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Preface to the Second Edition

Accompanied with humanity into the 21st century, a highlight trend for developing

a science is its overlap and hybrid, and harmoniously with other sciences, which

enables one to handle complex systems in the WORLD. This is also for develop-

ing mathematics. As a powerful tool for dealing with relations among objectives,

combinatorics, including combinatorial theory and graph theory mushroomed in last

century. Its related with algebra, probability theory and geometry has made it to an

important subject in mathematics and interesting results emerged in large number

without metrics. Today, the time is come for applying combinatorial technique to

other mathematics and other sciences besides just to find combinatorial behavior

for objectives. That is the motivation of this book, i.e., to survey mathematics and

fields by combinatorial principle.

In The 2nd Conference on Combinatorics and Graph Theory of China (Aug.

16-19, 2006, Tianjing), I formally presented a combinatorial conjecture on mathe-

matical sciences (abbreviated to CC Conjecture), i.e., a mathematical science can

be reconstructed from or made by combinatorialization, implicated in the foreword

of Chapter 5 of my book Automorphism groups of Maps, Surfaces and Smarandache

Geometries (USA, 2005). This conjecture is essentially a philosophic notion for de-

veloping mathematical sciences of 21st century, which means that we can combine

different fields into a union one and then determines its behavior quantitatively. It

is this notion that urges me to research mathematics and physics by combinatorics,

i.e., mathematical combinatorics beginning in 2004 when I was a post-doctor of Chi-

nese Academy of Mathematics and System Science. It finally brought about me one

self-contained book, the first edition of this book, published by InfoQuest Publisher

in 2009. This edition is a revisited edition, also includes the development of a few
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topics discussed in the first edition.

Contents in this edition are outlined following.

Chapters 1 and 2 are the fundamental of this book. In Chapter 1, we briefly

introduce combinatorial principle with graphs, such as those of multi-sets, Boolean

algebra, multi-posets, countable sets, graphs and enumeration techniques, including

inclusion-exclusion principle with applications, enumerating mappings, vertex-edge

labeled graphs and rooted maps underlying a graph. The final section discusses the

combinatorial principle in philosophy and the CC conjecture, also with its implica-

tions for mathematics. All of these are useful in following chapters.

Chapter 2 is essentially an algebraic combinatorics, i.e., an application of com-

binatorial principle to algebraic systems, including algebraic systems, multi-systems

with diagrams. The algebraic structures, such as those of groups, rings, fields and

modules were generalized to a combinatorial one. We also consider actions of multi-

groups on finite multi-sets, which extends a few well-known results in classical per-

mutation groups. Some interesting properties of Cayley graphs of finite groups can

be also found in this chapter.

Chapter 3 is a survey of topology with Smarandache geometry. Terminologies in

algebraic topology, such as those of fundamental groups, covering space, simplicial

homology group and some important results, for example, the Seifert and Van-

Kampen theorem are introduced. For extending application spaces of Seifert and

Van-Kampen theorem, a generalized Seifert and Van-Kampen theorem can be also

found in here. As a preparing for Smarandache n-manifolds, a popular introduction

to Euclidean spaces, differential forms in Rn and the Stokes theorem on simplicial

complexes are presented in Section 3.2. In Section 3.3-3.5, these pseudo-Euclidean

spaces, Smarandache geometry, map geometry, Smarandache manifold with differen-

tial, principal fiber bundles and geometrical inclusions in pseudo-manifold geometry

are seriously discussed.

Chapters 4 − 6 are mainly on combinatorial manifolds motivated by the com-

binatorial principle on topological or smooth manifolds. In Chapter 4, we discuss

topological behaviors of combinatorial manifolds with characteristics, such as Eu-

clidean spaces and their combinatorial characteristics, topology on combinatorial

manifolds, vertex-edge labeled graphs, Euler-Poincaré characteristic, fundamental

groups, singular homology groups on combinatorial manifolds or just manifolds and
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regular covering of combinatorial manifold by voltage assignment. Some well-known

results in topology, for example, the Mayer-Vietoris theorem on singular homology

groups can be found.

Chapters 5 and 6 form the main parts of combinatorial differential geome-

try, which provides the fundamental for applying it to physics and other sciences.

Chapter 5 discuss tangent and cotangent vector space, tensor fields and exterior dif-

ferentiation on combinatorial manifolds, connections and curvatures on tensors or

combinatorial Riemannian manifolds, integrations and the generalization of Stokes’

and Gauss’ theorem, and so on. Chapter 6 contains three parts. The first concen-

trates on combinatorial submanifold of smooth combinatorial manifolds with fun-

damental equations. The second generalizes topological groups to multiple one, for

example Lie multi-groups. The third is a combinatorial generalization of principal

fiber bundles to combinatorial manifolds by voltage assignment technique, which

provides the mathematical fundamental for discussing combinatorial gauge fields in

Chapter 8.

Chapters 7 and 8 introduce the applications of combinatorial manifolds to fields.

For this objective, variational principle, Lagrange equations and Euler-Lagrange

equations in mechanical fields, Einstein’s general relativity with gravitational field,

Maxwell field and Abelian or Yang-Mills gauge fields are introduced in Chapter 7.

Applying combinatorial geometry discussed in Chapters 4 − 6, we then generalize

fields to combinatorial fields under the projective principle, i.e., a physics law in

a combinatorial field is invariant under a projection on its a field in Chapter 8.

Then, we show how to determine equations of combinatorial fields by Lagrange

density, to solve equations of combinatorial gravitational fields and how to construct

combinatorial gauge basis and fields. Elementary applications of combinatorial fields

to many-body mechanics, cosmology, physical structure, economical or engineering

fields can be also found in this chapter.

This edition is preparing beginning from July, 2010. All of these materials are

valuable for researchers or graduate students in topological graph theory with enu-

meration, topology, Smarandache geometry, Riemannian geometry, gravitational or

quantum fields, many-body system and globally quantifying economy. For preparing

this book, many colleagues and friends of mine have given me enthusiastic support

and endless helps. Without their help, this book will never appears today. Here I
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must mention some of them. On the first, I would like to give my sincerely thanks

to Dr.Perze for his encourage and endless help. Without his suggestion, I would do

some else works, can not investigate mathematical combinatorics for years and finish

this book. Second, I would like to thank Professors Feng Tian, Yanpei Liu, Mingyao

Xu, Fuji Zhang, Jiyi Yan and Wenpeng Zhang for them interested in my research

works. Their encourage and warmhearted support advance this book. Thanks are

also given to Professors Han Ren, Junliang Cai, Yuanqiu Huang, Rongxia Hao,

Deming Li, Wenguang Zai, Goudong Liu, Weili He and Erling Wei for their kindly

helps and often discussing problems in mathematics altogether. Partially research

results of mine were reported at Chinese Academy of Mathematics & System Sci-

ences, Beijing Jiaotong University, Beijing Normal University, East-China Normal

University and Hunan Normal University in past years. Some of them were also re-

ported at The 2nd and 3rd Conference on Graph Theory and Combinatorics of China

in 2006 and 2008, The 3rd and 4th International Conference on Number Theory and

Smarandache’s Problems of Northwest of China in 2007 and 2008. My sincerely

thanks are also give to these audiences discussing mathematical topics with me in

these periods.

Of course, I am responsible for the correctness all of these materials presented

here. Any suggestions for improving this book and solutions for open problems in

this book are welcome.

L.F.Mao

July, 2011
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All that we are is the result of what we have thought. The mind

is everything. What we think, we become.

Buddha.



CHAPTER 1.

Combinatorial Principle with Graphs

They are able because they think they are able.

By Virgil, an ancient Roman poet.

The combinatorial principle implies that one can combining different fields

into a unifying one under rules in sciences and then find its useful behav-

iors. In fact, each mathematical science is such a combination with metrics

unless the combinatorics, which was for caters the need of computer sci-

ence and games in the past century. Now the combinatorics has become

a powerful tool for dealing with relations among objectives by works of

mathematicians. Its techniques and conclusions enables that it is possible

to survey a classical mathematical science by combinatorics today. In this

chapter, we introduce main ideas and techniques in combinatorics, includ-

ing multi-sets with operations, partially ordered sets, countable sets, graphs

with enumeration and combinatorial principle. Certainly, this chapter can

be also viewed as a brief introduction to combinatorics and graphs with

enumeration, also a speculation on the essence of combinatorics.
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§1.1 MULTI-SETS WITH OPERATIONS

1.1.1 Set. A multi-set is a union of sets distinct two by two. So we introduce sets

on the first. A set S is a collection of objects with a property P, denoted by

S = {x|x posses property P}.

For examples,

A = {(x, y, z)|x2 + y2 + z2 = 1},

B = {stars in the Universe}

are two sets by definition. In philosophy, a SET is a category consisting of parts.

That is why we use conceptions of SET or PROPERTY without distinction, or

distinguish them just by context in mathematics sometimes.

An element x possessing property P is said an element of the set S, denoted

by x ∈ S. Conversely, an element y without the property P is not an element of

S, denoted y 6∈ S. We denote by |S| the cardinality of a set S. In the case of finite

set, |S| is just the number of elements in S.

Let S1 and S2 be two sets. If for ∀x ∈ S1, there must be x ∈ S2, then we say

that S1 is a subset of S2 or S1 is included in S2, denoted by S1 ⊆ S2. A subset

S1 of S2 is proper, denoted by S1 ⊂ S2 if there exists an element y ∈ S2 with

y 6∈ S1 hold. Further, the void (empty) set ∅, i.e., |∅| = 0 is a subset of all sets by

definition.

There sets S1, S2 are said to be equal, denoted by S1 = S2 if x ∈ S1 implies

x ∈ S2, and vice versa. Applying subsets, we know a fundamental criterion on

isomorphic sets.

Theorem 1.1.1 Two sets S1 and S2 are equal if and only if S1 ⊆ S2 and S2 ⊆ S1.

This criterion can simplifies a presentation of a set sometimes. For example,

for a given prime p the set A can be presented by

A = { pn | n ≥ 1 }.

Notice that the relation of inclusion ⊆ is reflexive, also transitive, but not

symmetric. Otherwise, by Theorem 1.1, if S1 ⊆ S2 and S2 ⊆ S1, then we must
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find that S1 = S2. In summary, the inclusion relation ⊆ for subsets shares with

following properties:

Reflexive: For any S, S ⊆ S;

Antisymmetric: If S1 ⊆ S2 and S2 ⊆ S1, then S1 = S2;

Transitive: If S1 ⊆ S2 and S2 ⊆ S3, then S1 = S3.

A set of cardinality i is called an i-set. All subsets of a set S naturally form a

set P(S), called the power set of S. For a finite set S, we know the number of its

subsets.

Theorem 1.1.2 Let S be a finite set. Then

|P(S)| = 2|S|.

Proof Notice that for any integer i, 1 ≤ i ≤ |S|, there are

(
|S|
i

)
non-

isomorphic subsets of cardinality i in S. Therefore, we find that

|P(S)| =
|S|∑

i=1

(
|S|
i

)
= 2|S|. �

1.1.2 Operation. For subsets S, T in a power set P(S), binary operations on

them can be introduced as follows.

The union S ∪ T and intersection S ∩ T of sets S and T are respective defined

by

S
⋃

T = {x|x ∈ S or x ∈ T},

S
⋂

T = {x|x ∈ S and x ∈ T}.

These operations ∪, ∩ have analogy with ordinary operations · , + in a real

field R, such as those of described in the following laws.

Idempotent: X
⋃
X = X and X

⋂
X = X;

Commutative: X
⋃
T = T

⋃
X and X

⋂
T = T

⋂
X;

Associative: X
⋃

(T
⋃
R) = (X

⋃
T )
⋃
R and X

⋂
(T
⋂
R) = (X

⋂
T )
⋂
R;

Distributive: X
⋃

(T
⋂
R) = (X

⋃
T )
⋂

(X
⋃
R) and
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X
⋂

(T
⋃
R) = (X

⋂
T )
⋃

(X
⋂
R).

These idempotent, commutative and associative laws can be verified immedi-

ately by definition. For the distributive law, let x ∈ X⋃(T
⋂
R) = (X

⋃
T )
⋂

(X
⋃
R). Then x ∈ X or x ∈ T ⋂R, i.e., x ∈ T and x ∈ R. Now if x ∈ X, we know that

x ∈ X∪T and x ∈ X ∪R. Whence, we get that x ∈ (X
⋃
T )
⋂

(X
⋃
R). Otherwise,

x ∈ T ⋂R, i.e., x ∈ T and x ∈ R. We also get that x ∈ (X
⋃
T )
⋂

(X
⋃
R).

Conversely, for ∀x ∈ (X
⋃
T )
⋂

(X
⋃
R), we know that x ∈ X

⋃
T and x ∈

X
⋃
R, i.e., x ∈ X or x ∈ T and x ∈ R. If x ∈ X, we get that x ∈ X⋃(T

⋂
R).

If x ∈ T and x ∈ R, we also get that x ∈ X⋃(T
⋂
R). Therefore, X

⋃
(T
⋂
R) =

(X
⋃
T )
⋂

(X
⋃
R) by definition.

Similar discussion can also verifies the law X
⋂

(T
⋃
R) = (X

⋂
T )
⋃

(X
⋂
R).

Theorem 1.1.3 Let S be a set and X, T ∈ P(S). Then conditions following are

equivalent.

(i) X ⊆ T ;

(ii) X ∩ T = X;

(iii) X ∪ T = T .

Proof The conditions (1)⇒ (2) and (1)⇒ (3) are obvious. Now if X ∩ T = X

or X ∪ T = T , then for ∀x ∈ X, there must be x ∈ T , namely, X ⊆ T . Whence,

these conditions (2)⇒ (1) and (3)⇒ (1). �

For the empty set ∅ and S itself, we also have special properties following.

Universal bounds: ∅ ⊆ X ⊆ S for X ∈P(S);

Union: ∅ ∪X = X and S ∪X = S;

Intersection: ∅ ∩X = ∅ and S ∩X = X.

Let S be a set and X ∈P(S). Define the complement X of X in S to be

X = { y | y ∈ S but y 6∈ X}.

Then we know three laws on complementation of a set following related to union

and intersection.

Complementarity: X ∩X = ∅ and X ∪X = S;

Involution: X = X;
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Dualization: X ∪ T = X ∩ T and X ∩ T = X ∪ T .

These complementarity and involution laws can be immediately found by def-

inition. For the dualization, let x ∈ X ∪ T . Then x ∈ S but x 6∈ X ∪ T , i.e.,

x 6∈ X and x 6∈ T . Whence, x ∈ X and x ∈ T . Therefore, x ∈ X ∩ T . Now for

∀x ∈ X ∩ T , there must be x ∈ X and x ∈ T , i.e., x ∈ S but x 6∈ X and x 6∈ T .

Hence, x 6∈ X ∪ T . This fact implies that x ∈ X ∪ T . By definition, we find that

X ∪ T = X ∩ T . Similarly, we can also get the law X ∩ T = X ∪ T .

For two sets S and T , the Cartesian product S × T of S and T is defined to be

all ordered pairs of elements (a, b) for ∀a ∈ S and ∀b ∈ T , i.e.,

S × T = {(a, b)|a ∈ S, b ∈ T}.

A binary operation ◦ on a set S is an injection mapping ◦ : S × S → S. Generally,

a subset R of S×S is called a binary relation on S, and for ∀(a, b) ∈ R, denoted by

aRb that a has relation R with b in S. A relation R on S is equivalent if it is

Reflexive: aRa for ∀a ∈ S;

Symmetric: aRb implies bRa for ∀a, b ∈ S;

Transitive aRb and bRc imply aRc for ∀a, b, c ∈ S.

1.1.3 Boolean Algebra. A Boolean algebra is a set B with two operations vee

∨ and wedge ∧, such that for ∀a, b, c ∈ B properties following hold.

(i) The idempotent laws

a ∨ a = a ∧ a = a,

the commutative laws

a ∨ b = b ∨ a, a ∧ b = b ∧ a,

and the associative laws

a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c.

(ii) The absorption laws

a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

(iii) The distributive laws, i.e.,

a ∨ (b ∧ c) = (a ∧ b) ∨ (a ∧ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
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(iv) There exist two universal bound elements O, I in B such that

O ∨ a = a, O ∧ a = O, I ∨ a = I, I ∧ a = a.

(v) There is a 1− 1 mapping ς : a→ a obeyed laws

a ∨ a = I, a ∧ a = O.

Now choose operations ∪ = ∨, ∩ = ∧ and universal bounds I = S, O = ∅ in

P(S). We know that

Theorem 1.1.4 Let S be a set. Then the power set P(S) forms a Boolean algebra

under these union, intersection and complement operations. �

For an abstractly Boolean algebra B, some basic laws can be immediately found

by its definition. For instance, we know each of laws following.

Law B1 Each of these identities a ∨ x = x and a ∧ x = a for all x ∈ B implies

that a = O, and dually, each of these identities a∨x = a and a∧x = x implies that

a = I.

For example, if a ∨ x = x for all x ∈ B, then a ∨ O = O in particular. But

a ∨ O = a by the axiom (iv). Hence a = O. Similarly, we can get a = O or a = I

from all other identities.

Law B2 For ∀a, b ∈ B, a ∨ b = b if and only if a ∧ b = a.

In fact, if a ∨ b = b, then a ∧ b = a ∧ (a ∨ b) = a by the absorption law (ii).

Conversely, if a ∧ b = a, then a ∨ b = (a ∧ b) ∨ b = b by the commutative and

absorption laws.

Law B3 These equations a∨x = a∨ y and a∧x = a∧ y together imply that x = y.

Certainly, by the absorption, distributive and commutative laws we have

x = x ∧ (a ∨ x) = x ∧ (a ∨ y)
= (x ∧ a) ∨ (x ∨ y) = (y ∧ x) ∨ (y ∨ a)
= y ∧ (x ∨ a) = y ∧ (y ∨ a) = y.

Law B4 For ∀x, y ∈ B,

x = x, (x ∧ y) = x ∨ y and (x ∨ y) = x ∧ y.
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Notice that x ∧ x = x ∧ x = O and x ∨ x = x ∨ x = I. By Law B3, the

complement a is unique for ∀a ∈ B. We know that x = x. Now by distributive,

associative laws, we find that

(x ∧ y) ∧ (x ∨ y) = (x ∧ y ∧ x) ∨ (x ∧ y ∧ y)
= ((x ∧ x) ∧ y) ∨ (x ∧ (y ∧ y))
= (O ∧ y) ∨ (x ∧ O) = O ∨O = O

and

(x ∧ y) ∨ (x ∨ y) = (x ∨ x ∨ y) ∧ (y ∨ x ∨ y)
= (x ∨ x ∨ y) ∧ (y ∨ y ∨ x)
= (I ∨ y) ∧ (I ∨ x) = I ∨ I = I.

Therefore, again by the uniqueness of complements, we get that (x ∧ y) = x∨y.
The identity (x ∨ y) = x ∧ y can be found similarly.

For variables x1, x2, · · · , xn in B, polynomials f(x1, x2, · · · , xn) built up from

operations ∨ and ∧ are called Boolean polynomials. Each Boolean polynomial has

a canonical form ensured in the next result.

Theorem 1.1.5 Any Boolean polynomial in x1, x2, · · · , xn can be reduced either to

O or to join of some canonical forms

p1 ∧ P2 ∧ · · · ∧ pn,

where each pi = xi or xi.

Proof According to the definition of Boolean algebra and laws B1−B4, a canon-

ical form for a Boolean polynomial, for example, f(x1, x2, x3) = x1 ∨ x3 ∨ x2 ∨ x3 ∨
(x2 ∨ x1), can be gotten by programming following.

STEP 1. If any complement occurs outside any parenthesis in the polynomial,

moved it inside by Law B4.

After all these complements have been moved all the way inside, the polynomial

involving only vees and wedges action on complement and uncomplement letters.

Thus, in our example: f(x1, x2, x3) = [x1 ∧ x3 ∧ (x2 ∨ x3)] ∨ (x2 ∧ x1).

STEP 2. If any ∧ stands outside a parenthesis which contains a ∨, then the ∧ can

be moved inside by applying the distributive law.
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There result a polynomial in which all meets ∧ are formed before any join ∨,

i.e., a join of terms in which each term is a meet of complement and uncomplement

letters. In the above example, f(x1, x2, x3) = (x1∧x3∧x2)∨(x1∧x3∧x3)∨(x2∧x1).

STEP 3. If a letter y appears twice in one term, omit one occurrence by y∧y = y. If

y appears both complement and uncomplement, omit the whole term since y∧a∧y =

O and O ∨ b = b for all a, b ∈ B.

Thus in our example, we know that f(x1, x2, x3) = (x1 ∧ x3 ∧ x2) ∨ (x2 ∧ x1).

STEP 4. If some term T fail to contain just a letter z by STEP 3, then replace it

by (T ∧ z) ∨ (T ∧ z), in each of which z occurs exactly once.

By this step, our Boolean polynomial transfers to f(x1, x2, x3) = (x1∧x3∧x2)∨
(x2 ∧ x1 ∧ x3) ∨ (x2 ∧ x1 ∧ x3).

STEP 5. Rearrange letters appearing in each term in their natural order.

Thus in our example, we finally get its canonical form f(x1, x2, x3) = (x1∧x2 ∧
x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3).

This completes the proof. �

Corollary 1.1.1 There are 2n canonical forms and 22n

Boolean polynomials in

variable x1, x2, · · · , xn in a Boolean algebra B with |B| ≥ n.

Defining a mapping η : B → {0, 1} by η(xi) = 1 or 0 according to pi = xi or

pi = xi in Theorem 1.1.5, we get a bijection between these Boolean polynomials in

variable x1, x2, · · · , xn and the set of all 2n n-digit binary numbers. For the example

in the proof of Theorem 1.5, we have

η(f(x1, x2, x3)) = 010, 111, 110.

1.1.4 Multi-Set. For an integer n ≥ 1, a multi-set X̃ is a union of sets X1, X2,

· · ·, Xn distinct two by two. Examples of multi-sets can be found in the following.

L = R
⋃

T,

where R = {integers}, T = {polyhedrons}.

G = G1

⋃
G2

⋃
G3,
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where G1 = {grvaitional field}, G2 = {electric field} and G3 = {magnetic field}. By

definition, a multi-set is also a set only with a union structure. The inverse of this

proposition is also true for sets with cardinality≥ 2.

Theorem 1.1.6 Any set X with |X| ≥ 2 is a multi-set.

Proof Let a, b ∈ X be two different elements in X. Define X1 = X \ {a},
X2 = X \ {b}. Then we know that

X = X1

⋃
X2,

i.e., X is a multi-set. �

According to Theorem 1.5, we find that an equality following.

{sets with cardinality ≥ 2} = {multi− sets}.

This equality can be characterized more accurately by introducing some important

parameters.

Theorem 1.1.7 For a set R with cardinality≥ 2 and integers k ≥ 1, s ≥ 0, there

exist k sets R1, R2, · · · , Rk distinct two by two such that

R =
k⋃

i=1

Ri

with

|
k⋂

i=1

Ri| = s

if and only if

|R| ≥ k + s.

Proof Assume there are sets k sets R1, R2, · · · , Rk distinct two by two such that

R =
k⋃
i=1

Ri and |
k⋂
i=1

Ri| = s. Notice that for any sets X and Y with X ∩ Y = ∅

|X
⋃

Y | = |X|+ |Y |

and there is a subset

k⋃

i=1

(Ri \ (

k⋃

t=1

Rt \Ri))
⋃

(

k⋂

i=1

Ri) ⊆
k⋃

i=1

Ri
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with

Ri \ (

k⋃

t=1

Rt \Ri)
⋂

(

k⋂

i=1

Ri) = ∅,

we find that

|R| =
k⋃

i=1

Ri ≥ |
k⋃

i=1

(Ri \ (

k⋃

t=1

Rt \Ri))
⋃

(

k⋂

i=1

Ri)|

= |
k⋃

i=1

(Ri \ (

k⋃

t=1

Rt \Ri))|+ |
k⋂

i=1

Ri)|

≥ k + s.

Now if |R| ≥ k + s, let

{a1, a2, · · · , ak, b1, b2, · · · , bs} ⊆ R

with ai 6= aj, bi 6= bj if i 6= j. Construct sets

R1 = {a2, · · · , ak, b1, b2, · · · , bs},

R2 = R \ {a2},

R3 = R \ {a3},

· · · · · · · · · · · · · · · · · · ,

Rk = R \ {ak}.

Then we get that

R =

k⋃

i=1

Ri and

k⋂

i=1

Ri = {b1, b2, · · · , bs}.

This completes the proof. �

Corollary 1.1.2 For a set R with cardinality≥ 2 and an integer k ≥ 1, there exist

k sets R1, R2, · · · , Rk distinct two by two such that

R =
k⋃

i=1

Ri

if and only if

|R| ≥ k.
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§1.2 Multi-Posets

1.2.1 Partially Ordered Set. A multi-poset is a union of partially ordered sets

distinct two by two. We firstly introduce partially ordered set in this subsection.

A partially ordered set (X,P ), or poset in short, consists of a non-empty set X

and a binary relation P on X which is reflexive, anti-symmetric and transitive. For

convenience, x ≤ y are used to denote (x, y) ∈ P . In addition, let x < y denote that

x ≤ y but x 6= y. If x < y and there are no elements z ∈ X such that x < z < y,

then y is said to cover z.

A common example of posets is the power set P(S) with the binary operation

∪ on a set S. Another is (X,P ), where X and P is defined in the following:

X = {e, a, b, c, d},

P = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (d, c), (e, a), (e, d), (e, c), (e, b)}.

Partially ordered sets with a finite number of elements can be conveniently

represented by Hasse diagrams. A Hasse diagram of a poset (X,P ) is drawing in

which the elements of X are placed on the Euclid plane R2 so that if y covers x,

then y is placed at a higher lever than x and joined to x by a line segment. For the

second example above, its Hasse diagram is shown in Fig.1.2.1.

a

b c

d

e

Fig.1.2.1

Two distinct elements x any y in a poset (X,P ) are called comparable if either

x < y or y < x, and incomparable otherwise. A poset in which any two elements

are comparable is called a chain or ordered set, and one in which no two elements

are comparable is called an antichain or unordered set.

A subposet of a poset (X,P ) is a poset (Y,Q) in which Y ⊆ X and Q is the

restriction of P to Y × Y . Two posets (X,P ) and (X ′, P ′) are called isomorphic
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if there is a one-to-one correspondence τ : X → X ′ such that x ≤ y in P if and

only if τ(x) ≤ τ(y) in P ′. A poset (Y,Q) is said to be embedded in (X,P ), denoted

by (Y,Q) ⊆ (X,P ) if (Y,Q) is isomorphic to a subposet of (X,P ). For two partial

orders P and Q on a set X, we call Q an extension of P if P ⊆ Q and a linear

extension of P if Q is a chain. It is obvious that any poset (X,P ) has a linear

extension and the intersection of all linear extension of P is P itself. This fact can

be restated as follows:

for any two incomparable elements x and y in a poset (X,P ), there is one linear

extension of P in which x < y, and another in which y < x.

Denote a linear order L : x1 ≤ x2 ≤ · · · ≤ xn by L : [x1, x2, · · · , xn]. For a given

poset (X,P ), a realizer {L1, L2, · · · , Lt} of P is a collection R of linear extension

whose intersection is P , i.e., x < y in P if and only if x < y in every Li, 1 ≤ i ≤ t.

The it dimension dim(X,P ) of a poset (X,P ) is defined to be the minimum order

of realters R of P and the rank rank(X,P ) of (X,P ) to be the maximum order of

realizers R in which there are no proper subset of R is again a realizer of (X,P ).

For example, dim(X,P ) = 1 or rank(X,P ) = 1 if and only if it is a chain and

dim(X,P ) = 2 if it is an n-element antichain for n ≥ 2. For n ≥ 3, we construct a

infinite family, called the standard n-dimensional poset S0
n with dimension and rank

n.

For n ≥ 3, the poset S0
n consists of n maximal elements a1, a2, · · · , an and n

minimal elements b1, b2, · · · , bn with bi < aj for any integers 1 ≤ i, j ≤ n with i 6= j.

Then we know the next result.

Theorem 1.2.1 For any integer n ≥ 3, dimS0
n = rankS0

n = n.

Proof Consider the set R = {L1, L2, · · · , Ln} of linear extensions of S0
n with

Lk : [b1, · · · , bk−1, bk+1, · · · , bn, ak, bk, a1, ·, ak−1, ak+1, · · · , an].

Notice that if i 6= j, then bj < ai < bi < aj in Li, and bi < aj < bj < ai in

Lj for any integers i, j, 1 ≤ i, j ≤ n. Whence, R is a realizer of S0
n. We know that

dimS0
n ≤ n.

Now if R∗ is any realizer of S0
n, then for each k = 1, 2, · · · , n, by definition some

elements of R∗ must have ak < bk, and‘furthermore, we can easily find that there are
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no linear extensions L of S0
n such that ai < bi and aj < bj for two integers i, j, i 6= j.

This fact enables us to get that dimS0
n ≥ n.

Therefore, we have dimS0
n = n.

For rankS0
n = n, notice that rankS0

n ≥dimS0
n ≥ n. Now observe that a family

R of linear extension of S0
n is a realizer if and only if , for i = 1, 2, · · · , n, there‘exists

a Li ∈ R at least such that ai < bi. Hence, n is also an upper bound of rankS0
n. �

1.2.2 Multi-Poset. A multi-poset (X̃, P̃ ) is a union of posets (X1, P1), (X2, P2),

· · ·, (Xs, Ps) distinct two by two for an integer s ≥ 2, i.e.,

(X̃, P̃ ) =
s⋃

i=1

(Xi, Pi),

also call it an s-poset. If each (Xi, Pi) is a chain for any integers 1 ≤ i ≤ s, we call

it an s-chain. For a finite poset, we know the next result.

Theorem 1.2.2 Any finite poset (X,P ) is a multi-chain.

Proof Applying the induction on the cardinality |X|. If |X| = 1, the assertion

is obvious. Now assume the assertion is true for any integer |X| ≤ k. Consider the

case of |X| = k + 1.

Choose a maximal element a1 ∈ X. If there are no elements a2 in X such that

a2 ≤ a1, then the element a1 is incomparable with all other elements in X. Whence,

(X \ {a1}, P ) is also a poset. We know that (X \ {a1}, P ) is a multi-chain by the

induction assumption. Therefore, (X,P ) = (X \ {a1}, P )∪L1 is also a multi-chain,

where L1 = [a1].

If there is an element a2 in X covered by a1, consider the element a2 in X

again. Similarly, if there are no elements a3 in X covered by a2, then L2 = [a2, a1] is

itself a chain. By the induction assumption, X \ {a1, a2} is a multi-chain. Whence,

(X,P ) = (X \ {a1, a2}, P ) ∪ L2 is a multi-chain.

Otherwise, there are elements a3 in X covered by a2. Assume at, at−1, · · · , a2, a1

is a maximal sequence such that ai+1 is covered by ai in (X,P ), then Lt = [at, at−1, · · · ,
a2, a1] is a chain. Consider (X \ {a1, a2, · · · , at−1, at}, P ). It is still a poset with

|X \ {a1, a2, · · · , at−1, at}| ≤ k. By the induction assumption, it is a multi-chain.

Whence,

(X,P ) = (X \ {a1, a2, · · · , at−1, at}, P )
⋃
Lt
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is also a multi-chain. In conclusion, we get that (X,P ) is a multi-chain in the case

of |X| = k + 1. By the induction principle, we get that (X,P ) is a multi-chain for

any X with |X| ≥ 1. �

Now consider the inverse problem, i.e., when is a multi-poset just a poset? We

find conditions in the following result.

Theorem 1.2.3 An s-poset (X̃, P̃ ) =
s⋃
i=1

(Xi, Pi) is a poset if and only if for any

integer i, j, 1 ≤ i, j ≤ s, (x, y) ∈ Pi and (y, z) ∈ Pj imply that (x, z) ∈ P̃ .

Proof Let (X̃, P̃ ) be a poset. For any integer i, j, 1 ≤ i, j ≤ s, since (x, y) ∈ Pi
and (y, z) ∈ Pj also imply (x, y), (y, z) ∈ P̃ . By the transitive laws in (X̃, P̃ ), we

know that (x, z) ∈ P̃ .

On the other hand, for any integer i, j, 1 ≤ i, j ≤ s, if (x, y) ∈ Pi and (y, z) ∈ Pj
imply that (x, z) ∈ P̃ , we prove (X̃, P̃ ) is a poset. Certainly, we only need to check

these reflexive laws, antisymmetric laws and transitive laws hold in (X̃, P̃ ), which

is divided into three discussions.

(i) For ∀x ∈ X̃, there must exist an integer i, 1 ≤ i ≤ s such that x ∈ Xi by

definition. Whence, (x, x) ∈ Pi. Hence, (x, x) ∈ P̃ , i.e., the reflexive laws is hold in

(X̃, P̃ ).

(ii) Choose two elements x, y ∈ X̃. If (x, y) ∈ P̃ and (y, x) ∈ P̃ , then there are

integers integers i, j, 1 ≤ i, j ≤ s such that (x, y) ∈ Pi and (y, x) ∈ Pj by definition.

According to the assumption, we know that (x, x) ∈ P̃ , which is the antisymmetric

laws in (X̃, P̃ ).

(iii) The transitive laws are implied by the assumption. For if (x, y) ∈ P̃

and (y, x) ∈ P̃ for two elements x, y ∈ X̃, by definition there must exist integers

i, j, 1 ≤ i, j ≤ s such that (x, y) ∈ Pi and (y, z) ∈ Pj. Whence, (x, z) ∈ P̃ by the

assumption.

Combining these discussions, we know that (X̃, P̃ ) is a poset. �

Certainly, we can also find more properties for multi-posets under particular

conditions. For example, construct different posets by introducing new partially

orders in a multi-poset. All these are referred to these readers interested on this

topics.
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§1.3 COUNTABLE SETS

1.3.1 Mapping. A mapping f from a set X to Y is a subset of X × Y such that

for ∀x ∈ X, |f(∩({x} × Y )| = 1, i.e., f ∩ ({x} × Y ) only has one element. Usually,

we denote a mapping f from X to Y by f : X → Y and f(x) the second component

of the unique element of f ∩ ({x} × Y ), called the image of x under f . Usually, we

denote all mappings from X to Y by Y X .

Let f : X → Y be a mapping. For any subsets U ⊆ X and V ⊆ Y , define the

image f(U) of U under f to be

f(U) = {f(u)| for ∀u ∈ U}

and the inverse f−1(V ) of V under f to be

f−1(V ) = {u ∈ X|f(u) ∈ V }.

Generally, for U ⊆ X, we have

U ⊆ f−1(f(U))

by definition. A mapping f : X → Y is called injection if for ∀y ∈ Y , |f ∩ (X ×
{y})| ≤ 1 and surjection if |f ∩ (X×{y})| ≥ 1. If it is both injection and surjection,

i.e., |f ∩ (X × {y})| = 1, then it is called a bijection or a 1− 1 mapping.

A bijection f : X → X is called a permutation of X. In the case of finite, there

is a useful way for representing a permutation τ on X, |X| = n by a 2 × n table

following,

τ =

(
x1 x2 · · · xn

y1 y2 · · · yn,

)
,

where, xi, yi ∈ X and xi 6= xj , yi 6= yj if i 6= j for 1 ≤ i, j ≤ n. For instance, let

X = {1, 2, 3, 4, 5, 6}. Then

(
1 2 3 4 5 6 7 8

2 3 5 6 1 4 8 7

)

is a permutation. All permutations of X form a set, denoted by
∏

(X). The identity

on X is a particular permutation 1X ∈
∏

(X) given by 1X(x) = x for all x ∈ X.
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For three sets X, Y and Z, let f : X → Y and h : Y → Z be mapping. Define

a mapping h ◦ f : X → Z, called the composition of f and h by

h ◦ f(x) = h(f(x))

for ∀x ∈ X. It can be verified immediately that

(h ◦ f)−1 = f−1 ◦ h−1

by definition. We have a characteristic for bijections from X to Y by composition

operations.

Theorem 1.3.1 A mapping f : X → Y is a bijection if and only if there exists a

mapping h : Y → X such that f ◦ h = 1Y and h ◦ f = 1X.

Proof If f is a bijection, then for ∀y ∈ Y , there is a unique x ∈ X such

that f(x) = y. Define a mapping h : Y → X by h(y) = x for ∀y ∈ Y and its

correspondent x. Then it can be verified immediately that

f ◦ h = 1Y and h ◦ f = 1X .

Now if there exists a mapping h : Y → X such that f ◦h = 1Y and h◦ f = 1X ,

we claim that f is surjective and injective. Otherwise, if f is not surjective, then

there exists an element y ∈ Y such that f−1(y) = ∅. Thereafter, for any mapping

h : Y → X, there must be

(f ◦ h)(y) = f(h(y)) 6= y.

Contradicts the assumption f ◦h = 1Y . If f is not injective, then there are elements

x1, x2 ∈ X, x1 6= x2 such that f(x1) = f(x2) = y. Then for any mapping h : Y → X,

we get that

(h ◦ f)(x1) = h(y) = (h ◦ f)(x2).

Whence, h ◦ f 6= 1X . Contradicts the assumption again.

This completes the proof. �

1.3.2 Countable Set. For two sets X and Y , the equality X| = |Y |, i.e., X and

Y have the same cardinality means that there is a bijection f from X to Y . A set

X is said to be countable if it is bijective with the set Z of natural numbers. We

know properties of countable sets and infinite sets following.
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Theorem 1.3.2(Paradox of Galileo) Any countable set X has a bijection onto a

proper subset of itself, i.e., the cardinal of a set maybe equal to its a subset.

Proof Since X is countable, we can represent the set X by

X = {xi|1 ≤ i ≤ +∞}.

Now choose a proper subset X ′ = X \ {x1} and define a bijection f : X →
X \ {x1} by

f(xi) = xi+1

for any integer i, 1 ≤ i ≤ +∞. Whence, |X \ {x1}| = |X|. �

Theorem 1.3.3 Any infinite set X contains a countable subset.

Proof First, choose any element x1 ∈ X. From X \ {x1}, then choose a second

element x2 and from X \ {x1, x2} a third element x3, and so on. Since X is infinite,

for any integer n, X \ {x1, x2, · · · , xn} can never be empty. Whence, we can always

choose an new element xn+1 in the set X \ {x1, x2, · · · , xn}. This process can be

never stop until we have constructed a subset X ′ = {xi|1 ≤ i ≤ +∞} ⊆ X, i.e., a

countable subset X ′ of X. �

Corollary 1.3.1(Dedekind-Peirce) A set X is infinite if and only if it has a bijection

with a proper subset of itself.

Proof If X is a finite set of cardinal number n, then there is a bijection f : X →
{1, 2, · · · , n}. If there is a bijection h from X to its a proper subset Y with cardinal

number k, then by definition we deduce that k = |Y | = |X| = n. By assumption, Y

is a proper subset of a finite set X. Whence, there must be k < n, a contradiction.

This means that there are no bijection from a finite set to its a proper subset.

Conversely, let X be an infinite set. According to Theorem 1.3.3, X contains a

countable subset X ′ = {x1, x2, · · ·}. Now define a bijection f from X to its a proper

subset X ′ \ {x1} by

f(x) =

{
xi+1, if x = xi ∈ X ′,

x, if x ∈ X \X ′.

Whence, X has a bijection with a proper subset X ′ \ {x1} of itself. �
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§1.4 GRAPHS

1.4.1 Graph. A graph G is an ordered 3-tuple (V,E; I), where V,E are finite sets,

V 6= ∅ and I : E → V × V . Call V the vertex set and E the edge set of G, denoted

by V (G) and E(G), respectively. An elements v ∈ V (G) is incident with an element

e ∈ E(G) if I(e) = (v, x) or (x, v) for an x ∈ V (G). Usually, if (u, v) = (v, u)

for ∀u, v ∈ V , G is called a graph, otherwise, a directed graph with an orientation

u→ v on each edge (u, v).

The cardinal numbers of |V (G)| and |E(G)| are called its order and size of a

graph G, denoted by |G| and ε(G), respectively.

Let G be a graph. It be can represented by locating each vertex u of G by a

point p(u), p(u) 6= p(v) if u 6= v and an edge (u, v) by a curve connecting points

p(u) and p(v) on a plane R2, where p : G→ P is a mapping from the V (G) to R2.

For example, a graphG = (V,E; I) with V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4, e5,
e6, e7, e8, e9, e10} and I(ei) = (vi, vi), 1 ≤ i ≤ 4; I(e5) = (v1, v2) = (v2, v1), I(e8) =

(v3, v4) = (v4, v3), I(e6) = I(e7) = (v2, v3) = (v3, v2), I(e8) = I(e9) = (v4, v1) =

(v1, v4) can be drawn on a plane as shown in Fig.1.4.1

v1 v2

v3v4

e1 e2

e3e4

e5

e6e7

e8

e9 e10

Fig. 1.4.1

Let G = (V,E; I) be a graph. For ∀e ∈ E, if I(e) = (u, u), u ∈ V , then e is

called a loop. For non-loop edges e1, e2 ∈ E, if I(e1) = I(e2), then e1, e2 are called

multiple edges of G. A graph is simple if it is loopless without multiple edges, i.e.,

I(e) = (u, v) implies that u 6= v, and I(e1) 6= I(e2) if e1 6= e2 for ∀e1, e2 ∈ E(G). In

the case of simple graphs, an edge (u, v) is commonly abbreviated to uv.

A walk of a graph G is an alternating sequence of vertices and edges u1, e1, u2, e2,

· · · , en, un1 with ei = (ui, ui+1) for 1 ≤ i ≤ n. The number n is called the length of
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the walk. A walk is closed if u1 = un+1, and opened, otherwise. For example, the

sequence v1e1v1e5v2e6v3e3v3e7v2e2v2 is a walk in Fig.1.3.1. A walk is a trail if all its

edges are distinct and a path if all the vertices are distinct also. A closed path is

called a circuit usually.

A graph G = (V,E; I) is connected if there is a path connecting any two vertices

in this graph. In a graph, a maximal connected subgraph is called a component.

A graph G is k-connected if removing vertices less than k from G still remains a

connected graph. Let G be a graph. For ∀u ∈ V (G), the neighborhood NG(u) of

the vertex u in G is defined by NG(u) = {v|∀(u, v) ∈ E(G)}. The cardinal number

|NG(u)| is called the valency of vertex u in G and denoted by ρG(u). A vertex v with

ρG(v) = 0 is an isolated vertex and ρG(v) = 1 a pendent vertex. Now we arrange

all vertices valency of G as a sequence ρG(u) ≥ ρG(v) ≥ · · · ≥ ρG(w). Call this

sequence the valency sequence of G. By enumerating edges in E(G), the following

equality is obvious.

∑

u∈V (G)

ρG(u) = 2|E(G)|.

A graph G with a vertex set V (G) = {v1, v2, · · · , vp} and an edge set E(G) =

{e1, e2, · · · , eq} can be also described by means of matrixes. One such matrix is a

p×q adjacency matrix A(G) = [aij ]p×q, where aij = |I−1(vi, vj)|. Thus, the adjacency

matrix of a graph G is symmetric and is a 0, 1-matrix having 0 entries on its main

diagonal if G is simple. For example, the matrix A(G) of the graph in Fig.4.1 is

A(G) =




1 1 0 2

1 1 2 0

0 2 1 1

2 0 1 1




Let G1 = (V1, E1; I1) and G2 = (V2, E2; I2) be two graphs. They are identical,

denoted by G1 = G2 if V1 = V2, E1 = E2 and I1 = I2. If there exists a 1 − 1

mapping φ : E1 → E2 and φ : V1 → V2 such that φI1(e) = I2φ(e) for ∀e ∈ E1 with

the convention that φ(u, v) = (φ(u), φ(v)), then we say that G1 is isomorphic to

G2, denoted by G1
∼= G2 and φ an isomorphism between G1 and G2. For simple

graphs H1, H2, this definition can be simplified by (u, v) ∈ I1(E1) if and only if

(φ(u), φ(v)) ∈ I2(E2) for ∀u, v ∈ V1.
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For example, let G1 = (V1, E1; I1) and G2 = (V2, E2; I2) be two graphs with

V1 = {v1, v2, v3},

E1 = {e1, e2, e3, e4},

I1(e1) = (v1, v2), I1(e2) = (v2, v3), I1(e3) = (v3, v1), I1(e4) = (v1, v1)

and

V2 = {u1, u2, u3},

E2 = {f1, f2, f3, f4},

I2(f1) = (u1, u2), I2(f2) = (u2, u3), I2(f3) = (u3, u1), I2(f4) = (u2, u2),

i.e., those graphs shown in Fig.1.4.2.

u1

v2v3

e1

e2

e3

e4

G1

v1

u2u3

f1 f2

f3

f4

G2

Fig. 1.4.2

Define a mapping φ : E1

⋃
V1 → E2

⋃
V2 by

φ(e1) = f2, φ(e2) = f3, φ(e3) = f1, φ(e4) = f4

and φ(vi) = ui for 1 ≤ i ≤ 3. It can be verified immediately that φI1(e) = I2φ(e)

for ∀e ∈ E1. Therefore, φ is an isomorphism between G1 and G2, i.e., G1 and G2

are isomorphic.

If G1 = G2 = G, an isomorphism between G1 and G2 is called an automorphism

of G. All automorphisms of a graph G form a group under the composition opera-

tion, i.e., φθ(x) = φ(θ(x)), where x ∈ E(G)
⋃
V (G). We denote this automorphism

group by AutG.

For a simple graph G of n vertices, it can be verified that AutG ≤ Sn, the

symmetry group action on n vertices of G. But for non-simple graph, the situation is
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more complex. For example, the automorphism groups of graphs Km and Bn shown

in Fig.1.4.3, respectively called complete graphs and bouquets, are AutKm = Sm and

AutBn = Sn, where m = |V (Km)| and n = |E(Bn)|.

K6 B4

Fig. 1.4.3

1.4.2 Subgraph. A graph H = (V1, E1; I1) is a subgraph of a graph G = (V,E; I)

if V1 ⊆ V , E1 ⊆ E and I1 : E1 → V1 × V1. We use H ⊂ G to denote that H is

a subgraph of G. For example, graphs G1, G2, G3 are subgraphs of the graph G in

Fig.1.4.4.

u1 u2

u3u4

G

u1 u2

u3 u4

u1 u2

u3 u4

G1 G2 G3

Fig. 1.4.4

For a nonempty subset U of the vertex set V (G) of a graph G, the subgraph

〈U〉 of G induced by U is a graph having vertex set U and whose edge set consists of

these edges of G incident with elements of U . A subgraph H of G is called vertex-

induced if H ∼= 〈U〉 for some subset U of V (G). Similarly, for a nonempty subset

F of E(G), the subgraph 〈F 〉 induced by F in G is a graph having edge set F and

whose vertex set consists of vertices of G incident with at least one edge of F . A

subgraph H of G is edge-induced if H ∼= 〈F 〉 for some subset F of E(G). In Fig.3.6,

subgraphs G1 and G2 are both vertex-induced subgraphs 〈{u1, u4}〉, 〈{u2, u3}〉 and

edge-induced subgraphs 〈{(u1, u4)}〉, 〈{(u2, u3)}〉.
For a subgraph H of G, if |V (H)| = |V (G)|, then H is called a spanning

subgraph of G. In Fig.4.6, the subgraph G3 is a spanning subgraph of the graph G.
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A complete subgraph of a graph is called a clique, and its a k-regular vertex-

spanning subgraph also called a k-factor.

1.4.3 Labeled Graph. A labeled graph on a graph G = (V,E; I) is a mapping

θL : V ∪ E → L for a label set L, denoted by GL. If θL : E → ∅ or θL : V → ∅,
then GL is called a vertex labeled graph or an edge labeled graph, denoted by GV or

GE, respectively. Otherwise, it is called a vertex-edge labeled graph. For example,

two vertex-edge labeled graphs on K4 are shown in Fig.1.4.5.

1

2

3

1

1

1

4 2

3

4

2

3 4

4

1 1 2

2 1

2

Fig.1.4.5

Two labeled graphs GL1
1 , GL2

2 are equivalent, denoted by GL1
1
∼= GL2

2 if there is

an isomorphism τ : G1 → G2 such that τθL1(x) = θL2τ(x) for ∀x ∈ V (G1) ∪E(G1).

Whence, we usually consider non-equivalently labeled graphs on a given graph G.

1.4.4 Graph Family. Some important graph families are introduced in the

following.

C1 Forest. A graph without circuits is called a forest, and a tree if it is connected.

A vertex u in a forest F is called a pendent vertex if ρF (u) = 1. The following

characteristic for trees is well-known and can be checked by definition.

Theorem 1.4.1 A graph G is a tree if and only if G is connected and E(G) =

|V (G)| − 1.

C2. Hamiltonian graph. A graph G is hamiltonian if it has a circuit, called

a hamiltonian circuit containing all vertices of G. Similarly, a path containing all

vertices of a graph G is called a hamiltonian path.

C3. Bouquet and dipole. A graph Bn = (Vb, Eb; Ib) with Vb = { O }, Eb =

{e1, e2, · · · , en} and Ib(ei) = (O,O) for any integer i, 1 ≤ i ≤ n is called a bouquet of

n edges. Similarly, a graph Ds.l.t = (Vd, Ed; Id) is called a dipole if Vd = {O1, O2},
Ed = {e1, e2, · · · , es, es+1, · · · , es+l, es+l+1, · · · , es+l+t} and
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Id(ei) =





(O1, O1), if 1 ≤ i ≤ s,

(O1, O2), if s+ 1 ≤ i ≤ s+ l,

(O2, O2), if s+ l + 1 ≤ i ≤ s+ l + t.

For example, B3 and D2,3,2 are shown in Fig.1.4.6.

O

O1 O2

Fig. 1.4.6

The behavior of bouquets on surfaces fascinated many mathematicians atten-

tion. By a combinatorial view, these connected sums of tori, or these connected

sums of projective planes used in topology are just bouquets on surfaces with one

face.

C4. Complete graph. A complete graph Kn = (Vc, Ec; Ic) is a simple graph with

Vc = {v1, v2, · · · , vn}, Ec = {eij, 1 ≤ i, j ≤ n, i 6= j} and Ic(eij) = (vi, vj). Since

Kn is simple, it can be also defined by a pair (V,E) with V = {v1, v2, · · · , vn} and

E = {vivj , 1 ≤ i, j ≤ n, i 6= j}. The one edge graph K2 and the triangle graph K3

are both complete graphs. An example K6 is shown in Fig.4.3.

C5. Multi-partite graph. A simple graph G = (V,E; I) is r-partite for an

integer r ≥ 1 if it is possible to partition V into r subsets V1, V2, · · · , Vr such that

for ∀e ∈ E, I(e) = (vi, vj) for vi ∈ Vi, vj ∈ Vj and i 6= j, 1 ≤ i, j ≤ r.

For n = 2, a 2-partite graph is also called a bipartite graph. It can be shown

that a graph is bipartite if and only if there are no odd circuits in this graph. As a

consequence, a tree or a forest is a bipartite graph since both of them are circuit-free.

Let G = (V,E; I) be an r-partite graph and V1, V2, · · · , Vr its r-partite vertex

subsets. If there is an edge eij ∈ E for ∀vi ∈ Vi and ∀vj ∈ Vj, where 1 ≤ i, j ≤ r, i 6= j

such that I(e) = (vi, vj), then G is called a complete r-partite graph, denoted by

G = K(|V1|, |V2|, · · · , |Vr|). By this definition, a complete graph is nothing but a

complete 1-partite graph.

C6. Regular graph. A graphG is regular of valency k if ρG(u) = k for ∀u ∈ V (G).



24 Chap.1 Combinatorial Principle with Graphs

These graphs are also called k-regular. A 3-regular graph is often referred to a cubic

graph.

C7. Planar graph. A graph is planar if it can be drawn on the plane in such a

way that edges are disjoint expect possibly for endpoints. When we remove vertices

and edges of a planar graph G from the plane, each remained connected region is

called a face of G. The length of the boundary of a face is called its valency. Two

planar graphs are shown in Fig.1.4.7.

tetrahedron cube

Fig. 1.4.7

C8. Embedded graph. A graph G is embeddable into a topological space R if

there is a one-to-one continuous mapping f : G → S in such a way that edges are

disjoint except possibly on endpoints. An embedded graph on a topological space S
is a graph embeddable on this space.

Many research works are concentred on graphs on surfaces, i.e., dimensional

2 manifolds without boundary, which brings about two trends, i.e., topological

graph theory and combinatorial map theory. Readers can find more information

in references [GrT1], [Liu1]-[Liu3], [Mao1], [MoT1], [Tut1] and [Whi1]. But if the

dimensional≥ 3, the situation is simple for the existence of rectilinear embeddings of

a simple graph in Euclid spaces Rn, n ≥ 3 following.

Definition 1.4.1 For an integer n ≥ 1, a rectilinear embedding of G in Rn is a

one-to-one continuous mapping π : G→ E such that

(i) for ∀e ∈ E(G), π(e) is a segment of a straight line in Rn;

(ii) for any two edges e1 = (u, v), e2 = (x, y) in E(G), (π(e1) \ {π(u), π(v)})⋂

(π(e2) \ {π(x), π(y)}) = ∅.

Theorem 1.4.1 There is a rectilinear embedding for any simple graph G in Rn for

n ≥ 3.

Proof We only need to prove this assertion for n = 3. In R3, choose n
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points (t1, t
2
1, t

3
1), (t2, t

2
2, t

3
2), · · · , (tn, t2n, t3n), where t1, t2, · · · , tn are n different real

numbers. For integers i, j, k, l, 1 ≤ i, j, k, l ≤ n, if a straight line passing through ver-

tices (ti, t
2
i , t

3
i ) and (tj , t

2
j , t

3
j ) intersects with a straight line passing through vertices

(tk, t
2
k, t

3
k) and (tl, t

2
l , t

3
l ), then there must be

∣∣∣∣∣∣∣∣

tk − ti tj − ti tl − tk
t2k − t2i t2j − t2i t2l − t2k
t3k − t3i t3j − t3i t3l − t3k

∣∣∣∣∣∣∣∣
= 0,

which implies that there exist integers s, f ∈ {k, l, i, j}, s 6= f such that ts = tf , a

contradiction.

Let V (G) = {v1, v2, · · · , vn}. We embed the graph G in R3 by a mapping

π : G→ R3 with π(vi) = (ti, t
2
i , t

3
i ) for 1 ≤ i ≤ n and if vivj ∈ E(G), define π(vivj)

being the segment between points (ti, t
2
i , t

3
i ) and (tj, t

2
j , t

3
j) of a straight line passing

through points (ti, t
2
i , t

3
i ) and (tj , t

2
j , t

3
j ). Then π is a rectilinear embedding of the

graph G in R3. �

1.4.5 Operation on Graphs. A union G1

⋃
G2 of graphs G1 with G2 is defined

by

V (G1

⋃
G2) = V1

⋃
V2, E(G1

⋃
G2) = E1

⋃
E2, I(E1

⋃
E2) = I1(E1)

⋃
I2(E2).

A graph consists of k disjoint copies of a graph H , k ≥ 1 is denoted by G = kH .

As an example, we find that

K6 =

5⋃

i=1

S1.i

for graphs shown in Fig.1.4.8 following
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S1.5 S1.4 S1.3 S1.2 S1.1

Fig. 1.4.8

and generally, Kn =
n−1⋃
i=1

S1.i. Notice that kG is a multigraph with edge multiple k

for any integer k, k ≥ 2 and a simple graph G.
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A complementG of a graph G is a graph with vertex set V (G) such that vertices

are adjacent in G if and only if these are not adjacent in G. A join G1 + G2 of G1

with G2 is defined by

V (G1 +G2) = V (G1)
⋃

V (G2),

E(G1 +G2) = E(G1)
⋃

E(G2)
⋃
{(u, v)|u ∈ V (G1), v ∈ V (G2)}

and

I(G1 +G2) = I(G1)
⋃
I(G2)

⋃
{I(u, v) = (u, v)|u ∈ V (G1), v ∈ V (G2)}.

Applying the join operation, we know that

K(m,n) ∼= Km +Kn.

A cartesian product G1×G2 of graphs G1 with G2 is defined by V (G1×G2) =

V (G1)× V (G2) and two vertices (u1, u2) and (v1, v2) of G1×G2 are adjacent if and

only if either u1 = v1 and (u2, v2) ∈ E(G2) or u2 = v2 and (u1, v1) ∈ E(G1).

§1.5 ENUMERATION TECHNIQUES

1.5.1 Enumeration Principle. The enumeration problem on a finite set is to

count and find closed formula for elements in this set. A fundamental principle for

solving this problem in general is on account of the enumeration principle:

For finite sets X and Y , the equality |X| = |Y | holds if and only if there is a

bijection f : X → Y .

Certainly, if the set Y can be easily countable, then we can find a closed formula

for elements in X.

1.5.2 Inclusion-exclusion principle. By definition, the following equalities on

sets X and Y are known.

|X × Y | = |X||Y |,

|X
⋃

Y | = |X|+ |Y | − |X
⋂

Y |.
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Usually, the first equality is called the product principle and the second, inclusion-

exclusion principle can be generalized to n sets X1, X2, · · · , Xn.

Theorem 1.5.1 Let X1, X2, · · · , Xn be finite sets. Then

|
n⋃

i=1

Xi| =
n∑

s=1

(−1)s+1
∑

{i1,···,is}⊆{1,2,···,n}

|Xi1

⋂
Xi2

⋂
· · ·
⋂

Xis|.

Proof To prove this equality, assume an element x ∈
n⋃
i=1

Xi is exactly appearing

in s sets Xi1 , Xi2, · · · , Xis. Then it is counted s times in
s∑
j=1

|Xij |, and

(
s

2

)
times

in
∑

l1,l2∈{i1,···,is}

|Xl1

⋂
Xl2 |, · · ·, etc.. Generally, for any integers k ≤ s, it is counted

(
s

k

)
times in

∑

l1,···,lk∈{i1,···,is}

|Xl1

⋂
Xl2

⋂
· · ·
⋂

Xlk |.

To sum up, it is counted
(
s

1

)
−
(
s

2

)
+ · · ·+ (−1)s

(
s

s

)
= 1− (1− 1)s = 1

times in
n∑

s=1

(−1)s+1
∑

{i1,···,is}⊆{1,2,···,n}

|Xi1

⋂
Xi2

⋂
· · ·
⋂

Xis |.

Whence, we get

|
n⋃

i=1

Xi| =
n∑

s=1

(−1)s
∑

{i1,···,is}⊆{1,2,···,n}

|Xi1

⋂
Xi2

⋂
· · ·
⋂

Xis |

by the enumeration principle. �

The inclusion-exclusion principle is very useful in dealing with enumeration

problems. For example, an Euler function ϕ is a mapping ϕ : Z+ → Z on the

integer set Z+ given by

ϕ(n) = |{k ∈ Z|0 < k ≤ n and (k, n) = 1}|,

for any integer n ∈ Zn, where (k, n) is the maximum common divisor of k and n.

Assume all prime divisors in n are p1, p2, · · · , pl and define

Xi = {k ∈ Z|0 < k ≤ n and (k, n) = pi},
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for any integer i, 1 ≤ i ≤ l. Then by the inclusion-exclusion principle, we find that

ϕ(n) = |{k ∈ Z|0 < k ≤ n and (k, n) = 1}|

= |{1, 2, · · · , n} \ (
l⋃

i

Xi)|

= n−
n∑

s=1

(−1)s
∑

{i1,···,is}⊆{1,2,···,l}

|Xi1

⋂
Xi2

⋂
· · ·
⋂

Xis|

= n[1−
∑

1≤i≤l

1

pi
+
∑

1≤i,j≤l

1

pipj
− · · ·+ (−1)l

1

p1p2 · · · pl
]

= n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pl
)

= n
l∏

i=1

(1− 1

pi
).

1.5.3 Enumerating Mappings. This subsection concentrates on the enumera-

tion of bijections, injections and surjections from a given set X to Y . For conve-

nience, define three sets

Bij(Y X) = {f ∈ Y X |f is an bijection},

Inj(Y X) = {f ∈ Y X |f is an injection},
Sur(Y X) = {f ∈ Y X |f is an surjection}.

Then, we immediately get

Theorem 1.5.2 Let X and Y be finite sets. Then

|Bij(Y X)| =
{

0 if |X| 6= |Y |,
|Y |! if |X| = |Y |

and

|Inj(Y X)| =
{

0 if |X| > |Y |,
|Y |!

(|Y |−|X|)!
if |X| ≤ |Y |.

Proof If |X| 6= |Y |, there are no bijections from X to Y by definition. Whence,

we only need to consider the case of |X| = |Y |. Let X = {x1, x2, · · · , xn} and Y =

{y1, y2, · · · , yn}. For any permutation p on y1, y2, · · · , yn, the mapping determined

by (
x1 x2 · · · xn

p(y1) p(y2) · · · p(yn)

)
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is a bijection from X to Y , and vice versa. Whence,

|Bij(Y X)| =
{

0 if |X| 6= |Y |,
n! = |Y |! if |X| = |Y |

Similarly, if |X| > |Y |, there are no injections from X to Y by definition.

Whence, we only need to consider the case of |X| ≤ |Y |. For any subset Y ′ ⊆ Y

with |Y ′| = |X|, notice that there are |Y ′|! = |X|! bijections from X to Y ′, i.e., |X|!

surjections from X to Y . Now there are

(
|Y |
|X|

)
ways choosing the subset Y ′ in

Y . Therefore, the number |Inj(Y X)| of surjections from X to Y is

(
|Y |
|X|

)
|X|! =

|Y |!
(|Y |!− |X|!) .

This completes the proof. �

The situation for |Sur(Y X)| is more complicated than these cases of determining

|Bij(Y X)| and |Inj(Y X)|, which need to apply the inclusion-exclusion principle with

techniques.

Theorem 1.5.3 Let X and Y be finite sets. Then

|Sur(Y X)| = (−1)|Y |

|Y |∑

i=0

(−1)i

(
|Y |
i

)
i|X|.

Proof For any sets X = {x1, x2, · · · , xn} and Y , by the product principle we

know that

|Y X | = |Y {x1} × Y {x2} × · · · × Y {xn}|
= |Y {x1}||Y {x2}| · · · |Y {xn}| = |Y ||X|.

Now let Φ : Y X →P(Y ) be a mapping defined by

Φ(f) = Y
⋃

f(X)− Y
⋂

f(X).

Notice that f ∈ Sur(Y X) is a surjection if and only if Φ(f) = ∅. For any subset

S ⊆ Y , let

XS = {f ∈ Y X |S ⊆ Φ(f)}.
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Then calculation shows that

|XS| = |{f ∈ Y X |S ⊆ Φ(f)}|
= |{f ∈ Y X |f(X) ⊆ Y

⋃
S − Y

⋂
S}|

= |Y
⋃

S − Y
⋂

S||X| = (|Y | − |S|)|X|.

Applying the inclusion-exclusion principle, we find that

|Sur(Y X)| = |Y X \
⋃

∅6=S⊆Y

XS|

= |Y X | −
|Y |∑

i=1

(−1)|S|(|Y | − |S|)|X|

=

|Y |∑

i=0

(−1)i
∑

|S|=i

(|Y | − i)|X|

=

|Y |∑

i=0

(−1)i

(
|Y |
i

)
(|Y | − i)|X|

= (−1)|Y |

|Y |∑

i=0

(−1)i

(
|Y |
i

)
i|X|.

The last equality applies the fact

(
|Y |
i

)
=

(
|Y |
|Y | − i

)
on binomial coeffi-

cients. �

1.5.4 Enumerating Vertex-Edge Labeled Graphs. For a given graph G and

a labeled set L, can how many non-equivalent labeled graphs GL be obtained? We

know the result following.

Theorem 1.5.4 Let G be a graph and L a finite labeled set. Then there are

|L||V (G)|+|E(G)|

|AutG|2

non-equivalent labeled graphs by labeling θL : V (G) ∪E(G)→ L.

Proof A vertex-edge labeled graph on a graph can be obtained in two steps.

The first is labeling its vertices. The second is labeling its edges on its vertex

labeled graph. Notice there are |L||V (G)| vertex labelings θL : V (G) → L. If there
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is an automorphism f ∈ AutG such that (GV )f = GV , then it can show easily that

f = 1AutG, i.e., |(AutG)GV | = 1. Applying a famous result in permutation groups,

i.e., |Γx||xΓ| = |Γ| for any finite permutation group Γ and x ∈ Γ, we know that the

orbital length of GV under the action of AutG is |AutG|. Therefore, there are

|L||V (G)|

|AutG|

non-equivalent vertex labeled graphs by labeling θL : V (G)→ L on vertices in G.

Similarly, for a given vertex labeled graph GV , there are

|L||V (G)|

|AutG|

non-equivalent edge labeled graphs by labeling θL : E(G) → L on edges in G.

Whence, applying the product principle for enumeration, we find there are

|L||V (G)|+|E(G)|

|AutG|2

non-equivalent labeled graphs by labeling θL : V (G) ∪ E(G)→ L. �

If each element in L appears one times at most, i.e. |θL(x) ∩ L| ≤ 1 for

∀x ∈ V (G) ∪E(G), then |L| ≥ |V (G)|+ |E(G)| if there exist such labeling. In this

case, there are (
|L|

|V (G)|+ |E(G)|

)

labelings θL : V (G) ∪ E(G) → L with |θL(x) ∩ L| ≤ 1. Particularly, choose

|L| = |V (G)| + |E(G)| as usual, then there are (|V (G)| + |E(G)|)! such labelings.

Similar to Theorem 1.5.4, we know the result following.

Theorem 1.5.5 Let G be a graph and L a finite labeled set with |L| ≥ |V (G)| +
|E(G)|. Then there are (

|L|
|V (G)|+ |E(G)|

)

|AutG|2

non-equivalent labeled graphs by labeling θL : V (G)∪E(G)→ L with |θL(x)∩L| ≤ 1,

and particularly
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(|V (G)|+ |E(G)|)!
|AutG|2

non-equivalent labeled graphs if |L| = |V (G)|+ |E(G)|. �

For vertex or edge labeled graphs,i.e., |L| = |V (G)| or |L| = |E(G)|, we can get

similar results on the numbers of non-equivalent such labeled graphs shown in the

following.

Corollary 1.5.1 Let G be a graph. Then there are

|V (G)|!
|AutG| or

|E(G)|!
|AutG|

non-equivalent vertex or edge labeled graphs.

There is a closed formula for the number of non-equivalent vertex-edge labeled

trees with a given order, shown in the following.

Theorem 1.5.6 Let T be a tree of order p. Then there are

(2p− 1)p−2(p+ 1)!

non-equivalent vertex-edge labeled trees.

Proof Let T be a vertex-edge labeled tree with a label set L = {1, 2, · · · , 2p−1}.
Remove the pendent vertex having the smallest label a1 and the incident edge with

label c1. Assume that b1 was the vertex adjacent to a1. Among the remaining

p− 1 vertices let a2 be the pendent vertex with the smallest label and b2 the vertex

adjacent to a2. Remove the edge (a2, b2) with label c2. Repeated this programming

on the remaining p−2 vertices, and then on p−3 vertices, and so on. It is terminated

after p − 2 steps as only two vertices are left. Then the vertex-edge labeled tree

uniquely defines two sequences

(b1, b2, · · · , bp−2), (5.1)

(c1, c2, · · · , cp−2, cp−1), (5.2)

where cp−1 is the label on the edge connecting the last two vertices. For example,

the sequences (5.1) and (5.2) are respective (1, 1, 4) and (6, 7, 8, 9) for the tree shown

in Fig.1.5.1.
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Fig.1.5.1

Conversely, given sequences (b1, b2, · · · , bp−2) and (c1, c2, · · · , cp−1) of 2p− 3 la-

bels, a vertex-edge labeled tree of order p can be uniquely constructed as follows.

First, determine the first number in 1, 2, 3, · · · , 2p − 1 that does not appear

in (b1, b2, · · · , bp−2), say a1 and define an edge (a1, b1) with a label c1. Removing

b1, c1 from these sequences. Find a smallest number not appearing in the remaining

sequence (b2, c2, · · · , bp−2, cp−2), say a2 and define an edge (a2, b2) with a label c2.

This construction is continued until there are no element left. At the final, the last

two elements remaining in L are connected with the label cp−1.

For each of the p− 2 elements in the sequence (5− 1), we can choose any one

of numbers in L, thus

(2p− 1)p−2

(p− 2)-tuples. For the remained two vertices and elements in the sequence (5− 2),

we have (
p + 1

p− 1

)
2! = (p+ 1)!

choices. Therefore, there are

(2p− 1)p−2(p+ 1)!

such different pairs (5− 1) and (5− 2). Notice that each of them defines a district

vertex-edge labeled tree of p vertices. Since each vertex-edge labeled tree uniquely

defines a pair of there sequences and vice versa. We find the number of vertex-edge

labeled trees of order p asserted in this theorem. �

Similarly, we can also get the number of vertex labeled trees of order p, which

was firstly gotten by Cayley in 1889 shown in the next result.

Theorem 1.5.7(Cayley, 1889) Let T be a tree of order p. Then there are pp−2

non-equivalent vertex labeled trees. �
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1.5.5 Enumerating Rooted Maps. A combinatorial map is a connected graph

G cellularly embedded in a surface. By the work of Tutte ( See [Tut2] for details), a

combinatorial map can be also defined algebraically as a pair M = (Xα,β,P), where

Xα,β is the disjoint union of quadricells Kx of x ∈ X ,K is the Klein 4-elements

group and P is a basic permutation,i.e, for ∀x ∈ Xα,β , Pkx 6= αx for any positive

integer k, acting on Xα,β satisfying the following axioms:

Axiom (i) αP = P−1α;

Axiom (ii) The group ΨJ =≺ α, β,P ≻ is transitive on Xα,β.
According to the condition (ii), the vertices of a combinatorial map are defined

as the pairs of conjugate of P action on Xα,β and edges the orbits of K on Xα,β,
for example, {x, αx, βx, αβx}, an edge of map. A combinatorial map is called non-

orientable if it satisfying the following Axiom (iii). Otherwise, orientable.

Axiom (iii) The group ΨL = 〈αβ,P〉 is transitive on Xα,β .
A rooted map is a combinatorial map M r with an element r ∈ Xα,β marked

beforehand. Two combinatorial maps M1 = (X 1
α,β,P1) and M2 = (X 2

α,β,P2) are

called isomorphic if there exists a bijection ξ,

ξ : X 1
α,β −→ X 2

α,β

such that for ∀x ∈ X 1
α,β,

ξα(x) = αξ(x), ξβ(x) = βξ(x) and ξP1(x) = P2ξ(x)

and ξ is called an isomorphism between M1 and M2. If M1 = M2 = M , an iso-

morphism ξ on M is called an automorphism of M . All such automorphisms of a

combinatorial map M form a group, called the automorphism group of M , denoted

by AutM . Similarly, Two rooted maps M r
1 , M

r
2 are said to be isomorphic if there

is an isomorphism θ between them such that θ(r1) = r2, where r1, r2 are the roots

of M r
1 and M r

2 . It is well known that AutM r is trivial.

Let G be a simple graph. Then we get the number of rooted maps underlying

G in the next result.

Theorem 1.5.8 For a given map M , the number r(M) of non-isomorphic roots on

M is
4ε(M)

|AutM| , where ε(M) is the size of M .
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Proof By definition, two roots r1 and r2 are isomorphic if and only if there is

an automorphism ξ of M such that ξ(r1) = r2. Whence, the non-isomorphic roots is

the number of orbits of Xα,β under the action of AutM . For ∀r ∈ U , we have know

that (AutM)r = AutMr is a trivial group. According to |AutM| = |(AutM)r||rAutM|,
we find that |rAutM| = |AutM|. Whence, the length of orbit of r ∈ Xα,β under the

action of AutM is |AutM|.
Therefore, the number of non-isomorphic roots on M is

r(M) =
|Xα,β|
|AutM| =

4ε(M)

|AutM| . �

According to Theorem 1.5.8, the number of rooted maps on onientable surfaces

underlying a simple graph G is obtained in the following.

Theorem 1.5.9 The number rO(G) of non-isomorphic rooted maps on orientable

surfaces underlying a simple graph G is

rO(G) =

2ε(G)
∏

v∈V (G)

(ρ(v)− 1)!

|AutG| ,

where ε(G), ρ(v) denote the size of G and the valency of vertex v, respectively.

Proof Denotes the set of all non-isomorphic orientable maps underlying G by

MO(G). According to Theorem 1.5.7, we know that

rO(G) =
∑

M∈MO(G)

4ε(M)

|AutM | .

From |AutG× 〈α〉 | = |(AutG× 〈α〉)M ||MAutG×〈α〉|, we get that

|MAutG×〈α〉| = |AutG× 〈α〉 |
|AutM | .

Therefore, we get that

rO(G) =
∑

M∈M≀(G)

4ε(M)

|AutM|

=
4ε(G)

|AutG× 〈α〉 |
∑

M∈MO(G)

|AutG× 〈α〉 |
|AutM|

=
2ε(G)

|AutG|
∑

M∈MO(G)

|MAutG×〈α〉| = 2ε(G)|EO(G)|
|AutG| ,
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where EO(G) =
∑

M∈MO(G)

|MAutG×〈α〉| is all orientable embeddings of G. By a result

in [BiW1] for embedding a graph on onientable surfaces, we know that

|EO(G)| =
∏

v∈V (G)

(ρ(v)− 1)!.

Whence, we finally get that

rO(G) =

2ε(G)
∏

v∈V (G)

(ρ(v)− 1)!

|AutG| .

This completes the proof. �

Notice that every tree on surface is planar. We get the following conclusion.

Theorem 1.5.10 The number of rooted tree of order n is

r(T ) =

2n
∏

v∈V (T )

(ρ(v)− 1)!

|AutT | .

1.5.6 Automorphism Groups Identity of Trees. These enumerating results

in Theorems 1.5.6 − 1.5.7 and 1.5.10 can be rewritten in automorphism groups

equalities combining with Theorem 1.5.4 and Corollary 1.5.1.

Corollary 1.5.2 Let T (p− 1) be a set of trees of order p. Then

∑

T∈T (p−1)

1

|AutT | =
pp−2

p!
,

∑

T∈T (p−1)

∏
d∈D(T )

(d− 1)!

|AutT| =
(2p− 3)!

p!(p− 1)!
,

and ∑

T∈T (p−1)

1

|AutT |2 =
(2p− 1)p−2(p+ 1)!

(2p− 1)!
.

Proof By Theorems 1.5.6−1.5.7, the number of vertex labeled and vertex-edge

labeled trees are pp−2, (2p− 1)p−2(p + 1)!, respectively. Notice that the number of

rooted tree of size p is
(2p− 2)!

p!(p− 1)!
found by Harray and Tutte in 1964 (See [Liu2] for

details). Applying Theorems 1.5.4 and 1.5.10, we get these automorphism groups

identities. �
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§1.6 COMBINATORIAL PRINCIPLE

1.6.1 Proposition in Logic. The multi-laterality of our WORLD implies multi-

systems to be its best candidate model for ones cognition on the WORLD. This is

also included in a well-known Chinese ancient book TAO TEH KING written by

LAO ZI. In this book we can find many sentences for cognition of our WORLD,

such as those of the following ([Luj1]-[Luj2],[Sim1]).

SENTENCE 1. All things that we can acknowledge is determined by our eyes, or

ears, or nose, or tongue, or body or passions, i.e., these six organs. Such as those

shown in Fig.1.6.1.

known part

by ones six organs

unknown

unknownunknown

unknown

Fig.1.6.1

SENTENCE 2. The Tao gives birth to One. One gives birth to Two. Two

gives birth to Three. Three gives birth to all things. All things have their backs to

the female and stand facing the male. When male and female combine, all things

achieve harmony. Shown in Fig.1.6.2.

- -
-�

6TAO
+1

-1

-
+1

-1
-

�
-�

-�
I

I

unknown theoretically deduced known

World

Fig.1.6.2
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SENTENCE 3. Mankind follows the earth. Earth follows the universe. The

universe follows the Tao. The Tao follows only itself. Such as those shown in

Fig.1.6.3. � � �mankind earth Universe TAO

Fig.1.6.3

SENTENCE 4. Have and Not have exist jointly ahead of the birth of the earth

and the sky. This means that any thing have two sides. One is the positive. Another

is the negative. We can not say a thing existing or not just by our six organs because

its existence independent on our living.

What can we learn from these words? All these sentences mean that our world

is a multi-one. For characterizing its behavior, We should construct a multi-system

model for the WORLD, also called parallel universes ([Mao3], [Teg1]), such as those

shown in Fig.1.6.4.

known part now

unknown unknown

Fig.1.6.4

How can we apply these sentences in mathematics of the 21st century? We

make some analysis on this question by mathematical logic following.

A proposition p on a set Σ is a declarative sentence on elements in Σ that is

either true or false but not both. The statements it is not the case that p and it is

the opposite case that p are still propositions, called the negation or anti-proposition

of p, denoted by non-p or anti-p, respectively. Generally, non − p 6= anti − p. The

structure of anti-p is very clear, but non-p is not. An oppositive or negation of a
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proposition are shown in Fig.1.6.5.

p anti-p-� p non-p

non-p

non-p

non-p

Fig.1.6.5

For a given proposition, what can we say it is true or false? A proposition and

its non-proposition jointly exist in the world. Its truth or false can be only decided

by logic inference, independent on one knowing it or not.

A norm inference is called implication. An implication p→ q, i.e., if p then q,

is a proposition that is false when p is true but q false and true otherwise. There

are three propositions related with p → q, namely, q → p, ¬q → ¬p and ¬p → ¬q,
called the converse, contrapositive and inverse of p→ q. Two propositions are called

equivalent if they have the same truth value. It can be shown immediately that an

implication and its contrapositive are equivalent. This fact is commonly used in

mathematical proofs, i.e., we can either prove the proposition p→ q or ¬q → ¬p in

the proof of p→ q, not the both.

1.6.2 Mathematical System. A rule on a set Σ is a mapping

Σ× Σ · · · × Σ︸ ︷︷ ︸
n

→ Σ

for some integers n. A mathematical system is a pair (Σ;R), where Σ is a set

consisting mathematical objects, infinite or finite and R is a collection of rules on

Σ by logic providing all these resultants are still in Σ, i.e., elements in Σ is closed

under rules in R.

Two mathematical systems (Σ1;R1) and (Σ2;R2) are isomorphic if there is a

1− 1 mapping ω : Σ1 → Σ2 such that for elements a, b, · · · , c ∈ Σ1,

ω(R1(a, b, · · · , c)) = R2(ω(a), ω(b), · · · , ω(c)) ∈ Σ2.

Generally, we do not distinguish isomorphic systems in mathematics. Examples

for mathematical systems are shown in the following.
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Example 1.6.1 A group (G; ◦) in classical algebra is a mathematical system (ΣG;RG),

where ΣG = G and

RG = {RG
1 ;RG

2 , R
G
3 },

with

RG
1 : (x ◦ y) ◦ z = x ◦ (y ◦ z) for ∀x, y, z ∈ G;

RG
2 : there is an element 1G ∈ G such that x ◦ 1G = x for ∀x ∈ G;

RG
3 : for ∀x ∈ G, there is an element y, y ∈ G, such that x ◦ y = 1G.

Example 1.6.2 A ring (R; +, ◦) with two binary closed operations�+�,�◦�is a

mathematical system (Σ;R), where Σ = R and R = {R1;R2, R3, R4} with

R1: x+ y, x ◦ y ∈ R for ∀x, y ∈ R;

R2: (R; +) is a commutative group, i.e., x+ y = y + x for ∀x, y ∈ R;

R3: (R; ◦) is a semigroup;

R4: x ◦ (y + z) = x ◦ y + x ◦ z and (x+ y) ◦ z = x ◦ z + y ◦ z for ∀x, y, z ∈ R.

Example 1.6.3 a Euclidean geometry on the plane R2 is a a mathematical system

(ΣE ;RE), where ΣE = {points and lines on R2} and RE = {Hilbert′s 21 axioms on

Euclidean geometry}.

A mathematical (Σ;R) can be constructed dependent on the set Σ or on rules

R. The former requires each rule in R closed in Σ. But the later requires that

R(a, b, · · · , c) in the final set Σ̂, which means that Σ̂ maybe an extended of the set

Σ. In this case, we say Σ̂ is generated by Σ under rules R, denoted by 〈Σ;R〉.
Combining mathematical systems with the view of LAO ZHI in Subsection

1.6.1, we should construct these mathematical systems (Σ;R) in which a proposition

with its non-proposition validated turn up in the set Σ, or invalidated but in multiple

ways in Σ.

Definition 1.6.1 A rule in a mathematical system (Σ;R) is said to be Smaran-

dachely denied if it behaves in at least two different ways within the same set Σ, i.e.,

validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one

Smarandachely denied rule in R.

Definition 1.6.2 For an integer m ≥ 2, let (Σ1;R1), (Σ2;R2), · · ·, (Σm;Rm) be

m mathematical systems different two by two. A Smarandache multi-space is a pair
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(Σ̃; R̃) with

Σ̃ =
m⋃

i=1

Σi, and R̃ =
m⋃

i=1

Ri.

Certainly, we can construct Smarandache systems by applying Smarandache

multi-spaces, particularly, Smarandache geometries appeared in the next chapter.

1.6.3 Combinatorial System. These Smarandache systems (Σ;R) defined in

Definition 1.6.1 consider the behavior of a proposition and its non-proposition in

the same set Σ without distinguishing the guises of these non-propositions. In fact,

there are many appearing ways for non-propositions of a proposition in Σ. For

describing their behavior, we need combinatorial systems.

Definition 1.6.3 A combinatorial system CG is a union of mathematical systems

(Σ1;R1),(Σ2;R2), · · ·, (Σm;Rm) for an integer m, i.e.,

CG = (
m⋃

i=1

Σi;
m⋃

i=1

Ri)

with an underlying connected graph structure G, where

V (G) = {Σ1,Σ2, · · · ,Σm},

E(G) = { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}.

Unless its combinatorial structure G, these cardinalities |Σi

⋂
Σj |, called the

coupling constants in a combinatorial system CG also determine its structure if

Σi

⋂
Σj 6= ∅ for integers 1 ≤ i, j ≤ m. For emphasizing its coupling constants,

we denote a combinatorial system CG by CG(lij , 1 ≤ i, j ≤ m) if lij = |Σi

⋂
Σj | 6= 0.

Let C
(1)
G and C

(2)
G be two combinatorial systems with

C
(1)
G = (

m⋃

i=1

Σ
(1)
i ;

m⋃

i=1

R(1)
i ), C

(2)
G = (

n⋃

i=1

Σ
(2)
i ;

n⋃

i=1

R(2)
i ).

A homomorphism ̟ : C
(1)
G → C

(2)
G is a mapping ̟ :

m⋃
i=1

Σ
(1)
i →

n⋃
i=1

Σ
(2)
i and ̟ :

m⋃
i=1

R(1)
i )→

n⋃
i=1

R(2)
i such that

̟|Σi
(aR(1)

i b) = ̟|Σi
(a)̟|Σi

(R(1)
i )̟|Σi

(b)
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for ∀a, b ∈ Σ
(1)
i , 1 ≤ i ≤ m, where ̟|Σi

denotes the constraint mapping of ̟ on the

mathematical system (Σi,Ri). Further more, if ̟ : C
(1)
G → C

(2)
G is a 1−1 mapping,

then we say these C
(1)
G and C

(2)
G are isomorphic with an isomorphism ̟ between

them.

A homomorphism ̟ : C
(1)
G → C

(2)
G naturally induces a mappings ̟|G on the

graph G1 and G2 by

̟|G : V (G1)→ ̟(V (G1)) ⊂ V (G2) and

̟|G : (Σi,Σj) ∈ E(G1)→ (̟(Σi), ̟(Σj)) ∈ E(G2), 1 ≤ i, j ≤ m.

With these notations, a criterion for isomorphic combinatorial systems is presented

in the following.

Theorem 1.6.1 Two combinatorial systems C
(1)
G and C

(2)
G are isomorphic if and

only if there is a 1− 1 mapping ̟ : C
(1)
G → C

(2)
G such that

(i) ̟|
Σ

(1)
i

is an isomorphism and ̟|
Σ

(1)
i

(x) = ̟|
Σ

(1)
j

(x) for ∀x ∈ Σ
(1)
i ∩Σ

(1)
j , 1 ≤

i, j ≤ m;

(ii) ̟|G : G1 → G2 is an isomorphism.

Proof If ̟ : C
(1)
G → C

(2)
G is an isomorphism, considering the constraint map-

pings of ̟ on the mathematical system (Σi,Ri) for an integer i, 1 ≤ i ≤ m and the

graph G
(1)
1 , then we find isomorphisms ̟|

Σ
(1)
i

and ̟|G.

Conversely, if these isomorphism ̟|
Σ

(1)
i

, 1 ≤ i ≤ m and ̟|G exist, we can

construct a mapping ̟ : C
(1)
G → C

(2)
G by

̟(a) = ̟|Σ1(a) if a ∈ Σi and ̟(◦) = ̟|Σ1(◦) if ◦ ∈ Ri, 1 ≤ i ≤ m.

Then we know that

̟|Σi
(aR(1)

i b) = ̟|Σi
(a)̟|Σi

(R(1)
i )̟|Σi

(b)

for ∀a, b ∈ Σ
(1)
i , 1 ≤ i ≤ m by definition. Whence, ̟ : C

(1)
G → C

(2)
G is a homomor-

phism. Similarly, we can know that ̟−1 : C
(2)
G → C

(1)
G is also an homomorphism.

Therefore, ̟ is an isomorphism between C
(1)
G and C

(2)
G . �

For understanding well the multiple behavior of world, a combinatorial system

should be constructed. Then what is its relation with classical mathematical sci-

ences? What is its developing way for mathematical sciences? I presented an idea
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of combinatorial notion in Chapter 5 of [Mao1], then formally as the Combinatorial

Conjecture for Mathematics in [Mao4] and [Mao10], the later is reported at the 2nd

Conference on Combinatorics and Graph Theory of China in 2006.

Combinatorial Conjecture Any mathematical system (Σ;R) is a combinatorial

system CG(lij , 1 ≤ i, j ≤ m).

This conjecture is not just an open problem, but more likes a deeply thought,

which opens a entirely way for advancing the modern mathematics and theoretical

physics. In fact, it is an extending of TAO TEH KING, Smarandache’s notion by

combinatorics, but with more delicateness. Here, we need further clarification for

this conjecture. In fact, it indeed means a combinatorial notion on mathematical

objects following for researchers.

(i) There is a combinatorial structure and finite rules for a classical math-

ematical system, which means one can make combinatorialization for all classical

mathematical subjects.

(ii) One can generalizes a classical mathematical system by this combinatorial

notion such that it is a particular case in this generalization.

(iii) One can make one combination of different branches in mathematics and

find new results after then.

(iv) One can understand our WORLD by this combinatorial notion, establish

combinatorial models for it and then find its behavior, for example,

what is true colors of the Universe, for instance its dimension?

This combinatorial notion enables ones to establish a combinatorial model for

the WORLD, i.e., combinatorial Universe (see Chapter 8 of this book) characterizing

the WORLD, not like the classical physics by applying an isolated sphere model or

a Euclidean space model. Whence, researching on a mathematical system can not

be ended if it has not been combinatorialization and all mathematical systems can

not be ended if its combinatorialization has not completed yet.

§1.7 REMARKS

1.7.1. Combinatorics has made great progress in the 20th century with many

important results found. Essentially, it can be seen as an extending subject on
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sets or a branch of algebra with some one’s intuition, such as these graphs. But

it is indeed come into being under the logic, namely, a subject of mathematics.

For materials in Sections 1.1− 1.3, further information and results can be found in

references [BiM1], [Hua1] and [NiD1]. The concept of multi-set and multi-poset are

introduced here by Smarandache’s notion in [Sma1]. Sections 1.4 − 1.5 are a brief

introduction to graphs and enumerating techniques. More results and techniques

can be found in reference [BoM1], [CaM1], [ChL1], [GrW1] and [Tut1], etc. for

readers interesting in combinatorics with applications.

1.7.2 The research on multi-poset proposed in Section 3 is an application of the

combinatorial notion, i.e., combining different fields into a unifying one. It needs

both of the knowledge of posets and combinatorics, namely, posets with combina-

torial structure. Further research on multi-poset will enrich one’s knowledge on

posets.

1.7.3 These graph families enumerated in Section 4 is not complete. It only presents

common families or frequently met in papers on graphs. But for C8, i.e., embed-

ded graphs, more words should be added in here. Generally, an embedded graph

on a topological space R is a one-to-one continuous mapping f : G → R in such a

way that edges are disjoint except possibly on endpoints, namely, a 1-CW complex

embedded in a topological space [Grü1]. In last century, many researches are con-

centrated on the case of R being a surface, i.e., a closed 2-manifold. In fact, the

terminology embedded graph is usually means a graph embedded on a surface, not in

a general topological space. For this spacial case, more and more techniques beyond

combinatorics are applied, for example, [GrT1], [Whi1] and [Mao1] apply topology

with algebra, particularly, automorphism groups, [Liu1]-[Liu3] use topology with

algebra, algorithm, mathematical analysis, particularly, functional equations and

[MoT1] adopts combinatorial topology. Certainly, there are many open problems

in this field. Beyond embedded graphs on surfaces, few results are observable on

publications for embedded graphs in a topological space, not these surfaces.

1.7.4 A combinatorial map is originally as an object of decomposition surface with

2-cell components. Its algebraic definition by Klein 4-group in Subsection 1.5.5 is

suggested by Tutte ([Tut2]) in 1973. We adopted a formally definition appeared in

[Liu2]. It should be noted that a widely approach for enumeration of rooted maps
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on surface is by analytic technique. Usually, this approach applies four STEPS as

follows:

STEP 1: Decompose the set of rooted maps M .

STEP 2: Establish functional equations satisfied by the enumeration function fM .

STEP 3: Find properly parametric expression.

STEP 4: Solving these functional equations, usually by Lagrange or other inversion.

The interested readers are referred to references [Liu2]-[Liu4] for such enumeration.

But in here, Theorem 1.5.8 clarifies non-isomorphic roots on a combinatorial map

is essentially orbits under the action of its automorphism group and Theorem 1.5.9

presents a closed formula for counting rooted maps underlying a graph G, which

also makes known the essence of enumeration of rooted maps.

1.7.5 These three equalities in Corollary 1.5.2 are interesting, which present closed

formulae for automorphism groups of trees with given size. The first equality was

noted first by Babai in 1974. The second is gotten by Mao and Liu in [MaL1] in

2003. The third identity, i.e.,

∑

T∈T (p−1)

1

|AutT |2 =
(2p− 1)p−2(p+ 1)!

(2p− 1)!

in Corollary 1.5.2 is a new identity. All of these identities are found by the applica-

tion of enumeration principle shown in Subsection 1.5.1.

1.7.6 The original form of the Combinatorial Conjecture for Mathematics discussed

in Section 1.6 is that mathematical science can be reconstructed from or made by

combinatorialization, abbreviated to CCM Conjecture in [Mao4] and [Mao10]. Its

importance is in combinatorial notion for entirely developing mathematical sciences,

which produces an enormous creative power for modern mathematics and physics.

1.7.7 The relation of Smarandache’s notion with LAO ZHI’s thought was first

pointed out by the author in [Mao19], reported at the 4th International Conference

on Number Theory and Smarandache Problems of Northwest of China in Xianyang,

2008. Here, combinatorial systems is a generalization of Smarandache systems, also

an application of LAO ZHI’s thought to mathematics. Complete words in TAO

TEH KING written by LAO ZHI can be found in [Sim1]. Further analysis on LAO

ZHI’s thought can consults references [Luj1]-[Luj2] and [WaW1], particularly [Luj1].
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1.7.8 It should be noted that all objects in combinatorics are without metrics,

which enables its results concise and formulae with mathematical beauty. But most

of them are only beneficial for pure or classical combinatorics, not the entirety of

mathematics or sciences for its lack of metrics. The goal of combinatorics is to find

combinatorial counterpart in mathematics, not just these results only with purely

combinatorial importance. For contributing it to the entire science, a good idea

is pull-back these metrics ignored in classical combinatorics to construct the math-

ematical combinatorics suggested by the author in [Mao1]. The reference [Mao2]

is such a monograph with Smarandache multi-spaces. In fact, the material in the

following chapters is on mathematical combinatorics, particularly on combinato-

rial differential geometry and its application, i.e., combinatorial fields in theoretical

physics.



CHAPTER 2.

Algebraic Combinatorics

If the facts don’t fit the theory, change the facts.

By Albert Einstein, an American theoretical physicist.

One increasingly realizes that our world is not an individual but a multiple

or combinatorial one, which enables modern sciences overlap and hybrid,

i.e., with a combinatorial structure. To be consistency with the science

development, the mathematics should be also combinatorial, not just the

classical combinatorics without metrics, but the mathematical combinatorics

resulting in the combinatorial conjecture for mathematics, i.e., CCM Con-

jecture presented by the author in 2005. The importance of this conjecture

is not in it being an open problem, but in its role for advancing mathemat-

ics. For introducing more readers known this heartening combinatorial no-

tion for mathematical sciences, this chapter introduces the combinatorially

algebraic theory, i.e., algebraic combinatorics, including algebraic system,

multi-operation system, multi-group, multi-ring, multi-ideal, multi-module,

action of multi-group and combinatorial algebraic system, ..., etc.. Other

fields followed from this notion, such as those of Smarandache geometries

and combinatorial differential geometry are shown in the following chapters.
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§2.1 ALGEBRAIC SYSTEMS

2.1.1 Algebraic System. Let A be a set and ◦ an operation on A . If ◦ :

A × A → A , i.e., closed then we call A an algebraic system under the operation

◦, denoted by (A ; ◦). For example, let A = {1, 2, 3}. Define operations ×1,×2 on

A by following tables.

×1 1 2 3

1 1 2 3

2 2 3 1

3 3 1 2

×2 1 2 3

1 1 2 3

2 3 1 2

3 2 3 1

table 2.1.1

Then we get two algebraic systems (A ;×1) and (A ;×2). Notice that in an algebraic

system (A ; ◦), we can get an unique element a ◦ b ∈ A for ∀a, b ∈ A .

2.1.2 Associative and Commutative Law. We introduce the associative and

commutative laws in the following definition.

