

Theorem10.3.1 A graph G has a nontrivial including multi-embedding on spheres P1 ⊃
P2 ⊃ · · · ⊃ Ps if and only if there is a block decomposition G=

s⊎
i=1

Gi of G such that for

any integer i, 1 < i < s,

(1) Gi is planar;

(2) for ∀v ∈ V(Gi), NG(x) ⊆ (
i+1⋃

j=i−1
V(G j)).

A complete proof of Theorem 10.3.1 can be found in [Mao4]. Further consideration

of combinatorial cosmos will enlarge the knowledge of combinatorics and cosmology,

also get the combinatorialization for cosmological science.
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