Definition 2.1.1 An algebraic system (A ; ◦) is associative if

(a ◦ b) ◦ c = a ◦ (b ◦ c)

for ∀a, b, c ∈ A .

Definition 2.1.2 An algebraic system (A ; ◦) is commutative if

a ◦ b = b ◦ a

for ∀a, b ∈ A .

We know results for associative and commutative systems following.

Theorem 2.1.1 Let (A ; ◦) be an associative system. Then for a1, a2, · · · , an ∈ A ,

the product a1◦a2◦· · ·◦an is uniquely determined and independent on the calculating

order.

Proof The proof is by induction. For convenience, let a1 ◦ a2 ◦ · · · ◦ an denote

the calculating order

(· · · ((a1 ◦ a2) ◦ a3) ◦ · · ·) ◦ an.
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If n = 3, the claim is true by definition. Assume the claim is true for any

integers n ≤ k. We consider the case of n = k + 1. By definition, the last step for

any calculating order
∏

must be a result of two elements, i.e.,

∏
=
∏

1

◦
∏

2

.

Apply the inductive assumption, we can assume that

∏

1

= (· · · ((a1 ◦ a2) ◦ a3) ◦ · · ·) ◦ al

and ∏

2

= (· · · ((al+1 ◦ al+2) ◦ al+3) ◦ · · ·) ◦ ak+1.

Therefore, we get that

∏
=

∏

1

◦
∏

2

= (· · · (a1 ◦ a2) ◦ · · ·) ◦ al ◦ (· · · (al+1 ◦ al+2) ◦ · · ·) ◦ ak+1

= (· · · (a1 ◦ a2) ◦ · · ·) ◦ al ◦ ((· · · (al+1 ◦ al+2) ◦ · · · ◦ ak) ◦ ak+1)

= ((· · · (a1 ◦ a2) ◦ · · ·) ◦ al ◦ (· · · (al+1 ◦ al+2) ◦ · · · ◦ ak)) ◦ ak+1

= (· · · ((a1 ◦ a2) ◦ a3) ◦ · · ·) ◦ ak+1

by the inductive assumption. Applying the inductive principle, the proof is com-

pleted. �

Theorem 2.1.2 Let (A ; ◦) be an associative and commutative system, a1, a2, · · · , an ∈
A . Then for any permutation π on indexes 1, 2, · · · , n,

aπ(1) ◦ aπ(2) ◦ · · · ◦ aπ(n) = a1 ◦ a2 ◦ · · · ◦ an.

Proof We prove this result by induction on n. The claim is obvious for cases

of n ≤ 2. Now assume the claim is true for any integer l ≤ n− 1, i.e.,

aπ(1) ◦ aπ(2) ◦ · · · ◦ aπ(l) = a1 ◦ a2 ◦ · · · ◦ al.

Not loss of generality, let π(k) = n. Then we know that

aπ(1) ◦ aπ(2) ◦ · · · ◦ aπ(n) = (aπ(1) ◦ aπ(2) ◦ · · · ◦ aπ(k−1))
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◦an ◦ (aπ(k+1) ◦ aπ(k+2) ◦ · · · ◦ aπ(n))

= (aπ(1) ◦ aπ(2) ◦ · · · ◦ aπ(k−1))

◦((aπ(k+1) ◦ aπ(k+2) ◦ · · · ◦ aπ(n)) ◦ an)
= ((aπ(1) ◦ aπ(2) ◦ · · · ◦ aπ(k−1))

◦(aπ(k+1) ◦ aπ(k+2) ◦ · · · ◦ aπ(n))) ◦ an
= a1 ◦ a2 ◦ · · · ◦ an

by the inductive assumption. �

Let (A ; ◦) be an algebraic system. If there exists an element 1l◦ (or 1r◦) such

that

1l◦ ◦ a = a or a ◦ 1r◦ = a

for ∀a ∈ A , then 1l◦ (1r◦) is called a left unit (or right unit) in (A ; ◦). If 1l◦ and 1r◦

exist simultaneously, then there must be

1l◦ = 1l◦ ◦ 1r◦ = 1r◦ = 1◦,

i.e., a unit 1◦ in (A ; ◦). For example, the algebraic system (A ;×1) on {1, 2, 3} in

previous examples is a such algebraic system, but (A ;×2) only posses a left unit

1×2 = 1.

For a ∈ A in an algebraic system (A ; ◦) with a unit 1◦, if there exists an

element b ∈ A such that

a ◦ b = 1◦ or b ◦ a = 1◦,

then we call b a right inverse element (or a left inverse element) of a. If a ◦ b =

b ◦ a = 1◦, then b is called an inverse element of a in (A ; ◦), denoted by b = a−1.

For example, 2−1 = 3 and 3−1 = 2 in (A ;×1).

2.1.3 Group. An algebraic system (A ; ◦) is a group if it is associative with a

unit 1◦ and inverse element a−1 for ∀a ∈ A , denoted by A usually. A group is

called finite ( or infinite ) if |A | is finite ( or infinite). For examples, the sets A ,

permutations Π(X) under operations ×1, composition on a finite set X form finite

groups (A ;×1) and Sym(X) respectively.

2.1.4 Isomorphism of Systems. Two algebraic systems (A1; ◦1) and (A2; ◦2)
are called homomorphic if there exists a mapping ς : A1 → A2 such that ς(a ◦1 b) =
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ς(a) ◦2 ς(b) for ∀a, b ∈ A1. If this mapping is a bijection, then these algebraic

systems are called isomorphic. In the case of A1 = A2 = A and ◦1 = ◦2 = ◦, an

isomorphism between (A1; ◦1) and (A2; ◦2) is called an automorphism on (A ; ◦).

Theorem 2.1.3 Let (A ; ◦) be an algebraic system. Then all automorphisms on

(A ; ◦) form a group under the composition operation, denoted by Aut(A ; ◦).

Proof For two automorphisms ς1 and ς2 on (A ; ◦), it is obvious that

ς1ς2(a ◦ b) = ς1ς2(a) ◦ ς1ς2(b)

for ∀a, b ∈ A by definition, i.e., Aut(A ; ◦) is an algebraic system. Define an auto-

morphism 1fix by 1fix(a) = a and an automorphism ς−1 by ς−1(b) = a if ς(a) = b

for ∀a, b ∈ A . Then 1fix is the unit and ς−1 is the inverse element of ς in Aut(A ; ◦).
By definition, Aut(A ; ◦) is a group under the composition operation. �

2.1.5 Homomorphism Theorem. Now let (A ; ◦) be an algebraic system and

B ⊂ A , if (B; ◦) is still an algebraic system, then we call it an algebraic sub-

system of (A ; ◦), denoted by B ≺ A . Similarly, an algebraic sub-system is called

a subgroup if it is group itself.

Let (A ; ◦) be an algebraic system and B ≺ A . For ∀a ∈ A , define a coset

a ◦B of B in A by

a ◦B = {a ◦ b|∀b ∈ B}.

Define a quotient set S = A /B consists of all cosets of B in A and let R be a

minimal set with S = {r ◦B|r ∈ R}, called a representation of S. Then

Theorem 2.1.4 If (B; ◦) is a subgroup of an associative system (A ; ◦), then

(i) for ∀a, b ∈ A , (a ◦B) ∩ (b ◦B) = ∅ or a ◦B = b ◦B, i.e., S is a partition

of A ;

(ii) define an operation • on S by

(a ◦B) • (b ◦B) = (a ◦ b) ◦B,

then (S; •) is an associative algebraic system, called a quotient system of A to B.

Particularly, if there is a representation R whose each element has an inverse in

(A ; ◦) with unit 1A , then (S; •) is a group, called a quotient group of A to B.
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Proof For (i), notice that if

(a ◦B) ∩ (b ◦B) 6= ∅

for a, b ∈ A , then there are elements c1, c2 ∈ B such that a ◦ c1 = b ◦ c2. By

assumption, (B; ◦) is a subgroup of (A ; ◦), we know that there exists an inverse

element c−1
1 ∈ B, i.e., a = b ◦ c2 ◦ c−1

1 . Therefore, we get that

a ◦B = (b ◦ c2 ◦ c−1
1 ) ◦B

= {(b ◦ c2 ◦ c−1
1 ) ◦ c|∀c ∈ B}

= {b ◦ c|∀c ∈ B}
= b ◦B

by the associative law and (B; ◦) is a group gain, i.e., (a ◦ B) ∩ (b ◦ B) = ∅ or

a ◦B = b ◦B.

By definition of • on S and (i), we know that (S; •) is an algebraic system.

For ∀a, b, c ∈ A , by the associative laws in (A ; ◦), we find that

((a ◦B) • (b ◦B)) • (c ◦B) = ((a ◦ b) ◦B) • (c ◦B)

= ((a ◦ b) ◦ c) ◦B = (a ◦ (b ◦ c)) ◦B

= (a ◦B) ◦ ((b ◦ c) ◦B)

= (a ◦B) • ((b ◦B) • (c ◦B)).

Now if there is a representation R whose each element has an inverse in (A ; ◦)
with unit 1A , then it is easy to know that 1A ◦B is the unit and a−1 ◦B the inverse

element of a ◦B in S. Whence, (S; •) is a group. �

Corollary 2.1.1 For a subgroup (B; ◦) of a group (A ; ◦), (S; •) is a group.

Corollary 2.1.2(Lagrange theorem) For a subgroup (B; ◦) of a group (A ; ◦),

|B| | |A |.

Proof Since a ◦ c1 = a ◦ c2 implies that c1 = c2 in this case, we know that

|a ◦B| = |B|
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for ∀a ∈ A . Applying Theorem 2.1.4(i), we find that

|A | =
∑

r∈R

|r ◦B| = |R||B|,

for a representation R, i.e., |B| | |A |. �

Although the operation • in S is introduced by the operation ◦ in A , it may

be • 6= ◦. Now if • = ◦, i.e.,

(a ◦B) ◦ (b ◦B) = (a ◦ b) ◦B, (2− 1)

the subgroup (B; ◦) is called a normal subgroup of (B; ◦), denoted by B E A . In

this case, if there exist inverses of a, b, we know that

B ◦ b ◦B = b ◦B

by product a−1 from the left on both side of (2−1). Now since (B; ◦) is a subgroup,

we get that

b−1 ◦B ◦ b = B,

which is the usually definition for a normal subgroup of a group. Certainly, we can

also get

b ◦B = B ◦ b

by this equality, which can be used to define a normal subgroup of a algebraic system

with or without inverse element for an element in this system.

Now let ̟ : A1 → A2 be a homomorphism from an algebraic system (A1; ◦1)
with unit 1A1 to (A2; ◦2) with unit 1A2. Define the inverse set ̟−1(a2) for an

element a2 ∈ A2 by

̟−1(a2) = {a1 ∈ A1|̟(a1) = a2}.

Particularly, if a2 = 1A2 , the inverse set ̟−1(1A2) is important in algebra and called

the kernel of ̟ and denoted by Ker(̟), which is a normal subgroup of (A1; ◦1) if it

is associative and each element in Ker(̟) has inverse element in (A1; ◦1). In fact,

by definition, for ∀a, b, c ∈ A1, we know that

(1) (a ◦ b) ◦ c = a ◦ (b ◦ c) ∈ Ker(̟) for ̟((a ◦ b) ◦ c) = ̟(a ◦ (b ◦ c)) = 1A2 ;

(2) 1A2 ∈ Ker(̟) for ̟(1A1) = 1A2;
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(3) a−1 ∈ Ker(̟) for ∀a ∈ Ker(̟) if a−1 exists in (A1; ◦1) since ̟(a−1) =

̟−1(a) = 1A2;

(4) a ◦Ker(̟) = Ker(̟) ◦ a for

̟(a ◦Ker(̟)) = ̟(Ker(̟) ◦ a) = ̟−1(̟(a))

by definition. Whence, Ker(̟) is a normal subgroup of (A1; ◦1).

Theorem 2.1.5 Let ̟ : A1 → A2 be an onto homomorphism from associative

systems (A1; ◦1) to (A2; ◦2) with units 1A1, 1A2. Then

A1/Ker(̟) ∼= (A2; ◦2)

if each element of Ker(̟) has an inverse in (A1; ◦1).

Proof We have known that Ker(̟) is a subgroup of (A1; ◦1). Whence A1/Ker(̟)

is a quotient system. Define a mapping ς : A1/Ker(̟)→ A2 by

ς(a ◦1 Ker(̟)) = ̟(a).

We prove this mapping is an isomorphism. Notice that ς is onto by that ̟ is

an onto homomorphism. Now if a ◦1 Ker(̟) 6= b ◦1 Ker(̟), then ̟(a) 6= ̟(b).

Otherwise, we find that a ◦1 Ker(̟) = b ◦1 Ker(̟), a contradiction. Whence,

ς(a ◦1 Ker(̟)) 6= ς(b ◦1 Ker(̟)), i.e., ς is a bijection from A1/Ker(̟) to A2.

Since ̟ is a homomorphism, we get that

ς((a ◦1 Ker(̟)) ◦1 (b ◦1 Ker(̟)))

= ς(a ◦1 Ker(̟)) ◦2 ς(b ◦1 Ker(̟))

= ̟(a) ◦2 ̟(b),

i.e., ς is an isomorphism from A1/Ker(̟) to (A2; ◦2). �

Corollary 2.1.3 Let ̟ : A1 → A2 be an onto homomorphism from groups (A1; ◦1)
to (A2; ◦2). Then

A1/Ker(̟) ∼= (A2; ◦2).



Sec.2.2 Multi-Operation Systems 55

§2.2 MULTI-OPERATION SYSTEMS

2.2.1 Multi-Operation System. A multi-operation system is a pair (H ; Õ)

with a set H and an operation set

Õ = {◦i | 1 ≤ i ≤ l}

on H such that each pair (H ; ◦i) is an algebraic system. We also call (H ; Õ) an

l-operation system on H .

A multi-operation system (H ; Õ) is associative if for ∀a, b, c ∈H , ∀◦1, ◦2 ∈ Õ,

there is

(a ◦1 b) ◦2 c = a ◦1 (b ◦2 c).

Such a system is called an associative multi-operation system.

Let (H , Õ) be a multi-operation system and G ⊂H , Q̃ ⊂ Õ. If (G ; Q̃) is itself

a multi-operation system, we call (G ; Q̃) a multi-operation subsystem of (H , Õ)),

denoted by (G ; Q̃) ≺ (H , Õ). In those of subsystems, the (G ; Õ) is taking over an

important position in the following.

Assume (G ; Õ) ≺ (H , Õ). For ∀a ∈ H and ◦i ∈ Õ, where 1 ≤ i ≤ l, define a

coset a ◦i G by

a ◦i G = {a ◦i b| for ∀b ∈ G },

and let

H =
⋃

a∈R,◦∈P̃⊂Õ

a ◦ G .

Then the set

Q = {a ◦ G |a ∈ R, ◦ ∈ P̃ ⊂ Õ}

is called a quotient set of G in H with a representation pair (R, P̃ ), denoted by
H

G
|(R,P̃ ). Similar to Theorem 2.1.4, we get the following result.

2.2.2 Isomorphism of Multi-Systems. Two multi-operation systems (H1; Õ1)

and (H2; Õ2) are called homomorphic if there is a mapping ω : H1 → H2 with

ω : Õ1 → Õ2 such that for a1, b1 ∈ H1 and ◦1 ∈ Õ1, there exists an operation

◦2 = ω(◦1) ∈ Õ2 enables that

ω(a1 ◦1 b1) = ω(a1) ◦2 ω(b1).
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Similarly, if ω is a bijection, (H1; Õ1) and (H2; Õ2) are called isomorphic, and if

H1 = H2 = H , ω is called an automorphism on H .

Theorem 2.2.1 Let (H , Õ) be an associative multi-operation system with a unit

1◦ for ∀◦ ∈ Õ and G ⊂H .

(i) If G is closed for operations in Õ and for ∀a ∈ G , ◦ ∈ Õ, there exists

an inverse element a−1
◦ in (G ; ◦), then there is a representation pair (R, P̃ ) such

that the quotient set H

G
|(R,P̃ ) is a partition of H , i.e., for a, b ∈ H , ∀◦1, ◦2 ∈ Õ,

(a ◦1 G ) ∩ (b ◦2 G ) = ∅ or a ◦1 G = b ◦2 G .

(ii) For ∀◦ ∈ Õ, define an operation ◦ on H

G
|(R,P̃ ) by

(a ◦1 G ) ◦ (b ◦2 G ) = (a ◦ b) ◦1 G .

Then (H

G
|(R,P̃ ); Õ) is an associative multi-operation system. Particularly, if there is

a representation pair (R, P̃ ) such that for ◦′ ∈ P̃ , any element in R has an inverse

in (H ; ◦′), then (H

G
|(R,P̃ ), ◦′) is a group.

Proof For a, b ∈H , if there are operations ◦1, ◦2 ∈ Õ with (a◦1G )∩(b◦2G ) 6= ∅,
then there must exist g1, g2 ∈ G such that a ◦1 g1 = b ◦2 g2. By assumption, there is

an inverse element c−1
1 in the system (G ; ◦1). We find that

a ◦1 G = (b ◦2 g2 ◦1 c−1
1 ) ◦1 G

= b ◦2 (g2 ◦1 c−1
1 ◦1 G ) = b ◦2 G

by the associative law. This implies that H

G
|(R,P̃ ) is a partition of H .

Notice that H

G
|(R,P̃ ) is closed under operations in P̃ by definition. It is a multi-

operation system. For ∀a, b, c ∈ R and operations ◦1, ◦2, ◦3, ◦1, ◦2 ∈ P̃ we know

that

((a ◦1 G ) ◦1 (b ◦2 G )) ◦2 (c ◦3 G ) = ((a ◦1 b) ◦1 G ) ◦2 (c ◦3 G )

= ((a ◦1 b) ◦2 c) ◦1 G

and

(a ◦1 G ) ◦1 ((b ◦2 G ) ◦2 (c ◦3 G )) = (a ◦1 G ) ◦1 ((b ◦2 c) ◦2 G )

= (a ◦1 (b ◦2 c)) ◦1 G .
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by definition. Since (H , Õ) is associative, we have (a◦1b)◦2c = a◦1 (b◦2c). Whence,

we get that

((a ◦1 G ) ◦1 (b ◦2 G )) ◦2 (c ◦3 G ) = (a ◦1 G ) ◦1 ((b ◦2 G ) ◦2 (c ◦3 G )),

i.e., (H

G
|(R,P̃ ); Õ) is an associative multi-operation system.

If any element in R has an inverse in (H ; ◦′), then we know that G is a unit

and a−1 ◦′ G is the inverse element of a ◦′ G in the system (H

G
|(R,P̃ ), ◦′), namely, it

is a group again. �

Let I(Õ) be the set of all units 1◦, ◦ ∈ Õ in a multi-operation system (H ; Õ).

Define a multi-kernel K̃erω of a homomorphism ω : (H1; Õ1)→ (H2; Õ2) by

K̃erω = { a ∈H1 | ω(a) = 1◦ ∈ I(Õ2) }.

Then we know the homomorphism theorem for multi-operation systems in the

following.

Theorem 2.2.2 Let ω be an onto homomorphism from associative systems (H1; Õ1)

to (H2; Õ2) with (I(Õ2); Õ2) an algebraic system with unit 1◦− for ∀◦− ∈ Õ2 and

inverse x−1 for ∀x ∈ (I(Õ2) in ((I(Õ2); ◦−). Then there are representation pairs

(R1, P̃1) and (R2, P̃2), where P̃1 ⊂ Õ, P̃2 ⊂ Õ2 such that

(H1; Õ1)

(K̃erω; Õ1)
|(R1,P̃1)

∼= (H2; Õ2)

(I(Õ2); Õ2)
|(R2,P̃2)

if each element of K̃erω has an inverse in (H1; ◦) for ◦ ∈ Õ1.

Proof Notice that K̃erω is an associative subsystem of (H1; Õ1). In fact, for

∀k1, k2 ∈ K̃erω and ∀◦ ∈ Õ1, there is an operation ◦− ∈ Õ2 such that

ω(k1 ◦ k2) = ω(k1) ◦− ω(k2) ∈ I(Õ2)

since I(Õ2) is an algebraic system. Whence, K̃erω is an associative subsystem of

(H1; Õ1). By assumption, for any operation ◦ ∈ Õ1 each element a ∈ K̃erω has an

inverse a−1 in (H1; ◦). Let ω : (H1; ◦)→ (H2; ◦−). We know that

ω(a ◦ a−1) = ω(a) ◦− ω(a−1) = 1◦−,

i.e., ω(a−1) = ω(a)−1 in (H2; ◦−). Because I(Õ2) is an algebraic system with an

inverse x−1 for ∀x ∈ I(Õ2) in ((I(Õ2); ◦−), we find that ω(a−1) ∈ I(Õ2), namely,

a−1 ∈ K̃erω.
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Define a mapping σ :
(H1; Õ1)

(K̃erω; Õ1)
|(R1,P̃1)

→ (H2; Õ2)

(I(Õ2); Õ2)
|(R2,P̃2)

by

σ(a ◦Kerω) = σ(a) ◦− I(Õ2)

for ∀a ∈ R1, ◦ ∈ P̃1, where ω : (H1; ◦)→ (H2; ◦−). We prove σ is an isomorphism.

Notice that σ is onto by that ω is an onto homomorphism. Now if a ◦1 K̃erω 6= b ◦2
Ker(̟) for a, b ∈ R1 and ◦1, ◦2 ∈ P̃1, then ω(a)◦−1 I(Õ2) 6= ω(b)◦−2 I(Õ2). Otherwise,

we find that a ◦1 K̃erω = b ◦2 K̃erω, a contradiction. Whence, σ(a ◦1 K̃erω) 6=

σ(b ◦2 K̃erω), i.e., σ is a bijection from
(H1; Õ1)

(K̃erω; Õ1)
|(R1,P̃1)

to
(H2; Õ2)

(I(Õ2); Õ2)
|(R2,P̃2)

.

Since ω is a homomorphism, we get that

σ((a ◦1 K̃erω) ◦ (b ◦2 K̃erω)) = σ(a ◦1 K̃erω) ◦− σ(b ◦2 K̃erω)

= (ω(a) ◦−1 I(Õ2)) ◦− (ω(b) ◦−2 I(Õ2))

= σ((a ◦1 K̃erω) ◦− σ(b ◦2 K̃erω),

i.e., σ is an isomorphism from
(H1; Õ1)

(K̃erω; Õ1)
|(R1,P̃1)

to
(H2; Õ2)

(I(Õ2); Õ2)
|(R2,P̃2)

. �

Corollary 2.2.1 Let (H1; Õ1), (H2; Õ2) be multi-operation systems with groups

(H2; ◦1), (H2; ◦2) for ∀◦1 ∈ Õ1, ∀◦2 ∈ Õ2 and ω : (H1; Õ1) → (H2; Õ2) a ho-

momorphism. Then there are representation pairs (R1, P̃1) and (R2, P̃2), where

P̃1 ⊂ Õ1, P̃2 ⊂ Õ2 such that

(H1; Õ1)

(K̃erω; Õ1)
|(R1,P̃1)

∼= (H2; Õ2)

(I(Õ2); Õ2)
|(R2,P̃2)

.

Particularly, if (H2; Õ2) is a group, we get an interesting result following.

Corollary 2.2.2 Let (H ; Õ) be a multi-operation system and ω : (H ; Õ)→ (A ; ◦)
a onto homomorphism from (H ; Õ) to a group (A ; ◦). Then there are representa-

tion pairs (R, P̃ ), P̃ ⊂ Õ such that

(H ; Õ)

(K̃erω; Õ)
|(R,P̃ )

∼= (A ; ◦).

2.2.3 Distribute Law. A multi-operation system (H ; Õ) is distributive if Õ =

O1 ∪O1 with O1 ∩O2 = ∅ such that
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a ◦1 (b ◦2 c) = (a ◦1 b) ◦2 (a ◦1 c) and (b ◦2 c) ◦1 a = (b ◦1 a) ◦2 (c ◦1 a)

for ∀a, b, c ∈ H and ∀◦1 ∈ O1, ◦2 ∈ O2. Denoted such a system by (H ;O1 →֒
O2). In this case, the associative means that systems (H ;O1) and (H ;O2) are

associative, respectively.

Similar to Theorems 2.1.1 and 2.1.2, we can also obtain the next result for

distributive laws in a multi-operation system.

Theorem 2.2.3 Let (H ;O1 →֒ O2) be an associative system for operations in O2,

a, b1, b2, · · · , bn ∈H and ◦ ∈ O1, ◦i ∈ O2 for 1 ≤ i ≤ n− 1. Then

a ◦ (b1 ◦1 b2 ◦2 · · · ◦n−1 bn) = (a ◦ b1) ◦1 (a ◦ b2) ◦2 · · · ◦n−1 (a ◦ bn),

(b1 ◦1 b2 ◦2 · · · ◦n−1 bn) ◦ a = (b1 ◦ a) ◦1 (b2 ◦ a) ◦2 · · · ◦n−1 (bn ◦ a).

Proof For the case of n = 2, these equalities are hold by definition. Now assume

that they are hold for any integer n ≤ k. Then we find that

a ◦ (b1 ◦1 b2 ◦2 · · · ◦k bk+1) = (a ◦ b1) ◦1 (a ◦ b2) ◦2 · · · ◦k−1 (a ◦ (bk ◦k+1 bk+1))

= (a ◦ b1) ◦1 (a ◦ b2) ◦2 · · · ◦k−1 (a ◦ bk) ◦k+1 (a ◦ bk+1)

by the inductive assumption. Therefore,

a ◦ (b1 ◦1 b2 ◦2 · · · ◦n−1 bn) = (a ◦ b1) ◦1 (a ◦ b2) ◦2 · · · ◦n−1 (a ◦ bn)

is hold for any integer n ≥ 2. Similarly, we can also prove that

(b1 ◦1 b2 ◦2 · · · ◦n−1 bn) ◦ a = (b1 ◦ a) ◦1 (b2 ◦ a) ◦2 · · · ◦n−1 (bn ◦ a). �

2.2.4 Multi-Group and Multi-Ring. An associative multi-operation system

(H ;O1 →֒ O2) is said to be a multi-group if (H ; ◦) is a group for ∀◦ ∈ O1 ∪ O2,

a multi-ring (or multi-field) if O1 = {·i|1 ≤ i ≤ l}, O2 = {+i|1 ≤ i ≤ l} with rings

(or multi-field) (H ; +i, ·i) for 1 ≤ i ≤ l. We call them l-group, l-ring or l-field for

abbreviation. It is obvious that a multi-group is a group if |O1 ∪O2| = 1 and a ring

or field if |O1| = |O2| = 1 in classical algebra. Likewise, We also denote these units

of a l-ring (H ;O1 →֒ O2) by 1·i and 0+i
in the ring (H ; +i, ·i). Notice that for

∀a ∈H , by these distribute laws we find that

a ·i b = a ·i (b+i 0+i
) = a ·i b+i a ·i 0+i

,

b ·i a = (b+i 0+i
) ·i a = b ·i a +i 0+i

·i a
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for ∀b ∈H . Whence,

a ·i 0+i
= 0+i

and 0+i
·i a = 0+i

.

Similarly, a multi-operation subsystem of (H ;O1 →֒ O2) is said a multi-

subgroup, multi-subring or multi-subfield if it is a multi-group, multi-ring or multi-field

itself.

Now let (H ;O1 →֒ O2) be an associative multi-operation system. We find

these criterions for multi-subgroups and multi-subrings of (H ;O1 →֒ O2) in the

following.

Theorem 2.2.4 Let (H ;O1 →֒ O2 be a multi-group, H ⊂H . Then (H;O1 →֒ O2)

is a

(i) multi-subgroup if and only if for ∀a, b ∈ H, ◦ ∈ O1 ∪ O2, a ◦ b−1
◦ ∈ H;

(ii) multi-subring if and only if for ∀a, b ∈ H, ·i ∈ O1 and ∀+i ∈ O2), a ·i
b, a +i b

−1
+i
∈ H, particularly, a multi-field if a ·i b−1

·i
, a +i b

−1
+i
∈ H, where, O1 =

{·i|1 ≤ i ≤ l}, O2 = {+i|1 ≤ i ≤ l}.

Proof The necessity of conditions (i) and (ii) is obvious. Now we consider their

sufficiency.

For (i), we only need to prove that (H; ◦) is a group for ∀◦ ∈ O1 ∪ O2. In

fact, it is associative by the definition of multi-groups. For ∀a ∈ H, we get that

1◦ = a ◦ a−1
◦ ∈ H and 1◦ ◦ a−1

◦ ∈ H. Whence, (H; ◦) is a group.

Similarly for (ii), the conditions a·ib, a+ib
−1
+i
∈ H imply that (H; +i) is a group

and closed in operation ·i ∈ O1. These associative or distributive laws are hold by

(H ; +i, ·i) being a ring for any integer i, 1 ≤ i ≤ l. Particularly, a ·i b−1
·i
∈ H imply

that (H; ·i) is also a group. Whence, (H ; +i, ·i) is a field for any integer i, 1 ≤ i ≤ l

in this case. �

A multi-ring (H ;O1 →֒ O2) with O1 = {·i|1 ≤ i ≤ l}, O2 = {+i|1 ≤ i ≤ l}
is integral if for ∀a, b ∈ H and an integer i, 1 ≤ i ≤ l, a ◦i b = b ◦i a, 1◦i

6= 0+i

and a ◦i b = 0+i
implies that a = 0+i

or b = 0+i
. If l = 1, an integral l-ring is

the integral ring by definition. For the case of multi-rings with finite elements, an

integral multi-ring is nothing but a multi-field. See the next result.

Theorem 2.2.5 A finitely integral multi-ring is a multi-field.
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Proof Let (H ;O1 →֒ O2) be a finitely integral multi-ring with H = {a1, a2 · · · , an},
where O1 = {·i|1 ≤ i ≤ l}, O2 = {+i|1 ≤ i ≤ l}. For any integer i, 1 ≤ i ≤ l, choose

an element a ∈H and a 6= 0+i
. Then

a ◦i a1, a ◦i a2, · · · , a ◦i an

are n elements. If a◦i as = a◦i at, i.e., a◦i (as +i a
−1
t ) = 0+i

. By definition, we know

that as +i a
−1
t = 0+i, namely, as = at. That is, these a ◦i a1, a ◦i a2, · · · , a ◦i an are

different two by two. Whence,

H = { a ◦i a1, a ◦i a2, · · · , a ◦i an }.

Now assume a ◦i as = 1·i, then a−1 = as, i.e., each element of H has an inverse

in (H ; ·i), which implies it is a commutative group. Therefore, (H ; +i, ·i) is a field

for any integer i, 1 ≤ i ≤ l. �

Corollary 2.2.3 Any finitely integral domain is a field.

2.2.5 Multi-Ideal. Let (H ;O1
1 →֒ O1

2), (H ;O2
1 →֒ O2

2) be multi-rings with

Ok1 = {·ki |1 ≤ i ≤ lk}, Ok2 = {+k
i |1 ≤ i ≤ lk} for k = 1, 2 and ̺ : (H ;O1

1 →֒ O1
2) →

(H ;O2
1 →֒ O2

2) a homomorphism. Define a zero kernel K̃er̺ of ̺ by

K̃er0̺ = {a ∈H |̺(a) = 0+2
i
, 1 ≤ i ≤ l2}.

Then, for ∀h ∈H and a ∈ K̃er0̺, ̺(a·1i h) = 0+i
̺(·i)h = 0+i

, i.e., a·ih ∈ K̃er0̺.

Similarly, h ·i a ∈ K̃er0̺. These properties imply the conception of multi-ideals of a

multi-ring introduced following.

Choose a subset I ⊂H . For ∀h ∈H , a ∈ I, if there are

h ◦i a ∈ I and a ◦i h ∈ H,

then I is said a multi-ideal. Previous discussion shows that the zero kernel K̃er0̺ of

a homomorphism ̺ on a multi-ring is a multi-ideal. Now let I be a multi-ideal of

(H ;O1 →֒ O2). According to Corollary 2.2.1, we know that there is a representation

pair (R2, P2) such that

Ĩ = {a+i I | a ∈ R2, +i ∈ P2}

is a commutative multi-group. By the distributive laws, we find that
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(a+i I) ·j (b+k I) = a ·j b+k a ·j I +i Ib+k I ·j I
= a ·j b+k I.

Similar to the proof of Theorem 2.2.1, we also know these associative and

distributive laws follow in (Ĩ;O1 →֒ O2). Whence, (Ĩ;O1 →֒ O2) is also a multi-

ring, called the quotient multi-ring of (H ;O1 →֒ O2), denoted by (H : I).
Define a mapping ̺ : (H ;O1 →֒ O2)→ (H : I) by ̺(a) = a +i I for ∀a ∈H

if a ∈ a+i I. Then it can be checked immediately that it is a homomorphism with

K̃er0̺ = I.

Therefore, we conclude that any multi-ideal is a zero kernel of a homomorphism

on a multi-ring. The following result is a special case of Theorem 2.2.2.

Theorem 2.2.6 Let (H1;O1
1 →֒ O1

2) and (H2;O2
1 →֒ O2

2) be multi-rings and

ω : (H1;O1
2) → (H2;O2

2) be an onto homomorphism with (I(O2
2);O2

2) be a multi-

operation system, where I(O2
2) denotes all units in (H2;O2

2). Then there exist rep-

resentation pairs (R1, P̃1), (R2, P̃2) such that

(H : I)|(R1,P̃1)
∼= (H2;O2

1 →֒ O2
2)

(I(O2
2);O2

2)
|(R2,P̃2)

.

Particularly, if (H2;O2
1 →֒ O2

2) is a ring, we get an interesting result following.

Corollary 2.2.4 Let (H ;O1 →֒ O2) be a multi-ring, (R; +, ·) a ring and ω :

(H ;O2) → (R; +) be an onto homomorphism. Then there exists a representation

pair (R, P̃ ) such that

(H : I)|(R,P̃ )
∼= (R; +, ·).

§2.3 MULTI-MODULES

2.3.1 Multi-Module. There multi-modules are generalization of linear spaces

in linear algebra by applying results in last section. Let O = { +i | 1 ≤ i ≤ m},
O1 = {·i|1 ≤ i ≤ m} and O2 = {+̇i|1 ≤ i ≤ m} be operation sets, (M ;O)
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a commutative m-group with units 0+i
and (R;O1 →֒ O2) a multi-ring with a

unit 1· for ∀· ∈ O1. For any integer i, 1 ≤ i ≤ m, define a binary operation

×i : R ×M →M by a×i x for a ∈ R, x ∈M such that for ∀a, b ∈ R, ∀x, y ∈M ,

conditions following hold:

(i) a×i (x+i y) = a×i x+i a×i y;
(ii) (a+̇ib)×i x = a×i x+i b×i x;
(iii) (a ·i b)×i x = a×i (b×i x);
(iv) 1·i ×i x = x.

Then (M ;O) is said an algebraic multi-module over (R;O1 →֒ O2) abbreviated

to an m-module and denoted by Mod(M (O) : R(O1 →֒ O2)). In the case of

m = 1, It is obvious that Mod(M (O) : R(O1 →֒ O2)) is a module, particularly,

if (R;O1 →֒ O2) is a field, then Mod(M (O) : R(O1 →֒ O2)) is a linear space in

classical algebra.

For any integer k, ai ∈ R and xi ∈M , where 1 ≤ i, k ≤ s, equalities following

are hold by induction on the definition of m-modules.

a×k (x1 +k x2 +k · · ·+k xs) = a×k x1 +k a×k x2 +k · · ·+k as ×k x,

(a1+̇ka2+̇k · · · +̇kas)×k x = a1 ×k x+k a2 ×k x+k · · ·+k as ×k x,

(a1 ·k a2 ·k · · · ·k as)×k x = a1 ×k (a2 ×k · · · × (as ×k x) · · ·)

and

1·i1 ×i1 (1·i2 ×i2 · · · ×is−1 (1·is ×is x) · · ·) = x

for integers i1, i2, · · · , is ∈ {1, 2, · · · , m}.
Notice that for ∀a, x ∈M , 1 ≤ i ≤ m,

a×i x = a×i (x+i 0+i
) = a×i x+i a×i 0+i

,

we find that a×i 0+i
= 0+i

. Similarly, 0+̇i
×i a = 0+i

. Applying this fact, we know

that

a×i x+i a
−
+̇i
×i x = (a+̇ia

−
+̇i

)×i x = 0+̇i
×i x = 0+i

and

a×i x+i a×i x−+i
= a×i (x+i x

−
+i

) = a×i 0+i
= 0+i

.
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We know that

(a×i x)−+i
= a−

+̇i
×i x = a×i x−+i

.

Notice that a ×i x = 0+i
does not always mean a = 0+̇i

or x = 0+i
in an m-

module Mod(M (O) : R(O1 →֒ O2)) unless a−
+̇i

is existing in (R; +̇i, ·i) if x 6= 0+i
.

Now choose Mod(M1(O1) : R1(O1
1 →֒ O1

2)) an m-module with operation sets

O1 = { +′
i | 1 ≤ i ≤ m}, O1

1 = {·1i |1 ≤ i ≤ m}, O1
2 = {+̇1

i |1 ≤ i ≤ m} and

Mod(M2(O2) : R2(O2
1 →֒ O2

2)) an n-module with operation sets O2 = { +′′
i | 1 ≤

i ≤ n}, O2
1 = {·2i |1 ≤ i ≤ n}, O2

2 = {+̇2
i |1 ≤ i ≤ n}. They are said homomorphic if

there is a mapping ι : M1 →M2 such that for any integer i, 1 ≤ i ≤ m,

(i) ι(x+′
i y) = ι(x) +′′ ι(y) for ∀x, y ∈M1, where ι(+′

i) = +′′ ∈ O2;

(ii) ι(a×i x) = a×i ι(x) for ∀x ∈M1.

If ι is a bijection, these modules Mod(M1(O1) : R1(O1
1 →֒ O1

2)) and Mod(M2(O2) :

R2(O2
1 →֒ O2

2)) are said to be isomorphic, denoted by

Mod(M1(O1) : R1(O1
1 →֒ O1

2))
∼= Mod(M2(O2) : R2(O2

1 →֒ O2
2)).

Let Mod(M (O) : R(O1 →֒ O2)) be an m-module. For a multi-subgroup

(N ;O) of (M ;O), if for any integer i, 1 ≤ i ≤ m, a ×i x ∈ N for ∀a ∈ R and

x ∈ N , then by definition it is itself an m-module, called a multi-submodule of

Mod(M (O) : R(O1 →֒ O2)).

Now if Mod(N (O) : R(O1 →֒ O2)) is a multi-submodule of Mod(M (O) :

R(O1 →֒ O2)), by Theorem 2.3.2, we can get a quotient multi-group M

N
|(R,P̃ ) with

a representation pair (R, P̃ ) under operations

(a+i N ) + (b+j N ) = (a+ b) +i N

for ∀a, b ∈ R,+ ∈ O. For convenience, we denote elements x +i N in M

N
|(R,P̃ ) by

x(i). For an integer i, 1 ≤ i ≤ m and ∀a ∈ R, define

a×i x(i) = (a×i x)(i).

Then it can be shown immediately that

(i) a×i (x(i) +i y(i)) = a×i x(i) +i a×i y(i);

(ii) (a+̇ib)×i x(i) = a×i x(i) +i b×i x(i);
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(iii) (a ·i b)×i x(i) = a×i (b×i x(i));

(iv) 1·i ×i x(i) = x(i),

i.e.,(M

N
|(R,P̃ ) : R) is also an m-module, called a quotient module of Mod(M (O) :

R(O1 →֒ O2)) to Mod(N (O) : R(O1 →֒ O2)). Denoted by Mod(M /N ).

The result on homomorphisms of m-modules following is an immediately con-

sequence of Theorem 2.2.6.

Theorem 2.3.1 Let Mod(M1(O1) : R1(O1
1 →֒ O1

2)), Mod(M2(O2) : R2(O2
1 →֒

O2
2)) be multi-modules with O1 = { +′

i | 1 ≤ i ≤ m}, O2 = { +′′
i | 1 ≤ i ≤ n},

O1
1 = {·1i |1 ≤ i ≤ m}, O1

2 = {+̇1
i |1 ≤ i ≤ m}, O2

1 = {·2i |1 ≤ i ≤ n}, O2
2 = {+̇2

i |1 ≤
i ≤ n} and ι : Mod(M1(O1) : R1(O1

1 →֒ O1
2)) → Mod(M2(O2) : R2(O2

1 →֒ O2
2))

be a onto homomorphism with (I(O2);O2) a multi-group, where I(O2
2) denotes all

units in the commutative multi-group (M2;O2). Then there exist representation

pairs (R1, P̃1), (R2, P̃2) such that

Mod(M /N )|(R1,P̃1)
∼= Mod(M2(O2)/I(O2))|(R2,P̃2)

,

where N = Kerι is the kernel of ι. Particularly, if (I(O2);O2) is trivial, i.e.,

|I(O2)| = 1, then

Mod(M /N )|(R1,P̃1)
∼= Mod(M2(O2) : R2(O2

1 →֒ O2
2))|(R2,P̃2)

.

Proof Notice that (I(O2);O2) is a commutative multi-group. We can certainly

construct a quotient module Mod(M2(O2)/I(O2)). Applying Theorem 2.3.6, we

find that

Mod(M /N )|(R1,P̃1)
∼= Mod(M2(O2)/I(O2))|(R2,P̃2)

.

Notice that Mod(M2(O2)/I(O2)) = Mod(M2(O2) : R2(O2
1 →֒ O2

2)) in the

case of |I(O2)| = 1. We get the isomorphism as desired. �

Corollary 2.3.1 Let Mod(M (O) : R(O1 →֒ O2)) be an m-module with O =

{ +i | 1 ≤ i ≤ m}, O1 = {·i|1 ≤ i ≤ m}, O2 = {+̇i|1 ≤ i ≤ m}, M a module on a

ring (R; +, ·) and ι : Mod(M1(O1) : R1(O1
1 →֒ O1

2)) → M a onto homomorphism

with Kerι = N . Then there exists a representation pair (R′, P̃ ) such that

Mod(M /N )|(R′,P̃ )
∼= M,
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particularly, if Mod(M (O) : R(O1 →֒ O2)) is a module M , then

M /N ∼= M.

2.3.2 Finite Dimensional Multi-Module. For constructing multi-submodules

of an m-module Mod(M (O) : R(O1 →֒ O2)) with O = { +i | 1 ≤ i ≤ m},
O1 = {·i|1 ≤ i ≤ m}, O2 = {+̇i|1 ≤ i ≤ m}, a general way is described in the

following.

Let Ŝ ⊂M with |Ŝ| = n. Define its linearly spanning set
〈
Ŝ|R

〉
in Mod(M (O) :

R(O1 →֒ O2)) to be

〈
Ŝ|R

〉
= {

m⊕

i=1

n⊕

j=1

αij ×i xij | αij ∈ R, xij ∈ Ŝ },

where

m⊕

i=1

n⊕

j=1

aij ×ij xi = a11 ×1 x11 +1 · · ·+1 a1n ×1 x1n

+(1)a21 ×2 x21 +2 · · ·+2 a2n ×2 x2n

+(2) · · · · · · · · · · · · · · · · · · · · · · · · · · ·+(3)

am1 ×m xm1 +m · · ·+m amn ×m xmn

with +(1),+(2),+(3) ∈ O and particularly, if +1 = +2 = · · · = +m, it is denoted

by
m∑
i=1

xi as usual. It can be checked easily that
〈
Ŝ|R

〉
is a multi-submodule of

Mod(M (O) : R(O1 →֒ O2)), call it generated by Ŝ in Mod(M (O) : R(O1 →֒
O2)). If Ŝ is finite, we also say that

〈
Ŝ|R

〉
is finitely generated. Particularly, if

Ŝ = {x}, then
〈
Ŝ|R

〉
is called a cyclic multi-submodule of Mod(M (O) : R(O1 →֒

O2)), denoted by Rx. Notice that

Rx = {
m⊕

i=1

ai ×i x | ai ∈ R }

by definition. For any finite set Ŝ, if for any integer s, 1 ≤ s ≤ m,

m⊕

i=1

si⊕

j=1

αij ×i xij = 0+s
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implies that αij = 0+̇s
for 1 ≤ i ≤ m, 1 ≤ j ≤ n, then we say that {xij|1 ≤ i ≤

m, 1 ≤ j ≤ n} is independent and Ŝ a basis of the multi-module Mod(M (O) :

R(O1 →֒ O2)), denoted by
〈
Ŝ|R

〉
= Mod(M (O) : R(O1 →֒ O2)).

For a multi-ring (R;O1 →֒ O2) with a unit 1· for ∀· ∈ O1, where O1 = {·i|1 ≤
i ≤ m} and O2 = {+̇i|1 ≤ i ≤ m}, let

R
(n) = {(x1, x2, · · · , xn)| xi ∈ R, 1 ≤ i ≤ n}.

Define operations

(x1, x2, · · · , xn) +i (y1, y2, · · · , yn) = (x1+̇iy1, x2+̇iy2, · · · , xn+̇iyn)

and

a×i (x1, x2, · · · , xn) = (a ·i x1, a ·i x2, · · · , a ·i xn)

for ∀a ∈ R and integers 1 ≤ i ≤ m. Then it can be immediately known that R(n)

is a multi-module Mod(R(n) : R(O1 →֒ O2)). We construct a basis of this special

multi-module in the following.

For any integer k, 1 ≤ k ≤ n, let

e1 = (1·k, 0+̇k
, · · · , 0+̇k

);

e2 = (0+̇k
, 1·k, · · · , 0+̇k

);

· · · · · · · · · · · · · · · · · · ;

en = (0+̇k
, · · · , 0+̇k

, 1·k).

Notice that

(x1, x2, · · · , xn) = x1 ×k e1 +k x2 ×k e2 +k · · ·+k xn ×k en.

We find that each element in R(n) is generated by e1, e2, · · · , en. Now since

(x1, x2, · · · , xn) = (0+̇k
, 0+̇k

, · · · , 0+̇k
)

implies that xi = 0+̇k
for any integer i, 1 ≤ i ≤ n. Whence, {e1, e2, · · · , en} is a

basis of Mod(R(n) : R(O1 →֒ O2)).

Theorem 2.3.2 Let Mod(M (O) : R(O1 →֒ O2)) =
〈
Ŝ|R

〉
be a finitely generated

multi-module with Ŝ = {u1, u2, · · · , un}. Then

Mod(M (O) : R(O1 →֒ O2)) ∼= Mod(R(n) : R(O1 →֒ O2)).
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Proof Define a mapping ϑ : M (O)→ R(n) by ϑ(ui) = ei, ϑ(a×j ui) = a×j ej
and ϑ(ui +k uj) = ei +k ej for any integers i, j, k, where 1 ≤ i, j, k ≤ n. Then we

know that

ϑ(
m⊕

i=1

n⊕

j=1

aij ×i ui) =
m⊕

i=1

n⊕

j=1

aij ×i ei.

Whence, ϑ is a homomorphism. Notice that it is also 1 − 1 and onto. We know

that ϑ is an isomorphism between Mod(M (O) : R(O1 →֒ O2)) and Mod(R(n) :

R(O1 →֒ O2)). �

§2.4 ACTIONS OF MULTI-GROUPS

2.4.1 Construction of Permutation Multi-Group. Let X = {x1, x2, · · ·}
be a finite set. As defined in Subsection 1.3.1, a composition operation on two

permutations

τ =

(
x1 x2 · · · xn

y1 y2 · · · yn,

)
,

and

ς =

(
y1 y2 · · · yn

z1 z2 · · · zn,

)
,

are defined to be

σ =

(
x1 x2 · · · xn

y1 y2 · · · yn,

)(
y1 y2 · · · yn

z1 z2 · · · zn,

)
=

(
x1 x2 · · · xn

z1 z2 · · · zn,

)
.

As we have pointed out in Section 2.1.3, all permutations form a group Π(X)

under the composition operation.

For ∀p ∈ Π(X), define an operation ◦p : Π(X)×Π(X)→ Π(X) by

σ ◦p ς = σpς, for ∀σ, ς ∈ Π(X).

Then we have

Theorem 2.4.1 (Π(X); ◦p) is a group.
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Proof We check these conditions for a group hold in (Π(X); ◦p). In fact, for

∀τ, σ, ς ∈ Π(X),

(τ ◦p σ) ◦p ς = (τpσ) ◦p ς = τpσpς

= τp(σ ◦p ς) = τ ◦p (σ ◦p ς).

The unit in (Π(X); ◦p) is 1◦p = p−1. In fact, for ∀θ ∈ Π(X), we have that

p−1 ◦p θ = θ ◦p p−1 = θ.

For an element σ ∈ Π(X), σ−1
◦p

= p−1σ−1p−1 = (pσp)−1. In fact,

σ ◦p (pσp)−1 = σpp−1σ−1p−1 = p−1 = 1◦p ,

(pσp)−1 ◦p σ = p−1σ−1p−1pσ = p−1 = 1◦p .

By definition, we know that (Π(X); ◦p) is a group. �

Notice that if p = 1X , the operation ◦p is just the composition operation and

(Π(X); ◦p) is the symmetric group Sym(X) on X. Furthermore, Theorem 2.5.1

opens a general way for constructing multi-groups on permutations, which enables

us to find the next result.

Theorem 2.4.2 Let Γ be a permutation group on X, i.e., Γ ≺ Sim(X). For given

m permutations p1, p2, · · · , pm ∈ Γ, (Γ;OP ) with OP = {◦p, p ∈ P}, P = {pi, 1 ≤
i ≤ m} is a permutation multi-group, denoted by G P

X .

Proof First, we check that (Γ; {◦pi
, 1 ≤ i ≤ m}) is an associative system.

Actually, for ∀σ, ς, τ ∈ G and p, q ∈ {p1, p2, · · · , pm}, we know that

(τ ◦p σ) ◦q ς = (τpσ) ◦q ς = τpσqς

= τp(σ ◦q ς) = τ ◦p (σ ◦q ς).

Similar to the proof of Theorem 2.4.1, we know that (Γ; ◦pi
) is a group for any

integer i, 1 ≤ i ≤ m. In fact, 1◦pi
= p−1

i and σ−1
◦pi

= (piσpi)
−1 in (G ; ◦pi

). �

The construction for permutation multi-groups shown in Theorems 2.4.1−2.4.2

can be also transferred to permutations on vector as follows, which is useful in some

circumstances.

Choose m permutations p1, p2, · · · , pm on X. An m-permutation on x ∈ X is

defined by

p(m) : x→ (p1(x), p2(x), · · · , pm(x)),
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i.e., an m-vector on x.

Denoted by Π(s)(X) all such s-vectors p(m). Let ◦ be an operation on X. Define

a bullet operation of two m-permutations

P (m) = (p1, p2, · · · , pm),

Q(sm) = (q1, q2, · · · , qm)

on ◦ by

P (s) •Q(s) = (p1 ◦ q1, p2 ◦ q2, · · · , pm ◦ qm).

Whence, if there are l-operations ◦i, 1 ≤ i ≤ l on X, we obtain an s-permutation sys-

tem Π(s)(X) under these l bullet operations •i, 1 ≤ i ≤ l, denoted by (Π(s)(X);⊙l1),
where ⊙l1 = {•i|1 ≤ i ≤ l}.

Theorem 2.4.3 Any s-operation system (H , Õ) on H with units 1◦i
for each op-

eration ◦i, 1 ≤ i ≤ s in Õ is isomorphic to an s-permutation system (Π(s)(H );⊙s1).

Proof For a ∈H , define an s-permutation σa ∈ Π(s)(H ) by

σa(x) = (a ◦1 x, a ◦2 x, · · · , a ◦s x)

for ∀x ∈H .

Now let π : H → Π(s)(H ) be determined by π(a) = σ
(s)
a for ∀a ∈H . Since

σa(1◦i
) = (a ◦1 1◦i

, · · · , a ◦i−1 1◦i
, a, a ◦i+1 1◦i

, · · · , a ◦s 1◦i
),

we know that for a, b ∈H , σa 6= σb if a 6= b. Hence, π is a 1− 1 and onto mapping.

For ∀i, 1 ≤ i ≤ s and ∀x ∈H , we find that

π(a ◦i b)(x) = σa◦ib(x)

= (a ◦i b ◦1 x, a ◦i b ◦2 x, · · · , a ◦i b ◦s x)
= (a ◦1 x, a ◦2 x, · · · , a ◦s x) •i (b ◦1 x, b ◦2 x, · · · , b ◦s x)
= σa(x) •i σb(x) = π(a) •i π(b)(x).

Therefore, π(a◦i b) = π(a)•i π(b), which implies that π is an isomorphism from

(H , Õ) to (Π(s)(H );⊙s1). �

According to Theorem 2.4.3, these algebraic multi-systems are the same as

permutation multi-systems, particularly for multi-groups.
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Corollary 2.4.1 Any s-group (H , Õ) with Õ = {◦i|1 ≤ i ≤ s} is isomorphic to an

s-permutation multi-group (Π(s)(H );⊙s1).

Proof It can be shown easily that (Π(s)(H );⊙s1) is a multi-group if (H , Õ) is

a multi-group. �

For the special case of s = 1 in Corollary 2.4.1, we get the well-known Cayley

result on groups.

Corollary 2.4.2(Cayley) A group G is isomorphic to a permutation group.

As shown in Theorem 2.4.2, many operations can be defined on a permutation

group G, which enables it to be a permutation multi-group, and generally, these

operations ◦i, 1 ≤ i ≤ s on permutations in Theorem 2.4.3 need not to be the

composition of permutations. If we choose all ◦i, 1 ≤ i ≤ s to be just the composition

of permutation, then all bullet operations in ⊙s1 is the same, denoted by ⊙. We find

an interesting result following which also implies the Cayley’s result on groups, i.e.,

Corollary 2.4.2.

Theorem 2.4.4 (Π(s)(H );⊙) is a group of order
(n!)!

(n!− s)!.

Proof By definition, we know that

P (s)(x)⊙Q(s)(x) = (P1Q1(x), P2Q2(x), · · · , PsQs(x))

for ∀P (s), Q(s) ∈ Π(s)(H ) and ∀x ∈ H . Whence, (1, 1, · · · , 1) (l entries 1) is the

unit and (P−(s)) = (P−1
1 , P−1

2 , · · · , P−1
s ) the inverse of P (s) = (P1, P2, · · · , Ps) in

(Π(s)(H );⊙). Therefore, (Π(s)(H );⊙) is a group.

Calculation shows that the order of Π(s)(H ) is

(
n!

s

)
s! =

(n!)!

(n!− s)! ,

which completes the proof. �

2.4.2 Action of Multi-group. Let (Ã ; Õ) be a multi-group, where Ã =
m⋃
i=1

Hi,

Õ =
m⋃
i=1

Oi, and X̃ =
m⋃
i=1

Xi a multi-set. An action ϕ of (Ã ; Õ) on X̃ is defined to

be a homomorphism

ϕ : (Ã ; Õ)→
m⋃

i=1

G
Pi

Xi
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for sets P1, P2, · · · , Pm ≥ 1 of permutations, i.e., for ∀h ∈Hi, 1 ≤ i ≤ m, there is a

permutation ϕ(h) : x→ xh with conditions following hold,

ϕ(h ◦ g) = ϕ(h)ϕ(◦)ϕ(g), for h, g ∈Hi and ◦ ∈ Oi.

Whence, we only need to consider the action of permutation multi-groups on

multi-sets. Let = (Ã ; Õ) be a multi-group action on a multi-set X̃, denoted by G .

For a subset ∆ ⊂ X̃, x ∈ ∆, we define

xG = { xg | ∀g ∈ G } and Gx = { g | xg = x, g ∈ G },

called the orbit and stabilizer of x under the action of G and sets

G∆ = { g | xg = x, g ∈ G for ∀x ∈ ∆},

G(∆) = { g | ∆g = ∆, g ∈ G for ∀x ∈ ∆},

respectively. Then we know the result following.

Theorem 2.4.5 Let Γ be a permutation group action on X and G P
X a permutation

multi-group (Γ; OP ) with P = {p1, p2, · · · , pm} and pi ∈ Γ for integers 1 ≤ i ≤ m.

Then

(i) |G P
X | = |(G P

X )x||xG P
X |, ∀x ∈ X;

(ii) for ∀∆ ⊂ X, ((G P
X )∆,OP ) is a permutation multi-group if and only if

pi ∈ P for 1 ≤ i ≤ m.

Proof By definition, we know that

(G P
X )x = Γx, and xG P

X = xΓ

for x ∈ X and ∆ ⊂ X. Assume that xΓ = {x1, x2, · · · , xl} with xgi = xi. Then we

must have

Γ =

l⋃

i=1

giΓx.

In fact, for ∀h ∈ Γ, let xh = xk, 1 ≤ k ≤ m. Then xh = xgk , i.e., xhg
−1
k = x. Whence,

we get that hg−1
k ∈ Γx, namely, h ∈ gkΓx.

For integers i, j, i 6= j, there are must be giΓx ∩ gjΓx = ∅. Otherwise, there

exist h1, h2 ∈ Γx such that gih1 = gjh2. We get that xi = xgi = xgjh2h
−1
1 = xgj = xj ,

a contradiction.
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Therefore, we find that

|G P
X | = |Γ| = |Γx||xΓ| = |(G P

X )x||xG P
X |.

This is the assertion (i). For (ii), notice that (G P
X )∆ = Γ∆ and Γ∆ is itself a

permutation group. Applying Theorem 2.4.2, we find it. �

Particularly, for a permutation group Γ action on Ω, i.e., all pi = 1X for 1 ≤
i ≤ m, we get a consequence of Theorem 2.4.5.

Corollary 2.4.3 Let Γ be a permutation group action on Ω. Then

(i) |Γ| = |Γx||xΓ|, ∀x ∈ Ω;

(ii) for ∀∆ ⊂ Ω, Γ∆ is a permutation group.

Theorem 2.4.6 Let Γ be a permutation group action on X and G P
X a permutation

multi-group (Γ; OP ) with P = {p1, p2, · · · , pm}, pi ∈ Γ for integers 1 ≤ i ≤ m and

Orb(X) the orbital sets of G P
X action on X. Then

|Orb(X)| = 1

|G P
X |
∑

p∈G P
X

|Φ(p)|,

where Φ(p) is the fixed set of p, i.e., Φ(p) = {x ∈ X|xp = x}.

Proof Consider a set E = {(p, x) ∈ G P
X × X|xp = x}. Then we know that

E(p, ∗) = Φ(p) and E(∗, x) = (G P
X )x. Counting these elements in E, we find that

∑

p∈G P
X

|Φ(p)| =
∑

x∈X

(G P
X )x.

Now let xi, 1 ≤ i ≤ |Orb(X)| be representations of different orbits in Orb(X).

For an element y in x
G P

X

i , let y = xgi for an element g ∈ G P
X . Now if h ∈ (G P

X )y,

i.e., yh = y, then we find that (xgi )
h = xgi . Whence, xghg

−1

i = xi. We obtain

that ghg−1 ∈ (G P
X )xi

, namely, h ∈ g−1(G P
X )xi

g. Therefore, (G P
X )y ⊂ g−1(G P

X )xi
g.

Similarly, we get that (G P
X )xi

⊂ g(G P
X )yg

−1, i.e., (G P
X )y = g−1(G P

X )xi
g. We know

that |(G P
X )y| = |(G P

X )xi
| for any element in x

G P
X

i , 1 ≤ i ≤ |Orb(X)|. This enables us

to obtain that

∑

p∈G P
X

|Φ(p)| =
∑

x∈X

(G P
X )x =

|Orb(X)|∑

i=1

∑

y∈x
G P

X
i

|(G P
X )xi
|
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=

|Orb(X)|∑

i=1

|xG P
X

i ||(G P
X )xi
| =

|Orb(X)|∑

i=1

|G P
X |

= |Orb(X)||G P
X |

by applying Theorem 2.4.5. This completes the proof. �

For a permutation group Γ action on Ω, i.e., all pi = 1X for 1 ≤ i ≤ m, we get

the famous Burnside’s Lemma by Theorem 2.4.6.

Corollary 2.4.4(Burnside’s Lemma) Let Γ be a permutation group action on Ω.

Then

|Orb(Ω)| = 1

|Γ|
∑

g∈Γ

|Φ(g)|.

A permutation multi-group G P
X is transitive on X if |Orb(X)| = 1, i.e., for any

elements x, y ∈ X, there is an element g ∈ G P
X such that xg = y. In this case, we

know formulae following by Theorems 2.5.5 and 2.5.6.

|G P
X | = |X||(G P

X )x| and |G P
X | =

∑

p∈G P
X

|Φ(p)|

Similarly, a permutation multi-group G P
X is k-transitive on X if for any two

k-tuples (x1, x2, · · · , xk) and (y1, y2, · · · , yk), there is an element g ∈ G P
X such that

xgi = yi for any integer i, 1 ≤ i ≤ k. It is well-known that Sym(X) is |X|-transitive

on a finite set X.

Theorem 2.4.7 Let Γ be a transitive group action on X and G P
X a permutation

multi-group (Γ; OP ) with P = {p1, p2, · · · , pm} and pi ∈ Γ for integers 1 ≤ i ≤ m.

Then for an integer k,

(i) (Γ;X) is k-transitive if and only if (Γx;X \ {x}) is (k − 1)-transitive;

(ii) G P
X is k-transitive on X if and only if (G P

X )x is (k−1)-transitive on X\{x}.

Proof If Γ is k-transitive on X, it is obvious that Γ is (k − 1)-transitive on

X itself. Conversely, if Γx is (k − 1)-transitive on X \ {x}, then for two k-tuples

(x1, x2, · · · , xk) and (y1, y2, · · · , yk), there are elements g1, g2 ∈ Γ and h ∈ Γx such

that

xg11 = x, yg21 = x and (xg1i )h = yg2i
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for any integer i, 2 ≤ i ≤ k. Therefore,

x
g1hg

−1
2

i = yi, 1 ≤ i ≤ k.

We know that Γ is ‘k-transitive on X. This is the assertion of (i).

By definition, G P
X is k-transitive on X if and only if Γ is k-transitive, i.e., (G P

X )x

is (k − 1)-transitive on X \ {x} by (i), which is the assertion of (ii). �

Applying Theorems 2.4.5 and 2.4.7 repeatedly, we get an interesting conse-

quence for k-transitive multi-groups.

Theorem 2.4.8 Let G P
X be a k-transitive multi-group and ∆ ⊂ X with |∆| = k.

Then

|G P
X | = |X|(|X| − 1) · · · (|X| − k + 1|(G P

X )∆|.
�

Particularly, a k-transitive multi-group G P
X with |G P

X | = |X|(|X| − 1) · · · (|X| −
k+1| is called a sharply k-transitive multi-group. For example, choose Γ = Sym(X)

with |X| = n, i.e., the symmetric group Sn and permutations pi ∈ Sn, 1 ≤ i ≤ m,

we get an n-transitive multi-group (Sn; OP ) with P = {p1, p2, · · · , pm}.
Let Γ be a transitive group action on X and G P

X a permutation multi-group

(Γ; OP ) with P = {p1, p2, · · · , pm}, pi ∈ Γ for integers 1 ≤ i ≤ m. An equivalent

relation R on X is G P
X -admissible if for ∀(x, y) ∈ R, there is (xg, yg) ∈ R for

∀g ∈ G P
X . For a given set X and permutation multi-group G P

X , it can be shown

easily by definition that

R = X ×X or R = {(x, x)|x ∈ X}

are G P
X -admissible, called trivially G P

X -admissible relations. A transitive multi-group

G P
X is primitive if there are no G P

X -admissible relations R on X unless R = X×X or

R = {(x, x)|x ∈ X}, i.e., the trivially relations. The next result shows the existence

of primitive multi-groups.

Theorem 2.4.9 Every k-transitive multi-group G P
X is primitive if k ≥ 2.

Proof Otherwise, there is a G P
X -admissible relations R on X such that R 6=

X × X and R 6= {(x, x)|x ∈ X}. Whence, there must exists (x, y) ∈ R, x, y ∈ X
and x 6= y. By assumption, G P

X is k-transitive on X, k ≥ 2. For ∀z ∈ X, there is

an element g ∈ G P
X such that xg = x and yg = z. This fact implies that (x, z) ∈ R
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for ∀z ∈ X by definition. Notice that R is an equivalence relation on X. For

∀z1, z2 ∈ X, we get (z1, x), (x, z2) ∈ R. Thereafter, (z1, z2) ∈ R, namely, R = X×X,

a contradiction. �

There is a simple criterion for determining which permutation multi-group is

primitive by maximal stabilizers following.

Theorem 2.4.10 A transitive multi-group G P
X is primitive if and only if there is an

element x ∈ X such that p ∈ (G P
X )x for ∀p ∈ P and if there is a permutation multi-

group (H; OP ) enabling ((G P
X )x; OP ) ≺ (H; OP ) ≺ G P

X , then (H; OP ) = ((G P
X )x; OP )

or G P
X .

Proof If (H; OP ) be a multi-group with ((G P
X )x; OP ) ≺ (H; OP ) ≺ G P

X for an

element x ∈ X, define a relation

R = { (xg, xg◦h) | g ∈ G P
X , h ∈ H }.

for a chosen operation ◦ ∈ OP . Then R is a G P
X -admissible equivalent relation. In

fact, it is G P
X -admissible, reflexive and symmetric by definition. For its transitive-

ness, let (s, t) ∈ R, (t, u) ∈ R. Then there are elements g1, g2 ∈ G P
X and h1, h2 ∈ H

such that

s = xg1 , t = xg1◦h1 , t = xg2, u = xg2◦h2 .

Hence, xg
−1
2 ◦g1◦h1 = x, i.e., g−1

2 ◦ g1 ◦ h1 ∈ H. Whence, g−1
2 ◦ g1, g

−1
1 ◦ g2 ∈ H. Let

g∗ = g1, h
∗ = g−1

1 ◦ g2 ◦ h2. We find that s = xg
∗

, u = xg
∗◦h∗ . Therefore, (s, u) ∈ R.

This concludes that R is an equivalent relation.

Now if G P
X is primitive, then R = {(x, x)|x ∈ X} or R = X ×X by definition.

Assume R = {(x, x)|x ∈ X}. Then s = xg and t = xg◦h implies that s = t for

∀g ∈ G P
X and h ∈ H. Particularly, for g = 1◦, we find that xh = x for ∀h ∈ H, i.e.,

(H; OP ) = ((G P
X )x; OP ).

If R = X × X, then (x, xf ) ∈ R for ∀f ∈ G P
X . In this case, there must exist

g ∈ G P
X and h ∈ H such that x = xg, xf = xg◦h. Whence, g ∈ ((G P

X )x; OP ) ≺ (H; OP )

and g−1 ◦ h−1 ◦ f ∈ ((G P
X )x; OP ) ≺ (H; OP ). Therefore, f ∈ H and (H; OP ) =

((G P
X ); OP ).

Conversely, assume R to be a G P
X -admissible equivalent relation and there is

an element x ∈ X such that p ∈ (G P
X )x for ∀p ∈ P , ((G P

X )x; OP ) ≺ (H; OP ) ≺ G P
X

implies that (H; OP ) = ((G P
X )x; OP ) or ((G P

X ); OP ). Define
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H = { h ∈ G P
X | (x, xh) ∈ R }.

Then (H; OP ) is multi-subgroup of G P
X which contains a multi-subgroup ((G P

X )x; OP )

by definition. Whence, (H; OP ) = ((G P
X )x; OP ) or G P

X .

If (H; OP ) = ((G P
X )x; OP ), then x is only equivalent to itself. Since G P

X is

transitive on X, we know that R = {(x, x)|x ∈ X}.
If (H; OP ) = G P

X , by the transitiveness of G P
X on X again, we find that R =

X ×X. Combining these discussions, we conclude that G P
X is primitive. �

Choose p = 1X for each p ∈ P in Theorem 2.4.10, we get a well-known result

in classical permutation groups following.

Corollary 2.4.5 A transitive group Γ is primitive if and only if there is an element

x ∈ X such that a subgroup H with Γx ≺ H ≺ Γ hold implies that H = Γx or Γ.

Now let Γ be a permutation group action on a set X and P ⊂ Π(X). We have

shown in Theorem 2.4.2 that (Γ; OP ) is a multi-group if P ⊂ Γ. Then what can we

say if not all p ∈ P are in Γ? For this case, we introduce a new multi-group (Γ̃; OP )

on X, the permutation multi-group generated by P in Γ by

Γ̃ = { g1 ◦p1 g2 ◦p2 · · · ◦pl
gl+1 | gi ∈ Γ, pj ∈ P, 1 ≤ i ≤ l + 1, 1 ≤ j ≤ l },

denoted by
〈
ΓPX
〉
. This multi-group has good behavior like G P

X , also a kind way of

extending a group to a multi-group. For convenience, a group generated by a set S

with the operation in Γ is denoted by 〈S〉Γ.

Theorem 2.4.11 Let Γ be a permutation group action on a set X and P ⊂ Π(X).

Then

(i)
〈
ΓPX
〉

= 〈Γ ∪ P 〉Γ, particularly,
〈
ΓPX
〉

= G P
X if and only if P ⊂ Γ;

(ii) for any subgroup Λ of Γ, there exists a subset P ⊂ Γ such that

〈
ΛP
X ; OP

〉
=
〈
ΓPX
〉
.

Proof By definition, for ∀a, b ∈ Γ and p ∈ P , we know that

a ◦p b = apb.

Choosing a = b = 1Γ, we find that

a ◦p b = p,
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i.e., Γ ⊂ Γ̃. Whence,

〈Γ ∪ P 〉Γ ⊂
〈
ΓPX
〉
.

Now for ∀gi ∈ Γ and pj ∈ P , 1 ≤ i ≤ l + 1, 1 ≤ j ≤ l, we know that

g1 ◦p1 g2 ◦p2 · · · ◦pl
gl+1 = g1p1g2p2 · · · plgl+1,

which means that

〈
ΓPX
〉
⊂ 〈Γ ∪ P 〉Γ .

Therefore,

〈
ΓPX
〉

= 〈Γ ∪ P 〉Γ .

Now if
〈
ΓPX
〉

= G P
X , i.e., 〈Γ ∪ P 〉Γ = Γ, there must be P ⊂ Γ. According to

Theorem 2.4.2, this concludes the assertion (i).

For the assertion (ii), notice that if P = Γ \ Λ, we get that

〈
ΛP
X

〉
= 〈Λ⋃P 〉Γ = Γ

by (i). Whence, there always exists a subset P ⊂ Γ such that

〈
ΛP
X ; OP

〉
=
〈
ΓPX
〉
.

�

Theorem 2.4.12 Let Γ be a permutation group action on a set X. For an integer

k ≥ 1, there is a set P ∈ Π(X) with |P | ≤ k such that
〈
ΓPX
〉

is k-transitive.

Proof Notice that the symmetric group Sym(X) is |X|-transitive for any finite

set X. If Γ is k-transitive on X, choose P = ∅ enabling the conclusion true. Other-

wise, assume these orbits of Γ action onX to be O1, O2, · · · , Os, where s = |Orb(X)|.
Construct a permutation p ∈ Π(X) by

p = (x1, x2, · · · , xs),

where xi ∈ Oi, 1 ≤ i ≤ s and let P = {p} ⊂ Sym(X). Applying Theorem 2.4.11,

we know that
〈
ΓPX
〉

= 〈Γ ∪ P 〉Γ is transitive on X with |P | = 1.

Now for an integer k, if
〈
ΓP1
X

〉
is k-transitive with |P1| ≤ k, let O′

1, O
′
2, · · · , O′

l be

these orbits of the stabilizer
〈
ΓP1
X

〉
y1y2···yk

action on X \ {y1, y2, · · · , yk}. Construct

a permutation
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q = (z1, z2, · · · , zl),

where zi ∈ O′
i, 1 ≤ i ≤ l and let P2 = P1 ∪ {q}. Applying Theorem 2.4.11 again,

we find that
〈
ΓP2
X

〉
y1y2···yk

is transitive on X \ {y1, y2, · · · , yk}, where |P2| ≤ |P1|+ 1.

Therefore,
〈
ΓP2
X

〉
is (k + 1)-transitive on X with |P2| ≤ k + 1 by Theorem 2.4.7.

Applying the induction principle, we get the conclusion. �

Notice that any k-transitive multi-group is primitive if k ≥ 2 by Theorem 2.4.9.

We have a corollary following by Theorem 2.4.12.

Corollary 2.4.6 Let Γ be a permutation group action on a set X. There is a set

P ∈ Π(X) such that
〈
ΓPX
〉

is primitive.

§2.5 COMBINATORIAL ALGEBRAIC SYSTEMS

2.5.1 Algebraic Multi-System. An algebraic multi-system is a pair (Ã ; Õ) with

Ã =
m⋃

i=1

Hi and Õ =
m⋃

i=1

Oi

such that for any integer i, 1 ≤ i ≤ m, (Hi;Oi) is a multi-operation system. For

an algebraic multi-operation system (Ã ; Õ) and an integer i, 1 ≤ i ≤ m, a homo-

morphism pi : (Ã ; Õ)→ (Hi;Oi) is called a sectional projection, which is useful in

multi-systems.

Two multi-systems (Ã1; Õ1), (Ã2; Õ2), where Ã1 =
m⋃
i=1

H k
i and Õ1 =

m⋃
i=1

Oki
for k = 1, 2 are homomorphic if there is a mapping o : Ã1 → Ã2 such that opi

is a homomorphism for any integer i, 1 ≤ i ≤ m. By this definition, we know the

existent conditions for homomorphisms on algebraic multi-systems following.

Theorem 2.5.1 There exists a homomorphism from an algebraic multi-system

(Ã1; Õ1) to (Ã2; Õ2), where Ãk =
m⋃
i=1

H k
i and Õk =

m⋃
i=1

Oki for k = 1, 2 if and only

if there are homomorphisms η1, η2, · · · , ηm on (H 1
1 ;O1

1), (H 1
2 ;O1

2), · · ·, (H 1
m;O1

m)

such that

ηi|H 1
i ∩H 1

j
= ηj |H 1

i ∩H 1
j

for any integer 1 ≤ i, j ≤ m.



80 Chap.2 Algebraic Combinatorics

Proof By definition, if there is a homomorphism o : (Ã1; Õ1)→ (Ã2; Õ2), then

opi is a homomorphism on (H 1
i ;O1

i ) for any integer i, 1 ≤ i ≤ m.

On the other hand, if there are homomorphisms η1, η2, · · · , ηm on (H 1
1 ;O1

1),

(H 1
2 ;O1

2), · · ·, (H 1
m;O1

m), define a mapping o : (Ã1; Õ1)→ (Ã2; Õ2) by o(a) = ηi(a)

if a ∈H 1
i . Then it can be checked immediately that o is a homomorphism. �

Let o : (Ã1; Õ1) → (Ã2; Õ2) be a homomorphism with a unit 1◦ for each oper-

ation ◦ ∈ Õ2. Similar to the case of multi-operation systems, we define the multi-

kernel K̃er(o) by

K̃er(o) = { a ∈ Ã1 | o(a) = 1◦ for ∀◦ ∈ Õ2 }.

Then we have the homomorphism theorem on algebraic multi-systems following.

Theorem 2.5.2 Let (Ã1; Õ1), (Ã2; Õ2) be algebraic multi-systems, where Ãk =
m⋃
i=1

H k
i , Õk =

m⋃
i=1

Oki for k = 1, 2 and o : (Ã1; Õ1) → (Ã2; Õ2) a onto homomor-

phism with a multi-group (I2
i ;O2

i ) for any integer i, 1 ≤ i ≤ m. Then there are

representation pairs (R̃1, P̃1) and (R̃2, P̃2) such that

(Ã1; Õ1)

(K̃er(o);O1)
|(R̃1,P̃1)

∼= (Ã2; Õ2)

(Ĩ(O2);O2)
|(R̃2,P̃2)

where (Ĩ(O2);O2) =
m⋃
i=1

(I2
i ;O2

i ).

Proof By definition, we know that o|H 1
i

: (H 1
i ;O1

i ) → (H 2
o(i);O2

o(i)) is also an

onto homomorphism for any integer i, 1 ≤ i ≤ m. Applying Theorem 2.2.2 and

Corollary 2.2.1, we can find representation pairs (R1
i , P̃

1
i ) and (R2

i , P̃
2
i ) such that

(H 1
i ;O1

i )

(Ker(o|H 1
i
);O1

i ) (R1
i ,P̃

1
i )

∼=
(H 2

o(i);O2
o(i))

(I2
o(i);O2

o(i)) (R1
o(i)

,P̃ 1
o(i)

)

.

Notice that

Ãk =

m⋃

i=1

H
k
i , Õk =

m⋃

i=1

Oki

for k = 1, 2 and

K̃er(o) =

m⋃

i=1

Ker(o|H 1
i
).

We finally get that

(Ã1; Õ1)

(K̃er(o);O1)
|(R̃1,P̃1)

∼= (Ã2; Õ2)

(Ĩ(O2);O2)
|(R̃2,P̃2)
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with

R̃k =

m⋃

i=1

Rk
i and P̃k =

m⋃

i=1

P̃ k
i

for k = 1 or 2. �

2.5.2 Diagram of Multi-System. Let (A; ◦) be an algebraic system with

operation�◦�. We associate a labeled graph GL[A] with (A; ◦) by

V (GL[A]) = A,

E(GL[A]) = {(a, c) with label ◦ b | if a ◦ b = c for ∀a, b, c ∈ A},

as shown in Fig.2.5.1.

a ◦ b = c -
a

◦b
c

Fig.2.5.1

The advantage of this diagram on systems is that we can find a◦b = c for any

edge in GL[A], if its vertices are a,c with a label ◦b and vice versa immediately. For

example, the labeled graph GL[Z4] of an Abelian group Z4 is shown in Fig.2.5.2.- ?
�6 � 6-?

- -
?6 I R��

0 1

23

+0 +0

+0+0

+1

+1

+1

+1

+3

+3

+3

+3 +2

+2

+2

+2

Fig.2.5.2

Some structure properties on these diagrams GL[A] of systems are shown in the

following.

Property 1. The labeled graph GL[A] is connected if and only if there are no

partition A = A1

⋃
A2 such that for ∀a1 ∈ A1, ∀a2 ∈ A2, there are no definition for

a1 ◦ a2 in (A; ◦).
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If GL[A] is disconnected, we choose one component C and let A1 = V (C).

Define A2 = V (GL[A]) \ V (C). Then we get a partition A = A1

⋃
A2 and for

∀a1 ∈ A1, ∀a2 ∈ A2, there are no definition for a1 ◦ a2 in (A; ◦), a contradiction.

Property 2. If there is a unit 1A in (A; ◦), then there exists a vertex 1A in GL[A]

such that the label on the edge (1A, x) is ◦x.

For a multiple 2-edge (a, b) in a directed graph, if two orientations on edges are

both to a or both to b, then we say it a parallel multiple 2-edge. If one orientation

is to a and another is to b, then we say it an opposite multiple 2-edge.

Property 3. For ∀a ∈ A, if a−1
◦ exists, then there is an opposite multiple 2-edge

(1A, a) in GL[A] with labels ◦a and ◦a−1
◦ , respectively.

Property 4. For ∀a, b ∈ A if a ◦ b = b ◦ a, then there are edges (a, x) and (b, x),

x ∈ A in (A; ◦) with labels w(a, x) = ◦b and w(b, x) = ◦a in GL[A], respectively.

Property 5. If the cancelation law holds in (A; ◦), i.e., for ∀a, b, c ∈ A, if a◦b = a◦c
then b = c, then there are no parallel multiple 2-edges in GL[A].

These properties 2− 5 are gotten by definition. Each of these cases is shown in

(1), (2), (3) and (4) in Fig.2.5.3.

a b

1A

(1)

◦a ◦b666 6 a

1A

◦a ◦a−1
6 ?

a b

◦b ◦a66
a

6 ◦b ◦a66 6
(2) (3) (4)

Fig.2.5.3

Now we consider the diagrams of algebraic multi-systems. Let (Ã ; Õ) be an

algebraic multi-system with

Ã =
m⋃
i=1

Hi and Õ =
m⋃
i=1

Oi

such that (Hi;Oi) is a multi-operation system for any integer i, 1 ≤ i ≤ m, where
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the operation set Oi = {◦ij|1 ≤ j ≤ ni}. Define a labeled graph GL[Ã ] associated

with (Ã ; Õ) by

GL[Ã ] =
m⋃
i=1

ni⋃
j=1

GL[(Hi; ◦ij)],

where GL[(Hi; ◦ij)] is the associated labeled graph of (Hi; ◦ij) for 1 ≤ i ≤ m,

1 ≤ j ≤ nij . The importance of GL[Ã ] is displayed in the next result.

Theorem 2.5.3 Let (Ã1; Õ1), (Ã2; Õ2) be two algebraic multi-systems. Then

(Ã1; Õ1) ∼= (Ã2; Õ2)

if and only if

GL[Ã1] ∼= GL[Ã2].

Proof If (Ã1; Õ1) ∼= (Ã2; Õ2), by definition, there is a 1−1 mapping ω : Ã1 →
Ã2 with ω : Õ1 → Õ2 such that for ∀a, b ∈ Ã1 and ◦1 ∈ Õ1, there exists an operation

◦2 ∈ Õ2 with the equality following hold,

ω(a ◦1 b) = ω(a) ◦2 ω(b).

Not loss of generality, assume a ◦1 b = c in (Ã1; Õ1). Then for an edge (a, c) with a

label ◦1b in GL[Ã1], there is an edge (ω(a), ω(c)) with a label ◦2ω(b) in GL[Ã2], i.e.,

ω is an equivalence from GL[Ã1] to GL[Ã2]. Therefore, GL[Ã1] ∼= GL[Ã2].

Conversely, if GL[Ã1] ∼= GL[Ã2], let ̟ be a such equivalence from GL[Ã1] to

GL[Ã2], then for an edge (a, c) with a label ◦1b in GL[Ã1], by definition we know

that (ω(a), ω(c)) with a label ω(◦1)ω(b) is an edge in GL[Ã2]. Whence,

ω(a ◦1 b) = ω(a)ω(◦1)ω(b),

i.e., ω : Ã1 → Ã2 is an isomorphism from (Ã1; Õ1) to (Ã2; Õ2). �

Generally, let (Ã1; Õ1), (Ã2; Õ2) be two algebraic multi-systems associated with

labeled graphs GL[Ã1], G
L[Ã2]. A homomorphism ι : GL[Ã1] → GL[Ã2] is a map-

ping ι : V (GL[Ã1]) → V (GL[Ã2]) and ι : Õ1 → Õ2 such that ι(a, c) = (ι(a), ι(c))

with a label ι(◦)ι(b) for ∀(a, c) ∈ E(GL[Ã1]) with a label ◦b. We get a result on

homomorphisms of labeled graphs following.

Theorem 2.5.4 Let (Ã1; Õ1), (Ã2; Õ2) be algebraic multi-systems, where Ãk =
m⋃
i=1

H k
i , Õk =

m⋃
i=1

Oki for k = 1, 2 and ι : (Ã1; Õ1) → (Ã2; Õ2) a homomorphism.
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Then there is a homomorphism ι : GL[A1]→ GL[A2] from GL[A1] to GL[A2] induced

by ι.

Proof By definition, we know that o : V (GL[A1]) → V (GL[A2]). Now if

(a, c) ∈ E(GL[A1]) with a label ◦b, then there must be a ◦ b = c in (Ã1; Õ1).

Hence, ι(a)ι(◦)ι(b) = ι(c) in (Ã2; Õ2), where ι(◦) ∈ Õ2 by definition. Whence,

(ι(a), ι(c)) ∈ E(GL[A1]) with a label ι(◦)ι(b) in GL[A2], i.e., ι is a homomorphism

between GL[A1] and GL[A )2]. Therefore, ι induced a homomorphism from GL[A1]

to GL[A2]. �

Notice that an algebraic multi-system (Ã ; Õ) is a combinatorial system CΓ with

an underlying graph Γ, called a Γ-multi-system, where

V (Γ) = {Hi|1 ≤ i ≤ m},

E(Γ) = {(Hi,Hj)|∃a ∈Hi, b ∈Hj with (a, b) ∈ E(GL[Ã ]) for 1 ≤ i, j ≤ m}.

We obtain conditions for an algebraic multi-system with a graphical structure

in the following.

Theorem 2.5.5 Let (Ã ; Õ) be an algebraic multi-system. Then it is

(i) a circuit multi-system if and only if there is arrangement Hli, 1 ≤ i ≤ m

for H1,H2, · · · ,Hm such that

Hli−1

⋂
Hli 6= ∅, Hli

⋂
Hli+1

6= ∅

for any integer i(mod m), 1 ≤ i ≤ m but

Hli

⋂
Hlj = ∅

for integers j 6= i− 1, i, i+ 1(mod m);

(ii) a star multi-system if and only if there is arrangement Hli, 1 ≤ i ≤ m for

H1,H2, · · · ,Hm such that

Hl1

⋂
Hli 6= ∅ but Hli

⋂
Hlj = ∅

for integers 1 < i, j ≤ m, i 6= j.

(iii) a tree multi-system if and only if any subset of Ã is not a circuit multi-

system under operations in Õ.
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Proof By definition, these conditions really ensure a circuit, star, or a tree

multi-system, and conversely, a circuit, star, or a tree multi-system constrains these

conditions, respectively. �

Now if an associative system (A ; ◦) has a unit and inverse element a−1
◦ for any

element a ∈ A , i.e., a group, then for any elements x, y ∈ A , there is an edge

(x, y) ∈ E(GL[A ]). In fact, by definition, there is an element z ∈ A such that

x−1
◦ ◦ y = z. Whence, x ◦ z = y. By definition, there is an edge (x, y) with a label

◦z in GL[A ], and an edge (y, x) with label z−1
◦ . Thereafter, the diagram of a group

is a complete graph attached with a loop at each vertex, denoted by K[A ; ◦]. As

a by-product, the diagram GL[G̃] of a m-group G̃ is a union of m complete graphs

with the same vertices, each attached with m loops.

Summarizing previous discussion, we can sketch the diagram of a multi-group

as follows.

Theorem 2.5.6 Let (Ã ; Õ) be a multi-group with Ã =
m⋃
i=1

Hi, Õ =
m⋃
i=1

Oi, Oi =

{◦ij, 1 ≤ j ≤ ni} and (Hi; ◦ij) a group for integers i, j, 1 ≤ i ≤ m, 1 ≤ i ≤ ni.

Then its diagram GL[A ] is

GL[A ] =

m⋃

i=1

ni⋃

j=1

K[Hi; ◦ij].

�

Corollary 2.5.1 The diagram of a field (H ; +, ◦) is a union of two complete graphs

attached with 2 loops at each vertex.

Corollary 2.5.2 Let (Ã ; Õ) be a multi-group. Then GL[A ] is hamiltonian if and

only if CΓ is hamiltonian.

Proof Notice that CΓ is an resultant graph inGL[A ] shrinking each
ni⋃
j=1

K[Hi; ◦ij]

to a vertex Hi for 1 ≤ i ≤ m by definition. Whence, CΓ is hamiltonian if GL[A ] is

hamiltonian.

Conversely, if CΓ is hamiltonian, we can easily find a hamiltonian circuit in

GL[A ] by applying Theorem 2.6.6. �

2.5.3 Cayley Diagram. Besides these diagrams of multi-systems described in

Theorem 2.5.5, these is another diagram for a multi-system of finitely generated,
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called Cayley diagrams of multi-systems defined in the following.

A multi-system (Ã ; Õ) is finitely generated if there are finite elements a1, a2, · · · , as
in Ã such that for ∀x ∈ Ã ,

x = ax1 ◦1 ax2 ◦2 · · · ◦l1 axl
,

where axi
∈ {a1, a2, · · · , as} and ◦i ∈ Õ. Denoted by Ã =

〈
a1, a2, · · · , as; Õ

〉
.

Let (Ã ; Õ) be a finitely generated multi-system with a generating set S̃, Õ =

{◦i|1 ≤ i ≤ m}. A Cayley diagram Cay(Ã : S̃) of (Ã ; Õ) is defined by

V (Cay(Ã : S̃)) = Ã ,

E(Cay(Ã : S̃)) = {(g, h) with a label g−1 ◦i h | ∃i, g−1 ◦i h ∈ S̃, 1 ≤ i ≤ m}.

For the case of multi-groups (Ã ; Õ), some elementary properties are presented

in [Mao3], particularly, if (Ã ; Õ) is a group, these Cayley diagrams are nothing but

the Cayley graphs of finite groups introduced in graph theory following.

Let Γ be a finite generated group and S ⊆ Γ such that 1Γ 6∈ S and S−1 =

{x−1|x ∈ S} = S. A Cayley graph Cay(Γ : S) is a simple graph with vertex set

V (G) = Γ and edge set E(G) = {(g, h)|g−1h ∈ S}. By the definition of Cayley

graphs, we know that a Cayley graph Cay(Γ : S) is complete if and only if S =

Γ \ {1Γ} and connected if and only if Γ = 〈S〉.

Theorem 2.5.7 A Cayley graph Cay(Γ : S) is vertex-transitive.

Proof For ∀g ∈ Γ, define a permutation ζg on V (Cay(Γ : S)) = Γ by ζg(h) =

gh, h ∈ Γ. Then ζg is an automorphism of Cay(Γ : S) for (h, k) ∈ E(Cay(Γ : S))⇒
h−1k ∈ S ⇒ (gh)−1(gk) ∈ S ⇒ (ζg(h), ζg(k)) ∈ E(Cay(Γ : S)).

Now we know that ζkh−1(h) = (kh−1)h = k for ∀h, k ∈ Γ. Whence, Cay(Γ : S)

is vertex-transitive. �

A Cayley graph of a finite group Γ can be decomposed into 1-factors or 2-factors

in a natural way as stated in the following result.

Theorem 2.5.8 Let G be a vertex-transitive graph and let H be a regular subgroup

of AutG. Then for any chosen vertex x, x ∈ V (G), there is a factorization

G =


 ⊕

y∈NG(x),|H(x,y)|=1

(x, y)H


⊕


 ⊕

y∈NG(x),|H(x,y)|=2

(x, y)H


 ,
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for G such that (x, y)H is a 2-factor if |H(x,y)| = 1 and a 1-factor if |H(x,y)| = 2.

Proof We prove the following claims.

Claim 1. ∀x ∈ V (G), xH = V (G) and Hx = 1H .

Claim 2. For ∀(x, y), (u, w) ∈ E(G), (x, y)H
⋂

(u, w)H = ∅ or (x, y)H = (u, w)H.

Claims 1 and 2 are holden by definition.

Claim 3. For ∀(x, y) ∈ E(G), |H(x,y)| = 1 or 2.

Assume that |H(x,y)| 6= 1. Since we know that (x, y)h = (x, y), i.e., (xh, yh) =

(x, y) for any element h ∈ H(x,y). Thereby we get that xh = x and yh = y or xh = y

and yh = x. For the first case we know h = 1H by Claim 1. For the second, we get

that xh
2

= x. Therefore, h2 = 1H .

Now if there exists an element g ∈ H(x,y)\{1H , h}, then we get xg = y = xh and

yg = x = yh. Thereby we get g = h by Claim 1, a contradiction. So we get that

|H(x,y)| = 2.

Claim 4. For any (x, y) ∈ E(G), if |H(x,y)| = 1, then (x, y)H is a 2-factor.

Because xH = V (G) ⊂ V (
〈
(x, y)H

〉
) ⊂ V (G), so V (

〈
(x, y)H

〉
) = V (G). There-

fore, (x, y)H is a spanning subgraph of G.

Since H acting on V (G) is transitive, there exists an element h ∈ H such that

xh = y. It is obvious that o(h) is finite and o(h) 6= 2. Otherwise, we have |H(x,y)| ≥
2, a contradiction. Now (x, y)〈h〉 = xxhxh

2 · · ·xho(h)−1
x is a circuit in the graph

G. Consider the right coset decomposition of H on 〈h〉. Suppose H =
s⋃
i=1

〈h〉 ai,
〈h〉 ai

⋂ 〈h〉 aj = ∅, if i 6= j, and a1 = 1H .

Now let X = {a1, a2, ..., as}. We know that for any a, b ∈ X, (〈h〉 a)⋂(〈h〉 b) = ∅
if a 6= b. Since (x, y)〈h〉a = ((x, y)〈h〉)a and (x, y)〈h〉b = ((x, y)〈h〉)b are also circuits,

if V (
〈
(x, y)〈h〉a

〉
)
⋂
V (
〈
(x, y)〈h〉b

〉
) 6= ∅ for some a, b ∈ X, a 6= b, then there must

be two elements f, g ∈ 〈h〉 such that xfa = xgb . According to Claim 1, we get

that fa = gb, that is ab−1 ∈ 〈h〉. So 〈h〉 a = 〈h〉 b and a = b, contradicts to the

assumption that a 6= b.

Thereafter we know that (x, y)H =
⋃
a∈X

(x, y)〈h〉a is a disjoint union of circuits.

So (x, y)H is a 2-factor of the graph G.

Claim 5. For any (x, y) ∈ E(G), (x, y)H is an 1-factor if |H(x,y)| = 2.
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Similar to the proof of Claim 4, we know that V (
〈
(x, y)H

〉
) = V (G) and (x, y)H

is a spanning subgraph of the graph G.

Let H(x,y) = {1H , h}, where xh = y and yh = x. Notice that (x, y)a = (x, y)

for ∀a ∈ H(x,y). Consider the coset decomposition of H on H(x,y), we know that

H =
t⋃
i=1

H(x,y)bi , where H(x,y)bi
⋂
H(x,y)bj = ∅ if i 6= j, 1 ≤ i, j ≤ t. Now let

L = {H(x,y)bi, 1 ≤ i ≤ t}. We get a decomposition

(x, y)H =
⋃

b∈L

(x, y)b

for (x, y)H. Notice that if b = H(x,y)bi ∈ L, (x, y)b is an edge of G. Now if there exist

two elements c, d ∈ L, c = H(x,y)f and d = H(x,y)g, f 6= g such that V (〈(x, y)c〉)⋂

V (
〈
(x, y)d

〉
) 6= ∅, there must be xf = xg or xf = yg. If xf = xg, we get f = g

by Claim 1, contradicts to the assumption that f 6= g. If xf = yg = xhg, where

h ∈ H(x,y), we get f = hg and fg−1 ∈ H(x,y), so H(x,y)f = H(x,y)g. According to

the definition of L, we get f = g, also contradicts to the assumption that f 6= g.

Therefore, (x, y)H is an 1-factor of the graph G.

Now we can prove the assertion in this theorem. According to Claim 1- Claim

4, we get that

G =


 ⊕

y∈NG(x),|H(x,y)|=1

(x, y)H


⊕


 ⊕

y∈NG(x),|H(x,y)|=2

(x, y)H


 .

for any chosen vertex x, x ∈ V (G). By Claims 5 and 6, we know that (x, y)H is

a 2-factor if |H(x,y)| = 1 and is a 1-factor if |H(x,y)| = 2. Whence, the desired

factorization for G is obtained. �

By Theorem 2.5.8, we can always choose the vertex x = 1Γ and H the right

regular transformation group on Γ for a Cayley graph Cay(Γ : S). Whence, we find

a factorization following

Theorem 2.5.9 Let Γ be a finite group with a subset S, S−1 = S, 1Γ 6∈ S and H is

the right transformation group on Γ. Then there is a factorization

G =


 ⊕

s∈S,s2 6=1Γ

(1Γ, s)
H


⊕


 ⊕

s∈S,s2=1Γ

(1Γ, s)
H



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for the Cayley graph Cay(Γ : S) such that (1Γ, s)
H is a 2-factor if s2 6= 1Γ and

1-factor if s2 = 1Γ.

Proof For any h ∈ H(1Γ,s), if h 6= 1Γ, then we get that 1Γh = s and sh = 1Γ,

that is s2 = 1Γ. According to Theorem 2.5.8, we get the factorization for the Cayley

graph Cay(Γ : S). �

More properties of Cayley graphs can be found in referenceS [Xum1] and

[XHL1]. But for multi-groups, few results can be found for Cayley diagrams of

multi-groups unless the result following appeared in [Mao3]. So to find out such

behaviors for multi-systems is a good topic for researchers.

Theorem 2.5.10 Let Cay(Γ̃ : S̃) be a Cayley diagram of a multi-group (Γ̃; Õ) with

Γ̃ =
m⋃
i=1

Γi, Õ = {◦i|1 ≤ i ≤ m} and S̃ =
m⋃
i=1

Si, Γ = 〈Si; ◦i〉 for 1 ≤ i ≤ m. Then

Cay(Γ̃ : S̃) =
n⋃
i=1

Cay(Γi : Si).

�

§2.6 REMARKS

2.6.1 These conceptions of multi-group, multi-ring, multi-field and multi-vector

space are first presented in [Mao5]-[Mao8] by Smarandache multi-spaces. In Section

2.2, we consider their general case, i.e., multi-operation systems and extend the

homomorphism theorem to this multi-system. Section 2.3 is a generalization of

works in [Mao7] to multi-modules. There are many trends or topics in multi-systems

should be researched, such as extending those of results in groups, rings or linear

spaces to multi-systems.

2.6.2 Considering the action of multi-systems on multi-sets is an interesting prob-

lem, which requires us to generalize permutation groups to permutation multi-

groups. This kind of action, i.e., multi-groups on finite multi-sets can be found

in [Mao20]. The construction in Theorems 2.4.1 and 2.4.2 can be also applied to

abstract multi-groups. But in fact, an action of a multi-group acting on a multi-set

dependent on their combinatorial structures. This means general research on the

action of multi-groups must consider their underlying labeled graphs, which is a
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candidate topic for postgraduate students.

2.6.3 The topic discussed in Section 2.5 can be seen as an application of com-

binatorial notion to classical algebra. In fact, there are many research trends in

combinatorial algebraic systems, in algebra or combinatorics. For example,

(1) Given an underlying combinatorial structure G, what can we say about its

algebraic behavior?

(2) What can we know on its graphical structure, such as in what condition it

has a hamiltonian circuit, or a 1-factor?

(3) When it is regular?

..., etc..

2.6.4 For Cayley diagrams Cay(Ã : S̃) of multi-systems (Ã ; Õ), particularly,

multi-groups, there are many open problems not be solved yet. For example,

(1) What can we know on their structure?

(2) Determine those properties of Cayley diagrams Cay(Ã : S̃) which Cayley

graphs of finite groups have.

..., etc..



CHAPTER 3.

Topology with Smarandache Geometry

There is always one good, that is knowledge; there is only one evil, that

is ignorance.

By Socrates, an ancient Greek philosopher.

A Smarandache geometry is a geometrical Smarandache system, which

means that there is a Smarandachely denied axiom in this geometri-

cal system, i.e., both validated and invalidated, or just invalidated but

in multiple distinct ways, which is a generalization of classical geome-

tries. For example, these Euclid, Lobachevshy-Bolyai-Gauss and Rie-

mannian geometries maybe united altogether in a same space by some

Smarandache geometries. A Smarandache geometry can be either par-

tially Euclidean and partially non-Euclidean, or non-Euclidean connected

with the relativity theory because they include Riemannian geometry in

a subspace, also with the parallel universes in physics because they com-

bine separate spaces into one space too. A Smarandache manifold is a

topological or differential manifold which supports a Smarandache ge-

ometry. For an introduction on Smarandache manifolds, Sections 3.1

and 3.2 present the fundamental of algebraic topology and differential

on Euclidean spaces for the following discussion. In Section 3.3, we de-

fine Smarandache geometries, also with some well-known models, such as

Iseri’s s-manifolds on the plane and Mao’s map geometries on surfaces.

Then a more general way for constructing Smarandache manifolds, i.e.,

pseudo-manifolds is shown in Section.3.4. Finally, we also introduce dif-

ferential structure on pseudo-manifolds in this chapter.
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§3.1 ALGEBRAIC TOPOLOGY

3.1.1 Topological Space. A topology on a set S is a collection C of subsets of S

called open sets such that

(T1) ∅ ∈ C and S ∈ C ;

(T2) if U1, U2 ∈ C , then U1 ∩ U2 ∈ C ;

(T3) the union of any collection of open sets is open.

The pair (S,C ) is called a topological space.

Example 3.1.1 Let R be the set of real numbers. We have knows these open

intervals (a, b) for a ≤ b, a, b ∈ R in elementary mathematics. Define open sets in R

to be a union of finite open intervals. Then it can be shown conditions T1-T3 are

hold. Consequently, R is a topological space.

A set V is closed in a topological space S if S \ V is opened. If A is a subset of

a topological space S, the relative topological on A in S is defined by

CA = { U ⋂A | ∀U ∈ C }.

Applied these identities

(i) ∅ ∩A = ∅, S ∩A = A;

(ii) (U1 ∩ U2) ∩ A = (U1 ∩ A) ∩ (U2 ∩ A);

(iii)
⋃
α

(Uα
⋂
A) = (

⋃
α

Uα)
⋂
A

in Boolean algebra, we know that CA is indeed a topology on A, which is called a

subspace with topology CA of S.

For a point u in a topological space S, its an open neighborhood in S is an open

set U such that u ∈ U and a neighborhood in S is a set containing some of its open

neighborhoods. Similarly, for a subset A of S, a set U is an open neighborhood or

neighborhood of A is U is open itself or a set containing some open neighborhoods

of that set in S. A basis in S is a collection B of subsets of S such that S = ∪B∈BB

and B1, B2 ∈ B, x ∈ B1 ∩ B2 implies that ∃B3 ∈ B with x ∈ B3 ⊂ B1 ∩ B2 hold.

A topological space S is called Hausdorff if each two distinct points have disjoint

neighborhoods and first countable if for each p ∈ S there is a sequence {Un} of

neighborhoods of p such that for any neighborhood U of p, there is an n such that

Un ⊂ U . A topological space is called second countable if it has a countable basis.
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For a point sequence {xn} in a topological space S, if there is a point x ∈ S
such that for every neighborhood U of u, there is an integer N such that n ≥ N

implies xn ∈ U , then we say that {un} converges to u or u is a limit point of {un}.
Let S and T be topological spaces with ϕ : S → T a mapping. ϕ is continuous

at u ∈ S if for every neighborhood V of ϕ(u), there is a neighborhood U of u such

that ϕ(U) ⊂ V . Furthermore, if ϕ is continuous at any point u in S, ϕ is called a

continuous mapping.

Theorem 3.1.1 Let R, S and T be topological spaces. If f : R→ S and g : S → T

are continuous at x ∈ R and f(x) ∈ S, then the composition mapping gf : R → T

is also continuous at x.

Proof Since f and g are respective continuous at x ∈ R and f(x) ∈ S, for

any open neighborhood W of point g(f(x)) ∈ T , g−1(W ) is opened neighborhood of

f(x) in S. Whence, f−1(g−1(W )) is an opened neighborhood of x in R by definition.

Therefore, g(f) is continuous at x. �

The following result, usually called Gluing Lemma, is very useful in constructing

continuous mappings on a union of spaces.

Theorem 3.1.2 Assume that a space X is a finite union of closed subsets: X =
n⋃
i=1

Xi. If for some space Y , there are continuous maps fi : Xi → Y that agree on

overlaps, i.e., fi|Xi

⋂
Xj

= fj |Xi

⋂
Xj

for all i, j, then there exists a unique continuous

f : X → Y with f |Xi
= fi for all i.

Proof Obviously, the mapping f defined by

f(x) = fi(x), x ∈ Xi

is the unique well defined mapping from X to Y with restrictions f |Xi
= fi hold for

all i. So we only need to establish the continuity of f on X. In fact, if U is an open

set in Y , then

f−1(U) = X
⋂

f−1(U) = (
n⋃

i=1

Xi)
⋂

f−1(U)

=

n⋃

i=1

(Xi

⋂
f−1(U)) =

n⋃

i=1

(Xi

⋂
f−1
i (U)) =

n⋃

i=1

f−1
i (U).

By assumption, each fi is continuous. We know that f−1
i (U) is open in Xi.

Whence, f−1(U) is open in X, i.e., f is continuous on X. �
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A collection C ⊂ 2X is called a cover of X if

⋃
C∈C

C = X.

If each set in C is open, C is called an opened cover and if |C| is finite, it is called a

finite cover ofX. A topological space is compact if there exists a finite cover in its any

opened cover and locally compact if it is Hausdorff with a compact neighborhood for

its each point. As a consequence of Theorem 3.1.2, we can apply the gluing lemma

to ascertain continuous mappings shown in the next.

Corollary 3.1.1 Let {A1, A2, · · · , An} be a finite opened cover. If a mapping f :

X → Y is continuous constrained on each Ai, 1 ≤ i ≤ n, then f is a continuous

mapping.

Let S and T be two topological spaces. We say that S is homeomorphic to

T if there is a 1 − 1 continuous mapping ϕ : S → T such that its inverse ϕ−1 :

T → S is also continuous. Such mapping ϕ is called a homeomorphic or topological

mapping. An invariant of topological spaces is said topological invariant if it is not

variable under homeomorphic mappings. In topology, a fundamental problem is to

classify topological spaces, or equivalently, to determine wether two given spaces are

homeomorphic. Certainly, we have known many homeomorphic spaces, particularly,

spaces shown in the following example.

Example 3.1.2 Each of the following topological space pairs are homeomorphic.

(1) A Euclidean space Rn and an opened unit n-ball Bn = {(x1, x2, · · · , xn)|x2
1+

x2
2 + · · ·+ x2

n < 1};
(2) A Euclidean plane R2 and a unit sphere S2 = {(x, y, z)|x2 + y2 + z2 = 1}

with one point (x0, y0, z0) on it removed;

(3) A unit circle with an equilateral triangle.

For example, a homeomorphic mapping f from Bn to Rn for case (1) is defined

by

f(x1, x2, · · · , xn) =
(x1, x2, · · · , xn)

1−
√
x2

1 + x2
2 + · · ·+ x2

n

for ∀(x1, x2, · · · , xn) ∈ Bn with an inverse

f−1(x1, x2, · · · , xn) =
(x1, x2, · · · , xn)

1 +
√
x2

1 + x2
2 + · · ·+ x2

n
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for ∀(x1, x2, · · · , xn) ∈ Rn.

Let (x0, y0, z0) be the north pole with coordinate (0, 0, 1) and the Euclidean

plane R2 be a plane containing the circle { (x, y) | x2 + y2 = 1}. Then a homeo-

morphic mapping g from S2 to R2 is defined by

g(x, y, z) = (
x

1− z ,
y

1− z ).

for case (2). Readers are required to find a homeomorphic mapping for case (3).

3.1.2 Metric Space. A metric space (M ; ρ) is a set M associated with a metric

function ρ : M ×M → R+ = {x | x ∈ R, x ≥ 0} with conditions following for ρ hold

for ∀x, y, z ∈M .

(1)(definiteness) ρ(x, y) = 0 if and only if x = y;

(ii)(symmetry) ρ(x, y) = ρ(y, x);

(iii)(triangle inequality) ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

For example, the standard metric function on a Euclidean space Rn is defined

by

ρ(x,y) =

√√√√
n∑

i=1

(xi − yi)

for ∀x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) ∈ Rn.

Let (M ; ρ) be a metric space. For a given number ǫ > 0 and ∀p ∈ M , the

ǫ− disk on p is defined by

Dǫ(p) = { q ∈M | ρ(q, p) < ǫ }.

A metric topology on (M ; ρ) is a collection of unions of such disks. Indeed, it

is really a topology on M with conditions (T1)-(T3) hold.

In fact, the conditions (T1) and (T2) are clearly hold. For the condition (T3), let

x ∈ Dǫ1(x1)∩Dǫ2(x2) and 0 < ǫx = min{ǫ1− ρ(x, x1), ǫ2− ρ(x, x2)}. ThenDǫx(x) ⊂
Dǫ1(x1) ∩Dǫ2(x2) since for ∀y ∈ Dǫx(x),

ρ(y, x1) ≤ ρ(y, x) + ρ(x, x1) < ǫx + ρ(x, x1) < ǫ1.

Similarly, we know that ρ(y, x) < ǫ2. Therefore, Dǫx(x) ⊂ Dǫ1(x1) ∩ Dǫ2(x2),

we find that

Dǫ1(x1) ∩Dǫ2(x2) =
⋃

x∈Dǫ1(x1)∩Dǫ2 (x2)

Dǫx(x),
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i.e., it enables the condition (T3) hold.

Let (M ; ρ) be a metric space. For a point x ∈M and A ⊂M , define ρ(x,A) =

inf{d(x, a)|a ∈ A} if A 6= ∅, otherwise, ρ(x, ∅) = ∞. The diameter of a set A ⊂ M

is defined by diam(A) = sup{ρ(x, y)|x, y ∈ A}. Now let x1, x2, · · · , xn, · · · be a point

sequence in a metric space (M ; ρ). If there is a point x ∈M such that for every ǫ > 0

there is an integer N implies that ρ(xn, x) < ǫ providing n ≥ N , then we say the

sequence {xn} converges to x or x is a limit point of {xn}, denoted by lim
n→∞

xn = x.

The following result, called Lebesgue lemma, is a useful result in metric spaces.

Theorem 3.1.3(Lebesgue Lemma) Let {Vα|α ∈ Π} be an opened cover of a compact

metric space (M ; ρ). Then there exists a positive number λ such that each subset A

of diameter less than λ is contained in one of member of {Vα|α ∈ Π}. The number

λ is called the Lebesgue number.

Proof The proof is by contradiction. If there no such Lebesgue number λ,

choosing numbers ǫ1, ǫ2, · · · with lim
n→∞

ǫn = 0, we con construct a sequence A1 ⊃
A2 ⊃ · · · with diameter diam(An) = ǫn, but each An is not a subset of one member

in {Vα|α ∈ Π} for n ≥ 1. Whence, lim
n→∞

diam(An) = 0. Choose a point xn in each

An and x ∈ ⋂
i≥1

Ai. Then lim
n→∞

xn = x.

Now let x ∈ Vα0 and Dǫ(x) an ǫ-disk of x in Vα0 . Since lim
n→∞

diam(An) = 0, let

m be a sufficient large number such that diam(Am) < ǫ/2 and xm ∈ Dǫ/2(x). For

∀y ∈ Am, we find that

ρ(y, x) ≤ ρ(y, xm) + ρ(xm, x)

< diam(Am) +
ǫ

2
< ǫ,

which means that y ∈ Dǫ(x) ⊆ Vα0, i.e., Am ⊆ Vα0 , a contradiction. �

3.1.3 Fundamental Group. A topological space S is connected if there are

no open subspaces A and B such that S = A ∪ B with A,B 6= ∅. A useful way

for characterizing connectedness is by arcwise connectedness. Certainly, topological

spaces are arcwise connected in most cases considered in topology.

Definition 3.1.1 Let S be a topological space and I = [0, 1] ⊂ R. An arc a in S

is a continuous mapping a : I → S with initial point a(0) and end point a(1), and

S is called arcwise connected if every two points in S can be joined by an arc in S.
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An arc a : I → S is a loop based at p if a(0) = a(1) = p ∈ S. A degenerated loop

e : I → x ∈ S, i.e., mapping each element in I to a point x, usually called a point

loop.

For example, let G be a planar 2-connected graph on R2 and S is a topological

space consisting of points on each e ∈ E(G). Then S is a arcwise connected space

by definition. For a circuit C in G, we choose any point p on C. Then C is a loop

ep in S based at p.

Definition 3.1.2 Let a and b be two arcs in a topological space S with a(1) = b(0).

A product mapping a · b of a with b is defined by

a · b(t) =

{
a(2t), if 0 ≤ t ≤ 1

2
,

b(2t− 1), if 1
2
≤ t ≤ 1

and an inverse mapping a = a(1− t) by a.

Notice that a · b : I → S and a : I → S are continuous by Corollary 3.1.1.

Whence, they are indeed arcs by definition, called the product arc of a with b and

the inverse arc of a. Sometimes it is needed to distinguish the orientation of an arc.

We say the arc a orientation preserving and its inverse a orientation reversing.

Now let a, b be arcs in a topological space S. Properties following are hold by

definition.

(P1) a = a;

(P2) b · a = a · b providing ab existing;

(P3) ex = ex, where x = e(0) = e(1).

Definition 3.1.3 Let S be a topological space and a, b : I → S two arcs with

a(0) = b(0) and a(1) = b(1). If there exists a continuous mapping

H : I × I → S

such that H(t, 0) = a(t), H(t, 1) = b(t) for ∀t ∈ I, then a and b are said homotopic,

denoted by a ≃ b and H a homotopic mapping from a to b.

Theorem 3.1.4 The homotopic ≃ is an equivalent relation, i.e, all arcs homotopic

to an arc a is an equivalent arc class, denoted by [a].
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Proof Let a, b, c be arcs in a topological space S, a ≃ b and b ≃ c with homotopic

mappings H1 and H2. Then

(i) a ≃ a if choose H : I × I → S by H(t, s) = a(t) for ∀s ∈ I.
(ii) b ≃ a if choose H(t, s) = H1(t, 1 − s) for ∀s, t ∈ I which is obviously

continuous;

(iii) a ≃ c if choose H(t, s) = H1(x, 2t)) for 0 ≤ t ≤ 1
2

and H2(x, 2t − 1) for
1
2
≤ t ≤ 1 by applying the gluing lemma for the continuity. �

Theorem 3.1.5 Let a, b, c and d be arcs in a topological space S. Then

(i) a ≃ b if a ≃ b;

(ii) a · b ≃ c · d if a ≃ b, c ≃ d with a · c an arc.

proof Let H1 be a homotopic mapping from a to b. Define a continuous mapping

H ′ : I × I → S by H ′(t, s) = H1(1 − t, s) for ∀t, s ∈ I. Then we find that

H ′(t, 0) = a(t) and H ′(t, 1) = b(t). Whence, we get that a ≃ b, i.e., the assertion

(i).

For (ii), let H2 be a homotopic mapping from c to d. Define a mapping H :

I × I → S by

H(t, s) =

{
H1(2t, s), if 0 ≤ t ≤ 1

2
,

H2(2t− 1, s), if 1
2
≤ t ≤ 1.

Notice that a(1) = c(0) and H1(1, s) = a(1) = c(0) = H2(0, s). Applying

Corollary 3.1.1, we know that H is continuous. Therefore, a · b ≃ c · d. �

Definition 3.1.4 For a topological space S and x0 ∈ S, let π1(S, x0) be a set con-

sisting of equivalent classes of loops based at x0. Define an operation ◦ in π1(S, x0)

by

[a] ◦ [b] = [a · b] and [a]−1 = [a−1].

Then we know that π1(S, x0) is a group shown in the next.

Theorem 3.1.6 π1(S, x0) is a group.

Proof We check each condition of a group for π1(S, x0). First, it is closed under

the operation ◦ since [a] ◦ [b] = [a · b] is an equivalent class of loop a · b based at x0

for ∀[a], [b] ∈ π1(S, x0).
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Now let a, b, c : I → S be three loops based at x0. By Definition 3.1.2, we know

that

(a · b) · c(t) =





a(4t), if 0 ≤ t ≤ 1
4
,

b(4t− 1), if 1
4
≤ t ≤ 1

2
,

c(2t− 1), if 1
2
≤ t ≤ 1.

and

a · (b · c)(t) =





a(2t), if 0 ≤ t ≤ 1
2
,

b(4t− 2), if 1
2
≤ t ≤ 3

4
,

c(4t− 3), if 3
4
≤ t ≤ 1.

Consider a function H : I × I → S defined by

H(t, s) =





a( 4t
1+s

), if 0 ≤ t ≤ s+1
4
,

b(4t− 1− s), if s+1
4
≤ t ≤ s+2

4
,

c(1− 4(1−t)
2−s

), if s+2
4
≤ t ≤ 1.

Then H is continuous by applying Corollary 3.1.1, H(t, 0) = ((a · b) · c)(t) and

H(t, 1) = (a · (b · c))(t). Consequently, we know that ([a] ◦ [b]) ◦ [c] = [a] ◦ ([b] ◦ [c]).

Now let ex0 : I → x0 ∈ S be the point loop at x0. Then it is easily to check

that

a · a ≃ ex0 , a · a ≃ ex0

and

ex0 · a ≃ a, a · ex0 ≃ a.

We conclude that π1(S, x0) is a group with a unit [ex0 ] and an inverse element

[a−1] for any [a] ∈ π1(S, x0) by definition. �

Let S be a topological space, x0, x1 ∈ S and £ an arc from x0 to x1. For

∀[a] ∈ π1(S, x0), we know that £ ◦ [a] ◦ £−1 ∈ π1(S, x1) (see Fig.3.1.1 below).

Whence, the mapping £# = £ ◦ [a] ◦£−1 : π1(S, x0)→ π1(S, x1).� *
x0

x1

£

[a]

Fig.3.1.1
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Theorem 3.1.7 Let S be a topological space. If x0, x1 ∈ S and £ is an arc from x0

to x1 in S, then π1(S, x0) ∼= π1(S, x1).

Proof We have known that £# : π1(S, x0) → π1(S, x1). Now for [a], [b] ∈
π1(S, x0), [a] 6= [b], we find that

£#([a]) = £ ◦ [a] ◦£−1 6= £ ◦ [b] ◦£−1 = £#([b]),

i.e., £# is a 1− 1 mapping. Let [c] ∈ π1(S, x0). Then

£#([a]) ◦£#([c]) = £ ◦ [a] ◦£−1 ◦£ ◦ [b] ◦£−1 = £ ◦ [a] ◦ ex1 ◦ [a] ◦£−1

= £ ◦ [a] ◦ [b] ◦£−1 = £#([a] ◦ [b]).

Therefore, £# is a homomorphism.

Similarly, £−1
# = £−1◦[a]◦£ is also a homomorphism from π1(S, x1) to π1(S, x0)

and £−1
# ◦£# = [ex1 ], £# ◦£−1

# = [ex0 ] are the identity mappings between π1(S, x0)

and π1(S, x1). Whence, £# is an isomorphism. �

Theorem 3.1.7 implies that all fundamental groups in an arcwise connected

space S are isomorphic, i.e., independent on the choice of base point x0. Whence,

we can denote its fundamental group by π1(S). Particularly, if π1(S) = {[ex0 ]}, S is

called a simply connected space. The Euclidean space Rn and n-ball Bn for n ≥ 2

are well-known examples of simply connected spaces.

For a non-simply connected space S, to determine its fundamental group is com-

plicated. For example, the fundamental group of n-sphere Sn = { (x1, x2, · · · , xn) | x2
1+

x2
2 + · · ·+ x2

n = 1 } is

π1(S
n) =

{
ex0, if n ≥ 2,

Z, if n = 2,

seeing [Amr1] or [Mas1] for details.

Theorem 3.1.8 Let G be an embedded graph on a topological space S and T a

spanning tree in G. Then π1(G) = 〈 T + e | e ∈ E(G \ T ) 〉.

Proof We prove this assertion by induction on the number of n = |E(T )|. If

n = 0, G is a bouquet, then each edge e is a loop itself. A closed walk on G is a

combination of edges e in E(G), i.e., π1(G) = 〈 e | e ∈ E(G) 〉 in this case.
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Assume the assertion is true for n = k, i.e., π1(G) = 〈 T + e | e ∈ E(G) \ {e} 〉.
Consider the case of n = k + 1. For any edge ê ∈ E(T ), we consider the embedded

graph G/ê, which means continuously to contract ê to a point v in S. A closed walk

on G passes or not through ê in G is homotopic to a walk passes or not through v in

G/ê for κ(T ) = 1. Therefore, we conclude that π1(G) = 〈 T + e | e ∈ E(G) \ {e} 〉
by the induction assumption. �

3.1.4 Seifert and Van-Kampen Theorem. Calculating fundamental groups of

topological spaces is a hard work. Until today, the useful tool for finding fundamental

groups of spaces is still the well-known Seifert and Van-Kampen theorem following.

Theorem 3.1.9 (Seifert and Van-Kampen) Let X = U ∪V with U, V open subsets

and let X, U, V , U ∩ V be non-empty arcwise-connected with x0 ∈ U ∩ V and H a

group. If there are homomorphisms

φ1 : π1(U, x0)→ H and φ2 : π1(V, x0)→ H

and

π1(U ∩ V, x0)

π1(U, x0)

π1(X, x0)

π1(V, x0)

H

-
-

?6- -i1

i2

φ1

φ2

?6j1
j2

Φ

with φ1 · i1 = φ2 · i2, where i1 : π1(U ∩ V, x0) → π1(U, x0), i2 : π1(U ∩ V, x0) →
π1(V, x0), j1 : π1(U, x0) → π1(X, x0) and j2 : π1(V, x0) → π1(X, x0) are homomor-

phisms induced by inclusion mappings, then there exists a unique homomorphism

Φ : π1(X, x0)→ H such that Φ · j1 = φ1 and Φ · j2 = φ2.

Applying Theorem 3.1.9, it is easily to determine the fundamental group of

such spaces X = U ∪ V with U ∩ V an arcwise connected following.

Theorem 3.1.10 (Seifert and Van-Kampen, classical version) Let spaces X,U, V
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and x0 be in Theorem 1.1. If

j : π1(U, x0) ∗ π1(V, x0)→ π1(X, x0)

is an extension homomorphism of j1 and j2, then j is an epimorphism with kernel

Kerj generated by i−1
1 (g)i2(g), g ∈ π1(U ∩ V, x0), i.e.,

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0)[

i−1
1 (g) · i2(g)| g ∈ π1(U ∩ V, x0)

] ,

where [A], A ⊂ G denotes the minimal normal subgroup of a group G included A.

The complete proofs of Theorems 3.1.9 and 3.1.10 can be found in the reference

[Mas1]. Corollaries following is appropriate in practical applications.

Corollary 3.1.2 Let X1, X2 be two open sets of a topological space X with X =

X1 ∪ X2, X2 simply connected and X,X1 and X0 = X1 ∩ X2 non-empty arcwise

connected, then for ∀x0 ∈ X0,

π1(X, x0) ∼=
π1(X1, x0)

[ (i1)π([a])|[a] ∈ π1(X0, x0) ]
.

Corollary 3.1.3 Let X1, X2 be two open sets of a topological space X with X =

X1 ∪ X2. If there X,X1, X2 are non-empty arcwise connected and X0 = X1 ∩ X2

simply connected, then for ∀x0 ∈ X0,

π1(X, x0) ∼= π1(X1, x0)π1(X2, x0).

Corollary 3.1.3 can be applied to find the fundamental group of an embedded

graph, particularly, a bouquet Bn =

n⋃

i=1

Li consisting of n loops Li, 1 ≤ i ≤ n again

following, which is the same as in Theorem 3.1.8.

Let x0 be the common point in Bn. For n = 2, let U = B2−{x1}, V = B2−{x2},
where x1 ∈ L1 and x2 ∈ L2. Then U ∩ V is simply connected. Applying Corollary

3.1.2, we get that

π1(B2, x0) ∼= π1(U, x0)π1(V, x0) ∼= 〈L1〉 〈L2〉 = 〈L1, L2〉 .

Generally, let xi ∈ Li, Wi = Li − {xi} for 1 ≤ i ≤ n and

U = L1

⋃
W2

⋃
· · ·
⋃

Wn and V = W1

⋃
L2

⋃
· · ·
⋃

Ln.
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Then U
⋂
V = S1.n, an arcwise connected star. Whence,

π1(Bn, O) = π1(U,O) ∗ π1(V,O) ∼= 〈L1〉 ∗ π1(Bn−1, O).

By induction induction, we finally find the fundamental group

π1(Bn, O) = 〈Li, 1 ≤ i ≤ n〉 .

3.1.5 Space Attached with Graphs. A topological graph G is a pair (S, S0) of

a Hausdorff space S with its a subset S0 such that

(1) S0 is discrete, closed subspaces of S;

(2) S − S0 is a disjoint union of open subsets e1, e2, · · · , em, each of which is

homeomorphic to an open interval (0, 1);

(3) The boundary ei−ei of ei consists of one or two points. If ei−ei consists of

two points, then (ei, ei) is homeomorphic to the pair ([0, 1], (0, 1)); if ei− ei consists

of one point, then (ei, ei) is homeomorphic to the pair (S1, S1 − {1});
(4) A subset A ⊂ G is open if and only if A ∩ ei is open for 1 ≤ i ≤ m.

A topological space X attached with a graph G is such a space X ⊙G such that

X
⋂

G 6= ∅, G 6⊂ X

and there are semi-edges e+ ∈ (X
⋂
G) \G, e+ ∈ G \X. An example for X⊙G can

be found in Fig.3.1.2.

X G

u

v

X ⊙G

Fig.3.1.2

Theorem 3.1.11 Let X be arcwise-connected space, G a graph and H the subgraph

X ∩G in X ⊙G. Then for x0 ∈ X ∩G,



104 Chap.3 Smarandache manifolds

π1(X ⊙G, x0) ∼=
π1(X, x0) ∗ π1(G, x0)[

i−1
1 (αeλ

)i2(αeλ
)| eλ ∈ E(H) \ Tspan)

] ,

where i1 : π1(H, x0) → X, i2 : π1(H, x0) → G are homomorphisms induced by

inclusion mappings, Tspan is a spanning tree in H, αλ = AλeλBλ is a loop associated

with an edge eλ = aλbλ ∈ H \ Tspan, x0 ∈ G and Aλ, Bλ are unique paths from x0 to

aλ or from bλ to x0 in Tspan.

Proof This result is an immediately conclusion of the Seifert-Van Kampen

theorem. Let U = X and V = G. Then X ⊙ G = X ∪ G and X ∩ G = H .

By definition, there are both semi-edges in G and H . Whence, they are opened.

Applying the Seifert-Van Kampen theorem, we get that

π1(X ⊙G, x0) ∼=
π1(X, x0) ∗ π1(G, x0)[

i−1
1 (g)i2(g)| g ∈ π1(X ∩G, x0)

] ,

Notice that the fundamental group of a graph H is completely determined by

those of its cycles. Applying Theorem 3.1.8,

π1(H, x0) = 〈αλ|eλ ∈ E(H) \ Tspan〉 ,

where Tspan is a spanning tree in H , αλ = AλeλBλ is a loop associated with an edge

eλ = aλbλ ∈ H \ Tspan, x0 ∈ G and Aλ, Bλ are unique paths from x0 to aλ or from

bλ to x0 in Tspan. We finally get the following conclusion,

π1(X⊙G, x0) ∼=
π1(X, x0) ∗ π1(G, x0)[

i−1
1 (αeλ

)i2(αeλ
)| eλ ∈ E(H) \ Tspan)

] �

Corollary 3.1.4 Let X be arcwise-connected space, G a graph. If X ∩G in X ⊙G
is a tree, then

π1(X ⊙G, x0) ∼= π1(X, x0) ∗ π1(G, x0).

Particularly, if G is graphs shown in Fig.3.1.3 following

x0 x1 xm x0 x1 x2 xm

BT
m STm

Fig.3.1.3
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and X ∩G = K1,m, Then

π1(X ⊙ BT
m, x0) ∼= π1(X, x0) ∗ 〈Li|1 ≤ i ≤ m〉 ,

where Li is the loop of parallel edges (x0, xi) in BT
m for 1 ≤ i ≤ m− 1 and

π1(X ⊙ STm, x0) ∼= π1(X, x0).

Theorem 3.1.12 Let Xm⊙G be a topological space consisting of m arcwise connected

spaces X1, X2, · · · , Xm, Xi ∩ Xj = ∅ for 1 ≤ i, j ≤ m attached with a graph G,

V (G) = {x0, x1, · · · , xl−1}, m ≤ l such that Xi ∩G = {xi} for 0 ≤ i ≤ l − 1. Then

π1(Xm ⊙G, x0) ∼=
(

m∏

i=1

π1(X
∗
i , x0)

)
∗ π1(G, x0)

∼=
(

m∏

i=1

π1(Xi, xi)

)
∗ π1(G, x0),

where X∗
i = Xi

⋃
(x0, xi) with Xi ∩ (x0, xi) = {xi} for (x0, xi) ∈ E(G), integers

1 ≤ i ≤ m.

Proof The proof is by induction on m. If m = 1, the result is hold by Corollary

3.1.4. Now assume the result on Xm ⊙ G is hold for m ≤ k < l − 1. Consider

m = k+1 ≤ l. Let U = Xk⊙G and V = Xk+1. Then we know that Xk+1⊙G = U∪V
and U ∩ V = {xk+1}.

Applying the Seifert-Van Kampen theorem, we find that

π1(Xk+1 ⊙G, xk+1) ∼=
π1(U, xk+1) ∗ π1(V, xk+1)[

i−1
1 (g)i2(g)| g ∈ π1(U ∩ V, xk+1)

]

∼= π1(Xk ⊙G, x0) ∗ π1(Xk+1, xk+1)[
i−1
1 (g)i2(g)| g ∈ {exk+1

}
]

∼=
((

k∏

i=1

π1(X
∗
i , x0)

)
∗ π1(G, x0)

)
∗ π1(Xk+1, xk+1)

∼=
(
k+1∏

i=1

π1(X
∗
i , x0)

)
∗ π1(G, x0)

∼=
(

m∏

i=1

π1(Xi, xi)

)
∗ π1(G, x0),

by the induction assumption. �
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Particularly, for the graph BT
m or star STm in Fig.3.1.3, we get the following

conclusion.

Corollary 3.1.5 Let G be the graph BT
m or star STm. Then

π1(Xm ⊙ BT
m, x0) ∼=

(
m∏

i=1

π1(X
∗
i , x0)

)
∗ π1(B

T
m, x0)

∼=
(

m∏

i=1

π1(Xi, xi−1)

)
∗ 〈Li|1 ≤ i ≤ m〉 ,

where Li is the loop of parallel edges (x0, xi) in BT
m for integers 1 ≤ i ≤ m− 1 and

π1(Xm ⊙ STm, x0) ∼=
m∏

i=1

π1(X
∗
i , x0) ∼=

m∏

i=1

π1(Xi, xi−1).

Corollary 3.1.6 Let X = Xm ⊙ G be a topological space with simply-connected

spaces Xi for integers 1 ≤ i ≤ m and x0 ∈ X ∩G. Then we know that

π1(X, x0) ∼= π1(G, x0).

3.1.6 Generalized Seifert-Van Kampen Theorem. These results shown in

Subsection 3.1.5 enables one to generalize the Seifert-Van Kampen theorem to the

case of U ∩ V maybe not arcwise-connected following.

Theorem 3.1.13 Let X = U ∪ V , U, V ⊂ X be open subsets, X, U, V arcwise

connected and let C1, C2, · · · , Cm be arcwise connected components in U ∩ V for an

integer m ≥ 1, xi−1 ∈ Ci, b(x0, xi−1) ⊂ V an arc : I → X with b(0) = x0, b(1) = xi−1

and b(x0, xi−1)∩U = {x0, xi−1}, CE
i = Ci

⋃
b(x0, xi−1) for any integer i, 1 ≤ i ≤ m,

H a group and there are homomorphisms

φi1 : π1(U
⋃

b(x0, xi−1), x0)→ H, φi2 : π1(V, x0)→ H

such that

π1(C
E
i , x0) π1(X, x0)

π1(U ∪ b(x0, xi−1, x0))

π1(V ), x0)

H

-
-

?6?6- -ii1

ii2

ji1

ji2

φi1

φi2

Φ
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with φi1 · ii1 = φi2 · ii2, where ii1 : π1(C
E
i , x0) → π1(U ∪ b(x0, xi−1), x0), ii2 :

π1(C
E
i , x0)→ π1(V, x0) and ji1 : π1(U∪b(x0, xi−1, x0))→ π1(X, x0), ji2 : π1(V, x0))→

π1(X, x0) are homomorphisms induced by inclusion mappings, then there exists a

unique homomorphism Φ : π1(X, x0) → H such that Φ · ji1 = φi1 and Φ · ji2 = φi2

for integers 1 ≤ i ≤ m.

Proof Define UE = U
⋃{ b(x0, xi) | 1 ≤ i ≤ m − 1}. Then we get that

X = UE ∪ V , UE , V ⊂ X are still opened with an arcwise-connected intersection

UE ∩ V = Xm ⊙ STm, where STm is a graph formed by arcs b(x0, xi−1), 1 ≤ i ≤ m.

Notice that Xm ⊙ SmT =
m⋃
i=1

CE
i and CE

i

⋂
CE
j = {x0} for 1 ≤ i, j ≤ m, i 6= j.

Therefore, we get that

π1(Xm ⊙ STm, x0) =
m⊗

i=1

π1(C
E
i , x0).

This fact enables us knowing that there is a unique m-tuple (h1, h2, · · · , hm), hi ∈
π1(C

E
i , xi−1), 1 ≤ i ≤ m such that

I =

m∏

i=1

hi

for ∀I ∈ π1(Xm ⊙ STm, x0).

By definition,

ii1 : π1(C
E
i , x0)→ π1(U ∩ b(x0, xi−1), x0),

ii2 : π1(C
E
i , x0)→ π1(V, x0)

are homomorphisms induced by inclusion mappings. We know that there are homo-

morphisms

iE1 : π1(Xm ⊙ STm, x0)→ π1(U
E , x0),

iE2 : π1(Xm ⊙ STm, x0)→ π1(V, x0)

with iE1 |π1(CE
i ,x0) = ii1, i

E
2 |π1(CE

i ,x0) = ii2 for integers 1 ≤ i ≤ m.

Similarly, because of

π1(U
E , x0) =

m⋃

i=1

π1(U ∪ b(x0, xi−1, x0))
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and

ji1 : π1(U ∪ b(x0, xi−1, x0))→ π1(X, x0),

ji2 : π1(V → π1(X, x0)

being homomorphisms induced by inclusion mappings, there are homomorphisms

jE1 : π1(U
E , x0)→ π1(X, x0), jE2 : π1(V, x0)→ π1(X, x0)

induced by inclusion mappings with jE1 |π1(U∪b(x0,xi−1,x0)) = ji1, j
E
2 |π1(V,x0) = ji2 for

integers 1 ≤ i ≤ m also.

Define φE1 and φE2 by

φE1 (I ) =

m∏

i=1

φi1(ii1(hi)), φE2 (I ) =

m∏

i=1

φi2(ii2(hi)).

Then they are naturally homomorphic extensions of homomorphisms φi1, φ
i
2 for

integers 1 ≤ i ≤ m. Notice that φi1 · ii1 = φi2 · ii2 for integers 1 ≤ i ≤ m, we get that

φE1 · iE1 (I ) = φE1 · iE1

(
m∏

i=1

hi

)

=
m∏

i=1

(
φi1 · ii1(hi)

)
=

m∏

i=1

(
φi2 · ii2(hi)

)

= φE2 · iE2

(
m∏

i=1

hi

)
= φE2 · iE2 (I ),

i.e., the following diagram

π1(U
E ∩ V, x0)

π1(U
E , x0)

π1(X, x0)

π1(V, x0)

H

-
-

?6- -iE1

iE2

φE1

φE2

?6jE1
jE2

Φ

is commutative with φE1 · iE1 = φE2 · iE2 . Applying Theorem 3.1.9, we know that there

exists a unique homomorphism Φ : π1(X, x0) → H such that Φ · jE1 = φE1 and

Φ · jE2 = φE2 . Whence, Φ · ji1 = φi1 and Φ · ji2 = φi2 for integers 1 ≤ i ≤ m. �
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The following result is a generalization of the classical Seifert-Van Kampen

theorem to the case of maybe non-arcwise connected.

Theorem 3.1.14 Let X, U , V , CE
i , b(x0, xi−1) be arcwise connected spaces for any

integer i, 1 ≤ i ≤ m as in Theorem 3.1.13, UE = U
⋃{ b(x0, xi) | 1 ≤ i ≤ m−1} and

BT
m a graph formed by arcs a(x0, xi−1), b(x0, xi−1), 1 ≤ i ≤ m, where a(x0, xi−1) ⊂ U

is an arc : I → X with a(0) = x0, a(1) = xi−1 and a(x0, xi−1) ∩ V = {x0, xi−1}.
Then

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0) ∗ π1(B

T
m, x0)[

(iE1 )−1(g) · i2(g)| g ∈
m∏
i=1

π1(CE
i , x0)

] ,

where iE1 : π1(U
E ∩ V, x0) → π1(U

E , x0) and iE2 : π1(U
E ∩ V, x0) → π1(V, x0) are

homomorphisms induced by inclusion mappings.

Proof Similarly, X = UE∪V , UE , V ⊂ X are opened with UE∩V = Xm⊙STm.

By the proof of Theorem 3.1.13 we have known that there are homomorphisms φE1

and φE2 such that φE1 · iE1 = φE2 · iE2 . Applying Theorem 3.1.10, we get that

π1(X, x0) ∼=
π1(U

E , x0) ∗ π1(V, x0)

[(iE1 )−1(I ) · iE2 (I )|I ∈ π1(UE ∩ V, x0)]
.

Notice that UE ∩ V E = Xm ⊙ STm. We have known that

π1(U
E , x0) ∼= π1(U, x0) ∗ π1(B

T
m, x0)

by Corollary 3.1.4. As we have shown in the proof of Theorem 3.1.13, an element

I in π1(Xm ⊙ STm, x0) can be uniquely represented by

I =
m∏

i=1

hi,

where hi ∈ π1(C
E
i , x0), 1 ≤ i ≤ m. We finally get that

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0) ∗ π1(B

T
m, x0)[

(iE1 )−1(g) · iE2 (g)| g ∈
m∏
i=1

π1(CE
i , x0)

] . �

The form of elements in π1(Xm⊙STm, x0) appeared in Corollary 3.1.5 enables one

to obtain another generalization of classical Seifert-Van Kampen theorem following.
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Theorem 3.1.15 Let X, U , V , C1, C2, · · · , Cm be arcwise-connected spaces, b(x0, xi−1)

arcs for any integer i, 1 ≤ i ≤ m as in Theorem 3.1.13, UE = U
⋃{ b(x0, xi−1) | 1 ≤

i ≤ m} and BT
m a graph formed by arcs a(x0, xi−1), b(x0, xi−1), 1 ≤ i ≤ m. Then

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0) ∗ π1(B

T
m, x0)[

(iE1 )−1(g) · iE2 (g)| g ∈
m∏
i=1

π1(Ci, xi−1)

] ,

where iE1 : π1(U
E ∩ V, x0) → π1(U

E , x0) and iE2 : π1(U
E ∩ V, x0) → π1(V, x0) are

homomorphisms induced by inclusion mappings.

Proof Notice that UE ∩ V = Xm ⊙ STm. Applying Corollary 3.1.5, replacing

π1(Xm ⊙ STm, x0) =

[
(iE1 )−1(g) · iE2 (g)| g ∈

m∏

i=1

π1(C
E
i , x0)

]

by

π1(Xm ⊙ STm, x0) =

[
(iE1 )−1(g) · iE2 (g)| g ∈

m∏

i=1

π1(Ci, xi−1)

]

in the proof of Theorem 3.1.14. We get this conclusion. �

Particularly, we get corollaries following by Theorems 3.1.13, 3.1.14 and 3.1.15.

Corollary 3.1.7 Let X = U ∪ V , U, V ⊂ X be open subsets and X, U, V and

U ∩ V arcwise connected. Then

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0)[

i−1
1 (g) · i2(g)| g ∈ π1(U ∩ V, x0)

] ,

where i1 : π1(U ∩ V, x0) → π1(U, x0) and i2 : π1(U ∩ V, x0) → π1(V, x0) are homo-

morphisms induced by inclusion mappings.

Corollary 3.1.8 Let X, U , V , Ci, a(x0, xi), b(x0, xi) for integers i, 1 ≤ i ≤ m be

as in Theorem 3.1.13. If each Ci is simply-connected, then

π1(X, x0) ∼= π1(U, x0) ∗ π1(V, x0) ∗ π1(B
T
m, x0).

Proof Notice that CE
1 , C

E
2 , · · · , CE

m are all simply-connected by assumption.

Applying Theorem 3.1.15, we easily get this conclusion. �



Sec.3.1 Topological Spaces 111

Corollary 3.1.9 Let X, U , V , Ci, a(x0, xi), b(x0, xi) for integers i, 1 ≤ i ≤ m be

as in Theorem 3.1.13. If V is simply-connected, then

π1(X, x0) ∼=
π1(U, x0) ∗ π1(B

T
m, x0)[

(iE1 )−1(g) · iE2 (g)| g ∈
m∏
i=1

π1(CE
i , x0)

] ,

where iE1 : π1(U
E ∩ V, x0) → π1(U

E , x0) and iE2 : π1(U
E ∩ V, x0) → π1(V, x0) are

homomorphisms induced by inclusion mappings.

3.1.7 Covering Space. A covering space S̃ of S consisting of a space S̃ with

a continuous mapping p : S̃ → S such that each point x ∈ S has an arcwise

connected neighborhood Ux and each arcwise connected component of p−1(Ux) is

mapped topologically onto Ux by p. An opened neighborhoods Ux that satisfies the

condition just stated is called an elementary neighborhood and p is often called a

projection from S̃ to S.

For example, let p : R→ S1 be defined by

p(t) = (sin(t), cos(t))

for any real number t ∈ R. Then the pair (R, p) is a covering space of the unit

circle S1. In this example, each opened subinterval on S1 serves as an elementary

neighborhood.

Definition 3.1.5 Let S, T be topological spaces, x0 ∈ S, y0 ∈ T and f : (T, y0) →
(S, x0) a continuous mapping. If (S̃, p) is a covering space of S, x̃0 ∈ S̃, x0 = p(x̃0)

and there exists a mapping f l : (T, y0)→ (S̃, x̃0) such that

f = f l ◦ p,

then f l is a lifting of f , particularly, if f is an arc, f l is called a lifting arc.

Theorem 3.1.16 Let (S̃, p) be a covering space of S, x̃0 ∈ X̃ and p(x̃0) = x0.

Then there exists a unique lifting arc f l : I → S̃ with initial point x̃0 for each arc

f : I → S with initial point x0.

Proof If the arc f were contained in an arcwise connected neighborhood U ,

let V be an arcwise connected component of p−1(U) which contains x̃0, then there

would exist a unique f l in V since p topologically maps V onto U by definition.

Now let {Ui} be a covering of S by elementary neighborhoods. Then {f−1(Ui)}
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is an opened cover of the unit interval I, a compact metric space. Choose an integer

n so large that 1/n is less than the Lebesgue number of this cover. We divide the

interval I into these closed subintervals [0, 1/n], [1/n, 2/n], · · · , [(n− 1)/n, 1].

According to Theorem 3.1.3, f maps each subinterval into an elementary neigh-

borhood in {Ui}. Define f l a successive lifting over these subintervals. Its connect-

edness is confirmed by Corollary 3.1.1.

For the uniqueness, assume f l1 and f l2 be two liftings of an arc f : I → S with

f l1(x0) = f l2(x0) at the initial point x0. Denote A = {x ∈ I|f l1(x) = f l2(x)}. We

prove that A = I. In fact, we only need to prove it is both closed and opened.

If A is closed, let x1 ∈ A and x = pf l1(x1) = pf l2(x1). Then f l1(x1) 6= f l2(x1).

We show this will lead to a contradiction. For this object, let U be an elementary

neighborhood of x and V1, V2 the different components of p−1(U) containing f l1(x1)

and f l2(x1), respectively, i.e., V1 ∩ V2 = ∅. For the connectedness of f l1, f
l
2, we can

find a neighborhood W of x1 such that f l1(W ) ⊂ V1 and f l2(W ) ⊂ V2. Applying

the fact that any neighborhood W of x1 must meet A, i.e., f(W ∩ A) ⊂ V0 ∩ V1, a

contradiction. Whence, A is closed.

Similarly, if A is closed, a contradiction can be also find. Therefore, A is both

closed and opened. Since A 6= ∅, we find that A = I, i.e., f l1 = f l2. �

Theorem 3.1.17 Let (S̃, p) be a covering space of S, x̃0 ∈ S̃ and p(x̃0) = x0. Then

(i) the induced homomorphism p∗ : π(S̃, x̃0)→ π(S, x0) is a monomorphism;

(ii) for x̃ ∈ p−1(x0), the subgroups p∗π(S̃, x̃0) are exactly a conjugacy class of

subgroups of π(S, x0).

Proof Applying Theorem 3.1.16, for x̃0 ∈ S and p(x̃0) = x0, there is a unique

mapping on loops from S̃ with base point x̃0 to S with base point x0. Now let

Li : I → S̃, i = 1, 2 be two arcs with the same initial point x̃0 in S̃. We prove that

if pL1 ≃ pL2, then L1 ≃ L2.

Notice that pL1 ≃ pL2 implies the existence of a continuous mapping H :

I × I → S such that H(s, 0) = pl1(s) and H(s, 1) = pL2(s). Similar to the proof

of Theorem 3.1.16, we can find numbers 0 = s0 < s1 < · · · < sm = 1 and 0 = t0 <

t1 < · · · < tn = 1 such that each rectangle [si−1, si] × [tj−1, tj] is mapped into an

elementary neighborhood in S by H .

Now we construct a mapping G : I × I → S̃ with pG = H,G(0, 0) = x̃0 hold
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by the following procedure.

First, we can choose G to be a lifting of H over [0, s1]× [0, t1] since H maps this

rectangle into an elementary neighborhood of p(x̃0). Then we extend the definition

of G successively over the rectangles [si−1, si] × [0, t1] for i = 2, 3, · · · , m by taking

care that it is agree on the common edge of two successive rectangles, which enables

us to get G over the strip I× [0, t1]. Similarly, we can extend it over these rectangles

I × [t1, t2], [t2, t3], · · ·, etc.. Consequently, we get a lifting H l of H , i.e., L1 ≃ L2 by

this construction.

Particularly, If L1 and L2 were two loops, we get the induced monomorphism

homomorphism p∗ : π(S̃, x̃0)→ π(S, x0). This is the assertion of (i).

For (ii), suppose x̃1 and x̃2 are two points of S̃ such that p(x̃1) = p(x̃2) = x0.

Choose a class L of arcs in S̃ from x̃1 to x̃2. Similar to the proof of Theorem 3.1.7,

we know that L = L[a]L−1, [a] ∈ π(S̃, x̃1) defines an isomorphism L : π(S̃, x̃1) →
π(S̃, x̃2). Whence, p∗(π(S̃, x̃1)) = p∗(L)π(S̃, x̃2)p∗(L

−1). Notice that p∗(L) is a loop

with a base point x0. We know that p∗(L) ∈ π(S, x0), i.e., p∗π(S̃, x̃0) are exactly a

conjugacy class of subgroups of π(S, x0). �

Theorem 3.1.18 If (S̃, p) is a covering space of S, then the sets p−1(x) have the

same cardinal number for all x ∈ S.

Proof For any points x1 and x2 ∈ S, choosing an arc f in S with initial point x1

and terminal point x2. Applying f , we can define a mapping Ψ : p−1(x1)→ p−1(x2)

by the following procedure.

For ∀y1 ∈ p−1(x1), we lift f to an arc f l in S̃ with initial point y1 such that

pf l = f . Denoted by y2 the terminal point of f l. Define Ψ(y1) = y2.

By applying the inverse arc f−1, we can define Ψ−1(y2) = y1 in an analogous

way. Therefore, ψ is a 1− 1 mapping form p−1(x1) to p−1(x2). �

The common cardinal number of the sets p−1(x) for x ∈ S is called the number

of sheets of the covering space (S̃, p) on S. If |p−1(x)| = n for x ∈ S, we also say it

is an n-sheeted covering.

We present an example for constructing covering spaces of graphs by voltage

assignment.

Example 3.1.3 Let G be a connected graph and (Γ; ◦) a group. For each edge

e ∈ E(G), e = uv, an orientation on e is an orientation on e from u to v, denoted by
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e = (u, v) , called plus orientation and its minus orientation, from v to u, denoted

by e−1 = (v, u). For a given graph G with plus and minus orientation on its edges,

a voltage assignment on G is a mapping α from the plus-edges of G into a group

Γ satisfying α(e−1) = α−1(e), e ∈ E(G). These elements α(e), e ∈ E(G) are called

voltages, and (G,α) a voltage graph over the group (Γ; ◦).
For a voltage graph (G,α), its lifting Gα = (V (Gα), E(Gα); I(Gα)) is defined

by

V (Gα) = V (G)× Γ, (u, a) ∈ V (G)× Γ abbreviated to ua;

E(Gα) = {(ua, va◦b)|e+ = (u, v) ∈ E(G), α(e+) = b}

and

I(Gα) = {(ua, va◦b)|I(e) = (ua, va◦b) if e = (ua, va◦b) ∈ E(Gα)}.

This is a |Γ|-sheet covering of the graph G. For example, let G = K3 and

Γ = Z2. Then the voltage graph (K3, α) with α : K3 → Z2 and its lifting are shown

in Fig.3.1.4.

u

w

10

0

(G,α)

v

u0

u1

v0

v1

w0

w1

Gα

Fig.3.1.4

We can find easily that there is a unique lifting path in Γl with an initial point

x̃ for each path with an initial point x in Γ, and for ∀x ∈ Γ, |p−1(x)| = 2.

Let (S̃1, p1) and (S̃2, p2) be two covering spaces of S. We say them equivalent

if there is a continuous mapping ϕ : (S̃1, p1) → (S̃2, p2) such that p1 = p2ϕ, par-

ticularly, if ϕ : (S̃, p) → (S̃, p), we say ϕ an automorphism of covering space (S̃, p)

onto itself. If so, according to Theorem 3.1.17, p1∗π(S̃1, x̃1) and p2∗π(S̃1, x̃2) both

are conjugacy classes in π(S, x0). Furthermore, we know the following result.

Theorem 3.1.19 Two covering spaces (S̃1, p1) and (S̃2, p2) of S are equivalent if

and only if for any two points x̃1 ∈ S̃1, x̃2 ∈ S̃2 with p1(x̃1) = p2(x̃2) = x0, these
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subgroups p1∗π(S̃1, x̃1) and p2∗π(S̃1, x̃2) belong to a same conjugacy class in π(S, x0).

3.1.8 Simplicial Homology Group. A n-simplex s = [a1, a2, · · · , an] in a

Euclidean space is a set

s = {
n+1∑
i=1

λiai|λi ≥ 0 and
n+1∑
i=1

λi = 1},

abbreviated to s sometimes, where each ai, 1 ≤ i ≤ n is called a vertex of s and n

the dimensional of s. For two simplexes s1 = [b1, b2, · · · , bm] and s2 = [a1, a2, · · · , an],
if {b1, b2, · · · , bm} ⊂ {a1, a2, · · · , an}, i.e., each vertex in s1 is a vertex of s2, then s1

is called a face of s2, denoted by s1 ≺ s2.

Let K be a collection of simplices. It is called a simplicial complex if

(i) if s, t ∈ K, then s ∩ t is either empty or a common face of s and of t;

(ii) if t ≺ s and s ∈ K, then t ∈ K.

Usually, its underlying space is defined by |K| =
⋃
s∈K

s, i.e., the union of all the

simplexes of K. See Fig.3.1.5 for examples. In other words, an underlying space is

a multi-simplex. The maximum dimensional number of simplex in K is called the

dimensional of K, denoted by dimK.

simplicial complex non-simplicial complex

Fig.3.1.5

A topological space P is a polyhedron if there exists a simplicial complex K

and a homomorphism h : |K| → P. An orientation on a simplicial complex K is

a partial order on its vertices whose restriction on the vertices of any simplex in K

is a linear order. Notice that two orientations on a simplex are the same if their

vertex permutations are different on an even permutation. Whence, there are only

two orientations on a simplex determined by its all odd or even vertex permutations.

Usually, we denote one orientation of s by s denoted by s = a0a1 · · ·an if its vertices
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are a0, a1, · · · , an formally, and another by −s = −a0a1 · · ·an in the context.

Definition 3.1.6 Let K be a simplicial complex with an orientation and Tq(k) all

q-dimensional simplexes in K, where q > 0, an integer. A q-dimensional chain on

K is a mapping c : Tq(K) → Z such that f(−s) = −f(s). The commutative group

generated by all q-chains of K under the addition operation is called a q-dimensional

chain group, denoted by Cq(K).

If there are αq oriented q-dimensional simplexes s1, s2, · · · , sαq
in K, define a

standard chain c0 : Tq(K)→ {1,−1} by c0(si) = 1 and c0(−si) = −1 for 1 ≤ i ≤ αq.

These standard q-dimensional chains c0(s1), c0(s2), · · · , c0(sαq
) are also denoted by

s1, s2, · · · , sαq
if there are no ambiguous in the context. Then a chain c =

αq∑
i=1

c(si)si

for ∀c ∈ Cq(K) by definition.

Definition 3.1.7 A boundary homomorphism ∂q : Cq(K)→ Cq−1(K) on a simplex

s = a0a1, · · ·aq is defined by

∂qs =

q∑

i=0

(−1)ia0a1 · · · âi · · ·aq,

where âi means delete the vertex ai and extending it to ∀c ∈ Cq(K) by linearity, i.e.,

for c =
αq∑
i=1

c(si)si ∈ Cq(K),

∂q(c) =

αq∑

i=1

c(si)∂q(si)

and ∂q(c) = 0 if q ≤ 0 or q > dimK.

For example, we know that ∂1a0a1 = a1−a0 and ∂2a0a1a2 = a1a2−a0a2+a0a1 =

a0a1 + a1a2 + a2a0 for simplexes in Fig.3.1.6.

- - ℄�
a0 a1

-
a0

a1 a2

Fig. 3.1.6



Sec.3.1 Topological Spaces 117

These boundary homomorphisms ∂q have an important property shown in the

next result, which brings about the conception of chain complex.

Theorem 3.1.20 ∂q−1∂q = 0 for ∀q ∈ Z.

Proof We only need to prove that ∂q−1∂q = 0 for ∀s ∈ Tq(K) and 1 ≤ q ≤ dimK.

Assume s = a0a1 · · ·aq. Then by definition, we know that

∂q−1∂qs = ∂q−1(

q∑

i=0

(−1)ia0a1 · · · âi · · ·aq)

=

q∑

i=1

(−1)i∂q−1(a0a1 · · · âi · · ·aq))

=

q∑

i=1

(−1)i(

i−1∑

j=1

(−1)ja0a1 · · · âj · · · âi · · ·aq)

+

q∑

j=i+1

(−1)j−1a0a1 · · · âi · · · âj · · ·aq

=
∑

0≤j<i≤q

(−1)i+ja0a1 · · · âj · · · âi · · ·aq

−
∑

0≤i<j≤q

(−1)i+ja0a1 · · · âi · · · âj · · ·aq

= 0.

This completes the proof. �

A chain complex (C ; ∂) is a sequence of Abelian groups and homomorphisms

0→ · · · → Cq+1
∂q+1→ Cq

∂q→ Cq−1 → · · · → 0

such that ∂q∂q+1 = 0 for ∀q ∈ Z. Whence, Im∂q+1 ⊂ Ker∂q in a chain complex

(C ; ∂).

By Theorem 3.1.20, we know that chain groups Cq(K) with homomorphisms

∂q on a simplicial complex K is a chain complex

0→ · · · → Cq+1(K)
∂q+1→ Cq(K)

∂q→ Cq−1(K)→ · · · → 0.

The simplicial homology group is defined in the next.

Definition 3.1.8 Let K be an oriented simplicial complex with a chain complex

0→ · · · → Cq+1(K)
∂q+1→ Cq(K)

∂q→ Cq−1(K)→ · · · → 0.
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Then Zq(K) = Ker∂q, Bq(K) = Im∂q+1 and Hq = Zq(K)/Bq(K) are called the group

of simplicial q-cycles, the group of simplicial q-boundaries and the qth simplicial

homology group, respectively. An element in Zq(K) or Bq(K) is called q-cycles or

q-boundary.

Generally, we define the qth homology group Hq = Ker∂q/Im∂q+1 in a chain

complex (C ; ∂).

By definition 3.1.8, two q-dimensional chains c and c′ in Cq(K) are called ho-

mologic if they are in the same coset of Bq(K), i.e., c − c′ ∈ Bq(K). Denoted by

c ∼ c′. Notice that a planar triangulation is a simplicial complex K with dimK = 2.

See Fig.3.1.7 for an example.

a

b
c

d

Fig.3.1.7

In this planar graph, abc, abd, acd and bcd are 2-simplexes, called surfaces. Now

define their orientations to be a→ b→ c→ a, a→ b→ d→ a, a→ c→ d→ a and

b→ c→ d→ b. Then c = abc− abd + acd− bcd is a 2-cycle since

∂2c = ∂2(abc)− ∂2(abd) + ∂2(acd)− ∂2(bcd)

= bc− ac+ ab− bd+ ad− ab+ cd− ad+ ac− cd+ bd− bc = 0.

Definition 3.1.9 Let K be an oriented simplicial complex with a chain complex

with αq q-dimensional simplexes, where q = 0, 1, · · · , dimK. The Euler-Poincaré

characteristic χ(K) of K is defined by

χ(K) =

dimK∑

q=0

(−1)qαq.

For example, the Euler -Poincaré characteristic of 2-complex in Fig.3.1.7 is

χ(K) = α2 − α1 + α0 = 4− 6 + 4 = 2.
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Theorem 3.1.21 Let K be an oriented simplicial complex. Then

χ(K) =

dimK∑

q=0

(−1)qrankHq(K),

where rankG denotes the cardinal number of a free Abelian group G.

Proof Consider the chain complex

0→ · · · → Cq+1(K)
∂q+1→ Cq(K)

∂q→ Cq−1(K)→ · · · → 0.

Notice that each Cq(K) is a free Abelian group of rank αq. By definition,

Hq = Zq(K)/Bq(K) = Ker∂q/Im∂q+1. Then

rankHq(K) = rankZq(K)− rankBq(K).

In fact, each basis {B1, B2, · · · , BrankBq(K)} of Bq(K) can be extended to a basis

{Z1, Z2, · · · , ZrankZq(K)} by adding a basis {H1, H2, · · · , HrankHq(K)} of Hq(K).

Applying Corollary 2.2.3, we get that Bq−1(K) ∼= Cq(K)/Zq(K). Whence,

rankBq−1(K) = αq − rankZq(K)

Notice that rankB−1(K) = rankBdimK = 0 by definition, we find that

χ(K) =
dimK∑

q=0

(−1)qαq

=
dimK∑

q=0

(−1)q(rankZq(K) + rankBq−1(K))

=

dimK∑

q=0

(−1)q(rankZq(K)− rankBq(K))

=

dimK∑

q=0

(−1)qrankHq(K). �

3.1.9 Surface. For an integer n ≥ 1, an n-dimensional manifold is a second count-

able Hausdorff space such that each point has an open neighborhood homomorphic

to a Euclidean space Rn of dimension n, abbreviated to n-manifold.

For example, a Euclidean space Rn is itself an n-manifold by definition, and

the n-sphere

Sn = {(x1, x2, · · · , xn+1) ∈ Rn+1|x2
1 + x2

2 + · · ·+ x2
n+1 = 1}
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is also an n-manifold.

Classifying n-manifolds for a given integer n is an important but more complex

object in topology. However, for n = 2, this classification is complete(see [Mas1] for

details), particularly for surfaces, i.e., 2-connected manifolds without boundary.

T.Radó presented a representation for surfaces by proved that there exists a

triangulation {Ti, i ≥ 1} on any surface S in 1925, usually called T.Radó theorem,

which enables one to define a surface combinatorially, i.e., a surface is topological

equivalent to a polygon with even number of edges by identifying each pairs of edges

along a given direction on it. If label each pair of edges by a letter e, e ∈ E , a surface

S is also identifying with a cyclic permutation such that each edge e, e ∈ E just

appears two times in S, one is e and another is e−1. Let a, b, c, · · · denote the letters

in E and A,B,C, · · · the sections of successive letters in a linear order on a surface

S (or a string of letters on S). Then, a surface can be represented as follows:

S = (· · · , A, a, B, a−1, C, · · ·),

where, a ∈ E ,A,B,C denote a string of letters. Define three elementary transfor-

mations as follows:

(O1) (A, a, a−1, B)⇔ (A,B);

(O2) (i) (A, a, b, B, b−1, a−1)⇔ (A, c, B, c−1);

(ii) (A, a, b, B, a, b)⇔ (A, c, B, c);

(O3) (i) (A, a,B, C, a−1, D)⇔ (B, a, A,D, a−1, C);

(ii) (A, a,B, C, a,D)⇔ (B, a, A, C−1, a,D−1).

If a surface S can be obtained from S0 by these elementary transformations

O1-O3, we say that S is elementary equivalent with S0, denoted by S ∼El S0. Then

we can get the classification theorem surfaces.

Theorem 3.1.22 A surface is homeomorphic to one of the following standard sur-

faces:

(P0) the sphere: aa−1;

(Pn) the connected sum of n, n ≥ 1 tori:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·anbna−1
n b−1

n ;

(Qn) the connected sum of n, n ≥ 1 projective planes:
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a1a1a2a2 · · ·anan.

Proof By operations O1 − O3, we can prove that

AaBbCa−1Db−1E ∼El ADCBEaba−1b−1,

AcBcC ∼El AB−1cc,

Accaba−1b−1 ∼El Accaabb.
Applying the inductive method on the cardinality of E , we get the conclusion. �

Now let S be a topological space with a collection C of open sets and ∼S is an

equivalence on points in S. For convenience, denote C[u] = {v ∈ S|v ∼S u} and

S/ ∼S= {C[u]|u ∈ S}. There is a natural mapping p form S to S/ ∼S determined

by p(u) = [u], similar to these covering spaces.

We define a set U in S/ ∼S to be open if p−1(U) ∈ S is opened in S. With

these open sets in S/ ∼s, S/ ∼S become a topological space, called the quotient

space of S under ∼S.
For example, the combinatorial definition of surface is just an application of the

quotient space, i.e., a polygon S with even number of edges under an equivalence

∼S on pairs of edges along a given direction. Some well-known surfaces, such as the

sphere, the torus and Klein Bottle, are shown in Fig.3.1.8.6 -- 6 --6 6 ?6 �- 66 -�
sphere torus projective plane Klein bottle

Fig.3.1.8

Theorem 3.1.23([Mas1-2],[You1]) These fundamental and homology groups of sur-

faces are respective





π1(P0) = 〈1〉 , the trivial group;

π1(Pn) = 〈a1, b1, · · · , an, bn〉 /
〈

n∏
i=1

aibia
−1
i b−1

i

〉
;

π1(Qn) = 〈c1, c2, · · · , cn〉 /
〈

n∏
i=1

cici

〉

and



122 Chap.3 Smarandache manifolds

Hq(Pn) =





Z, q = 0, 2;
2n︷ ︸︸ ︷

Z⊕ Z⊕ · · · ⊕ Z, q = 1;

0, q 6= 0, 1, 2,

Hq(Qn) =





Z, q = 0;
n−1︷ ︸︸ ︷

Z⊕ Z⊕ · · · ⊕ Z⊕Z2, q = 1;

0, q 6= 0, 1,

for any integer n ≥ 0. �

§3.2 EUCLIDEAN GEOMETRY

3.2.1 Euclidean Space. A Euclidean space on a real vector space E over a field

F is a mapping

〈·, ·〉 : E×E→ R with (e1, e2)→ 〈e1, e2〉 for ∀e1, e2 ∈ E

such that for e, e1, e2 ∈ E, α ∈ F

(E1) 〈e, e1 + e2〉 = 〈e, e1〉+ 〈e, e2〉;
(E2) 〈e, αe1〉 = α 〈e, e1〉;
(E3) 〈e1, e2〉 = 〈e2, e1〉;
(E4) 〈e, e〉 ≥ 0 and 〈e, e〉 = 0 if and only if e = 0.

In a Euclidean space E, the number
√
〈e, e〉 is called its norm, denoted by ‖e‖

for abbreviation.

It can be shown that

(i)
〈
0, e
〉

=
〈
e, 0
〉

= 0 for ∀e ∈ E;

(ii)

〈
n∑
i=1

xie
1
i ,

m∑
j=1

yie
2
j

〉
=

n∑
i=1

m∑
i=1

xiyj
〈
e1i , e

2
j

〉
, for esi ∈ E, where 1 ≤ i ≤

max{m,n} and s = 1 or 2.

In fact, let e1 = e2 = 0 in (E1), we find that
〈
e, 0
〉

= 0. Then applying (E3),

we get that
〈
0, e
〉

= 0. This is the formula in (i).



Sec.3.2 Euclidean Geometry 123

For (ii), applying (E1)-(E2), we know that

〈
n∑

i=1

xie
1
i ,

m∑

j=1

yie
2
j

〉
=

m∑

j=1

〈
n∑

i=1

xie
1
i , yie

2
j

〉

=
m∑

j=1

yi

〈
n∑

i=1

xie
1
i , e

2
j

〉

=
m∑

j=1

yi

〈
e2j ,

n∑

i=1

xie
1
i

〉

=

n∑

i=1

m∑

j=1

xiyi
〈
e2j , e

1
i

〉

=
n∑

i=1

m∑

j=1

xiyi
〈
e1i , e

2
j

〉
.

Theorem 3.2.1 Let E be a Euclidean space. Then for ∀e1, e2 ∈ E,

(i) | 〈e1, e2〉 | ≤ ‖e1‖‖e2‖;
(ii) ‖e1 + e2‖ ≤ ‖e1‖+ ‖e2‖.

Proof Notice that the inequality (i) is hold if e1 or e2 = 0. Assume e1 6= 0. Let

x = 〈e1,e2〉
〈e1,e1〉

. Since

〈e2 − xe1, e2 − xe1〉 = 〈e2, e2〉 − 2 〈e1, e2〉 x+ 〈e1, e1〉x2 ≥ 0.

Replacing x by 〈e1,e2〉
〈e1,e1〉

in it, we find that

〈e1, e1〉 〈e2, e2〉 − 〈e1, e2〉2 ≥ 0.

Therefore, we get that

| 〈e1, e2〉 | ≤ ‖e1‖‖e2‖.

For the inequality (ii), applying the inequality (i), we know that

‖ 〈e1, e2〉 ‖2 = 〈e1 + e2, e1 + e2〉
= 〈e1, e1〉+ 2 〈e1, e2〉+ 〈e2, e2〉
= 〈e1, e1〉+ 2| 〈e1, e2〉 |+ 〈e2, e2〉
≤ 〈e1, e1〉+ 2‖ 〈e1, e1〉 ‖‖ 〈e2, e1〉 ‖+ 〈e2, e2〉
= (‖e1‖+ ‖e2‖)2.
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Whence,

‖e1 + e2‖ ≤ ‖e1‖+ ‖e2‖. �

Definition 3.2.1 Let E be a Euclidean space, a, b ∈ E, a 6= 0, b 6= 0. The angle

between a and b are determined by

cos θ =

〈
a, b
〉

‖a‖‖b‖
.

Notice that by Theorem 3.2.1(i), we always have that

−1 ≤
〈
a, b
〉

‖a‖‖b‖
≤ −1.

Whence, the angle between a and b is well-defined.

Definition 3.2.2 Let E be a Euclidean space, x, y ∈ E. x and y are orthogonal

if 〈x, y〉 = 0. If there is a basis e1, e2, · · · , em of E such that e1, e2, · · · , em are

orthogonal two by two, then this basis is called an orthogonal basis. Furthermore, if

‖ei‖ = 1 for 1 ≤ i ≤ m, an orthogonal basis e1, e2, · · · , em is called a normal basis.

Theorem 3.2.2 Any n-dimensional Euclidean space E has an orthogonal basis.

Proof Let a1, a2, · · · , an be a basis of E. We construct an orthogonal basis

b1, b2, · · · , bn of this space. Notice that
〈
b1, b1

〉
6= 0, choose b1 = a1 and let

b2 = a2 −
〈
a2, b1

〉
〈
b1, b1

〉 b1.

Then b2 is a linear combination of a1 and a2 and

〈
b2, b1

〉
=
〈
a2, b1

〉
−
〈
a2, b1

〉
〈
b1, b1

〉
〈
b1, b1

〉
= 0,

i.e., b2 is orthogonal with b1.

Assume we have constructed b1, b2, · · · , bk for an integer 1 ≤ k ≤ n − 1, and

each of which is a linear combination of a1, a2, · · · , ai, 1 ≤ i ≤ k. Notice that
〈
b1, b1

〉
,
〈
b2, b2

〉
, · · · ,

〈
bk−1, bk−1

〉
6= 0. Let

bk = ak −
〈
ak, b1

〉
〈
b1, b1

〉 b1 −
〈
ak, b2

〉
〈
b2, b2

〉 b2 − · · · −
〈
ak, bk−1

〉
〈
bk−1, bk−1

〉bk−1.
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Then bk is a linear combination of a1, a2, · · · , ak−1 and

〈
bk, bi

〉
=

〈
ak, bi

〉
−
〈
ak, b1

〉
〈
b1, b1

〉
〈
b1, bi

〉
− · · · −

〈
ak, bk−1

〉
〈
bk−1, bk−1

〉
〈
bk−1, bi

〉

=
〈
ak, bi

〉
−
〈
ak, bi

〉
〈
bi, bi

〉
〈
bi, bi

〉
= 0

for i = 1, 2, · · · , k − 1. Apply the induction principle, this proof is completes. �

Corollary 3.2.1 Any n-dimensional Euclidean space E has a normal basis.

Proof According to Theorem 3.2.2, any n-dimensional Euclidean space E has

an orthogonal basis a1, a2, · · · , am. Now let e1 = a1

‖a1‖
, e2 = a2

‖a2‖
, · · ·, em = am

‖am‖
.

Then we find that

〈ei, ej〉 =
〈ai, aj〉
‖ai‖‖aj‖

= 0

and

‖ei‖ = ‖ ai
‖ai‖
‖ =
‖ai‖
‖ai‖

= 1

for 1 ≤ i, j ≤ m by definition. Whence, e1, e2, · · · , em is a normal basis. �

Definition 3.2.3 Two Euclidean spaces E1, E2 respectively over fields F1,F2 are

isomorphic if there is a 1− 1 mapping h : E1 → E2 such that for ∀e1, e2 ∈ E1 and

α ∈ F1,

(i) h(e1 + e2) = h(e1) + h(e2);

(ii) h(αe) = αh(e);

(iii) 〈e1, e2〉 = 〈h(e1), h(e2)〉.

Theorem 3.2.3 Two finite dimensional Euclidean spaces E1, E2 are isomorphic if

and only if dimE1 = dimE2.

Proof By Definition 3.2.3, we get dimE1 = dimE2 if E1, E2 are isomorphic.

Now if dimE1 = dimE2, we prove that they are isomorphic. Assume dimE1 =

dimE2 = n. Applying Corollary 3.2.1, choose normal bases a1, a2, · · · , an of E1 and

b1, b2, · · · , bn of E2, respectively. Define a 1− 1 mapping h : E1 → E2 by h(ai) = bi

for 1 ≤ i ≤ n and extend it linearity on E1, we know that

h(

n∑

i=1

xiai) =

n∑

i=1

xih(ai).
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Let
n∑
i=1

xiai and
n∑
i=1

yiai be two elements in E1. Then we find that

〈
n∑

i=1

xiai,

n∑

i=1

yiai

〉
=

n∑

i=1

xiyi

and 〈
h(

n∑

i=1

xiai), h(
n∑

i=1

yiai)

〉
=

n∑

i=1

xiyi.

Therefore, we get that
〈

n∑

i=1

xiai,
n∑

i=1

yiai

〉
=

〈
h(

n∑

i=1

xiai), h(
n∑

i=1

yiai

〉
. �

Notice that the Euclidean space Rn is an n-dimensional space with a normal

basis ǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, · · · , 0), · · ·, ǫn = (0, 0, · · · , 1) if define

〈(x1, x2 · · · , xn), (y1, y2, · · · , yn)〉 =

n∑

i=1

xiyi.

for (x1, x2 · · · , xn), (y1, y2, · · · , yn) ∈ Rn. Consequently, we know the next result.

Corollary 3.2.2 Any n-dimensional Euclidean space E is isomorphic to Rn.

3.2.2 Linear Mapping. For two vector space E1,E2 over fields F1,F2, respec-

tively, a mapping T : E1 → E2 is linear if

T (αa+ b) = αT (a) + T (b)

for ∀a, b ∈ E1 and ∀α ∈ F1.

If F1 = F2 = R, all such linear mappings T from E1 to E2 forms a linear space

over R, denoted by L(E1,E2). It is obvious that L(E1,E2) ⊂ EE1
2 .

Theorem 3.2.4 If dimE1 = n, dimE2 = m, then dimL(E1,E2) = nm.

Proof Let e11, e
1
2, · · · , e1n and e21, e

2
2, · · · , e2m be basis of E1 and E2, respectively.

For each pair (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m, define an element lij ∈ L(E1,E2) with

lij(e
1
i ) = e2j and lij(e

1
k) = 0 if k 6= i.

Then for x =
n∑
i=1

xie
1
i ∈ E1, we have lij(x) = xie

2
j . We prove that lij , 1 ≤ i ≤ n,

1 ≤ j ≤ m consists of a basis of L(E1,E2).
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In fact, if there are numbers xij ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m such that

n∑

i=1

m∑

j=1

xijlij = 0,

then
n∑

i=1

m∑

j=1

xijlij(e
1
i ) = 0(e1i ) = 0

for e1i , 1 ≤ i ≤ n. Whence, we find that

m∑

j=1

xije
2
j = 0.

Since e2
1, e

2
2, · · · , e2m are linearly independent, we get xij = 0 for 1 ≤ j ≤ m.

Therefore, lij , 1 ≤ i ≤ n, 1 ≤ j ≤ m are linearly independent.

Now let f ∈ L(E1,E2). If

f(e1i ) =

m∑

j=1

µije
2
j ,

then

f(e1k) =

m∑

j=1

µkje
2
j =

n∑

i=1

m∑

j=1

µijlij(e
1
k).

By the linearity of f , we get that

f =

m∑

j=1

µkje
2
j =

n∑

i=1

m∑

j=1

µijlij,

i.e., f is linearly spanned by lij, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Consequently, dimL(E1,E2) = nm. �

In L(E,E1), if E1 = R, the linear space L(E,R) consists of linear functionals

f : E → R, is called the dual space of E, denoted by E∗. According to Theorem

3.2.4, we get the next consequence.

Corollary 3.2.3 dimE∗ = dimE.

Now let E1,E2, · · · ,Ek and F be linear spaces over fields F1,F2, · · · ,Fk and

F , respectively, a mapping

T̃ : E1 ×E2 × · · · ×Ek → F
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is called k-multilinear if T̃ is linear in each argument separately, i.e.,

T̃ (e1, · · · , αei + βf i, · · · , ek) = αT̃ (e1, · · · , ei, · · · , ek) + βT̃ (e1, · · · , f i, · · · , ek)

for α, β ∈ Fi, 1 ≤ i ≤ k. All such multilinear mappings also form a vector space,

denoted by L(E1,E2, · · · ,Ek;F). Particularly, if Ei = E for 1 ≤ i ≤ k, this space is

denoted by Lk(E,F).

Let E and F be vector spaces over R. For any integers p, q > 0, the space of

multilinear mappings

T̃ : E∗ × · · · ×E∗

︸ ︷︷ ︸
p

×E× · · · ×E︸ ︷︷ ︸
q

→ F

is called a F-valued tensor. All such tensors are denoted by T p,q(E,F). For the case

F = R, we denote the T p,q(E,R) by T p,q(E).

If u1, u2, · · · , up ∈ E and v∗1, v
∗
2, · · · , v∗q ∈ E∗, then u1⊗· · ·⊗up⊗ v∗1⊗· · ·⊗ v∗q ∈

T p,q(E) is defined by

u1⊗· · ·⊗up⊗v∗1⊗· · ·⊗v∗q(x∗1, · · · , x∗p, y1, · · · , yq) = x∗1(u1) · · ·x∗p(up)v∗1(y1) · · · v∗q(yq).

Let e1, · · · , en be a basis of E and e∗1, · · · , e∗n of its dual E∗. Then similar to

Theorem 3.2.4, we know that any T̃ ∈ T p,q(E) can be uniquely written as

T̃ =
∑

i1,···,ip,j1,···,jq

T
i1,···,ip
j1,···,jq

ei1 ⊗ · · · ⊗ eip ⊗ e∗j1 ⊗ · · · ⊗ e∗jq

for components T
i1,···,ip
j1,···,jq

∈ R.

3.2.3 Differential Calculus on Rn. Let Rn, Rm be Euclidean spaces. For an

opened set U ⊂ Rn, let f : U → Rm be a mapping from U into Rm, i.e.,

f(x1, x2, · · · , xn) = (f 1(x1, x2, · · · , xn), f 2(x1, x2, · · · , xn), · · · , fm(x1, x2, · · · , xn)),

also written it by f = (f 1, f 2, · · · , fm) for abbreviation. Then f is said to be

differentiable at a point x ∈ U if there exists a linear mapping A ∈ L(Rn,Rm) such

that

f(x+ h) = f(x) + Ah + r(h)

with r : U → Rm,

lim
h→0

r(h)

‖h‖
= 0
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for all h ∈ Rn with x+ h ∈ U hold. This linear mapping A is called the differential

of f at x ∈ U , denoted by

A = f ′(x) = df(x).

Furthermore, if f is differentiable at each x ∈ U , the mapping df = f ′ : U →
L(Rn,Rm) determined by x→ df(x) is called the derivative of f in U .

For integers n,m ≥ 1, it is easily to know that a linear mapping T : Rn → Rm

is differentiable at any point x ∈ Rn and if f, g : U → Rm are differentiable at

x ∈ U ⊂ Rn, then

d(f + g)(x) = df(x) + dg(x);

d(fg)(x) = f(x)dg(x) + g(x)df(x);

d(λx) = λdf(x),

where λ ∈ R.

A map f : U ⊂ Rn → Rm is said to have n partial derivatives

Dǫif(x) = lim
t→0

f(x+ tǫi)− f(x)

t
=
df(x+ tǫi)

dt
|t=0, 1 ≤ i ≤ n,

at x ∈ U , if all these n mappings gi(t) = f(x+ tǫi) are differentiable at t = 0. We

usually denote the Dǫif(x) by ∂f
∂xi

(x).

Theorem 3.2.5 Let f : U ⊂ Rn → Rm be a differentiable mapping. The the matrix

of the differential df(x) with respect to the normal bases of Rn and Rm is given by

(Aji ) =




∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

...
...

∂fm

∂x1
(x) · · · ∂fm

∂xn
(x)


 = (

∂f j

∂xi
(x)), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

which is referred to as the Jacobian matrix and its determinant det(∂f
j

∂xi
(x)) the

Jacobian of f at the point x ∈ U , usually denoted by

∂(f 1, · · · , fm)

∂(x1, · · · , xn)
= det(

∂f j

∂xi
(x)).

Proof Let x = (x1, · · · , xn) ∈ U ⊂ Rn, x + h = (x1 + h1, · · · , xn + hn) ∈ U .

Then for such h,

f j(x1 + h1, · · · , xn + hn)− f j(x1, · · · , xn) =

n∑

i=1

Ajihi + rj(h1, · · · , hn).
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Particularly, the choice h = (0, · · · , 0, hi, 0, · · · , 0) enables us to obtain

f j(x1, · · · , xi−1, xi + hi, xi+1, · · · , xn)− f j(x1, · · · , xn)
hi

= Aji + rj(0, · · · , hi, · · · , 0),

which yields that
∂f j

∂xi
(x1, · · · , xn) = Aji

for hi → 0. �

Corollary 3.2.4 Let f : U ⊂ Rn → V ⊂ Rm and g : V → Rp be differentiable

mappings. Then the composite mapping h = gf : U → Rp is also differentiable with

its differential, the chain rule.

dg(x) = dg(f(x))df(x).

Proof Not loss of generality, let f = (f 1, · · · , fm) and g = (g1, · · · , gp) be

differentiable at x ∈ U , y = f(x) and h = (h1, · · · , hp), respectively. Applying the

chain rule on hk = gk(f 1, · · · , fm), 1 ≤ k ≤ p in one variable, we find that

∂hk

∂xi
=

m∑

j=1

∂gk

∂yj

∂f j

∂xi
.

Choose the normal bases of Rn, Rm and Rp. Then by Theorem 3.2.5, we know

that

dh(x) =




∂h1

∂x1
(x) · · · ∂h1

∂xn
(x)

...
...

∂fp

∂x1
(x) · · · ∂fp

∂xn
(x)




=




∂g1

∂y1
(y) · · · ∂g1

∂ym
(y)

...
...

∂gp

∂y1
(y) · · · ∂gp

∂ym
(y)


×




∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

...
...

∂fm

∂x1
(x) · · · ∂fm

∂xn
(x)




= dg(f(x))df(x)

�

For an integer k ≥ 1, a mapping f : U ⊂ Rn → Rm is said to be differentiable

of order k if
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dkf = d(dk−1f) : U ⊂ Rn → Lk(R
n,Rm) = L(Rn, L(Rn, · · · , L(Rn,Rm)));

d0f = f

exists. If dkf is continuous, f is said to be of class Ck and class C∞ if it is of class

Ck for any integer k.

A bijective mapping f : U → V , where U, V ⊂ Rn, is a Ck-diffeomorphism if

f ∈ Ck(U,Rn) and f−1 ∈ Ck(V,Rn). Certainly, a Ck-diffeomorphism mapping is

also a homeomorphism.

For determining a Ck-diffeomorphism mapping, the following implicit function

theorem is usually applicable. Its proof can be found in, for example [AbM1].

Theorem 3.2.6 Let U be an open subset of Rn ×Rm and f : U → Rm a mapping

of class Ck, 1 ≤ k ≤ ∞. If f(x0, y0) = 0 at the point (x0, y0) ∈ U and the m ×m
matrix ∂f j/∂yi(x0, y0) is non-singular, i.e.,

det(
∂f j

∂yi
(x0, y0)) 6= 0, where 1 ≤ i, j ≤ m.

Then there exist opened neighborhoods V of x0 in Rn and W of y0 in Rm and a Ck

mapping g : V →W such that V ×W ⊂ U and for each (x, y) ∈ V ×W ,

f(x, y) = 0⇒ y = g(x).

3.2.4 Differential Form. Let Rn be an Euclidean space with a normal basis

ǫ1, ǫ2, · · · , ǫn. Then ∀x ∈ Rn, there is a unique n-tuple (x1, x2, · · · , xn), xi ∈ R, such

that

x = x1ǫ1 + x2ǫ2 + · · ·+ xnǫn.

For needing in research tangent spaces of differential manifolds in the following

chapters, we consider a vector space

G(Λ) = Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λn

generated by differentials dx1, dx2, · · · , dxn under an operation ∧. Each element in

Λ0 is a real number, and elements in Λ1 have a form

n∑

i=1

ai(x1, x2, · · · , xn)dxi,
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where ai(x1, x2, · · · , xn) is a function on Rn. In the space Λ2, elements have a form

∑

i1<i2

ai1i2(x1, x2, · · · , xn)dxi1 ∧ dxi2 .

Notice that dxi1∧dxi2 = −dxi2∧dxi1 by the definition of ∧. Generally, elements

in Λk, 1 ≤ k ≤ n, have a form

∑

i1<i2<···<ik

ai1i2···ik(x1, x2, · · · , xn)dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

A differential k-form is an element in Λk for 1 ≤ k ≤ n. It is said in class of

C∞ if each function ai1i2···ik(x1, x2, · · · , xn) is of class C∞. By definition, an element

in G(Λ) can be represented as

a(x1, x2, · · · , xn) +

n∑

i=1

ai(x1, x2, · · · , xn)dxi

+
n∑

i1<i2

ai1i2(x1, x2, · · · , xn)dxi1 ∧ dxi2 + · · ·

+

n∑

i1<i2<···<ik

ai1i2···ik(x1, x2, · · · , xn)dxi1 ∧ dxi2 ∧ · · · ∧ dxik + · · ·

+a1,2,···,n(x1, x2, · · · , xn)dx1 ∧ dx2 ∧ · · · ∧ dxn.

An exterior differential operator d : Λk → Λk+1 is defined by

dω =
∑

i1<i2<···<ik

∑

i=1

(
∂ai1i2···ik
∂xi

dxi) ∧ dxi1 ∧ · · · ∧ dxik

for a differential k-form

ω =
∑

i1<i2<···<ik

ai1i2···ik(x1, x2, · · · , xn)dxi1 ∧ dxi2 ∧ · · · ∧ dxik ∈ Λk.

A differential form ω is called to be closed if dω = 0 and exact if there exists a

differential form ̟ such that d̟ = ω. We know that each exact differential form is

closed in the next result.

Theorem 3.2.7 ddω = 0.

Proof Since d is a linear mapping, we only need to prove this claim on a

monomial. Let ω = a(x1, x2, · · · , xn)dxi1 ∧ · · · ∧ dxik . Then

dω =

n∑

i=1

∂a

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxik .
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Therefore, we get that

ddω =
n∑

i=1

d(
∂a

∂xi
)dxi ∧ dxi1 ∧ · · · ∧ dxik

=

n∑

i,j=1

∂2a

∂xi∂xj
dxj ∧ dxi ∧ dxi1 ∧ · · · ∧ dxik

=
n∑

i<j

∂2a

∂xi∂xj
(dxi ∧ dxj + dxj ∧ dxi) ∧ dxi1 ∧ · · · ∧ dxik

= 0

�

3.2.5 Stokes’ Theorem on Simplicial Complex. A standard p-simplex sp in

Rp is defined by

sp = {(x1, · · · , xp) ∈ Rp|
p∑

i=1

xi ≤ 1, 0 ≤ xi ≤ 1 for 0 ≤ i ≤ p}.

Now let ω ∈ Λp be a differential p-form with

ω =
∑

i1<i2<···<ip

ai1i2···ip(x1, x2, · · · , xn)dxi1 ∧ dxi2 ∧ · · · ∧ dxip .

Its integral on sn is defined by

∫

sp

ω =
∑

i1<i2<···<ip

∫
· · ·
∫

︸ ︷︷ ︸
p

ai1i2···ip(x1, x2, · · · , xn)dxi1dxi2 · · · dxip,

where the summands of the right hand expression are ordinary multiple integrals,

and for a chain cp =
∑
i≥1

λis
i
p ∈ Cp(Rp), the integral of ω on cp is determined by

∫

cp

ω =
∑

i≥1

λi

∫

si
p

ω.

Theorem 3.2.8 For any p-chain cp ∈ Cp(Rp), p ≥ 1 and a differentiable (p − 1)-

form ω, ∫

∂cp

ω =

∫

cp

dω.
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Proof By definition, it is suffices to check that
∫

∂sp

ω =

∫

sp

dω

in the case of ω being a monomial, i.e.,

ω = a(x)dx1 ∧ · · · ∧ dx̂j ∧ · · · ∧ dxp
with a fixed j, 1 ≤ j ≤ p on a p-simplex sp = a0a1 · · ·ap. Then we find that

∫

sp

dω =

∫

sp

(

p∑

i=1

∂a

∂xi
dxi) ∧ dx1 ∧ · · · ∧ dx̂j ∧ · · · ∧ dxp

= (−1)j−1

∫

sp

∂a

∂xi
dx1 ∧ · · · ∧ dxp

= (−1)j−1

∫

a
(j)
p−1

[a(B)− a(A)]dx1 · · ·dx̂j · · · dxp,

where a
(j)
p−1 is a (p − 1)-simplex determined by a

(j)
p−1(x1, · · · , x̂j , · · · , xp), a(A) =

a(x1, · · · , xj−1, 0, · · · , xp) and a(B) = a(x1, · · · , xj−1, 1 − (x1 + · · · + x̂j + · · · +
xp), · · · , xp), see Fig.3.2.1 for details. 6

+ -
x1

x2

xj

a0

a1

a2

aj

A

B

Fig.3.2.1

Thus
∫

sp

dω = (−1)j
∫

a
(j)
p−1

a(A)dx1 · · · dx̂j · · · dxp + (−1)j−1

∫

a
(j)
p−1

a(B)dx1 · · · dx̂j · · · dxp

= (−1)j
∫

a
(j)
p−1

ω + (−1)j−1

∫

a
(j)
p−1

a(B)dx1 · · ·dx̂j · · · dxp.
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Let τ be a mapping τ : a0 → aj and ai → ai if i 6= j, which defines a mapping

on coordinates (x1, x2, · · · , xp)→ (xj , x1, · · · , x̂j , · · · , xp). Whence,

∫

a
(0)
p−1

ω =

∫

a
(j)
p−1

a(B)
∂(x1, x2, · · · , xp)

∂(xj , x1, · · · , x̂j, · · · , xp)
dx1 · · ·dx̂j · · · dxp

= (−1)j−1

∫

a
(j)
p−1

a(B)dx1 · · · dx̂j · · · dxp.

Notice that if i 6= 0 or j, then
∫

a
(i)
p−1

ω = 0

Whence, we find that

(−1)j
∫

a
(j)
p−1

ω + (−1)j−1(−1)j−1

∫

a
(0)
p−1

ω =

p∑

i=0

(−1)i
∫

ai
p−1

ω

and ∫

∂sp

ω =

∫

p∑
i=0

(−1)iai
p−1

ω =

p∑

i=0

(−1)i
∫

ai
p−1

ω,

where aip−1 = a0a1 · · · âi · · ·ap. Therefore, we get that

∫

sp

dω = (−1)j
∫

a
(j)
p−1

ω + (−1)j−1

∫

a
(j)
p−1

a(B)dx1 · · · dx̂j · · · dxp

= (−1)j
∫

a
(j)
p−1

ω + (−1)j−1(−1)j−1

∫

a
(0)
p−1

ω =

∫

∂sp

ω.

This completes the proof. �

§3.3 SMARANDACHE N-MANIFOLDS

3.3.1 Smarandache Geometry. Let (M ; ρ) be a metric space, i.e., a geometrical

system. An axiom is said to be Smarandachely denied in (M ; ρ) if this axiom behaves
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in at least two different ways withinM , i.e., validated and invalided, or only invalided

but in multiple distinct ways. A Smarandache geometry is a geometry which has at

least one Smarandachely denied axiom, which was first introduced by Smarandache

in [Sma2] and then a formal definition in [KuA1].

As we known, an axiom system of an Euclid geometry is consisted of five axioms

following:

(E1) there is a straight line between any two points.

(E2) a finite straight line can produce a infinite straight line continuously.

(E3) any point and a distance can describe a circle.

(E4) all right angles are equal to one another.

(E5) if a straight line falling on two straight lines make the interior angles

on the same side less than two right angles, then the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two right angles.

The last axiom (E5) is usually replaced by:

(E5’) given a line and a point exterior this line, there is one line parallel to

this line.

Notice that in a Lobachevshy-Bolyai-Gauss geometry, also called the hyperbolic

geometry, the axiom (E5) is replaced by

(L5) there are infinitely many lines parallel to a given line passing through an

exterior point,

and in a Riemannian geometry, also called the elliptic geometry, the axiom (E5) is

replaced by (R5):

there is no parallel to a given line passing through an exterior point.

There are many ways for constructing Smarandache geometries, particularly, by

denying some axioms in Euclidean geometry done as in Lobachevshy-Bolyai-Gauss

geometry and Riemannian geometry.

For example, let R2 be a Euclidean plane, points A,B ∈ R2 and l a straight

line, where each straight line passes through A will turn 30o degree to the upper

and passes through B will turn 30o degree to the down such as those shown in Fig.

3.3.1. Then each line passing through A in F1 will intersect with l, lines passing

through B in F2 will not intersect with l and there is only one line passing through
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other points does not intersect with l. -- A

B

l

30o

30o

30o

30o

..............

...........
......

............
..............

...........
........

..........
.............

F1

F2

Fig.3.3.1

A nice model on Smarandache geometries, namely s-manifolds on the plane was

found by Iseri in [Ise1], which is defined as follows:

An s-manifold is any collection C(T, n) of these equilateral triangular disks

Ti, 1 ≤ i ≤ n satisfying the following conditions:

(i) each edge e is the identification of at most two edges ei, ej in two distinct

triangular disks Ti, Tj , 1 ≤ i, j ≤ n and i 6= j;

(ii) each vertex v is the identification of one vertex in each of five, six or seven

distinct triangular disks.

The vertices are classified by the number of the disks around them. A vertex

around five, six or seven triangular disks is called an elliptic vertex, an Euclidean

vertex or a hyperbolic vertex, respectively.

* jA A

O
L1 * *

P

L2

63B B
Q

Q

L3
(a) (b) (c)

Fig.3.3.2

In a plane, an elliptic vertex O, a Euclidean vertex P and a hyperbolic ver-

tex Q and an s-line L1, L2 or L3 passes through points O,P or Q are shown in

Fig.3.3.2(a), (b), (c), respectively.

As shown in [Ise1] and [Mao3], there are many ways for constructing a Smaran-

dache geometry, such as those of denial one or more axioms of a Euclidean geometry

by new axiom or its anti-axiom,..., etc.
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3.3.2 Map Geometry. A map geometry is gotten by endowing an angular

function µ : V (M) → [0, 4π) on a map M , which was first introduced in [Mao2] as

a generalization of Iseri’s model on surfaces. In fact, the essence in Iseri’s model

is not these numbers 5, 6 or 7, but in these angles 300o, 360o and 420o on vertices,

which determines a vertex is elliptic, Euclidean or hyperbolic on the plane.

Definition 3.3.1 Let M be a combinatorial map on a surface S with each vertex

valency≥ 3 and µ : V (M) → [0, 4π), i.e., endow each vertex u, u ∈ V (M) with

a real number µ(u), 0 < µ(u) < 4π
ρM (u)

. The pair (M,µ) is called a map geometry

without boundary, µ(u) an angle factor on u and orientable or non-orientable if M

is orientable or not.

Certainly, a vertex u ∈ V (M) with ρM(u)µ(u) < 2π, = 2π or > 2π can be

realized in a Euclidean space R3, such as those shown in Fig.3.3.3.

u

u

u

ρM(u)µ(u) < 2π ρM(u)µ(u) = 2π ρM(u)µ(u) > 2π

Fig.3.3.3

A point u in a map geometry (M,µ) is said to be elliptic, Euclidean or hyperbolic

if ρM(u)µ(u) < 2π, ρM (u)µ(u) = 2π or ρM(u)µ(u) > 2π. If µ(u) = 60o, we find

these elliptic, Euclidean or hyperbolic vertices are just the same in Iseri’s model,

which means that these s-manifolds are a special map geometry. If a line passes

through a point u, it must has an angle ρM (u)µ(u)
2

with the entering ray and equal

to 180o only when u is Euclidean. For convenience, we always assume that a line

passing through an elliptic point turn to the left and a hyperbolic point to the right

on the plane.

Theorem 3.3.1 Let M be a map on a locally orientable surface with |M | ≥ 3 and

ρM(u) ≥ 3 for ∀u ∈ V (M). Then there exists an angle factor µ : V (M) → [0, 4π)

such that (M,µ) is a Smarandache geometry by denial the axiom (E5) with axioms
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(E5),(L5) and (R5).

Proof By the assumption ρM (u) ≥ 3, we can always choose an angle factor µ

such that µ(u)ρM(u) < 2π, µ(v)ρM(u) = 2π or µ(w)ρM(u) > 2π for three vertices

u, v, w ∈ V (M), i.e., there elliptic, or Euclidean, or hyperbolic points exist in (M,µ)

simultaneously. The proof is divided into three cases.

Case 1. M is a planar map

Choose L being a line under the map M , not intersection with it, u ∈ (M,µ).

Then if u is Euclidean, there is one and only one line passing through u not inter-

secting with L, and if u is elliptic, there are infinite many lines passing through u

not intersecting with L, but if u is hyperbolic, then each line passing through u will

intersect with L. See for example, Fig.3.3.4 in where the planar graph is a complete

graph K4 on a sphere and points 1, 2 are elliptic, 3 is Euclidean but the point 4

is hyperbolic. Then all lines in the field A do not intersect with L, but each line

passing through the point 4 will intersect with the line L. Therefore, (M,µ) is a

Smarandache geometry by denial the axiom (E5) with these axioms (E5), (L5) and

(R5).

*-
L

L1

L2 A

1

2 3

4
- 3

z
Fig.3.3.4

Case 2. M is an orientable map

According to Theorem 3.1.15 of classifying surfaces, We only need to prove this

assertion on a torus. In this case, lines on a torus has the following property (see

[NiS1] for details):

if the slope ς of a line L is a rational number, then L is a closed line on the

torus. Otherwise, L is infinite, and moreover L passes arbitrarily close to every

point on the torus.
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Whence, if L1 is a line on a torus with an irrational slope not passing through an

elliptic or a hyperbolic point, then for any point u exterior to L1, if u is a Euclidean

point, then there is only one line passing through u not intersecting with L1, and if

u is elliptic or hyperbolic, any m-line passing through u will intersect with L1.

Now let L2 be a line on the torus with a rational slope not passing through an

elliptic or a hyperbolic point, such as the the line L2 shown in Fig.3.3.5, in where

v is a Euclidean point. If u is a Euclidean point, then each line L passing through

u with rational slope in the area A will not intersect with L2, but each line passing

through u with irrational slope in the area A will intersect with L2.-
-

66 66
3 31 1

1

1

2 2
v

u
L2

L

A

Fig.3.3.5

Therefore, (M,µ) is a Smarandache geometry by denial the axiom (E5) with

axioms (E5), (L5) and (R5) in the orientable case.

Case 3. M is a non-orientable map

Similar to the Case 2, we only need to prove this result for the projective plane.

A line in a projective plane is shown in Fig.3.3.6(a), (b) or (c), in where case (a) is

a line passing through a Euclidean point, (b) passing through an elliptic point and

(c) passing through a hyperbolic point.

6 66u

1

1

2

2

22’

2’

6 66� K 66M� 62

2’ 21

1 2’

(a) (b) (c)

2

Fig.3.3.6



Sec.3.3 Smarandache manifolds 141

Let L be a line passing through the center of the circle. Then if u is a Euclidean

point, there is only one line passing through u such as the case (a) in Fig.3.3.7. If v

is an elliptic point then there is an m-line passing through it and intersecting with

L such as the case (b) in Fig.3.3.7. We assume the point 1 is a point such that

there exists a line passing through 1 and 0, then any line in the shade of Fig.3.3.7(b)

passing through v will intersect with L.- --L0 0

1

1 2

2
u - �

....
...

....
....
..

....
....
....
....
....
....
..

....
....
....
. .
....
....
....

................
.....

0 0
1 L

v
L1

2
............

.....- -w

1
2

0 0L

L2

...

(a) (b) (c)

Fig.3.3.7

If w is a Euclidean point and there is a line passing through it not intersecting

with L such as the case (c) in Fig.3.3.7, then any line in the shade of Fig.3.3.7(c)

passing through w will not intersect with L. Since the position of the vertices of

a map M on a projective plane can be choose as our wish, we know (M,µ) is a

Smarandache geometry by denial the axiom (E5) with axioms (E5),(L5) and (R5).

Combining discussions of Cases 1, 2 and 3, the proof is complete. �

These map geometries determined in Theorem 3.3.1 are all without boundary,

which are a generalization of polyhedral geometry, i.e., Riemannian geometry. Gen-

erally, we can also introduce map geometries with deleting some faces, i.e., map

geometries with boundary.

Definition 3.3.2 Let (M,µ) be a map geometry without boundary, faces f1, f2, · · · ,
fl ∈ F (M), 1 ≤ l ≤ φ(M)−1. If S(M)\{f1, f2, · · · , fl} is connected, then (M,µ)−l =

(S(M)\{f1, f2, · · · , fl}, µ) is called a map geometry with boundary f1, f2, · · · , fl, and

orientable or not if (M,µ) is orientable or not, where S(M) denotes the underlying

surface of M .

Similarly, map geometries with boundary can also provide Smarandache ge-

ometries, which is convinced in the following for l = 1.

Theorem 3.3.2 Let M be a map on a locally orientable surface with order≥ 3, vertex

valency≥ 3 and a face f ∈ F (M). Then there is an angle factor µ : V (M)→ [0, 4π)
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such that (M,µ)−1 is a Smarandache geometry by denial the axiom (E5) with these

axioms (E5),(L5) and (R5).

Proof Divide the discussion into planar map, orientable map on a torus and

non-orientable map on a projective plane dependent on M , respectively. Similar

to the proof of Theorem 3.3.1, We can prove (M,µ)−1 is a Smarandache geometry

by denial the axiom (E5) with these axioms (E5),(L5) and (R5) in each case. In

fact, the proof applies here, only need to note that a line in a map geometry with

boundary is terminated at its boundary. �

A Poincaré’s model for hyperbolic geometry is an upper half-plane in which lines

are upper half-circles with center on the x-axis or upper straight lines perpendicular

to the x-axis such as those shown in Fig.3.3.8.

-
L1 L2

L3

L4 L5

L6

Fig.3.3.8

Now let all infinite points be a same point. Then the Poincaré’s model for

hyperbolic geometry turns to a Klein model for hyperbolic geometry which uses a

boundary circle and lines are straight line segment in this circle, such as those shown

in Fig.3.3.9.

L1

L2

L3

Fig.3.3.9

Whence, a Klein’s model is nothing but a map geometry with boundary of 1

face determined by Theorem 3.3.2. This fact convinces us that map geometries with

boundary are a generalization of hyperbolic geometry.
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3.3.3 Pseudo-Euclidean Space. Let Rn be an n-dimensional Euclidean space

with a normal basis ǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, · · · , 0), · · ·, ǫn = (0, 0, · · · , 1). An

orientation
−→
X is a vector

−−→
OX with ‖−−→OX‖ = 1 in Rn, where O = (0, 0, · · · , 0).

Usually, an orientation
−→
X is denoted by its projections of

−−→
OX on each ǫi for 1 ≤

i ≤ n, i.e.,

−→
X = (cos(

−−→
OX, ǫ1), cos(

−−→
OX, ǫ2), · · · , cos(

−−→
OX, ǫn)),

where (
−−→
OX, ǫi) denotes the angle between vectors

−−→
OX and ǫi, 1 ≤ i ≤ n. All possible

orientations
−→
X in Rn consist of a set O .

A pseudo-Euclidean space is a pair (Rn, ω|−→
O

), where ω|−→
O

: Rn → O is a

continuous function, i.e., a straight line with an orientation
−→
O will has an orientation

−→
O+ω|−→

O
(u) after it passing through a point u ∈ E. It is obvious that (E, ω|−→

O
) = E,

namely the Euclidean space itself if and only if ω|−→
O

(u) = 0 for ∀u ∈ E.

We have known that a straight line L passing through a point (x0
1, x

0
2, · · · , x0

n)

with an orientation
−→
O = (X1, X2, · · · , Xn) is defined to be a point set (x1, x2, · · · , xn)

determined by an equation system





x1 = x0
1 + tX1

x2 = x0
2 + tX2

· · · · · · · · · · · ·
xn = x0

n + tXn

for ∀t ∈ R in analytic geometry on Rn, or equivalently, by the equation system

x1 − x0
1

X1
=
x2 − x0

2

X2
= · · · = xn − x0

n

Xn
.

Therefore, we can also determine its equation system for a straight line L in a

pseudo-Euclidean space (Rn, ω). By definition, a straight line L passing through a

Euclidean point x0 = (x0
1, x

0
2, · · · , x0

n) ∈ Rn with an orientation
−→
O = (X1, X2, · · · , Xn)

in (Rn, ω) is a point set (x1, x2, · · · , xn) determined by an equation system





x1 = x0
1 + t(X1 + ω1(x

0))

x2 = x0
2 + t(X2 + ω2(x

0))

· · · · · · · · · · · ·
xn = x0

n + t(Xn + ωn(x
0))
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for ∀t ∈ R, or equivalently,

x1 − x0
1

X1 + ω1(x
0)

=
x2 − x0

2

X2 + ω2(x
0)

= · · · = xn − x0
n

Xn + ωn(x
0)
,

where ω|−→
O

(x0) = (ω1(x
0), ω2(x

0), · · · , ωn(x0)). Notice that this equation system

dependent on ω|−→
O

, it maybe not a linear equation system.

Similarly, let
−→
O be an orientation. A point u ∈ Rn is said to be Euclidean on

orientation
−→
O if ω|−→

O
(u) = 0. Otherwise, let ω|−→

O
(u) = (ω1(u), ω2(u), · · · , ωn(u)).

The point u is elliptic or hyperbolic determined by the following inductive program-

ming.

STEP 1. If ω1(u) < 0, then u is elliptic; otherwise, hyperbolic if ω1(u) > 0;

STEP 2. If ω1(u) = ω2(u) = · · · = ωi(u = 0, but ωi+1(u < 0 then u is elliptic;

otherwise, hyperbolic if ωi+1(u) > 0 for an integer i, 0 ≤ i ≤ n− 1.

Denote these elliptic, Euclidean and hyperbolic point sets by

−→
V eu = { u ∈ Rn | u an Euclidean point },
−→
V el = { v ∈ Rn | v an elliptic point }.
−→
V hy = { v ∈ Rn | w a hyperbolic point }.

Then we get a partition

Rn =
−→
V eu

⋃−→
V el

⋃−→
V hy

on points in Rn with
−→
V eu ∩−→V el = ∅, −→V eu ∩−→V hy = ∅ and

−→
V el ∩−→V hy = ∅. Points in

−→
V el ∩ −→V hy are called non-Euclidean points.

Now we introduce a linear order ≺ on O by the dictionary arrangement in the

following.

For (x1, x2, · · · , xn) and (x′1, x
′
2, · · · , x′n) ∈ O, if x1 = x′1, x2 = x′2, · · · , xl = x′l

and xl+1 < x′l+1 for any integer l, 0 ≤ l ≤ n − 1, then define (x1, x2, · · · , xn) ≺
(x′1, x

′
2, · · · , x′n).

By this definition, we know that

ω|−→
O

(u) ≺ ω|−→
O

(v) ≺ ω|−→
O

(w)

for ∀u ∈ −→V el, v ∈ −→V eu, w ∈ −→V hy and a given orientation
−→
O . This fact enables us to
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find an interesting result following.

Theorem 3.3.3 For any orientation
−→
O ∈ O in a pseudo-Euclidean space (Rn, ω|−→

O
),

if
−→
V el 6= ∅ and

−→
V hy 6= ∅, then

−→
V eu 6= ∅.

Proof By assumption,
−→
V el 6= ∅ and

−→
V hy 6= ∅, we can choose points u ∈ −→V el and

w ∈ −→V hy. Notice that ω|−→
O

: Rn → O is a continuous and (O ,≺) a linear ordered

set. Applying the generalized intermediate value theorem on continuous mappings

in topology, i.e.,

Let f : X → Y be a continuous mapping with X a connected space and Y a

linear ordered set in the order topology. If a, b ∈ X and y ∈ Y lies between f(a) and

f(b), then there exists x ∈ X such that f(x) = y.

we know that there is a point v ∈ Rn such that

ω|−→
O

(v) = 0,

i.e., v is a Euclidean point by definition. �

Corollary 3.3.1 For any orientation
−→
O ∈ O in a pseudo-Euclidean space (Rn, ω|−→

O
),

if
−→
V eu = ∅, then either points in (Rn, ω|−→

O
) is elliptic or hyperbolic.

Certainly, a pseudo-Euclidean space (Rn, ω|−→
O

) is a Smarandache geometry

sometimes explained in the following.

Theorem 3.3.4 A pseudo-Euclidean space (Rn, ω|−→
O

) is a Smarandache geometry

if
−→
V eu,

−→
V el 6= ∅, or

−→
V eu,

−→
V hy 6= ∅, or

−→
V el,
−→
V hy 6= ∅ for an orientation

−→
O in

(Rn, ω|−→
O

).

Proof Notice that ω|−→
O

(u) = 0 is an axiom in Rn, but a Smarandache denied

axiom if
−→
V eu,

−→
V el 6= ∅, or

−→
V eu,

−→
V hy 6= ∅, or

−→
V el,
−→
V hy 6= ∅ for an orientation

−→
O

in (Rn, ω|−→
O

) for ω|−→
O

(u) = 0 or 6= 0 in the former two cases and ω|−→
O

(u) ≺ 0 or

≻ 0 both hold in the last one. Whence, we know that (Rn, ω|−→
O

) is a Smarandache

geometry by definition. �

Notice that there infinite points on a segment of a straight line in Rn. Whence,

a necessary for the existence of a straight line is there exist infinite Euclidean points

in (Rn, ω|−→
O

). We find a necessary and sufficient result for the existence of a curve

C in (Rn, ω|−→
O

) following.
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Theorem 3.3.5 A curve C = (f1(t), f2(t), · · · , fn(t)) exists in a pseudo-Euclidean

space (Rn, ω|−→
O

) for an orientation
−→
O if and only if

df1(t)

dt
|u =

√
(

1

ω1(u)
)2 − 1,

df2(t)

dt
|u =

√
(

1

ω2(u)
)2 − 1,

· · · · · · · · · · · · ,

dfn(t)

dt
|u =

√
(

1

ωn(u)
)2 − 1.

for ∀u ∈ C, where ω|−→
O

= (ω1, ω2, · · · , ωn).

Proof Let the angle between ω|−→
O

and ǫi be θi, 1 ≤ θi ≤ n.

-
66
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7.......................................................................................... .....
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ǫ2
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ω1

ω2

ω3
θ3

θ1 θ2

Fig.3.3.10

Then we know that

cos θi = ωi, 1 ≤ i ≤ n.

According to the geometrical implication of differential at a point u ∈ Rn,

seeing also Fig.3.3.10, we know that

dfi(t)

dt
|u = tgθi =

√
(

1

ωi(u)
)2 − 1
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for 1 ≤ i ≤ n. Therefore, if a curve C = (f1(t), f2(t), · · · , fn(t)) exists in a pseudo-

Euclidean space (Rn, ω|−→
O

) for an orientation
−→
O , then

dfi(t)

dt
|u =

√
(

1

ω2(u)
)2 − 1, 1 ≤ i ≤ n

for ∀u ∈ C. On the other hand, if

dfi(t)

dt
|v =

√
(

1

ω2(v)
)2 − 1, 1 ≤ i ≤ n

hold for points v for ∀t ∈ R, then all points v, t ∈ R consist of a curve C =

(f1(t), f2(t), · · · , fn(t)) in (Rn, ω|−→
O

) for the orientation
−→
O . �

Corollary 3.3.2 A straight line L exists in (Rn, ω|−→
O

) if and only if ω|−→
O

(u) = 0

for ∀u ∈ L and ∀−→O ∈ O.

3.3.4 Smarandache Manifold. For an integer n, n ≥ 2, a Smarandache man-

ifold is a n-manifold that supports a Smarandache geometry. Certainly, there are

many ways for construction of Smarandache manifolds. For example, these pseudo-

Euclidean spaces (Rn, ω|−→
O

) for different homomorphisms ω−→
O

and orientations
−→
O .

We consider a general family of Smarandache manifolds, i.e., pseudo-manifolds

(Mn,Aω) in this section, which is a generalization of n-manifolds.

An n-dimensional pseudo-manifold (Mn,Aω) is a Hausdorff space such that

each points p has an open neighborhood Up homomorphic to a pseudo-Euclidean

space (Rn, ω|−→
O

), where A = {(Up, ϕωp )|p ∈ Mn} is its atlas with a homomorphism

ϕωp : Up → (Rn, ω|−→
O

) and a chart (Up, ϕ
ω
p ).

Theorem 3.3.6 For a point p ∈ (Mn,Aω) with a local chart (Up, ϕ
ω
p ), ϕ

ω
p = ϕp if

and only if ω|−→
O

(p) = 0.

Proof For ∀p ∈ (Mn,Aω), if ϕωp (p) = ϕp(p), then ω(ϕp(p)) = ϕp(p). By

the definition of pseudo-Euclidean space (Rn, ω|−→
O

), this can only happens while

ω(p) = 0. �

A point p ∈ (Mn,Aω) is elliptic, Euclidean or hyperbolic if ω(ϕp(p)) ∈ (Rn, ω|−→
O

)

is elliptic, Euclidean or hyperbolic, respectively. These elliptic and hyperbolic points

also called non-Euclidean points. We get a consequence by Theorem 3.3.6.
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Corollary 3.3.3 Let (Mn,Aω) be a pseudo-manifold. Then ϕωp = ϕp if and only if

every point in Mn is Euclidean.

Theorem 3.3.7 Let (Mn,Aω) be an n-dimensional pseudo-manifold, p ∈ Mn.

If there are Euclidean and non-Euclidean points simultaneously or two elliptic or

hyperbolic points on an orientation
−→
O in (Up, ϕp), then (Mn,Aω) is a Smarandache

n-manifold.

Proof Notice that two lines L1, L2 are said locally parallel in a neighborhood

(Up, ϕ
ω
p ) of a point p ∈ (Mn,Aω) if ϕωp (L1) and ϕωp (L2) are parallel in (Rn, ω|−→

O
). If

these conditions hold for (Mn,Aω), the axiom that there is exactly one line passing

through a point locally parallel a given line is Smarandachely denied since it behaves

in at least two different ways, i.e., one parallel, none parallel, or one parallel, infinite

parallels, or none parallel, infinite parallels, which are verified in the following.

If there are Euclidean and non-Euclidean points in (Up, ϕ
ω
p ) simultaneously, not

loss of generality, we assume that u is Euclidean but v non-Euclidean, ϕωp (v) =

(ω1, ω2, · · · , ωn) with ω1 < 0.

-j 1
L

L1

u

(a)

-- ~
L

L2
v

(b)

Fig.3.3.11

Let L be a line parallel the axis ǫ1 in (Rn, ω|−→
O

). There is only one line Lu

locally parallel to (ϕωp )
−1(L) passing through the point u since there is only one line

ϕωp (Lu) parallel to L in (Rn, ω|−→
O

). However, if ω1 > 0, then there are infinite many

lines passing through u locally parallel to ϕ−1
p (L) in (Up, ϕp) since there are infinite

many lines parallel L in (Rn, ω|−→
O

), such as those shown in Fig.3.3.11(a) in where

each line passing through the point u = ϕωp (u) from the shade field is parallel to L.

But if ω1 > 0, then there are no lines locally parallel to (ϕωp )
−1(L) in (Up, ϕ

ω
p ) since

there are no lines passing through the point v = ϕωp (v) parallel to L in (Rn, ω|−→
O

),

such as those shown in Fig.3.3.11(b).

If there are two elliptic points u, v along a direction
−→
O , consider the plane P

determined by ϕωp (u), ϕ
ω
p (v) with

−→
O in (Rn, ω|−→

O
). Let L be a line intersecting with
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the line ϕωp (u)ϕ
ω
p (v) in P. Then there are infinite lines passing through u locally

parallel to (ϕωp )
−1(L) but none line passing through v locally parallel to ϕ−1

p (L) in

(Up, ϕp) since there are infinite many lines or none lines passing through u = ϕωp (u)

or v = ϕωp (v) parallel to L in (Rn, ω|−→
O

), such as those shown in Fig.3.3.12.--z :
L

L1

L2

u

v

Fig.3.3.12

Similarly, we can also get the conclusion on the case of hyperbolic points. Since

there exists a Smarandachely denied axiom in (Mn,Aω) under these assumptions,

it is indeed a Smarandache manifold. �

Particularly, we have consequences following by Theorem 3.3.7 for pseudo-

Euclidean spaces (Rn, ω|−→
O

).

Corollary 3.3.4 For any integer n ≥ 2, if there are Euclidean and non-Euclidean

points simultaneously or two elliptic or hyperbolic points in an orientation
−→
O in

(Rn, ω|−→
O

), then (Rn, ω|−→
O

) is an n-dimensional Smarandache geometry.

Corollary 3.3.4 partially answers an open problem in [Mao3] for establishing

Smarandache geometries in R3.

Corollary 3.3.5 If there are points p, q ∈ (R3, ω|−→
O

) such that ω|−→
O

(p) 6= (0, 0, 0) but

ω|−→
O

(q) = (0, 0, 0) or p, q are simultaneously elliptic or hyperbolic in an orientation
−→
O in (R3, ω|−→

O
), then (R3, ω|−→

O
) is a Smarandache geometry.

Notice that if there only finite non-Euclidean points in (Mn,Aω), a loop Lp

based at a point p ∈ Mn is still a loop of (Mn,Aω) based at a point p ∈ (Mn,Aω)
and vice versa. Whence, we get the fundamental groups of pseudo-manifolds with

finite non-Euclidean points.

Theorem 3.3.8 Let (Mn,Aω) be a pseudo-manifold with finite non-Euclidean points.

Then

π1(M
n, p) = π1((M

n,Aω), p)

for ∀p ∈ (Mn,Aω). �
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§3.4 DIFFERENTIAL SMARANDACHE MANIFOLDS

3.4.1 Differential Manifold. A differential n-manifold (Mn,A) is an n-manifold

Mn, where Mn =
⋃
i∈I

Ui endowed with a Cr-differential structure A = {(Uα, ϕα)|α ∈
I} on Mn for an integer r with following conditions hold.

(1) {Uα;α ∈ I} is an open covering of Mn;

(2) For ∀α, β ∈ I, atlases (Uα, ϕα) and (Uβ, ϕβ) are equivalent, i.e., Uα
⋂
Uβ = ∅

or Uα
⋂
Uβ 6= ∅ but the overlap maps

ϕαϕ
−1
β : ϕβ(Uα

⋂
Uβ

)→ ϕβ(Uβ) and ϕβϕ
−1
α : ϕβ(Uα

⋂
Uβ

)→ ϕα(Uα)

are Cr;

(3) A is maximal, i.e., if (U, ϕ) is an atlas of Mn equivalent with one atlas in

A, then (U, ϕ) ∈ A.

An n-manifold is smooth if it is endowed with a C∞-differential structure. It

has been known that the base of a tangent space TpM
n of differential n-manifold

(Mn,A) consisting of ∂
∂xi , 1 ≤ i ≤ n for ∀p ∈ (Mn,A). More results on differential

manifolds can be found in [AbM1], [MAR1], [Pet1], [Wes1] or [ChL1] for details.

3.4.2 Differential Smarandache Manifold. For an integer r ≥ 1, a Cr-

differential Smarandache manifold (Mn,Aω) is a Smarandache manifold (Mn,Aω)
endowed with a Cr-differentiable structure A and ω|−→

O
for an orientation

−→
O . A

C∞-Smarandache n-manifold (Mn,Aω) is also said to be a smooth Smarandache

manifold. For pseudo-manifolds, we know their differentiable conditions following.

Theorem 3.4.1 A pseudo-Manifold (Mn,Aω) is a Cr-differential Smarandache

manifold with an orientation
−→
O for an integer r ≥ 1 if conditions following hold.

(1) There is a Cr-differential structure A = {(Uα, ϕα)|α ∈ I} on Mn;

(2) ω|−→
O

is Cr;

(3) There are Euclidean and non-Euclidean points simultaneously or two elliptic

or hyperbolic points on the orientation
−→
O in (Up, ϕp) for a point p ∈Mn.

Proof The condition (1) implies that (Mn,A) is a Cr-differential n-manifold

and conditions (2), (3) ensure (Mn,Aω) is a differential Smarandache manifold by

definitions and Theorem 3.3.7. �



Sec.3.4 Differential Smarandache manifolds 151

3.4.3 Tangent Space on Smarandache Manifold. For a smooth differential

Smarandache manifold (Mn,Aω), a function f : Mn → R is said smooth if for

∀p ∈Mn with a chart (Up, ϕp),

f ◦ (ϕωp )
−1 : ϕωp (Up)→ Rn

is smooth. Denote all such C∞-functions at a point p ∈Mn by ℑp. A tangent vector
−→v at p is a mapping −→v : ℑp → R with conditions following hold.

(1) ∀g, h ∈ ℑp, ∀λ ∈ R, −→v (h+ λh) = −→v (g) + λ−→v (h);

(2) ∀g, h ∈ ℑp,−→v (gh) = −→v (g)h(p) + g(p)−→v (h).

Denote all tangent vectors at a point p ∈ (Mn,Aω) still by TpM
n without am-

biguous and define addition�+�and scalar multiplication�·�for ∀u, v ∈ TpMn, λ ∈
R and f ∈ ℑp by

(u+ v)(f) = u(f) + v(f), (λu)(f) = λ · u(f).

Then it can be shown immediately that TpM
n is a vector space under these two

operations�+�and�·�.

Let p ∈ (Mn,Aω) and γ : (−ε, ε)→ Rn be a smooth curve in Rn with γ(0) = p.

In (Mn,Aω), there are four possible cases for tangent vectors on γ at the point p,

such as those shown in Fig.3.4.1, in where these L-L represent tangent lines.

7 ��6*- p

(a)

	
p+ /) ?�

(b)

7>: sj �-66 p

(c)

1

1

2

2

L

L

1

1

2

2

L

L

1

1

2

2L
L

LN �?̂s� 1

1

2

2
L

p

(d)

Fig.3.4.1

By these positions of tangent lines at a point p on γ, we conclude that there

is one tangent line at a point p on a smooth curve if and only if p is Euclidean in

(Mn,Aω). This result enables us to get the dimensional number of a tangent vector

space TpM
n at a point p ∈ (Mn,Aω).

Theorem 3.4.2 For a point p ∈ (Mn,Aω) with a local chart (Up, ϕp), if there are

exactly s Euclidean directions along ǫi1 , ǫi2 , · · · , ǫis for p, then the dimension of TpM
n
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is

dimTpM
n = 2n− s

with a basis

{ ∂

∂xij
|p | 1 ≤ j ≤ s}

⋃
{ ∂

−

∂xl
|p,

∂+

∂xl
|p | 1 ≤ l ≤ n and l 6= ij, 1 ≤ j ≤ s}.

Proof We only need to prove that

{ ∂

∂xij
|p | 1 ≤ j ≤ s}

⋃
{ ∂

−

∂xl
,
∂+

∂xl
|p | 1 ≤ l ≤ n and l 6= ij , 1 ≤ j ≤ s} (3.4.1)

is a basis of TpM
n. For ∀f ∈ ℑp, since f is smooth, we know that

f(x) = f(p) +
n∑

i=1

(xi − x0
i )
∂ǫif

∂xi
(p)

+
n∑

i,j=1

(xi − x0
i )(xj − x0

j )
∂ǫif

∂xi

∂ǫjf

∂xj
+Ri,j,···,k

for ∀x = (x1, x2, · · · , xn) ∈ ϕp(Up) by the Taylor formula in Rn, where each term in

Ri,j,···,k contains (xi− x0
i )(xj − x0

j ) · · · (xk − x0
k), ǫl ∈ {+,−} for 1 ≤ l ≤ n but l 6= ij

for 1 ≤ j ≤ s and ǫl should be deleted for l = ij , 1 ≤ j ≤ s.

Now let v ∈ TpMn. By the condition (1) of definition of tangent vector at a

point p ∈ (Mn,Aω), we get that

v(f(x)) = v(f(p)) + v(

n∑

i=1

(xi − x0
i )
∂ǫif

∂xi
(p))

+ v(
n∑

i,j=1

(xi − x0
i )(xj − x0

j )
∂ǫif

∂xi

∂ǫjf

∂xj
) + v(Ri,j,···,k).

Similarly, application of the condition (2) in definition of tangent vector at a

point p ∈ (Mn,Aω) shows that

v(f(p)) = 0,
n∑

i=1

v(x0
i )
∂ǫif

∂xi
(p) = 0,

v(
n∑

i,j=1

(xi − x0
i )(xj − x0

j )
∂ǫif

∂xi

∂ǫjf

∂xj
) = 0

and

v(Ri,j,···,k) = 0.
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Whence, we get that

v(f(x)) =
n∑

i=1

v(xi)
∂ǫif

∂xi
(p) =

n∑

i=1

v(xi)
∂ǫi

∂xi
|p(f). (3.4.2)

The formula (3.4.2) shows that any tangent vector v in TpM
n can be spanned

by elements in the set (3.4.1).

All elements in the set (3.4.1) are linearly independent. Otherwise, if there are

numbers a1, a2, · · · , as, a+
1 , a

−
1 , a

+
2 , a

−
2 , · · · , a+

n−s, a
−
n−s such that

s∑

j=1

aij
∂

∂xij
+

∑

i6=i1,i2,···,is,1≤i≤n

aǫii
∂ǫi

∂xi
|p = 0,

where ǫi ∈ {+,−}, then we get that

aij = (

s∑

j=1

aij
∂

∂xij
+

∑

i6=i1,i2,···,is,1≤i≤n

aǫii
∂ǫi

∂xi
)(xij ) = 0

for 1 ≤ j ≤ s and

aǫii = (

s∑

j=1

aij
∂

∂xij
+

∑

i6=i1,i2,···,is,1≤i≤n

aǫii
∂ǫi

∂xi
)(xi) = 0

for i 6= i1, i2, · · · , is, 1 ≤ i ≤ n. Therefore, vectors in the set (3.4.1) is a basis of the

tangent vector space TpM
n at the point p ∈ (Mn,Aω). �

Notice that dimTpM
n = n in Theorem 3.4.2 if and only if all these directions

are Euclidean along ǫ1, ǫ2, · · · , ǫn. We get a consequence by Theorem 3.4.2.

Corollary 3.4.1 Let (Mn,A) be a smooth manifold and p ∈Mn. Then

dimTpM
n = n

with a basis

{ ∂
∂xi
|p | 1 ≤ i ≤ n}.

For ∀p ∈ (Mn,Aω), the dual space T ∗
pM

n is called a co-tangent vector space

at p. Now let f ∈ ℑp, d ∈ T ∗
pM

n and v ∈ TpM
n. The action of d on f , called a

differential operator d : ℑp → R, is defined by

df = v(f).
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Then, we can immediately get the result on its basis of co-tangent vector space

at a point p ∈ (Mn,Aω) similar to Theorem 3.4.2.

Theorem 3.4.3 For any point p ∈ (Mn,Aω) with a local chart (Up, ϕp), if there

are exactly s Euclidean directions along ǫi1 , ǫi2, · · · , ǫis for p, then the dimension of

T ∗
pM

n is

dimT ∗
pM

n = 2n− s

with a basis

{dxij |p | 1 ≤ j ≤ s}⋃{d−xl|p, d+xl|p | 1 ≤ l ≤ n and l 6= ij, 1 ≤ j ≤ s},

where

dxi|p( ∂
∂xj
|p) = δij and dǫixi|p( ∂

ǫi

∂xj
|p) = δij

for ǫi ∈ {+,−}, 1 ≤ i ≤ n.

§3.5 PSEUDO-MANIFOLD GEOMETRY

3.5.1 Pseudo-Manifold Geometry. We introduce Minkowskian norms on these

pseudo-manifolds (Mn,Aω) likewise that in Finsler geometry following.

Definition 3.5.1 A Minkowskian norm on a vector space V is a function F : V → R

such that

(1) F is smooth on V \{0} and F (v) ≥ 0 for ∀v ∈ V ;

(2) F is 1-homogenous, i.e., F (λv) = λF (v) for ∀λ > 0;

(3) for all y ∈ V \{0}, the symmetric bilinear form gy : V × V → R with

gy(u, v) =
∑

i,j

∂2F (y)

∂yi∂yj

is positive definite for u, v ∈ V .

Denote by TMn =
⋃

p∈(Mn,Aω)

TpM
n.

Definition 3.5.2 A pseudo-manifold geometry is a pseudo-manifold (Mn,Aω) en-

dowed with a Minkowskian norm F on TMn.

Then we get the following result.
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Theorem 3.5.1 There are pseudo-manifold geometries.

Proof Consider a Euclidean 2n-dimensional space R2n. Then there exists a

Minkowskian norm F (x) = |x| at least. According to Theorem 3.4.2, the dimension

of TpM
n is Rs+2(n−s) if ω|−→

O
(p) exactly has s Euclidean directions along ǫ1, ǫ2, · · · , ǫn.

Whence there are Minkowskian norms on each chart of points in (Mn,Aω).
Since (Mn,A) has a finite cover {(Uα, ϕα)|α ∈ I}, where I is a finite index set,

by the decomposition theorem for unit, we know that there are smooth functions

hα, α ∈ I such that
∑

α∈I

hα = 1 with 0 ≤ hα ≤ 1.

Choose a Minkowskian norm F α on each chart (Uα, ϕα). Define

Fα =

{
hαF α, if p ∈ Uα,

0, if p 6∈ Uα

for ∀p ∈ (Mn, ϕω). Now let

F =
∑

α∈I

Fα.

Then F is a Minkowskian norm on TMn since it satisfies all of these conditions

(1)− (3) in Definition 3.5.1. �

Although the dimension of each tangent vector space maybe different, we can

also introduce principal fiber bundles and connections on pseudo-manifolds.

Definition 3.5.3 A principal fiber bundle (PFB) consists of a pseudo-manifold

(P,Aω1 ), a projection π : (P,Aω1 ) → (M,Aπ(ω)
0 ), a base pseudo-manifold (M,Aπ(ω)

0 )

and a Lie group G, which is a manifold with group operation G × G → given by

(g, h) → g ◦ h being C∞ mapping, denoted by (P,M, ωπ, G) such that (1), (2) and

(3) following hold.

(1) There is a right freely action of G on (P,Aω1 ), i.e., for ∀g ∈ G, there is a

diffeomorphism Rg : (P,Aω1 ) → (P,Aω1 ) with Rg(p
ω) = pωg for ∀p ∈ (P,Aω1 ) such

that pω(g1g2) = (pωg1)g2 for ∀p ∈ (P,Aω1 ), ∀g1, g2 ∈ G and pωe = pω for some

p ∈ (P,Aω1 ), e ∈ G if and only if e is the identity element of G.

(2) The map π : (P,Aω1 ) → (M,Aπ(ω)
0 ) is onto with π−1(π(p)) = {pg|g ∈ G},

πω1 = ω0π, and regular on spatial directions of p, i.e., if the spatial directions of p
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are (ω1, ω2, · · · , ωn), then ωi and π(ωi) are both elliptic, or Euclidean, or hyperbolic

and |π−1(π(ωi))| is a constant number independent of p for any integer i, 1 ≤ i ≤ n.

(3) For ∀x ∈ (M,Aπ(ω)
0 ) there is an open set U with x ∈ U and a diffeomor-

phism T
π(ω)
u : (π)−1(Uπ(ω))→ Uπ(ω) × G of the form Tu(p) = (π(pω), su(p

ω)), where

su : π−1(Uπ(ω))→ G has the property su(p
ωg) = su(p

ω)g for ∀g ∈ G, p ∈ π−1(U).

We know the following result for principal fiber bundles of pseudo-manifolds.

Theorem 3.5.2 Let (P,M, ωπ, G) be a PFB. Then

(P,M, ωπ, G) = (P,M, π,G)

if and only if all points in pseudo-manifolds (P,Aω1 ) are Euclidean.

Proof For ∀p ∈ (P,Aω1 ), let (Up, ϕp) be a chart at p. Notice that ωπ = π if and

only if ϕωp = ϕp for ∀p ∈ (P,Aω1 ). According to Theorem 3.3.6, this is equivalent to

that all points in (P,Aω1 ) are Euclidean. �

Definition 3.5.4 Let (P,M, ωπ, G) be a PFB with dimG = r. A subspace fam-

ily H = {Hp|p ∈ (P,Aω1 ), dimHp = dimTπ(p)M} of TP is called a connection if

conditions (1) and (2) following hold.

(1) For ∀p ∈ (P,Aω1 ), there is a decomposition

TpP = Hp

⊕
Vp

and the restriction π∗|Hp : Hp → Tπ(p)M is a linear isomorphism.

(2) H is invariant under the right action of G, i.e., for p ∈ (P,Aω1 ), ∀g ∈ G,

(Rg)∗p(Hp) = Hpg.

Similar to Theorem 3.5.2, the conception of connection introduced in Definition

3.5.4 is more general than the popular connection on principal fiber bundles.

Theorem 3.5.3 Let (P,M, ωπ, G) be a PFB with a connection H. For ∀p ∈
(P,Aω1 ), if the number of Euclidean directions of p is λP (p), then

dimVp =
(dimP − dimM)(2dimP − λP (p))

dimP
.

Proof Assume these Euclidean directions of the point p being ǫ1, ǫ2, · · · , ǫλP (p).
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By definition π is regular, we know that π(ǫ1), π(ǫ2), · · · , π(ǫλP (p)) are also Euclidean

in (M,Aπ(ω)
1 ). Now since

π−1(π(ǫ1)) = π−1(π(ǫ2)) = · · · = π−1(π(ǫλP (p))) = µ = constant,

we get that λP (p) = µλM , where λM denotes the correspondent Euclidean directions

in (M,Aπ(ω)
1 ). Similarly, consider all directions of the point p, we also get that

dimP = µdimM . Thereafter

λM =
dimM

dimP
λP (p). (3.5.1)

Now by Definition 3.5.4, TpP = Hp

⊕
Vp, i.e.,

dimTpP = dimHp + dimVp. (3.5.2)

Since π∗|Hp : Hp → Tπ(p)M is a linear isomorphism, we know that dimHp =

dimTπ(p)M . According to Theorem 3.4.2, we get formulae

dimTpP = 2dimP − λP (p)

and

dimTπ(p)M = 2dimM − λM = 2dimM − dimM

dimP
λP (p).

Now replacing these two formulae into (3.5.2), we get that

2dimP − λP (p) = 2dimM − dimM

dimP
λP (p) + dimVp.

That is,

dimVp =
(dimP − dimM)(2dimP − λP (p))

dimP
.

�

We immediately get the following consequence by Theorem 3.5.3.

Corollary 3.5.1 Let (P,M, ωπ, G) be a PFB with a connection H. Then for

∀p ∈ (P,Aω1 ),

dimVp = dimP − dimM

if and only if the point p is Euclidean.

3.5.2 Inclusion in Pseudo-Manifold Geometry. Now we consider conclusions

included in Smarandache geometries, particularly in pseudo-manifold geometries.
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Theorem 3.5.4 A pseudo-manifold geometry (Mn, ϕω) with a Minkowskian norm

on TMn is a Finsler geometry if and only if all points of (Mn, ϕω) are Euclidean.

Proof According to Theorem 3.3.6, ϕωp = ϕp for ∀p ∈ (Mn, ϕω) if and only if

p is Euclidean. Whence, by definition (Mn, ϕω) is a Finsler geometry if and only if

all points of (Mn, ϕω) are Euclidean. �

Corollary 3.5.2 There are inclusions among Smarandache geometries, Finsler ge-

ometry, Riemann geometry and Weyl geometry:

{Smarandache geometries} ⊃ { pseudo-manifold geometries}
⊃ {Finsler geometry} ⊃ {Riemann geometry} ⊃ {Weyl geometry}.

Proof The first and second inclusions are implied in Theorems 3.3.6 and 3.5.3.

Other inclusions are known in a textbook, such as [ChC1] and [ChL1]. �

Now let us to consider complex manifolds. Let zi = xi +
√
−1yi. In fact, any

complex manifold Mn
c is equal to a smooth real manifold M2n with a natural base

{ ∂
∂xi ,

∂
∂yi} for TpM

n
c at each point p ∈ Mn

c . Define a Hermite manifold Mn
c to be

a manifold Mn
c endowed with a Hermite inner product h(p) on the tangent space

(TpM
n
c , J) for ∀p ∈Mn

c , where J is a mapping defined by

J(
∂

∂xi
|p) =

∂

∂yi
|p, J(

∂

∂yi
|p) = − ∂

∂xi
|p

at each point p ∈Mn
c for any integer i, 1 ≤ i ≤ n. Now let

h(p) = g(p) +
√
−1κ(p), p ∈Mm

c .

Then a Kähler manifold is defined to be a Hermite manifold (Mn
c , h) with a closed

κ satisfying

κ(X, Y ) = g(X, JY ), ∀X, Y ∈ TpMn
c , ∀p ∈Mn

c .

Similar to Theorem 3.5.3 for real manifolds, we know the next result.

Theorem 3.5.5 A pseudo-manifold geometry (Mn
c , ϕ

ω) with a Minkowskian norm

on TMn is a Kähler geometry if and only if F is a Hermite inner product on Mn
c

with all points of (Mn, ϕω) being Euclidean.

Proof Notice that a complex manifold Mn
c is equal to a real manifold M2n.

Similar to the proof of Theorem 3.5.3, we get the claim. �
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As a immediately consequence, we get the following inclusions in Smarandache

geometries.

Corollary 3.5.3 There are inclusions among Smarandache geometries, pseudo-manifold

geometry and Kähler geometry:

{Smarandache geometries } ⊃ {pseudo-manifold geometries}
⊃ {Kähler geometry}.

§3.6 REMARKS

3.6.1 These Smarandache geometries were proposed by Smarandache in 1969 by

contradicts axioms (E1) − (E5) in a Euclid geometry, such as those of paradoxist

geometry, non-geometry, counter-projective geometry and anti-geometry, see his pa-

per [Sma2] for details. For example, he asked whether there exists a geometry with

axioms (E1)− (E4) and one of the axioms following:

(i) there are at least a straight line and a point exterior to it in this space for

which any line that passes through the point intersect the initial line.

(ii) there are at least a straight line and a point exterior to it in this space for

which only one line passes through the point and does not intersect the initial line.

(iii) there are at least a straight line and a point exterior to it in this space for

which only a finite number of lines l1, l2, · · · , lk, k ≥ 2 pass through the point and do

not intersect the initial line.

(iv) there are at least a straight line and a point exterior to it in this space for

which an infinite number of lines pass through the point (but not all of them) and

do not intersect the initial line.

(v) there are at least a straight line and a point exterior to it in this space for

which any line that passes through the point and does not intersect the initial line.

A formal definition of Smarandache geometry is presented by Kuciuk and An-

tholy in [KuA1]. Iseri proved s-manifolds constructed by equilateral triangular

disks Ti, 1 ≤ i ≤ n on the plane can indeed produce the paradoxist geometry,

non-geometry, counter-projective geometry and anti-geometry in [Ise1]. For gener-

alizing his idea to surfaces, Mao introduced map geometry on combinatorial maps in
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his postdoctoral report [Mao2], shown that these map geometries also produce these

paradoxist geometry, non-geometry, counter-projective geometry and anti-geometry,

and then introduced the conception of pseudo-plane for general construction of

Smarandache geometries on a Euclidean plane in [Mao3].

3.6.2 There are many good monographs and textbooks on topology and differential

geometry, such as those of [AbM1], [AMR1], [Arm1], [ChL1], [Mas1], [Mas2], [Pet1],

[Rot1], [Sti1], [Wes1] [ChC1] and [ChL1], ..., etc. These materials presented in

Sections 1 and 2 are self-contained for this book. Many conceptions in here will be

used or generalized to combinatorial manifolds in following chapters.

3.6.3 For constructing Smarandache manifolds of dimensional n ≥ 2, Mao first

constructs Smarandache 2-manifolds by applying combinatorial maps on surfaces,

i.e., map geometries in his post-doctoral research in [Mao1-2] and a paper in [Mao4].

Then, he presented a general way for constructing Smarandache manifolds by apply-

ing topological or differential n-manifolds in [Mao11-12]. The material in Sections

3.3− 3.5 is mainly extracted from his paper [Mao12], but with a different handling

way. Certainly, there are many open problems in Smarandache geometries arising

from an analogizing results in Sections 1 and 2. For example, Theorem 3.3.8 is a

such result. The readers are encouraged to find more such results and construct new

Smarandache manifolds different from pseudo-manifolds.

Problem 3.6.1 Define more Smarandache manifolds other than pseudo-manifolds

and find their topological and differential behaviors.

Problem 3.6.2 Define integrations and then generalize Stokes, Gauss,... theorems

on pseudo-manifolds.

Corollaries 3.5.2 and 3.5.3 are interesting results established in [Mao12], which

convince us that Smarandache geometries are indeed a generalization of geometries

already existence. [SCF1] and other papers also mentioned these two results for

reviewing Mao’s work.

Now we consider some well-known results in Riemannian geometry. Let S be

an orientable compact surface. Then
∫ ∫

S

Kdσ = 2πχ(S),

where K and χ(S) are the Gauss curvature and Euler characteristic of S. This
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formula is the well-known Gauss-Bonnet formula in differential geometry on surfaces.

Then what is its counterpart in pseudo-manifold geometries? This need us to solve

problems following.

(1) Find a suitable definition for curvatures in pseudo-manifold geometries.

(2) Find generalizations of the Gauss-Bonnet formula for pseudo-manifold ge-

ometries, particularly, for pseudo-surfaces.

For an oriently compact Riemannian manifold (M2p, g), let

Ω =
(−1)p

22pπpp!

∑

i1,i2,···,i2p

δ
i1,···,i2p

1,···,2p Ωi1i2 ∧ · · · ∧ Ωi2p−1i2p
,

where Ωij is the curvature form under the natural chart {ei} of M2p and

δ
i1,···,i2p

1,···,2p =





1, if permutation i1 · · · i2p is even,

−1, if permutation i1 · · · i2p is odd,

0, otherwise.

Chern proved that (see [ChC1] for details)
∫

M2p

Ω = χ(M2p).

Certainly, these new kind of global formulae for pseudo-manifold geometries are

valuable to find.

3.6.4 These principal fiber bundles and connections considered in Section 3.5 are

very important in theoretical physics. Physicists have established a gauge theory

on principal fiber bundles of Riemannian manifolds, which can be used to unite

gauge fields with gravitation. In section 3.5, we have introduced those on pseudo-

manifolds. For applying pseudo-manifolds to physics, similar consideration should

induces a new gauge theory, which needs us to solving problems following:

to establish a gauge theory on those of pseudo-manifold geometries with some

additional conditions.

In fact, this object requires us to solve problems following:

(1) find these conditions such that we can establish a gauge theory on pseudo-

manifolds;

(2) find the Yang-Mills equation in a gauge theory on pseudo-manifold;

(3) unify these gauge fields and gravitation.



CHAPTER 4.

Combinatorial Manifolds

Something attempted, something done.

By Menander, an ancient Greek dramatist.

A combinatorial manifold is a topological space consisting of manifolds un-

derlying a combinatorial structure, i.e., a combinatorial system of manifolds.

Certainly, it is a Smarandache system and a geometrical multi-space model of

our WORLD. For introducing this kind of geometrical spaces, we discuss its

topological behavior in this chapter, and then its differential behavior in the

following chapters. As a concrete introduction, Section 4.1 presents a calcula-

tion on the dimension of combinatorial Euclidean spaces and the decomposi-

tion of a Euclidean space with dimension≥ 4 to combinatorial Euclidean space

with lower dimensions. This model can be also used to describe spacetime of

dimension≥ 4 in physics. The combinatorial manifold is introduced in Section

4.2. In this section, these topological properties of combinatorial manifold,

such as those of combinatorial submanifold, vertex-edge labeled graphs, com-

binatorial equivalence, homotopy class and Euler-Poincaré characteristic,· · ·,
etc. are discussed. Fundamental groups and singular homology groups of

combinatorial manifolds are discussed in Sections 4.3 and 4.4, in where these

groups are obtained for a few cases by applying some well-known theorems in

classical topology. In Section 4.5, the ordinary voltage graph is generalized

to voltage labeled graph. Applying voltage labeled graph with its lifting, this

section presents a combinatorial construction for regular covering of finitely

combinatorial manifolds, which essentially provides for the principal fibre bun-

dles in combinatorial differential geometry in chapters following.
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§4.1 COMBINATORIAL SPACES

A combinatorial space SG is a combinatorial system CG of geometrical spaces

(Σ1;R1), (Σ2;R2), · · ·, (Σm;Rm) for an integer m with an underlying graph G in

Definition 2.1.3. We concentrated our attention on each (Σi;Ri) being a Euclidean

space for integers i, 1 ≤ i ≤ m in this section.

4.1.1 Combinatorial Euclidean Space. A combinatorial Euclidean space is a

combinatorial system CG of Euclidean spaces Rn1, Rn2, · · ·, Rnm with an underlying

structure G, denoted by EG(n1, · · · , nm) and abbreviated to EG(r) if n1 = · · · = nm =

r. It is itself a Euclidean space Rnc . Whence, it is natural to give rise to a packing

problem on Euclidean spaces following.

Parking Problem Let Rn1, Rn2, · · ·, Rnm be Euclidean spaces. In what conditions

do they consist of a combinatorial Euclidean space EG(n1, · · · , nm)?

By our intuition, this parking problem is related with the dimensions of Rn1,

Rn2, · · ·, Rnm , also with their combinatorial structure G. Notice that a Euclidean

space Rn is an n-dimensional vector space with a normal basis ǫ1 = (1, 0, · · · , 0),

ǫ2 = (0, 1, 0 · · · , 0), · · ·, ǫn = (0, · · · , 0, 1), namely, it has n orthogonal orientations.

So if we think any Euclidean space Rn is a subspace of a Euclidean space Rn∞ with

a finite but sufficiently large dimension n∞, then two Euclidean spaces Rnu and

Rnv have a non-empty intersection if and only if they have common orientations.

Whence, we only need to determine the number of different orthogonal orientations

in EG(n1, · · · , nm).

Denoted by Xv1 , Xv2 , · · · , Xvm consist of these orthogonal orientations in Rnv1 ,

Rnv2 , · · ·, Rnvm , respectively. An intersection graphG[Xv1 , Xv2 , · · · , Xvm ] ofXv1 , Xv2 ,

· · · , Xvm is defined by

V (G[Xv1 , Xv2 , · · · , Xvm ]) = {v1, v2, · · · , vm},

E[Xv1 , Xv2 , · · · , Xvm ] = {(vi, vj)|Xvi

⋂
Xvj
6= ∅, 1 ≤ i 6= j ≤ m}.

By definition, we can easily find that

G ∼= G[Xv1 , Xv2 , · · · , Xvm ].

So we can apply properties of the intersection graph G to the parking problem
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EG(n1, · · · , nm) of Rn1, Rn2 , · · ·, Rnm, which transfers the parking problem of Eu-

clidean spaces to a combinatorial problem following.

Intersection Problem For given integers κ, m ≥ 2 and n1, n2, · · · , nm, find finite

sets Y1, Y2, · · · , Ym with their intersection graph being G such that |Yi| = ni, 1 ≤ i ≤
m, and |Y1 ∪ Y2 ∪ · · · ∪ Ym| = κ.

This enables us to find solutions of the parking problem sometimes.

Theorem 4.1.1 Let EG(n1, · · · , nm) be a combinatorial Euclidean space of Rn1, Rn2,

· · ·, Rnm with an underlying structure G. Then

dimEG(n1, · · · , nm) =
∑

〈vi∈V (G)|1≤i≤s〉∈CLs(G)

(−1)s+1dim(Rnv1
⋂

Rnv2
⋂ · · ·⋂Rnvs ),

where nvi
denotes the dimensional number of the Euclidean space in vi ∈ V (G) and

CLs(G) consists of all complete graphs of order s in G.

Proof By definition, Rnu ∩Rnv 6= ∅ only if there is an edge (Rnu,Rnv) in G.

This condition can be generalized to a more general situation, i.e., Rnv1 ∩ Rnv2 ∩
· · · ∩Rnvl 6= ∅ only if 〈v1, v2, · · · , vl〉G ∼= Kl.

In fact, if Rnv1 ∩Rnv2 ∩· · ·∩Rnvl 6= ∅, then Rnvi ∩Rnvj 6= ∅, which implies that

(Rnvi ,Rnvj ) ∈ E(G) for any integers i, j, 1 ≤ i, j ≤ l. Therefore, 〈v1, v2, · · · , vl〉G is

a complete graph of order l in the intersection graph G.

Now we are needed to count these orthogonal orientations in EG(n1, · · · , nm).

In fact, the number of different orthogonal orientations is

dimEG(n1, · · · , nm) = dim(
⋃

v∈V (G)

Rnv)

by previous discussion. Applying Theorem 1.5.1 the inclusion-exclusion principle,

we find that

dimEG(n1, · · · , nm) = dim(
⋃

v∈V (G)

Rnv)

=
∑

{v1,···,vs}⊂V (G)

(−1)s+1dim(Rnv1

⋂
Rnv2

⋂
· · ·
⋂

Rnvs )

=
∑

〈vi∈V (G)|1≤i≤s〉∈CLs(G)

(−1)s+1dim(Rnv1

⋂
Rnv2

⋂
· · ·
⋂

Rnvs ).

�
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Notice that dim(Rnv1∩Rnv2∩· · ·∩Rnvs ) = nv1 if s = 1 and dim(Rnv1∩Rnv2 ) 6= 0

only if (Rnv1 ,Rnv2 ) ∈ E(G). We get a more applicable formula for calculating

dimEG(n1, · · · , nm) on K3-free graphs G by Theorem 4.1.1.

Corollary 4.1.1 If G is K3-free, then

dimEG(n1, · · · , nm) =
∑

v∈V (G)

nv −
∑

(u,v)∈E(G)

dim(Rnu
⋂

Rnv).

Particularly, if G = v1v2 · · · vm a circuit for an integer m ≥ 4, then

dimEG(n1, · · · , nm) =
m∑
i=1

nvi
−

m∑
i=1

dim(Rnvi

⋂
Rnvi+1 ),

where each index is modulo m.

Now we determine the maximum and minimum dimension of combinatorial

Euclidean spaces of Rn1 , Rn2, · · ·, Rnm with an underlying structure G.

Theorem 4.1.2 Let EG(nv1 , · · · , nvm) be a combinatorial Euclidean space of Rnv1 ,

Rnv2 , · · ·, Rnvm with an underlying graph G, V (G) = {v1, v2, · · · , vm}. Then the

maximum dimension dimmaxEG(nv1 , · · · , nvm) of EG(nv1 , · · · , nvm) is

dimmaxEG(nv1 , · · · , nvm) = 1−m+
∑

v∈V (G)

nv

with conditions dim(Rnu ∩Rnv) = 1 for ∀(u, v) ∈ E(G).

Proof Let Xv1 , Xv2 , · · · , Xvm consist of these orthogonal orientations in Rnv1 ,

Rnv2 , · · ·, Rnvm , respectively. Notice that

|Xvi

⋃
Xvj
| = |Xvi

|+ |Xvj
| − |Xvi

⋂
Xvj
|

for 1 ≤ i 6= j ≤ m by Theorem 1.5.1 in the case of n = 2. We immediately know

that |Xvi
∪ Xvj

| attains its maximum value only if |Xvi
∩ Xvj

| is minimum. Since

Xvi
and Xvj

are nonempty sets, we find that the minimum value of |Xvi
∩Xvj

| = 1

if (vi, vj) ∈ E(G).

We finish our proof by the inductive principle. Not loss of generality, assume

(v1, v2) ∈ E(G). Then we have known that |Xv1

⋃
Xv2 | attains its maximum

|Xv1 |+ |Xv2 | − 1

only if |Xv1∩Xv2 | = 1. Since G is connected, not loss of generality, let v3 be adjacent
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with {v1, v2} in G. Then by

|Xv1

⋃
Xv2

⋃
Xv3 | = |Xv1

⋃
Xv2 |+ |Xv3| − |(Xv1

⋃
Xv2)

⋂
Xv3 |,

we know that |Xv1 ∪Xv2 ∪Xv3 | attains its maximum value only if |Xv1 ∪Xv2 | attains

its maximum and |(Xv1 ∪ Xv2) ∩ Xv3 | = 1 for (Xv1 ∪ Xv2) ∩ Xv3 6= ∅. Whence,

|Xv1 ∩ Xv3 | = 1 or |Xv2 ∩ Xv3 | = 1, or both. In the later case, there must be

|Xv1 ∩Xv2 ∩Xv3 | = 1. Therefore, the maximum value of |Xv1 ∪Xv2 ∪Xv3 | is

|Xv1 |+ |Xv2 |+ |Xv3 | − 2.

Generally, we assume the maximum value of |Xv1 ∪Xv2 ∪ · · · ∪Xvk
| to be

|Xv1 |+ |Xv2 |+ · · ·+ |Xvk
| − k + 1

for an integer k ≤ m with conditions |Xvi
∩ Xvj

| = 1 hold if (vi, vj) ∈ E(G) for

1 ≤ i 6= j ≤ k. By the connectedness of G, without loss of generality, we choose a

vertex vk+1 adjacent with {v1, v2, · · · , vk} in G and find out the maximum value of

|Xv1 ∪Xv2 ∪ · · · ∪Xvk
∪Xvk+1

|. In fact, since

|Xv1 ∪Xv2 ∪ · · · ∪Xvk
∪Xvk+1

| = |Xv1 ∪Xv2 ∪ · · · ∪Xvk
|+ |Xvk+1

|
− |(Xv1 ∪Xv2 ∪ · · · ∪Xvk

)
⋂

Xvk+1
|,

we know that |Xv1 ∪ Xv2 ∪ · · · ∪ Xvk
∪ Xvk+1

| attains its maximum value only if

|Xv1 ∪Xv2 ∪· · ·∪Xvk
| attains its maximum and |(Xv1 ∪Xv2 ∪· · ·∪Xvk

)
⋂
Xvk+1

| = 1

for (Xv1∪Xv2∪· · ·∪Xvk
)∩Xvk+1

6= ∅. Whence, |Xvi
∩Xvk+1

| = 1 if (vi, vk+1) ∈ E(G).

Consequently, we find that the maximum value of |Xv1 ∪Xv2 ∪ · · · ∪Xvk
∪Xvk+1

| is

|Xv1|+ |Xv2 |+ · · ·+ |Xvk
|+ |Xvk+1

| − k.

Notice that our process searching for the maximum value of |Xv1 ∪Xv2 ∪ · · · ∪
Xvk
| does not alter the intersection graph G of Xv1 , Xv2, · · · , Xvm . Whence, by the

inductive principle we finally get the maximum dimension dimmaxEG of EG, that is,

dimmaxEG(nv1 , · · · , nvm) = 1−m+ n1 + n2 + · · ·+ nm

with conditions dim(Rnu ∩Rnv) = 1 for ∀(u, v) ∈ E(G). �

Determining the minimum value dimminEG(n1, · · · , nm) of EG(n1, · · · , nm) is a

difficult problem in general case. But we can still get it for some graph families.
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Theorem 4.1.3 Let EG(nv1 , nv2 , · · · , nvm) be a combinatorial Euclidean space of

Rnv1 , Rnv2 , · · ·, Rnvm with an underlying graph G, V (G) = {v1, v2, · · · , vm} and

{v1, v2, · · · , vl} an independent vertex set in G. Then

dimminEG(nv1 , · · · , nvm) ≥
l∑

i=1

nvi

and with the equality hold if G is a complete bipartite graph K(V1, V2) with partite

sets V1 = {v1, v2, · · · , vl}, V2 = {vl+1, vl+2, · · · , vm} and

l∑

i=1

nvi
≥

m∑

i=l+1

nvi
.

Proof Similarly, we use Xv1 , Xv2, · · · , Xvm to denote these orthogonal orienta-

tions in Rnv1 , Rnv2 , · · ·, Rnvm , respectively. By definition, we know that

Xvi

⋂
Xvj

= ∅, 1 ≤ i 6= j ≤ l

for (vi, vj) 6∈ E(G). Whence, we get that

|
m⋃

i=1

Xvi
| ≥ |

l⋃

i=1

Xvi
| =

l∑

i=1

nvi
.

By the assumption,
l∑

i=1

nvi
≥

m∑

i=l+1

nvi
,

we can partition Xv1 , Xv2 , · · · , Xvm to

Xv1 = (
m⋃

i=l+1

Yi(v1))
⋃
Z(v1),

Xv2 = (
m⋃

i=l+1

Yi(v2))
⋃
Z(v2),

· · · · · · · · · · · · · · ·,

Xvl
= (

m⋃
i=l+1

Yi(vl))
⋃
Z(vl)

such that
l∑

k=1

|Yi(vk)| = |Xvi
| for any integer i, l + 1 ≤ i ≤ m, where Z(vi) maybe

an empty set for integers i, 1 ≤ i ≤ l. Whence, we can choose

X ′
vi

=
l⋃

k=1

Yi(vk)
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to replace each Xvi
for any integer i, 1 ≤ i ≤ m. Notice that the intersection graph

of Xv1 , Xv2, · · · , Xvl
, X ′

vl+1
, · · · , X ′

vm
is still the complete bipartite graph K(V1, V2),

but

|
m⋃
i=1

Xvi
| = |

l⋃
i=1

Xvi
| =

l∑
i=1

ni.

Therefore, we get that

dimminEG(nv1 , · · · , nvm) =
l∑

i=1

nvi

in the case of complete bipartite graphK(V1, V2) with partite sets V1 = {v1, v2, · · · , vl},
V2 = {vl+1, vl+2, · · · , vm} and

l∑

i=1

nvi
≥

m∑

i=l+1

nvi
. �

Although the lower bound of dimEG(nv1 , · · · , nvm) in Theorem 4.1.3 is sharp,

but sometimes this bound is not better if G is given, for example, the complete

graph Km shown in the next results. Consider a complete system of r-subsets of a

set with less than 2r elements. We know the next conclusion.

Theorem 4.1.4 For any integer r ≥ 2, let EKm(r) be a combinatorial Euclidean

space of Rr, · · · ,Rr

︸ ︷︷ ︸
m

, and there exists an integer s, 0 ≤ s ≤ r − 1 such that

(
r + s− 1

r

)
< m ≤

(
r + s

r

)
.

Then

dimminEKm(r) = r + s.

Proof We denote byX1, X2, · · · , Xm these sets consist of orthogonal orientations

in m Euclidean spaces Rr. Then each Xi, 1 ≤ i ≤ m, is an r-set. By assumption,

(
r + s− 1

r

)
< m ≤

(
r + s

r

)

and 0 ≤ s ≤ r−1, we know that two r-subsets of an (r+s)-set must have a nonempty

intersection. So we can determine these m r-subsets X1, X2, · · · , Xm by using the
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complete system of r-subsets in an (r+s)-set, and these m r-subsets X1, X2, · · · , Xm

can not be chosen in an (r + s− 1)-set. Therefore, we find that

|
m⋃

i=1

Xi| = r + s,

i.e., if 0 ≤ s ≤ r − 1, then

dimminEKm(r) = r + s. �

Because of our living world is the space R3, so the combinatorial space of R3 is

particularly interesting in physics. We completely determine its minimum dimension

in the case of Km following.

Theorem 4.1.5 Let EKm(3) be a combinatorial Euclidean space of R3, · · · ,R3

︸ ︷︷ ︸
m

. Then

dimminEKm(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10,

2 + ⌈√m⌉, if m ≥ 11.

Proof Let X1, X2, · · · , Xm be these sets consist of orthogonal orientations in

m Euclidean spaces R3, respectively and |X1 ∪ X2 ∪ · · · ∪ Xm| = l. Then each

Xi, 1 ≤ i ≤ m, is a 3-set.

In the case of m ≤ 10 =

(
5

2

)
, any s-sets have a nonempty intersection. So

it is easily to check that

dimminEKm(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10.

We only consider the case of m ≥ 11. Let X = {u, v, w} be a chosen 3-set.

Notice that any 3-set will intersect X with 1 or 2 elements. Our discussion is divided

into three cases.

Case 1 There exist 3-sets X ′
1, X

′
2, X

′
3 such that X ′

1 ∩X = {u, v}, X ′
2 ∩X = {u, w}

and X ′
3 ∩X = {v, w} such as those shown in Fig.4.1.1, where each triangle denotes

a 3-set.
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wu

v

Fig.4.1.1

Notice that there are no 3-setsX ′ such that |X ′∩X| = 1 in this case. Otherwise,

we can easily find two 3-sets with an empty intersection, a contradiction. Counting

such 3-sets, we know that there are at most 3(v−3)+1 3-sets with their intersection

graph being Km. Thereafter, we know that

m ≤ 3(l − 3) + 1, i.e., l ≥ ⌈m− 1

3
⌉+ 3.

Case 2 There are 3-sets X ′
1, X

′
2 but no 3-set X ′

3 such that X ′
1 ∩ X = {u, v},

X ′
2∩X = {u, w} and X ′

3∩X = {v, w} such as those shown in Fig.4.1.2, where each

triangle denotes a 3-set.

u

v

w

Fig.4.1.2

In this case, there are no 3-sets X ′ such that X ′ ∩ X = {u} or {w}. Oth-

erwise, we can easily find two 3-sets with an empty intersection, a contradiction.

Enumerating such 3-sets, we know that there are at most

2(l − 1) +

(
l − 3

2

)
+ 1

3-sets with their intersection graph still being Km. Whence, we get that

m ≤ 2(l − 1) +

(
l − 3

2

)
+ 1, i.e., l ≥ ⌈3 +

√
8m+ 17

2
⌉.
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Case 3 There are a 3-set X ′
1 but no 3-sets X ′

2, X
′
3 such that X ′

1 ∩ X = {u, v},
X ′

2∩X = {u, w} and X ′
3∩X = {v, w} such as those shown in Fig.4.1.3, where each

triangle denotes a 3-set.

u v

w

Fig.4.1.3

Enumerating 3-sets in this case, we know that there are at most

l − 2 + 2

(
l − 2

2

)

such 3-sets with their intersection graph still being Km. Therefore, we find that

m ≤ l − 2 + 2

(
l − 2

2

)
, i.e., l ≥ 2 + ⌈

√
m⌉.

Combining these Cases 1− 3, we know that

l ≥ min{⌈m− 1

3
⌉+ 3, ⌈3 +

√
8m+ 17

2
⌉, 2 + ⌈

√
m⌉} = 2 + ⌈

√
m⌉.

Conversely, there 3-sets constructed in Case 3 show that there indeed exist

3-sets X1, X2, · · · , Xm whose intersection graph is Km, where

m = l − 2 + 2

(
l − 2

2

)
.

Therefore, we get that

dimminEKm(3) = 2 + ⌈√m⌉
if m ≥ 11. This completes the proof. �

For general combinatorial spaces EKm(nv1 , · · · , nvm) of Rnv1 , Rnv2 , · · ·, Rnvm ,

we get their minimum dimension if nvm is large enough.

Theorem 4.1.6 Let EKm(nv1 , · · · , nvm) be a combinatorial Euclidean space of Rnv1 ,

Rnv2 , · · ·, Rnvm , nv1 ≥ nv2 ≥ · · · ≥ nvm ≥ ⌈log2(
m+1

2nv1−nv2−1
)⌉ + 1 and V (Km) =

{v1, v2, · · · , vm}. Then

dimminEKm(nv1 , · · · , nvm) = nv1 + ⌈log2(
m+ 1

2nv1−nv2−1
)⌉.
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Proof Let Xv1 , Xv2 , · · · , Xvm be sets consist of these orthogonal orientations in

Rnv1 , Rnv2 , · · ·, Rnvm , respectively and

2s−1 <
m

2k+1 − 1
+ 1 ≤ 2s

for an integer s, where k = nv1 − nv2 . Then we find that

⌈log2(
m+ 1

2nv1−nv2−1
)⌉ = s.

We construct a family {Yv1, Yv2 , · · · , Yvm} with none being a subset of another,

|Yvi
| = |Xvi

| for 1 ≤ i ≤ m and its intersection graph is still Km, but with

|Yv1
⋃

Yv2
⋃
· · ·
⋃

Yvm | = nv1 + s.

In fact, let Xv1 = {x1, x2, · · · , xnv2
, xnv2+1, · · · , xnv1

} and U = {u1, u2, · · · , us},
such as those shown in Fig.4.1.4 for s = 1 and nv1 = 9.

X1

X2 X3
X4

x1x2x3 x4 x5x6 x7x8x9

u1

Fig.4.1.4

Choose g elements xi1 , xi2 , · · · , xig ∈ Xv1 and h ≥ 1 elements uj1, uj2, · · · , ujh ∈
U . We construct a finite set

Xg.h = {xi1 , xi2 , · · · , xig , uj1, uj2, · · · , ujh}

with a cardinal g + h. Let g + h = |Xv1 |, |Xv2|, · · · , |Xvm|, respectively. We con-

sequently find such sets Yv1, Yv2 , · · · , Yvm . Notice that there are no one set being

a subset of another in the family {Yv1, Yv2 , · · · , Yvm}. So there must have two el-

ements in each Yvi
, 1 ≤ i ≤ m at least such that one is in U and another in

{xnv2
, xnv2+1, · · · , xnv1

}. Now since nvm ≥ ⌈log2(
m+1

2nv1−nv2 −1
)⌉+ 1, there are

k+1∑

i=1

s∑

j=1

(
k + 1

i

)(
s

j

)
= (2k+1 − 1)(2s − 1) ≥ m

different sets Yv1 , Yv2, · · · , Yvm altogether with |Xv1 | = |Yv1|, · · ·, |Xvm | = |Yvm |. None

of them is a subset of another and their intersection graph is still Km. For example,
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Xv1 , {u1, x1, · · · , xnv2−1},

{u1, xnv2−nv3+2, · · · , xnv2
},

· · · · · · · · · · · · · · · · · ·,

{u1, xnvk−1
−nvk

+2, · · · , xnvk
}

are such sets with only one element u1 in U . See also in Fig.4.1.1 for details. It is

easily to know that

|Yv1
⋃

Yv2
⋃
· · ·
⋃

Yvm | = nv1 + s = nv1 + ⌈log2(
m+ 1

2nv1−nv2 − 1
)⌉

in our construction.

Conversely, if there exists a family {Yv1 , Yv2, · · · , Yvm} such that |Xv1 | = |Yv1 |,
· · ·, |Xvm | = |Yvm| and

|Yv1
⋃

Yv2
⋃
· · ·
⋃

Yvm| < nv1 + s,

then there at most

k+1∑

i=1

s∑

j=1

(
k + 1

i

)(
s− 1

j

)
= (2k+1 − 1)(2s−1 − 1) < m

different sets in {Yv1, Yv2 , · · · , Yvm} with none being a subset of another. This implies

that there must exists integers i, j, 1 ≤ i 6= j ≤ m with Yvi
⊂ Yvj

, a contradiction.

Therefore, we get the minimum dimension dimminEKm of EKm to be

dimminEKm(nv1 , · · · , nvm) = nv1 + ⌈log2(
m+ 1

2nv1−nv2 − 1
)⌉. �

4.1.2 Combinatorial Fan-Space. A combinatorial fan-space R̃(n1, · · · , nm) is

the combinatorial Euclidean space EKm(n1, · · · , nm) of Rn1 , Rn2, · · ·, Rnm such that

for any integers i, j, 1 ≤ i 6= j ≤ m,

Rni

⋂
Rnj =

m⋂

k=1

Rnk ,

which is applied for generalizing n-manifolds to combinatorial manifolds in next

section. The dimensional number of R̃(n1, · · · , nm) is determined immediately by

definition following.
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Theorem 4.1.7 Let R̃(n1, · · · , nm) be a fan-space. Then

dimR̃(n1, · · · , nm) = m̂+
m∑

i=1

(ni − m̂),

where

m̂ = dim(

m⋂

k=1

Rnk). �

For ∀p ∈ R̃(n1, · · · , nm) we can present it by an m× nm coordinate matrix [x]

following with xil = xl

m
for 1 ≤ i ≤ m, 1 ≤ l ≤ m̂.

[x] =




x11 · · · x1m̂ x1(m̂)+1) · · · x1n1 · · · 0

x21 · · · x2m̂ x2(m̂+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ xm(m̂+1) · · · · · · xmnm−1 xmnm




Now let (A) = (aij)m×n and (B) = (bij)m×n be two matrixes. Similar to

Euclidean space, we introduce the inner product 〈(A), (B)〉 of (A) and (B) by

〈(A), (B)〉 =
∑

i,j

aijbij .

Then we know

Theorem 4.1.8 Let (A), (B), (C) be m× n matrixes and α a constant. Then

(1) 〈A,B〉 = 〈B,A〉;
(2) 〈A +B,C〉 = 〈A,C〉+ 〈B,C〉;
(3) 〈αA,B〉 = α 〈B,A〉;
(4) 〈A,A〉 ≥ 0 with equality hold if and only if (A) = Om×n.

Proof (1)-(3) can be gotten immediately by definition. Now calculation shows

that

〈A,A〉 =
∑

i,j

a2
ij ≥ 0

and with equality hold if and only if aij = 0 for any integers i, j, 1 ≤ i ≤ m, 1 ≤ j ≤
n, namely, (A) = Om×n. �
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By Theorem 4.1.8, all matrixes of real entries under the inner product form a

Euclidean space. We also generalize some well-known results in Section 3.2 to this

space. The first, Theorem 3.2.1(i) is generalized to the next result.

Theorem 4.1.9 Let (A), (B) be m× n matrixes. Then

〈(A), (B)〉2 ≤ 〈(A), (A)〉 〈(B), (B)〉

and with equality hold only if (A) = λ(B), where λ is a real constant.

Proof If (A) = λ(B), then 〈A,B〉2 = λ2 〈B,B〉2 = 〈A,A〉 〈B,B〉. Now if there

are no constant λ enabling (A) = λ(B), then (A) − λ(B) 6= Om×n for any real

number λ. According to Theorem 2.1, we know that

〈(A)− λ(B), (A)− λ(B)〉 > 0,

i.e.,

〈(A), (A)〉 − 2λ 〈(A), (B)〉+ λ2 〈(B), (B)〉 > 0.

Therefore, we find that

∆ = (−2 〈(A), (B)〉)2 − 4 〈(A), (A)〉 〈(B), (B)〉 < 0,

namely,

〈(A), (B)〉2 < 〈(A), (A)〉 〈(B), (B)〉 . �

Corollary 4.1.2 For given real numbers aij , bij, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(
∑

i,j

aijbij)
2 ≤ (

∑

i,j

a2
ij)(
∑

i,j

b2ij).

Now let O be the original point of R̃(n1, · · · , nm). Then [O] = Om×nm . For

∀p, q ∈ R̃(n1, · · · , nm), we also call
−→
Op the vector correspondent to the point p simi-

lar to that of Euclidean spaces, Then −→pq =
−→
Oq−−→Op. Theorem 4.1.9 enables us to in-

troduce an angle between two vectors −→pq and −→uv for points p, q, u, v ∈ R̃(n1, · · · , nm).

Let p, q, u, v ∈ R̃(n1, · · · , nm). Then the angle θ between vectors −→pq and −→uv is

determined by

cos θ =
〈[p]− [q], [u]− [v]〉√

〈[p]− [q], [p]− [q]〉 〈[u]− [v], [u]− [v]〉
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under the condition that 0 ≤ θ ≤ π.

Corollary 4.1.3 The conception of angle between two vectors is well defined.

Proof Notice that

〈[p]− [q], [u]− [v]〉2 ≤ 〈[p]− [q], [p]− [q]〉 〈[u]− [v], [u]− [v]〉

by Theorem 4.1.9. Thereby, we know that

−1 ≤ 〈[p]− [q], [u]− [v]〉√
〈[p]− [q], [p]− [q]〉 〈[u]− [v], [u]− [v]〉

≤ 1.

Therefore there is a unique angle θ with 0 ≤ θ ≤ π enabling Definition 2.3 hold. �

For two points p, q in R̃(n1, · · · , nm), the distance d(p, q) between points p and

q is defined to be
√
〈[p]− [q], [p]− [q]〉. We get the following result.

Theorem 4.1.10 For a given integer sequence n1, n2, · · · , nm, m ≥ 1 with 0 < n1 <

n2 < · · · < nm, (R̃(n1, · · · , nm); d) is a metric space.

Proof We only need to verify that each condition for a metric space is hold in

(R̃(n1, · · · , nm); d). For two point p, q ∈ R̃(n1, · · · , nm), by definition we know that

d(p, q) =
√
〈[p]− [q], [p]− [q]〉 ≥ 0

with equality hold if and only if [p] = [q], namely, p = q and

d(p, q) =
√
〈[p]− [q], [p]− [q]〉 =

√
〈[q]− [p], [q]− [p]〉 = d(q, p).

Now let u ∈ R̃(n1, · · · , nm). By Theorem 4.1.9, we then find that

(d(p, u) + d(u, p))2

= 〈[p]− [u], [p]− [u]〉+ 2
√
〈[p]− [u], [p]− [u]〉 〈[u]− [q], [u]− [q]〉

+ 〈[u]− [q], [u]− [q]〉
≥ 〈[p]− [u], [p]− [u]〉+ 2 〈[p]− [u], [u]− [q]〉+ 〈[u]− [q], [u]− [q]〉
= 〈[p]− [q], [p]− [q]〉 = d2(p, q).

Whence, d(p, u) + d(u, p) ≥ d(p, q) and (R̃(n1, · · · , nm); d) is a metric space. �

4.1.3 Decomposition Space into Combinatorial One. As we have shown in

Subsection 4.1.2, a combinatorial fan-space R̃(n1, n2, · · · , nm) can be turned into a
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Euclidean space Rn with n = m̂+
m∑
i=1

(ni−m̂). Now the inverse question is that for a

Euclidean space Rn, weather there is a combinatorial Euclidean space EG(n1, · · · , nm)

of Euclidean spaces Rn1, Rn2, · · ·, Rnm such that dimRn1 ∪Rn2 ∪ · · · ∪Rnm = n?

For combinatorial fan-spaces, we immediately get the following decomposition result

of Euclidean spaces.

Theorem 4.1.11 Let Rn be a Euclidean space, n1, n2, · · · , nm integers with m̂ <

ni < n for 1 ≤ i ≤ m and the equation

m̂+
m∑

i=1

(ni − m̂) = n

hold for an integer m̂, 1 ≤ m̂ ≤ n. Then there is a combinatorial fan-space R̃(n1, n2,

· · · , nm) such that

Rn ∼= R̃(n1, n2, · · · , nm).

Proof Not loss of generality, assume the normal basis of Rn is ǫ1 = (1, 0, · · · , 0),

ǫ2 = (0, 1, 0 · · · , 0), · · ·, ǫn = (0, · · · , 0, 1). Then its coordinate system of Rn is

(x1, x2, · · · , xn). Since

n− m̂ =
m∑

i=1

(ni − m̂),

choose

R1 = 〈ǫ1, ǫ2, · · · , ǫm̂, ǫm̂+1, · · · , ǫn1〉 ;

R2 = 〈ǫ1, ǫ2, · · · , ǫm̂, ǫn1+1, ǫn1+2, · · · , ǫn2〉 ;

R3 = 〈ǫ1, ǫ2, · · · , ǫm̂, ǫn2+1, ǫn2+2, · · · , ǫn3〉 ;

· · · · · · · · · · · · · · · · · · · · · · · · · · · ;

Rm =
〈
ǫ1, ǫ2, · · · , ǫm̂, ǫnm−1+1, ǫnm−1+2, · · · , ǫnm

〉
.

Calculation shows that dimRi = ni and dim(
m⋂
i=1

Ri) = m̂. Whence R̃(n1, n2, · · · , nm)

is a combinatorial fan-space. By Definition 2.1.3 and Theorems 2.1.1, 4.1.8− 4.1.9,

we then get that

Rn ∼= R̃(n1, n2, · · · , nm). �
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For an intersection graph G of sets Xv, v ∈ V (G), there is a natural labeling

θE with θE(u, v) = |Xu ∩ Xv| for ∀(u, v) ∈ E(G). This fact enables us to find an

intersecting result following, which generalizes a result of Erdós et al. in [EGP1].

Theorem 4.1.12 Let GE be an edge labeled graph on a connected graph G with label-

ing θE : E(G)→ [1, l]. If nv, v ∈ V (G) are given integers with nv ≥
∑

u∈NG(v)

θE(v, u),

then there are sets Xv, v ∈ V (G) such that |Xv| = nv and |Xv ∩Xu| = θE(v, u) for

v ∈ V (G), u ∈ NG(v).

Proof For (v, u) ∈ E(G), construct a finite set

(̂v, u) = {(v, u)1, (v, u)2, · · · , (v, u)θE(v,u)}.

Now we define

Xv = (
⋃

u∈NG(v)

(̂v, u))
⋃
{x1, x2, · · · , xς},

for ∀v ∈ V (G), where ς = nv −
∑

u∈NG(v)

θE(v, u). Then we find that these sets

Xv, v ∈ V (G) satisfy |Xv| = nv, |Xv∩Xu| = θE(v, u) for ∀v ∈ V (G) and ∀u ∈ NG(v).

This completes the proof. �

As a special case, choosing the labeling 1 on each edge of G in Theorem 4.1.12,

we get the result of Erdós et al. again.

Corollary 4.1.4 For any graph G, there exist sets Xv, v ∈ V (G) with the intersection

graph G, i.e., the minimum number of elements in Xv, v ∈ V (G) is less than or equal

to ε(G).

Calculation shows that

|
⋃

v∈V (G)

Xv| =
∑

v∈V (G)

nv −
1

2

∑

(v,u)∈E(G)

θE(v, u)

in the construction of Theorem 4.1.12, we get a decomposition result for a Euclidean

space Rn following.

Theorem 4.1.13 Let G be a connected graph and

n =
∑

v∈V (G)

nv −
1

2

∑

(v,u)∈E(G)

n(v,u)
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for integers nv, nv ≥
∑

u∈NG(v)

θE(v, u), v ∈ V (G) and n(v,u) ≥ 1, (v, u) ∈ E(G). Then

there is a combinatorial Euclidean space EG(nv, v ∈ V (G)) of Rnv , v ∈ V (G) such

that Rn ∼= EG(nv, v ∈ V (G)). �

§4.2 COMBINATORIAL MANIFOLDS

4.2.1 Combinatorial Manifold. For a given integer sequence n1, n2, · · · , nm, m ≥
1 with 0 < n1 < n2 < · · · < nm, a combinatorial manifold M̃ is a Hausdorff space

such that for any point p ∈ M̃ , there is a local chart (Up, ϕp) of p, i.e., an open neigh-

borhood Up of p in M̃ and a homoeomorphism ϕp : Up → R̃(n1(p), n2(p), · · · , ns(p)(p)),
a combinatorial fan-space with

{n1(p), n2(p), · · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm}

and

⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm},

denoted by M̃(n1, n2, · · · , nm) or M̃ on the context, and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm). The maximum value of s(p) and the dimension

ŝ(p) = dim(
s(p)⋂
i=1

Rni(p)) are called the dimension and the intersectional dimension of

M̃(n1, n2, · · · , nm) at the point p, respectively.

A combinatorial manifold M̃ is finite if it is just combined by finite manifolds

with an underlying combinatorial structure G without one manifold contained in

the union of others. Certainly, a finitely combinatorial manifold is indeed a combi-

natorial manifold.

Two examples of such combinatorial manifolds with different dimensions in R3

are shown in Fig.4.2.1, in where, (a) represents a combination of a 3-manifold, a

torus and 1-manifold, and (b) a torus with 4 bouquets of 1-manifolds.
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M3
B1 T2

(a)

T2

B1 B1

(b)

Fig.4.2.1

By definition, combinatorial manifolds are a generalization of manifolds by

a combinatorial speculation. However, a locally compact n-manifold Mn without

boundary is itself a combinatorial Euclidean space EG(n, · · · , n︸ ︷︷ ︸
m

) of Euclidean spaces

Rn with an underlying structure G shown in the next result.

Theorem 4.2.1 A locally compact n-manifold Mn is a combinatorial manifold

M̃G(n) homeomorphic to a Euclidean space EG′(n, λ ∈ Λ) with countable graphs

G ∼= G′ inherent in Mn, denoted by G[Mn].

Proof Let Mn be a locally compact n-manifold with an atlas

A [Mn] = { (Uλ;ϕλ) | λ ∈ Λ},

where Λ is a countable set. Then each Uλ, λ ∈ Λ is itself an n-manifold by definition.

Define an underlying combinatorial structure G by

V (G) = {Uλ|λ ∈ Λ},

E(G) = { (Uλ, Uι)i, 1 ≤ i ≤ κλι + 1| Uλ
⋂
Uι 6= ∅, λ, ι ∈ Λ}

where κλι is the number of non-homotopic loops formed between Uλ and Uι. Then

we get a combinatorial manifold M̃G(n) underlying a countable graph G.

Define a combinatorial Euclidean space EG′(n, λ ∈ Λ) of spaces Rn by

V (G′) = {ϕλ(Uλ)|λ ∈ Λ},

E(G′) = { (ϕλ(Uλ), ϕι(Uι))i, 1 ≤ i ≤ κ′λι + 1| ϕλ(Uλ)
⋂
ϕι(Uι) 6= ∅, λ, ι ∈ Λ},

where κ′λι is the number of non-homotopic loops in formed between ϕλ(Uλ) and

ϕι(Uι). Notice that ϕλ(Uλ)
⋂
ϕι(Uι) 6= ∅ if and only if Uλ

⋂
Uι 6= ∅ and κλι = κ′λι

for λ, ι ∈ Λ. We know that G ∼= G′ by definition.
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Now we prove that M̃G(n) is homeomorphic to EG′(n, λ ∈ Λ). By assumption,

Mn is locally compact. Whence, there exists a partition of unity cλ : Uλ → Rn,

λ ∈ Λ on the atlas A [Mn]. Let Aλ = supp(ϕλ). Define functions hλ : Mn → Rn

and H : Mn → EG′(n) by

hλ(x) =

{
cλ(x)ϕλ(x) if x ∈ Uλ,
0 = (0, · · · , 0) if x ∈ Uλ −Aλ.

and

H =
∑

λ∈Λ

ϕλcλ, and J =
∑

λ∈Λ

c−1
λ ϕ−1

λ .

Then hλ, H and J all are continuous by the continuity of ϕλ and cλ for ∀λ ∈ Λ on

Mn. Notice that c−1
λ ϕ−1

λ ϕλcλ =the unity function on Mn. We get that J = H−1,

i.e., H is a homeomorphism from Mn to EG′(n, λ ∈ Λ). �

By definition, a finitely combinatorial manifold M̃(n1, n2, · · · , nm) is provided

with an underlying structure G. We characterize its structure by applying vertex-

edge labeled graphs on the conception of d-connectedness introduced for integers

d ≥ 1 following.

Definition 4.2.1 For two points p, q in a finitely combinatorial manifold M̃(n1, n2,

· · · , nm), if there is a sequence B1, B2, · · · , Bs of d-dimensional open balls with two

conditions following hold.

(1)Bi ⊂ M̃(n1, n2, · · · , nm) for any integer i, 1 ≤ i ≤ s and p ∈ B1, q ∈ Bs;

(2)The dimensional number dim(Bi

⋂
Bi+1) ≥ d for ∀i, 1 ≤ i ≤ s− 1.

Then points p, q are called d-dimensional connected in M̃(n1, n2, · · · , nm) and the se-

quence B1, B2, · · · , Be a d-dimensional path connecting p and q, denoted by P d(p, q).

If each pair p, q of points in the finitely combinatorial manifold M̃(n1, n2, · · · , nm)

is d-dimensional connected, then M̃(n1, n2, · · · , nm) is called d-pathwise connected

and say its connectivity≥ d.

Not loss of generality, we consider only finitely combinatorial manifolds with

a connectivity≥ 1 in this book. Let M̃(n1, n2, · · · , nm) be a finitely combinato-

rial manifold and d, d ≥ 1 an integer. We construct a vertex-edge labeled graph

Gd[M̃(n1, n2, · · · , nm)] by

V (Gd[M̃(n1, n2, · · · , nm)]) = V1

⋃
V2,
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where V1 = {ni − manifolds Mni in M̃(n1, n2, · · · , nm)|1 ≤ i ≤ m} and V2 =

{isolated intersection points OMni ,Mnj ofMni ,Mnj in M̃(n1, n2, · · · , nm) for 1 ≤
i, j ≤ m}. Label ni for each ni-manifold in V1 and 0 for each vertex in V2 and

E(Gd[M̃(n1, n2, · · · , nm)]) = E1

⋃
E2,

where E1 = {(Mni ,Mnj ) labeled with dim(Mni
⋂
Mnj ) | dim(Mni

⋂
Mnj ) ≥ d, 1 ≤

i, j ≤ m} and E2 = {(OMni ,Mnj ,Mni), (OMni ,Mnj ,Mnj ) labeled with 0|Mni tangent

Mnj at the point OMni ,Mnj for 1 ≤ i, j ≤ m}.
For example, these correspondent labeled graphs gotten from finitely combina-

torial manifolds in Fig.4.2.1 are shown in Fig.4.2.2, in where d = 1 for (a) and (b),

d = 2 for (c) and (d). Notice if dim(Mni ∩Mnj ) ≤ d − 1, then there are no such

edges (Mni ,Mnj ) in Gd[M̃(n1, n2, · · · , nm)].
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Fig.4.2.2

Theorem 4.2.2 Let Gd[M̃(n1, n2, · · · , nm)] be a labelled graph of a finitely combi-

natorial manifold M̃(n1, n2, · · · , nm). Then

(1) Gd[M̃(n1, n2, · · · , nm)] is connected only if d ≤ n1.

(2) there exists an integer d, d ≤ n1 such that Gd[M̃(n1, n2, · · · , nm)] is con-

nected.

Proof By definition, there is an edge (Mni ,Mnj ) in Gd[M̃(n1, n2, · · · , nm)] for

1 ≤ i, j ≤ m if and only if there is a d-dimensional path P d(p, q) connecting two

points p ∈Mni and q ∈ Mnj . Notice that

(P d(p, q) \Mni) ⊆Mnj and (P d(p, q) \Mnj ) ⊆Mni .
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Whence,

d ≤ min{ni, nj}. (4.2.1)

Now if Gd[M̃(n1, n2, · · · , nm)] is connected, then there is a d-path P (Mni,Mnj )

connecting vertices Mni and Mnj for ∀Mni ,Mnj ∈ V (Gd[M̃(n1, n2, · · · , nm)]). Not

loss of generality, assume

P (Mni ,Mnj ) = MniMs1Ms2 · · ·Mst−1Mnj .

Then we get that

d ≤ min{ni, s1, s2, · · · , st−1, nj} (4.2.2)

by (4.2.1). However, by definition we know that

⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm}. (4.2.3)

Therefore, we get that

d ≤ min(
⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)}) = min{n1, n2, · · · , nm} = n1

by combining (4.2.2) with (4.2.3). Notice that points labeled with 0 and 1 are always

connected by a path. We get the conclusion (1).

For the conclusion (2), notice that any finitely combinatorial manifold is al-

ways pathwise 1-connected by definition. Accordingly, G1[M̃(n1, n2, · · · , nm)] is con-

nected. Thereby, there at least one integer, for instance d = 1 enabling Gd[M̃(n1, n2,

· · · , nm)] to be connected. This completes the proof. �

According to Theorem 4.2.2, we get immediately two corollaries following.

Corollary 4.2.1 For a given finitely combinatorial manifold M̃ , all connected graphs

Gd[M̃ ] are isomorphic if d ≤ n1, denoted by GL[M̃ ].

Corollary 4.2.2 If there are k 1-manifolds intersect at one point p in a finitely

combinatorial manifold M̃ , then there is an induced subgraph Kk+1 in GL[M̃ ].

Now we define an edge set Ed(M̃) in GL[M̃ ] by

Ed(M̃) = E(Gd[M̃ ]) \ E(Gd+1[M̃ ]).
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Then we get a graphical recursion equation for graphs of a finitely combinatorial

manifold M̃ as a by-product.

Theorem 4.2.3 Let M̃ be a finitely combinatorial manifold. Then for any integer

d, d ≥ 1, there is a recursion equation

Gd+1[M̃ ] = Gd[M̃ ]− Ed(M̃)

for labeled graphs of M̃ .

Proof It can be obtained immediately by definition. �

Now let H(n1, n2, · · · , nm) denote all finitely combinatorial manifolds M̃(n1, n2,

· · · , nm) and G[0, nm] all vertex-edge labeled graphs GL with θL : V (GL)∪E(GL)→
{0, 1, · · · , nm} with conditions following hold.

(1)Each induced subgraph by vertices labeled with 1 in G is a union of complete

graphs and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2)For each edge e = (u, v) ∈ E(G), τ2(e) ≤ min{τ1(u), τ1(v)}.
Then we know a relation between sets H(n1, n2, · · · , nm) and G([0, nm], [0, nm])

following.

Theorem 4.2.4 Let 1 ≤ n1 < n2 < · · · < nm, m ≥ 1 be a given integer se-

quence. Then every finitely combinatorial manifold M̃ ∈ H(n1, n2, · · · , nm) de-

fines a vertex-edge labeled graph G([0, nm]) ∈ G[0, nm]. Conversely, every vertex-

edge labeled graph G([0, nm]) ∈ G[0, nm] defines a finitely combinatorial manifold

M̃ ∈ H(n1, n2, · · · , nm) with a 1 − 1 mapping θ : G([0, nm]) → M̃ such that θ(u)

is a θ(u)-manifold in M̃ , τ1(u) = dimθ(u) and τ2(v, w) = dim(θ(v)
⋂
θ(w)) for

∀u ∈ V (G([0, nm])) and ∀(v, w) ∈ E(G([0, nm])).

Proof By definition, for ∀M̃ ∈ H(n1, n2, · · · , nm) there is a vertex-edge labeled

graph G([0, nm]) ∈ G([0, nm]) and a 1 − 1 mapping θ : M̃ → G([0, nm]) such that

θ(u) is a θ(u)-manifold in M̃ . For completing the proof, we need to construct a

finitely combinatorial manifold M̃ ∈ H(n1, n2, · · · , nm) for ∀G([0, nm]) ∈ G[0, nm]

with τ1(u) = dimθ(u) and τ2(v, w) = dim(θ(v)
⋂
θ(w)) for ∀u ∈ V (G([0, nm])) and

∀(v, w) ∈ E(G([0, nm])). The construction is carried out by programming following.

STEP 1. Choose |G([0, nm])| − |V0| manifolds correspondent to each vertex u with

a dimensional ni if τ1(u) = ni, where V0 = {u|u ∈ V (G([0, nm])) and τ1(u) = 0}.
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Denoted by V≥1 all these vertices in G([0, nm]) with label≥ 1.

STEP 2. For ∀u1 ∈ V≥1 with τ1(u1) = ni1 , if its neighborhood set NG([0,nm])(u1)⋂
V≥1 = {v1

1, v
2
1, · · · , vs(u1)

1 } with τ1(v
1
1) = n11, τ1(v

2
1) = n12, · · ·, τ1(vs(u1)

1 ) = n1s(u1),

then let the manifold correspondent to the vertex u1 with an intersection dimension

τ2(u1v
i
1) with manifold correspondent to the vertex vi1 for 1 ≤ i ≤ s(u1) and define

a vertex set ∆1 = {u1}.

STEP 3. If the vertex set ∆l = {u1, u2, · · · , ul} ⊆ V≥1 has been defined and V≥1 \
∆l 6= ∅, let ul+1 ∈ V≥1 \∆l with a label nil+1

. Assume

(NG([0,nm])(ul+1)
⋂

V≥1) \∆l = {v1
l+1, v

2
l+1, · · · , v

s(ul+1)
l+1 }

with τ1(v
1
l+1) = nl+1,1, τ1(v

2
l+1) = nl+1,2, · · ·,τ1(vs(ul+1)

l+1 ) = nl+1,s(ul+1). Then let the

manifold correspondent to the vertex ul+1 with an intersection dimension τ2(ul+1v
i
l+1)

with the manifold correspondent to the vertex vil+1, 1 ≤ i ≤ s(ul+1) and define a

vertex set ∆l+1 = ∆l

⋃{ul+1}.

STEP 4. Repeat steps 2 and 3 until a vertex set ∆t = V≥1 has been constructed.

This construction is ended if there are no vertices w ∈ V (G) with τ1(w) = 0, i.e.,

V≥1 = V (G). Otherwise, go to the next step.

STEP 5. For ∀w ∈ V (G([0, nm])) \ V≥1, assume NG([0,nm])(w) = {w1, w2, · · · , we}.
Let all these manifolds correspondent to vertices w1, w2, · · · , we intersects at one

point simultaneously and define a vertex set ∆∗
t+1 = ∆t

⋃{w}.

STEP 6. Repeat STEP 5 for vertices in V (G([0, nm])) \ V≥1. This construction is

finally ended until a vertex set ∆∗
t+h = V (G[n1, n2, · · · , nm]) has been constructed.

A finitely combinatorial manifold M̃ correspondent to G([0, nm]) is gotten when

∆∗
t+h has been constructed. By this construction, it is easily verified that M̃ ∈
H(n1, n2, · · · , nm) with τ1(u) = dimθ(u) and τ2(v, w) = dim(θ(v)

⋂
θ(w)) for ∀u ∈

V (G([0, nm])) and ∀(v, w) ∈ E(G([0, nm])). This completes the proof. �

4.2.2 Combinatorial Submanifold. A subset S̃ of a combinatorial manifold

M̃ is called a combinatorial submanifold if it is itself a combinatorial manifold with

GL[S̃] ≺ GL[M̃ ]. For finding some simple criterions of combinatorial submanifolds,

we only consider the case of F : M̃ → Ñ mapping each manifold of M̃ to a man-

ifold of Ñ , denoted by F : M̃1 →1 Ñ , which can be characterized by a purely
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combinatorial manner. In this case, M̃ is called a combinatorial in-submanifold of

Ñ .

For a given vertex-edge labeled graph GL = (V L, EL) on a graph G = (V,E), its

a subgraph is defined to be a connected subgraph Γ ≺ G with labels τ1|Γ(u) ≤ τ1|G(u)

for ∀u ∈ V (Γ) and τ2|Γ(u, v) ≤ τ2|G(u, v) for ∀(u, v) ∈ E(Γ), denoted by ΓL ≺ GL.

For example, two vertex-edge labeled graphs with an underlying graphK4 are shown

in Fig.4.2.3, in which the vertex-edge labeled graphs (b) and (c) are subgraphs of

that (a).
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Fig.4.2.3

For characterizing combinatorial in-submanifolds of a combinatorial manifold

M̃ , we introduce the conceptions of feasible vertex-edge labeled subgraph and labeled

quotient graph in the following.

Definition 4.2.2 Let M̃ be a finitely combinatorial manifold with an underly-

ing graph GL[M̃ ]. For ∀M ∈ V (GL[M̃ ]) and UL ⊂ NGL[M̃ ](M) with new labels

τ2(M,Mi) ≤ τ2|GL[M̃ ](M,Mi) for ∀Mi ∈ UL, let J(Mi) = {M ′
i |dim(M ∩ M ′

i) =

τ2(M,Mi),M
′
i ⊂ Mi} and denotes all these distinct representatives of J(Mi),Mi ∈

UL by T . Define the index oM̃(M : UL) of M relative to UL by

oM̃(M : UL) = min
J∈T

{dim(
⋃

M ′∈J

(M
⋂

M ′))}.

A vertex-edge labeled subgraph ΓL of GL[M̃ ] is feasible if for ∀u ∈ V (ΓL),

τ1|Γ(u) ≥ oM̃(u : NΓL(u)).

Denoted by ΓL ≺o GL[M̃ ] a feasibly vertex-edge labeled subgraph ΓL of GL[M̃ ].

Definition 4.2.3 Let M̃ be a finitely combinatorial manifold, L a finite set of

manifolds and F 1
1 : M̃ → L an injection such that for ∀M ∈ V (GL[M̃ ]), there
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are no two different N1, N2 ∈ L with F 1
1 (M) ∩ N1 6= ∅, F 1

1 (M) ∩ N2 6= ∅ and

for different M1,M2 ∈ V (GL[M̃ ]) with F 1
1 (M1) ⊂ N1, F

1
1 (M2) ⊂ N2, there exist

N ′
1, N

′
2 ∈ L enabling that N1 ∩ N ′

1 6= ∅ and N2 ∩ N ′
2 6= ∅. A vertex-edge labeled

quotient graph GL[M̃ ]/F 1
1 is defined by

V (GL[M̃ ]/F 1
1 ) = {N ⊂ L |∃M ∈ V (GL[M̃ ]) such that F 1

1 (M) ⊂ N},

E(GL[M̃ ]/F 1
1 ) = {(N1, N2)|∃(M1,M2) ∈ E(GL[M̃ ]), N1, N2 ∈ L such that

F 1
1 (M1) ⊂ N1, F

1
1 (M2) ⊂ N2 and F

1
1 (M1) ∩ F 1

1 (M2) 6= ∅}

and labeling each vertex N with dimM if F 1
1 (M) ⊂ N and each edge (N1, N2) with

dim(M1 ∩M2) if F1(M1) ⊂ N1, F
1
1 (M2) ⊂ N2 and F 1

1 (M1) ∩ F 1
1 (M2) 6= ∅.

Then, we know the following criterion on combinatorial submanifolds.

Theorem 4.2.5 Let M̃ and Ñ be finitely combinatorial manifolds. Then M̃ is a

combinatorial in-submanifold of Ñ if and only if there exists an injection F 1
1 on M̃

such that

GL[M̃ ]/F 1
1 ≺o Ñ.

Proof If M̃ is a combinatorial in-submanifold of Ñ , by definition, we know

that there is an injection F : M̃ → Ñ such that F (M̃) ∈ V (G[Ñ ]) for ∀M ∈
V (GL[M̃ ]) and there are no two different N1, N2 ∈ L with F 1

1 (M) ∩ N1 6= ∅,
F 1

1 (M) ∩ N2 6= ∅. Choose F 1
1 = F . Since F is locally 1 − 1 we get that F (M1 ∩

M2) = F (M1) ∩ F (M2), i.e., F (M1,M2) ∈ E(G[Ñ ]) or V (G[Ñ ]) for ∀(M1,M2) ∈
E(GL[M̃ ]). Whence, GL[M̃ ]/F 1

1 ≺ GL[Ñ ]. Notice that GL[M̃ ] is correspondent with

M̃ . Whence, it is a feasible vertex-edge labeled subgraph of GL[Ñ ] by definition.

Therefore, GL[M̃ ]/F 1
1 ≺o GL[Ñ ].

Now if there exists an injection F 1
1 on M̃ , let ΓL ≺o GL[Ñ ]. Denote by Γ

the graph GL[Ñ ] \ ΓL, where GL[Ñ ] \ ΓL denotes the vertex-edge labeled subgraph

induced by edges in GL[Ñ ]\ΓL with non-zero labels in G[Ñ ]. We construct a subset

M̃∗ of Ñ by

M̃∗ = Ñ \ ((
⋃

M ′∈V (Γ)

M ′)
⋃

(
⋃

(M ′,M ′′)∈E(Γ)

(M ′
⋂

M ′′)))

and define M̃ = F 1−1
1 (M̃∗). Notice that any open subset of an n-manifold is also

a manifold and F 1−1
1 (ΓL) is connected by definition. It can be shown that M̃ is a
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finitely combinatorial submanifold of Ñ with GL[M̃ ]/F 1
1
∼= ΓL. �

An injection F 1
1 : M̃ → L is monotonic if N1 6= N2 if F 1

1 (M1) ⊂ N1 and

F 1
1 (M2) ⊂ N2 for ∀M1,M2 ∈ V (GL[M̃ ]),M1 6= M2. In this case, we get a criterion

for combinatorial submanifolds of a finite combinatorial manifold.

Corollary 4.2.3 For two finitely combinatorial manifolds M̃, Ñ , M̃ is a combina-

torial monotonic submanifold of Ñ if and only if GL[M̃ ] ≺o GL[Ñ ].

Proof Notice that F 1
1 ≡ 11

1 in the monotonic case. Whence, GL[M̃ ]/F 1
1 =

GL[M̃ ]/11
1 = GL[M̃ ]. Thereafter, by Theorem 4.2.9, we know that M̃ is a combina-

torial monotonic submanifold of Ñ if and only if GL[M̃ ] ≺o GL[Ñ ]. �

4.2.3 Combinatorial Equivalence. Two finitely combinatorial manifolds M̃1(n1,

n2, · · · , nm), M̃2(k1, k2, · · · , kl) are called equivalent if these correspondent labeled

graphs

GL[M̃1(n1, n2, · · · , nm)] ∼= GL[M̃2(k1, k2, · · · , kl)].

Notice that if M̃1(n1, n2, · · · , nm), M̃2(k1, k2, · · · , kl) are equivalent, then we can

get that {n1, n2, · · · , nm} = {k1, k2, · · · , kl} and GL[M̃1] ∼= GL[M̃2]. Reversing this

idea enables us classifying finitely combinatorial manifolds in Hd(n1, n2, · · · , nm) by

the action of automorphism groups of these correspondent graphs without labels.

Definition 4.2.4 A labeled connected graph GL[M̃(n1, n2, · · · , nm)] is combinatori-

ally unique if all of its correspondent finitely combinatorial manifolds M̃(n1, n2, · · · , nm)

are equivalent.

Definition 4.2.5 A labeled graph G[n1, n2, · · · , nm] is called class-transitive if the

automorphism group AutG is transitive on {C(ni), 1 ≤ i ≤ m}, where C(ni) denotes

all these vertices with label ni.

We find a characteristic for combinatorially unique graphs following.

Theorem 4.2.6 A labeled connected graph G[n1, n2, · · · , nm] is combinatorially

unique if and only if it is class-transitive.

Proof For two integers i, j, 1 ≤ i, j ≤ m, relabel vertices in C(ni) by nj and

vertices in C(nj) by ni in G[n1, n2, · · · , nm]. Then we get a new labeled graph

G′[n1, n2, · · · , nm] in G[n1, n2, · · · , nm]. According to Theorem 4.2.4, we can get
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two finitely combinatorial manifolds M̃1(n1, n2, · · · , nm) and M̃2(k1, k2, · · · , kl) cor-

respondent to G[n1, n2, · · · , nm] and G′[n1, n2, · · · , nm].

Now if G[n1, n2, · · · , nm] is combinatorially unique, we know M̃1(n1, n2, · · · , nm)

is equivalent to M̃2(k1, k2, · · · , kl), i.e., there is an automorphism θ ∈ AutG such that

Cθ(ni) = C(nj) for ∀i, j, 1 ≤ i, j ≤ m.

On the other hand, if G[n1, n2, · · · , nm] is class-transitive, then for integers

i, j, 1 ≤ i, j ≤ m, there is an automorphism τ ∈ AutG such that Cτ (ni) = C(nj).

Whence, for any re-labeled graph G′[n1, n2, · · · , nm], we find that

G[n1, n2, · · · , nm] ∼= G′[n1, n2, · · · , nm],

which implies that these finitely combinatorial manifolds correspondent to G[n1, n2,

· · · , nm] and G′[n1, n2, · · · , nm] are combinatorially equivalent, i.e., G[n1, n2, · · · , nm]

is combinatorially unique. �

Now assume that for parameters ti1, ti2, · · · , tisi
, we have known an enufunction

CMni [xi1, xi2, · · ·] =
∑

ti1,ti2,···,tis

ni(ti1, ti2, · · · , tis)xti1i1 xti2i2 · · ·xtisis

for ni-manifolds, where ni(ti1, ti2, · · · , tis) denotes the number of non-homeomorphic

ni-manifolds with parameters ti1, ti2, · · · , tis. For instance the enufunction for com-

pact 2-manifolds with parameter genera is

CM̃ [x](2) = 1 +
∑
p≥1

2xp.

Consider the action of AutG[n1, n2, · · · , nm] on G[n1, n2, · · · , nm]. If the number

of orbits of the automorphism group AutG[n1, n2, · · · , nm] action on {C(ni), 1 ≤ i ≤
m} is π0, then we can only get π0! non-equivalent combinatorial manifolds corre-

spondent to the labeled graph G[n1, n2, · · · , nm] similar to Theorem 2.4. Calcula-

tion shows that there are l! orbits action by its automorphism group for a complete

(s1 + s2 + · · · + sl)-partite graph K(ks11 , k
s2
2 , · · · , ksl

l ), where ksi

i denotes that there

are si partite sets of order ki in this graph for any integer i, 1 ≤ i ≤ l, particularly,

for K(n1, n2, · · · , nm) with ni 6= nj for i, j, 1 ≤ i, j ≤ m, the number of orbits action

by its automorphism group is m!. Summarizing all these discussions, we get an enu-

function for these finitely combinatorial manifolds M̃(n1, n2, · · · , nm) correspondent

to a labeled graph G[n1, n2, · · · , nm] in G(n1, n2, · · · , nm) with each label≥ 1.

Theorem 4.2.7 Let G[n1, n2, · · · , nm] be a labelled graph in G(n1, n2, · · · , nm) with
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each label≥ 1. For an integer i, 1 ≤ i ≤ m, let the enufunction of non-homeomorphic

ni-manifolds with given parameters t1, t2, · · · , be CMni [xi1, xi2, · · ·] and π0 the num-

ber of orbits of the automorphism group AutG[n1, n2, · · · , nm] action on {C(ni), 1 ≤
i ≤ m}, then the enufunction of combinatorial manifolds M̃(n1, n2, · · · , nm) corre-

spondent to a labeled graph G[n1, n2, · · · , nm] is

CM̃(x) = π0!

m∏

i=1

CMni [xi1, xi2, · · ·],

particularly, if G[n1, n2, · · · , nm] = K(ks11 , k
s2
2 , · · · , ksm

m ) such that the number of par-

tite sets labeled with ni is si for any integer i, 1 ≤ i ≤ m, then the enufunction

correspondent to K(ks11 , k
s2
2 , · · · , ksm

m ) is

CM̃(x) = m!

m∏

i=1

CMni [xi1, xi2, · · ·]

and the enufunction correspondent to a complete graph Km is

CM̃(x) =

m∏

i=1

CMni [xi1, xi2, · · ·].

Proof Notice that the number of non-equivalent finitely combinatorial manifolds

correspondent to G[n1, n2, · · · , nm] is

π0

m∏

i=1

ni(ti1, ti2, · · · , tis)

for parameters ti1, ti2, · · · , tis, 1 ≤ i ≤ m by the product principle of enumeration.

Whence, the enufunction of combinatorial manifolds M̃(n1, n2, · · · , nm) correspon-

dent to a labeled graph G[n1, n2, · · · , nm] is

CM̃(x) =
∑

ti1,ti2,···,tis

(π0

m∏

i=1

ni(ti1, ti2, · · · , tis))
m∏

i=1

xti1i1 x
ti2
i2 · · ·xtisis

= π0!

m∏

i=1

CMni [xi1, xi2, · · ·]. ♮

4.2.4 Homotopy Class. Denote by f ≃ g two homotopic mappings f and g. Two

finitely combinatorial manifolds M̃(k1, k2, · · · , kl), M̃(n1, n2, · · · , nm) are said to be

homotopically equivalent if there exist continuous mappings

f : M̃(k1, k2, · · · , kl)→ M̃(n1, n2, · · · , nm),
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g : M̃(n1, n2, · · · , nm)→ M̃(k1, k2, · · · , kl)

such that gf ≃identity: M̃(k1, k2, · · · , kl) → M̃(k1, k2, · · · , kl) and fg ≃identity:

M̃(n1, n2, · · · , nm)→ M̃(n1, n2, · · · , nm).

For equivalent homotopically combinatorial manifolds, we know the following

result.

Theorem 4.2.8 Let M̃(n1, n2, · · · , nm) and M̃(k1, k2, · · · , kl) be finitely combinato-

rial manifolds with an equivalence̟ : GL[M̃(n1, n2, · · · , nm)]→ GL[M̃(k1, k2, · · · , kl)].
If for ∀M1,M2 ∈ V (GL[M̃(n1, n2, · · · , nm)]), Mi is homotopic to ̟(Mi) with ho-

motopic mappings fMi
: Mi → ̟(Mi), gMi

: ̟(Mi) → Mi such that fMi
|Mi

⋂
Mj

=

fMj
|Mi

⋂
Mj

, gMi
|Mi

⋂
Mj

= gMj
|Mi

⋂
Mj

providing (Mi,Mj) ∈ E(GL[M̃(n1, n2, · · · , nm)])

for 1 ≤ i, j ≤ m, then M̃(n1, n2, · · · , nm) is homotopic to M̃(k1, k2, · · · , kl).

Proof By the Gluing Lemma, there are continuous mappings

f : M̃(n1, n2, · · · , nm)→ M̃(k1, k2, · · · , kl)

and

g : M̃(k1, k2, · · · , kl)→ M̃(n1, n2, · · · , nm)

such that

f |M = fM and g|̟(M) = g̟(M)

for ∀M ∈ V (GL[M̃(n1, n2, · · · , nm)]). Thereby, we also get that

gf ≃ identity : M̃(k1, k2, · · · , kl)→ M̃(k1, k2, · · · , kl)

and

fg ≃ identity : M̃(n1, n2, · · · , nm)→ M̃(n1, n2, · · · , nm)

as a result of

gMfM ≃ identity : M →M ,

and

fMgM ≃ identity : ̟(M)→ ̟(M)

for ∀M ∈ V (GL[M̃(n1, n2, · · · , nm)]). �
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4.2.5 Euler-Poincaré Characteristic. It is well-known that the integer

χ(M) =
∞∑

i=0

(−1)iαi

with αi the number of i-dimensional cells in a CW -complex M is defined to be the

Euler-Poincaré characteristic of this complex. In this subsection, we get the Euler-

Poincaré characteristic for finitely combinatorial manifolds. For this objective, define

a clique sequence {Cl(i)}i≥1 in the graph GL[M̃ ] by the following programming.

STEP 1. Let Cl(GL[M̃ ]) = l0. Construct

Cl(l0) = {K l0
1 , K

l0
2 , · · · , Ki0

p |K l0
i ≻ GL[M̃ ] and K l0

i ∩K l0
j = ∅,

or a vertex ∈ V(GL[M̃]) for i 6= j, 1 ≤ i, j ≤ p}.

STEP 2. Let G1 =
⋃

Kl∈Cl(l)

K l and Cl(GL[M̃ ] \G1) = l1. Construct

Cl(l1) = {K l1
1 , K

l1
2 , · · · , Ki1

q |K l1
i ≻ GL[M̃ ] and K l1

i ∩K l1
j = ∅

or a vertex ∈ V(GL[M̃]) for i 6= j, 1 ≤ i, j ≤ q}.

STEP 3. Assume we have constructed Cl(lk−1) for an integer k ≥ 1. Let Gk =
⋃

Klk−1∈Cl(l)

K lk−1 and Cl(GL[M̃ ] \ (G1 ∪ · · · ∪Gk)) = lk. We construct

Cl(lk) = {K lk
1 , K

lk
2 , · · · , K lk

r |K lk
i ≻ GL[M̃ ] and K lk

i ∩K lk
j = ∅,

or a vertex ∈ V(GL[M̃]) for i 6= j, 1 ≤ i, j ≤ r}.

STEP 4. Continue STEP 3 until we find an integer t such that there are no edges

in GL[M̃ ] \
t⋃
i=1

Gi.

By this clique sequence {Cl(i)}i≥1, we can calculate the Euler-Poincaré char-

acteristic of finitely combinatorial manifolds.

Theorem 4.2.9 Let M̃ be a finitely combinatorial manifold. Then

χ(M̃) =
∑

Kk∈Cl(k),k≥2

∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)s+1χ(Mi1

⋂
· · ·
⋂

Mis)

Proof Denoted the numbers of all these i-dimensional cells in a combinatorial

manifold M̃ or in a manifold M by α̃i and αi(M). If GL[M̃ ] is nothing but a
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complete graph Kk with V (GL[M̃ ]) = {M1,M2, · · · ,Mk}, k ≥ 2, by applying the

inclusion-exclusion principe and the definition of Euler-Poincaré characteristic we

get that

χ(M̃) =

∞∑

i=0

(−1)iα̃i

=
∞∑

i=0

(−1)i
∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)s+1αi(Mi1

⋂
· · ·
⋂

Mis)

=
∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)s+1
∞∑

i=0

(−1)iαi(Mi1

⋂
· · ·
⋂

Mis)

=
∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)s+1χ(Mi1

⋂
· · ·
⋂

Mis)

for instance, χ(M̃) = χ(M1)+χ(M2)−χ(M1∩M2) if GL[M̃ ] = K2 and V (GL[M̃ ]) =

{M1,M2}. By the definition of clique sequence of GL[M̃ ], we finally obtain that

χ(M̃) =
∑

Kk∈Cl(k),k≥2

∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)i+1χ(Mi1

⋂
· · ·
⋂

Mis).

�

If GL[M̃ ] is just one of some special graphs, we can get interesting consequences

by Theorem 4.2.14.

Corollary 4.2.4 Let M̃ be a finitely combinatorial manifold. If GL[M̃ ] is K3-free,

then

χ(M̃) =
∑

M∈V (GL[M̃ ])

χ2(M)−
∑

(M1,M2)∈E(GL[M̃ ])

χ(M1

⋂
M2).

Particularly, if dim(M1

⋂
M2) is a constant for any (M1,M2) ∈ E(GL[M̃ ]), then

χ(M̃) =
∑

M∈V (GL[M̃ ])

χ2(M)− χ(M1

⋂
M2)|E(GL[M̃ ])|.

Proof Notice that GL[M̃ ] is K3-free, we get that

χ(M̃) =
∑

(M1,M2)∈E(GL[M̃ ])

(χ(M1) + χ(M2)− χ(M1

⋂
M2))

=
∑

(M1,M2)∈E(GL[M̃ ])

(χ(M1) + χ(M2))−
∑

(M1,M2)∈E(GL[M̃ ])

χ(M1

⋂
M2))
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=
∑

M∈V (GL[M̃ ])

χ2(M)−
∑

(M1,M2)∈E(GL[M̃ ])

χ(M1

⋂
M2).

� Since the Euler-Poincaré characteristic of a manifold M is 0 if

dimM ≡ 1(mod2), we get the following consequence.

Corollary 4.2.5 Let M̃ be a finitely combinatorial manifold with odd dimension

number for any intersection of k manifolds with k ≥ 2. Then

χ(M̃) =
∑

M∈V (GL[M̃ ])

χ(M).

§4.3 FUNDAMENTAL GROUPS OF

COMBINATORIAL MANIFOLDS

4.3.1 Retraction. Let ϕ : X → Y be a continuous mapping from topological

spaces X to Y and a, b : I → X be paths in X. It is readily that if a ≃ b in X, then

ϕ([a]) ≃ ϕ([b]) in Y , thus ϕ induce a mapping ϕ∗ from π(X, x0) to π(Y, ϕ(x0)) with

properties following hold.

(i) If [a] and [b] are path classes in X such that [a] · [b] is defined, then ϕ∗([a] ·
[b]) = ϕ∗([a]) · ϕ∗([b]);

(ii) ϕ∗(ǫx) = ǫϕ∗(x) for ∀x ∈ X;

(iii) ϕ∗([a]
−1) = (ϕ∗([a]))

−1;

(iv) If ψ : Y → Z is also a continuous mapping, then (ψϕ)∗ = ψ∗ϕ∗;

(v) If ϕ : X → X is the identity mapping, then ϕ∗([a]) = [a] for ∀[a] ∈ π(X, x0).

Such a ϕ∗ is called a homomorphism induced by ϕ, particularly, a isomorphism

induced by ϕ if ϕ is an isomorphism.

Definition 4.3.1 A subset R of a topological space S is called a retract of S if there

exists a continuous mapping o : S → R, called a retraction such that o(a) = a for

∀a ∈ R.

Now let o : S → R be a retraction and i : R →֒ S a inclusion mapping. For any

point x ∈ R, we consider the induced homomorphism
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o∗ : π(S, x)→ π(R, x), i∗ : π(R, x)→ π(S, x).

Notice that oi =identity mapping by definition, which implies that o∗i∗ is an identity

mapping of the group π(R, x0) by properties (iv) and (v) previously.

Definition 4.3.2 A subset R of a topological space S is called a deformation retract

of S if there exists a retraction o : S → R and a homotopy f : S × I → S such that

f(x, 0) = x, f(x, 1) = o(x) for ∀x ∈ S,

f(a, t) = a for ∀a ∈ R, t ∈ I.

Theorem 4.3.1 If R is a deformation retract of a topological space S, then the

inclusion mapping i : R → S induces an isomorphism of π(R, x0) onto π(S, x0) for

∀x0 ∈ R, i.e., π(R, x0) ∼= π(S, x0)

Proof As we have just mentioned, o∗i∗ is the identity mapping. By definition,

io : X → X is an identity mapping with io(x0) = x0. Whence, (io)∗ = i∗o∗ is the

identity mapping of π(S, x0), which implies that i∗ is an isomorphism from π(R, x0)

to π(S, x0). �

Definition 4.3.3 A topological space S is contractible to a point if there exists a

point x0 ∈ S such that {x0} is a deformation retract of S.

Corollary 4.3.1 A topological space S is simply connected if if it is contractible.

Combining this conclusion with the Seifert and Van-Kampen theorem, we de-

termine the fundamental groups of combinatorial manifolds M̃ in some cases related

with its combinatorial structure GL[M̃ ] in the following subsections.

4.3.2 Fundamental d-Group. Let a finitely combinatorial manifold M̃(n1, n2,

· · · , nm) be d-arcwise connected for some integers 1 ≤ d ≤ n1. We consider funda-

mental d-groups of finitely combinatorial manifolds in some special cases.

Definition 4.3.4 Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold of d-

arcwise connectedness for an integer d, 1 ≤ d ≤ n1 and ∀x0 ∈ M̃(n1, n2, · · · , nm), a

fundamental d-group at the point x0, denoted by πd(M̃(n1, n2, · · · , nm), x0) is defined

to be a group generated by all homotopic classes of closed d-pathes based at x0.
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If d = 1 and M̃(n1, n2, · · · , nm) is just a manifold M , we get that

πd(M̃(n1, n2, · · · , nm), x) = π1(M,x).

Whence, fundamental d-groups are a generalization of fundamental groups in clas-

sical topology.

A combinatorial Euclidean space EG(
︷ ︸︸ ︷
d, d, · · · , d

m
) of Rd underlying a combina-

torial structure G, |G| = m is called a d-dimensional graph, denoted by M̃d[G] if

(1) M̃d[G] \ V (M̃d[G]) is a disjoint union of a finite number of open subsets

e1, e2, · · · , em, each of which is homeomorphic to an open ball Bd;

(2) the boundary ei − ei of ei consists of one or two vertices Bd, and each pair

(ei, ei) is homeomorphic to the pair (B
d
, Sd−1),

Notice that M̃d[G] and G are homotopy equivalence. We get the next result.

Theorem 4.3.2 πd(M̃d[G], x0) ∼= π1(G, x0), x0 ∈ G. �

For determining the d-fundamental group of combinatorial manifolds, an easily

case is the adjunctions of s-balls to a connected d-dimensional graph, i.e., there

exists an arcwise connected combinatorial submanifold M̃d[G] ≺ M̃(n1, n2, · · · , nm)

such that

M̃(n1, n2, · · · , nm) \ M̃d[G] =

k⋃

i=2

li⋃

j=1

Bij ,

where Bij is the i-ball Bi for integers 1 ≤ i ≤ k, 1 ≤ j ≤ li. We know the following

result.

Theorem 4.3.3 Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold under-

lying a combinatorial structure G, M̃d[G] ≺ M̃(n1, n2, · · · , nm) such that

M̃(n1, n2, · · · , nm) \ M̃d[G] =
k⋃

i=2

li⋃

j=1

Bij ,

x0 ∈ M̃d[G]. Then

πd(M̃(n1, n2, · · · , nm), x0) ∼=
π1(G, x0)[

β2j
α2j

β−1
2j
|1 ≤ j ≤ l2

] ,

where α2j
is the closed path of B2j

and β2j
a path in X with an initial point x0 and

terminal point on α2j
.
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Proof For any s-ball Bsj, 1 ≤ j ≤ ls, choose one point us0j
∈ Bsj. De-

fine U = M̃(n1, n2, · · · , nm) \ {us0j
} and V = Bsj. Then U , V are open sets and

M̃(n1, n2, · · · , nm) = U ∪ V . Notice that U, V , V ∩ V = Bsj{us0j
} are arcwise con-

nected and V simply connected. Applying Corollary 3.1.2 and Theorem 4.3.2, we

get that

πd(M̃(n1, n2, · · · , nm), x0) ∼=
π(G, x0)

[π1(U ∩ V )]
=

π(G, x0)[
i1∗(π1(Bsj{us0j

}))
] .

Since

π1(Bsj{us0j
}) =

{
Z, if s = 2,

{1}, if s ≥ 3,

we find that

πd(M̃(n1, n2, · · · , nm), x0) ∼=





π1(G, x0)

i1∗(π1(B2j{u20j
})) , if s = 2,

π1(G, x0), if s ≥ 3.

Notice that
[
i1∗(π1(B2j{u20j

}))
]

=
[
β2j

α2j
β−1

2j

]
. Applying the induction prin-

ciple on integers i, j, 2 ≤ i ≤ k, 1 ≤ j ≤ li, we finally get the fundamental d-group

of M̃(n1, n2, · · · , nm) with a base point x0 following, i.e.,

πd(M̃(n1, n2, · · · , nm), x0) ∼=
π1(G, x0)[

β2j
α2j

β−1
2j
|1 ≤ j ≤ l2

] .

This completes the proof. �

Corollary 4.3.2 Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold under-

lying a combinatorial structure G, M̃d[G] ≺ M̃(n1, n2, · · · , nm) such that

M̃(n1, n2, · · · , nm) \ M̃d[G] =
⋃

i≥3

li⋃

j=1

Bij ,

x0 ∈ M̃d[G]. Then

πd(M̃(n1, n2, · · · , nm), x0) ∼= π1(G, x0).

Corollary 4.3.3 Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold under-

lying a combinatorial structure G, M̃d[G] ≺ M̃(n1, n2, · · · , nm) such that

M̃(n1, n2, · · · , nm) \ M̃d[G] =

k⋃

i=1

B2i
,
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x0 ∈ M̃d[G]. Then

πd(M̃(n1, n2, · · · , nm), x0) ∼=
π1(G, x0)〈

β2i
α2i

β−1
2i
|1 ≤ i ≤ k

〉N ,

where α2i
is the closed path of B2i

and β2i
a path in X with an initial point x0 and

terminal point on α2i
.

A combinatorial map is a connected graph G cellularly embedded in a sur-

face S ([Liu2] and [Mao1]). For these fundamental groups of surfaces, we can also

represented them by graphs applying Corollary 4.3.3.

Corollary 4.3.4 Let M be a combinatorial map underlying a connected graph G on

a locally orientable surface S. Then for a point x0 ∈ G,

π1(S, x0) ∼=
π1(G, x0)

[∂f |f ∈ F (M)]
,

where F (M) denotes the face set of M and ∂f the boundary of a face f ∈ F (M).

We obtain the following characteristics for fundamental d-groups of finitely

combinatorial manifolds if their intersection of two by two is either empty or simply

connected.

Theorem 4.3.4 Let M̃(n1, n2, · · · , nm) be a d-connected finitely combinatorial man-

ifold for an integer d, 1 ≤ d ≤ n1. If ∀(M1,M2) ∈ E(GL[M̃(n1, n2, · · · , nm)]),

M1 ∩M2 is simply connected, then

(1) for ∀x0 ∈ Gd, M ∈ V (GL[M̃(n1, n2, · · · , nm)]) and x0M ∈M ,

πd(M̃(n1, n2, · · · , nm), x0) ∼= (
⊗

M∈V (Gd)

πd(M,xM0))
⊗

π(Gd, x0),

where Gd = Gd[M̃(n1, n2, · · · , nm)] in which each edge (M1,M2) passing through a

given point xM1M2 ∈ M1 ∩ M2, π
d(M,xM0), π(Gd, x0) denote the fundamental d-

groups of a manifold M and the graph Gd, respectively and

(2) for ∀x, y ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= πd(M̃(n1, n2, · · · , nm), y).

Proof Applying Corollary 3.1.3, we firstly prove that the fundamental d-groups

of two arcwise connected spaces S1 and S2 are equal if there exist arcwise connected
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subspaces U, V ⊂ S1, U, V ⊂ S2 such that U ∩ V is simply connected in S1 and

U ∩ V = {z0} in S2, such as those shown in Fig.4.3.1.

U ∩ VU V

U ∩ V simply connected in S1

U V

z0

U ∩ V = {z0} in S2

Fig.4.3.1

In fact, we know that

π1(S1, x0) = π1(U, x0) ∗ π1(V, x0)

for x0 ∈ U ∩ V and

π1(S2, z0) = π1(U, z0) ∗ π1(V, z0)

by Corollary 3.1.3. Whence, π1(S1, x0) = π1(S2, z0). Therefore, we only need to

determine equivalently the fundamental d-group of a new combinatorial manifold

M̃∗(n1, n2, · · · , nm), which is obtained by replacing each pairs M1 ∩ M2 6= ∅ in

M̃(n1, n2, · · · , nm) by M1 ∩M2 = {xM1M2}, such as those shown in Fig.4.3.2.

-X X

Y Y

Z

Z

xXY

xY Z

M̃(n1, n2, · · · , nm) M̃∗(n1, n2, · · · , nm)

Fig.4.3.2

For proving the conclusion (1), we only need to prove that for any cycle C̃ in

M̃(n1, n2, · · · , nm), there are elements CM
1 , CM

2 , · · · , CM
l(M) ∈ πd(M), α1, α2, · · · , αβ(Gd)
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∈ π(Gd) and integers aMi , bj for ∀M ∈ V (Gd) and 1 ≤ i ≤ l(M), 1 ≤ j ≤ c(Gd) ≤
β(Gd) such that

C̃ ≡
∑

M∈V (Gd)

l(M)∑

i=1

aMi C
M
i +

c(Gd)∑

j=1

bjαj(mod2)

and it is unique. Let CM
1 , CM

2 , · · · , CM
b(M) be a base of πd(M) for ∀M ∈ V (Gd). Since

C̃ is a closed trail, C̃ passes through a point xM1M2 even times or it pass through

cycles in Gd. Whence there exist integers kMi , lj, 1 ≤ i ≤ b(M), 1 ≤ j ≤ β(Gd) and

hP for an open d-path on C̃ such that

C̃ =
∑

M∈V (Gd)

b(M)∑

i=1

kMi C
M
i +

β(Gd)∑

j=1

ljαj +
∑

P∈∆

hPP,

where hP ≡ 0(mod2) and ∆ denotes all of these open d-paths on C̃. Now let

{aMi |1 ≤ i ≤ l(M)} = {kMi |kMi 6= 0 and 1 ≤ i ≤ b(M)},

{bj|1 ≤ j ≤ c(Gd)} = {lj|lj 6= 0, 1 ≤ j ≤ β(Gd)}.

Then we get that

C̃ ≡
∑

M∈V (Gd)

l(M)∑

i=1

aMi C
M
i +

c(Gd)∑

j=1

bjαj(mod2). (3.4.1)

The formula (3.4.1) provides with us

[C] ∈ (
⊗

M∈V (Gd)

πd(M,xM0))
⊗

π(Gd, x0).

If there is another decomposition

C̃ ≡
∑

M∈V (Gd)

l′(M)∑

i=1

a
′M
i CM

i +

c′(Gd)∑

j=1

b′jαj(mod2),

not loss of generality, assume l′(M) ≤ l(M) and c′(M) ≤ c(M), then we know that

∑

M∈V (Gd)

l(M)∑

i=1

(aMi − a
′M
i )CM

i +

c(Gd)∑

j=1

(bj − b′j)αj′ = 0,
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where a′Mi = 0 if i > l′(M), b′j = 0 if j′ > c′(M). Since CM
i , 1 ≤ i ≤ b(M) and

αj , 1 ≤ j ≤ β(Gd) are bases of the fundamental group π(M) and π(Gd) respectively,

we must have

aMi = a
′M
i , 1 ≤ i ≤ l(M) and bj = b′j , 1 ≤ j ≤ c(Gd).

Whence, C̃ can be decomposed uniquely into (3.4.1). Thereafter, we finally get that

πd(M̃(n1, n2, · · · , nm), x0) ⊇ (
⊗

M∈V (Gd)

πd(M,xM0))
⊗

π(Gd, x0).

For proving the conclusion (2), notice that M̃(n1, n2, · · · , nm) is arcwise d-

connected. Let P d(x, y) be a d-path connecting points x and y in M̃(n1, n2, · · · , nm).

Define

ω∗(C) = P d(x, y)C(P d)−1(x, y)

for ∀C ∈ M̃(n1, n2, · · · , nm). Then it can be checked immediately that

ω∗ : πd(M̃(n1, n2, · · · , nm), x)→ πd(M̃(n1, n2, · · · , nm), y)

is an isomorphism. �

A d-connected finitely combinatorial manifold M̃(n1, n2, · · · , nm) is said to be

simply d-connected if πd(M̃(n1, n2, · · · , nm), x) is trivial. As a consequence, we get

the following result by Theorem 4.3.4.

Corollary 4.3.5 A d-connected finitely combinatorial manifold M̃(n1, n2, · · · , nm)

is simply d-connected if and only if

(1) for ∀M ∈ V (Gd[M̃(n1, n2, · · · , nm)]), M is simply d-connected and

(2) Gd[M̃(n1, n2, · · · , nm)] is a tree.

Proof According to the decomposition for πd(M̃(n1, n2, · · · , nm), x) in Theo-

rem 4.3.4, it is trivial if and only if π(M) and π(Gd) both are trivial for ∀M ∈
V (Gd[M̃(n1, n2, · · · , nm)]), i.e M is simply d-connected and Gd is a tree. �

Corollary 4.3.6 Let M̃(n1, n2, · · · , nm) be a d-connected finitely combinatorial man-

ifold for an integer d, 1 ≤ d ≤ n1. For ∀M ∈ V (GL[M̃(n1, n2, · · · , nm)]), (M1,M2) ∈
E(GL[M̃(n1, n2, · · · , nm)]), if M and M1∩M2 are simply connected, then for x0 ∈ Gd,

πd(M̃(n1, n2, · · · , nm), x0) ∼= π(Gd, x0).
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4.3.3 Fundamental Group of Combinatorial Manifold. By applying the

generalized Seifert-Van Kampen theorem, i.e., Theorems 3.1.13 and 3.1.14, we can

get the fundamental group π1(M̃) up to isomorphism in general cases.

Definition 4.3.5 Let M̃ be a combinatorial manifold underlying a graph G[M̃ ]. An

edge-extended graph Gθ[M̃ ] is defined by

V (Gθ[M̃ ]) = {xM , xM ′, x1, x2, · · · , xµ(M,M ′)| for ∀(M,M ′) ∈ E(G[M̃ ])},
E(Gθ[M̃ ]) = {(xM , xM ′), (xM , xi), (xM ′, xi)| 1 ≤ i ≤ µ(M,M ′)},

where µ(M,M ′) is called the edge-index of (M,M ′) with µ(M,M ′) + 1 equal to the

number of arcwise connected components in M ∩M ′.

By the definition of edge-extended graph, we finally get Gθ[M̃ ] of a combinato-

rial manifold M̃ if we replace each edge (M,M ′) in G[M̃ ] by a subgraph TBT
µ(M,M ′)

shown in Fig.4.3.3 with xM = M and xM ′ = M ′.

xM

xM ′

x1 x2 xµ(M,M ′)

Fig.4.3.3

Then we have the following result.

Theorem 4.3.5 Let M̃ be a finitely combinatorial manifold. Then

π1(M̃) ∼=

(
∏

M∈V (G[M̃ ])

π1(M)

)
∗ π1(G

θ[M̃ ])

[
(iE1 )−1(g) · iE2 (g)| g ∈ ∏

(M1,M2)∈E(G[M̃ ])

π1(M1

⋂
M2)

] ,

where iE1 and iE2 are homomorphisms induced by inclusion mappings iM : π1(M ∩
M ′) → π1(M), iM ′ : π1(M ∩M ′) → π1(M

′) such as those shown in the following

diagram:
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π1(M ∩M ′)

π1(M)

π1(M
′)

π1(M̃)

-
- ?6.......................................................-iM

iM ′

jM

jM ′

ΦMM ′

for ∀(M,M ′) ∈ E(G[M̃ ]).

Proof This result is obvious for |G[M̃ ]| = 1. Notice that Gθ[M̃ ] = BT
µ(M,M ′)+1 if

V (G[M̃ ]) = {M, M ′}. Whence, it is an immediately conclusion of Theorem 3.1.14

for |G[M̃ ]| = 2.

Now let k ≥ 3 be an integer. If this result is true for |G[M̃ ]| ≤ k, we prove it hold

for |G[M̃ ]| = k. It should be noted that for an arcwise-connected graph H we can

always find a vertex v ∈ V (H) such that H−v is also arcwise-connected. Otherwise,

each vertex v ofH is a cut vertex. There must be |H| = 1, a contradiction. Applying

this fact to G[M̃ ], we choose a manifold M ∈ V (G[M̃ ]) such that M̃ −M is arcwise-

connected, which is also a finitely combinatorial manifold.

Let U = M̃ \ (M \ M̃) and V = M . By definition, they are both opened.

Applying Theorem 3.1.14, we get that

π1(M̃) ∼= π1(M̃ −M) ∗ π1(M) ∗ π1(B
T
m)[

(iE1 )−1(g) · iE2 (g)| g ∈
m∏
i=1

π1(Ci)

] ,

where Ci is an arcwise-connected component in M ∩ (M̃ −M) and

m =
∑

(M,M ′)∈E(G[M̃ ])

µ(M,M ′).

Notice that

π1(B
T
m) ∼=

∏

(M,M ′)∈E(G[M̃ ]

π1(TBµ(M,M ′)).
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By the induction assumption, we know that

π1(M̃ −M) ∼=


 ∏

M∈V (G[M̃−M ])

π1(M)


 ∗ π1(G

θ[M̃ −M ])


(iE1 )−1(g) · iE2 (g)| g ∈

∏

(M1,M2)∈E(G[M̃−M ])

π1(M1 ∩M2)



,

where iE1 and iE2 are homomorphisms induced by inclusion mappings iM1 : π1(M1 ∩
M2) → π1(M1), iM2 : π1(M1 ∩ M2) → π1(M2) for ∀(M1,M2) ∈ E(G[M̃ − M ]).

Therefore, we finally get that

π1(M̃) ∼= π1(M̃ −M) ∗ π1(M) ∗ π1(B
T
m)[

(iE1 )−1(g) · iE2 (g)| g ∈
m∏

i=1

π1(Ci)

]

∼=




∏

M∈V (G[M̃−M ])

π1(M)


 ∗ π1(G

θ[M̃ −M ])


(i

E
1 )−1(g) · iE2 (g)| g ∈

∏

(M1,M2)∈E(G[M̃−M ])

π1(M1 ∩M2)




[
(iE1 )−1(g) · i2(g)| g ∈

m∏

i=1

π1(Ci)

]

∗

π1(M) ∗
∏

(M,M ′)∈E(G[M̃ ]

π1(TBµ(M,M ′))

[
(iE1 )−1(g) · i2(g)| g ∈

m∏

i=1

π1(Ci)

]

∼=


 ∏

M∈V (G[M̃ ])

π1(M)


 ∗ π1(G

θ[M̃ ])


(iE1 )−1(g) · iE2 (g)| g ∈

∏

(M1,M2)∈E(G[M̃ ])

π1(M1

⋂
M2)




by facts

(G /H ) ∗H ∼= G ∗H/H
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for groups G , H , G and

Gθ[M̃ ] = Gθ[M̃ −M ]
⋃

(M,M ′)∈E(G[M̃ ]

TBµ(M,M ′),

π1(G
θ[M̃ ]) = π1(G

θ[M̃ −M ]) ∗
∏

(M,M ′)∈E(G[M̃ ]

π1(TBµ(M,M ′)),

∏

M∈V (G[M̃ ])

π1(M) =


 ∏

M∈V (G[M̃−M ])

π1(M)


 ∗ π1(M),

where iE1 and iE2 are homomorphisms induced by inclusion mappings iM : π1(M ∩
M ′) → π1(M), iM ′ : π1(M ∩ M ′) → π1(M

′) for ∀(M,M ′) ∈ E(G[M̃ ]). This

completes the proof. �

Applying Corollary 3.1.8, we get the result of Theorem 4.3.3 on fundamental

group by noted that Gθ[M̃ ] = G[M̃ ] if ∀(M1,M2) ∈ E(GL[M̃ ]), M1 ∩M2 is simply

connected again.

Corollary 4.3.7 Let M̃ be a finitely combinatorial manifold. If for ∀(M1,M2) ∈
E(GL[M̃ ]), M1 ∩M2 is simply connected, then

π1(M̃) ∼=


 ⊗

M∈V (G[M̃ ])

π1(M)


⊗π1(G[M̃ ]).

4.3.4 Fundamental Group of Manifold. If we choose M ∈ V (G[M̃ ]) to be a

chart (Uλ, ϕλ) with ϕλ : Uλ → Rn for λ ∈ Λ in Theorem 4.3.5, i.e., an n-manifold,

we get the fundamental group of n-manifold by π1(R
n) = identity for any integer

n ≥ 1 following.

Theorem 4.3.6 Let M be a compact n-manifold with charts {(Uλ, ϕλ)| ϕλ : Uλ →
Rn, λ ∈ Λ)}. Then

π1(M) ∼= π1(G
θ[M ])[

(iE1 )−1(g) · iE2 (g)| g ∈ ∏
(Uµ,Uν)∈E(G[M ])

π1(Uµ ∩ Uν)
] ,

where iE1 and iE2 are homomorphisms induced by inclusion mappings iUµ : π1(Uµ ∩
Uν)→ π1(Uµ), iUν : π1(Uµ ∩ Uν)→ π1(Uν), µ, ν ∈ Λ.
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Corollary 4.3.8 Let M be a simply connected manifold with charts {(Uλ, ϕλ)| ϕλ :

Uλ → Rn, λ ∈ Λ)}, where |Λ| < +∞. Then Gθ[M ] = G[M ] is a tree.

Particularly, if Uµ ∩ Uν is simply connected for ∀µ, ν ∈ Λ, then we obtain an

interesting result following.

Corollary 4.3.9 Let M be a compact n-manifold with charts {(Uλ, ϕλ)| ϕλ : Uλ →
Rn, λ ∈ Λ)}. If Uµ ∩ Uν is simply connected for ∀µ, ν ∈ Λ, then

π1(M) ∼= π1(G[M ]).

4.3.5 Homotopy Equivalence. For equivalent homotopically combinatorial

manifolds, we can also find criterions following.

Theorem 4.3.7 If f : M̃(n1, n2, · · · , nm)→ M̃(k1, k2, · · · , kl) is a homotopic equiv-

alence, then for any integer d, 1 ≤ d ≤ n1 and x ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= πd(M̃(k1, k2, · · · , kl), f(x)).

Proof Notice that f can natural induce a homomorphism

fπ : πd(M̃(n1, n2, · · · , nm), x)→ πd(M̃(k1, k2, · · · , kl), f(x))

defined by fπ 〈g〉 = 〈f(g)〉 for ∀g ∈ πd(M̃(n1, n2, · · · , nm), x) since it can be easily

checked that fπ(gh) = fπ(g)fπ(h) for ∀g, h ∈ πd(M̃(n1, n2, · · · , nm), x). We only

need to prove that fπ is an isomorphism.

By definition, there is also a homotopic equivalence g : M̃(k1, k2, · · · , kl) →
M̃(n1, n2, · · · , nm) such that gf ≃ identity : M̃(n1, n2, · · · , nm)→ M̃(n1, n2, · · · , nm).

Thereby, gπfπ = (gf)π = µ(identity)π :

πd(M̃(n1, n2, · · · , nm), x)→ πs(M̃(n1, n2, · · · , nm), x),

where µ is an isomorphism induced by a certain d-path from x to gf(x) in M̃(n1, n2,

· · · , nm). Therefore, gπfπ is an isomorphism. Whence, fπ is a monomorphism and

gπ is an epimorphism.

Similarly, apply the same argument to the homotopy

fg ≃ identity : M̃(k1, k2, · · · , kl)→ M̃(k1, k2, · · · , kl),

we get that fπgπ = (fg)π = ν(identity)pi :
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πd(M̃(k1, k2, · · · , kl), x)→ πs(M̃(k1, k2, · · · , kl), x),

where ν is an isomorphism induced by a d-path from fg(x) to x in M̃(k1, k2, · · · , kl).
So gπ is a monomorphism and fπ is an epimorphism. Combining these facts enables

us to conclude that fπ : πd(M̃(n1, n2, · · · , nm), x)→ πd(M̃(k1, k2, · · · , kl), f(x)) is an

isomorphism. �

Corollary 4.3.10 If f : M̃(n1, n2, · · · , nm)→ M̃(k1, k2, · · · , kl) is a homeomorphism,

then for any integer d, 1 ≤ d ≤ n1 and x ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= πd(M̃(k1, k2, · · · , kl), f(x)).

§4.4 HOMOLOGY GROUPS OF

COMBINATORIAL MANIFOLDS

4.4.1 Singular Homology Group. Let ∆p be a standard p-simplex [e0, e1, · · · , ep],
where e0 = 0, ei is the vector with a 1 in the ith place and 0 elsewhere, and S a

topological space. A singular p-simplex in S is a continuous mapping σ : ∆p → S.

For example, a singular 0-simplex is just a mapping from the one-point space ∆0

into S and a singular 1-simplex is a mapping from ∆1 = [0, 1] into S, i.e., an arc in

S.

Similar to the case of simplicial complexes, we consider Abelian groups gener-

ated by these singular simplices. Denote by Cp(S) the free Abelian group generated

by the set of all singular p-simplices in S, in which each element can be written as

a formal of linear combination of singular simplices with integer coefficients, called

a singular p-chain in S.

For a p-simplex s = [a0, a1, · · · , ap] in Rn, let α(a0, a1, · · · , ap) : ∆p → s be a

continuous mapping defined by α(a0, a1, · · · , ap)(ei) = ai for i = 0, 1, · · · , p, called

an affine singular simplex. For i = 0, 1, · · · , p, define the ith face mapping Fi,p :

∆p−1 → ∆p to be an affine singular simplex by

Fi,p = α(e0, · · · , êi, · · · , ep),

where êi means that ei is to be omitted. The boundary ∂σ of a singular simplex
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σ : ∆p → S is a (p− 1)-chain determined by

∂σ =

p∑

i=0

(−1)iσ ◦ Fi,p

and extended linearly to a boundary operator ∂P : Cp(S)→ Cp−1(S).

A singular p-chain c is called a cycle if ∂c = 0 and is called a boundary if there

exists a (p + 1)-chain b such that c = ∂b. Similar to Theorem 3.1.14, we also know

the following result for the boundary operator on singular chains.

Theorem 4.4.1 Let c be a singular chain. Then ∂(∂c) = 0.

Proof By definition, calculation shows that

Fi,p ◦ Fj,p−1 = Fj,p ◦ Fi−1,p−1

if i > j. In fact, both sides are equal to the affine simplex α(e0, · · · , êj, · · · , êi, · · · , ep).
Whence, we know that

∂(∂c) =

p−1∑

j=0

p∑

i=0

(−1)i+jσ ◦ Fi,p ◦ Fj,p−1

=
∑

0≤j<i≤p

(−1)i+jσ ◦ Fi,p ◦ Fj,p−1 +
∑

0≤i≤j≤p−1

(−1)i+jσ ◦ Fi,p ◦ Fj,p−1

=
∑

0≤j<i≤p

(−1)i+jσ ◦ Fi,p ◦ Fj,p−1 +
∑

0≤j<i≤p

(−1)i+j−1σ ◦ Fj,p ◦ Fi−1,p−1

= 0. �

Denote by Zp(S) all p-cycles and Bp(S) all boundaries in Cp(S). Each of them

is a subgroup of Cp(S) by definition. According to Theorem 4.4.1, we find that

Im∂p+1 ≤ Ker∂p. This enables us to get a chain complex (C ; ∂)

0→ · · · → Cp+1(S)
∂p+1→ Cp(S)

∂p→ Cp−1(S)→ · · · → 0.

Similarly, the pth singular homology group of S is defined to be a quotient group

Hp(S) = Zp(S)/Bp(S) = Ker∂p/Im∂p+1.

These singular homology groups of S are topological invariants shown in the

next.
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Theorem 4.4.2 If S is homomorphic to T , then Hp(S) is isomorphic to Hp(T ) for

any integer p ≥ 0.

Proof Let f : S → T be a continuous mapping. It induces a homomorphism

f♯ : Cp(S) → Cp(T ) by setting f♯σ = f ◦ σ for each singular p-simplex and then

extend it linearly on Cp(S).

Notice that

f♯(∂σ) =

p∑

i=0

(−1)if ◦ σ ◦ Fi,p.

We know that f♯ : Zp(S) → Zp(T ) and f♯ : Bp(S) → Bp(T ). Thereafter, f also

induces a homomorphism f∗ : Hp(S) → Hp(T ) with properties following, each of

them can be checked easily even for f♯.

(i) The identity homomorphism identityS : S → S induces the identity of

Hp(S);

(ii) If f : S → T and g : T → U are continuous mapping, then (g ◦ f)∗ =

g∗ ◦ f∗ : Hp(S)→ HP (U).

Applying these properties, we get the conclusion. �

Furthermore, singular homology groups are homotopy invariance shown in the

following result. For its proof, the reader is referred to [Mas2].

Theorem 4.4.3 If f : S → T is a homopoty equivalence, then f∗ : Hp(S)→ Hp(T )

is an isomorphism for each integer p ≥ 0. �

Now we calculate homology groups for some simple spaces.

Theorem 4.4.4 Let S be a disjoint union of arcwise connected spaces Sλ, λ ∈ Λ

and ιp : Sλ →֒ S an inclusion. Then for each p ≥ 0, the induced mappings (ιλ)∗ :

Hp(Sλ)→ HP (S) induce an isomorphism

⊕

λ∈Λ

Hp(Sλ)
(ιλ)∗∼= Hp(S).

Proof Notice that the image of a singular simplex must entirely in an arcwise

connected component of S. It is easily to know that each (ιλ)♯ : Cp(Sλ) → Cp(S)

introduced in the proof of Theorem 4.4.2 induces isomorphisms

⊕
λ∈Λ

Cp(Sλ)
(ιλ)♯∼= Cp(S),
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⊕
λ∈Λ

Zp(Sλ)
(ιλ)♯∼= Zp(S),

⊕
λ∈Λ

Bp(Sλ)
(ιλ)♯∼= Bp(S).

Therefore, we know that

⊕

λ∈Λ

Hp(Sλ)
(ιλ)∗∼= Hp(S). �

For p = 0 or 1, we have known the singular homology groups Hp(S) in the

following.

Theorem 4.4.5 Let S be a topological space. Then

(i) H0(S) is free Abelian group with basis consisting of an arbitrary point in

each arcwise component.

(ii) H1(S) ∼= π1(S, x0)/[π1(S, x0), π1(S, x0)], where [π1(S, x0), π1(S, x0)] denotes

the commutator subgroup of π1(S, x0), i.e.,

[π1(S, x0), π1(S, x0)] =
〈
a−1b−1ab|a, b ∈ π1(S, x0)

〉
.

Proof The (i) is an immediately consequence of Theorem 4.4.4. For (ii), its

proof can be found in references, for examples, [Mas2], [You1], etc.. �

Theorem 4.4.6 Let O be a one point space. Then singular homology groups of O

are

Hp(O) =

{
Z, if p = 0,

0, if p > 0.

Proof The case of p = 0 is a consequence of Theorem 4.4.4. For each p > 0,

there is exactly one singular simplex σp : ∆p → O. Whence, each chain group Cp(O)

is an infinite cyclic group generated by σp. By definition,

∂σp =

p∑

i=0

(−1)iσp ◦ Fi,p =

p∑

i=0

(−1)iσp−1 =

{
0, if p is odd,

σp−1, if p is even.

Therefore, ∂ : Cp(O)→ Cp−1(O) is an isomorphism if p is even and zero mapping if

p is odd. We get that

· · · ∼=→ C3(O)
0→ C2(O)

∼=→ C(O)
0→ C0(O)→ 0.
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By this chain complex, it follows that for each p > 0,

Zp(O) =

{
Cp(O), if p is odd,

0, if p is even;

Bp(O) =

{
Cp(O), if p is odd,

0, if p is even.

Whence, we find that Hp(O) = Zp(O)/Bp(O) = 0. �

4.4.2 Relative Homology Group. For a subspace A of a topological space S

and an inclusion mapping i : A →֒ S, it is readily verified that the induced homo-

morphism i♯ : Cp(A) → Cp(S) is a monomorphism. Whence, we can consider that

Cp(A) is a subgroup of Cp(S). Let Cp(S,A) denote the quotient group Cp(S)/Cp(A),

called the p-chain group of the pair (S,A).

It is easily to know also that the boundary operator ∂ : Cp(S) → Cp−1(S)

posses the property that ∂p(Cp(A)) ⊂ Cp(A). Whence, it induces a homomorphism

∂p on quotient groups

∂p : Cp(S,A)→ Cp−1(X,A).

Similarly, we define the p-cycle group and p-boundary group of (S,A) by

Zp(S,A) = Ker∂p = { u ∈ Cp(S,A) | ∂p(u) = 0 },

Bp(S,A) = Im∂p+1 = ∂p+1(Cp+1(S,A)),

for any integer p ≥ 0. Notice that ∂p∂p+1 = 0. It follows that Bp(S,A) ⊂ Zp(S,A)

and the pth relative homology group Hp(S,A) is defined to be

Hp(S,A) = Zp(S,A)/Bp(S,A).

Let (S,A) and (T,B) be pairs consisting of a topological space with a subspace.

A continuous mapping f : S → T is called a mapping (S,A) into (T,B) if f(A) ⊂ B,

denoted by f : (S,A)→ (T,B) such a mapping.

The main property of relative homology groups is the excision property shown

in the following result. Its proof is refereed to the reference [Mas2].

Theorem 4.4.7 Let (S,A) be a pair and B a subset of A such that B is contained in

the interior of A. Then the inclusion mapping i : (S − B,A−B) →֒ (S,A) induces
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an isomorphism of relative homology groups

Hp(S − B,A−B)
i∗∼= Hp(S,A)

for any integer p ≥ 0. �

4.4.3 Exact Chain. A chain complex

0→ · · · → Cp+1
∂p+1→ Cp

∂p→ Cp−1 → · · · → 0

is said to be exact if Im∂p+1 = Ker∂p for all p ≥ 0, particularly, a 5-term exact chain

0→ C4
∂4→ C3

∂3→ C2 → 0

is called a short exact chain. Notice that the exactness of a short exact chain means

that ∂3 is surjective, Ker∂3 = Im∂4 and

C2
∼= C3/Ker∂3 = C3/Im∂4

by Theorem 2.2.5.

Now let i : A →֒ S be an inclusion mapping for a pair (S,A) and j♯ : Cp(S)→
Cp(S,A) the natural epimorphism of Cp(S) onto its quotient group Cp(S,A) for

an integer p ≥ 0. Then as shown in the proof of Theorem 4.4.2, i and j♯ induce

homomorphisms i∗ : Hp(A)→ Hp(S), j∗ : Hp(S)→ Hp(S,A) for p ≥ 0.

We define a boundary operator ∂∗ : Hp(S,A) → Hp−1(A) as follows. For

∀u ∈ Hp(S,A), choose a representative p-cycle u′ ∈ Cp(S,A) for u. Notice that j♯

is an epimorphism, there is a chain u” ∈ Cp(S) such that j♯(u”) = u′. Consider the

chain ∂(u”). We find that j♯∂(u”) = ∂j♯(u”) = ∂u′ = 0. Whence, ∂(u”) belong to

the subgroup Cp−1(A) of Cp−1(S). It is a cycle of Cp(S,A). We define ∂∗ to be the

homology class of the cycle ∂(u”). It can be easily verified that ∂∗ does not depend

on the choice of u′, u” and it is a homomorphism, i.e., ∂∗(u+ v) = ∂∗(u) + ∂∗(v) for

∀u, v ∈ Hp(S,A).

Therefore, we get a chain complex, called the homology sequence of (S,A) fol-

lowing.

· · · j∗→ Hp+1(S,A)
∂∗→ Hp(A)

i∗→ Hp(S)
j∗→ Hp(S,A)

∂∗→ · · · .

Theorem 4.4.8 The homology sequence of any pair (S,A) is exact.
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Proof It is easily to verify the following six inclusions:

Imi∗ ⊆ Kerj∗, Kerj∗ ⊆ Imi∗,

Imj∗ ⊆ Ker∂∗, Ker∂∗ ⊆ Imi∗,

Im∂∗ ⊆ Keri∗, Keri∗ ⊆ Im∂∗.

Whence, the homology sequence of (S,A) is exact by definition. �

Similar to the consideration in Seifer-Van Kampen theorem on fundamental

groups, let S1, S2 ⊂ S with S = S1∪S2 and four inclusion mappings i : S1∩S2 →֒ S1,

j : S1 ∩ S2 →֒ S2, k : S1 →֒ S and l : S2 →֒ S, which induce four homology

homomorphisms. Then we know the next result.

Theorem 4.4.9(Mayer-Vietoris) Let S be a topological space, S1, S2 ⊂ S with

S1 ∪ S2 = S. Then for each integer p ≥ 0, there is a homomorphism ∂∗ : Hp(S) →
Hp−1(S1 ∩ S2) such that the following chain

· · · ∂∗→ Hp(S1 ∩ S2)
i∗⊕j∗→ Hp(S1)⊕Hp(S2)

k∗−l∗→ Hp(S)
∂∗→ Hp−1(S1 ∩ S2)

i∗⊕j∗→ · · · ,

is exact, where i∗ ⊕ j∗(u) = (i∗(u), j∗(u)), ∀u ∈ Hp(S1 ∩ S2) and (k∗ − l∗)(u, v) =

k∗(u)− l∗(v) for ∀u ∈ Hp(S1), v ∈ Hp(S2). �

This theorem and the exact chain in it are usually called the Mayer-Vietoris

theorem and Mayer-Vietoris chain, respectively. For its proof, the reader is refereed

to [Mas2] or [Lee1].

4.4.4 Homology Group of d-Dimensional Graph. We have determined the

fundamental group of d-dimensional graphs in Section 4.3. The application of results

in previous subsections also enables us to find its singular homology groups.

Theorem 4.4.10 For an integer n ≥ 1, the singular homology groups Hp(S
n) of Sn

are

Hp(S
n) ∼=

{
Z, if p = 0 or n,

0, otherwise.

Proof Let N and S denote the north and south poles of Sn and U = Sn \ {N},
V = Sn \ {S}. By the Mayer-Vietoris theorem, we know the following portion of
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the Mayer-Vietoris chain

· · ·Hp(U)⊕Hp(V )→ Hp(S
n)

∂∗→ Hp−1(U ∩ V )→ Hp−1(U)⊕Hp−1(V ) · · · .

Notice that U and V are contractible. If p > 1, this chain reduces to

0→ Hp(S
n)

∂∗→ Hp−1(U ∩ V )→ 0,

which means that ∂∗ is an isomorphism. Since U ∩ V is homotopy equivalent to

Sn−1, we get the following recurrence relation on Hp(S
n) with Hp−1(S

n−1),

Hp(S
n) ∼= Hp−1(U ∩ V ) ∼= Hp−1(S

n−1)

for p > 1 and n ≥ 1. Now if n = 1, H0(S
1) ∼= H1(S

1) ∼= Z by Theorem 4.4.5.

For p > 1, the previous relation shows that Hp(S
1) ∼= Hp−1(S

0). Notice that S0 is

consisted of 2 isolated points. Applying Theorems 4.4.5 and 4.4.6, we know that

Hp−1(S
0), and consequently, Hp(S

1) is a trivial group.

Suppose the result is true for Sn−1 for n > 1. The cases of p = 0 or 1 are

obtained by Theorem 4.4.5. For cases of p > 1, applying the recurrence relation

again, we find that

Hp(S
n) ∼= Hp−1(S

n−1) ∼=





0, if p < n,

Z, if p = n,

0, if p > n.

This completes the proof. �

Corollary 4.4.1 A sphere Sn is not contractible to a point.

Corollary 4.4.2 The relative homology groups of the pair (B
n
, Sn−1) are as follows

Hp(B
n
, Sn−1) ∼=

{
0, p 6= n,

Z, p = n

for p, n ≥ 1.

Proof Applying Theorem 4.4.8, we know an exact chain following

· · · → Hp(B
n
)
j∗→ Hp(B

n
, Sn−1)

∂∗→ Hp−1(S
n−1)

i∗→ Hp−1(B
n
)→ · · · .

Notice that Hp(B
n
) = 0 for any integer p ≥ 1. We get that
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Hp(B
n
, Sn−1) ∼= Hp−1(S

n−1) ∼=
{

0, p 6= n,

Z, p = n.

This completes the proof. �

The case discussed in Theorem 4.4.10 is correspondent to a n-dimensional graph

of order 1. Generally, we know the following result for relative homology groups of d-

dimensional graphs. Combining Corollary 4.4.2 with the definition of d-dimensional

graphs, we know that

Hp(ei, ėi) ∼=
{

0, p 6= n,

Z, p = n,

where ei ∼= Bn and ėi = ei − ei ∼= Sn−1 for integers 1 ≤ i ≤ m.

Theorem 4.4.11 Let M̃d(G) be a d-dimensional graph with E(M̃d(G)) = {e1, e2, · · · , em}.
Then the inclusion (el, ėl) →֒ (M̃d(G), V (M̃d(G))) induces a monomorphismHp(el, ėl)→
Hp(M̃

d(G), V (M̃d(G))) for l = 1, 2 · · · , m and Hp(M̃
d(G), V (M̃d(G))) is a direct

sum of the image subgroups, which follows that

Hp(M̃
d(G), V (M̃d(G))) ∼=





Z⊕ · · ·Z︸ ︷︷ ︸
m

, if p = d,

0, if p 6= d.

Proof For a ball Bd and the sphere Sd−1 with center at the origin O, define

Dd
1
2

= {x ∈ Rd| ‖ x ‖≤ 1
2
}. Let fl : Bd → el be a continuous mapping for integers

1 ≤ l ≤ m in the space of M̃d(G) and

Dl = fl(D
d
1
2

), al = fl(0), A = {al|1 ≤ l ≤ m|},

X ′ = M̃d(G) \ A, D =
m⋃
l=1

Dl.

Notice that fl maps a pair (Dd, Dd−{0}) homeomorphically onto (Dl, Dl−{al})
and those subsets Dl, 1 ≤ l ≤ m are pairwise disjoint. We consider the following

diagram

Hp(D ,D − A)
1→ Hp(M̃

d(G), X ′)
2← Hp(M̃

d(G), M̃d(G)− V (M̃d(G))),

where each arrow denotes a homomorphism induced by the inclusion mapping. In

fact, these homomorphisms represented by arrows 1 and 2 are isomorphisms for
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integers p ≥ 1. This follows from the fact that M̃d(G)−V (M̃d(G)) is a deformation

retract of X ′ and the excision property.

Notice that the arcwise connected components in D are just these sets Dl, 1 ≤
l ≤ m. Whence, Hp(D ,D −A) is the direct sum of the groups Hp(Dl, Dl−{al}) by

Theorem 4.4.4. Applying Corollary 4.4.2, we know that

Hp(Dl, Dl − {al}) ∼=
{

0, p 6= d,

Z, p = d.

Consequently, Hp(M̃
d(G), V (M̃d(G))) = 0 if p 6= d and Hd(M̃

d(G), V (M̃d(G))) is a

free Abelian group with basis in 1−1 correspondent with the set M̃d(G)−V (M̃d(G).

Consider the following diagram:

Hp(D ,D − A) - Hp(M̃
d(G), X ′) � Hp(M̃

d(G), V (M̃d(G)))

Hp(D
d, Dd − {0})

6 -Hp(B
d
, B

d − {0})

6 � 6
Hp(B

d
, Sd−1)

1 2

3 4

f ′
l∗ f”l∗ fl∗

The vertical arrows denote homomorphisms induced by fl. By definition, fl

maps (Dd, Dd − {0}) homeomorphically onto (Dl, Dl − {al}). It follows that f ′
l∗

maps Hp(D
d, Dd−{0}) isomorphically onto the direct summand Hp(Dl, Dl−{al}) of

Hp(D ,D−A). We have proved that arrows 1 and 2 are isomorphisms. Similarly, by

the same method we can also know that arrows 3 and 4 are isomorphisms. Combin-

ing all these facts suffices to know that fl∗ : Hp(B
d
, Sd−1)→ Hp(M̃

d(G), V (M̃d(G)))

is a monomorphism. This completes the proof. �

Particularly, if d = 1, i.e., M̃d(G) is a graph G embedded in a topological space,

we know its homology groups in the following.

Corollary 4.4.3 Let G be a graph embedded in a topological space S. Then

Hp(G, V (G)) ∼=





Z⊕ · · ·Z︸ ︷︷ ︸
ε(G)

, if p = 1,

0, if p 6= 1.

Corollary 4.4.4 Let X = M̃d(G), Xv = V (M̃d(G)). Then the homomorphism

i∗ : Hp(Xv) → Hp(X) is an isomorphism except possibly for p = d and p = d − 1,



Sec.4.4 Homology Groups of Combinatorial Manifolds 217

and the only non-trivial part of homology sequence of the pair (X,Xv) is

0→ Hp(Xv)
i∗→ Hp(X)→ Hp(X,Xv)→ Hp−1(Xv)

i∗→ Hp−1(X)→ 0,

particularly, if d = 1, i.e., M̃d(G) is just a graph embedded in a space, then

0→ H1(G))
j∗→ H1(G, V (G))

∂∗→ H0(V (G)
i∗→ H0(G)→ 0.

4.4.5 Homology Group of Combinatorial Manifold. A easily case for

determining homology groups of combinatorial manifolds is the adjunctions of s-

balls to a d-dimensional graph, i.e., there exists a d-dimensional graph M̃d[G] ≺
M̃(n1, n2, · · · , nm) such that

M̃(n1, n2, · · · , nm) \ M̃d[G] =

k⋃

i=2

li⋃

j=1

Bij ,

where Bij is the i-ball Bi for integers 1 ≤ i ≤ k, 1 ≤ j ≤ li. We know the following

result for homology groups of combinatorial manifolds.

Theorem 4.4.12 Let M̃ be a combinatorial manifold, M̃d(G) ≺ M̃ a d-dimensional

graph with E(M̃d(G)) = {e1, e2, · · · , em} such that

M̃ \ M̃d[G] =
k⋃
i=2

li⋃
j=1

Bij .

Then the inclusion (el, ėl) →֒ (M̃, M̃d(G)) induces a monomorphism Hp(el, ėl) →
Hp(M̃, M̃d(G)) for l = 1, 2 · · · , m and

Hp(M̃, M̃d(G)) ∼=





Z⊕ · · ·Z︸ ︷︷ ︸
m

, if p = d,

0, if p 6= d.

Proof Similar to the proof of Theorem 4.4.11, we can get this conclusion. �

Corollary 4.4.5 Let M̃ be a combinatorial manifold, M̃d(G) ≺ M̃ a d-dimensional

graph with E(M̃d(G)) = {e1, e2, · · · , em} such that

M̃ \ M̃d[G] =
k⋃
i=2

li⋃
j=1

Bij .

Then the homomorphism i∗ : Hp(M̃
d(G)) → Hp(M̃) is an isomorphism except pos-

sibly for p = d and p = d− 1, and the only non-trivial part of homology sequence of
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the pair (M̃, M̃d(G)) is

0→ Hp(M̃
d(G))

i∗→ Hp(M̃)→ Hp(M̃, M̃d(G))→ Hp−1(M̃
d(G))

i∗→ Hp−1(M̃)→ 0.

Notice that any manifold M in a combinatorial manifold M̃ , it consists of a

pair (M̃,M). We know the following result.

Theorem 4.4.13 For any manifold in a combinatorial manifold M̃ , the following

chain

· · · j∗→ Hp+1(M̃,M)
∂∗→ Hp(M)

i∗→ Hp(M̃)
j∗→ Hp(M̃,M)

∂∗→ · · ·

is exact.

Proof It is an immediately conclusion of Theorem 4.4.8. �

For a finitely combinatorial manifold, if each manifold in this combinatorial

manifold is compact, we call it a compactly combinatorial manifold. We also know

homology groups of compactly combinatorial manifolds following.

Theorem 4.4.14 A compact combinatorial manifold M̃ is finitely generated.

Proof It is easily to know that the homology groups Hp(M̃) of a finitely combi-

natorial manifold M̃ can be generated by
〈
[u] ∈ Hp(M)|M ∈ V (GL[M̃ ])

〉
. Applying

a famous result, i.e., any compact manifold is finitely generated (see [Mas2] for de-

tails), we know that M̃ is also finitely generated. �

§4.5 REGULAR COVERING OF

COMBINATORIAL MANIFOLDS BY VOLTAGE ASSIGNMENT

4.5.1 Action of Fundamental Group on Covering Space. Let p : S̃ → S be

a covering mapping of topological spaces. For ∀x0 ∈ S, the set p−1(x0) is called the

fibre over the vertex x0, denoted by fibx)
. Notice that we have introduced a 1 − 1

mapping Φ : p−1(x1)→ p−1(x2) in the proof of Theorem 3.1.12, which is defined by

Φ(y1) = y2 for y1 ∈ p−1(x1) with y2 the terminal point of a lifting arc f l of an arc f

from x1 to x2 in S. This enables us to introduce the action of fundamental group

on fibres fibx0 for x0 ∈ S following.
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Definition 4.5.1 Let p : S̃ → S be a covering projection of S. Define the left action

of π1(S) on fibres p−1(x) by

L(x̃) = x̃ · L = ỹ,

for x̃ ∈ p−1(x), where L : p(x̃) → p(ỹ) and ỹ is the terminal point of the unique

lifted arc Ll over L starting at x.

Notice that L : fibx → fiby is a bijection by the proof of Theorem 3.1.12. For

∀C ∈ π1(M̃), let L∗ = L−1CL. Then

(L,L∗) : (fibx, π1(S̃, p(x)))→ (fibx, π1(S̃, p(y)))

is an isomorphism of actions.

4.5.2 Regular Covering of Labeled Graph. Generalizing voltage assignments

on graphs in topological graph theory ([GrT1]) to vertex-edge labeled graphs enables

us to find a combinatorial technique for getting regular covers of a combinatorial

manifold M̃ , which is the essence in the construction of principal fiber bundles of

combinatorial manifolds in follow-up chapters.

Let GL be a connected vertex-edge labeled graph with θL : V (G) ∪ E(G)→ L

of a label set and Γ a finite group. A voltage labeled graph on a vertex-edge labeled

graph GL is a 2-tuple (GL;α) with a voltage assignments α : E(GL)→ Γ such that

α(u, v) = α−1(v, u), ∀(u, v) ∈ E(GL).

Similar to voltage graphs such as those shown in Example 3.1.3, the importance

of voltage labeled graphs lies in their labeled lifting GLα defined by

V (GLα) = V (GL)× Γ, (u, g) ∈ V (GL)× Γ abbreviated to ug;

E(GL
α) = { (ug, vg◦h) | for ∀(u, v) ∈ E(GL) with α(u, v) = h }

with labels ΘL : GLα → L following:

ΘL(ug) = θL(u), and ΘL(ug, vg◦h) = θL(u, v)

for u, v ∈ V (GL), (u, v) ∈ E(GL) with α(u, v) = h and g, h ∈ Γ.

For a voltage labeled graph (GL, α) with its lifting GL
α, a natural projection

p : GLα → GL is defined by p(ug) = u and p(ug, vg◦h) = (u, v) for ∀u, v ∈ V (GL)
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and (u, v) ∈ E(GL) with α(u, v) = h. Whence, (GLα, p) is a covering space of the

labeled graph GL. In this covering, we can find

p−1(u) = { ug | ∀g ∈ Γ}

for a vertex u ∈ V (GL) and

p−1(u, v) = { (ug, vg◦h) | ∀g ∈ Γ }

for an edge (u, v) ∈ E(GL) with α(u, v) = h. Such sets p−1(u), p−1(u,v) are called

fibres over the vertex u ∈ V (GL) or edge (u, v) ∈ E(GL), denoted by fibu or fib(u,v),

respectively.

A voltage labeled graph with its labeled lifting are shown in Fig.4.5.1, in where,

GL = CL
3 and Γ = Z2.

3

4

12

2

(GL, α)

5

3

3

5

5

4

4

GLα

2

2

1
1

2

2

Fig.4.5.1

A mapping g : GL → GL is acting on a labeled graph GL with a labeling

θL : GL → L if gθL(x) = θLg(x) for ∀x ∈ V (GL) ∪ E(GL), and a group Γ is acting

on a labeled graph GL if each g ∈ Γ is acting on GL. Clearly, if Γ is acting on a

labeled graph GL, then Γ ≤ AutG. In this case, we can define a quotient labeled

graph GL/Γ by

V (GL/Γ) = { uΓ | ∀u ∈ V (GL) },

E(GL/Γ) = { (u, v)Γ | ∀(u, v) ∈ E(GL)}

and a labeling θΓ
L : GL/Γ→ L with

θΓ
L(uΓ) = θL(u), θΓ

L((u, v)
Γ) = θL(u, v)

for ∀u ∈ V (GL), (u, v) ∈ E(GL). It can be easily shown that this definition is well

defined. According to Theorems 3.1.16 − 3.1.18, we get a conclusion on a voltage
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labeled graph (GL, α) with its lifting GLα following.

Theorem 4.5.1 Let p : GLα → GL be a covering projection of GL and f : I → M̃

an arc correspondent to a walk in GL. Then for u ∈ V (GL) there is a unique arc

f l which projects to f with the initial point u and homotopic arcs lift to homotopic

arcs. �

A group Γ is freely acting on a labeled graph GL if for ∀g ∈ Γ, g(x) = x for any

element in V (GL) ∪ E(GL) implies that g is the unit element of action, i.e., fixing

every element in GL.

For voltage labeled graphs, a natural question is which labeled graph G̃L is a

lifting of a voltage labeled graph (GL, α) with α : E(GL) → Γ? For answer this

question, we introduce an action Φg of Γ on GLα for ∀g ∈ Γ as follows.

For ∀g ∈ Γ, the action Φg of g on GLα is defined by Φg(uh) = ugh and ΦgΘL =

ΘLΦg, where ΘL : GLα → L is the labeling on GLα induced by θL : GL → L.

Then we know the following criterion.

Theorem 4.5.2 Let Γ be a group acting freely on a labeled graph G̃L and GL the

quotient graph G̃L/Γ. Then there is an assignment α : E(GL) → Γ and a labeling

of vertices in GL by elements of V (GL)× Γ such that G̃L = GLα, and furthermore,

the given action of Γ on G̃L is the natural left action of Γ on GLα.

Proof By definition, we only need to assign voltages on edges in GL and prove

the existence of a assignment such that G̃L = GLα, without noting on what labels

on these element in G̃L and GL already existence.

For this object, we choose positive directions on edges of GL and G̃L so that the

quotient mapping qΓ : G̃L → GL is direction-preserving and that the action of Γ on

G̃L preserves directions first. Then, for for each vertex v in GL, relabel one vertex

of the orbit q−1
Γ (v) in G̃L by v1Γ

and for every group element g ∈ Γ, g 6= 1Γ, relabel

the vertex φg(v1Γ
) as vg. Now if the edge e of GL runs from u to w, we assigns the

label eg to the edge of orbit q−1
Γ (e) that originates at the vertex ug. Since Γ acts

freely on G̃L, there are just |Γ| edges in the orbit q−1
Γ (e), one originating at each of

the vertices in the vertex orbit q−1
Γ (v). Thus the choice of an edge to be labeled eg

is unique. Finally, if the terminal vertex of the edge e1Γ
is wh, one assigns a voltage

h to the edge e in GL. To show that this relabeling of edges in q−1
Γ (e) and the choice
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of voltages h for the edge e really yields an isomorphism ϑ : G̃L → GLα, one needs

to show that for ∀g ∈ Γ that the edge eg terminates at the vertex wg◦h. However,

since eg = φg(e1Γ
), the terminal vertex of the edge eg must be the terminal vertex

of the edge φg(e1Γ
), which is

φg(wh) = φgφh(w1Γ
) = φg◦h(w1Γ

) = wg◦h.

Under this relabeling process, the isomorphism ϑ : G̃L → GLα identifies orbits in

G̃L with fibers of GLα . Moreover, it is defined precisely so that the action of Γ on

G̃L is consistent with the natural left action of Γ on the lifting graph GLα. �

The construction of lifting from a voltage labeled graph implies the following

result, which means that GLα is a |Γ|-fold covering over (GL, α) with α : E(GL)→ Γ.

Theorem 4.5.3 Let GLα be the lifting of the voltage labeled graph (GL, α) with

α : E(GL)→ Γ. Then

|fibu| = |fib(u,v)| = |Γ| for ∀u ∈ V (GL) and (u, v) ∈ E(GL),

and furthermore, denote by Cv
GL(l) and Ce

GL(l) the sets of vertices or edges for a

label l ∈ L in a labeled graph GL. Then

|Cv
GLα (l)| = |Γ||Cv

GL(l)| and |Ce
GLα (l)| = |Γ||Ce

GL(l)|.

Proof By definition, Γ is freely acting on GLα. Whence, we find that |fibu| =
|fib(u,v)| = |Γ| for ∀u ∈ V (GL) and (u, v) ∈ E(GL). Then it follows that |Cv

GLα (l)| =
|Γ||Cv

GL(l)| and |Ce
GLα (l)| = |Γ||Ce

GL(l)|. �

4.5.3 Lifting Automorphism of Voltage Labeled Graph. Applying the

action of the fundamental group of GL, we can find criterions for the lifting set

Lft(f) of a automorphism f ∈ AutGL. First, we have two general results following

on the lifting automorphism of a labeled graph.

Theorem 4.5.4 Let p : G̃L → GL be a covering projection and f an automorphism

of GL. Then f lifts to a f l ∈ AutG̃L if and only if, for an arbitrarily chosen base

vertex u ∈ V (GL), there exists an isomorphism of actions

(ϕ, f) : (fibu, π(GL, u))→ (fibf(u), π(GL, f(u)))
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of the fundamental groups such that f l|fibu = ϕ, and moreover, there is a bijection

correspondence between Lft(f) and functions ϕ for which (ϕ, f) is such an automor-

phism with

f l(ũ) = ϕ(ũ · L) · f(L−1),

where L : p(ũ)→ u is an arc.

Proof First, let f l be a lifting of f and L : p(ũ) → u an arc. Then f l(Ll) :

f l(ũ) → f l(ũ · L) projects to f(L), which implies that f l(ũ · L) = f l(ũ) · f(L).

Particularly, this equality holds for ∀ũ ∈ fibu and L ∈ π1(G
L, u). Since ϕ = f l|fibu ,

the required isomorphism of action is obtained.

Conversely, let (ϕ, f) be such an isomorphism. We define f l as follows. Choose

an arbitrary vertex ṽ in G̃L and v = p(ṽ). Let L : v → u be an arbitrary arc and set

f l(ṽ) = ϕ(ṽ · f(L−1)).

Then this mapping is well defined, i.e., it does not depend on the choice of L. In

fact, let L1, L2 : v → u. Then ṽ · L1 = (ṽ · L2) · L−1
2 L1. Whence, ϕ(ṽ · L1) =

ϕ((ṽ · L2)) · f(L−1
2 L1) = ϕ((ṽ · L2)) · f(L−1

2 ) · f(L1). Thereafter, we get that ϕ(ṽ ·
L1) · f(L−1

1 ) = ϕ(ṽ · L2) · f(L−1
2 ).

From the definition of f l it is easily seen that pf l(ṽ) = fp(ṽ). We verify it

is a bijection. First, we show it is onto. Now let w̃ be an arbitrary vertex of GLα

and choose L : p(w̃) → f(u) arbitrarily. Then it is easily to check that the vertex

ϕ−1(w̃ · L) · f−1(L−1) mapped to w̃. For its one-to-one, let ϕ(ṽ1 · L1) · f(L−1
1 ) =

f l(ṽ1) = f l(ṽ2) = ϕ(ṽ2 ·L2) ·f(L−1
2 ). Whence, f(L1) and f(L2) have the same initial

vertex. Consequently, so do L1 and L2. Therefore, ṽ1 and ṽ2 is in the same fibre.

Furthermore, we know that ϕ(ṽ1 · L1) · f(L−1
1 L2) = ϕ(ṽ2 · L2), which implies that

ϕ(ṽ1 ·L1 ·L−1
1 L2) = ϕ(ṽ2 ·L2). That is, ϕ(ṽ1 ·L2) = ϕ(ṽ2 ·L2). Thus ṽ1 ·L2 = ṽ2 ·L2

and so ṽ1 = ṽ2.

Now we conclude that f l is really a lifting of f . This shows that Lft(f) →
Lft(f)|fibu defines a function onto the set of all such ϕ for which (ϕ, f) is an iso-

morphism of fundamental groups, and it is one-to-one. �

The next result presents how an arbitrary lifted automorphism acts on fibres

with stabilizer under the action of the fundamental group.

Theorem 4.5.5 Let p : G̃L → GL be a covering projection and f an automorphism
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of GL. Then,

(i) there exists an isomorphism of actions

(ϕ, f) : (fibu, π(GL, u))→ (fibf(u), π(GL, f(u)))

if and only if f maps the stabilizer (π1(G̃
L))ũ of an arbitrarily chosen base point

ũ ∈ fibu isomorphically onto some stabilizer (π1(G̃
L))ṽ ≤ π1(G

L, f(u)). In this case,

ṽ = ϕ(ũ) and there is a bijective correspondence between all choice of such a vertex

ṽ and all such isomorphisms.

(ii) Choose a base point w̃ ∈ fibf(u) and Q ∈ π1(G
L, f(u)) such that

Q−1π1(G̃
L, d̃)Q = fπ1(G̃

L, ũ),

all such bijections ϕ = ϕP are given by

ϕP (ũ · S) = w̃ · Pf(S), for S ∈ π1(G
L, u),

where P belong to the coset N(π1(G̃
L, w̃))Q of the normalizer of π1(G̃

L)w̃ within

π1(G
L, f(u)). Moreover, ϕP ′ = ϕP if and only if P ′ ∈ π1(G̃

L, w̃)P .

Proof It is clear that (ϕ, f) is an isomorphism of actions, then these conditions

holds. Conversely, let fπ1(G
L, u)ũ = π1(G

L, f(b))ṽ. Each x̃ ∈ fibu can be written as

x̃ = ũ·S for some S ∈ π1(G
L, u) because GL is connected. Define ϕ by setting ϕ(x̃) =

ṽ · f(S). we can easily check that (ϕ, f) is the required isomorphism of actions.

The assertion bijective correspondence should also be clear since ϕ is completely

determined by the image of one point. This concludes (i).

For (ii), let ṽ = w̃ · P be any point satisfying the condition of (i). Then we

know that P−1π1(G̃
L, w̃)P = π1(G

Lα, w̃ · P ) = Q−1π1(G̃
L, w̃)Q, that is PQ−1 ∈

N(π1(G̃
L, w̃)). The last statement is obvious. �

Now we turn our attention to lifting automorphisms of voltage labeled graphs

by Applying Theorems 4.5.4 and 4.5.5. For this objective, We introduce some useful

conceptions following.

Let (GL, α) be a voltage labeled graph with α : E(GL) → Γ. For u ∈ V (GL),

the local voltage group Γu at u is defined by

Γu =
〈
α(L) | for ∀L ∈ π1(G

L, u)
〉
.

Moreover, for v ∈ V (GL), by the connectedness of GL, let W : u → v be an arc

connecting u with v in GL. Then the inner automorphism W#(g) = α−1(W )gα(W )
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of Γ for g ∈ Γu, takes Γu to Γv.

Let A be a group of automorphisms of GL. A voltage labeled graph (GL, α) is

called locally A-invariant at a vertex u ∈ V (GL) if for ∀f ∈ A and W ∈ π1(G
L, u),

we have

α(W ) = identity ⇒ α(f(W )) = identity

and locally f -invariant for an automorphism f ∈ AutGL if it is locally invariant

with respect to the group 〈f〉 in AutGL. Notice that for each f ∈ A, f−1 ∈ A also

satisfying the required inference. Whence, the local A-invariance is equivalent to the

requirement that for ∀f ∈ A, there exists an induced isomorphism f#u : Γu → Γf(u)

of local voltage groups such that the following diagram

π1(G
L, u)

π1(G
L, u)

π1(G
L, f(u))

π1(G
L, f(u))

-
-? ?

f

f#u

α α

Fig.4.5.2

is commutative, i.e., f#u(α(W )) = α(f(W )) for ∀W ∈ π1(G
L, u). Then we know a

criterion for lifting automorphisms of voltage labeled graphs.

Theorem 4.5.6 Let (GL, α) be a voltage labeled graph with α : E(GL) → Γ and

f ∈ AutGL. Then f lifts to an automorphism of GLα if and only if (GL, α) is locally

f -invariant.

Proof By definition, the mapping (lu, α) : (fibu, π1(G
L, u)) → (Γ,Γu) with

lu : fibu → Γ is a bijection. Whence, if W ∈ π1(G
L, u) and lu(ũ) = g, then

W ∈ (π1(G
L, u))ũ if and only if α(W ) ∈ Γug , i.e., gα(W ) = g, which implies that

α(W ) = identity.

According to Theorem 4.5.2, the action of Γ on vertices of GLα is free. Whence,

applying Theorems 4.5.4 and 4.5.4, we know that f lifts to an automorphism of GLα

if and only if (GL, α) is locally f -invariant. �
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4.5.4 Regular Covering of Combinatorial Manifold. Let M̃ be a finitely

combinatorial manifold underlying a connected graph G. Applying Theorem 4.2.4,

we know that M̃ determines a vertex-edge labeled graph GL[M̃ ] by labeling its

vertices and edges with dimensions of correspondent manifolds, and vice versa. Such

correspondence is combinatorially unique.

The voltage assignment technique on the labeled graphGL[M̃ ] naturally induces

a combinatorial manifold M̃∗ by Theorem 4.2.4. Assume (GLα[M̃ ], p) is a covering

of GL[M̃ ] with α : E(GL[M̃ ]) → Γ. For ∀M ∈ V (GL[M̃ ]), let hs : M → M be a

self-homeomorphism of M̃ , ςM : x → M for ∀x ∈ M , and define p∗ = hs ◦ ς−1
M pςM .

Then we know that p∗ : M̃∗ → M̃ is a covering projection.

Theorem 4.5.7 (M̃∗, p∗) is a |Γ|-sheeted covering, called natural covering of M̃ .

Proof For M ∈ V (GL[M̃ ]), let x ∈ M . By definition, for ∀Mg ∈ V (GLα[M̃ ])

and ∀h−1
s (x)∗ ∈Mg, we know that

p∗((h−1
s (x))∗) = hs ◦ ς−1

Mg
pςMg((h

−1
s (x))∗) = hs(h

−1
s (x)) = x ∈M.

By definitions of the voltage labeled graph and the mapping p∗, we find eas-

ily that each arcwise component of (p∗)−1(Ux) is mapped topologically onto the

neighborhood Ux for ∀x ∈ M̃ . Whence, p∗ : M̃∗ → M̃ is a covering mapping.

Notice that there are |Γ| copies Mg, g ∈ Γ for ∀M ∈ V (GL(M̃)). Whence,

(M̃∗, p∗) is a |Γ|-sheeted covering of M̃ . �

Let p1 : S̃1 → S and p2 : S̃2 → S be two covering projections of topological

spaces. They are said to be equivalent if there exists a one-to-one mapping τ : S̃1 →
S̃2 such that the following

S̃1 S̃2

S

-
^ �
τ

p1 p2

Fig.4.5.3

is commutative. Then, how many non-equivalent natural coverings M̃∗ are over

M̃ under the covering projection p∗ : M̃∗ → M̃? By definition, this question is
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equivalent to a combinatorial problem: to enumerate non-equivalent voltage labeled

graphs (GL[M̃ ], α) with α : E(GL[M̃ ])→ Γ under the action of AutGL[M̃ ]. Finding

such exact numbers is difficult in general. Applying Burnside Lemma, i.e., Corollary

2.4.4 for counting orbits, we can know the following result.

Theorem 4.5.8 The number nc(M̃) of non-equivalent natural coverings of a finitely

combinatorial manifold M̃ is

nc(M̃) =
1

|Aut|GL[M̃]

∑

g∈AutGL[M̃ ]

|Φ(g)|,

where Φ(g) = {α : E(GL)→ Γ|αg = gα}.

Proof B definition, two voltage labeled graphs (GL[M̃ ], α1), (GL[M̃ ], α2) are

equivalent if there is an one-to-one mapping f : V (GL[M̃ ])→ V (GL[M̃ ]) such that

fα = αf and fθL = θLf . Whence, there must be that f ∈ AutGL[M̃ ]. Then follows

Corollary 2.4.4, we get the conclusion. �

Particularly, if AutGL[M̃ ] is trivial or transitive, we get the following results

for the non-equivalent natural covering of a finite combinatorial manifold.

Corollary 4.5.1 Let M̃ be a finitely combinatorial manifold. Then,

(i) if AutGL[M̃ ] is trivial, then

nc(M̃) = ε|Γ|(GL[M̃ ]).

(ii) if AutGL[M̃ ] is transitive, then

nc(M̃) =

(|Γ|+ ε(GL[M̃ ])− 1

ε(GL[M̃ ])

)
.

Proof If AutGL[M̃ ] is trivial, then α : E(GL[M̃ ]) → Γ depends on edges

in GL[M̃ ] and such mappings induce non-equivalent natural coverings over M̃ . A

simple counting shows that there are ε|Γ|(GL[M̃ ]) such voltage labeled graphs. This

is the conclusion (i).

Now for (ii), if AutGL[M̃ ] is transitive, then α : E(GL[M̃ ]) → Γ does not

depend on edges in GL[M̃ ]. Whence, it is equal to the number of choosing ε(GL[M̃ ])

elements repeatedly from a |Γ|-set, which in turn is

nc(M̃) =

(|Γ|+ ε(GL[M̃ ])− 1

ε(GL[M̃ ])

)
.
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�

As a part of enumerating non-equivalent natural coverings, many mathemati-

cians turn their attentions to non-equivalent surface coverings of a connected graph

with a trivial voltage group Γ. Such as those of results in [Mao1], [MLT1], [MLW1],

[Mul1] and [MRW1]. For example, if GL[M̃ ] is the labeled complete graph KL
n , we

have the following result in [Mao1] for surface coverings.

Theorem 4.5.9 The number nc(M̃) with GL[M̃ ] ∼= KL
n , n ≥ 5 on surfaces is

nc(M̃) =
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
2α(n,k)(n− 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)2β(n,k)(n− 2)!
n−1

k

n− 1
,

where,

α(n, k) =

{
n(n−3)

2k
, if k ≡ 1(mod2);

n(n−2)
2k

, if k ≡ 0(mod2),

and

β(n, k) =

{
(n−1)(n−2)

2k
, if k ≡ 1(mod2);

(n−1)(n−3)
2k

, if k ≡ 0(mod2).

and nc(M̃) = 11 if GL[M̃ ] ∼= KL
4 . �

For meeting the needs of combinatorial differential geometry in following chap-

ters, we introduce the conception of combinatorial fiber bundles following.

Definition 4.5.2 A combinatorial fiber bundle is a 4-tuple (M̃∗, M̃, p, G) consisting

of a covering combinatorial manifold M̃∗, a group G, a combinatorial manifold M̃

and a projection mapping p : M̃∗ → M̃ with properties following:

(i) G acts freely on M̃∗ to the right.

(ii) the mapping p : M̃∗ → M̃ is onto, and for ∀x ∈ M̃ , p−1(p(x)) = fibx =

{xg|∀g ∈ Γ} and lx : fibx → Γ is a bijection.

(iii) for ∀x ∈ M with its a open neighborhood Ux, there is an open set Ũx

and a mapping Tx : p−1(Ux) → Ũx × Γ of the form Tx(y) = (p(y), sx(y)), where

sx : p−1(Ux)→ Γ has the property that sx(yg) = sx(y)g for ∀g ∈ G and y ∈ p−1(Ux).

Summarizing the discussion in this section, we get the main result following of

this section.
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Theorem 4.5.10 Let M̃ be a finite combinatorial manifold and (GL([M̃ ]), α) a volt-

age labeled graph with α : E(GL([M̃ ])→ Γ. Then (M̃∗, M̃ , p∗,Γ) is a combinatorial

fiber bundle, where M̃∗ is the combinatorial manifold correspondent to the lifting

GLα([M̃ ], p∗ : M̃∗ → M̃ a natural projection determined by p∗ = hs ◦ ς−1
M pςM with

hs : M → M a self-homeomorphism of M̃ and ςM : x → M a mapping defined by

ςM(x) = M for ∀x ∈M . �

§4.6 REMARKS

4.6.1 How to visualize a Euclidean space of dimension≥ 4 is constantly making

one hard to understand. Certainly, we can describe a point of an n-dimensional Eu-

clidean space Rn by an n-tuple (x1, x2, · · · , xn). But how to visualize it is still hard

since one can just see objects in R3. The combinatorial Euclidean space presents an

approach decomposing a higher dimensional space to a lower dimensional one with

a combinatorial structure. The discussion in Section 4.1 mainly on the following

packing problem, i.e., in what conditions do Rn1,Rn2, · · · ,Rnm consist of a combi-

natorial Euclidean space EG(n1, n2, · · · , nm)? Particularly, the following dimensional

problem.

Problem 4.6.1 Let Rn1,Rn2, · · · ,Rnm be Euclidean spaces. Determine the dimen-

sional number dimEG(n1, n2, · · · , nm), particularly, the dimensional number dimEG(r),

r ≥ 2 for a given graph G.

Theorems 4.1.1−4.1.3 partially solved this problem, and Theorems 4.1.4−4.1.5

got the number dimEKn(r). But for any connected graph G, this problem is still

open.

Notice that the combinatorial fan-space is indeed a Euclidean space, which

consists of the local topological or differential structure of a combinatorial manifold.

4.6.2 The material in Sections 4.2 and 4.3 is extracted from [Mao14] and [Mao16].

A more heartening thing in Section 4.2 is the correspondence of a combinatorial

manifold with a vertex-edge labeled graph, which enables one to get its regular

covering in Section 4.5 and combinatorial fields in Chapter 8.
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4.6.3 The well-known Seifer and Von Kampen theorem on fundamental groups is

very useful in calculation of fundamental groups of topological spaces. Theorems

3.1.13 and 3.1.14 are its generalziation to the case that U ∩ V maybe not arcwise

connected, which enables one to determine the fundamental group of finitely com-

binatorial manifolds, particularly, the fundamental groups of manifolds by graphs.

Corollary 4.3.8 completely characterizes the combinatorial structure of simply con-

nected manifolds.

It should be noted that Corollary 4.3.4 is an interesting result for surfaces in

combinatorics which shows that the fundamental group of a surface can be com-

pletely determined by a graph embedded on this surface. Applying this result to

enumerate rooted or unrooted combinatorial maps on surfaces (see [Mao1], [Liu2]

and [Liu3] for details) is worth to make a through inquiry.

4.6.4 Each singular homology group is an Abelian group by definition. That is why

we always find singular groups of a space with the form of Z × · · · × Z. Theorems

4.4.11−4.4.12 determined the singular homology groups of combinatorial manifolds

constraint on conditions. The reader is encourage to solve the general problem on

singular homology groups of combinatorial manifolds following.

Problem 4.6.3 Determine the singular homology groups of combinatorial manifolds.

Furthermore, the inverse problem following.

Problem 4.6.4 For an integer n ≥ 1, determine what kind of topological spaces

S with singular homology groups Hq(S) ∼= Z × · · · × Z︸ ︷︷ ︸
n

for some special integers q,

particularly, these combinatorial manifolds.

4.6.5 The definition of various voltage graphs can be found in [GrT1]. Recently,

many mathematicians are interested to determine the lifting of an automorphism

of a graph or a combinatorial map on a surface. Results in references [MNS1] and

[NeS1] are such kind. It is essentially the application of Theorems 3.1.11 − 3.1.13.

The main material on the lifting of automorphisms in Section 4.5 is extracted from

[MNS1]. But in here, we apply it to the case of labeled graph.

Many mathematicians also would like to classify covering of a graph G or a

combinatorial map under the action of AutG in recent years. Theorem 4.5.9 is such

a result for complete graphs. More results can be found in references, such as those
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of [KwL1], [Lis1]-[Lis2], [LiW1], [Mao1], [MLT1], [MLW1], [Mul1] and [MRW1], etc..

4.6.6 As we have seen in last chapter, the fiber bundle is indeed the application

of covering spaces with a space. Applying the relation of a combinatorial manifold

with the vertex-edge labeled graph, Section 4.5 presents a construction approach

for covering of finitely combinatorial manifold by the voltage labeled graph with

its lifting. In fact, this kind of construction enables one to get regular covering of

finitely combinatorial manifold, also the combinatorial fiber bundle by a combina-

torial technique. We will apply it in the Chapter 6 for finding differential behavior

of combinatorial manifolds with covering, i.e., the principal fiber bundle of finitely

combinatorial manifolds.



CHAPTER 5.

Combinatorial Differential Geometry

Nature’s mighty law is change.

By Robert Burns, a British poet.

The combinatorial differential geometry is a geometry on the locally or globally

differential behavior of combinatorial manifolds. By introducing differentiable

combinatorial manifolds, we determine the basis of tangent or cotangent vector

space at a point on a combinatorial manifold in Section 5.1. As in the case of

differentiable manifolds, in Section 5.2 we define tensor, tensor field, k-forms at

a point on a combinatorial manifold and determine their basis. The existence

of exterior differentiation on k-forms is also discussed in this section. Section

5.3 introduces the conception of connection on tensors and presents its local

form on a combinatorial manifold. Particular results are also gotten for these

torsion-free tensors and combinatorial Riemannian manifolds. The curvature

tensors on combinatorial manifolds are discussed in Sections 5.4 and 5.5, where

we obtain the first and second Bianchi equalities, structural equations and local

form of curvature tensor for both combinatorial manifolds and combinatorial

Riemannian manifolds, which is the fundamental of applications of combina-

torial manifold to theoretical physics. Sections 5.6 and 5.7 concentrate on the

integration theory on combinatorial manifolds. It is different from the case of

differentiable manifolds. Here, we need to determine what dimensional numbers

k ensure the existence of integration on k-forms of a combinatorial manifold.

Then we generalize the classical Stokes’ and Gauss’ theorems to combinatorial

manifolds. The material in Section 5.8 is interesting, which shows that nearly

all existent differential geometries are special cases of Smarandache geometries.

Certainly, there are many open problems in this area, even if we consider the

counterpart in manifolds for differentiable combinatorial manifold.
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§5.1 DIFFERENTIABLE COMBINATORIAL MANIFOLDS

5.1.1 Smoothly Combinatorial Manifold. We introduce differential structures

on finitely combinatorial manifolds and characterize them in this section.

Definition 5.1.1 For a given integer sequence 1 ≤ n1 < n2 < · · · < nm, a com-

binatorial Ch-differential manifold (M̃(n1, n2, · · · , nm); Ã) is a finitely combinato-

rial manifold M̃(n1, n2, · · · , nm), M̃(n1, n2, · · · , nm) =
⋃
i∈I

Ui, endowed with a atlas

Ã = {(Uα;ϕα)|α ∈ I} on M̃(n1, n2, · · · , nm) for an integer h, h ≥ 1 with conditions

following hold.

(1) {Uα;α ∈ I} is an open covering of M̃(n1, n2, · · · , nm).

(2) For ∀α, β ∈ I, local charts (Uα;ϕα) and (Uβ;ϕβ) are equivalent, i.e.,

Uα
⋂
Uβ = ∅ or Uα

⋂
Uβ 6= ∅ but the overlap maps

ϕαϕ
−1
β : ϕβ(Uα

⋂
Uβ)→ ϕβ(Uβ) and ϕβϕ

−1
α : ϕα(Uα

⋂
Uβ)→ ϕα(Uα)

are Ch-mappings, such as those shown in Fig.5.1.1 following.-
-?

Uα

Uβ

Uα ∩ Uβ

ϕα

ϕβ

ϕβ(Uα
⋂
Uβ)

ϕβ(Uα
⋂
Uβ)

ϕβϕ
−1
α

Fig.5.1.1

(3) Ã is maximal, i.e., if (U ;ϕ) is a local chart of M̃(n1, n2, · · · , nm) equivalent

with one of local charts in Ã, then (U ;ϕ) ∈ Ã.

Denote by (M̃(n1, n2, · · · , nm); Ã) a combinatorial differential manifold. A finitely

combinatorial manifold M̃(n1, n2, · · · , nm) is said to be smooth if it is endowed with

a C∞-differential structure.
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Let Ã be an atlas on M̃(n1, n2, · · · , nm). Choose a local chart (U ;̟) in Ã.

For ∀p ∈ (U ;ϕ), if ̟p : Up →
s(p)⋃
i=1

Bni(p) and ŝ(p) = dim(
s(p)⋂
i=1

Bni(p)), the following

s(p)× ns(p) matrix [̟(p)]

[̟(p)] =




x11

s(p)
· · · x1ŝ(p)

s(p)
x1(ŝ(p)+1) · · · x1n1 · · · 0

x21

s(p)
· · · x2ŝ(p)

s(p)
x2(ŝ(p)+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xs(p)1

s(p)
· · · xs(p)ŝ(p)

s(p)
xs(p)(ŝ(p)+1) · · · · · · xs(p)ns(p)−1 xs(p)ns(p)




with xis = xjs for 1 ≤ i, j ≤ s(p), 1 ≤ s ≤ ŝ(p) is called the coordinate matrix of

p. For emphasize ̟ is a matrix, we often denote local charts in a combinatorial

differential manifold by (U ; [̟]). Using the coordinate matrix system of a combina-

torial differential manifold (M̃(n1, n2, · · · , nm); Ã), we introduce the conception of

Ch mappings and functions in the next.

Definition 5.1.2 Let M̃1(n1, n2, · · · , nm), M̃2(k1, k2, · · · , kl) be smoothly combinato-

rial manifolds and

f : M̃1(n1, n2, · · · , nm)→ M̃2(k1, k2, · · · , kl)

be a mapping, p ∈ M̃1(n1, n2, · · · , nm). If there are local charts (Up; [̟p]) of p on

M̃1(n1, n2, · · · , nm) and (Vf(p); [ωf(p)]) of f(p) with f(Up) ⊂ Vf(p) such that the com-

position mapping

f̃ = [ωf(p)] ◦ f ◦ [̟p]
−1 : [̟p](Up)→ [ωf(p)](Vf(p))

is a Ch-mapping, then f is called a Ch-mapping at the point p. If f is Ch at

any point p of M̃1(n1, n2, · · · , nm), then f is called a Ch-mapping. Particularly, if

M̃2(k1, k2, · · · , kl) = R, f ia called a Ch-function on M̃1(n1, n2, · · · , nm). In the

extreme h = ∞, these terminologies are called smooth mappings and functions,

respectively. Denote by Xp all these C∞-functions at a point p ∈ M̃(n1, n2, · · · , nm).

For the existence of combinatorial differential manifolds, we know the following

result.

Theorem 5.1.1 Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold and

d, 1 ≤ d ≤ n1 an integer. If ∀M ∈ V (Gd[M̃(n1, n2, · · · , nm)]) is Ch-differential and
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∀(M1,M2) ∈ E(Gd[M̃(n1, n2, · · · , nm)]) there exist atlas

A1 = {(Vx;ϕx)|∀x ∈M1} A2 = {(Wy;ψy)|∀y ∈M2}

such that ϕx|Vx
⋂
Wy = ψy|Vx

⋂
Wy for ∀x ∈ M1, y ∈ M2, then there is a differential

structures

Ã = {(Up; [̟p])|∀p ∈ M̃(n1, n2, · · · , nm)}

such that (M̃(n1, n2, · · · , nm); Ã) is a combinatorial Ch-differential manifold.

Proof By definition, We only need to show that we can always choose a neigh-

borhood Up and a homoeomorphism [̟p] for each p ∈ M̃(n1, n2, · · · , nm) satisfying

these conditions (1)− (3) in definition 3.1.

By assumption, each manifold ∀M ∈ V (Gd[M̃(n1, n2, · · · , nm)]) is Ch-differential,

accordingly there is an index set IM such that {Uα;α ∈ IM} is an open covering

of M , local charts (Uα;ϕα) and (Uβ;ϕβ) of M are equivalent and A = {(U ;ϕ)}
is maximal. Since for ∀p ∈ M̃(n1, n2, · · · , nm), there is a local chart (Up; [̟p]) of

p such that [̟p] : Up →
s(p)⋃
i=1

Bni(p), i.e., p is an intersection point of manifolds

Mni(p), 1 ≤ i ≤ s(p). By assumption each manifold Mni(p) is Ch-differential, there

exists a local chart (V i
p ;ϕ

i
p) while the point p ∈ Mni(p) such that ϕip → Bni(p). Now

we define

Up =

s(p)⋃

i=1

V i
p .

Then applying the Gluing Lemma again, we know that there is a homoeomorphism

[̟p] on Up such that

[̟p]|Mni(p) = ϕip

for any integer i,≤ i ≤ s(p). Thereafter,

Ã = {(Up; [̟p])|∀p ∈ M̃(n1, n2, · · · , nm)}

is a Ch-differential structure on M̃(n1, n2, · · · , nm) satisfying conditions (1) − (3).

Thereby (M̃(n1, n2, · · · , nm); Ã) is a combinatorial Ch-differential manifold. �

5.1.2 Tangent Vector Space. For a point in a smoothly combinatorial manifold,

we introduce the tangent vector at this point following.
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Definition 5.1.3 Let (M̃(n1, n2, · · · , nm), Ã) be a smoothly combinatorial manifold

and p ∈ M̃(n1, n2, · · · , nm). A tangent vector v at p is a mapping v : Xp → R with

conditions following hold.

(1) ∀g, h ∈Xp, ∀λ ∈ R, v(h+ λh) = v(g) + λv(h);

(2) ∀g, h ∈Xp, v(gh) = v(g)h(p) + g(p)v(h).

Let γ : (−ǫ, ǫ)→ M̃ be a smooth curve on M̃ and p = γ(0). Then for ∀f ∈Xp,

we usually define a mapping v : Xp → R by

v(f) =
df(γ(t))

dt
|t=0.

We can easily verify such mappings v are tangent vectors at p.

Denoted all tangent vectors at p ∈ M̃(n1, n2, · · · , nm) by TpM̃(n1, n2, · · · , nm)

and define addition�+�and scalar multiplication�·�for ∀u, v ∈ TpM̃(n1, n2, · · · , nm),

λ ∈ R and f ∈Xp by

(u+ v)(f) = u(f) + v(f), (λu)(f) = λ · u(f).

Then it can be shown immediately that TpM̃(n1, n2, · · · , nm) is a vector space under

these two operations�+�and�·�. Let

X (M̃(n1, n2, · · · , nm)) =
⋃
p∈M̃

TpM̃(n1, n2, · · · , nm).

A vector field on M̃(n1, n2, · · · , nm) is a mapping X : M̃ → X (M̃(n1, n2, · · · , nm)),

i.e., chosen a vector at each point p ∈ M̃(n1, n2, · · · , nm).

Definition 5.1.4 For X, Y ∈X (M̃(n1, n2, · · · , nm)), the bracket operation [X, Y ] :

X (M̃(n1, n2, · · · , nm))→X (M̃(n1, n2, · · · , nm)) is defined by

[X, Y ](f) = X(Y (f))− Y (X(f)) for ∀f ∈Xp and p ∈ M̃.

The existence and uniqueness of the bracket operation on X (M̃(n1, n2, · · · , nm))

can be found similar to the case of manifolds, for examples [AbM1] and [Wes1]. The

next result is immediately established by definition.

Theorem 5.1.2 Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold. Then,

for X, Y, Z ∈X (M̃(n1, n2, · · · , nm)),

(i) [X, Y ] = −[Y,X];
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(ii) the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

holds. Such systems are called Lie algebras.

For ∀p ∈ M̃(n1, n2, · · · , nm), We determine the dimension and basis of the

tangent space TpM̃(n1, n2, · · · , nm) in the next result.

Theorem 5.1.3 For any point p ∈ M̃(n1, n2, · · · , nm) with a local chart (Up; [ϕp]),

the dimension of TpM̃(n1, n2, · · · , nm) is

dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p))

with a basis matrix

[
∂

∂x
]s(p)×ns(p)

=




1
s(p)

∂
∂x11 · · · 1

s(p)
∂

∂x1ŝ(p)
∂

∂x1(ŝ(p)+1) · · · ∂
∂x1n1

· · · 0
1
s(p)

∂
∂x21 · · · 1

s(p)
∂

∂x2ŝ(p)
∂

∂x2(ŝ(p)+1) · · · ∂
∂x2n2

· · · 0

· · · · · · · · · · · · · · · · · ·
1
s(p)

∂
∂xs(p)1 · · · 1

s(p)
∂

∂xs(p)ŝ(p)
∂

∂xs(p)(ŝ(p)+1) · · · · · · ∂

∂x
s(p)(ns(p)−1)

∂

∂x
s(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely there is a smoothly

functional matrix [vij ]s(p)×ns(p)
such that for any tangent vector v at a point p of

M̃(n1, n2, · · · , nm),

v =

〈
[vij]s(p)×ns(p)

, [
∂

∂x
]s(p)×ns(p)

〉
,

where 〈[aij ]k×l, [bts]k×l〉 =
k∑
i=1

l∑
j=1

aijbij, the inner product on matrixes.

Proof For ∀f ∈ Xp, let f̃ = f · [ϕp]−1 ∈ X[ϕp](p). We only need to prove that

f can be spanned by elements in

{ ∂

∂xhj
|p|1 ≤ j ≤ ŝ(p)}

⋃
(

s(p)⋃

i=1

ni⋃

j=ŝ(p)+1

{ ∂

∂xij
|p | 1 ≤ j ≤ s}), (5− 1)

for a given integer h, 1 ≤ h ≤ s(p), namely (5−1) is a basis of TpM̃(n1, n2, · · · , nm).
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In fact, for ∀x ∈ [ϕp](Up), since f̃ is smooth, we know that

f̃(x)− f̃(x0) =

1∫

0

d

dt
f̃(x0 + t(x− x0))dt

=

s(p)∑

i=1

ni∑

j=1

ηjŝ(p)(x
ij − xij0 )

1∫

0

∂f̃

∂xij
(x0 + t(x− x0))dt

in a spherical neighborhood of the point p in [ϕp](Up) ⊂ Rŝ(p)−s(p)ŝ(p)+n1+n2+···+ns(p)

with [ϕp](p) = x0, where

ηjŝ(p) =

{
1
ŝ(p)

, if 1 ≤ j ≤ ŝ(p),

1, otherwise.

Define

g̃ij(x) =

1∫

0

∂f̃

∂xij
(x0 + t(x− x0))dt

and gij = g̃ij · [ϕp]. Then we find that

gij(p) = g̃ij(x0) =
∂f̃

∂xij
(x0)

=
∂(f · [ϕp]−1)

∂xij
([ϕp](p)) =

∂f

∂xij
(p).

Therefore, for ∀q ∈ Up, there are gij, 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni such that

f(q) = f(p) +

s(p)∑

i=1

ni∑

j=1

ηjŝ(p)(x
ij − xij0 )gij(p).

Now let v ∈ TpM̃(n1, n2, · · · , nm). Application of the condition (2) in Definition

5.1.1 shows that

v(f(p)) = 0, and v(ηjŝ(p)x
ij
0 ) = 0.

Accordingly, we obtain that

v(f) = v(f(p) +

s(p)∑

i=1

ni∑

j=1

ηjŝ(p)(x
ij − xij0 )gij(p))

= v(f(p)) +

s(p)∑

i=1

ni∑

j=1

v(ηjŝ(p)(x
ij − xij0 )gij(p)))
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=

s(p)∑

i=1

ni∑

j=1

(ηjŝ(p)gij(p)v(x
ij − xij0 ) + (xij(p)− xij0 )v(ηjŝ(p)gij(p)))

=

s(p)∑

i=1

ni∑

j=1

ηjŝ(p)
∂f

∂xij
(p)v(xij)

=

s(p)∑

i=1

ni∑

j=1

v(xij)ηjŝ(p)
∂

∂xij
|p(f) =

〈
[vij ]s(p)×ns(p)

, [
∂

∂x
]s(p)×ns(p)

〉
|p(f).

Therefore, we get that

v =

〈
[vij]s(p)×ns(p)

, [
∂

∂x
]s(p)×ns(p)

〉
. (5− 2)

The formula (5 − 2) shows that any tangent vector v in TpM̃(n1, n2, · · · , nm)

can be spanned by elements in (5.1).

Notice that all elements in (5− 1) are also linearly independent. Otherwise, if

there are numbers aij , 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni such that

(

ŝ(p)∑

j=1

ahj
∂

∂xhj
+

s(p)∑

i=1

ni∑

j=ŝ(p)+1

aij
∂

∂xij
)|p = 0,

then we get that

aij = (

ŝ(p)∑

j=1

ahj
∂

∂xhj
+

s(p)∑

i=1

ni∑

j=ŝ(p)+1

aij
∂

∂xij
)(xij) = 0

for 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni. Therefore, (5−1) is a basis of the tangent vector space

TpM̃(n1, n2, · · · , nm) at the point p ∈ (M̃(n1, n2, · · · , nm); Ã). �

By Theorem 5.1.3, if s(p) = 1 for any point p ∈ (M̃(n1, n2, · · · , nm); Ã), then

dimTpM̃(n1, n2, · · · , nm) = n1. This can only happens while M̃(n1, n2, · · · , nm) is

combined by one manifold. As a consequence, we get a well-known result in classical

differential geometry again.

Corollary 5.1.1 Let (Mn;A) be a smooth manifold and p ∈Mn. Then

dimTpM
n = n

with a basis

{ ∂
∂xi
|p | 1 ≤ i ≤ n}.
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5.1.3 Cotangent Vector Space. For a point on a smoothly combinatorial

manifold, the cotangent vector space is defined in the next definition.

Definition 5.1.5 For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã), the dual space T ∗
p M̃(n1, n2, · · · , nm)

is called a co-tangent vector space at p.

Definition 5.1.6 For f ∈Xp, d ∈ T ∗
p M̃(n1, n2, · · · , nm) and v ∈ TpM̃(n1, n2, · · · , nm),

the action of d on f , called a differential operator d : Xp → R, is defined by

df = v(f).

Then we immediately obtain the result following.

Theorem 5.1.4 For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã) with a local chart (Up; [ϕp]), the

dimension of T ∗
p M̃(n1, n2, · · · , nm) is

dimT ∗
p M̃(n1, n2, · · · , nm) = ŝ(p) +

s(p)∑
i=1

(ni − ŝ(p))

with a basis matrix

[dx]s(p)×ns(p)
=




dx11

s(p)
· · · dx1ŝ(p)

s(p)
dx1(ŝ(p)+1) · · · dx1n1 · · · 0

dx21

s(p)
· · · dx2ŝ(p)

s(p)
dx2(ŝ(p)+1) · · · dx2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
dxs(p)1

s(p)
· · · dxs(p)ŝ(p)

s(p)
dxs(p)(ŝ(p)+1) · · · · · · dxs(p)ns(p)−1 dxs(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely for any co-tangent vector d

at a point p of M̃(n1, n2, · · · , nm), there is a smoothly functional matrix [uij]s(p)×s(p)

such that,

d =
〈
[uij ]s(p)×ns(p)

, [dx]s(p)×ns(p)

〉
. �

§5.2 TENSOR FIELDS ON COMBINATORIAL MANIFOLDS

5.2.1 Tensor on Combinatorial Manifold. For any integers r, s ≥ 1, a tensor

of type (r, s) at a point in a smoothly combinatorial manifold M̃(n1, n2, · · · , nm) is

defined following.
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Definition 5.2.1 Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold and

p ∈ M̃(n1, n2, · · · , nm). A tensor of type (r, s) at the point p on M̃(n1, n2, · · · , nm)

is an (r + s)-multilinear function τ ,

τ : T ∗
p M̃ × · · · × T ∗

p M̃︸ ︷︷ ︸
r

×TpM̃ × · · · × TpM̃︸ ︷︷ ︸
s

→ R,

where TpM̃ = TpM̃(n1, n2, · · · , nm) and T ∗
p M̃ = T ∗

p M̃(n1, n2, · · · , nm).

Denoted by T rs (p, M̃) all tensors of type (r, s) at a point p of M̃(n1, n2, · · · , nm).

Then we know its structure by Theorems 5.1.3 and 5.1.4.

Theorem 5.2.1 Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold and

p ∈ M̃(n1, n2, · · · , nm). Then

T rs (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸ ︷︷ ︸
r

⊗T ∗
p M̃ ⊗ · · · ⊗ T ∗

p M̃︸ ︷︷ ︸
s

,

where TpM̃ = TpM̃(n1, n2, · · · , nm) and T ∗
p M̃ = T ∗

p M̃(n1, n2, · · · , nm), particularly,

dimT rs (p, M̃) = (ŝ(p) +

s(p)∑

i=1

(ni − ŝ(p)))r+s.

Proof By definition and multilinear algebra, any tensor t of type (r, s) at the

point p can be uniquely written as

t =
∑

ti1···irj1···js

∂

∂xi1j1
|p ⊗ · · · ⊗

∂

∂xirjr
|p ⊗ dxk1l1 ⊗ · · · ⊗ dxksls

for components ti1···irj1···js
∈ R by Theorems 5.1.3 and 5.1.4, where 1 ≤ ih, kh ≤ s(p) and

1 ≤ jh ≤ ih, 1 ≤ lh ≤ kh for 1 ≤ h ≤ r. As a consequence, we obtain that

T rs (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸ ︷︷ ︸
r

⊗T ∗
p M̃ ⊗ · · · ⊗ T ∗

p M̃︸ ︷︷ ︸
s

.

Since dimTpM̃ = dimT ∗
p M̃ = ŝ(p)+

s(p)∑
i=1

(ni− ŝ(p)) by Theorems 5.1.3 and 5.1.4,

we also know that

dimT rs (p, M̃) = (ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)))r+s.
�
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5.2.2 Tensor Field on Combinatorial Manifold. Similar to manifolds, we

can also introduce tensor field and k-forms at a point in a combinatorial manifold

following.

Definition 5.2.2 Let T rs (M̃) =
⋃
p∈M̃

T rs (p, M̃) for a smoothly combinatorial manifold

M̃ = M̃(n1, n2, · · · , nm). A tensor filed of type (r, s) on M̃(n1, n2, · · · , nm) is a

mapping τ : M̃(n1, n2, · · · , nm) → T rs (M̃) such that τ(p) ∈ T rs (p, M̃) for ∀p ∈
M̃(n1, n2, · · · , nm).

A k-form on M̃(n1, n2, · · · , nm) is a tensor field ω ∈ T 0
k (M̃). Denoted all k-form

of M̃(n1, n2, · · · , nm) by Λk(M̃) and

Λ(M̃) =

ŝ(p)−s(p)ŝ(p)+
∑s(p)

i=1 ni⊕

k=0

Λk(M̃).

We have introduced the wedge ∧ on differential forms in Rn in Section 3.2.4.

Certainly, for ω ∈ Λk(M̃), ̟ ∈ Λl(M̃) and integers k, l ≥ 0, we can also define the

wedge operation ω ∧̟ in Λ(M̃) following.

Definition 5.2.2 For any integer k ≥ 0 and ω ∈ Λk(M̃), an alternation mapping

A : Λk(M̃)→ Λk(M̃) is defined by

Aω(u1, · · · , uk) =
1

k!

∑

σ∈Sk

signσω(uσ(1), · · · , uσ(k))

for ∀u1 ∈ M̃ , and for integers k, l ≥ 0 and ω ∈ Λk(M̃), ̟ ∈ Λl(M̃), their wedge

ω ∧̟ ∈ Λk+l(M̃) is defined by

ω ∧̟ =
(k + l)!

k!l!
A(ω ⊗̟).

For example, if M̃ = R3, a is a 1-form and b a 1-form, then

a ∧ b(e1, e2) = a(e1)b(e2)− a(e2)b(e1)

and if a is a 2-form and b a 1-form, then

a ∧ b(e1, e2, e3) = a(e1, e2)b(e3)− a(e1, e3)b(e2) + a(e2, e3)b(e1).
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Example 5.2.1 The wedge product is operated in Λ(M̃) in the same way as in the

algebraic case. For example, let a = dx1 − x1dx2 ∈ Λ1(M̃) and b = x2dx1 ∧ dx3 −
dx2 ∧ dx1 ∈ Λ2(M̃), then

a ∧ b = (dx1 − x1dx2) ∧ (x2dx1 ∧ dx3 − dx2 ∧ dx1)

= 0− x1x2dx2 ∧ dx1 ∧ dx3 − dx1 ∧ dx2 ∧ dx3 + 0

= (x1x2 − 1) ∧ dx3 − dx1 ∧ dx2 ∧ dx3.

Theorem 5.2.2 Let v1, v2, · · · , vn be vectors in a vector space V . Then they are

linear dependent if and only if

v1 ∧ v2 ∧ · · · ∧ vn = 0.

Proof If v1, v2, · · · , vn are linear dependent, without loss of generality, let

vn = a1v1 + a2v2 · · ·+ an−1vn−1.

Then

v1 ∧ v2 ∧ · · · ∧ vn
v1 ∧ · · · ∧ vn−1 ∧ (a1v1 + a2v2 · · ·+ an−1vn−1)

= 0.

Now if v1, v2, · · · , vn are linear independent, we can extend them to a basis

{v1, v2, · · · , vn, · · · , vdimV } of V . Because of

v1 ∧ v2 ∧ · · · ∧ vdimV 6= 0,

we finally get that

v1 ∧ v2 ∧ · · · ∧ vn 6= 0.

�

Theorem 5.2.3 Let v1, v2, · · · , vn and w1, w2, · · · , wn be two vector families in a

vector space V such that
n∑

k=1

vk ∧ wk = 0.

If v1, v2, · · · , vn are linear independent, then for any integer k, 1 ≤ k ≤ n,

wk =
n∑

l=1

aklvl



244 Chap.5 Combinatorial Differential Geometry

with akl = alk.

Proof Because v1, v2, · · · , vn are linear independent, we can extend them to a

basis {v1, v2, · · · , vn, · · · , vdimV } of V . Therefore, there are scalars akl, 1 ≤ k, l ≤
dimV such that

wk =

n∑

l=1

aklvk +

dimV∑

l=k+1

aklvk.

Whence, we find that

n∑

k=1

vk ∧ wk =

n∑

k,l=1

aklvk ∧ vl +
n∑

k=1

dimV∑

l=k+1

aklvk ∧ vl

=
n∑

1≤k<l≤n

(akl − alk)vk ∧ vl +
n∑

k=1

dimV∑

t=k+1

aktvk ∧ vt = 0

by assumption. Since {vk ∧ vl, 1 ≤ k < l ≤ dimV } is a basis Λ2(V ), we know that

akl − alk = 0 and akt = 0. Thereafter, we get that

wk =
n∑

l=1

aklvl

with akl = alk. �

5.2.3 Exterior Differentiation. It is the same as in the classical differential

geometry, the next result determines a unique exterior differentiation d̃ : Λ(M̃) →
Λ(M̃) for smoothly combinatorial manifolds.

Theorem 5.2.4 Let M̃ be a smoothly combinatorial manifold. Then there is a

unique exterior differentiation d̃ : Λ(M̃) → Λ(M̃) such that for any integer k ≥ 1,

d̃(Λk) ⊂ Λk+1(M̃) with conditions following hold.

(1) d̃ is linear, i.e., for ∀ϕ, ψ ∈ Λ(M̃), λ ∈ R,

d̃(ϕ+ λψ) = d̃ϕ ∧ ψ + λd̃ψ

and for ϕ ∈ Λk(M̃), ψ ∈ Λ(M̃),

d̃(ϕ ∧ ψ) = d̃ϕ+ (−1)kϕ ∧ d̃ψ.

(2) For f ∈ Λ0(M̃), d̃f is the differentiation of f .

(3) d̃2 = d̃ · d̃ = 0.
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(4) d̃ is a local operator, i.e., if U ⊂ V ⊂ M̃ are open sets and α ∈ Λk(V ), then

d̃(α|U) = (d̃α)|U .

Proof Let (U ; [ϕ]), where [ϕ] : p →
s(p)⋃
i=1

[ϕ](p) = [ϕ(p)] be a local chart for

a point p ∈ M̃ and α = α(µ1ν1)···(µkψk)dx
µ1ν1 ∧ · · · ∧ dxµkνk with 1 ≤ νj ≤ nµi

for

1 ≤ µi ≤ s(p), 1 ≤ i ≤ k. We first establish the uniqueness. If k = 0, the

local formula d̃α = ∂α
∂xµν dx

µν applied to the coordinates xµν with 1 ≤ νj ≤ nµi
for

1 ≤ µi ≤ s(p), 1 ≤ i ≤ k shows that the differential of xµν is 1-form dxµν . From (3),

d̃(xµν) = 0, which combining with (1) shows that d̃(dxµ1ν1 ∧ · · · ∧ dxµkνk ) = 0. This,

again by (1),

d̃α =
∂α(µ1ν1)···(µkψk)

∂xµν
dxµν ∧ dxµ1ν1 ∧ · · · ∧ dxµkνk . (5− 3)

and d̃ is uniquely determined on U by properties (1)− (3) and by (4) on any open

subset of M̃ .

For existence, define on every local chart (U ; [ϕ]) the operator d̃ by (5−3). Then

(2) is trivially verified as is R-linearity. If β = β(σ1ς1)···(σlςl)dx
σ1ς1∧· · ·∧dxσlςl ∈ Λl(U),

then

d̃(α ∧ β) = d̃(α(µ1ν1)···(µkψk)β(σ1ς1)···(σlςl)dx
µ1ν1 ∧ · · · ∧ dxµkνk ∧ dxσ1ς1 ∧ · · · ∧ dxσlςl)

= (
∂α(µ1ν1)···(µkψk)

∂xµν
β(σ1ς1)···(σlςl) + α(µ1ν1)···(µkψk)

× ∂β(σ1ς1)···(σlςl)

∂xµν
)dxµ1ν1 ∧ · · · ∧ dxµkνk ∧ dxσ1ς1 ∧ · · · ∧ dxσlςl

=
∂α(µ1ν1)···(µkψk)

∂xµν
dxµ1ν1 ∧ · · · ∧ dxµkνk ∧ β(σ1ς1)···(σlςl)dx

σ1ς1 ∧ · · · ∧ dxσlςl

+ (−1)kα(µ1ν1)···(µkψk)dx
µ1ν1 · · · ∧ dxµkνk ∧ ∂β(σ1ς1)···(σlςl)

∂xµν
)dxσ1ς1 · · · ∧ dxσlςl

= d̃α ∧ β + (−1)kα ∧ d̃β

and (1) is verified. For (3), symmetry of the second partial derivatives shows that

d̃(d̃α) =
∂2α(µ1ν1)···(µkψk)

∂xµν∂xσς
dxµ1ν1 ∧ · · · ∧ dxµkνk ∧ dxσ1ς1 ∧ · · · ∧ dxσlςl) = 0.

Thus, in every local chart (U ; [ϕ]), (5 − 3) defines an operator d̃ satisfying (1)-(3).

It remains to be shown that d̃ really defines an operator d̃ on any open set and (4)

holds. To do so, it suffices to show that this definition is chart independent. Let d̃′
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be the operator given by (5− 3) on a local chart (U ′; [ϕ′]), where U
⋂
U ′ 6= ∅. Since

d̃′ also satisfies (1)− (3) and the local uniqueness has already been proved, d̃′α = d̃α

on U
⋂
U ′. Whence, (4) thus follows. �

Corollary 5.2.1 Let M̃ = M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold

and dM : Λk(M) → Λk+1(M) the unique exterior differentiation on M with condi-

tions following hold for M ∈ V (Gl[M̃(n1, n2, · · · , nm)]) where, 1 ≤ l ≤ min{n1, n2,

· · · , nm}.
(1) dM is linear, i.e., for ∀ϕ, ψ ∈ Λ(M), λ ∈ R,

dM(ϕ+ λψ) = dMϕ+ λdMψ.

(2) For ϕ ∈ Λr(M), ψ ∈ Λ(M),

dM(ϕ ∧ ψ) = dMϕ+ (−1)rϕ ∧ dMψ.

(3) For f ∈ Λ0(M), dMf is the differentiation of f .

(4) d2
M = dM · dM = 0.

Then

d̃|M = dM .

Proof By Theorem 2.4.5 in [AbM1], dM exists uniquely for any smoothly man-

ifold M . Now since d̃ is a local operator on M̃ , i.e., for any open subset Uµ ⊂ M̃ ,

d̃(α|Uµ) = (d̃α)|Uµ and there is an index set J such that M =
⋃
µ∈J

Uµ, we finally get

that

d̃|M = dM

by the uniqueness of d̃ and dM . �

Theorem 5.2.5 Let ω ∈ Λ1(M̃). Then for ∀X, Y ∈X (M̃),

d̃ω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

Proof Denote by α(X, Y ) the right hand side of the formula. We know that

α : M̃ × M̃ → C∞(M̃). It can be checked immediately that α is bilinear and for

∀X, Y ∈X (M̃), f ∈ C∞(M̃),

α(fX, Y ) = fX(ω(Y ))− Y (ω(fX))− ω([fX, Y ])
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= fX(ω(Y ))− Y (fω(X))− ω(f [X, Y ]− Y (f)X)

= fα(X, Y )

and

α(X, fY ) = −α(fY,X) = −fα(Y,X) = fα(X, Y )

by definition. Accordingly, α is a differential 2-form. We only need to prove that

for a local chart (U, [ϕ]),

α|U = d̃ω|U .

In fact, assume ω|U = ωµνdx
µν . Then

(d̃ω)|U = d̃(ω|U) =
∂ωµν
∂xσς

dxσς ∧ dxµν

=
1

2
(
∂ωµν
∂xσς

− ∂ωςτ
∂xµν

)dxσς ∧ dxµν .

On the other hand, α|U = 1
2
α( ∂

∂xµν ,
∂

∂xσς )dx
σς ∧ dxµν , where

α(
∂

∂xµν
,
∂

∂xσς
) =

∂

∂xσς
(ω(

∂

∂xµν
))− ∂

∂xµν
(ω(

∂

∂xσς
))

−ω([
∂

∂xµν
− ∂

∂xσς
])

=
∂ωµν
∂xσς

− ∂ωσς
∂xµν

.

Therefore, d̃ω|U = α|U . �

§5.3 CONNECTIONS ON TENSORS

5.3.1 Connection on Tensor. We introduce connections on tensors of smoothly

combinatorial manifolds by the next definition.

Definition 5.3.1 Let M̃ be a smoothly combinatorial manifold. A connection on

tensors of M̃ is a mapping D̃ : X (M̃) × T rs M̃ → T rs M̃ with D̃Xτ = D̃(X, τ) such

that for ∀X, Y ∈X M̃ , τ, π ∈ T rs (M̃),λ ∈ R and f ∈ C∞(M̃),

(1) D̃X+fY τ = D̃Xτ + fD̃Y τ ; and D̃X(τ + λπ) = D̃Xτ + λD̃Xπ;

(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;
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(3) for any contraction C on T rs (M̃),

D̃X(C(τ)) = C(D̃Xτ).

We get results following for these connections on tensors of smoothly combina-

torial manifolds.

Theorem 5.3.1 Let M̃ be a smoothly combinatorial manifold. Then there exists a

connection D̃ locally on M̃ with a form

(D̃Xτ)|U = Xσςτ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν)

∂

∂xµ1ν1
⊗ · · · ⊗ ∂

∂xµrνr
⊗ dxκ1λ1 ⊗ · · · ⊗ dxκsλs

for ∀Y ∈X (M̃) and τ ∈ T rs (M̃), where

τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν)

=
∂τ

(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs)

∂xµν

+
r∑

a=1

τ
(µ1ν1)···(µa−1νa−1)(σς)(µa+1νa+1)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs) Γµaνa

(σς)(µν)

−
s∑

b=1

τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)···(κb−1λb−1)(µν)(σb+1ςb+1)···(κsλs)

Γσς(σbςb)(µν)

and Γκλ(σς)(µν) is a function determined by

D̃ ∂
∂xµν

∂

∂xσς
= Γκλ(σς)(µν)

∂

∂xσς

on (Up; [ϕp]) = (Up; x
µν) of a point p ∈ M̃ , also called the coefficient on a connection.

Proof We first prove that any connection D̃ on smoothly combinatorial man-

ifolds M̃ is local by definition, namely for X1, X2 ∈ X (M̃) and τ1, τ2 ∈ T rs (M̃), if

X1|U = X2|U and τ1|U = τ2|U , then (D̃X1τ1)U = (D̃X2τ2)U . For this objective, we

need to prove that (D̃X1τ1)U = (D̃X1τ2)U and (D̃X1τ1)U = (D̃X2τ1)U . Since their

proofs are similar, we check the first only.

In fact, if τ = 0, then τ = τ − τ . By the definition of connection,

D̃Xτ = D̃X(τ − τ) = D̃Xτ − D̃Xτ = 0.

Now let p ∈ U . Then there is a neighborhood Vp of p such that V is compact and

V ⊂ U . By a result in topology, i.e., for two open sets Vp, U of Rŝ(p)−s(p)ŝ(p)+n1+···+ns(p)
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with compact Vp and Vp ⊂ U , there exists a function f ∈ C∞(Rŝ(p)−s(p)ŝ(p)+n1+···+ns(p))

such that 0 ≤ f ≤ 1 and f |Vp ≡ 1, f |
R

ŝ(p)−s(p)ŝ(p)+n1+···+ns(p)\U
≡ 0, we find that

f · (τ2 − τ1) = 0. Whence, we know that

0 = D̃X1((f · (τ2 − τ1))) = X1(f)(τ2 − τ1) + f(D̃X1τ2 − D̃X1τ1).

As a consequence, we get that (D̃X1τ1)V = (D̃X1τ2)V , particularly, (D̃X1τ1)p =

(D̃X1τ2)p. For the arbitrary choice of p, we get that (D̃X1τ1)U = (D̃X1τ2)U finally.

The local property of D̃ enables us to find an induced connection D̃U : X (U)×
T rs (U) → T rs (U) such that D̃U

X|U
(τ |U) = (D̃Xτ)|U for ∀X ∈ X (M̃) and τ ∈ T rs M̃ .

Now for ∀X1, X2 ∈ X (M̃), ∀τ1, τ2 ∈ T rs (M̃) with X1|Vp = X2|Vp and τ1|Vp = τ2|Vp,

define a mapping D̃U : X (U)× T rs (U)→ T rs (U) by

(D̃X1τ1)|Vp = (D̃X1τ2)|Vp

for any point p ∈ U . Then since D̃ is a connection on M̃ , it can be checked easily that

D̃U satisfies all conditions in Definition 5.3.1. Whence, D̃U is indeed a connection

on U .

Now we calculate the local form on a chart (Up, [ϕp]) of p. Since

D̃ ∂
∂xµν

= Γκλ(σς)(µν)

∂

∂xσς
,

it can find immediately that

D̃ ∂
∂xµν

dxκλ = −Γκλ(σς)(µν)dx
σς

by Definition 5.3.1. Therefore, we finally find that

(D̃Xτ)|U = Xσςτ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν)

∂

∂xµ1ν1
⊗ · · · ⊗ ∂

∂xµrνr
⊗ dxκ1λ1 ⊗ · · · ⊗ dxκsλs

with

τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν)

=
∂τ

(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs)

∂xµν

+

r∑

a=1

τ
(µ1ν1)···(µa−1νa−1)(σς)(µa+1νa+1)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs)

Γµaνa

(σς)(µν)

−
s∑

b=1

τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)···(κb−1λb−1)(µν)(σb+1ςb+1)···(κsλs)

Γσς(σbςb)(µν)
.
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This completes the proof. �

Theorem 5.3.2 Let M̃ be a smoothly combinatorial manifold with a connection D̃.

Then for ∀X, Y ∈X (M̃),

T̃ (X, Y ) = D̃XY − D̃YX − [X, Y ]

is a tensor of type (1, 2) on M̃ .

Proof By definition, it is clear that T̃ : X (M̃) ×X (M̃) → X (M̃) is anti-

symmetrical and bilinear. We only need to check it is also linear on each element in

C∞(M̃) for variables X or Y . In fact, for ∀f ∈ C∞(M̃),

T̃ (fX, Y ) = D̃fXY − D̃Y (fX)− [fX, Y ]

= fD̃XY − (Y (f)X + fD̃YX)

− (f [X, Y ]− Y (f)X) = fT̃ (X, Y ).

and

T̃ (X, fY ) = −T̃ (fY,X) = −fT̃ (Y,X) = fT̃ (X, Y ).

�

5.3.2 Torsion-free Tensor. Notice that

T (
∂

∂xµν
,
∂

∂xσς
) = D̃ ∂

∂xµν

∂

∂xσς
− D̃ ∂

∂xσς

∂

∂xµν

= (Γκλ(µν)(σς) − Γκλ(σς)(µν))
∂

∂xκλ

under a local chart (Up; [ϕp]) of a point p ∈ M̃ . If T ( ∂
∂xµν ,

∂
∂xσς ) ≡ 0, we call T

torsion-free. This enables us getting the next useful result by definition.

Theorem 5.3.3 A connection D̃ on tensors of a smoothly combinatorial manifold

M̃ is torsion-free if and only if Γκλ(µν)(σς) = Γκλ(σς)(µν). �

5.3.3 Combinatorial Riemannian Manifold. A combinatorial Riemannian

geometry is defined in the next on the case of s = r = 1.

Definition 5.3.2 Let M̃ be a smoothly combinatorial manifold and g ∈ A2(M̃) =
⋃
p∈M̃

T 0
2 (p, M̃). If g is symmetrical and positive, then M̃ is called a combinatorial
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Riemannian manifold, denoted by (M̃, g). In this case, if there is a connection D̃

on (M̃, g) with equality following hold

Z(g(X, Y )) = g(D̃Z , Y ) + g(X, D̃ZY ), (5− 4)

then M̃ is called a combinatorial Riemannian geometry, denoted by (M̃, g, D̃).

We get a result for connections on smoothly combinatorial manifolds similar to

that of the Riemannian geometry.

Theorem 5.3.4 Let (M̃, g) be a combinatorial Riemannian manifold. Then there

exists a unique connection D̃ on (M̃, g) such that (M̃, g, D̃) is a combinatorial Rie-

mannian geometry.

Proof By definition, we know that

D̃Zg(X, Y ) = Z(g(X, Y ))− g(D̃ZX, Y )− g(X, D̃ZY )

for a connection D̃ on tensors of M̃ and ∀Z ∈X (M̃). Thereby, the equality (5−4)

is equivalent to that of D̃Zg = 0 for ∀Z ∈X (M̃), namely D̃ is torsion-free.

Not loss of generality, assume g = g(µν)(σς)dx
µνdxσς in a local chart (Up; [ϕp]) of

a point p, where g(µν)(σς) = g( ∂
∂xµν ,

∂
∂xσς ). Then we find that

D̃g = (
∂g(µν)(σς)

∂xκλ
− g(ζη)(σς)Γ

ζη
(µν)(σς) − g(µν)(ζη)Γ

ζη
(σς)(κλ))dx

µν ⊗ dxσς ⊗ dxκλ.

Therefore, we get that

∂g(µν)(σς)

∂xκλ
= g(ζη)(σς)Γ

ζη
(µν)(σς) + g(µν)(ζη)Γ

ζη
(σς)(κλ) (5− 5)

if D̃Zg = 0 for ∀Z ∈X (M̃). The formula (5− 5) enables us to get that

Γκλ(µν)(σς) =
1

2
g(κλ)(ζη)(

∂g(µν)(ζη)

∂xσς
+
∂g(ζη)(σς)

∂xµν
− ∂g(µν)(σς)

∂xζη
),

where g(κλ)(ζη) is an element in the matrix inverse of [g(µν)(σς)].

Now if there exists another torsion-free connection D̃∗ on (M̃, g) with

D̃∗
∂

∂xµν
= Γ∗κλ

(σς)(µν)

∂

∂xκλ
,

then we must get that

Γ∗κλ
(µν)(σς) =

1

2
g(κλ)(ζη)(

∂g(µν)(ζη)

∂xσς
+
∂g(ζη)(σς)

∂xµν
− ∂g(µν)(σς)

∂xζη
).
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Accordingly, D̃ = D̃∗. Whence, there are at most one torsion-free connection D̃ on

a combinatorial Riemannian manifold (M̃, g).

For the existence of torsion-free connection D̃ on (M̃, g), let Γκλ(µν)(σς) = Γκλ(σς)(µν)

and define a connection D̃ on (M̃, g) such that

D̃ ∂
∂xµν

= Γκλ(σς)(µν)

∂

∂xκλ
,

then D̃ is torsion-free by Theorem 5.3.3. This completes the proof. �

Corollary 5.3.1 For a Riemannian manifold (M, g), there exists only one torsion-

free connection D, i.e.,

DZg(X, Y ) = Z(g(X, Y ))− g(DZX, Y )− g(X,DZY ) ≡ 0

for ∀X, Y, Z ∈X (M).

§5.4 CURVATURES ON CONNECTION SPACES

5.4.1 Combinatorial Curvature Operator. A combinatorial connection space

is a 2-tuple (M̃, D̃) consisting of a smoothly combinatorial manifold M̃ with a con-

nection D̃ on its tensors. We define combinatorial curvature operators on smoothly

combinatorial manifolds in the next.

Definition 5.4.1 Let (M̃, D̃) be a combinatorial connection space. For ∀X, Y ∈
X (M̃), a combinatorial curvature operator R̃(X, Y ) : X (M̃) → X (M̃) is defined

by

R̃(X, Y )Z = D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z

for ∀Z ∈X (M̃).

For a given combinatorial connection space (M̃, D̃), we know properties follow-

ing on combinatorial curvature operators, which is similar to those of the Riemannian

geometry.

Theorem 5.4.1 Let (M̃, D̃) be a combinatorial connection space. Then for ∀X, Y, Z ∈
X (M̃), ∀f ∈ C∞(M̃),
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(1) R̃(X, Y ) = −R̃(Y,X);

(2) R̃(fX, Y ) = R̃(X, fY ) = fR̃(X, Y );

(3) R̃(X, Y )(fZ) = fR̃(X, Y )Z.

Proof For ∀X, Y, Z ∈ X (M̃), we know that R̃(X, Y )Z = −R̃(Y,X)Z by

definition. Whence, R̃(X, Y ) = −R̃(Y,X).

Now since

R̃(fX, Y )Z = D̃fXD̃Y Z − D̃Y D̃fXZ − D̃[fX,Y ]Z

= fD̃XD̃Y Z − D̃Y (fD̃XZ)− D̃f [X,Y ]−Y (f)XZ

= fD̃XD̃Y Z − Y (f)D̃XZ − fD̃Y D̃XZ

− fD̃[X,Y ]Z + Y (f)D̃XZ

= fR̃(X, Y )Z,

we get that R̃(fX, Y ) = fR̃(X, Y ). Applying the quality (1), we find that

R̃(X, fY ) = −R̃(fY,X) = −fR̃(Y,X) = fR̃(X, Y ).

This establishes (2). Now calculation shows that

R̃(X, Y )(fZ) = D̃XD̃Y (fZ)− D̃Y D̃X(fZ)− D̃[X,Y ](fZ)

= D̃X(Y (f)Z + fD̃YZ)− D̃Y (X(f)Z + fD̃XZ)

− ([X, Y ](f))Z − fD̃[X,Y ]Z

= X(Y (f))Z + Y (f)D̃XZ +X(f)D̃YZ

+ fD̃XD̃YZ − Y (X(f))Z −X(f)D̃Y Z − Y (f)D̃XZ

− fD̃Y D̃XZ − ([X, Y ](f))Z − fD̃[X,Y ]Z

= fR̃(X, Y )Z.

Whence, we know that

R̃(X, Y )(fZ) = fR̃(X, Y )Z.

�

As the cases in the Riemannian geometry, these curvature tensors on smoothly

combinatorial manifolds also satisfy the Bianchi equalities.
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Theorem 5.4.2 Let (M̃, D̃) be a combinatorial connection space. If the torsion

tensor T̃ ≡ 0 on D̃, then the first and second Bianchi equalities following hold.

R̃(X, Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0

and

(D̃XR̃)(Y, Z)W + (D̃Y R̃)(Z,X)W + (D̃ZR̃)(X, Y )W = 0.

Proof Notice that T̃ ≡ 0 is equal to D̃XY −D̃YX = [X, Y ] for ∀X, Y ∈X (M̃).

Thereafter, we know that

R̃(X, Y )Z + R̃(Y, Z)X + R̃(Z,X)Y

= D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z + D̃Y D̃ZX − D̃ZD̃YX

− D̃[Y,Z]X + D̃ZD̃XY − D̃XD̃ZY − D̃[Z,X]Y

= D̃X(D̃YZ − D̃ZY )− D̃[Y,Z]X + D̃Y (D̃ZX − D̃XZ)

− D̃[Z,X]Y + D̃Z(D̃XY − D̃YX)− D̃[X,Y ]Z

= D̃X [Y, Z]− D̃[Y,Z]X + D̃Y [Z,X]− D̃[Z,X]Y

+ D̃Z [X, Y ]− D̃[X,Y ]Z

= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]].

By the Jacobi equality [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, we get that

R̃(X, Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0.

By definition, we know that

(D̃XR̃)(Y, Z)W

= D̃XR̃(Y, Z)W − R̃(D̃XY, Z)W − R̃(Y, D̃XZ)W − R̃(Y, Z)D̃XW

= D̃XD̃Y D̃ZW − D̃XD̃ZD̃YW − D̃XD̃[Y,Z]W − D̃D̃XY
D̃ZW

+D̃ZD̃D̃XY
W + D̃[D̃XY,Z]W − D̃Y D̃D̃XZ

W + D̃D̃XZ
D̃YW

+D̃[Y,D̃XZ]W − D̃Y D̃ZD̃XW + D̃ZD̃Y D̃XW + D̃[Y,Z]D̃XW.

Now let

AW (X, Y, Z) = D̃XD̃Y D̃ZW − D̃XD̃ZD̃YW − D̃Y D̃ZD̃XW + D̃ZD̃Y D̃XW,

BW (X, Y, Z) = −D̃XD̃D̃Y Z
W + D̃XD̃D̃ZY

W + D̃ZD̃D̃XY
W − D̃Y D̃D̃XZ

W,
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CW (X, Y, Z) = −D̃D̃XY
D̃ZW + D̃D̃XZ

D̃YW + D̃D̃Y Z
D̃XW − D̃D̃ZY

D̃XW

and

DW (X, Y, Z) = D̃[D̃XY,Z]W − D̃[D̃XZ,Y ]W.

Applying the equality D̃XY − D̃YX = [X, Y ], we find that

(D̃XR̃)(Y, Z)W = AW (X, Y, Z) +BW (X, Y, Z) + CW (X, Y, Z) +DW (X, Y, Z).

We can check immediately that

AW (X, Y, Z) + AW (Y, Z,X) + AW (Z,X, Y ) = 0,

BW (X, Y, Z) +BW (Y, Z,X) +BW (Z,X, Y ) = 0,

CW (X, Y, Z) + CW (Y, Z,X) + CW (Z,X, Y ) = 0

and

DW (X, Y, Z) +DW (Y, Z,X) +DW (Z,X, Y )

= D̃[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y ]]W = D̃0W = 0

by the Jacobi equality [X, [Y, Z]]+ [Y, [Z,X]]+ [Z, [X, Y ]] = 0. Therefore, we finally

get that

(D̃XR̃)(Y, Z)W + (D̃Y R̃)(Z,X)W + (D̃ZR̃)(X, Y )W

= AW (X, Y, Z) +BW (X, Y, Z) + CW (X, Y, Z) +DW (X, Y, Z)

+AW (Y, Z,X) +BW (Y, Z,X) + CW (Y, Z,X) +DW (Y, Z,X)

+AW (Z,X, Y ) +BW (Z,X, Y ) + CW (Z,X, Y ) +DW (Z,X, Y ) = 0.

This completes the proof. �

5.4.2 Curvature Tensor on Combinatorial Manifold. According to Theorem

5.4.1, the curvature operator R̃(X, Y ) : X (M̃)→X (M̃) is a tensor of type (1, 1).

By applying this operator, we can define a curvature tensor in the next definition.

Definition 5.4.2 Let (M̃, D̃) be a combinatorial connection space. For ∀X, Y, Z ∈
X (M̃), a linear multi-mapping R̃ : X (M̃)×X (M̃)×X (M̃)→X (M̃) determined

by

R̃(Z,X, Y ) = R̃(X, Y )Z
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is said a curvature tensor of type (1, 3) on (M̃, D̃).

Let (M̃, D̃) be a combinatorial connection space and

{eij |1 ≤ i ≤ s(p), 1 ≤ j ≤ ni and ei1j = ei2j for 1 ≤ i1, i2 ≤ s(p) if 1 ≤ j ≤ ŝ(p)}

a local frame with a dual

{ωij|1 ≤ i ≤ s(p), 1 ≤ j ≤ ni and ωi1j = ωi2j for 1 ≤ i1, i2 ≤ s(p) if 1 ≤ j ≤ ŝ(p)},

abbreviated to {eij} and {ωij} at a point p ∈ M̃ , where M̃ = M̃(n1, n2, · · · , nm).

Then there exist smooth functions Γσς(µν)(κλ) ∈ C∞(M̃) such that

D̃eκλ
eµν = Γσς(µν)(κλ)eσς

called connection coefficients in the local frame {eij}.

Theorem 5.4.3 Let (M̃, D̃) be a combinatorial connection space and {eij} a local

frame with a dual {ωij} at a point p ∈ M̃ . Then

d̃ωµν − ωκλ ∧ ωµνκλ =
1

2
T̃ µν(κλ)(σς)ω

κλ ∧ ωσς ,

where T̃ µν(κλ)(σς) is a component of the torsion tensor T̃ in the frame {eij}, i.e.,

T̃ µν(κλ)(σς) = ωµν(T̃ (eκλ, eσς)) and

d̃ωκλµν − ωσςµν ∧ ωκλσς =
1

2
R̃κλ

(µν)(σς)(ηθ)ω
σς ∧ ωηθ

with R̃κλ
(µν)(σς)(σς)eκλ = R̃(eσς , eηθ)eµν.

Proof By definition, for any given eσς , eηθ we know that

(d̃ωµν − ωκλ ∧ ωµνκλ)(eσς , eηθ) = eσς(ω
µν(eηθ))− eηθ(ωµν(eσς))− ωµν([eσς , eηθ])

− ωκλ(eσς)ω
µν
κλ(eηθ) + ωκλ(eηθ)ω

µν
κλ(eσς)

= −ωµνσς (eηθ) + ωµνηθ (eσς)− ωµν([eσς , eηθ])
= −Γµν(σς)(ηθ) + Γµν(ηθ)(σς) − ωµν([eσς , eηθ])
= ωµν(D̃eσςeηθ − D̃eηθ

eσς − [eσς , eηθ])

= ωµν(T̃ (eσς , eηθ)) = T̃ µν(σς)(ηθ).

by Theorem 5.2.3. Whence,

d̃ωµν − ωκλ ∧ ωµνκλ =
1

2
T̃ µν(κλ)(σς)ω

κλ ∧ ωσς .
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Now since

(d̃ωκλµν − ωϑιµν ∧ ωκλϑι )(eσς , eηθ)
= eσς(ω

κλ
µν (eηθ))− eηθ(ωκλµν (eσς))− ωκλµν ([eσς , eηθ])

−ωϑιµν(eσς)ωκλϑι (eηθ) + ωϑιµν(eηθ)ω
κλ
ϑι (eσς)

= eσς(Γ
κλ
(µν)(ηθ))− eηθ(Γκλ(µν)(σς))− ωϑι([eσς , eηθ])Γκλ(µν)(ϑι)

−Γϑι(µν)(σς)Γ
κλ
(ϑι)(ηθ) + Γϑι(µν)(ηθ)Γ

κλ
(ϑι)(σς)

and

R̃(eσς , eηθ)eµν = D̃eσςD̃eηθ
eµν − D̃eηθ

D̃eσςeµν − D̃[eσς ,eηθ]eµν

= D̃eσς
(Γκλ(µν)(ηθ)eκλ)− D̃eηθ

(Γκλ(µν)(σς)eκλ)− ωϑι([eσς , eηθ])Γκλ(µν)(ϑι)eκλ

= (eσς(Γ
κλ
(µν)(ηθ))− eηθ(Γκλ(µν)(σς)) + Γϑι(µν)(ηθ)Γ

κλ
(ϑι)(σς)

− Γϑι(µν)(σς)Γ
κλ
(ϑι)(ηθ) − ωϑι([eσς , eηθ])Γκλ(µν)(ϑι))eκλ

= (d̃ωκλµν − ωϑιµν ∧ ωκλϑι )(eσς , eηθ)eκλ.

Therefore, we get that

(d̃ωκλµν − ωϑιµν ∧ ωκλϑι )(eσς , eηθ) = R̃κλ
(µν)(σς)(ηθ) ,

that is,

d̃ωκλµν − ωσςµν ∧ ωκλσς = 1
2
R̃κλ

(µν)(σς)(ηθ)ω
σς ∧ ωηθ.

�

5.4.3 Structural Equation. First, we introduce torsion forms, curvature forms

and structural equations in a local frame {eij} of (M̃, D̃) in the next.

Definition 5.4.3 Let (M̃, D̃) be a combinatorial connection space. Differential

2-forms Ωµν = d̃ωµν − ωµν ∧ ωµνκλ, Ωκλ
µν = d̃ωκλµν − ωσςµν ∧ ωκλσς and equations

d̃ωµν = ωκλ ∧ ωµνκλ + Ωµν , d̃ωκλµν = ωσςµν ∧ ωκλσς + Ωκλ
µν

are called torsion forms, curvature forms and structural equations in a local frame

{eij} of (M̃, D̃), respectively.

By Theorem 5.4.3 and Definition 5.4.3, we get local forms for torsion tensor

and curvature tensor in a local frame following.
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Corollary 5.4.1 Let (M̃, D̃) be a combinatorial connection space and {eij} a local

frame with a dual {ωij} at a point p ∈ M̃ . Then

T̃ = Ωµν ⊗ eµν and R̃ = ωµν ⊗ eκλ ⊗ Ωκλ
µν ,

i.e., for ∀X, Y ∈X (M̃),

T̃ (X, Y ) = Ωµν(X, Y )eµν and R̃(X, Y ) = Ωκλ
µν(X, Y )ωµν ⊗ eµν .

Theorem 5.4.4 Let (M̃, D̃) be a combinatorial connection space and {eij} a local

frame with a dual {ωij} at a point p ∈ M̃ . Then

d̃Ωµν = ωκλ ∧ Ωµν
κλ − Ωκλ ∧ ωµνκλ and d̃Ωκλ

µν = ωσςµν ∧ Ωκλ
σς − Ωσς

µν ∧ ωκλσς .

Proof Notice that d̃2 = 0. Differentiating the equality Ωµν = d̃ωµν − ωµν ∧ ωµνκλ
on both sides, we get that

d̃Ωµν = −d̃ωµν ∧ ωµνκλ + ωµν ∧ d̃ωµνκλ
= −(Ωκλ + ωσς ∧ ωκλσς ) ∧ ωµνκλ + ωκλ ∧ (Ωµν

κλ + ωσςκλ ∧ ωµνσς )
= ωκλ ∧ Ωµν

κλ − Ωκλ ∧ ωµνκλ.

Similarly, differentiating the equality Ωκλ
µν = d̃ωκλµν − ωσςµν ∧ ωκλσς on both sides, we can

also find that

d̃Ωκλ
µν = ωσςµν ∧ Ωκλ

σς − Ωσς
µν ∧ ωκλσς .

�

Corollary 5.4.2 Let (M,D) be an affine connection space and {ei} a local frame

with a dual {ωi} at a point p ∈M . Then

dΩi = ωj ∧ Ωi
j − Ωj ∧ ωij and dΩj

i = ωki ∧ Ωj
k − Ωk

i ∧ Ωj
k.

5.4.4 Local Form of Curvature Tensor. According to Theorems 5.4.1 −
5.4.4 there is a type (1, 3) tensor R̃p : TpM̃ × TpM̃ × TpM̃ → TpM̃ determined by

R̃(w, u, v) = R̃(u, v)w for ∀u, v, w ∈ TpM̃ at each point p ∈ M̃ . Particularly, we get

its a concrete local form in the standard basis { ∂
∂xµν }.
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Theorem 5.4.5 Let (M̃, D̃) be a combinatorial connection space. Then for ∀p ∈ M̃
with a local chart (Up; [ϕp]),

R̃ = R̃ηθ
(σς)(µν)(κλ)dx

σς ⊗ ∂

∂xηθ
⊗ dxµν ⊗ dxκλ

with

R̃ηθ
(σς)(µν)(κλ) =

∂Γηθ(σς)(κλ)

∂xµν
−
∂Γηθ(σς)(µν)
∂xκλ

+ Γϑι(σς)(κλ)Γ
ηθ
(ϑι)(µν) − Γϑι(σς)(µν)Γ

ηθ
(ϑι)(κλ))

∂

∂xϑι
,

where Γσς(µν)(κλ) ∈ C∞(Up) is determined by

D̃ ∂
∂xµν

∂

∂xκλ
= Γσς(κλ)(µν)

∂

∂xσς
.

Proof We only need to prove that for integers µ, ν, κ, λ, σ, ς, ι and θ,

R̃(
∂

∂xµν
,
∂

∂xκλ
)
∂

∂xσς
= R̃ηθ

(σς)(µν)(κλ)

∂

∂xηθ

at the local chart (Up; [ϕp]). In fact, by definition we get that

R̃(
∂

∂xµν
,
∂

∂xκλ
)
∂

∂xσς

= D̃ ∂
∂xµν

D̃ ∂

∂xκλ

∂

∂xσς
− D̃ ∂

∂xκλ
D̃ ∂

∂xµν

∂

∂xσς
− D̃[ ∂

∂xµν ,
∂

∂xκλ ]

∂

∂xσς

= D̃ ∂
∂xµν

(Γηθ(σς)(κλ)

∂

∂xηθ
)− D̃ ∂

∂xκλ
(Γηθ(σς)(µν)

∂

∂xηθ
)

=
∂Γηθ(σς)(κλ)

∂xµν
∂

∂xηθ
+ Γηθ(σς)(κλ)D̃ ∂

∂xµν

∂

∂xηθ
−
∂Γηθ(σς)(µν)
∂xκλ

∂

∂xηθ
− Γηθ(σς)(µν)D̃ ∂

∂xκλ

∂

∂xηθ

= (
∂Γηθ(σς)(κλ)

∂xµν
−
∂Γηθ(σς)(µν)
∂xκλ

)
∂

∂xηθ
+ Γηθ(σς)(κλ)Γ

ϑι
(ηθ)(µν)

∂

∂xϑι
− Γηθ(σς)(µν)Γ

ϑι
(ηθ)(κλ)

∂

∂xϑι

= (
∂Γηθ(σς)(κλ)

∂xµν
−
∂Γηθ(σς)(µν)
∂xκλ

+ Γϑι(σς)(κλ)Γ
ηθ
(ϑι)(µν) − Γϑι(σς)(µν)Γ

ηθ
(ϑι)(κλ))

∂

∂xϑι

= R̃ηθ
(σς)(µν)(κλ)

∂

∂xηθ
.

This completes the proof. �

For the curvature tensor R̃ηθ
(σς)(µν)(κλ), we can also get these Bianchi identities

in the next result.

Theorem 5.4.6 Let (M̃, D̃) be a combinatorial connection space. Then for ∀p ∈ M̃
with a local chart (Up, [ϕp]), if T̃ ≡ 0, then

R̃µν
(κλ)(σς)(ηθ) + R̃µν

(σς)(ηθ)(κλ) + R̃µν
(ηθ)(κλ)(σς) = 0
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and

D̃ϑιR̃
κλ
(µν)(σς)(ηθ) + D̃σςR̃

κλ
(µν)(ηθ)(ϑι) + D̃ηθR̃

κλ
(µν)(ϑι)(σς) = 0,

where,

D̃ϑιR̃
κλ
(µν)(σς)(ηθ) = D̃ ∂

∂xϑι
R̃κλ

(µν)(σς)(ηθ) .

Proof By definition of the curvature tensor R̃ηθ
(σς)(µν)(κλ), we know that

R̃µν
(κλ)(σς)(ηθ) + R̃µν

(σς)(ηθ)(κλ) + R̃µν
(ηθ)(κλ)(σς)

= R̃(
∂

∂xσς
,
∂

∂xηθ
)
∂

∂xκλ
+ R̃(

∂

∂xηθ
,
∂

∂xκλ
)
∂

∂xσς
+ R̃(

∂

∂xκλ
,
∂

∂xσς
)
∂

∂xηθ
= 0

with

X =
∂

∂xσς
, Y =

∂

∂xηθ
and Z =

∂

∂xκλ

in the first Bianchi equality and

D̃ϑιR̃
κλ
(µν)(σς)(ηθ) + D̃σςR̃

κλ
(µν)(ηθ)(ϑι) + D̃ηθR̃

κλ
(µν)(ϑι)(σς)

= D̃ϑιR̃(
∂

∂xσς
,
∂

∂xηθ
)
∂

∂xκλ
+ D̃σςR̃(

∂

∂xηθ
,
∂

∂xϑι
)
∂

∂xκλ
+ D̃ηθR̃(

∂

∂xϑι
,
∂

∂xσς
)
∂

∂xκλ

= 0.

with

X =
∂

∂xϑι
, Y =

∂

∂xσς
, Z =

∂

∂xηθ
, W =

∂

∂xκλ

in the second Bianchi equality of Theorem 5.4.2. �

§5.5 CURVATURES ON RIEMANNIAN MANIFOLDS

5.5.1 Combinatorial Riemannian Curvature Tensor. In this section, we turn

our attention to combinatorial Riemannian manifolds and characterize curvature

tensors on combinatorial manifolds further.

Definition 5.5.1 Let (M̃, g, D̃) be a combinatorial Riemannian manifold. A com-

binatorial Riemannian curvature tensor

R̃ : X (M̃)×X (M̃)×X (M̃)×X (M̃)→ C∞(M̃)
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of type (0, 4) is defined by

R̃(X, Y, Z,W ) = g(R̃(Z,W )X, Y )

for ∀X, Y, Z,W ∈X (M̃).

Then we find symmetrical relations of R̃(X, Y, Z,W ) following.

Theorem 5.5.1 Let R̃ : X (M̃) × X (M̃) × X (M̃) × X (M̃) → C∞(M̃) be a

combinatorial Riemannian curvature tensor. Then for ∀X, Y, Z,W ∈X (M̃),

(1) R̃(X, Y, Z,W ) + R̃(Z, Y,W,X) + R̃(W,Y,X, Z) = 0.

(2) R̃(X, Y, Z,W ) = −R̃(Y,X, Z,W ) and R̃(X, Y, Z,W ) = −R̃(X, Y,W,Z).

(3) R̃(X, Y, Z,W ) = R̃(Z,W,X, Y ).

Proof For the equality (1), calculation shows that

R̃(X, Y, Z,W ) + R̃(Z, Y,W,X) + R̃(W,Y,X, Z)

= g(R̃(Z,W )X, Y ) + g(R̃(W,X)Z, Y ) + g(R̃(X,Z)W,Y )

= g(R̃(Z,W )X + R̃(W,X)Z + R̃(X,Z)W,Y ) = 0

by definition and Theorem 5.4.1(4).

For (2), by definition and Theorem 5.4.1(1), we know that

R̃(X, Y, Z,W ) = g(R̃(Z,W )X, Y ) = g(−R̃(W,Z)X, Y )

= −g(R̃(W,Z)X, Y ) = −R̃(X, Y,W,Z).

Now since D̃ is a combinatorial Riemannian connection, we know that

Z(g(X, Y )) = g(D̃ZX, Y ) + g(X, D̃ZY ).

by Theorem 5.3.4. Therefore, we find that

g(D̃ZD̃WX, Y ) = Z(g(D̃WX, Y ))− g(D̃WX, D̃ZY )

= Z(W (g(X, Y )))− Z(g(X, D̃WY ))

− W (g(X, D̃ZY )) + g(X, D̃W D̃ZY ).

Similarly, we have that

g(D̃W D̃ZX, Y ) = W (Z(g(X, Y )))−W (g(X, D̃ZY ))

− Z(g(X, D̃WY )) + g(X, D̃ZD̃WY ).
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Notice that

g(D̃[Z,W ], Y ) = [Z,W ]g(X, Y )− g(X, D̃[Z,W ]Y ).

By definition, we get that

R̃(X, Y, Z,W ) = g(D̃ZD̃WX − D̃W D̃ZX − D̃[Z,W ]X, Y )

= g(D̃ZD̃WX, Y )− g(D̃W D̃ZX, Y )− g(D̃[Z,W ]X, Y )

= Z(W (g(X, Y )))− Z(g(X, D̃WY ))−W (g(X, D̃ZY ))

+ g(X, D̃W D̃ZY )−W (Z(g(X, Y ))) +W (g(X, D̃ZY ))

+ Z(g(X, D̃WY ))− g(X, D̃ZD̃WY )− [Z,W ]g(X, Y )

− g(X, D̃[Z,W ]Y )

= Z(W (g(X, Y )))−W (Z(g(X, Y ))) + g(X, D̃W D̃ZY )

− g(X, D̃ZD̃WY )− [Z,W ]g(X, Y )− g(X, D̃[Z,W ]Y )

= g(X, D̃W D̃ZY − D̃ZD̃WY + D̃[Z,W ]Y )

= −g(X, R̃(Z,W )Y ) = −R̃(Y,X, Z,W ).

Applying the equality (1), we know that

R̃(X, Y, Z,W ) + R̃(Z, Y,W,X) + R̃(W,Y,X, Z) = 0, (5− 6)

R̃(Y, Z,W,X) + R̃(W,Z,X, Y ) + R̃(X,Z, Y,W ) = 0. (5− 7)

Then (5− 6) + (5− 7) shows that

R̃(X, Y, Z,W ) + R̃(W,Y,X, Z)

+ R̃(W,Z,X, Y ) + R̃(X,Z, Y,W ) = 0

by applying (2). We also know that

R̃(W,Y,X, Z)− R̃(X,Z, Y,W ) = −(R̃(Z, Y,W,X)− R̃(W,X,Z, Y ))

= R̃(X, Y, Z,W )− R̃(Z,W,X, Y ).

This enables us getting the equality (3)

R̃(X, Y, Z,W ) = R̃(Z,W,X, Y ).

�
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5.5.2 Structural Equation in Riemannian Manifold. Applying Theorems

5.4.2− 5.4.3 and 5.5.1, we also get the next result.

Theorem 5.5.2 Let (M̃, g, D̃) be a combinatorial Riemannian manifold and Ω(µν)(κλ) =

Ωσς
µνg(σς)(κλ). Then

(1) Ω(µν)(κλ) = 1
2
R̃(µν)(κλ)(σς)(ηθ)ω

σς ∧ ωηθ;
(2) Ω(µν)(κλ) + Ω(κλ)(µν) = 0;

(3) ωµν ∧ Ω(µν)(κλ) = 0;

(4) d̃Ω(µν)(κλ) = ωσςµν ∧ Ω(σς)(κλ) − ωσςκλ ∧ Ω(σς)(µν).

Proof Notice that T̃ ≡ 0 in a combinatorial Riemannian manifold (M̃, g, D̃).

We find that

Ωκλ
µν =

1

2
R̃κλ

(µν)(σς)(ηθ)ω
σς ∧ ωηθ

by Theorem 5.4.2. By definition, we know that

Ω(µν)(κλ) = Ωσς
µνg(σς)(κλ)

=
1

2
R̃σς

(µν)(ηθ)(ϑι)g(σς)(κλ)ω
ηθ ∧ ωϑι =

1

2
R̃(µν)(κλ)(σς)(ηθ)ω

σς ∧ ωηθ.

Whence, we get the equality (1). For (2), applying Theorem 5.5.1(2), we find that

Ω(µν)(κλ) + Ω(κλ)(µν) =
1

2
(R̃(µν)(κλ)(σς)(ηθ) + R̃(κλ)(µν)(σς)(ηθ))ω

σς ∧ ωηθ = 0.

By Corollary 5.4.1, a connection D̃ is torsion-free only if Ωµν ≡ 0. This fact

enables us to get these equalities (3) and (4) by Theorem 5.4.3. �

5.5.3 Local form of Riemannian Curvature Tensor. For any point p ∈ M̃
with a local chart (Up, [ϕp]), we can also find a local form of R̃ in the next result.

Theorem 5.5.3 Let R̃ : X (M̃) × X (M̃) × X (M̃) × X (M̃) → C∞(M̃) be a

combinatorial Riemannian curvature tensor. Then for ∀p ∈ M̃ with a local chart

(Up; [ϕp]),

R̃ = R̃(σς)(ηθ)(µν)(κλ)dx
σς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ

with

R̃(σς)(ηθ)(µν)(κλ) =
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+ Γϑι(µν)(σς)Γ
ξo
(κλ)(ηθ)g(ξo)(ϑι) − Γξo(µν)(ηθ)Γ(κλ)(σς)ϑιg(ξo)(ϑι),
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where g(µν)(κλ) = g( ∂
∂xµν ,

∂
∂xκλ ).

Proof Notice that

R̃(σς)(ηθ)(µν)(κλ) = R̃(
∂

∂xσς
,
∂

∂xηθ
,
∂

∂xµν
,
∂

∂xκλ
) = R̃(

∂

∂xµν
,
∂

∂xκλ
,
∂

∂xσς
,
∂

∂xηθ
)

= g(R̃(
∂

∂xσς
,
∂

∂xηθ
)
∂

∂xµν
,
∂

∂xκλ
) = R̃ϑι

(µν)(σς)(ηθ)g(ϑι)(κλ)

By definition and Theorem 5.5.1(3). Now we have know that (eqn.(5− 5))

∂g(µν)(κλ)

∂xσς
= Γηθ(µν)(σς)g(ηθ)(κλ) + Γηθ(κλ)(σς)g(µν)(ηθ).

Applying Theorem 5.4.4, we get that

R̃(σς)(ηθ)(µν)(κλ)

= (
∂Γϑι(σς)(κλ)

∂xµν
−
∂Γϑι(σς)(µν)

∂xκλ
+ Γξo(σς)(κλ)Γ

ϑι
(ξo)(µν) − Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ))g(ϑι)(ηθ)

=
∂

∂xµν
(Γϑι(σς)(κλ)g(ϑι)(ηθ))− Γϑι(σς)(κλ)

∂g(ϑι)(ηθ)

∂xµν
− ∂

∂xκλ
(Γϑι(σς)(µν)g(ϑι)(ηθ))

+Γϑι(σς)(µν)

∂g(ϑι)(ηθ)

∂xκλ
+ Γξo(σς)(κλ)Γ

ϑι
(ξo)(µν)g(ϑι)(κλ) − Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ)g(ϑι)(ηθ)

=
∂

∂xµν
(Γϑι(σς)(κλ)g(ϑι)(ηθ))−

∂

∂xκλ
(Γϑι(σς)(µν)g(ϑι)(ηθ))

+Γϑι(σς)(µν)(Γ
ξo
(ϑι)(κλ)g(ξo)(ηθ) + Γξo(ηθ)(κλ)g(ϑι)(ξo)) + Γξo(σς)(κλ)Γ

ϑι
(ξo)(µν)g(ϑι)(κλ)

−Γϑι(σς)(κλ)(Γ
ξo
(ϑι)(µν)g(ξo)(ηθ) + Γξo(ηθ)(µν)g(ϑι)(ξo))− Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ))g(ϑι)(ηθ)

=
1

2

∂

∂xµν
(
∂g(σς)(ηθ)

∂xκλ
+
∂g(κλ)(ηθ)

∂xσς
− ∂g(σς)(κλ)

∂xηθ
) + Γξo(σς)(κλ)Γ

ϑι
(ξo)(µν)g(ϑι)(κλ)

−1

2

∂

∂xκλ
(
∂g(σς)(ηθ)

∂xµν
+
∂g(µν)(ηθ)

∂xσς
− ∂g(σς)(µν)

∂xηθ
)− Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ))g(ϑι)(ηθ)

=
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+Γξo(σς)(κλ)Γ
ϑι
(ξo)(µν)g(ϑι)(κλ) − Γξo(σς)(µν)Γ

ϑι
(ξo)(κλ))g(ϑι)(ηθ).

This completes the proof. �

Combining Theorems 5.4.6, 5.5.1 and 5.5.3, we have the following consequence.

Corollary 5.5.1 Let R̃(µν)(κλ)(σς)(ηθ) be a component of a combinatorial Riemannian

curvature tensor R̃ in a local chart (U, [ϕ]) of a combinatorial Riemannian manifold

(1) R̃(µν)(κλ)(σς)(ηθ) = −R̃(κλ)(µν)(σς)(ηθ) = −R̃(µν)(κλ)(ηθ)(σς) ;
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(2) R̃(µν)(κλ)(σς)(ηθ) = R̃(σς)(ηθ)(µν)(κλ) ;

(3) R̃(µν)(κλ)(σς)(ηθ) + R̃(ηθ)(κλ)(µν)(σς) + R̃(σς)(κλ)(ηθ)(µν) = 0;

(4) D̃ϑιR̃(µν)(κλ)(σς)(ηθ) + D̃σςR̃(µν)(κλ)(ηθ)(ϑι) + D̃ηθR̃(µν)(κλ)(ϑι)(σς) = 0. �

§5.6 INTEGRATION ON COMBINATORIAL MANIFOLDS

5.6.1 Determining H
M̃

(n,m). Let M̃(n1, · · · , nm) be a smoothly combinatorial

manifold. Then there exists an atlas C = {(Ũα, [ϕα])|α ∈ Ĩ} on M̃(n1, · · · , nm)

consisting of positively oriented charts such that for ∀α ∈ Ĩ, ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)) is

an constant nŨα
for ∀p ∈ Ũα ([Mao14]). The integer set HM̃(n,m) is then defined

by

HM̃(n,m) = {nŨα
|α ∈ Ĩ}.

Notice that M̃(n1, · · · , nm) is smoothly. We know that HM̃(n,m) is finite. This set

is important to the definition of integral and the establishing of Stokes’ or Gauss’

theorems on smoothly combinatorial manifolds.

Applying the relation between the sets H(n1, n2, · · · , nm) and G([0, nm], [0, nm])

established in Theorem 4.2.4. We determine it under its vertex-edge labeled graph

G([0, nm], [0, nm]).

Theorem 5.6.1 Let M̃ be a smoothly combinatorial manifold with a correspondent

vertex-edge labeled graph G([0, nm], [0, nm]). Then

HM̃(n,m) ⊆ {n1, n2, · · · , nm}
⋃

d̂(p)≥3,p∈M̃

{d̂(p) +

d(p)∑

i=1

(ni − d̂(p))}

⋃
{τ1(u) + τ1(v)− τ2(u, v)|∀(u, v) ∈ E(G([0, nm], [0, nm]))}.

Particularly, if G([0, nm], [0, nm]) is K3-free, then

HM̃(n,m) = {τ1(u)|u ∈ V (G([0, nm], [0, nm]))}
⋃
{τ1(u) + τ1(v)− τ2(u, v)|∀(u, v) ∈ E(G([0, nm], [0, nm]))}.

Proof Notice that the dimension of a point p ∈ M̃ is

np = d̂(p) +
d(p)∑
i=1

(ni − d̂(p))
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by definition. If d(p) = 1, then np = nj , 1 ≤ j ≤ m. If d(p) = 2, namely,

p ∈Mni ∩Mnj for 1 ≤ i, j ≤ m, we know that its dimension is

ni + nj − d̂(p) = τ1(M
ni) + τ1(M

nj )− d̂(p).

Whence, we get that

HM̃(n,m) ⊆ {n1, n2, · · · , nm}
⋃

d̂(p)≥3,p∈M̃

{d̂(p) +

d(p)∑

i=1

(ni − d̂(p))}

⋃
{τ1(u) + τ1(v)− τ2(u, v)|∀(u, v) ∈ E(G([0, nm], [0, nm]))}.

Now if G([0, nm], [0, nm]) is K3-free, then there are no points with intersectional

dimension≥ 3. In this case, there are really existing points p ∈Mni for any integer

i, 1 ≤ i ≤ m and q ∈ Mni ∩Mnj for 1 ≤ i, j ≤ m by definition. Therefore, we get

that

HM̃(n,m) = {τ1(u)|u ∈ V (G([0, nm], [0, nm]))}
⋃
{τ1(u) + τ1(v)− τ2(u, v)|∀(u, v) ∈ E(G([0, nm], [0, nm]))}. �

For some special graphs, we get the following interesting results for the integer

set HM̃(n,m).

Corollary 5.6.1 Let M̃ be a smoothly combinatorial manifold with a correspondent

vertex-edge labeled graph G([0, nm], [0, nm]). If G([0, nm], [0, nm]) ∼= P s, then

HM̃(n,m) = {τ1(ui), 1 ≤ i ≤ p}⋃{τ1(ui) + τ1(ui+1)− τ2(ui, ui+1)|1 ≤ i ≤ p− 1}

and if G([0, nm], [0, nm]) ∼= Cp with p ≥ 4, then

HM̃(n,m) = {τ1(ui), 1 ≤ i ≤ p}⋃{τ1(ui) + τ1(ui+1)− τ2(ui, ui+1)|1 ≤ i ≤ p, i ≡ (modp)}.

5.6.2 Partition of Unity. A partition of unity on a combinatorial manifold M̃

is defined following.

Definition 5.6.1 Let M̃ be a smoothly combinatorial manifold and ω ∈ Λ(M̃). A

support set Suppω of ω is defined by

Suppω = {p ∈ M̃ ;ω(p) 6= 0}

and say ω has compact support if Suppω is compact in M̃ . A collection of subsets

{Ci|i ∈ Ĩ} of M̃ is called locally finite if for each p ∈ M̃ , there is a neighborhood Up

of p such that Up ∩ Ci = ∅ except for finitely many indices i.
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Definition 5.6.2 A partition of unity on a combinatorial manifold M̃ is a collection

{(Ui, gi)|i ∈ Ĩ}, where

(1) {Ui|i ∈ Ĩ} is a locally finite open covering of M̃ ;

(2) gi ∈X (M̃), gi(p) ≥ 0 for ∀p ∈ M̃ and suppgi ∈ Ui for i ∈ Ĩ;
(3) for p ∈ M̃ ,

∑
i

gi(p) = 1.

For a smoothly combinatorial manifold M̃ , denoted by GL[M̃ ] the underlying

graph of its correspondent vertex-edge labeled graph. We get the next result for a

partition of unity on smoothly combinatorial manifolds.

Theorem 5.6.2 Let M̃ be a smoothly combinatorial manifold. Then M̃ admits

partitions of unity.

Proof For ∀M ∈ V (GL[M̃ ]), since M̃ is smooth we know that M is a smoothly

submanifold of M̃ . As a byproduct, there is a partition of unity {(Uα
M , g

α
M)|α ∈ IM}

on M with conditions following hold.

(1) {Uα
M |α ∈ IM} is a locally finite open covering of M ;

(2) gαM(p) ≥ 0 for ∀p ∈M and suppgαM ∈ Uα
M for α ∈ IM ;

(3) For p ∈M ,
∑
i

giM(p) = 1.

By definition, for ∀p ∈ M̃ , there is a local chart (Up, [ϕp]) enable ϕp : Up →
Bni1

⋃
Bni2

⋃ · · ·⋃B
nis(p) with Bni1

⋂
Bni2

⋂ · · ·⋂B
nis(p) 6= ∅. Now let Uα

Mi1
, Uα

Mi2
,

· · ·, Uα
Mis(p)

be s(p) open sets on manifolds M,M ∈ V (GL[M̃ ]) such that

p ∈ Uα
p =

s(p)⋃

h=1

Uα
Mih

. (5− 8)

We define

S̃(p) = {Uα
p | all integers α enabling (5− 8) hold}.

Then

Ã =
⋃

p∈M̃

S̃(p) = {Uα
p |α ∈ Ĩ(p)}

is locally finite covering of the combinatorial manifold M̃ by properties (1) − (3).
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For ∀Uα
p ∈ S̃(p), define

σUα
p

=
∑

s≥1

∑

{i1,i2,···,is}⊂{1,2,···,s(p)}

(

s∏

h=1

gMς
ih

)

and

gUα
p

=
σUα

p∑
Ṽ ∈S̃(p)

σṼ
.

Then it can be checked immediately that {(Uα
p , gUα

p
)|p ∈ M̃, α ∈ Ĩ(p)} is a partition

of unity on M̃ by properties (1)-(3) on gαM and the definition of gUα
p
. �

Corollary 5.6.2 Let M̃ be a smoothly combinatorial manifold with an atlas Ã =

{(Vα, [ϕα])|α ∈ Ĩ} and tα be a Ck tensor field, k ≥ 1, of field type (r, s) defined

on Vα for each α, and assume that there exists a partition of unity {(Ui, gi)|i ∈ J}
subordinate to Ã, i.e., for ∀i ∈ J , there exists α(i) such that Ui ⊂ Vα(i). Then for

∀p ∈ M̃ ,

t(p) =
∑

i

gitα(i)

is a Ck tensor field of type (r, s) on M̃

Proof Since {Ui|i ∈ J} is locally finite, the sum at each point p is a finite sum

and t(p) is a type (r, s) for every p ∈ M̃ . Notice that t is Ck since the local form of

t in a local chart (Vα(i), [ϕα(i)]) is

∑

j

gitα(j),

where the summation taken over all indices j such that Vα(i)

⋂
Vα(j) 6= ∅. Those

number j is finite by the local finiteness. �

5.6.3 Integration on Combinatorial Manifold. First, we introduce integration

on combinatorial Euclidean spaces. Let R̃(n1, · · · , nm) be a combinatorial Euclidean

space and

τ : R̃(n1, · · · , nm)→ R̃(n1, · · · , nm)

a C1 differential mapping with

[y] = [yκλ]m×nm = [τκλ([xµν ])]m×nm .
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The Jacobi matrix of f is defined by

∂[y]

∂[x]
= [A(κλ)(µν)],

where A(κλ)(µν) = ∂τκλ

∂xµν .

Now let ω ∈ T 0
k (R̃(n1, · · · , nm)), a pull-back τ ∗ω ∈ T 0

k (R̃(n1, · · · , nm)) is defined

by

τ ∗ω(a1, a2, · · · , ak) = ω(f(a1), f(a2), · · · , f(ak))

for ∀a1, a2, · · · , ak ∈ R̃.

Denoted by n = m̂ +
m∑
i=1

(ni − m̂). If 0 ≤ l ≤ n, recall([4]) that the basis of

Λl(R̃(n1, · · · , nm)) is

{ei1 ∧ ei2 ∧ · · · ∧ eil|1 ≤ i1 < i2 · · · < il ≤ n}

for a basis e1, e2, · · · , en of R̃(n1, · · · , nm) and its dual basis e1, e2, · · · , en. Thereby

the dimension of Λl(R̃(n1, · · · , nm)) is

(
n

l

)
=

(m̂+
m∑
i=1

(ni − m̂))!

l!(m̂+
m∑
i=1

(ni − m̂)− l)!
.

Whence Λn(R̃(n1, · · · , nm)) is one-dimensional. Now if ω0 is a basis of Λn(R̃), we

then know that its each element ω can be represented by ω = cω0 for a number

c ∈ R. Let τ : R̃(n1, · · · , nm)→ R̃(n1, · · · , nm) be a linear mapping. Then

τ ∗ : Λn(R̃(n1, · · · , nm))→ Λn(R̃(n1, · · · , nm))

is also a linear mapping with τ ∗ω = cτ ∗ω0 = bω for a unique constant b = detτ ,

called the determinant of τ . It has been known that ([AbM1])

detτ = det(
∂[y]

∂[x]
)

for a given basis e1, e2, · · · , en of R̃(n1, · · · , nm) and its dual basis e1, e2, · · · , en.

Definition 5.6.3 Let R̃(n1, n2, · · · , nm) be a combinatorial Euclidean space,n =

m̂+
m∑
i=1

(ni − m̂), Ũ ⊂ R̃(n1, n2, · · · , nm) and ω ∈ Λn(U) have compact support with

ω(x) = ω(µi1
νi1

)···(µinνin)dx
µi1

νi1 ∧ · · · ∧ dxµinνin
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relative to the standard basis eµν , 1 ≤ µ ≤ m, 1 ≤ ν ≤ nm of R̃(n1, n2, · · · , nm)

with eµν = eν for 1 ≤ µ ≤ m̂. An integral of ω on Ũ is defined to be a mapping
∫
Ũ

: f →
∫
Ũ
f ∈ R with

∫

Ũ

ω =

∫
ω(x)

m̂∏

ν=1

dxν
∏

µ≥m̂+1,1≤ν≤ni

dxµν , (5− 9)

where the right hand side of (5− 9) is the Riemannian integral of ω on Ũ .

For example, consider the combinatorial Euclidean space R̃(3, 5) with R3∩R5 =

R. Then the integration of an ω ∈ Λ7(Ũ) for an open subset Ũ ∈ R̃(3, 5) is

∫

Ũ

ω =

∫

Ũ∩(R3∪R5)

ω(x)dx1dx12dx13dx22dx23dx24dx25.

Theorem 5.6.3 Let U and V be open subsets of R̃(n1, · · · , nm) and τ : U → V is

an orientation-preserving diffeomorphism. If ω ∈ Λn(V ) has a compact support for

n = m̂+
m∑
i=1

(ni − m̂), then τ ∗ω ∈ Λn(U) has compact support and

∫
τ ∗ω =

∫
ω.

Proof Let ω(x) = ω(µi1
νi1

)···(µinνin)dx
µi1

νi1 ∧ · · · ∧ dxµinνin ∈ Λn(V ). Since τ is

a diffeomorphism, the support of τ ∗ω is τ−1(suppω), which is compact by that of

suppω compact.

By the usual change of variables formula, since τ ∗ω = (ω ◦ τ)(detτ)ω0 by defi-

nition, where ω0 = dx1 ∧ · · · ∧ dxm̂ ∧ dx1(m̂+1) ∧ dx1(m̂+2) ∧ · · · ∧ dx1n1 ∧ · · · ∧ dxmnm ,

we then get that

∫
τ ∗ω =

∫
(ω ◦ τ)(detτ)

m̂∏

ν=1

dxν
∏

µ≥m̂+1,1≤ν≤nµ

dxµν

=

∫
ω. �

Definition 5.6.4 Let M̃ be a smoothly combinatorial manifold. If there exists a

family {(Uα, [ϕα]|α ∈ Ĩ)} of local charts such that
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(1)
⋃
α∈Ĩ

Uα = M̃ ;

(2) for ∀α, β ∈ Ĩ, either Uα
⋂
Uβ = ∅ or Uα

⋂
Uβ 6= ∅ but for ∀p ∈ Uα

⋂
Uβ,

the Jacobi matrix

det(
∂[ϕβ ]

∂[ϕα]
) > 0,

then M̃ is called an oriently combinatorial manifold and (Uα, [ϕα]) an oriented chart

for ∀α ∈ Ĩ.

Now for any integer ñ ∈ HM̃(n,m), we can define an integral of ñ-forms on a

smoothly combinatorial manifold M̃(n1, · · · , nm).

Definition 5.6.5 Let M̃ be a smoothly combinatorial manifold with orientation O

and (Ũ ; [ϕ]) a positively oriented chart with a constant nŨ ∈ HM̃(n,m). Suppose

ω ∈ Λn
Ũ (M̃), Ũ ⊂ M̃ has compact support C̃ ⊂ Ũ . Then define

∫

C̃

ω =

∫
ϕ∗(ω|Ũ). (5− 10)

Now if CM̃ is an atlas of positively oriented charts with an integer set HM̃(n,m),

let P̃ = {(Ũα, ϕα, gα)|α ∈ Ĩ} be a partition of unity subordinate to CM̃ . For ∀ω ∈
Λñ(M̃), ñ ∈HM̃(n,m), an integral of ω on P̃ is defined by

∫

P̃

ω =
∑

α∈Ĩ

∫
gαω. (5− 11)

The following result shows that the integral of ñ-forms for ∀ñ ∈ HM̃(n,m) is

well-defined.

Theorem 5.6.4 Let M̃(n1, · · · , nm) be a smoothly combinatorial manifold. For

ñ ∈ HM̃(n,m), the integral of ñ-forms on M̃(n1, · · · , nm) is well-defined, namely,

the sum on the right hand side of (4.4) contains only a finite number of nonzero

terms, not dependent on the choice of CM̃ and if P and Q are two partitions of

unity subordinate to CM̃ , then

∫

P̃

ω =

∫

Q̃

ω.
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Proof By definition for any point p ∈ M̃(n1, · · · , nm), there is a neighborhood

Ũp such that only a finite number of gα are nonzero on Ũp. Now by the compactness

of suppω, only a finite number of such neighborhood cover suppω. Therefore, only

a finite number of gα are nonzero on the union of these Ũp, namely, the sum on the

right hand side of (5− 11) contains only a finite number of nonzero terms.

Notice that the integral of ñ-forms on a smoothly combinatorial manifold M̃(n1,

· · · , nm) is well-defined for a local chart Ũ with a constant nŨ = ŝ(p)+
s(p)∑
i=1

(ni− ŝ(p))

for ∀p ∈ Ũ ⊂ M̃(n1, · · · , nm) by (5 − 10) and Definition 5.6.3. Whence each term

on the right hand side of (5− 11) is well-defined. Thereby
∫
P̃
ω is well-defined.

Now let P̃ = {(Ũα, ϕα, gα)|α ∈ Ĩ} and Q̃ = {(Ṽβ, ϕβ, hβ)|β ∈ J̃} be partitions

of unity subordinate to atlas CM̃ and C ∗
M̃

with respective integer sets HM̃(n,m) and

H ∗
M̃

(n,m). Then these functions {gαhβ} satisfy gαhβ(p) = 0 except only for a finite

number of index pairs (α, β) and

∑

α

∑

β

gαhβ(p) = 1, for ∀p ∈ M̃(n1, · · · , nm).

Since
∑
β

= 1, we then get that

∫

P̃

=
∑

α

∫
gαω =

∑

β

∑

α

∫
hβgαω =

∑

α

∑

β

∫
gαhβω =

∫

Q̃

ω. �

By the relation of smoothly combinatorial manifolds with these vertex-edge

labeled graphs established in Theorem 4.2.4, we can also get the integration on a

vertex-edge labeled graph G([0, nm], [0, nm]) by viewing it that of the correspondent

smoothly combinatorial manifold M̃ with Λl(G) = Λl(M̃), HG(n,m) = HM̃(n,m),

namely define the integral of an ñ-form ω on G([0, nm], [0, nm]) for ñ ∈ HG(n,m)

by

∫

G([0,nm],[0,nm])

ω =

∫

M̃

ω.

Then each integration result on a combinatorial manifold can be restated by com-

binatorial words, such as Theorem 5.7.1 and its corollaries in the next section.

Now let n1, n2, · · · , nm be a positive integer sequence. For any point p ∈ M̃ , if

there is a local chart (Ũp, [ϕp]) such that [ϕp] : Up → Bn1
⋃
Bn2

⋃ · · ·⋃Bnm with
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dim(Bn1
⋂
Bn2

⋂ · · ·⋂Bnm) = m̂, then M̃ is called a homogenously combinatorial

manifold with n(M̃) = m̂ +
m∑
i=1

(ni − m̂). Particularly, if m = 1, a homogenously

combinatorial manifold is nothing but a manifold. We then get consequences for the

integral of n(M̃)-forms on homogenously combinatorial manifolds.

Corollary 5.6.3 The integral of (m̂+
m∑
i=1

(ni − m̂))-forms on a homogenously com-

binatorial manifold M̃(n1, n2, · · · , nm) is well-defined, particularly, the integral of

n-forms on an n-manifold is well-defined.

Similar to Theorem 5.6.3 for the change of variables formula of integral in a

combinatorial Euclidean space, we get that of formula in smoothly combinatorial

manifolds.

Theorem 5.6.5 Let M̃(n1, n2, · · · , nm) and Ñ(k1, k2, · · · , kl) be oriently combina-

torial manifolds and τ : M̃ → Ñ an orientation-preserving diffeomorphism. If

ω ∈ Λk̃(Ñ), k̃ ∈HÑ(k, l) has compact support, then τ ∗ω has compact support and

∫
ω =

∫
τ ∗ω.

Proof Notice that suppτ ∗ω = τ−1(suppω). Thereby τ ∗ω has compact support

since ω has so. Now let {(Ui, ϕi)|i ∈ Ĩ} be an atlas of positively oriented charts of M̃

and P̃ = {gi|i ∈ Ĩ} a subordinate partition of unity with an integer set HM̃(n,m).

Then {(τ(Ui), ϕi ◦ τ−1)|i ∈ Ĩ} is an atlas of positively oriented charts of Ñ and

Q̃ = {gi ◦ τ−1} is a partition of unity subordinate to the covering {τ(Ui)|i ∈ Ĩ} with

an integer set Hτ(M̃)(k, l). Whence, we get that

∫
τ ∗ω =

∑

i

∫
giτ

∗ω =
∑

i

∫
ϕi∗(giτ

∗ω)

=
∑

i

∫
ϕi∗(τ

−1)∗(gi ◦ τ−1)ω

=
∑

i

∫
(ϕi ◦ τ−1)∗(gi ◦ τ−1)ω

=

∫
ω. �
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§5.7 COMBINATORIAL STOKES’ AND GAUSS’ THEOREMS

5.7.1 Combinatorial Stokes’ Theorem. We establish the revised Stokes’ the-

orem for combinatorial manifolds, namely, the Stokes’ is still valid for ñ-forms on

smoothly combinatorial manifolds M̃ if ñ ∈HM̃(n,m), where HM̃(n,m).

Definition 5.7.1 Let M̃ be a smoothly combinatorial manifold. A subset D̃ of M̃

is with boundary if its points can be classified into two classes following.

Class 1(interior point IntD̃) For ∀p ∈ IntD, there is a neighborhood Ṽp of p

enable Ṽp ⊂ D̃.

Case 2(boundary ∂D̃) For ∀p ∈ ∂D̃, there is integers µ, ν for a local chart

(Up; [ϕp]) of p such that xµν(p) = 0 but

Ũp ∩ D̃ = {q|q ∈ Up, xκλ ≥ 0 for ∀{κ, λ} 6= {µ, ν}}.

Then we generalize the famous Stokes’ theorem on manifolds to smoothly com-

binatorial manifolds in the next.

Theorem 5.7.1 Let M̃ be a smoothly combinatorial manifold with an integer set

HM̃(n,m) and D̃ a boundary subset of M̃ . For ∀ñ ∈ HM̃(n,m) if ω ∈ Λñ(M̃) has

a compact support, then ∫

D̃

d̃ω =

∫

∂D̃

ω

with the convention
∫
∂D̃
ω = 0, while ∂D̃ = ∅.

Proof By Definition 5.6.5, the integration on a smoothly combinatorial manifold

was constructed with partitions of unity subordinate to an atlas. Let CM̃ be an atlas

of positively oriented charts with an integer set HM̃(n,m) and P̃ = {(Ũα, ϕα, gα)|α ∈
Ĩ} a partition of unity subordinate to CM̃ . Since suppω is compact, we know that

∫

D̃

d̃ω =
∑

α∈Ĩ

∫

D̃

d̃(gαω),

∫

∂D̃

ω =
∑

α∈Ĩ

∫

∂D̃

gαω.

and there are only finite nonzero terms on the right hand side of the above two

formulae. Thereby, we only need to prove
∫

D̃

d̃(gαω) =

∫

∂D̃

gαω
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for ∀α ∈ Ĩ.
Not loss of generality we can assume that ω is an ñ-forms on a local chart

(Ũ , [ϕ]) with a compact support for ñ ∈HM̃(n,m). Now write

ω =

ñ∑

h=1

(−1)h−1ωµih
νih
dxµi1

νi1 ∧ · · · ∧ ̂dxµih
νih ∧ · · · ∧ dxµiñ

νiñ ,

where ̂dxµih
νih means that dxµih

νih is deleted, where

ih ∈ {1, · · · , n̂U , (1(n̂U + 1)), · · · , (1n1), (2(n̂U + 1)), · · · , (2n2), · · · , (mnm)}.

Then

d̃ω =

ñ∑

h=1

∂ωµih
νih

∂xµih
νih
dxµi1

νi1 ∧ · · · ∧ dxµiñ
νiñ . (5− 12)

Consider the appearance of neighborhood Ũ . There are two cases must be

considered.

Case 1 Ũ
⋂
∂D̃ = ∅

In this case,
∫
∂D̃
ω = 0 and Ũ is in M̃ \ D̃ or in IntD̃. The former is naturally

implies that
∫
D̃
d̃(gαω) = 0. For the later, we find that

∫

D̃

d̃ω =

ñ∑

h=1

∫

Ũ

∂ωµih
νih

∂xµih
νih
dxµi1

νi1 · · · dxµiñ
νiñ . (5− 13)

Notice that
∫ +∞

−∞

∂ωµih
νih

∂x
µih

νih
dxµih

νih = 0 since ωµih
νih

has compact support. Thus
∫
D̃
d̃ω = 0 as desired.

Case 2 Ũ
⋂
∂D̃ 6= ∅

In this case we can do the same trick for each term except the last. Without

loss of generality, assume that

Ũ
⋂

D̃ = {q|q ∈ U, xµiñ
νiñ (q) ≥ 0}

and

Ũ
⋂

∂D̃ = {q|q ∈ U, xµiñ
νiñ (q) = 0}.
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Then we get that

∫

∂D̃

ω =

∫

U∩∂D̃

ω

=

ñ∑

h=1

(−1)h−1

∫

U∩∂D̃

ωµih
νih
dxµi1

νi1 ∧ · · · ∧ ̂dxµih
νih ∧ · · · ∧ dxµiñ

νiñ

= (−1)ñ−1

∫

U∩∂D̃

ωµiñ
νiñ
dxµi1

νi1 ∧ · · · ∧ dxµiñ−1
νiñ−1

since dxµinνiñ (q) = 0 for q ∈ Ũ ∩ ∂D̃. Notice that Rñ−1 = ∂Rñ
+ but the usual

orientation on Rñ−1 is not the boundary orientation, whose outward unit normal is

−eñ = (0, · · · , 0,−1). Hence

∫

∂D̃

ω = −
∫

∂Rñ
+

ωµiñ
νiñ

(xµi1
νi1 , · · · , xµiñ−1

νiñ−1 , 0)dxµi1
νi1 · · · dxµiñ−1

νiñ−1 .

On the other hand, by the fundamental theorem of calculus,

∫

Rñ−1

(

∫ ∞

0

∂ωµiñ
νiñ

∂xµiñ
νiñ

)dxµi1
νi1 · · · dxµiñ−1

νiñ−1

= −
∫

Rñ−1

ωµiñ
νiñ

(xµi1
νi1 , · · · , xµiñ−1

νiñ−1 , 0)dxµi1
νi1 · · · dxµin−1

νin−1 .

Since ωµiñ
νiñ

has a compact support, thus

∫

U

ω = −
∫

Rñ−1

ωµiñ
νiñ

(xµi1
νi1 , · · · , xµiñ−1

νiñ−1 , 0)dxµi1
νi1 · · ·dxµiñ−1

νiñ−1 .

Therefore, we get that ∫

D̃

d̃ω =

∫

∂D̃

ω

This completes the proof. �

Corollaries following are immediately obtained by Theorem 5.7.1.

Corollary 5.7.1 Let M̃ be a homogenously combinatorial manifold with an integer

set HM̃(n,m) and D̃ a boundary subset of M̃ . For ñ ∈ HM̃(n,m) if ω ∈ Λñ(M̃)

has a compact support, then ∫

D̃

d̃ω =

∫

∂D̃

ω,

particularly, if M̃ is nothing but a manifold, the Stokes’ theorem holds.
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Corollary 5.7.2 Let M̃ be a smoothly combinatorial manifold with an integer set

HM̃(n,m). For ñ ∈HM̃(n,m), if ω ∈ Λñ(M̃) has a compact support, then

∫

M̃

ω = 0.

By the definition of integration on vertex-edge labeled graphs G([0, nm], [0, nm]),

let a boundary subset of G([0, nm], [0, nm]) mean that of its correspondent combi-

natorial manifold M̃ . Theorem 5.7.1 and Corollary 5.7.2 then can be restated by a

combinatorial manner as follows.

Theorem 5.7.2 Let G([0, nm], [0, nm]) be a vertex-edge labeled graph with an integer

set HG(n,m) and D̃ a boundary subset of G([0, nm], [0, nm]). For ∀ñ ∈HG(n,m) if

ω ∈ Λñ(G([0, nm], [0, nm])) has a compact support, then

∫

D̃

d̃ω =

∫

∂D̃

ω

with the convention
∫
∂D̃
ω = 0, while ∂D̃ = ∅.

Corollary 5.7.3 Let G([0, nm], [0, nm]) be a vertex-edge labeled graph with an integer

set HG(n,m). For ∀ñ ∈ HG(n,m) if ω ∈ Λñ(G([0, nm], [0, nm])) has a compact

support, then ∫

G([0,nm][0,nm])

ω = 0.

Choose M̃ = Rn in Theorem 5.7.1 or Corollary 5.7.1. Then we get these well

known results in classical calculus shown in the following examples.

Example 5.7.1 Let D be a domain in R2 with boundary. We have know the Green’s

formula ∫

D

(
∂A

∂x1

− ∂B

∂x2

)dx1dx2 =

∫

∂D

Adx1 +Bdx2

in calculus. Let ω = Adx1 +Bdx2 ∈ Λ1
0(R

2). Then we know that

d̃ω = (
∂A

∂x1
− ∂B

∂x2
)dx1 ∧ dx2.

Whence, the Green’s formula is nothing but a special case of the Stokes’ formula
∫

D̃

d̃ω =

∫

∂D̃

ω
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with D̃ = D.

Example 5.7.2 Let S be a surface in R3 with boundary such that ∂S a smoothly

simple curve with a direction. We have know the classical Stokes’s formula

∫

∂S

Adx1 +Bdx2 + Cdx3

=

∫

S

(
∂C

∂x2

− ∂B

∂x3

)dx2dx3 + (
∂A

∂x3

− ∂C

∂x1

)dx3dx1 + (
∂C

∂x1

− ∂A

∂x2

)dx1dx2.

Now let ω = Adx1 +Bdx2 + Cdx3 ∈ Λ1
0(R

3). Then we know that

dω = (
∂C

∂x2
− ∂B

∂x3
)dx2 ∧ dx3 + (

∂A

∂x3
− ∂C

∂x1
)dx3 ∧ dx1 + (

∂C

∂x1
− ∂A

∂x2
)dx1 ∧ dx2.

Whence, the classical Stokes’ formula is a special case of the formula

∫

D̃

d̃ω =

∫

∂D̃

ω

in Theorem 5.7.1 with D̃ = S.

5.7.2 Combinatorial Gauss’ Theorem. Let D be a domain in R3 with bound-

ary and a positive direction determined by its normal vector n. The Gauss’ formula

claims that in calculus

∫

∂D

Adx2dx3 +Bdx3dx1 + Cdx1dx2 =

∫

D

(
∂A

∂x1

+
∂B

∂x2

+
∂C

∂x3

)dx1dx2dx3.

Wether can we generalize it to smoothly combinatorial manifolds? The answer

is YES. First, we need the following conceptions.

Definition 5.7.2 If X, Y ∈ X k(M̃), k ≥ 1, define the Lie derivative LXY of Y

with respect X by LXY = [X, Y ].

By definition, we know that the Lie derivative forms a Lie algebra following.

Theorem 5.7.3 The Lie derivative LXY = [X, Y ] on X (M̃) forms a Lie algebra,

i.e.,

(i) [ , ] is R-bilinear;

(ii) [X,X] = 0 for all X ∈X (M̃);

(iii) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈X (M̃).
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Proof These brackets [X, Y ] forms a Lie algebra can be immediately gotten by

Theorem 5.1.2 and its definition. �

Now we find the local expression for [X, Y ]. For p ∈ M̃ , let (Up, [ϕ]p) with [ϕ]p :

Up → R̃(n1(p), · · · , ns(p)(p)) be a local chart of p and X̃, Ỹ the local representatives

of X, Y . According to Theorem 5.7.3, the local representative of [X, Y ] is [X̃, Ỹ ].

Whence,

[X̃, Ỹ ][f̂ ](x) = X̃[Ỹ [f̂ ]](x)− Ỹ [X̃[f̂ ]](x)

= D(Ỹ [f̂ ])(x) · X̃(x)−D(X̃[f̂ ])(x) · Ỹ (x)

for f̂ ∈ Xp(M̃). Now Ỹ [f̂ ](x) = Df̂(x) · Ỹ (x) and maybe calculated by the chain

ruler. Notice that the terms involving the second derivative of f̂ cancel by the

symmetry of D2f̂(x). We are left with

Df̂(x) · (DỸ (x) · X̃(x)−DX̃(x) · Ỹ (x)),

which implies that the local representative of [X, Y ] is DỸ · X̃ −DX̃ · Ỹ . Applying

Theorem 5.1.3, if [ϕ]p gives local coordinates [xij ]s(p)×ns(p)
, then

[X, Y ]ij = Xµν
∂Yij
∂xµν

− Yµν
∂Xij

∂xµν
.

Particularly, if M̃ is a differentiable n-manifold, i.e., m = 1 in M̃(n1, · · · , nm), then

these can be simplified to

[X, Y ]i = Xµ
∂Yi
∂xµ
− Yµ

∂Xi

∂xµ

just with one variable index and if Y = f ∈ Λ0(M̃), then LXf = [X, f ] = d̃f .

Definition 5.7.3 For X1, · · · , Xk ∈X (M̃), ω ∈ Λk+1(M̃), define iXω ∈ Λk(M̃) by

iXω(X1, · · · , Xk) = ω(X,X1, · · · , Xk).

Then we have the following result.

Theorem 5.7.4 For integers k, l ≥ 0, if ω ∈ Λk(M̃), ̟ ∈ Λl(M̃), then

(i) iX(ω ∧̟) = (iXω) ∧̟ + (−1)kω ∧ iX̟;

(ii) LXω = iXdω + diXω.
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Proof By definition, we know that iXω ∈ Λk−1()M̃ . For u = u1, u2, · · · , uk+l,

iX(ω ∧̟)(u2, · · · , uk+l) = ω ∧̟(u1, u2, · · · , uk+l)

and

(iXω) ∧̟ + (−1)kω ∧ iX̟ =
(k + l − 1)!

(k − 1)!l!
A(iXω ⊗̟)

+(−1)k
k + l − 1

k!(l − 1)!
A(ω ⊗ iX̟)

by Definition 5.2.2. Let

σ0 =

(
2 3 · · · k + 1 1 k + 2 · · · k + l

1 2 · · · k k + 1 k + 2 · · · k + l

)
.

Then we know that each permutation in the summation of A(ω ⊗ iX̟) can be

written as σσ0 with signσ0 = (−1)k. Whence,

(−1)k
(k + l − 1)!

k!(l − 1)!
A(ω ⊗ iX̟) =

(k + l − 1)!

k!(l − 1)!
A(iXω ⊗̟).

We finally get that

(iXω) ∧̟ + (−1)kω ∧ iX̟ = (
(k + l − 1)!

(k − 1)!l!
+
k + l − 1

k!(l − 1)!
)A(iXω ⊗̟)

=
(k + l)!

k!l!
A(iXω ⊗̟) = iX(ω ∧̟).

This is the assertion (i). The proof for (ii) is proceed by induction on k. If k = 0,

let f ∈ Λ0(M̃). By definition, we know that

LXf = d̃f = iX d̃f.

Now assume it holds for an integer l. Then a (l + 1)-form may be written as

d̃f ∧ ω. Notice that LX(d̃f ∧ ω) = LX d̃f ∧ ω + d̃f ∧ LXω since we can check LX is

a tensor derivation by definition. Applying (i), we know that

iX d̃(d̃f ∧ ω) + d̃iX(d̃f ∧ ω) = −iX(d̃f ∧ d̃ω) + d̃(iX d̃f ∧ ω − d̃f ∧ iXω)

= −iX d̃f ∧ d̃ω) + d̃f ∧ iX d̃ω
+ d̃iX d̃f ∧ ω + iX d̃f ∧ ω + d̃f ∧ d̃iXω
= d̃f ∧ LXω + d̃LXf ∧ ω
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by the induction assumption. Notice that d̃LXf = LX d̃f , we get the result. �

Definition 5.7.4 A volume form on a smoothly combinatorial manifold is an ñ-form

ω in Λñ for some integers ñ ∈ HM̃(n,m) such that ω(p) 6= 0 for all p ∈ M̃ . If X

is a vector field on M̃ , the unique function divωX determined by LXω = (divX)ω is

called the divergence of X and incompressible if divωX = 0.

Then we know the generalized Gauss’ theorem on smoothly combinatorial man-

ifolds following.

Theorem 5.7.5 Let M̃ be a smoothly combinatorial manifold with an integer set

HM̃(n,m), D̃ a boundary subset of M̃ and X a vector field on M̃ with a compact

support. Then ∫

D̃

(divX)v =

∫

∂D̃

iXv,

where v is a volume form on M̃ , i.e., nonzero elements in Λñ(M̃) for ñ ∈HM̃(n,m).

Proof This result is also a consequence of Theorem 5.7.1. Notice that by

Theorem 5.7.4, we know that

(divX)v = d̃iXv + iX d̃v = d̃iXv.

Whence, we get that ∫

D̃

(divX)v =

∫

∂D̃

iXv.

by Theorem 5.7.1. �

Then the Gauss’ theorem in R3 is generalized on smoothly combinatorial man-

ifolds in the following.

Theorem 5.7.6 Let (M̃, g) be a homogenously combinatorial Riemannian manifold

carrying a outward-pointing unit normal n∂M̃ along ∂M̃ and X a vector field on

(M̃, g) with a compact support. Then

∫

M̃

(divX)d̃vM̃ =

∫

∂M̃

〈
X,n∂M̃

〉
d̃v∂M̃ ,

where v and v∂M̃ are volume form on M̃ , i.e., nonzero elements in Λn(M̃)(M̃), and
〈
X,n∂M̃

〉
the inner product of matrixes X and n∂M̃ .
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Proof Let v∂M̃ be the volume element on ∂M̃ induced by the Riemannian vol-

ume element vM̃ ∈ Λn(M̃)(M̃), i.e., for any positively oriented basis v1, · · · , vn(M̃)−1 ∈
Tp(∂M̃), we have that

v∂M̃(x)(v1, · · · , vn(M̃)−1) = vM̃(− ∂

∂xn(M̃ )

, v1, · · · , vn(M̃)−1).

Now since

(iXvM̃)(x)(v1, · · · , vn(M̃)−1) = vM̃(x)(Xi(x)vi −Xn(M̃)(x)
∂

∂xn(M̃ )

, v1, · · · , vn(M̃)−1)

= Xn(M̃)(x)v∂M̃ (x)(v1, · · · , vn(M̃)−1)

and Xn(M̃) =
〈
X,n∂M̃

〉
, we get this result by Theorem 5.7.5. �

Particularly, if m = 1 in M̃(n1, · · · , nm), i.e., a manifold, we know the following.

Corollary 5.7.4 Let (M, g) be a Riemannian n-manifold with a outward-pointing

unit normal n∂M along ∂M and X a vector field on it with a compact support. Then

∫

M

(divX)dvM =

∫

∂M

〈X,n∂M 〉 dv∂M ,

where v and v∂M are volume form on M .

§5.8 COMBINATORIAL FINSLER GEOMETRY

5.8.1 Combinatorial Minkowskian Norm. A Minkowskian norm on a vector

space V is defined in the following definition, which can be also generalized to

smoothly combinatorial manifolds.

Definition 5.8.1 A Minkowskian norm on a vector space V is a function F : V → R

such that

(1) F is smooth on V \{0} and F (v) ≥ 0 for ∀v ∈ V ;

(2) F is 1-homogenous, i.e., F (λv) = λF (v) for ∀λ > 0;

(3) for all y ∈ V \{0}, the symmetric bilinear form gy : V × V → R with

gy(u, v) =
∑

i,j

∂2F (y)

∂yi∂yj
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is positive definite for u, v ∈ V .

Denoted by TM̃ =
⋃
p∈M̃

TpM̃ .

5.8.2 Combinatorial Finsler Geometry. A combinatorial Finsler geometries

on a Minkowskian norm is defined on TM̃ following.

Definition 5.8.2 A combinatorial Finsler geometry is a smoothly combinatorial

manifold M̃ endowed with a Minkowskian norm F̃ on TM̃ , denoted by (M̃ ; F̃ ).

Then we get the following result.

Theorem 5.8.1 There are combinatorial Finsler geometries.

Proof Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold. We con-

struct Minkowskian norms on TM̃(n1, n2, · · · , nm). Let Rn1+n2+···+nm be a Euclidean

space. Then there exists a Minkowskian norm F (x) = |x| in Rn1+n2+···+nm at least,

in here |x| denotes the Euclidean norm on Rn1+n2+···+nm . According to Theorem

5.1.3, TpM̃(n1, n2, · · · , nm) is homeomorphic to R
ŝ(p)−s(p)ŝ(p)+ni1

+···+nis(p) . Whence

there are Minkowskian norms on TpM̃(n1, n2, · · · , nm) for p ∈ Up, where (Up; [ϕp]) is

a local chart.

Notice that the number of manifolds are finite in a smoothly combinatorial

manifold M̃(n1, n2, · · · , nm) and each manifold has a finite cover {(Uα;ϕα)|α ∈ I},
where I is a finite index set. We know that there is a finite cover

⋃

M∈V (GL[M̃(n1,n2,···,nm)])

{(UMα;ϕMα)|α ∈ IM}.

By the decomposition theorem for unit, we know that there are smooth functions

hMα, α ∈ IM such that

∑
M∈V (GL[M̃(n1,n2,···,nm)])

∑
α∈IM

hMα = 1 with 0 ≤ hMα ≤ 1.

Now we choose a Minkowskian norm F̃Mα on TpMα for ∀p ∈ UMα. Define

F̃Mα =

{
hMαF̃Mα, if p ∈ UMα,

0, if p 6∈ UMα

for ∀p ∈ M̃ . Now let
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F̃ =
∑

M∈V (GL[M̃(n1,n2,···,nm)])

∑
α∈I

F̃Mα.

Then F̃ is a Minkowskian norm on TM̃(n1, n2, · · · , nm) since it can be checked

immediately that all conditions (1)− (3) in Definition 5.8.1 hold. �

5.8.3 Inclusion in Combinatorial Finsler Geometry. For the relation of

combinatorial Finsler geometries with these Smarandache multi-spaces, we obtain

the next consequence.

Theorem 5.8.2 A combinatorial Finsler geometry (M̃(n1, n2, · · · , nm); F̃ ) is a Smaran-

dache geometry if m ≥ 2.

Proof Notice that if m ≥ 2, then M̃(n1, n2, · · · , nm) is combined by at least

two manifolds Mn1 and Mn2 with n1 6= n2. By definition, we know that

Mn1 \Mn2 6= ∅ and Mn2 \Mn1 6= ∅.

Now the axiom there is an integer n such that there exists a neighborhood homeo-

morphic to a open ball Bn for any point in this space is Smarandachely denied, since

for points in Mn1 \Mn2 , each has a neighborhood homeomorphic to Bn1 , but each

point in Mn2 \Mn1 has a neighborhood homeomorphic to Bn2 . �

Theorems 5.8.1 and 5.8.2 imply inclusions in Smarandache multi-spaces for

classical geometries in the following.

Corollary 5.8.1 There are inclusions among Smarandache multi-spaces, Finsler

geometry, Riemannian geometry and Weyl geometry:

{Smarandache geometries} ⊃ {combinatorial F insler geometries}
⊃ {Finsler geometry} and {combinatorial Riemannian geometries}
⊃ {Riemannian geometry} ⊃ {Weyl geometry}.

Proof Letm = 1. Then a combinatorial Finsler geometry (M̃(n1, n2, · · · , nm); F̃ )

is nothing but just a Finsler geometry. Applying Theorems 5.8.1 and 5.8.2 to this

special case, we get these inclusions as expected. �

Corollary 5.8.2 There are inclusions among Smarandache geometries, combinato-

rial Riemannian geometries and Kähler geometry:

{Smarandache geometries} ⊃ {combinatorial Riemannian geometries}
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⊃ {Riemannian geometry}
⊃ {Kähler geometry}.

Proof Let m = 1 in a combinatorial manifold M̃(n1, n2, · · · , nm) and applies

Theorems 5.3.4 and 5.8.2, we get inclusions

{Smarandache geometries} ⊃ {combinatorial Riemannian geometries}
⊃ { Riemannian geometry}.

For the Kähler geometry, notice that any complex manifold Mn
c is equal to a

smoothly real manifold M2n with a natural base { ∂
∂xi ,

∂
∂yi} for TpM

n
c at each point

p ∈Mn
c . Whence, we get

{Riemannian geometry} ⊃ {Kähler geometry}.
�

§5.9 REMARKS

5.9.1 Combinatorial Speculation. This chapter is essentially an application

of the combinatorial notion in Section 2.1 of Chapter 2 to differential geometry.

Materials in this chapter are mainly extract from references [Mao11]-[Mao15] and

[Mao18], also combined with fundamental results in classical differential geometry,

particularly, the Riemannian geometry.

5.9.2 D-dimensional holes For these closed 2-manifolds S, it is well-known that

χ(S) =

{
2− 2p(S), if S is orientable,

2− q(S). if Sis non− orientable.

with p(S) or q(S) the orientable genus or non-orientable genus of S, namely 2-

dimensional holes adjacent to S. For general case of n-manifolds M , we know that

χ(M) =
∞∑

k=0

(−1)kdimHk(M),

where dimHk(M) is the rank of these k-dimensional homolopy groups Hk(M) in

M , namely the number of k-dimensional holes adjacent to the manifold M . By

the definition of combinatorial manifolds, some k-dimensional holes adjacent to a
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combinatorial manifold are increased. Then what is the relation between the Euler-

Poincaré characteristic of a combinatorial manifold M̃ and the i-dimensional holes

adjacent to M̃? Wether can we find a formula likewise the Euler-Poincaré formula?

Calculation shows that even for the case of n = 2, the situation is complex. For

example, choose n different orientable 2-manifolds S1, S2, · · · , Sn and let them inter-

sects one after another at n different points in R3. We get a combinatorial manifold

M̃ . Calculation shows that

χ(M̃) = (χ(S1) + χ(S2) + · · ·+ χ(Sn))− n

by Theorem 4.2.9. But it only increases one 2-holes. What is the relation of 2-

dimensional holes adjacent to M̃?

5.9.3 Local properties Although a finitely combinatorial manifold M̃ is not ho-

mogenous in general, namely the dimension of local charts of two points in M̃ maybe

different, we have still constructed global operators such as those of exterior differ-

entiation d̃ and connection D̃ on T rs M̃ . A operator Õ is said to be local on a subset

W ⊂ T rs M̃ if for any local chart (Up, [ϕp]) of a point p ∈W ,

Õ|Up(W ) = Õ(W )Up.

Of course, nearly all existent operators with local properties on T rs M̃ in Finsler

or Riemannian geometries can be reconstructed in these combinatorial Finsler or

Riemannian geometries and find the local forms similar to those in Finsler or Rie-

mannian geometries.

5.9.4 Global properties To find global properties on manifolds is a central task

in classical differential geometry. The same is true for combinatorial manifolds.

In classical geometry on manifolds, some global results, such as those of de Rham

theorem and Atiyah-Singer index theorem,..., etc. are well-known. Remember that

the pth de Rham cohomology group on a manifold M and the index IndD of a

Fredholm operator D : Hk(M,E)→ L2(M,F ) are defined to be a quotient space

Hp(M) =
Ker(d : Λp(M)→ Λp+1(M))

Im(d : Λp−1(M)→ Λp(M))
.

and an integer

IndD = dimKer(D)− dim(
L2(M,F )

ImD )
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respectively. The de Rham theorem and the Atiyah-Singer index theorem respec-

tively conclude that

for any manifold M , a mapping ϕ : Λp(M) → Hom(Πp(M),R) induces a

natural isomorphism ϕ∗ : Hp(M)→ Hn(M ;R) of cohomology groups, where Πp(M)

is the free Abelian group generated by the set of all p-simplexes in M

and

IndD = IndT (σ(D)),

where σ(D)) : T ∗M → Hom(E,F ) and IndT (σ(D)) is the topological index of

σ(D). Now the questions for these finitely combinatorial manifolds are given in the

following.

(1) Is the de Rham theorem and Atiyah-Singer index theorem still true for

finitely combinatorial manifolds? If not, what is its modified forms?

(2) Check other global results for manifolds whether true or get their new mod-

ified forms for finitely combinatorial manifolds.

5.9.5 Combinatorial Gauss-Bonnet Theorem. We have know the Gauss-

Bonnet formula in the final section of Chapter 3. Then what is its counterpart

in combinatorial differential geometry? Particularly, wether can we generalize the

Gauss-Binnet-Chern result ∫

M2p

Ω = χ(M2p)

for an oriently compact Riemannian manifold (M2p, g), where

Ω =
(−1)p

22pπpp!

∑

i1,i2,···,i2p

δ
i1,···,i2p

1,···,2p Ωi1i2 ∧ · · · ∧ Ωi2p−1i2p
,

and Ωij is the curvature form under the natural chart {ei} of M2p and

δ
i1,···,i2p

1,···,2p =





1, if permutation i1 · · · i2p is even,

−1, if permutation i1 · · · i2p is odd,

0, otherwise.

to combinatorial Riemannian manifolds (M̃, g, D̃) such that

∫

M2ñ

Ω̃ = χ(M2ñ)
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with

Ω̃ =
(−1)ñ

22ñπññ!

∑

i1,i2,···,i2ñ

δi1,···,i2ñ

1,···,2ñ Ω(i1j1)(µ2ν2) ∧ · · · ∧ Ω(i2ñ−1j2ñ−1)(µ2ñν2ñ),

δ
i1,···,i2p

1,···,2p =





1, if permutation (i1j1) · · · (i2ñj2ñ) is even,

−1, if permutation (i1j1) · · · (i2ñj2ñ) is odd,

0, otherwise.

for some integers ñ ∈HM̃(n,m)?



CHAPTER 6.

Combinatorial Riemannian Submanifolds with

Principal Fibre Bundles

No object is mysterious. The mystery is your eye.

By Elizabeth, a British female writer.

For the limitation of human beings, one can only observes parts of the

WORLD. Even so, the Whitney’s result asserted that one can recognizes the

whole WORLD in a Euclidean space. The same thing also happens to combi-

natorial manifolds, i.e., how do we realize multi-spaces or combinatorial man-

ifolds? how do we apply them to physics? This chapter presents elementary

answers for the two questions in mathematics. Analogous to the classical geom-

etry, these Gauss’s, Codazzi’s and Ricci’s formulae or fundamental equations

are established for combinatorial Riemannian submanifolds Sections 6.1− 6.2.

Section 6.3 considers the embedded problem of combinatorial manifolds and

shows that any combinatorial Riemannian manifold can be isometrically em-

bedded into combinatorial Euclidean spaces. Section 6.4 generalizes classical

topological or Lie groups to topological or Lie multi-groups, which settles the

applications of combinatorial manifolds. This section also considers Lie alge-

bras of Lie multi-groups. Different from the classical case, we establish more

than 1 Lie algebra in the multiple case. Section 6.5 concentrates on generaliz-

ing classical principal fiber bundles to a multiple one. By applying the voltage

assignment technique in topological graph theory, this section presents a com-

binatorial construction for principal fiber bundles on combinatorial manifolds.

It is worth to note that on this kind of principal fiber bundles, local or global

connection, local or global curvature form can be introduced, and these struc-

tural equations or Bianchi identity can be also established on combinatorial

manifolds. This enables us to apply the combinatorial differential theory to

multi-spaces, particularly to theoretical physics.
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§6.1 COMBINATORIAL RIEMANNIAN SUBMANIFOLDS

6.1.1 Fundamental Formulae of Submanifold. We have introduced topolog-

ically combinatorial submanifolds in Section 4.2, i.e., a combinatorial submanifold

or combinatorial combinatorial Riemannian submanifold S̃ is a subset combinatorial

manifold or a combinatorial Riemannian manifold M̃ such that it is itself a combina-

torial manifold or a combinatorial Riemannian manifold. In this and the following

section, we generalize conditions on differentiable submanifolds, such as those of

the Gauss’s, the Codazzi’s and the Ricci’s formulae or fundamental equations for

handling the behavior of submanifolds of a Riemannian manifold to combinatorial

Riemannian manifolds.

Let (̃i, M̃) be a smoothly combinatorial submanifold of a Riemannian manifold

(Ñ, gÑ , D̃). For ∀p ∈ M̃ , we can directly decompose the tangent vector space TpÑ

into

TpÑ = TpM̃ ⊕ T⊥
p M̃

on the Riemannian metric gÑ at the point p, i.e., choice the metric of TpM̃ and

T⊥
p M̃ to be gÑ |TpM̃

or gÑ |T⊥
p M̃ , respectively. Then we get a tangent vector space

TpM̃ and a orthogonal complement T⊥
p M̃ of TpM̃ in TpÑ , i.e.,

T⊥
p M̃ = {v ∈ TpÑ | 〈v, u〉 = 0 for ∀u ∈ TpM̃}.

We call TpM̃ , T⊥
p M̃ the tangent space and normal space of (̃i, M̃) at the point p in

(Ñ, gÑ , D̃), respectively. They both have the Riemannian structure, particularly, M̃

is a combinatorial Riemannian manifold under the induced metric g = ĩ∗gÑ .

Therefore, a vector v ∈ TpÑ can be directly decomposed into

v = v⊤ + v⊥,

where v⊤ ∈ TpM̃, v⊥ ∈ T⊥
p M̃ are the tangent component and the normal component

of v at the point p in (Ñ, gÑ , D̃). All such vectors v⊥ in TÑ are denoted by T⊥M̃ ,

i.e.,

T⊥M̃ =
⋃

p∈M̃

T⊥
p M̃.

Whence, for ∀X, Y ∈ X (M̃), we know that

D̃XY = D̃⊤
XY + D̃⊥

XY,
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called the Gauss formula on the combinatorial Riemannian submanifold (M̃, g),

where D̃⊤
XY = (D̃XY )⊤ and D̃⊥

XY = (D̃XY )⊥.

Theorem 6.1.1 Let (̃i, M̃) be a combinatorial Riemannian submanifold of (Ñ , gÑ , D̃)

with an induced metric g = ĩ∗gÑ . Then for ∀X, Y, Z, D̃⊤ : X (M̃) × X (M̃) →
X (M̃) determined by D̃⊤(Y,X) = D̃⊤

XY is a combinatorial Riemannian connection

on (M̃, g) and D̃⊥ : X (M̃) × X (M̃) → T⊥(M̃) is a symmetrically coinvariant

tensor field of order 2, i.e.,

(1) D̃⊥
X+Y Z = D̃⊥

XZ + D̃⊥
Y Z;

(2) D̃⊥
λXY = λD̃⊥

XY for ∀λ ∈ C∞(M̃);

(3) D̃⊥
XY = D̃⊥

YX.

Proof By definition, there exists an inclusion mapping ĩ : M̃ → Ñ such that

(̃i, M̃) is a combinatorial Riemannian submanifold of (Ñ, gÑ , D̃) with a metric g =

ĩ∗gÑ .

For ∀X, Y, Z ∈X (M̃), we know that

D̃X+Y Z = D̃XZ + D̃Y Z

= (D̃⊤
XZ + D̃⊤

XZ) + (D̃⊥
XZ + D̃⊥

XZ)

by properties of the combinatorial Riemannian connection D̃. Thereby, we find that

D̃⊤
X+Y Z = D̃⊤

XZ + D̃⊤
Y Z, D̃⊥

X+Y Z = D̃⊥
XZ + D̃⊥

Y Z.

Similarly, we also find that

D̃⊤
X(Y + Z) = D̃⊤

XY + D̃⊤
XZ, D̃⊥

X(Y + Z) = D̃⊥
XY + D̃⊥

XZ.

Now for ∀λ ∈ C∞(M̃), since

D̃λXY = λD̃XY, D̃X(λY ) = X(λ) + λD̃XY,

we find that

D̃⊤
λXY = λD̃⊤

XY, D̃⊤
X(λY ) = X(λ) + λD̃⊤

XY

and

D̃⊥
X(λY ) = λD̃⊥

XY.
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Thereafter, the mapping D̃⊤ : X (M̃) ×X (M̃) → X (M̃) is a combinatorial con-

nection on (M̃, g) and D̃⊥ : X (M̃) ×X (M̃) → T⊥(M̃) have properties (1) and

(2).

By the torsion-free of the Riemannian connection D̃, i.e.,

D̃XY − D̃YX = [X, Y ] ∈X (M̃)

for ∀X, Y ∈X (M̃), we get that

D̃⊤
XY − D̃⊤

YX = (D̃XY − D̃YX)⊤ = [X, Y ]

and

D̃⊥
XY − D̃⊥

YX = (D̃XY − D̃YX)⊥ = 0,

i.e., D̃⊥
XY = D̃⊥

YX. Whence, D̃⊤ is also torsion-free on (M̃, g) and the property (3)

on D̃⊥ holds. Applying the compatibility of D̃ with gÑ in (Ñ , gÑ , D̃), we finally get

that

Z 〈X, Y 〉 =
〈
D̃ZX, Y

〉
+
〈
X, D̃ZY

〉

=
〈
D̃⊤
ZX, Y

〉
+
〈
X, D̃⊤

ZY
〉
,

which implies that D̃⊤ is also compatible with (M̃, g), namely D̃⊤ : X (M̃) ×
X (M̃)→X (M̃) is a combinatorial Riemannian connection on (M̃, g). �

Now for ∀X ∈ X (M̃) and Y ⊥ ∈ T⊥M̃ , we know that D̃XY
⊥ ∈ TÑ . Whence,

we can directly decompose it into

D̃XY
⊥ = D̃⊤

XY
⊥ + D̃⊥

XY
⊥,

called the Weingarten formula on the combinatorial Riemannian submanifold (M̃, g),

where D̃⊤
XY

⊥ = (D̃XY
⊥)⊤ and D̃⊥

XY
⊥ = (D̃XY

⊥)⊥.

Theorem 6.1.2 Let (̃i, M̃) be a combinatorial Riemannian submanifold of (Ñ, gÑ , D̃)

with an induced metric g = ĩ∗gÑ . Then the mapping D̃⊥ : T⊥M̃ ×X (M̃)→ T⊥M̃

determined by D̃(Y ⊥, X) = D̃⊥
XY

⊥ is a combinatorial Riemannian connection on

T⊥M̃ .

Proof By definition, we have known that there is an inclusion mapping ĩ : M̃ →
Ñ such that (̃i, M̃) is a combinatorial Riemannian submanifold of (Ñ, gÑ , D̃) with



Sec.6.1 Combinatorial Riemannian Submanifolds 293

a metric g = ĩ∗gÑ . For ∀X, Y ∈X (M̃) and ∀Z⊥, Z⊥
1 , Z

⊥
2 ∈ T⊥M̃ , we know that

D̃⊥
X+YZ

⊥ = D̃⊥
XZ

⊥ + D̃⊥
Y Z

⊥, D̃⊥
X(Z⊥

1 + Z⊥
2 ) = D̃⊥

XZ
⊥
1 + D̃⊥

XZ
⊥
2

similar to the proof of Theorem 6.1.4. For ∀λ ∈ C∞(M̃), we know that

D̃λXZ
⊥ = λD̃XZ

⊥, D̃X(λZ⊥) = X(λ)Z⊥ + λD̃XZ
⊥.

Whence, we find that

D̃⊥
λXZ

⊥ = (λD̃XZ
⊥)⊥ = λ(D̃XZ

⊥)⊥ = λD̃⊥
XZ

⊥,

D̃⊥
X(λZ⊥) = X(λ)Z⊥ + λ(D̃XZ

⊥)⊥ = X(λ)Z⊥ + λD̃⊥
XZ

⊥.

Therefore, the mapping D̃⊥ : T⊥M̃ ×X (M̃)→ T⊥M̃ is a combinatorial connection

on T⊥M̃ . Applying the compatibility of D̃ with gÑ in (Ñ, gÑ , D̃), we finally get

that

X
〈
Z⊥

1 , Z
⊥
2

〉
=
〈
D̃XZ

⊥
1 , Z

⊥
2

〉
+
〈
Z⊥

1 , D̃XZ
⊥
2

〉
=
〈
D̃⊥
XZ

⊥
1 , Z

⊥
2

〉
+
〈
Z⊥

1 , D̃
⊥
XZ

⊥
2

〉
,

which implies that D̃⊥ : X (M̃)×X (M̃)→X (M̃) is a combinatorial Riemannian

connection on T⊥M̃ . �

Definition 6.1.1 Let (̃i, M̃) be a smoothly combinatorial submanifold of a Rie-

mannian manifold (Ñ , gÑ , D̃). The two mappings D̃⊤, D̃⊥ are called the induced

Riemannian connection on M̃ and the normal Riemannian connection on T⊥M̃ ,

respectively.

Theorem 6.1.3 Let the (̃i, M̃) be a combinatorial Riemannian submanifold of

(Ñ, gÑ , D̃) with an induced metric g = ĩ∗gÑ . Then for any chosen Z⊥ ∈ T⊥M̃ ,

the mapping D⊤
Z⊥ : X (M̃) → X (M̃) determined by D̃⊤

Z⊥(X) = D̃⊤
XZ

⊥ for ∀X ∈
X (M̃) is a tensor field of type (1, 1). Besides, if D̃⊤

Z⊥ is treated as a smoothly

linear transformation on M̃ , then D̃⊤
Z⊥ : TpM̃ → TpM̃ at any point p ∈ M̃ is a

self-conjugate transformation on g, i.e., the equality following hold
〈
D̃⊤
Z⊥(X), Y

〉
=
〈
D̃⊥
X(Y ), Z⊥

〉
, ∀X, Y ∈ TpM̃. (6− 1)

Proof First, we establish the equality (6−1). By applying equalitiesX
〈
Z⊥, Y

〉
=〈

D̃XZ
⊥, Y

〉
+
〈
Z⊥, D̃XY

〉
and

〈
Z⊥, Y

〉
= 0 for ∀X, Y ∈X (M̃) and ∀Z⊥ ∈ T⊥M̃ ,
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we find that

〈
D̃⊤
Z⊥(X), Y

〉
=

〈
D̃XZ

⊥, Y
〉

= X
〈
Z⊥, Y

〉
−
〈
Z⊥, D̃XY

〉
=
〈
D̃⊥
XY, Z

⊥
〉
.

Thereafter, the equality (6− 1) holds.

Now according to Theorem 6.1.1, D̃⊥
XY posses tensor properties for X, Y ∈

TpM̃ . Combining this fact with the equality (6−1), D̃⊤
Z⊥(X) is a tensor field of type

(1, 1). Whence, D̃⊤
Z⊥ determines a linear transformation D̃⊤

Z⊥ : TpM̃ → TpM̃ at any

point p ∈ M̃ . Besides, we can also show that D̃⊤
Z⊥(X) posses the tensor properties

for ∀Z⊥ ∈ T⊥M̃ . For example, for any λ ∈ C∞(M̃) we know that

〈
D̃⊤
λZ⊥(X), Y

〉
=

〈
D̃⊥
XY, λZ

⊥
〉

= λ
〈
D̃⊥
XY, Z

⊥
〉

=
〈
λD̃⊤

Z⊥(X), Y
〉
, ∀X, Y ∈X (M̃)

by applying the equality (6 − 1) again. Therefore, we finally get that D̃λZ⊥(X) =

λD̃Z⊥(X).

Combining the symmetry of D̃⊥
XY with the equality (6− 1) enables us to know

that the linear transformation D̃⊤
Z⊥ : TpM̃ → TpM̃ at a point p ∈ M̃ is self-conjugate.

In fact, for ∀X, Y ∈ TpM̃ , we get that

〈
D̃⊤
Z⊥(X), Y

〉
=

〈
D̃⊥
XY, Z

⊥
〉

=
〈
D̃⊥
YX,Z

⊥
〉

=
〈
D̃⊤
Z⊥(Y ), X

〉
=
〈
X, D̃⊤

Z⊥(Y )
〉
.

Whence, D̃⊤
Z⊥ is self-conjugate. This completes the proof. �

6.1.2 Local Form of Fundamental Formula. Now we look for local forms

for D̃⊤ and D̃⊥. Let (M̃, g, D̃⊤) be a combinatorial Riemannian submanifold of

(Ñ, gÑ , D̃). For ∀p ∈ M̃ , let

{eAB|1 ≤ A ≤ dÑ(p), 1 ≤ B ≤ nA and eA1B = eA2B,

for 1 ≤ A1, A2 ≤ dÑ(p) if 1 ≤ B ≤ d̂Ñ(p)}

be an orthogonal frame with a dual

{ωAB|1 ≤ A ≤ dÑ(p), 1 ≤ B ≤ nA and ωA1B = ωA2B,

for 1 ≤ A1, A2 ≤ dÑ(p) if 1 ≤ B ≤ d̂Ñ(p)}
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at the point p in TÑ abbreviated to {eAB} and ωAB. Choose indexes (AB), (CD), · · ·,
(ab), (cd), · · · and (αβ), (γδ), · · · satisfying 1 ≤ A,C ≤ dÑ(p), 1 ≤ B ≤ nA,

1 ≤ D ≤ nC , · · ·, 1 ≤ a, c ≤ dM̃(p), 1 ≤ b ≤ na, 1 ≤ d ≤ nc, · · · and α, γ ≥ dM̃(p) + 1

or β, δ ≥ ni + 1 for 1 ≤ i ≤ dM̃(p). For getting local forms of D̃⊤ and D̃⊥, we can

even assume that {eAB}, {eab} and {eαβ} are the orthogonal frame of the point in

the tangent vector space TÑ, TM̃ and the normal vector space T⊥M̃ by Theorems

3.1− 3.3. Then the Gauss’s and Weingarten’s formula can be expressed by

D̃eab
ecd = D̃⊤

eab
ecd + D̃⊥

eab
ecd,

D̃eab
eαβ = D̃⊤

eab
eαβ + D̃⊥

eab
eαβ .

When p is varied in M̃ , we know that ωab = ĩ∗(ωab) and ωαb = 0, ωaβ = 0. Whence,

{ωab} is the dual of {eab} at the point p ∈ TM̃ . Notice that

d̃ωab = ωcd ∧ ωabcd , ωabcd + ωcdab = 0

in (M̃, g, D̃⊤) and

d̃ωAB = ωCD ∧ ωABCD, ωCDAB + ωABCD = 0, ωαβab + ωabαβ = 0, ωγδαβ + ωαβγδ = 0

in (Ñ, gÑ , D̃) by the structural equations and

D̃eAB = ωCDAB eCD

by definition. We finally get that

D̃eab = ωcdabecd + ωαβab eαβ, D̃eαβ = ωcdαβecd + ωγδαβeγδ.

Since d̃ωαi = ωab ∧ ωαiab = 0, d̃ωiβ = ωab ∧ ωiβab = 0, by the Cartan’s Lemma, i.e.,

Theorem 5.2.3, we know that

ωαiab = hαi(ab)(cd)ω
cd, ωiβab = hiβ(ab)(cd)ω

cd

with hαi(ab)(cd) = hαi(cd)(ab) and hiβ(ab)(cd) = hiβ(cd)(ab). Thereafter, we get that

D̃⊥
eab
ecd = ωαβcd (eab)eαβ = hαβ(ab)(cd)eαβ ,

D̃⊤
eab
eαβ = ωcdαβ(eab)ecd = hαβ(ab)(cd)eαβ.

Whence, we get local forms of D̃⊤ and D̃⊥ in the following.
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Theorem 6.1.4 Let (M̃, g, D̃⊤) be a combinatorial Riemannian submanifold of

(Ñ, gÑ , D̃). Then for ∀p ∈ M̃ with locally orthogonal frames {eAB}, {eab} and their

dual {ωAB}, {ωab} in TÑ , TM̃ ,

D̃⊤
eab
ecd = ωcdαβ(eab)ecd, D̃⊥

eab
ecd = hαβ(ab)(cd)eαβ ,

D̃⊤
eab
eαβ = hαβ(ab)(cd)eαβ , D̃⊥

eab
eαβ = ωγδαβ(eab)eγδ. �

Corollary 6.1.1 Let (M, g,D⊤) be a Riemannian submanifold of (N, gN , D). Then

for ∀p ∈ M with locally orthogonal frames {eA}, {ea} and their dual {ωA}, {ωa} in

TN , TM ,

D⊤
ea
eb = ωba(ea)eb, D⊥

ea
eb = hαabeα,

D⊤
ea
eα = hαabeα, D⊥

ea
eα = ωβα(ea)eβ.

§6.2 FUNDAMENTAL EQUATIONS ON

COMBINATORIAL SUBMANIFOLDS

6.2.1 Gauss Equation. Applications of these Gauss’s and Weingarten’s for-

mulae enable one to get fundamental equations such as the Gauss’s, Codazzi’s and

Ricci’s equations on curvature tensors for characterizing combinatorial Riemannian

submanifolds.

Theorem 6.2.1(Gauss equation) Let (M̃, g, D̃⊤) be a combinatorial Riemannian

submanifold of (Ñ , gÑ , D̃) with the induced metric g = ĩ∗gÑ and R̃, R̃Ñ curvature

tensors on M̃ and Ñ , respectively. Then for ∀X, Y, Z,W ∈ X (M̃),

R̃(X, Y, Z,W ) = R̃Ñ (X, Y, Z,W ) +
〈
D̃⊥
XZ, D̃

⊥
YW

〉
−
〈
D̃⊥
Y Z, D̃

⊥
XW

〉
.

Proof By definition, we know that

R̃Ñ (X, Y )Z = D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z.

Applying the Gauss formula, we find that

R̃Ñ (X, Y )Z = D̃X(D̃⊤
Y Z + D̃⊥

Y Z)− D̃Y (D̃⊤
XZ + D̃⊥

XZ)



Sec.6.2 Fundamental Equations on Combinatorial Submanifolds 297

−(D̃⊤
[X,Y ]Z + D̃⊥

[X,Y ]Z)

= D̃⊤
XD̃

⊤
Y Z + D̃⊥

XD̃
⊤
Y Z + D̃XD̃

⊥
Y Z − D̃⊤

Y D̃
⊤
XZ

−D̃⊥
Y D̃

⊤
XZ − D̃Y D̃

⊥
XZ − D̃⊤

[X,Y ]Z − D̃⊥
[X,Y ]Z

= R̃(X, Y )Z + (D̃⊥
XD̃

⊤
Y Z − D̃⊥

Y D̃
⊤
XZ)

−(D̃⊥
[X,Y ]Z − D̃XD̃

⊥
Y Z + D̃Y D̃

⊥
XZ). (6− 2)

By the Weingarten formula,

D̃XD̃
⊥
Y Z = D̃⊤

XD̃
⊥
Y Z + D̃⊥

XD̃
⊥
Y Z, D̃Y D̃

⊥
XZ = D̃⊤

Y D̃
⊥
XZ + D̃⊥

Y D̃
⊥
XZ.

Therefore, we get that

〈
R̃(X, Y )Z,W

〉
=
〈
R̃Ñ (X, Y )Z,W

〉
+
〈
D̃⊥
XZ, D̃

⊥
YW

〉
−
〈
D̃⊥
Y Z, D̃

⊥
XW

〉

by applying the equality (6− 1) in Theorem 6.1.3, i.e.,

R̃(X, Y, Z,W ) = R̃Ñ(X, Y, Z,W ) +
〈
D̃⊥
XZ, D̃

⊥
YW

〉
−
〈
D̃⊥
Y Z, D̃

⊥
XW

〉
.

�

6.2.2 Codazzi Equation. For ∀X, Y, Z ∈X (M̃), define the covariant differential

D̃X on D̃⊥
Y Z by

(D̃XD̃
⊥)Y Z = D̃⊥

X(D̃⊥
Y Z)− D̃⊥

D̃⊤
XY
Z − D̃⊥

Y (D̃⊤
XZ).

Then we get the Codazzi equation in the following.

Theorem 6.2.2 (Codazzi equation) Let (M̃, g, D̃⊤) be a combinatorial Riemannian

submanifold of (Ñ, gÑ , D̃) with the induced metric g = ĩ∗gÑ and R̃, R̃Ñ curvature

tensors on M̃ and Ñ , respectively. Then for ∀X, Y, Z ∈X (M̃),

(D̃XD̃
⊥)Y Z − (D̃Y D̃

⊥)XZ = R̃⊥(X, Y )Z

Proof Decompose the curvature tensor R̃Ñ(X, Y )Z into

R̃Ñ (X, Y )Z = R̃⊤
Ñ

(X, Y )Z + R̃⊥
Ñ

(X, Y )Z.

Notice that

D̃⊤
XY − D̃⊤

Y Z = [X, Y ].
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By the formula (6− 2), we know that

R̃⊥
Ñ

(X, Y )Z = D̃⊥
XD̃

⊤
Y Z − D̃⊥

Y D̃
⊤
XZ − D̃⊥

[X,Y ]Z + D̃⊥
XD̃

⊥
Y Z − D̃⊥

Y D̃
⊥
XZ

= D̃⊥
XD̃

⊥
Y Z − D̃⊥

Y D̃
⊤
XZ − D̃D̃⊤

XY
Z + D̃⊥

Y D̃
⊥
XZ − D̃⊥

XD̃
⊤
Y Z − D̃D̃⊤

Y X
Z

= (D̃XD̃
⊥)Y Z − (D̃Y D̃

⊥)XZ.

�

6.2.3 Ricci Equation. For ∀X, Y ∈ X (M̃), Z⊥ ∈ T⊥(M̃), the curvature tensor

R̃⊥ determined by D̃⊥ in T⊥M̃ is defined by

R̃⊥(X, Y )Z⊥ = D̃⊥
XD̃

⊥
Y Z

⊥ − D̃⊥
Y D̃

⊥
XZ

⊥ − D̃⊥
[X,Y ]Z

⊥.

Similarly, we get the next result.

Theorem 6.2.3 (Ricci equation) Let (M̃, g, D̃⊤) be a combinatorial Riemannian

submanifold of (Ñ , gÑ , D̃) with the induced metric g = ĩ∗gÑ and R̃, R̃Ñ curvature

tensors on M̃ and Ñ , respectively. Then for ∀X, Y ∈X (M̃), Z⊥ ∈ TM̃ ,

R̃⊥(X, Y )Z⊥ = R̃⊥
Ñ

(X, Y )Z⊥ + (D̃XD̃⊥)Y Z
⊥ − (D̃Y D̃⊥)XZ

⊥).

Proof Similar to the proof of Theorem 6.2.1, we know that

R̃Ñ(X, Y )Z⊥ = D̃XD̃Y Z
⊥ − D̃Y D̃XZ

⊥ − D̃[X,Y ]Z
⊥

= R̃⊥(X, Y )Z⊥ + D̃⊥
XD̃

⊤
Y Z

⊥ − D̃⊥
Y D̃

⊤
XZ

⊥

+D̃XD̃
⊥
Y Z

⊥ − D̃Y D̃
⊥
XZ

⊥

= (R̃⊥(X, Y )Z⊥ + (D̃XD̃⊥)Y Z
⊥ − (D̃Y D̃⊥)XZ

⊥)

+D̃⊤
XD̃

⊥
Y Z

⊥ − D̃⊤
Y D̃

⊥
XZ

⊥.

Whence, we get that

R̃⊥(X, Y )Z⊥ = R̃⊥
Ñ

(X, Y )Z⊥ + (D̃XD̃⊥)Y Z
⊥ − (D̃Y D̃⊥)XZ

⊥). �

6.2.4 Local Form of Fundamental Equation. We can also find local forms for

these Gauss’s, Codazzi’s and Ricci’s equations in a locally orthogonal frames {eAB},
{eab} of TÑ and TM̃ at a point p ∈ M̃ .
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Theorem 6.2.4 Let (M̃, g, D̃M̃) be a combinatorial combinatorial Riemannian sub-

manifold of (Ñ, gÑ , D̃) with g = ĩ∗gÑ and for p ∈ M̃ , let {eAB}, {eab} be locally

orthogonal frames of TÑ and TM̃ at p with dual {ωAB}, {ωab}. Then

R̃(ab)(cd)(ef)(gh) = (R̃Ñ )(ab)(cd)(ef)(gh)−
∑

α,β

(hαβ(ab)(ef)h
αβ
(cd)(gh)−h

αβ
(ab)(gh)h

αβ
(cd)(ef)) (Gauss ),

hαβ(ab)(cd)(ef) − h
αβ
(ab)(ef)(cd) = (R̃Ñ )(αβ)(ab)(cd)(ef) ( Codazzi )

and

R̃⊥
(αβ)(γδ)(ab)(cd) = (R̃Ñ)(αβ)(γδ)(ab)(cd)−

∑

e,f

(hαβ(ab)(ef)h
γδ
(cd)(gh)−h

αββ
(cd)(ef)h

γδ
(ab)(gh)) ( Ricci )

with R̃⊥
(αβ)(γδ)(ab)(cd) =

〈
R̃(eab, ecd)eαβ, eγδ

〉
and

hαβ(ab)(cd)(ef)ω
ef = d̃hαβ(ab)(cd) − ω

ef
abh

αβ
(ef)(cd) − ω

ef
cdh

αβ
(ab)(ef) + ωαβγδ h

γδ
(ab)(cd).

Proof Let Ω̃ and Ω̃Ñ be curvature forms in M̃ and Ñ . Then by the structural

equations in (Ñ, gÑ , D̃), we know that

(Ω̃Ñ)CDAB = d̃ωCDAB − ωEFAB ∧ ωCDEF =
1

2
(R̃Ñ)(AB)(CD)(EF )(GH)ω

EF ∧ ωGH

and R̃(eAB, eCD)eEF = Ω̃GH
EF (eAB, eCD)eGH . Let ĩ : M̃ → Ñ be an embedding

mapping. Applying ĩ∗ action on the above equations, we find that

(Ω̃Ñ )cdab = d̃ωcdab − ωefab ∧ ωcdef − ωαβab ∧ ωcdαβ
= Ω̃cd

ab +
∑

α,β

hαβ(ab)(ef)h
αβ
(cd)(gh)ω

ef ∧ ωgh.

Whence, we get that

Ω̃cd
ab = (Ω̃Ñ )cdab −

1

2

∑

α,β

(hαβ(ab)(ef)h
αβ
(cd)(gh) − h

αβ
(ab)(gh)h

αβ
(cd)(ef))ω

ef ∧ ωgh.

This is the Gauss’s equation

R̃(ab)(cd)(ef)(gh) = (R̃Ñ )(ab)(cd)(ef)(gh) −
∑

α,β

(hαβ(ab)(ef)h
αβ
(cd)(gh) − h

αβ
(ab)(gh)h

αβ
(cd)(ef)).



300 Chap.6 Combinatorial Riemannian Submanifolds with Principal Fibre Bundles

Similarly, we also know that

(Ω̃Ñ )αβab = d̃ωαβab − ωcdab ∧ ωαβcd − ωγδab ∧ ωαβγδ
= d̃(hαβ(ab)(cd)ω

cd)− hαβ(cd)(ef)ω
cd
ab ∧ ωef − hγδ(ab)(ef)ω

ef ∧ ωαβγδ
= (d̃hαβ(ab)(cd) − h

αβ
(ab)(ef)ω

ef
cd )− hαβ(ef)(cd)ω

ef
ab + hγδ(ab)(cd)ωαβ) ∧ ωcd

= hαβ(ab)(cd)(ef)ω
ef ∧ ωcd

=
1

2
(hαβ(ab)(cd)(ef) − h

αβ
(ab)(ef)(cd))ω

ef ∧ ωcd

and

(Ω̃Ñ )γδαβ = d̃ωγδαβ − ωefαβ ∧ ωγδef − ωζηαβ ∧ ωγδζη
= Ω̃⊥γδ

αβ +
1

2

∑

e,f

(hαβ(ef)(ab)h
γδ
(ef)(cd) − h

αβ
(ef)(cd)h

γδ
(ef)(ab))ω

ab ∧ ωcd.

These equalities enables us to get

hαβ(ab)(cd)(ef) − h
αβ
(ab)(ef)(cd) = (R̃Ñ)(αβ)(ab)(cd)(ef) ,

and

R̃⊥
(αβ)(γδ)(ab)(cd) = (R̃Ñ)(αβ)(γδ)(ab)(cd) −

∑

e,f

(hαβ(ab)(ef)h
γδ
(cd)(gh) − h

αββ
(cd)(ef)h

γδ
(ab)(gh)).

These are just the Codazzi’s or Ricci’s equations. �

§6.3 EMBEDDED COMBINATORIAL SUBMANIFOLDS

6.3.1 Embedded Combinatorial Submanifold. Let M̃ , Ñ be two combinato-

rial manifolds, F : M̃ → Ñ a smooth mapping and p ∈ M̃ . For ∀v ∈ TpM̃ , define a

tangent vector F∗(v) ∈ TF (p)Ñ by

F∗(v) = v(f ◦ F ), ∀f ∈ C∞
F (p),

called the differentiation of F at the point p. Its dual F ∗ : T ∗
F (p)Ñ → T ∗

p M̃ deter-

mined by

(F ∗ω)(v) = ω(F∗(v)) for ∀ω ∈ T ∗
F (p)Ñ and ∀v ∈ TpM̃
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is called a pull-back mapping. We know that mappings F∗ and F ∗ are linear.

For a smooth mapping F : M̃ → Ñ and p ∈ M̃ , if F∗p : TpM̃ → TF (p)Ñ is one-

to-one, we call it an immersion mapping. Besides, if F∗p is onto and F : M̃ → F (M̃)

is a homoeomorphism with the relative topology of Ñ , then we call it an embedding

mapping and (F, M̃) a combinatorial embedded submanifold. Usually, we replace the

inclusion mapping ĩ : M̃ → Ñ and denoted by (̃i, M̃) a combinatorial submanifold

of Ñ .

Now let M̃ = M̃(n1, n2, · · · , nm), Ñ = Ñ(k1, k2, · · · , kl) be two finitely combi-

natorial manifolds and F : M̃ → Ñ a smooth mapping. For ∀p ∈ M̃ , let (Up, ϕp)

and (VF (p), ψF (p)) be local charts of p in M̃ and F (p) in Ñ , respectively. Denoted by

JX;Y (F )(p) = [
∂F κλ

∂xµν
]

the Jacobi matrix of F at p. Then we find that

Theorem 6.3.1 Let F : M̃ → Ñ be a smooth mapping from M̃ to Ñ . Then F is

an immersion mapping if and only if

rank(JX;Y (F )(p)) = dM̃(p)

for ∀p ∈ M̃ .

Proof Assume the coordinate matrixes of points p ∈ M̃ and F (p) ∈ Ñ are

[xij ]s(p)×ns(p)
and [yij]s(F (p))×ns(F (p))

, respectively. Notice that

TpM̃ =

〈
∂

∂xi0j1
|p,

∂

∂xij2
|p |1 ≤ i ≤ s(p), 1 ≤ j1 ≤ ŝ(p), ŝ(p) + 1 ≤ j2 ≤ ni

〉

and

TF (p)Ñ =

〈
{ ∂

∂yi0j1
|F (p), 1 ≤ j1 ≤ ŝ(F (p))}

s(F (p))⋃

i=1

{ ∂

∂yij2
|F (p), ŝ(F (p)) + 1 ≤ j2 ≤ ki}

〉

for any integer i0, 1 ≤ i0 ≤ min{s(p), s(F (p))}. By definition, F∗p is a linear map-

ping. We only need to prove that F∗p : TpM̃ → TpÑ is an injection for ∀p ∈ M̃ . For

∀f ∈Xp, calculation shows that

F∗p(
∂

∂xij
)(f) =

∂(f ◦ F )

∂xij

=
∑

µ,ν

∂F µν

∂xij
∂f

∂yµν
.
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Whence, we find that

F∗p(
∂

∂xij
) =

∑

µ,ν

∂F µν

∂xij
∂

∂yµν
. (6− 3)

According to a fundamental result on linear equation systems, these exist solu-

tions in the equation system (6− 3) if and only if

rank(JX;Y (F )(p)) = rank(J∗
X;Y (F )(p)),

where

J∗
X;Y (F )(p) =




· · · F∗p(
∂

∂x11 )

· · · · · ·
· · · F∗p(

∂
∂x1n1

)

JX;Y (F )(p) · · ·
· · · F∗p(

∂
∂xs(p)1 )

· · · · · ·
· · · F∗p(

∂

∂x
s(p)ns(p)

)




.

We have known that

rank(J∗
X;Y (F )(p)) = dM̃(p).

Therefore, F is an immersion mapping if and only if

rank(JX;Y (F )(p)) = dM̃(p)

for ∀p ∈ M̃ . �

Applying Theorem 5.6.2, namely the partition of unity for smoothly combinato-

rial manifold, we get criterions for embedded combinatorial submanifolds following.

Theorem 6.3.2 Let M̃ be a smoothly combinatorial manifold and N a manifold.

If for ∀M ∈ V (GL[M̃ ]), there exists an embedding FM : M → N , then M̃ can be

embedded into N .

Proof By assumption, there exists an embedding FM : M → N for ∀M ∈
V (GL[M̃ ]). For p ∈ M̃ , let Vp be the intersection of ŝ(p) manifolds M1,M2, · · · ,Mŝ(p)
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with functions fMi
, 1 ≤ i ≤ ŝ(p) in Lemma 2.1 existed. Define a mapping F̃ : M̃ →

N at p by

F̃ (p) =

ŝ(p)∑

i=1

fMi
FMi

.

Then F̃ is smooth at each point in M̃ for the smooth of each FMi
and F̃∗p : TpM̃ →

TpN is one-to-one since each (FMi
)∗p is one-to-one at the point p. Whence, M̃ can

be embedded into the manifold N . �

Theorem 6.3.3 Let M̃ and Ñ be smoothly combinatorial manifolds. If for ∀M ∈
V (GL[M̃ ]), there exists an embedding FM : M → Ñ , then M̃ can be embedded into

Ñ .

Proof Applying Theorem 5.6.2, we can get a mapping F̃ : M̃ → Ñ defined by

F̃ (p) =

ŝ(p)∑

i=1

fMi
FMi

at ∀p ∈ M̃ . Similar to the proof of Theorem 2.2, we know that F̃ is smooth and

F̃∗p : TpM̃ → TpÑ is one-to-one. Whence, M̃ can be embedded into Ñ . �

6.3.2 Embedded in Combinatorial Euclidean Space. For a given integer

sequence k1, n2, · · · , kl, l ≥ 1 with 0 < k1 < k2 < · · · < kl, a combinatorial Eu-

clidean space R̃(k1, · · · , kl) is a union of finitely Euclidean spaces
l⋃

i=1

Rki such that

for ∀p ∈ R̃(k1, · · · , kl), p ∈
l⋂
i=1

Rki with l̂ = dim(
l⋂
i=1

Rki) a constant. For a given

combinatorial manifold M̃(n1, n2, · · · , nm), wether it can be realized in a combina-

torial Euclidean space R̃(k1, · · · , kl)? We consider this problem with twofold in

this section, i.e., topological or isometry embedding of a combinatorial manifold in

combinatorial Euclidean spaces.

Given two topological spaces C1 and C2, a topological embedding of C1 in C2 is

a one-to-one continuous map

f : C1 → C2.

When f : M̃(n1, n2, · · · , nm) → R̃(k1, · · · , kl) maps each manifold of M̃ to an Eu-

clidean space of R̃(k1, · · · , kl), we say that M̃ is in-embedded into R̃(k1, · · · , kl).
Whitney had proved once that any n-manifold can be topological embedded as

a closed submanifold of R2n+1 with a sharply minimum dimension 2n + 1 in 1936
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([AbM1]) . Applying Whitney’s result enables us to find conditions of a finitely com-

binatorial manifold embedded into a combinatorial Euclidean space R̃(k1, · · · , kl).

Theorem 6.3.4 Any finitely combinatorial manifold M̃(n1, n2, · · · , nm) can be em-

bedded into R2nm+1.

Proof According to Whitney’s result, each manifold Mni , 1 ≤ i ≤ m, in

M̃(n1, n2, · · · , nm) can be topological embedded into a Euclidean space Rη for any

η ≥ 2ni + 1. By assumption, n1 < n2 < · · · < nm. Whence, any manifold in

M̃(n1, n2, · · · , nm) can be embedded into R2nm+1. Applying Theorem 6.3.2, we know

that M̃(n1, n2, · · · , nm) can be embedded into R2nm+1. �

For in-embedding a finitely combinatorial manifold M̃(n1, n2, · · · , nm) into com-

binatorial Euclidean spaces R̃(k1, · · · , kl), we get the next result.

Theorem 6.3.5 Any finitely combinatorial manifold M̃(n1, n2, · · · , nm) can be in-

embedded into a combinatorial Euclidean space R̃(k1, · · · , kl) if there is an injection

̟ : {n1, n2, · · · , nm} → {k1, k2, · · · , kl}

such that

̟(ni) ≥ max{2ǫ+ 1| ∀ǫ ∈ ̟−1(̟(ni))}

and

dim(R̟(ni)
⋂

R̟(nj)) ≥ 2dim(Mni

⋂
Mnj ) + 1

for any integer i, j, 1 ≤ i, j ≤ m with Mni ∩Mnj 6= ∅.

Proof Notice that if

̟(ni) ≥ max{2ǫ+ 1| ∀ǫ ∈ ̟−1(̟(ni))}

for any integer i, 1 ≤ i ≤ m, then each manifold M ǫ, ∀ǫ ∈ ̟−1(̟(ni)) can be

embedded into R̟(ni) and for ∀ǫ1 ∈ ̟−1(ni), ∀ǫ2 ∈ ̟−1(nj), M
ǫ1 ∩ M ǫ2 can be

in-embedded into R̟(ni) ∩ R̟(nj) if M ǫ1 ∩M ǫ2 6= ∅ by Whitney’s result. In this

case, a few manifolds in M̃(n1, n2, · · · , nm) may be in-embedded into one Euclidean

space R̟(ni) for any integer i, 1 ≤ i ≤ m. Therefore, by applying Theorem 2.3 we

know that M̃(n1, n2, · · · , nm) can be in-embedded into a combinatorial Euclidean

space R̃(k1, · · · , kl). �



Sec.6.3 Embedded Combinatorial Submanifolds 305

If l = 1 in Theorem 6.3.5, then we obtain Theorem 6.3.4 once more since ̟(ni)

is a constant in this case. But on a classical viewpoint, Theorem 6.3.4 is more

accepted for it presents the appearances of a combinatorial manifold in a classical

space. Certainly, we can also get concrete conclusions for practical usefulness by

Theorem 6.3.5, such as the next result.

Corollary 6.3.1 Any finitely combinatorial manifold M̃(n1, n2, · · · , nm) can be in-

embedded into a combinatorial Euclidean space R̃(k1, · · · , kl) if

(i) l ≥ m;

(ii) there exists m different integers ki1 , ki2, · · · , kim ∈ {k1, k2, · · · , kl} such that

kij ≥ 2nj + 1

and

dim(Rkij

⋂
Rkir ) ≥ 2dim(Mnj

⋂
Mnr) + 1

for any integer i, j, 1 ≤ i, j ≤ m with Mnj ∩Mnr 6= ∅.

Proof Choose an injection

π : {n1, n2, · · · , nm} → {k1, k2, · · · , kl}

by π(nj) = kij for 1 ≤ j ≤ m. Then conditions (i) and (ii) implies that π is an

injection satisfying conditions in Theorem 5.2. Whence, M̃(n1, n2, · · · , nm) can be

in-embedded into R̃(k1, · · · , kl). �

For two given combinatorial Riemannian Cr-manifolds (M̃, g, D̃M̃) and (Ñ, gÑ , D̃),

an isometry embedding

ĩ : M̃ → Ñ

is an embedding with g = ĩ∗gÑ . By those discussions in Sections 6.1 and 6.2, let the

local charts of M̃ , Ñ be (U, [x]), (V, [y]) and the metrics in M̃ , Ñ to be respective

gÑ =
∑

(ςτ),(ϑι)

gÑ(ςτ)(ϑι)
dyςτ ⊗ dyϑι, g =

∑

(µν),(κλ)

g(µν)(κλ)dx
µν ⊗ dxκλ,

then an isometry embedding ĩ form M̃ to Ñ need us to determine wether there are

functions

yκλ = iκλ[xµν ], 1 ≤ µ ≤ s(p), 1 ≤ ν ≤ ns(p)
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for ∀p ∈ M̃ such that

R̃(ab)(cd)(ef)(gh) = (R̃Ñ)(ab)(cd)(ef)(gh) −
∑

α,β

(hαβ(ab)(ef)h
αβ
(cd)(gh) − h

αβ
(ab)(gh)h

αβ
(cd)(ef)),

hαβ(ab)(cd)(ef) − h
αβ
(ab)(ef)(cd) = (R̃Ñ)(αβ)(ab)(cd)(ef) ,

R̃⊥
(αβ)(γδ)(ab)(cd) = (R̃Ñ )(αβ)(γδ)(ab)(cd) −

∑

e,f

(hαβ(ab)(ef)h
γδ
(cd)(gh) − h

αββ
(cd)(ef)h

γδ
(ab)(gh))

with R̃⊥
(αβ)(γδ)(ab)(cd) =

〈
R̃(eab, ecd)eαβ , eγδ

〉
,

hαβ(ab)(cd)(ef)ω
ef = d̃hαβ(ab)(cd) − ω

ef
abh

αβ
(ef)(cd) − ω

ef
cdh

αβ
(ab)(ef) + ωαβγδ h

γδ
(ab)(cd)

and ∑

(ςτ),(ϑι)

gÑ(ςτ)(ϑι)
(̃i[x])

∂iςτ

∂xµν
∂iϑι

∂xκλ
= g(µν)(κλ)[x].

For embedding a combinatorial manifold into a combinatorial Euclidean space

R̃(k1, · · · , kl), the last equation can be replaced by

∑

(ςτ)

∂iςτ

∂yµν
∂iςτ

∂yκλ
= g(µν)(κλ)[y]

since a combinatorial Euclidean space R̃(k1, · · · , kl) is equivalent to a Euclidean

space Rk̃ with a constant k̃ = l̂(p) +
l(p)∑
i=1

(ki − l̂(p)) for ∀p ∈ Rk̃ but not dependent

on p (see [9] for details) and the metric of a Euclidean space Rk̃ to be

g
R̃

=
∑

µ,ν

dyµν ⊗ dyµν .

These combined with additional conditions enable us to find necessary and sufficient

conditions for existing particular combinatorial Riemannian submanifolds.

Similar to Theorems 6.3.4 and 6.3.5, we can also get sufficient conditions on

isometry embedding by applying Theorem 5.6.2, i.e., the partition of unity. Firstly,

we need two important lemmas following.

Lemma 6.3.1([ChL1]) For any integer n ≥ 1, a Riemannian Cr-manifold of di-

mensional n with 2 < r ≤ ∞ can be isometrically embedded into the Euclidean space

Rn2+10n+3.
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Lemma 6.3.2 Let (M̃, g, D̃M̃) and (Ñ, gÑ , D̃) be combinatorial Riemannian man-

ifolds. If for ∀M ∈ V (GL[M̃ ]), there exists an isometry embedding FM : M → Ñ ,

then M̃ can be isometrically embedded into Ñ .

Proof Similar to the proof of Theorems 6.3.2 and 6.3.3, we only need to prove

that the mapping F̃ : M̃ → Ñ defined by

F̃ (p) =

ŝ(p)∑

i=1

fMi
FMi

is an isometry embedding. In fact, for p ∈ M̃ we have already known that

gÑ((FMi
)∗(v), (FMi

)∗(w)) = g(v, w)

for ∀v, w ∈ TpM̃ and i, 1 ≤ i ≤ ŝ(p). By definition we know that

gÑ(F̃∗(v), F̃∗(w)) = gÑ(

ŝ(p)∑

i=1

fMi
(FMi

)(v),

ŝ(p)∑

j=1

fMj
(FMj

)(w))

=

ŝ(p)∑

i=1

ŝ(p)∑

j=1

gÑ(fMi
(FMi

)(v), fMj
(FMj

)(w)))

=

ŝ(p)∑

i=1

ŝ(p)∑

j=1

g(fMi
(FMi

)(v), fMj
(FMj

)(w)))

= g(

ŝ(p)∑

i=1

fMi
v,

ŝ(p)∑

j=1

fMj
w)

= g(v, w).

Therefore, F̃ is an isometry embedding. �

Applying Lemmas 6.3.1 and 6.3.2, we get results on isometry embedding of a

combinatorial manifolds into combinatorial Euclidean spaces following.

Theorem 6.3.6 Any combinatorial Riemannian manifold M̃(n1, n2, · · · , nm) can be

isometrically embedded into Rn2
m+10nm+3.

Proof According to Lemma 6.3.1, each manifold Mni , 1 ≤ i ≤ m, in M̃(n1, n2,

· · · , nm) can be isometrically embedded into a Euclidean space Rη for any η ≥
n2
i + 10ni + 3. By assumption, n1 < n2 < · · · < nm. Thereafter, each manifold in

M̃(n1, n2, · · · , nm) can be embedded into Rn2
m+10nm+3. Applying Lemma 6.3.2, we

know that M̃(n1, n2, · · · , nm) can be isometrically embedded into Rn2
m+10nm+3. �
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Theorem 6.3.7 A combinatorial Riemannian manifold M̃(n1, n2, · · · , nm) can be

isometrically embedded into a combinatorial Euclidean space R̃(k1, · · · , kl) if there

is an injection

̟ : {n1, n2, · · · , nm} → {k1, k2, · · · , kl}

such that

̟(ni) ≥ max{ǫ2 + 10ǫ+ 3| ∀ǫ ∈ ̟−1(̟(ni))}

and

dim(R̟(ni)
⋂

R̟(nj)) ≥ dim2(Mni

⋂
Mnj ) + 10dim(Mni

⋂
Mnj ) + 3

for any integer i, j, 1 ≤ i, j ≤ m with Mni ∩Mnj 6= ∅.

Proof If

̟(ni) ≥ max{ǫ2 + 10ǫ+ 3| ∀ǫ ∈ ̟−1(̟(ni))}

for any integer i, 1 ≤ i ≤ m, then each manifold M ǫ, ∀ǫ ∈ ̟−1(̟(ni)) can be

isometrically embedded into R̟(ni) and for ∀ǫ1 ∈ ̟−1(ni), ∀ǫ2 ∈ ̟−1(nj), M
ǫ1∩M ǫ2

can be isometrically embedded into R̟(ni)∩R̟(nj) if M ǫ1∩M ǫ2 6= ∅ by Lemma 6.3.1.

Notice that in this case, serval manifolds in M̃(n1, n2, · · · , nm) may be isometrically

embedded into one Euclidean space R̟(ni) for any integer i, 1 ≤ i ≤ m. Now

applying Lemma 5.2 we know that M̃(n1, n2, · · · , nm) can be isometrically embedded

into a combinatorial Euclidean space R̃(k1, · · · , kl). �

Similar to the proof of Corollary 6.3.1, we can get a more clearly condition

for isometry embedding of combinatorial Riemannian manifolds into combinatorial

Euclidean spaces.

Corollary 6.3.2 A combinatorial Riemannian manifold M̃(n1, n2, · · · , nm) can be

isometry embedded into a combinatorial Euclidean space R̃(k1, · · · , kl) if

(i) l ≥ m;

(ii) there exists m different integers ki1, ki2, · · · , kim ∈ {k1, k2, · · · , kl} such that

kij ≥ n2
j + 10nj + 3

and

dim(Rkij
⋂

Rkir ) ≥ dim2(Mnj
⋂
Mnr) + 10dim(Mnj

⋂
Mnr) + 3

for any integer i, j, 1 ≤ i, j ≤ m with Mnj ∩Mnr 6= ∅.
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§6.4 TOPOLOGICAL MULTI-GROUPS

6.4.1 Topological Multi-Group. An algebraic multi-system (Ã ; O) with Ã =
m⋃
i=1

Hi and O =
m⋃
i=1

{◦i} is called a topological multi-group if

(i) (Hi; ◦i) is a group for each integer i, 1 ≤ i ≤ m, namely, (H ,O) is a

multi-group;

(ii) Ã is a combinatorial topological space SG;

(iii) the mapping (a, b) → a ◦ b−1 is continuous for ∀a, b ∈ Hi, ∀◦ ∈ Oi,
1 ≤ i ≤ m.

Denoted by (SG; O) a topological multi-group. Particularly, ifm = 1 in (Ã ; O),

i.e., Ã = H , O = {◦} with conditions following hold,

(i′) (H ; ◦) is a group;

(ii′) H is a topological space;

(iii′) the mapping (a, b)→ a ◦ b−1 is continuous for ∀a, b ∈H ,

then H is nothing but a topological group in classical mathematics. The existence

of topological multi-groups is shown in the following examples.

Example 6.4.1 Let Rni, 1 ≤ i ≤ m be Euclidean spaces with an additive operation

+i and scalar multiplication · determined by

(λ1 · x1, λ2 · x2, · · · , λni
· xni

) +i (ζ1 · y1, ζ2 · y2, · · · , ζni
· yni

)

= (λ1 · x1 + ζ1 · y1, λ2 · x2 + ζ2 · y2, · · · , λni
· xni

+ ζni
· yni

)

for ∀λl, ζl ∈ R, where 1 ≤ λl, ζl ≤ ni. Then each Rni is a continuous group under +i.

Whence, the algebraic multi-system (EG(n1, · · · , nm); O) is a topological multi-group

with a underlying structure G by definition, where EG(n1, · · · , nm) is a combinatorial

Euclidean space defined in Section 4.1, and O =
m⋃
i=1

{+i}. Particularly, if m = 1, i.e.,

an n-dimensional Euclidean space Rn with the vector additive + and multiplication

· is a topological group.

Example 6.4.2 Notice that there is function κ : Mn×n → Rn2
from real n × n-

matrices Mn×n to R determined by
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κ :




a11 · · · a1n

a21 · · · a2n

· · · · · · · · ·
an1 · · · an×n



→
(
a11 · · · a1n, · · · , an1 · · · an×n

)

Denoted all n× n-matrices by M(n,R). Then the general linear group of degree n

is defined by

GL(n,R) = { M ∈M(n,R) | detM 6= 0 },

where detM is the determinant of M . It can be shown that GL(n,R) is a topological

group. In fact, since the function det : Mn×n → R is continuous, det−1R \ {0} is

open in Rn2
, and hence an open subset of Rn2

.

We show the mappings φ : GL(n,R×GL(n,R))→ GL(n,R) and ψ : GL(n,R)→
GL(n,R) determined by φ(a, b) = ab and ψ(a) = a−1 are both continuous for

a, b ∈ GL(n,R). Let a = (aij)n×n and b = (bij)n×n ∈ M(n,R). By definition, we

know that

ab = ((ab)ij) = (

n∑

k=1

aikbkj).

Whence, φ(a, b) = ab is continuous. Similarly, let ψ(a) = (ψij)n×n. Then we know

that

ψij =
a∗ij

deta

is continuous, where a∗ij is the cofactor of aij in the determinant deta. Therefore,

GL(n,R) is a topological group.

Now for integers n1, n2, · · · , nm ≥ 1, let EG(GLn1 , · · · , GLnm) be a multi-group

consisting of GL(n1,R), GL(n2,R), · · ·, GL(nm,R) underlying a combinatorial

structure G. Then it is itself a combinatorial space. Whence, EG(GLn1 , · · · , GLnm)

is a topological multi-group.

A topological space S is homogenous if for ∀a, b ∈ S, there exists a continuous

mapping f : S → S such that f(b) = a. We have the next result.

Theorem 6.4.1 If a topological multi-group (SG; O) is arcwise connected and as-

sociative, then it is homogenous.

Proof Notice that SG is arcwise connected if and only if its underlying graph

G is connected. For ∀a, b ∈ SG, without loss of generality, assume a ∈ H0 and
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b ∈Hs and

P (a, b) = H0H1 · · ·Hs, s ≥ 0,

a path from H0 to Hs in the graph G. Choose c1 ∈ H0 ∩H1, c2 ∈ H1 ∩H2,· · ·,
cs ∈Hs−1 ∩Hs. Then

a ◦0 c1 ◦1 c−1
1 ◦2 c2 ◦3 c3 ◦4 · · · ◦s−1 c

−1
s ◦s b−1

is well-defined and

a ◦0 c1 ◦1 c−1
1 ◦2 c2 ◦3 c3 ◦4 · · · ◦s−1 c

−1
s ◦s b−1 ◦s b = a.

Let L = a ◦0 c1 ◦1 c−1
1 ◦2 c2 ◦3 c3 ◦4 · · · ◦s−1 c

−1
s ◦s b−1◦s. Then L is continuous

by the definition of topological multi-group. We finally get a continuous mapping

L : SG → SG such that L(b) = Lb = a. Whence, (SG; O) is homogenous. �

Corollary 6.4.1 A topological group is homogenous if it is arcwise connected.

A multi-subsystem (LH ;O) of (SG; O) is called a topological multi-subgroup

if it itself is a topological multi-group. Denoted by LH ≤ SG. A criterion on

topological multi-subgroups is shown in the following.

Theorem 6.4.2 A multi-subsystem (LH ;O1) is a topological multi-subgroup of

(SG; O), where O1 ⊂ O if and only if it is a multi-subgroup of (SG; O) in alge-

bra.

Proof The necessity is obvious. For the sufficiency, we only need to prove that

for any operation ◦ ∈ O1, a ◦ b−1 is continuous in LH . Notice that the condition

(iii) in the definition of topological multi-group can be replaced by:

for any neighborhood NSG
(a◦b−1) of a◦b−1 in SG, there always exist neighbor-

hoods NSG
(a) and NSG

(b−1) of a and b−1 such that NSG
(a) ◦NSG

(b−1) ⊂ NSG
(a ◦

b−1), where NSG
(a) ◦NSG

(b−1) = {x ◦ y|∀x ∈ NSG
(a), y ∈ NSG

(b−1)}
by the definition of mapping continuity. Whence, we only need to show that for

any neighborhood NLH
(x ◦ y−1) in LH , where x, y ∈ LH and ◦ ∈ O1, there exist

neighborhoods NLH
(x) and NLH

(y−1) such that NLH
(x)◦NLH

(y−1) ⊂ NLH
(x◦y−1)

in LH . In fact, each neighborhood NLH
(x ◦ y−1) of x ◦ y−1 can be represented by

a form NSG
(x ◦ y−1) ∩LH . By assumption, (SG; O) is a topological multi-group,

we know that there are neighborhoods NSG
(x), NSG

(y−1) of x and y−1 in SG such
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that NSG
(x)◦NSG

(y−1) ⊂ NSG
(x◦y−1). Notice that NSG

(x)∩LH , NSG
(y−1)∩LH

are neighborhoods of x and y−1 in LH . Now let NLH
(x) = NSG

(x) ∩ LH and

NLH
(y−1) = NSG

(y−1)∩LH . Then we get that NLH
(x)◦NLH

(y−1) ⊂ NLH
(x◦y−1)

in LH , i.e., the mapping (x, y) → x ◦ y−1 is continuous. Whence, (LH ;O1) is a

topological multi-subgroup. �

Particularly, for the topological groups, we know the following consequence.

Corollary 6.4.2 A subset of a topological group (Γ; ◦) is a topological subgroup if

and only if it is a subgroup of (Γ; ◦) in algebra.

For two topological multi-groups (SG1 ; O1) and (SG2 ; O2), a mapping ω :

(SG1 ; O1)→ (SG2 ; O2) is a homomorphism if it satisfies the following conditions:

(1) ω is a homomorphism from multi-groups (SG1 ; O1) to (SG2 ; O2), namely,

for ∀a, b ∈ SG1 and ◦ ∈ O1, ω(a ◦ b) = ω(a)ω(◦)ω(b);

(2) ω is a continuous mapping from topological spaces SG1 to SG1 , i.e., for

∀x ∈ SG1 and a neighborhood U of ω(x), ω−1(U) is a neighborhood of x.

Furthermore, if ω : (SG1 ; O1) → (SG2 ; O2) is an isomorphism in algebra and

a homeomorphism in topology, then it is called an isomorphism, particularly, an

automorphism if (SG1 ; O1) = (SG2 ; O2) between topological multi-groups (SG1 ; O1)

and (SG2 ; O2).

Let (SG; O) be an associatively topological multi-subgroup and (LH ;O) one of

its topological multi-subgroups with SG =
m⋃
i=1

Hi, LH =
⋃m
i=1 Gi and O =

m⋃
i=1

{◦i}.
According to Theorem 2.3.1 in Chapter 2, for any integer i, 1 ≤ i ≤ m, we get

a quotient group Hi/Gi, i.e., a multi-subgroup (SG/LH ;O) =
m⋃
i=1

(Hi/Gi; ◦i) on

algebraic multi-groups.

Notice that for a topological space S with an equivalent relation ∼ and a pro-

jection π : S → S/ ∼= {[x]|∀y ∈ [x], y ∼ x}, we can introduce a topology on S/ ∼
by defining its opened sets to be subsets V in S/ ∼ such that π−1(V ) is opened in

S. Such topological space S/ ∼ is called a quotient space. Now define a relation in

(SG; O) by a ∼ b for a, b ∈ SG providing b = h ◦ a for an element h ∈ LH and an

operation ◦ ∈ O. It is easily to know that such relation is an equivalence. Whence,

we also get an induced quotient space SG/LH .

Theorem 6.4.3 Let ω : (SG1 ; O1) → (SG2 ; O2) be an opened onto homomor-



Sec.6.4 Topological Multi-Groups 313

phism from associatively topological multi-groups (SG1 ; O1) to (SG2 ; O2), i.e., it

maps an opened set to an opened set. Then there are representation pairs (R1,P1)

and (R2,P2) such that

(SG1 ; O1)

(K̃erω; O1)
|(R1,P̃1)

∼= (SG2 ; O2)

(I(Õ2); Õ2)
|(R2,P̃2)

,

where P1 ⊂ O1,P2 ⊂ O2, I(O2) = {1◦, ◦ ∈ O2} and

K̃erω = { a ∈ SG1 | ω(a) = 1◦ ∈ I(O2) }.

Proof According to Theorem 2.3.2 or Corollary 2.3.1, we know that there are

representation pairs (R1,P1) and (R2,P2) such that

(SG1 ; O1)

(K̃erω; O1)
|(R1,P̃1)

σ∼= (SG2 ; O2)

(I(Õ2); Õ2)
|(R2,P̃2)

in algebra, where σ(a ◦ Kerω) = σ(a) ◦−1 I(O2) in the proof of Theorem 2.3.2. We

only need to prove that σ and σ−1 are continuous.

On the First, for x = σ(a)◦−1 I(O2) ∈ (SG2
;O2)

(I(Õ2);Õ2)
|(R2,P̃2)

let Û be a neighborhood

of σ−1(x) in the space
(SG1

;O1)

(K̃erω;O1)
|(R1,P̃1)

, where Û is a union of a ◦ Kerω for a in an

opened set U and ◦ ∈ P̃1. Since ω is opened, there is a neighborhood V̂ of x such

that ω(U) ⊃ V̂ , which enables us to find that σ−1(V̂ ) ⊂ Û . In fact, let ŷ ∈ V̂ . Then

there exists y ∈ U such that ω(y) = ŷ. Whence, σ−1(ŷ) = y ◦Kerω ∈ Û . Therefore,

σ−1 is continuous.

On the other hand, let V̂ be a neighborhood of σ(x) ◦−1 I(O2) in the space
(SG2

;O2)

(I(Õ2);Õ2)
|(R2,P̃2)

for x ◦ Kerω. By the continuity of ω, we know that there is a

neighborhood U of x such that ω(U) ⊂ V̂ . Denoted by Û the union of all sets

z ◦ Kerω for z ∈ U . Then σ(Û) ⊂ V̂ because of ω(U) ⊂ V̂ . Whence, σ is also

continuous. Combining the continuity of σ and its inverse σ−1, we know that σ is

also a homeomorphism from topological spaces
(SG1

;O1)

(K̃erω;O1)
|(R1,P̃1)

to
(SG2

;O2)

(I(Õ2);Õ2)
|(R2,P̃2)

. �

Corollary 6.4.3 Let ω : (SG; O)→ (A ; ◦) be a onto homomorphism from a topolog-

ical multi-group (SG; O) to a topological group (A ; ◦). Then there are representation

pairs (R, P̃ ), P̃ ⊂ O such that

(SG; O)

(K̃erω; O)
|(R,P̃ )

∼= (A ; ◦).
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Particularly, if O = {•}, i.e., (SG; •) is a topological group, then

SG/Kerω ∼= (A ; ◦).

A distributive multi-system (Ã ; O1 →֒ O2) with Ã =
m⋃
i=1

Hi, O1 =
m⋃
i=1

{·i} and

O2 =
m⋃
i=1

{+i} is called a topological multi-ring if

(i) (Hi; +i, ·i) is a ring for each integer i, 1 ≤ i ≤ m, i.e., (H ,O1 →֒ O2) is a

multi-ring;

(ii) Ã is a combinatorial topological space SG;

(iii) the mappings (a, b) → a ·i b−1, (a, b) → a +i (−ib) are continuous for

∀a, b ∈Hi, 1 ≤ i ≤ m.

Denoted by (SG; O1 →֒ O2) a topological multi-ring. A topological multi-ring

(SG; O1 →֒ O2) is called a topological divisible multi-ring or multi-field if the previous

condition (i) is replaced by (Hi; +i, ·i) is a divisible ring or field for each integer

1 ≤ i ≤ m. Particularly, if m = 1, then a topological multi-ring, divisible multi-ring

or multi-field is nothing but a topological ring, divisible ring or field. Some examples

of topological fields are presented in the following.

Example 6.4.3 A 1-dimensional Euclidean space R is a topological field since R is

itself a field under operations additive + and multiplication ×.

Example 6.4.4 A 2-dimensional Euclidean space R2 is isomorphic to a topological

field since for ∀(x, y) ∈ R2, it can be endowed with a unique complex number x+ iy,

where i2 = −1. It is well-known that all complex numbers form a field.

Example 6.4.5 A 4-dimensional Euclidean space R4 is isomorphic to a topolog-

ical field since for each point (x, y, z, w) ∈ R4, it can be endowed with a unique

quaternion number x+ iy + jz + kw, where

ij = −ji = k, jk = −kj = i, ki = −ik = j,

and

i2 = j2 = k2 = −1.

We know all such quaternion numbers form a field.

For topological fields, we have known a classification theorem following.
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Theorem 6.4.4 A locally compacted topological field is isomorphic to one of the

following:

(i) Euclidean real line R, the real number field;

(ii) Euclidean plane R2, the complex number field;

(iii) Euclidean space R4, the quaternion number field.

Proof The proof on this classification theorem is needed a careful analysis for

the topological structure and finished by Pontrjagin in 1934. A complete proof on

this theorem can be found in references [Pon1] or [Pon2]. �

Applying Theorem 6.4.4 enables one to determine these topological multi-fields.

Theorem 6.4.5 For any connected graph G, a locally compacted topological multi-

field (SG; O1 →֒ O2) is isomorphic to one of the following:

(i) Euclidean space R, R2 or R4 endowed respectively with the real, complex

or quaternion number for each point if |G| = 1;

(ii) combinatorial Euclidean space EG(2, · · · , 2, 4, · · · , 4) with coupling number,

i.e., the dimensional number lij = 1, 2 or 3 of an edge (Ri,Rj) ∈ E(G) only if

i = j = 4, otherwise lij = 1 if |G| ≥ 2.

Proof By the definition of topological multi-field (SG; O1 →֒ O2), for an integer

i, 1 ≤ i ≤ m, (Hi; +i, ·i) is itself a locally compacted topological field. Whence,

(SG; O1 →֒ O2) is a topologically combinatorial multi-field consisting of locally

compacted topological fields. According to Theorem 6.4.4, we know there must be

(Hi; +i, ·i) ∼= R, R2, or R4

for each integer i, 1 ≤ i ≤ m. Let the coordinate system of R,R2,R4 be x, (y1, y2)

and (z1, z2, z3, z4). If |G| = 1, then it is just the classifying in Theorem 6.4.4. Now

let |G| ≥ 2. For ∀(Ri,Rj) ∈ E(G), we know that Ri \Rj 6= ∅ and Rj \Ri 6= ∅ by

the definition of combinatorial space. Whence, i, j = 2 or 4. If i = 2 or j = 2, then

lij = 1 because of 1 ≤ lij < 2, which means lij ≥ 2 only if i = j = 4. This completes

the proof. �

6.4.2 Lie Multi-Group. A Lie multi-group LG is a smoothly combinatorial

manifold M̃ endowed with a multi-group (Ã (LG); O(LG)), where Ã (LG) =
m⋃
i=1

Hi
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and O(LG) =
m⋃
i=1

{◦i} such that

(i) (Hi; ◦i) is a group for each integer i, 1 ≤ i ≤ m;

(ii) GL[M̃ ] = G;

(iii) the mapping (a, b) → a ◦i b−1 is C∞-differentiable for any integer i, 1 ≤
i ≤ m and ∀a, b ∈Hi.

Notice that if m = 1, then a Lie multi-group LG is nothing but just the Lie

group in classical differential geometry. For example, the topological multi-groups

shown in Examples 6.4.1 and 6.4.2 are Lie multi-groups since it is easily to know the

mapping (a, b) → a ◦ b−1 is C∞-differentiable for a, b ∈ Ã providing the existence

of a ◦ b−1. Furthermore, we give an important example following.

Example 6.4.6 An n-dimensional special linear group

SL(n,R) = {M ∈ GL(n,R) | detM = 1}

is a Lie group. In fact, let detM : Rn2 → R be the determinant function. We need

to show that for M ∈ det−1(1), d(detM) 6= 0. If so, then applying the implicit

function theorem, i.e., Theorem 3.2.6, SL(n,R) is a smoothly manifold.

Let M = (aij)n×n. Then

detM =
∑

π∈Sn

signπ a1π(1) · · ·anπ(n).

whence, we get that

d(detM) =

n∑

j=1

∑

π∈Sn

signπ a1π(1) · · ·aj−1π(j−1)aj+1π(j+1) · · ·anπ(n)dajπ(j).

Notice that the coefficient in daij of the (i, j) entry in this sum is the determi-

nant of the cofactor of aij in M . Therefore, they can not vanish all at any point

of det−1(1). Now since {daij} is linearly independent, there must be d(detM) 6= 0.

So applying the implicit function theorem, we know that SL(n,R) is a smoothly

submanifold of GL(n,R). Now let M̃G be a combinatorial manifold consisting of

GL(n1,R), GL(n2,R), · · ·, GL(nm,R) underlying a structure G. Then it is a Lie

multi-group.

Definition 6.4.1 Let LG be a Lie multi-group with Ã (LG) =
⋃
◦∈O

H◦ and O(LG) =
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m⋃
i=1

{◦i}. For g ∈ Ã (LG) and ◦ ∈ O(LG), a left or right translation L̃g or R̃g of LG

is a mapping L̃g, R̃g : O(LG)× Ã (LG)→ Ã (LG) determined by

L̃g(◦, h) = g ◦ h, or R̃g(h, ◦) = h ◦ g

for ∀h ∈ Ã (LG) and a ◦ ∈ O(LG) provided g ◦ h exists.

Definition 6.4.2 A vector field X on a Lie multi-group LG is called locally left-

invariant for ◦ ∈ O(LG) if

dL̃gX(◦, x) = X(L̃g(◦, x))

holds for ∀g, x ∈ H◦ and globally left-invariant if it is locally left-invariant for

∀◦ ∈ O(LG) and ∀g ∈ Ã (LG).

Theorem 6.4.6 A vector field X on a Lie multi-group LG is locally left-invariant

for ◦ ∈ O(LG) (or globally left-invariant) if and only if

dL̃gX(◦, 1◦) = X(g)

holds for ∀g ∈H◦ (or hold for ∀g ∈ Ã (LG) and ∀◦ ∈ O(LG)).

Proof In fact, let ◦ ∈ O(LG) and g ∈ H◦ (or g ∈ Ã (LG)). If X is locally

left-invariant for ◦ ∈ O(LG), then we know that

dL̃gX(◦, 1◦) = X(L̃g(◦, 1◦)) = X(g ◦ 1◦) = X(g)

by definition. Conversely, if

dL̃gX(◦, 1◦) = X(g)

holds for ∀g ∈H◦ and ◦ ∈ O(LG), let x ∈H◦. We get hat

X(L̃g(◦, x)) = X(g ◦ x) = dL̃g◦xX(◦, 1◦)

= dL̃g ◦ L̃x(X(◦, 1◦)) = dL̃g(dL̃x(X(◦, 1◦)))

= dL̃gX(◦, x).

Whence, X is locally left-invariant for ◦ ∈ O(LG).

Similarly, we know the conditions for LG being globally left-invariant. �

Corollary 6.4.4 A vector field X on a Lie group G is left-invariant if and only if

dLgX(1G ) = X(g)
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for ∀g ∈ G .

Recall that a Lie algebra over a real field R is a pair (F , [ , ]), where F is a

vector space and [ , ] : F ×F → F with (X, Y )→ [X, Y ] a bilinear mapping such

that

[a1X1 + a2Y2, Y ] = a1[X1, Y ] + a2[X2, Y ],

[X, a1Y1 + a2Y2] = a1[X1, Y1] + a2[X2, Y2]

for ∀a1, a2 ∈ R and X, Y,X1, X2, Y1, Y2 ∈ F . By Theorem 5.1.2, we know that

[X, Y ] = 0,

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

for X, Y, Z ∈ X (LG). Notice that all vector fields in X (LG) forms a Lie algebra

over R, where, for X, Y ∈X (LG), p ∈ LG, f ∈Xp and λ, µ ∈ R, these X +Y, λX

and [X, Y ] ∈ X (LG) are defined by (X + Y )f = Xf + Y f , (λX)f = λ(Xf) and

[X, Y ]v = X(Y f)− Y (Xf).

Now for a ◦ ∈ O(LG), define

Y(◦,LG) = { X ∈X (LG) | dL̃gu(◦, x) = X(L̃g(◦, x)), ∀x ∈H◦}

and

Ỹ(LG) = {X ∈X (LG)|dL̃gX(◦, x) = X(L̃g(◦, x)), ∀◦ ∈ O(LG) and ∀x ∈H◦},

i.e., the sets of all locally left-invariant vector fields for an operation ◦ on LG and of

all globally left-invariant fields. We can easily check that Y(◦,LG) is a Lie algebra.

In fact,

dL̃g(λX + µY ) = λdL̃gX + µdL̃gY = λX + µY,

and

dL̃g[X, Y ](◦, x) = dX(Y (g ◦ x))− dY (X(g ◦ x))
= dX(dY (g ◦ x))− dY (d(X(g ◦ x)))
= dX ◦ dY (g ◦ x)− dY ◦ dX(g ◦ x)
= [dL̃gX(◦, x), dL̃gY (◦, x)] = [dL̃gX, dL̃gY ](◦, x).
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Therefore, Y(◦,LG) is a Lie algebra. By definition, we know that

Ỹ(LG) =
⋂

◦∈O

Y(◦,LG).

Whence, Ỹ(LG) is also a Lie algebra by definition.

Theorem 6.4.7 Let LG be a Lie multi-group. Then the mapping

Φ :
⊕

◦∈O

Y(◦,LG)→
⊕

◦∈O

T1◦
(LG)

determined by Φ(X) = X(1◦) if dL̃gX(◦, x) = X(L̃g(◦, x)) for ∀x ∈ H◦ is an

isomorphism of
⊕
◦∈O

Y(◦,LG) with direct sum of T1◦
(LG) to LG at identities 1◦ for

◦ ∈ O(LG).

Proof For an operation ◦ ∈ O(LG), we show that Φ|H◦
: Y(◦,LG)→ T1◦

(LG)

is an isomorphism. In fact, Φ|H◦
is linear by definition. If Φ|H◦

(X) = Φ|H◦
(Y ), then

for ∀g ∈ H◦, we get that X(g) = dL̃g(X(◦, 1◦)) = dL̃g(Y (◦, 1◦)) = Y (g). Hence,

X = Y . We know Φ|H◦
is injective.

Let W ∈ T1◦
(H◦). We can define a vector field X on LG by X : g →

L̃g(◦,W ) = X(g) for every g ∈ H◦. Thus, X(1◦) = L̃1◦
W = W . Such vector

field is left invariant. In fact, for g1, g2 ∈H◦, we have

X(L̃g1(g2)) = X(g1g2) = dL̃g1g2(W ) = dL̃g1 ◦ dL̃g2(W ) = dL̃g1X(g2).

Therefore, for W ∈ T1◦
(H◦), there exists a vector field X ∈ Y(◦,LG) such that

Φ|H◦
(X) = W , i.e., Φ|H◦

is surjective. Whence, Φ|H◦
: Y(◦,LG) → T1◦

(LG) is an

isomorphism.

Now extend Φ|H◦
linearly to

⊕
◦∈O

Y(◦,LG). We know that

Φ :
⊕

◦∈O

Y(◦,LG)→
⊕

◦∈O

T1◦
(LG)

is an isomorphism. �

Corollary 6.4.5 Let G be a Lie group with an operation ◦. Then the mapping

Φ : Y(◦,G )→ T1G
(G )
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determined by Φ(X) = X(1G ) if d̃L̃gX(◦, x) = X(L̃g(◦, x)) for ∀x ∈ G is an iso-

morphism of Y(◦,G ) with T1G
(G ) to G at identity 1G .

For finding local form of a vector field X ∈ X (LG) of a Lie multi-group LG

at a point p ∈ LG, we have known that

X =

〈
[aij(p)]s(p)×ns(p)

, [
∂

∂x
]s(p)×ns(p)

〉
=

s(p)∑

i=1

ns(p)∑

j=1

aij
∂

∂xij
,

by Theorem 5.1.3, where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p). Generally, we

have the following result.

Theorem 6.4.8 Let LG be a Lie multi-group. If a vector field X ∈ X (LG) is

locally left-invariant for an operation ◦ ∈ O(LG), then,

Xp =

s(p)∑

i=1

ns(p)∑

j=1

aij(p)
∂

∂xij

with

aij(L̃g(◦, p)) =
∑

j

aij(p)
∂L̃g(◦, y)ij

∂yij
|y=p

for g, p ∈ LG. Furthermore, X is globally left-invariant only if it is locally left-

invariant for ∀◦ ∈ O(LG).

Proof According to Theorem 5.1.3, we know that

X(g ◦ p)f(y) =
∑

j

aij(g ◦ p)
∂f(y)

∂yij
|y=g◦p

and

(dL̃gX)p(◦, f(y)) = Xp(fL̃g)(◦, y)

=
∑

j

aij
∂(fL̃g)(◦, y)

∂yij
|y=p

=
∑

j

aij
∂(f(L̃g)(◦, y))

∂yij
|y=p

by definition. Notice that

∂(f(L̃g)(◦, y))
∂yij

|y=p =
∑

s

∂f(g ◦ y)
∂(g ◦ y)is

∂(g ◦ y)is
∂yij

|y=p

=
∑

s

∂f(y)

∂yis
|y=g◦p

∂(g ◦ y)is
∂yij

|y=p.



Sec.6.4 Topological Multi-Groups 321

By assumption, X is locally left-invariant for ◦. We know that X(g ◦ p)f(y) =

(dL̃gX)p(◦, f(y)), namely,

∑

j

aij(g ◦ p)
∂f(y)

∂yij
|y=g◦p =

∑

i

(
∑

s

ais(p)
∂(g ◦ y)is
∂yis

|y=p)
∂f(y)

∂yis
|y=g◦p.

Whence, we finally get that

aij(L̃g(◦, p)) =
∑

j

aij(p)
∂L̃g(◦, y)ij

∂yij
|y=p

�

Example 6.4.7 Let R̃(n1, · · · , nm) be a combinatorial Euclidean space consisting

of Rn1, · · · ,Rnm. It is a Lie multi-group by verifying each operation +i, 1 ≤ i ≤ m

in Example 6.4.1 is C∞-differentiable. For this combinatorial space, its locally left-

invariant L̃g for +i is

L̃g(+i, p) = g +i p.

Whence, a locally left-invariant vector field X must has a form

X =
m∑

i=1

ni∑

j=1

cij(p)
∂

∂xij

In fact, by applying Theorem 6.4.8, we know that

cij(g +i p) =
∑

s

cis(p)
∂(g +i p)

∂xij
=
∑

s

cis(p)

for ∀g, p ∈ R̃(n1, · · · , nm). Then, each cij(p) is a constant. Otherwise, by Theorem

3.2.6, the implicit theorem we know that there must be a C∞-mapping h such that

g = h(p), a contradiction.

6.4.3 Homomorphism on Lie Multi-Group. Let LG1 and LG2 be Lie

multi-groups. A topological homomorphism ω : LG1 → LG2 is called a homo-

morphism on Lie multi-group if ω is C∞ differentiable. Particularly, if LG2 =

E (GL(n1,R), GL(n2,R), · · · , GL(nm,R)), then a homomorphism ω : LG1 → LG2

is called a multi-representation of LG1.

Now let Yi be one Lie algebra of LGi
for i=1 or 2. A mapping ̟ : Y1 → Y2

is a Lie algebra homomorphism if it is linear with
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̟[X, Y ] = [̟(X), ̟(Y )] for ∀X, Y ∈ G̃1.

Particularly, if Y2 = Y(GL(n,R)) in case, then a Lie algebra homomorphism ̟ is

called a representation of the Lie algebra Y1. Furthermore, if ̟ : Y1 → Y2 is an

isomorphism, then it is said that Y1 and Y2 are isomorphic, denoted by Y1

̟∼= Y2.

Notice that if ω : LG1 → LG2 is a homomorphism on Lie multi-group, then since

ω maps an identity 1◦ of LG1 to an identity 1ω(◦) of LG2 for an operation ◦ ∈ O(LG1).

Whence, the differential dω of ω at 1◦ ∈ LG1 is a linear transformation of T1◦LG1

into T1ω(◦)LG2 . By Theorem 6.4.7, dω naturally induces a linear transformation

dω : Y1 → Y2

between Lie algebras on them. We know the following result.

Theorem 6.4.9 The induced linear transformation dω : Y1 → Y2 is a Lie algebra

homomorphism.

Proof For ∀X, Y ∈X (LG1) and f ∈Xp, we know that

(dω[X, Y ]f)ω = [X, Y ](fω) = X(Y (fω))− Y (X(fω))

= X(dY (fω))− Y (d(X(fω)))

= (dωX(dωY f)− dωY (dωXf))(ω)

= [dωX, dωY ](f).

Whence, we know that dω[X, Y ] = [dωX, dωY ]. �

Let LGi
be Lie multi-groups for i = 1 or 2. We say LG1 is locally C∞-

isomorphic to LG2 if for ∀◦ ∈ O(LG1), there are open neighborhoods U1
◦ and U2

ω(◦)

of the respective identity 1◦ and 1ω(◦) with an isomorphism ω : U1
◦ → U2

ω(◦) of C∞-

diffeomorphism, i.e., if a, b ∈ U1
◦ , then a◦b ∈ U1

◦ if and only if ω(a)ω(◦)ω(b) ∈ U2
ω(◦))

with ω(a◦b) = ω(a)ω(◦)ω(b), denoted by L L
G1

ω∼= L L
G2

. Similarly, if a Lie algebra ho-

momorphism ̟ : Y1 → Y2 is an isomorphism, then it is said that Y1 is isomorphic

to Y2, denoted by Y1

̟∼= Y2. For Lie groups, we know the following result gotten

by Sophus Lie himself.

Theorem 6.4.10(Lie) Let Yi be a Lie algebra of a Lie group Gi for i = 1, 2. Then

G L
1

ω∼= G L
2 if and only if Y1

dω∼= Y2.

This theorem is usually called the fundamental theorem of Lie, which enables
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us knowing that a Lie algebra of a Lie group is a complete invariant of the local

structure of this group. For its a proof, the reader is refereed to references, such as

[Pon1] or [Var1] for examples. Then what is its revised form of Lie’s fundamental

theorem on Lie multi-groups? We know its an extended form on Lie multi-groups

following.

Theorem 6.4.11 Let Y(◦,LGi
) be a Lie algebra of a Lie multi-group LGi

for a

◦ ∈ O(LGi
), i = 1, 2. Then L L

G1

ω∼= L L
G2

if and only if Y(◦,LG1)
dω∼= Y(ω(◦),LG2)

for ∀◦ ∈ O(LG1).

Proof By definition, if L L
G1

ω∼= L L
G2

, then for ◦ ∈ O(LG1), the mapping

dω : Y(◦,LG1)→ Y(ω(◦),LG2)

is an isomorphism by Theorem 6.4.9. Whence, Y(◦,LG1)
dω∼= Y(ω(◦),LG2) for ∀◦ ∈

O(LG1).

Conversely, if Y(◦,LG1)
dω∼= Y(ω(◦),LG2) for ∀◦ ∈ O(LG1), by Theorem 6.4.10,

there is an isomorphism ω : U1
◦ → U2

ω(◦) of C∞-diffeomorphism, where U1
◦ and U2

ω(◦)

are the open neighborhoods of identities 1◦ and 1ω(◦), respectively. By definition, we

know that L L
G1

ω∼= L L
G2

. �

6.4.4 Adjoint Representation. For any operation ◦ ∈ O(LG), an adjoint

representation on of a Lie multi-group LG is the representation ad◦(a) = di◦a :

LG → L(Y(◦,LG),Y(◦,LG)) with an inner automorphism i◦a : LG → LG of LG

defined by i◦a : LG → LG; x→ a ◦ x ◦ a−1
◦ for a ∈ LG. If X1, X2, · · · , Xl is a basis

of Y(◦,LG), then the matrix representation of ad◦(a) = (aij)s×s is given by

ad◦(a)Xi = di◦aXi =
s∑
j=1

aji(a) ◦Xj.

By Theorem 6.4.9, the differential of the mapping ad◦(a) : LG → Aut(Y(◦,LG)) is

an adjoint representation of Y(◦,LG), denoted by Ad◦ : Y(◦,LG)→ Y(GL(n,R)).

Then we know that

Ad◦(X) ◦ Y = X ◦ Y − Y ◦X = [X, Y ]|◦

in the references, for example [AbM1] or [Wes1].

6.4.5 Lie Multi-Subgroup. A Lie multi-group LH is called a Lie multi-subgroup

of LG if
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(i) LH is a smoothly combinatorial submanifold of LG, and

(ii) LH is a multi-subgroup of LG in algebra.

Particularly, if LH is a Lie group, then we say it to be a Lie subgroup. The next

well-known result is due to E.Cartan.

Theorem 6.4.12(Cartan) A closed subgroup of a Lie group ia a lie group.

The proof of this theorem can be found in references, for example, [Pon1] or

[Var1]. Based on this Cartan’s theorem, we know the following result for Lie multi-

subgroups.

Theorem 6.4.13 Let LG be a Lie multi-group with conditions in Theorem 5.1.1

hold, where Ã (LG) =
m⋃
i=1

Hi and O(LG) =
m⋃
i=1

{◦i}. Then a multi-subgroup (H ;O)

of LG is a Lie multi-group if

(i) (H ;O)|◦i
is a closed subgroup of (Ã ; O)|◦i

for any integer i, 1 ≤ i ≤ m.

(ii) H is an induced subgraph of G.

Proof By the condition (ii), we know that (H ;O) is still a smoothly combina-

torial manifold by Theorem 5.1.1. According to Cartan’s theorem, each (H ;O)|◦i

is a Lie group. Whence, (H ;O) is a Lie multi-group by definition. �

6.4.6 Exponential Mapping. Notice that (R; +) is a Lie group by Example

6.4.1. Now let R̃ be a Lie multi-groups with

A (R̃) =
m⋃
i=1

Ri and O(R̃) = {+i, 1 ≤ i ≤ m},

where Ri = R and +i = +. A homomorphism ϕ : R̃ → LG on Lie multi-groups,

i.e., for an integer i, 1 ≤ i ≤ m and ∀s, t ∈ R, ϕ(s+i t) = ϕ(s)◦iϕ(t), is called a one-

parameter multi-group. Particularly, a homomorphism ϕ : R→ LG is called a one-

parameter subgroup, as usual. For example, if we chosen a ◦ ∈ O(LG) firstly, then

the one-parameter multi-subgroup of LG is nothing but a one parameter subgroup

of (H◦; ◦). In this special case, for ∀X, Y ∈X (M̃) we can define the Lie derivative

LXY of Y with respect to X introduced in Definition 5.7.2 by

LXY (x) = lim
t→0

1

t
[ϕ∗
tY (ϕt(x))− Y (x)]

for x ∈ M̃ , where {ϕt} is the 1-parameter group generated by X. It can be shown

that this definition is equivalent to Definition 5.7.2, i.e., LXY = XY −Y X = [X, Y ].
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Notice that (R; +) is commutative. For any integer i, 1 ≤ i ≤ m, we know that

ϕ(t) ◦i ϕ(s) = ϕ(s+i t) = ϕ(s) ◦i ϕ(t), i.e., {ϕ(t), t ∈ R} is a commutative subgroup

of (H◦i
; ◦i). Furthermore, since ϕ(0)◦iϕ(t) = ϕ(0+it) = ϕ(t), multiplying by ϕ(t)−1

◦i

on the right, we get that ϕ(0) = 1◦i
. Also, by ϕ(t) ◦i ϕ(−it) = ϕ(−it) ◦i ϕ(t) =

ϕ(t−i t−1
+i

) = ϕ(0+i
) = 1◦i

, we have that ϕ−1
◦i

(t) = ϕ(−it).
Notice that we can not conclude that 1◦1 = 1◦2 = · · · = 1◦m by ϕ(0+1) =

ϕ(0+2) = · · · = ϕ(0+m) in the real field R. In fact, we should have the inequalities

ϕ(0+1) 6= ϕ(0+2) 6= · · · 6= ϕ(0+m) in the multi-space R̃ by definition. Hence, it

should be 1◦1 6= 1◦2 6= · · · 6= 1◦m .

The existence of one-parameter multi-subgroups and one-parameter subgroup

of Lie multi-groups is obvious because of the existent one-parameter subgroups of

Lie groups. In such case, each one-parameter subgroup ϕ : R → G is associated

with a unique left-invariant vector field X ∈ Y(G ) on a Lie group G by

X(1G ) : f → X1G
f =

df(ϕ(t))

dt
|t=0.

Therefore, we characterize the combinatorial behavior on one-parameter multi-

subgroups and one-parameter subgroups of Lie multi-groups.

Theorem 6.4.15 Let LG be a Lie multi-groups with Ã (LG) =
m⋃
i=1

Hi and O(LG) =

m⋃
i=1

{◦i}. Then,

(i) if ϕ : R̃ → LG is a one-parameter multi-subgroup, then G[ϕ(R̃)] is a

subgraph of G, and G[ϕ(R̃)] = G if and only if for any integers i, j, 1 ≤ i, j ≤ m,

Hi ∩Hj 6= ∅ implies that there exist integers s, t such that ϕ(s), ϕ(t) ∈ ϕ(R; +i) ∩
ϕ(R; +j) with ϕ(t) ◦i ϕ(s) = ϕ(t) ◦j ϕ(s) holds;

(ii) if ϕ : R̃→ LG is a one-parameter subgroup, i.e., R̃ = R, then there is an

integer i0, 1 ≤ i0 ≤ m such that ϕ(R) ≺ (Hi0 ; ◦i0).

Proof By definition, each ϕ(R,+i) is a commutative subgroup of (Hi; ◦i) for

any integer 1 ≤ i ≤ m. Consequently, ϕ(R̃) is a commutative multi-subgroup of

LG. Whence, G[ϕ(R̃)] is a subgraph of G by Theorem 2.1.1.

Now if G[ϕ(R̃)] = G, then for integers i, j, Hi∩Hj 6= ∅ implies that ϕ(R; +i)∩
ϕ(R; +j) 6= ∅. Let ϕ(s), ϕ(t) ∈ ϕ(R; +i) ∩ ϕ(R; +j). Then there must be ϕ(s) ◦i
ϕ(t) = ϕ(s+i t) = ϕ(s+ t) = ϕ(s+j t) = ϕ(s) ◦j ϕ(t). That is the conclusion (i).
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The conclusion (ii) is obvious by definition. In fact, ◦i0 = ϕ(+). �

Let ϕ : R̃ → LG be a one-parameter multi-subgroup of LG. According to

Theorem 6.4.15, we can introduce an exponential mapping exp following:

exp :
⊕

◦∈O(LG)

Y(◦,LG)× O(LG)→ LG

determined by

exp(X, ◦) = ϕX(1◦).

We have the following result on the exponential mapping.

Theorem 6.4.16 Let ϕ : R̃ → LG be a one-parameter multi-subgroup. Then for

◦ ∈ O(LG) with ϕ(+) = ◦,

(i) ϕX(t) = exp(tX, ◦);
(ii) (exp(t1X, ◦)) ◦ (exp(t2X, ◦)) = exp((t1 + t2)X, ◦) and

exp(t−1
+ X, ◦) = exp−1(tX, ◦).

Proof Notice that s → ϕX(st), s, t ∈ R is a one-parameter subgroup of LG.

Whence, there is a vector field Y ∈ Y(◦,LG) such that

ϕY (s) = ϕX(st) with Y = dϕY (
d

ds
).

Furthermore, we know that dϕtX( d
ds

) = tX. Therefore, ϕtX = ϕX(st). Particularly,

let s = 1, we finally get that

exp(tX, ◦) = ϕtX(1◦) = ϕX(t),

which is the equality (i).

For (ii), by the definition of one-parameter subgroup, we know that

(exp(t1X, ◦)) ◦ (exp(t2X, ◦)) = ϕX(t1) ◦ ϕX(t2) = ϕX(t1 + t2)

= exp((t1 + t2)X, ◦)

and

exp(t−1
+ X, ◦) = ϕX(t−1

+ ) = (ϕX(t))−1
+ = exp−1(tX, ◦).

�
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For an n-dimensional R-vector space V , LG is just a Lie group GL(n,R). In

this case, we can show that

exp(tX, ◦) = etX =
∞∑

i=0

(tX)i

n!
,

where X i =

i︷ ︸︸ ︷
X ◦ · · · ◦X for X ∈ Y(GL(n,R)). To see it make sense, namely the

righthand side converges, we show it converges uniformly for X in a bounded region

of GL(n,R). In fact, for a given bounded region Λ, by definition there is a number

N > 0 such that for any matrix A = (xij(A))n×n in this region, there are must be

|xij(A)| ≤ N . Whence, |xij(Ak)| ≤ nk−1Nk. Thus, by the Weierstrass M-test, each

of the series
∞∑

k=0

xij(A
k)

k!

is converges uniformly to exij . Whence,

eA = (exij(A))n×n =
∞∑

k=0

(A)k

k!
.

Example 6.4.8 Let the matrix X to be

X =




0 −1 0

1 0 0

0 0 0


 .

A direct calculation shows that

etX = I3×3 + tX +
t2X2

2!
+
t3X3

3!
+ · · ·

= I3×3 + t




0 −1 0

1 0 0

0 0 0


+

t2

2!




−1 0 0

0 −1 0

0 0 0


+

t3

3!




0 1 0

−1 0 0

0 0 0


+ · · ·

=




(1− t2

2!
+ · · ·) −(t− t3

3!
+ · · ·) 0

(t− t3

3!
+ · · ·) (1− t2

2!
− · · ·) 0

0 0 1




=




cos t − sin t 0

sin t cos t 0

0 0 1


 .
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For a Lie multi-group homomorphism ω : LG1 → LG2 , there is a relation

between ω, dω and exp on a ◦ ∈ LG1 following.

Theorem 6.4.17 Let ω : LG1 → LG2 be a Lie multi-group homomorphism with

ω(◦) = • ∈ O(LG2) for ◦ ∈ O(LG1). Then the following diagram

LG1 LG2

Y(◦,LG1) Y(•,LG2)

-
-6 6

exp exp

ω

dω

is commutative.

Proof Let X ∈ Y(◦,LG1). Then t→ ω(exp(tX, ◦)) is a differentiable curve in

LG2 whose tangent vector at 0 ∈ R is dωX(1◦). Notice it is also a one-parameter

subgroup of LG2 because of ω a Lie multi-group homomorphism. Notice that t →
exp(tdω(X), ◦) is the unique one-parameter subgroup of LG2 with a tangent vector

dω(X)(1◦). Consequently, ω(exp(tX, ◦)) = exp(tdω(X), ◦) for ∀t ∈ R. Whence,

ω(exp(X, ◦)) = exp(dω(X), ◦). �

6.4.7 Action of Lie Multi-Group. We have discussed the action of permutation

multi-groups on finite multi-sets in Section 2.5. The same idea can be also applied

to infinite multi-sets.

Let M̃ be a smoothly combinatorial manifold consisting of manifolds of M1,M2,

· · · ,Mm and LG a Lie multi-group with (Ã (LG); O(LG)), where Ã (LG) =
m⋃
i=1

Hi

and O(LG) =
m⋃
i=1

{◦i}. The Lie multi-group LG is called an action on M̃ if there is a

differentiable mapping φ : LG×M̃ ×O(LG)→ M̃ determined by φ(g, x, ◦i) = g ◦ix
for g ∈Hi, x ∈Mi, 1 ≤ i ≤ m such that

(i) for ∀x, y ∈Mi and g ∈Hi, g ◦i x, g ◦i y ∈ g ◦iMi a manifold;

(ii) (g1 ◦i g2) ◦i x = g1 ◦i (g2 ◦i x) for g1, g2 ∈Hi;

(iii) 1◦i
◦i x = x.

In this case, the mapping x→ g ◦ x for ◦ ∈ O(LG) is a differentiable mapping

on M̃ . By definition, we know that g−1
◦ ◦(g ◦x) = g ◦(g−1

◦ ◦x) = 1◦◦x = x. Whence,
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x→ g◦x is a diffeomorphism on M̃ . We say LG is a faithful acting on M̃ if g◦x = x

for ∀x ∈H◦ implies that g = 1◦. It is an easy exercise for the reader that there are

no fixed elements in the intersection of manifolds in M̃ for a faithful action of LG

on M̃ . We say LG is a freely acting on M̃ if g ◦ x = x only hold for g = 1◦.

Define (LG)◦x0
= {g ∈ LG|g ◦ x0 = x0}. Then (LG)◦x0

forms a subgroup of

(LG). In fact, if g ◦ x0 = x0, we find that g−1
◦ ◦ (g ◦ x0) = g−1

◦ ◦ x0. Because of

g−1
◦ ◦ (g ◦x0) = (g−1

◦ ◦ g)◦x0 = 1◦ ◦x0 = x0, one obtains that g−1
◦ ◦x0 = x0. Whence,

g−1
◦ ∈ (LG)◦x0

. Now if g, h ∈ (LG)◦x0
, then (g ◦ h) ◦ x0 = g ◦ (h ◦ x0) = x0, i.e.,

g ◦ h ∈ (LG)◦x0
. Whence, (LG)◦x0

is a subgroup of LG.

Theorem 6.4.18 For ∀◦ ∈ O(LG), (LG)◦g◦x = g ◦ (LG)◦x ◦ g−1
◦ .

Proof Let h ∈ (LG)◦x. Then we know that g ◦ h ◦ g−1
◦ ◦ g ◦ x = g ◦ h ◦ x =

g ◦ (h◦x) = g ◦x, which implies that g ◦ (LG)◦x ◦ g−1
◦ ⊂ (LG)◦g◦x. Similarly, the same

argument enables us to find g−1
◦ ◦(LG)◦g◦x◦g ⊂ (LG)◦x, i.e., (LG)◦g◦x ⊂ g◦(LG)◦x◦g−1

◦ .

Therefore, (LG)◦g◦x = g ◦ (LG)◦x ◦ g−1
◦ . �

Corollary 6.4.6 Let G be a Lie group, x ∈ G . Then Ggx = gGxg
−1

Analogous to the finite case, we say that LG acts transitively on M̃ if for

∀x, y ∈ M̃ , there exist elements g ∈ LG and ◦ ∈ O(LG) such that y = g ◦ x. A

smoothly combinatorial manifold M̃ is called a homogeneous combinatorial manifold

if there is a Lie multi-group LG acting transitively on M̃ . If M̃ is just a manifold, a

homogeneous combinatorial manifold is also called a homogeneous manifold. Then

we have a structural result on homogeneous combinatorial manifolds following.

Theorem 6.4.19 Let M̃ be a smoothly combinatorial manifold on which a Lie

multi-group LG acts. Then M̃ is homogeneous if and only if each manifold in M̃ is

homogeneous.

Proof If M̃ is homogeneous, by definition we know that LG acts transitively

on M̃ , i.e., for ∀x, y ∈ M̃ , there exist g ∈ LG and an integer i, 1 ≤ i ≤ m such

that y = g ◦i x. Particularly, let x, y ∈ Mi. Then we know that g ∈ Hi. Whence,

LG|Hi
= (Hi, ◦i) is transitive on Mi, i.e., Mi is a homogeneous manifold.

Conversely, if each manifold M in M̃ is homogeneous, i.e. a Lie group GM acts

transitively M , let x, y ∈ M̃ . If x and y are in one manifold Mi, by assumption

there exists g ∈ GMi
with g : x → g ◦i x differentiable such that g ◦i x = y. Now if
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x ∈ Mi but y ∈ Mj with i 6= j, 1 ≤ i, j ≤ m, remember that GL[M̃ ] is connected,

there is a path

P (Mi,Mj) = Mk0Mk1Mk2 · · ·Mkl
Mkl+1

connecting Mi and Mj in GL[M̃ ], where Mk0 = Mi, Mkl+1
= Mj . Choose xi ∈

Mki
∩Mki+1

, 0 ≤ i ≤ l. By assumption, there are elements gi ∈ GMki
such that

gi ◦ki
xi = xi+1. Now let g ∈ GMi

and h ∈ GMj
such that g0 ◦i x = x0 and h ◦j xl = y.

Then we find that

(h ◦j gl ◦kl
gl−1 ◦kl−1

· · · g2 ◦k2 g1 ◦k1 g0) ◦i x = y.

Choose g = h ◦j gl ◦kl
gl−1 ◦kl−1

· · · g2 ◦k2 g1 ◦k1 g0 ∈ LG. It is differentiable by

definition. Therefore, M̃ is homogeneous. �

If LG acts transitively on a differentiable M̃ , then M̃ can be obtained if knowing

LG and stabilizers (LG)◦x, ◦ ∈ O(LG) of LG at x ∈ M̃ in advance. In fact, we have

the following result.

Theorem 6.4.20 Let M̃ be a differentiable combinatorial manifold consisting of

manifolds M◦i
, 1 ≤ i ≤ m, G◦i

a Lie group acting differentiably and transitively

on M◦i
. Chosen xi ∈ M◦i

, a projection πi : G◦i
→ G◦i

/(G◦i
)x, then the mapping

ςi : G◦i
→M◦i

determined by ςi(g) = g ◦i x for g ∈ G◦i
induces a diffeomorphism

ς :
m⊗
i=1

G◦i
/(G◦i

)x →
m⊗
i=1

M◦i

with ς = (ς1, ς2, · · · , ςm) and ς iπi = ςi. Furthermore, ς is a diffeomorphism

ς : LG/(LG)∆ → M̃,

where ∆ = {xi, 1 ≤ i ≤ m} and xi ∈Mi \ (M̃ \Mi), 1 ≤ i ≤ m.

Proof For a given integer i, 1 ≤ i ≤ m, let g ∈ G◦i
. Then for ∀g′ ∈ (G◦i

)x, we

have that g ◦i g′ ∈ g ◦i (G◦i
)x and ς(g ◦i g′) = ς(g). See the following diagram on the

relation among these mappings ςi, πi and ς i.
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? �G◦i

M◦i

G◦i
/(G◦i

)x

ςi

πi
ς i

Thus the mapping πi(g) = g◦i(G◦i
)x → ςi(g) determines a mapping ς i : G◦i

/(G◦i
)x →

M◦i
with ς iπi(g) = ςi(g). Notice that πi : G◦i

→ G◦i
/(G◦i

)x induces the identification

topology on G◦i
/(G◦i

)x by

U ⊂ G◦i
/(G◦i

)x is open if and only if π
−1
i (U) is open in G◦i

.

Then we know that ς i and ς−1
i are differentiably bijections. Whence, ς i is a diffeo-

morphism

ς i : G◦i
/(G◦i

)x →M◦i
.

Extending such diffeomorphisms linearly on
m⊗
i=1

G◦i
/(G◦i

)x, we know that

ς :
m⊗
i=1

G◦i
/(G◦i

)x →
m⊗
i=1

M◦i

is a diffeomorphism. Let xi ∈ ∆. Notice that LG =
m⋃
i=1

G◦i
, (LG)x =

m⋃
i=1

(G◦i
)x,

M̃ =
m⋃
i=1

Mi and

LG/(LG)∆
∼=

m⋃
i=1

G◦i
/(G◦i

)x.

Therefore, we get a diffeomorphism

ς : LG/(LG)∆ → M̃ . �

Corollary 6.4.7 Let M be a differentiable manifold on which a Lie group G acts

differentiably and transitively. Then for x ∈ M , a projection π : G → G /Gx, the

mapping ς : G →M determined by ς(g) = gx for g ∈ G induces a diffeomorphism

ς : G /Gx →M

with ςπ = ς.

We present some examples for the action of linear mappings on the complex
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plane C, which is isomorphic to R2.

Example 6.4.9 Let C be a complex plane and the group Q of C consisting of

f : C→ C by f(z) = az + b, a, b ∈ C and a 6= 0 for z ∈ C. Calculation shows that

QO = { az | a 6= 0 },

where O = (0, 0).

Example 6.4.10 Consider that action of the linear group SL(2,R) on the upper

half plane

C+ = { x+ iy ∈ C | y ≥ 0 }.

Notice that an element f ∈ SL(n,R) has a form

f =

[
a b

c d

]
, a, b, c, d ∈ R, ad− bc = 1

with a transitive action

f(z) =
az + b

cz + d

on a point z ∈ C+. Let z = i ∈ C+. We determine the stabilizer SL(2,R)i. In fact,

az + b

cz + d
= i implies that ai+ b = −c + di.

Whence, a = d and b = −c. Consequently, we know that ad − bc == a2 + b2 = 1,

which means that
[
a b

c d

]
=

[
cos θ − sin θ

sin θ cos θ

]
,

i.e., a rigid rotation on R2. Therefore, SL(2,R)i = SO(2,R), the rigid rotation

group consisting of all 2× 2 real orthogonal matrices of determinant 1.

§6.5 PRINCIPAL FIBRE BUNDLES

6.5.1 Principal Fiber Bundle. Let P̃ , M̃ be a differentiably combinatorial

manifolds and LG a Lie multi-group (Ã (LG); O(LG)) with

P̃ =

m⋃

i=1

Pi, M̃ =

s⋃

i=1

Mi, Ã (LG) =

m⋃

i=1

H◦i
,O(LG) =

m⋃

i=1

{◦i}.
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A differentiable principal fiber bundle over M̃ with group LG consists of a dif-

ferentiably combinatorial manifold P̃ , an action of LG on P̃ satisfying following

conditions PFB1-PFB3:

PFB1. For any integer i, 1 ≤ i ≤ m, H◦i
acts differentiably on Pi to the

right without fixed point, i.e.,

(x, g) ∈ Pi ×H◦i
→ x ◦i g ∈ Pi and x ◦i g = x implies that g = 1◦i

;

PFB2. For any integer i, 1 ≤ i ≤ m, M◦i
is the quotient space of a covering

manifold P ∈ Π−1(M◦i
) by the equivalence relation R induced by H◦i

:

Ri = {(x, y) ∈ P◦i
× P◦i

|∃g ∈H◦i
⇒ x ◦i g = y},

written by M◦i
= P◦i

/H◦i
, i.e., an orbit space of P◦i

under the action of H◦i
.

These is a canonical projection Π : P̃ → M̃ such that Πi = Π|P◦i
: P◦i

→ M◦i

is differentiable and each fiber Π−1
i (x) = {p ◦i g|g ∈ H◦i

,Πi(p) = x} is a closed

submanifold of P◦i
and coincides with an equivalence class of Ri;

PFB3. For any integer i, 1 ≤ i ≤ m, P ∈ Π−1(M◦i
) is locally trivial over

M◦i
, i.e., any x ∈M◦i

has a neighborhood Ux and a diffeomorphism T : Π−1(Ux)→
Ux ×LG with

T |Π−1
i (Ux) = T xi : Π−1

i (Ux)→ Ux ×H◦i
; x→ T xi (x) = (Πi(x), ǫ(x)),

called a local trivialization (abbreviated to LT) such that ǫ(x ◦i g) = ǫ(x) ◦i g for

∀g ∈H◦i
, ǫ(x) ∈H◦i

.

We denote such a principal fibre bundle by P̃ (M̃,LG). Ifm = 1, then P̃ (M̃,LG) =

P (M,H ), the common principal fiber bundle on a manifold M . Whence, the exis-

tence of P̃ (M̃,LG) is obvious at least for m = 1.

For an integer i, 1 ≤ i ≤ m, let T ui : Π−1
i (Uu) → Uu ×H◦i

, T vi : Π−1
i (Uv) →

Uv×H◦i
be two LTs of a principal fiber bundle P̃ (M̃,LG). The transition function

from T ui to T vi is a mapping iguv : Uu∩Uv →H◦i
defined by iguv(x) = ǫu(p)◦i ǫ−1

v (p)

for ∀x = Πi(p) ∈ Uu ∩ Uv.
Notice that iguv(x) is independent of the choice p ∈ Π−1

i (x) because of

ǫu(p ◦i g) ◦i ǫ−1
v (p ◦i g) = ǫu(p) ◦i g ◦i (ǫv(p) ◦i g)−1

= ǫu(p) ◦i g ◦i g−1
◦i
◦i ǫ−1

v (p) = ǫu(p) ◦i ǫ−1
v (p).
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Whence, these equalities following are obvious.

(i) iguu(z) = 1◦i
for ∀z ∈ Uu;

(ii) igvu(z) = ig−1
uv (z) for ∀z ∈ Uu ∩ Uv;

(iii) iguv(z) ◦i igvw(z) ◦i igwu(z) = 1◦i
for ∀z ∈ Uu ∩ Uv ∩ Uw.

A mapping Λ : U → P̃ for any opened set U ∈ M̃ is called a local section of a

principal fiber bundle P̃ (M̃,LG) if

ΠΛ(x) = Π(Λ(x)) = x for ∀x ∈ U,

i.e., the composition mapping ΠΛ fixes every point in U . Particularly, if U = M̃ , a

local section Λ : U → P̃ is called a global section. Similarly, if U = M̃ for a local

trivialization T : Π−1(U) → U × LG, then T is called a global trivialization. A

relation between local sections and local trivializations is shown in the following.

Theorem 6.5.1 There is a natural correspondence between local sections and local

trivializations.

Proof If Λ : U → P̃ is a local section, then we define T : Π−1(U) → U ×LG

for integers 1 ≤ i ≤ m by T xi (Λ(x) ◦i g) = (x, g) for x ∈ Ux ⊂Mi.

Conversely, if T : Π−1(U) → U × LG is a local trivialization, define a local

section Λ : U → P̃ by Λ(x) = (T ui )−1(x, 1◦i
) for x ∈ Ux ⊂Mi. �

6.5.2 Combinatorial Principal Fiber Bundle. A general way for constructing

principal fiber bundles P̃ (M̃,LG) over a differently combinatorial manifold M̃ is

by a combinatorial technique, i.e., the voltage assignment α : GL[M̃ ] → G over a

finite group G. In Section 4.5.4, we have introduced combinatorial fiber bundles

(M̃∗, M̃, p,G) consisting of a covering combinatorial manifold M̃∗, a finite group G,

a combinatorial manifold M̃ and a projection p : M̃∗ → M̃ by the voltage assignment

α : GL[M̃ ] → G. Consider the actions of Lie multi-groups on combinatorial mani-

folds, we find a natural construction way for principal fiber bundles on a smoothly

combinatorial manifold M̃ following.

Construction 6.5.1 For a family of principal fiber bundles over manifoldsM1,M2, · · · ,
Ml, such as those shown in Fig.6.5.1,
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where H◦i
is a Lie group acting on PMi

for 1 ≤ i ≤ l satisfying conditions PFB1-

PFB3, let M̃ be a differentiably combinatorial manifold consisting of Mi, 1 ≤ i ≤ l

and (GL[M̃ ], α) a voltage graph with a voltage assignment α : GL[M̃ ] → G over

a finite group G, which naturally induced a projection π : GL[P̃ ] → GL[M̃ ]. For

∀M ∈ V (GL[M̃ ]), if π(PM) = M , place PM on each lifting vertex MLα in the fiber

π−1(M) of GLα [M̃ ], such as those shown in Fig.6.5.2.

PM PM PM
︸ ︷︷ ︸

π−1(M)?
M

Fig.6.5.2

Let Π = πΠMπ
−1 for ∀M ∈ V (GL[M̃ ]). Then P̃ =

⋃
M∈V (GL[M̃ ])

PM is a smoothly

combinatorial manifold and LG =
⋃

M∈V (GL[M̃ ])

HM a Lie multi-group by definition.

Such a constructed combinatorial fiber bundle is denoted by P̃Lα(M̃,LG).

For example, let G = Z2 and GL[M̃ ] = C3. A voltage assignment α : GL[M̃ ]→
Z2 and its induced combinatorial fiber bundle are shown in Fig.6.5.3.
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We search for and research on principal fiber bundles in such constructed com-

binatorial fiber bundles P̃Lα(M̃,LG) in this book only. For this objective, a simple

criterion for principal fiber bundle is found following.

Theorem 6.5.2 A combinatorial fiber bundle P̃ α(M̃,LG) is a principal fiber bun-

dle if and only if for ∀(M ′,M ′′) ∈ E(GL[M̃ ]) and (PM ′ , PM ′′) = (M ′,M ′′)Lα ∈
E(GL[P̃ ]), ΠM ′ |PM′∩PM′′

= ΠM ′′ |PM′∩PM′′
.

Proof By Construction 6.5.1, if ΠM ′ : PM ′ → M ′ and ΠM ′′ : PM ′′ → M ′′, then

ΠM ′(PM ′∩PM ′′) = M ′∩M ′′ and ΠM ′′(PM ′∩PM ′′) = M ′∩M ′′. But ΠM ′ = Π|PM′
and

ΠM ′′ = Π|PM′′
. We must have that ΠM ′|PM ′ ∩ PM ′′ = Π|PM′∩PM′′

= ΠM ′′ |PM ′ ∩ PM ′′ .

Conversely, if for ∀(M ′,M ′′) ∈ E(GL[M̃ ]) and (PM ′, PM ′′) = (M ′,M ′′)Lα ∈
E(GL[P̃ ]), ΠM ′ |PM′∩PM′′

= ΠM ′′ |PM′∩PM′′
in P̃ α(M̃,LG), then Π = πΠMπ

−1 : P̃ →
M̃ is a well-defined mapping. Other conditions of a principal fiber bundle can be

verified immediately by Construction 6.5.1. �

6.5.3 Automorphism of Principal Fiber Bundle. In the following part of

this book, we always assume P̃ α(M̃,LG) satisfying conditions in Theorem 6.5.1,

i.e., it is a principal fiber bundle over M̃ . An automorphism of P̃ α(M̃,LG) is a

diffeomorphism ω : P̃ → P̃ such that ω(p ◦i g) = ω(p) ◦i g for g ∈H◦i
and

p ∈ ⋃
P∈π−1(Mi)

P , where 1 ≤ i ≤ l.

Particularly, if l = 1, an automorphism of P̃ α(M̃,LG) with an voltage assignment

α : GL[M̃ ] → Z0 degenerates to an automorphism of a principal fiber bundle over
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a manifold. Certainly, all automorphisms of P̃ α(M̃,LG) forms a group, denoted by

AutP̃ α(M̃,LG).

An automorphism of a general principal fiber bundle P̃ (M̃,LG) can be intro-

duced similarly. For example, if ωi : PMi
→ PMi

is an automorphisms over the

manifold Mi for 1 ≤ i ≤ l with ωi|PMi
∩PMj

= ωj|PMi
∩PMj

for 1 ≤ i, j ≤ l, then by the

Gluing Lemma, there is a differentiable mapping ω : P̃ → P̃ such that ω|PMi
= ωi

for 1 ≤ i ≤ l. Such ω is an automorphism of P̃ (M̃,LG) by definition. But we

concentrate our attention on the automorphism of P̃ α(M̃,LG) because it can be

combinatorially characterized.

Theorem 6.5.3 Let P̃ α(M̃,LG) be a principal fiber bundle. Then

AutP̃ α(M̃,LG) ≥ 〈L〉 ,

where L = { ĥωi | ĥ : PMi
→ PMi

is 1PMi
determined by h((Mi)g) = (Mi)g◦ih for h ∈

G and gi ∈ AutPMi
(Mi,H◦i

), 1 ≤ i ≤ l}.

Proof It is only needed to prove that each element ω in S is an automorphism

of P̃ α(M̃,LG). We verify ω = ĥωi is an automorphism of P̃ α(M̃,LG) for ωi ∈
AutPMi

(Mi,H◦i
) and h ∈ G with h((Mi)g) = (Mi)g◦ih. In fact, we get that

ω(p ◦i g) = ĥωi(p ◦i g) = ĥ(ωi(p) ◦i g) = ĥωi(p) ◦i g)

for p ∈ ⋃
P∈π−1(Mi)

P and g ∈H◦i
. Whence, ω is an automorphism of P̃ α(M̃,LG). �

A principal fiber bundle P̃ (M̃,LG) is called to be normal if for ∀u, v ∈ P̃ , there

exists an ω ∈ AutP̃ (M̃,LG) such that ω(u) = v. We get the necessary and sufficient

conditions of normally principal fiber bundles P̃ α(M̃,LG) following.

Theorem 6.5.4 P̃ α(M̃,LG) is normal if and only if PMi
(Mi,H◦i

) is normal,

(H◦i
; ◦i) = (H ; ◦) for 1 ≤ i ≤ l and GLα[M̃ ] is transitive by diffeomorphic au-

tomorphisms in AutGLα [M̃ ].

Proof If P̃ α(M̃,LG) is normal, then for ∀u, v ∈ P̃ , there exists an ω ∈
AutP̃ α(M̃,LG) such that ω(u) = v. Particularly, let u, v ∈ Mı for an integer

i, 1 ≤ i ≤ l or GLα[M̃ ]. Consider the actions of AutP̃ α(M̃,LG)|PMi
(Mi,H◦i

) and

AutP̃ α(M̃,LG)|GLα [M̃ ], we know that PMi
(Mi,H◦i

) for 1 ≤ i ≤ l and GLα[M̃ ] are
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normal, and particularly, GLα[M̃ ] is a transitive graph by diffeomorphic automor-

phisms in AutGLα[M̃ ].

Now choose u ∈ Mi and v ∈ Mj \Mi, 1 ≤ i, j ≤ l. By definition, there is

an automorphism ω ∈ AutP̃ α(M̃,LG) such that ω(u) = v. Whence, ω(u ◦i g) =

ω(u) ◦i g = v ◦i g by definition. But this equality is well-defined only if (H◦i
; ◦i) =

(H◦j
; ◦j). Applying the normality of P̃ α(M̃,LG), we find that (H◦i

; ◦i) = (H ; ◦)
for any integer 1 ≤ i ≤ l.

Conversely, if PMi
(Mi,H◦i

) is normal, (H◦i
; ◦i) = (H ; ◦) for 1 ≤ i ≤ l and

GLα[M̃ ] is transitive by diffeomorphic automorphisms in AutGLα[M̃ ], let u, u0 ∈Mi,

v, v0 ∈ Mj and g(u0) = v0 for a diffeomorphic automorphism g ∈ AutGLα[M̃ ]. Then

we know that there exist ωi ∈ AutPMi
(Mi,H◦i

) and ωj ∈ AutPMj
(Mj ,H◦j

) such

that ωi(u) = u0, ωj(v0) = v. Therefore, we know that

ωjgωi(u) = ωj(g(u0)) = ωj(v0) = v.

Notice that ωi, ωj and g are diffeomorphisms. We know that ωjgωi is also a

diffeomorphism. �

Application of Theorem 4.5.6 enables us to get the following consequence.

Corollary 6.5.1 Let GL[M̃ ] be a transitive labeled graph by diffeomorphic automor-

phisms in AutGL[M̃ ], α : GL[M ]→ G a locally f -invariant voltage assignment and

P (M,H ) a normal principal fiber bundle. Then the constructed P̃ α(M̃,LG) replac-

ing each PMi
(Mi,H◦i

), 1 ≤ i ≤ l by P (M,H ) in Construction 6.5.1 is normal.

Proof By Theorem 4.5.6, a diffeomorphic automorphism of GL[M̃ ] is lifted to

GLα[M̃ ]. According to Theorems 6.5.3 and 6.5.4, we know that P̃ α(M̃,LG) is a

normally principal fiber bundle. �

6.5.4 Gauge Transformation. An automorphism ω of P̃ α(M̃,LG) naturally

induces a diffeomorphism ω : M̃ → M̃ determined by ω(Π(p)) = Π(ω(p)). Applica-

tion of ω motivates us to raise the conception of gauge transformation important in

theoretical physics. A gauge transformation of a principal fiber bundle P̃ α(M̃,LG)

is such an automorphism ω : P̃ → P̃ with ω =identity transformation on M̃ , i.e.,

Π(p) = Π(ω(p)) for p ∈ P̃ . Similarly, all gauge transformations also forms a group,

denoted by GA(P̃ ).
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There are many gauge transformations on principal fiber bundles. For example,

the identity transformations 1PMi
induced by the right action of G on vertices in

GLα[M̃ ], i.e., h((Mi)g) = (Mi)g◦ih for ∀h ∈ G, 1 ≤ i ≤ l are all such transformations.

Let P̃ α(M̃,LG) be a principal fiber bundle and (H◦i
; ◦i) act on a manifold

Fi to the left, i.e., for each g ∈ H◦i
, there is a C∞-mapping iLg : H◦i

× Fi →
Fi such that iL1◦i

(u, ◦i) = u and iLg1◦ig2(u, ◦i) =i Lg1 ◦i iLg2(u, ◦i) for ∀u ∈ Fi.

Particularly, let Fi be a vector space Rni and iLg a linear mapping on Rni. In this

case, a homomorphism H◦i
→ GL(ni,R) determined by g → Lg for g ∈ H◦i

is a

representation of H◦i
. Two such representations g → Lg and g → L′

g are called

to be equivalent if there is a linear mapping T : GL(ni,R) → GL(ni,R) such that

L′
g = T ◦i Lg ◦i T−1

◦i
for ∀g ∈H◦i

, 1 ≤ i ≤ l.

For an integer i, 1 ≤ i ≤ l, define a mapping space

Ci(PMi
, Fi) = { ̟ : PMi

→ Fi | ̟(u ◦i g) = g−1
◦i
◦i ̟(u), ∀u ∈ PMi

, g ∈H◦i
}.

Particularly, if l = 1 with a trivial voltage group, i.e., P̃ α(M̃,LG) is a principal

fiber bundle over a manifold M , Ci(PMi
, Fi) is abbreviated to C(PM , F ). We have

a result on gauge transformations of P̃ α(M̃,LG) following.

Theorem 6.5.5 Let P̃ α(M̃,LG) be a principal fiber bundle with a voltage assignment

α : GL[M̃ ] → G and Ci(PMi
,H◦i

) with an action g(g′) = g ◦i g′ ◦i g−1
◦i

of H◦i
on

itself, 1 ≤ i ≤ l. Then

GA(P̃ ) ∼= R(G)
⊗

(

l⊗

i=1

Ci(PMi
,H◦i

)),

where R(G) denotes all identity transformations 1PMi
, 1 ≤ i ≤ l induced by the right

action of G on vertices in GLα[M̃ ].

Proof For any ̟ ∈ Ci(PMi
,H◦i

), define ω : PMi
→ PMi

by ω(u) = u ◦i ̟(u)

for u ∈ PMi
. Notice that ω(u ◦i g) = u ◦i g ◦i ̟(u ◦i g) = u ◦i g ◦i g−1

◦i
̟(u) ◦i g =

u ◦i ̟(u) ◦i g = ω(u) ◦i g. It follows that ω ∈ GA(PMi
).

Conversely, if ω ∈ GA(PMi
), define ̟ : PMi

→ H◦i
by the relation ω(u) =

u ◦i ̟(u). Then u ◦i g ◦̟(u ◦i g) = ω(u ◦i g) = ω(u) ◦i g = u ◦i ̟(u) ◦i g. Whence,

̟(u ◦i g) = g−1
◦i
◦i ̟(u) ◦i g and it follows that ̟ ∈ Ci(PMi

,H◦i
). Furthermore,

if ω, ω′ ∈ GA(PMi
) with ω(u) = u ◦i ̟(u) and ω′(u) = u ◦i ̟′(u), then ωω′(u) =

u ◦i (τ(u)τ ′(u)). We know that GA(PMi
) ∼= Ci(PMi

,H◦i
).
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Extend such isomorphisms ιi : GA(PMi
)→ Ci(PMi

,H◦i
) linearly to P̃ α(M̃,LG).

Notice that all identity transformations 1PMi
induced by the right action of G on

vertices in GLα [M̃ ] induce gauge transformations of P̃ α(M̃,LG) by definition, we

get that

GA(P̃ ) ⊇ R(G)
⊗

(

l⊗

i=1

Ci(PMi
,H◦i

)).

Besides, each gauge transformation ω of P̃ α(M̃,LG) with Π(p) = Π(ω(p))

can be decomposed into a form ω = 1Mi
◦i ωi ◦i 1Mi

by Construction 6.5.1, where

ωi ∈ Ci(PMi
,H◦i

) for an integer i, 1 ≤ i ≤ l. We finally get that

GA(P̃ ) = R(G)
⊗

(

l⊗

i=1

Ci(PMi
,H◦i

)).

�

Corollary 6.5.2 Let P (M,H ) be a principal fiber bundle over a manifold M . Then

GA(P ) ∼= C(PM ,H ).

For any integer i, 1 ≤ i ≤ l, let Y(LG, ◦i) be a Lie algebra of P̃ α(M̃,LG) with

an adjoint representation ad◦i : H◦i
→ GL(Y(LG, ◦i)) given by g → ad◦i(g) for ∀g ∈

H◦i
. Then the space Ci(PMi

,Y(LG, ◦i)) is called a gauge algebra of PMi
(Mi,H◦i

).

If Ci(PMi
,Y(LG, ◦i)) has be defined for all integers 1 ≤ i ≤ l, then the union

l⋃

i=1

Ci(PMi
,Y(LG, ◦i))

is called a gauge multi-algebra of P̃ α(M̃,Y(LG)), denoted by C(P̃ ,LG).

Theorem 6.5.6 For an integer i, 1 ≤ i ≤ l, if Hi, H
′
i ∈ Ci(PMi

,Y(LG, ◦i)),
let [Hi, H

′
i] : PMi

→ H◦i
be a mapping defined by [Hi, H

′
i](u) = [Hi(u), H

′
i(u)] for

∀u ∈ PMi
. Then [Hi, H

′
i] ∈ Ci(PMi

,Y(LG, ◦i)), i.e., Ci(PMi
,Y(LG, ◦i)) has a Lie

algebra structure. Consequently, C(P̃ ,LG) has a Lie multi-algebra structure.

Proof By definition, we know that

[Hi, H
′
i](u ◦i g) = [Hi(u ◦i g), H ′

i(u ◦i g)]
= [ad◦i(g−1

◦i
)Hi(u), ad

◦i(g−1
◦i

)H ′
i(u)]

= ad◦i(g−1
◦i

)[H(u), H ′(u)] = ad◦i(g−1
◦i

)[H,H ′](u)



Sec.6.5 Principal Fiber Bundles 341

for ∀u ∈ PMi
. Whence, Ci(PMi

,Y(LG, ◦i)) inherits a Lie algebra structure, and

C(P̃ ,LG) has a Lie multi-algebra structure. �

6.5.5 Connection on Principal Fiber Bundle. A local connection on a princi-

pal fiber bundle P̃ α(M̃,LG) is a linear mapping iΓu : Tx(M̃)→ Tu(P̃ ) for an integer

i, 1 ≤ i ≤ l and u ∈ Π−1
i (x) = iFx, x ∈Mi, enjoys the following properties:

(i) (dΠi)
iΓu = identity mapping on Tx(M̃);

(ii) iΓiRg◦iu = d iRg ◦i iΓu, where iRg denotes the right translation on PMi
;

(iii) the mapping u→ iΓu is C∞.

Similarly, a global connection on a principal fiber bundle P̃ α(M̃,LG) is a linear

mapping Γu : Tx(M̃) → Tu(P̃ ) for a u ∈ Π−1(x) = Fx, x ∈ M̃ with conditions

following hold:

(i) (dΠ)Γu = identity mapping on Tx(M̃);

(ii) ΓRg◦u = dRg ◦ Γu for ∀g ∈ LG and ∀◦ ∈ O(LG), where Rg denotes the

right translation on P̃ ;

(iii) the mapping u→ Γu is C∞.

Certainly, there exist closed relations between the local and global connections

on principal fiber bundles. A local or global connection on a principal fiber bundle

P̃ α(M̃,LG) are distinguished by or not by indexes i for 1 ≤ i ≤ l in this subsec-

tion. We consider the local connections first, and then the global connections in the

following.

Let iHu = iΓu(Tx(M̃)) and iVu = Tu(
iFx) the space of vectors tangent to the

fiber iFx, x ∈ Mi at u ∈ PMi
with Πi(u) = x. Notice that dΠi : Tu(

iFx) →
Tx({x}) = {0}. For ∀X ∈ iVu, there must be dΠi(X) = 0. These spaces iHu and iVu

are called horizontal or vertical space of the connection iΓu at u ∈ P̃ , respectively.

Theorem 6.5.7 For an integer i, 1 ≤ i ≤ l, a local connection iΓ in P̃ is an

assignment iH : u→ iHu ⊂ Tu(P̃ ), of a subspace iHu of Tu(P̃ ) to each u ∈ iFx with

(i) Tu(P̃ ) = iHu ⊕i Vu, u ∈ iFx;

(ii) (d iRg)
iHu = iHu◦ig for ∀u ∈ iFx and ∀g ∈H◦i

;

(iii) iH is a C∞-distribution on P̃ .

Proof By the linearity of the mapping iΓu, u ∈ iFx for x ∈ Mi,
iHu is a linear
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subspace of the tangent space Tu(P̃ ). Since (dΠi)
iΓu = identity mapping on Tx(M̃),

we know that dΠi is one-to-one. Whence, dΠi : iHu → TΠ(u)(M̃) is an isomorphism,

which alludes that iHu ∩ iVu = {0}. In fact, if iHu ∩ iVu 6= {0}, let X ∈ iHu ∩ iVu,

X 6= 0. Then dΠiX = 0 and dΠiX ∈ Tx(M̃). Because dΠi : iHu → Tu(M̃) is an

isomorphism, we know that KerdΠi = {0}, which contradicts that 0 6= X ∈ KerdΠi.

Therefore, for ∀X ∈ Tu(P̃ ), there is an unique decomposition X = Xh + Xv,

Xh ∈ iHu, Xv ∈ iVu, i.e.,

Tu(P̃ ) = iHu ⊕ iVu.

Notice that

iHu◦ig = iΓiRg◦iu(Tx(M̃)) = (d iRg)
iΓu(Tx(M̃)) = (d iRg)

iHu.

So the property (ii) holds. Finally, the C∞-differentiable of iH is implied by the

C∞-differentiable of the mapping u→ iΓu.

Conversely, if iH : u → iHu is a such C∞ distribution on P̃ , we can define a

local connection to be a linear mapping iΓu : Tx(M̃)→ Tu(P̃ ) for u ∈ Π−1
i (x) = iFx,

x ∈Mi by iΓu(Tu(M̃)) = iHu, which is a connection on P̃ α(M̃,LG). �

Theorem 6.5.7(i) gives a projection of Tu(P̃ ) onto the tangent space Tu(
iFx) of

iFx with x ∈Mi and Πi(u) = x by

iv : Tu(P̃ )→ Tu(
iFx); X = Xv +Xh → ivX = Xv.

Moreover, there is an isomorphism from Y(H◦i
, ◦i) to Tu(

iFx) by the next result,

which enables us to know that a local connection on a principal fiber bundle can be

also in terms of a Y-valued 1-forms.

Theorem 6.5.8 Let P̃ α(M̃,LG) be a principal fiber bundle. Then for any integer

i, 1 ≤ i ≤ l,

(i) there exists an isomorphism ιi : Y(H◦i
, ◦i) → Tu(

iFx) for ∀u ∈ PMi
with

Πi(u) = x;

(ii) if ιi(X) = X̂v ∈ Y(H◦i
, ◦i), then ιi((d

iRg)X) = ad◦i(g−1)X̂v ∈ Y(H◦i
, ◦i).

Proof First, any left-invariant vector field X̂ ∈ X (H◦i
) gives rise to a vector

field X ∈X (PMi
) such that the mapping Y(H◦i

, ◦i)→ PMi
determined by X̂ → X

is a homomorphism, which is injective. If Xu = 0 ∈ PMi
for some u ∈ PMi

, then
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X̂ = 0◦i
∈ Y(H◦i

, ◦i). Notice that u◦ig = iRgu = u◦iexp(tX), g ∈H◦i
, lies on the

same fiber as u by definition of the principal fiber bundle and Construction 6.5.1.

Whence, the mapping ιi : Y(H◦i
, ◦i) → Tu(

iFx) is an injection into the tangent

space at u to the fiber iFx with the same dimension as Y(H◦i
, ◦i). Therefore, for

∀Y ∈ Tu(iFx), there exists a unique X̂u ∈ Y(H◦i
, ◦i) such that ιi(X̂) = Y , i.e., an

isomorphism. That is the assertion of (i).

Notice that if Xv generates a 1-parameter subgroup iϕt, then (d iRg)Xv gen-

erates the 1-parameter group iRg
iϕt

iR−1
g . Let γi(t) : R → H◦i

the 1-parameter

subgroup of H◦i
generated by X̂ ∈ Y(H◦i

, ◦i) and iϕ(t) = iRγi(t). Then

iRg
iRγ(t)

iR−1
g = iRg−1◦iγ(t)◦ig.

Whence, the element of Y(H◦i
, ◦i) corresponding to (d iRg)Xv generates the 1-

parameter subgroup g−1 ◦i γi(t) ◦i g of H◦i
, i.e., g−1 ◦i γi(t) ◦i g is the 1-parameter

subgroup generated by (ad◦i(g−1))X̂v such as those shown in Fig.6.5.4,

>I
1◦i

γi(t)

g−1 ◦i γ(t) ◦i g

X̂vX̂ ′
v

T1◦i
(H◦i

)

Fig.6.5.4

where γi(t) = exptX̂v, g
−1 ◦i γ(t) ◦i g = g−1 ◦i exptX̂v ◦i g = expt(ad◦ig−1X̂v) and

X̂ ′
v = (ad◦ig−1)X̂v), X̂v, X̂

′
v ∈ Y(H◦i

, ◦i). �

Application of Theorem 6.5.8 enables us to get a linear mapping Tu(P̃ )→H◦i
,

which defines a Y(H◦i
, ◦i)-valued 1-form iωu = ιi

iv on P̃ , where ιi and iv are shown

in the following diagram.

Tu(P̃ )
iv→ Tu(

iFx)
ιi∼= Y(H◦i

, ◦i)

Theorem 6.5.9 For any integer i, 1 ≤ i ≤ l, let iΓ be a local connection on

P̃ α(M̃,LG). Then there exists a Y(H◦i
, ◦i)-valued 1-form iω on PMi

, i.e., the con-

nection form satisfying conditions following:
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(i) iω(X) is vertical, i.e., iω(X) = iω(Xv) = X̂v, where Xv ∈ iVu ⊂ Tu(P̃ )

and iω(X) = 0 if and only if X ∈ iHu;

(ii) iω((d iRg)X) = ad◦ig−1iω(X) for ∀g ∈H◦i
and ∀X ∈X (PMi

).

Proof Let iω = ιi
iv. Then iω(X) = ιi

iv(X) = ιi(Xv) = X̂v ∈ Y(H◦i
, ◦i).

Moreover, X ∈ iHu if and only if iv(X) = 0, i.e., iω(X) = 0, which is equivalent to
iω(X) = 0.

By Theorem 6.5.8(ii), we know that

iω((d iRg)X) = iω([(d iRg)X]v) = iω((d iRg)Xv) = ad◦i(g−1)iω(X).

For showing that iω depends differentiably on u, it suffices to show that for

any C∞-vector field X ∈ P̃ , iω(X) is a differentiable Y(H◦i
, ◦i)-valued mapping. In

fact, X is C∞ implies that iv(X) : u→ (ivX)u and ih(X) : u→ (ihX)u are of class

C∞ and since ivX is differentiable at u, so is X̂v = iω(X).

Conversely, given a differentiable Y(H◦i
, ◦i)-valued 1-form iω on P̃ with con-

ditions (i)-(ii) hold, define the distribution

iHu = { X ∈ Tu(P̃ ) | iω(X) = 0 }.

Then the assignment u → iHu defines a local connection with its connection form
iω. In fact, for ∀X ∈ iVu,

iω(X) 6= 0 implies X 6∈ iHu. Therefore, iHu ∩ iVu = {0}
and Tu(P̃ ) = iHu + iVu. In fact, let iω(X) = X̂v. But we know that iω(Xv) = X̂v.

Let Z = X − Xv. We find that iω(Z) = iω(X)− iω(Xv) = 0. Hence, Z ∈ iHu,

which implies that Tu(P̃ ) = iHu ⊕i Vu. That is the condition (i) in Theorem 6.5.7.

Now for any X ∈ iHu, we have that iω((d iRg)X) = (ad◦ig−1) iω(X) = 0.

Whence, (d iRg)X is horizontal, i.e., (d iRg)
iHu ⊂ iHu◦ig.

Let Xu◦ig ∈ iHu◦ig with Xu◦ig = (d iRg)Xu for some Xu ∈ Tu(P̃ ). We show

that Xu ∈ iHu. Notice that Xu◦ig = (d iRg)Xu is equivalent to Xu = (d iRg−1)Xu◦ig.

We get that

iω(Xu) =i ω((d iRg−1)Xu◦ig) = (ad◦ig−1) iω(Xu◦ig) = 0,

which implies that Xu is horizontal. Furthermore, since u→ iω(u) is of class C∞,

and X is a C∞-vector field, so is ivX and therefore u→ iHu is of class C∞. �

Now we turn our attention to the global connections on principal fiber bundles.

Notice the proofs of Theorems 6.5.7 and 6.5.9 are directly by the definition of local
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connection. Whence, the same arguments can also establishes the following results

on global connections.

Theorem 6.5.10 A global connection Γ in P̃ is an assignment H : u→ Hu ⊂ Tu(P̃ ),

of a subspace Hu of Tu(P̃ ) to each u ∈ Fx with

(i) Tu(P̃ ) = Hu ⊕ Vu, u ∈ Fx;
(ii) (dRg)Hu = Hu◦g for ∀u ∈ Fx, ∀g ∈ LG and ◦ ∈ O(LG);

(iii) H is a C∞-distribution on P̃ .

Theorem 6.5.11 Let Γ be a global connection on P̃ α(M̃,LG). Then there exists

a Y(LG)-valued 1-form ω on P̃ , i.e., the connection form satisfying conditions fol-

lowing:

(i) ω(X) is vertical, i.e., ω(X) = ω(Xv) = X̂v, where Xv ∈ Vu ⊂ Tu(P̃ ) and

ω(X) = 0 if and only if X ∈ Hu;

(ii) ω((dRg)X) = ad◦g−1ω(X) for ∀g ∈ LG, ∀X ∈X (P̃ ) and ◦ ∈ O(LG).

Certainly, all local connections on a principal fiber bundle exist if a global

connection on this principal fiber bundle exist first. But the converse is not obvious.

So it is interesting to find conditions under which a global connection exists. We

know the following result on this question.

Theorem 6.5.12 Let iΓ be a local connections on P̃ α(M̃,LG) for 1 ≤ i ≤ l. Then

a global connection on P̃ α(M̃,LG) exists if and only if (H◦i
; ◦i) = (H ; ◦), i.e., LG

is a group and iΓ|Mi∩Mj
= jΓ|Mi∩Mj

for (Mi,Mj) ∈ E(GL[M̃ ]), 1 ≤ i, j ≤ l.

Proof If there exists a global connection Γ on a principal fiber bundle P̃ α(M̃,LG),

then Γ|Mi
, 1 ≤ i ≤ l are local connections on P̃ α(M̃,LG) with iΓ|Mi∩Mj

= jΓ|Mi∩Mj

for (Mi,Mj) ∈ E(GL[M̃ ]), 1 ≤ i, j ≤ l.

Furthermore, by the condition (ii) in the definition of global connection, Rg◦u =

u ◦ g is well-defined for ∀g ∈ LG, ∀◦ ∈ O(LG), i.e., g acts on all u ∈ P̃ . Whence,

(H◦i
; ◦i) = (H ; ◦) if g ∈H◦i

, 1 ≤ i ≤ l, which means that LG = (H ; ◦) is a group.

Conversely, if LG is a group and iΓ|Mi∩Mj
= jΓ|Mi∩Mj

for (Mi,Mj) ∈ E(GL[M̃ ]),

1 ≤ i, j ≤ l, we can define a linear mapping Γu : Tx(M̃) → Tu(P̃ ) by Γu = iΓu for

a u ∈ Π−1(x) = Fx, x ∈ Mi. Then it is easily to know that the mapping Γ satisfies

conditions of a global connection. In fact, by definition, we know that
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(1) (dΠ)Γu = (dΠi)
iΓ = identity mapping on Tx(Mi) for 1 ≤ i ≤ l. Hence,

(dΠ)Γu = identity mapping on Tx(M̃);

(2) ΓRg◦u = iΓRg◦u = dRg ◦ iΓu if x ∈ Mi, 1 ≤ i ≤ l. That is ΓRg◦u = dRg ◦ iΓu

for ∀g ∈ LG;

(3) the mapping u→ iΓu is C∞ if x ∈Mi, 1 ≤ i ≤ l. Whence, u→ Γu is C∞.

This completes the proof. �

We have known there exists a connection on a common principal fiber bun-

dle P (M,H ) in classical differential geometry. For example, the references [Bel1]

or [Wes1]. Combining this fact with Theorems 6.5.4 and 6.5.12, we get the next

consequence.

Corollary 6.5.3 There are always exist global connections on a normally principal

fiber bundle P̃ α(M̃,LG).

6.5.6 Curvature Form on Principal Fiber Bundle. Let P̃ α(M̃,LG) be a

principal fiber bundle associated with local connection form iω, 1 ≤ i ≤ l or a

global connection form ω. A curvature form of a local or global connection form is

a Y(H◦i
, ◦i) or Y(LG)-valued 2-form

iΩ = (d iω)h, or Ω = (dω)h,

where

(d iω)h(X, Y ) = d iω(hX, hY ), (dω)h(X, Y ) = dω(hX, hY )

for X, Y ∈ X (PMi
) or X, Y ∈ X (P̃ ). Notice that a 1-form ωh(X1, X2) = 0 if and

only if ih(X1) = 0 or ih(X12) = 0. We have the following structural equation on

principal fiber bundles.

Theorem 6.5.13(E.Cartan) Let iω, 1 ≤ i ≤ l and ω be local or global connection

forms on a principal fiber bundle P̃ α(M̃,LG). Then

(d iω)(X, Y ) = −[ iω(X),i ω(Y )] + iΩ(X, Y )

and

dω(X, Y ) = −[ω(X), ω(Y )] + Ω(X, Y )

for vector fields X, Y ∈X (PMi
) or X (P̃ ).
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Proof We only prove the structural equation for local connections, i.e., the

equation

(d iω)(X, Y ) = −[ iω(X),i ω(Y )] + iΩ(X, Y ).

The proof for the structural equation of global connections is similar. We

consider three cases following.

Case 1. X, Y ∈ iHu

In this case, X, Y are horizontal. Whence, iω(X) = iω(Y ) = 0. By definition,

we know that (d iω)(X, Y ) =i Ω(X, Y ) = −[ iω(X),i ω(Y )] + iΩ(X, Y ).

Case 2. X, Y ∈ iVu

Applying the equation in Theorem 5.2.5, we know that

(d iω)(X, Y ) = X iω(Y )− Y iω(X)− iω([X, Y ]).

Notice that iω(X) = iω(Xv) = X̂ is a constant function. We get that X iω(Y ) =

Y iω(X) = 0. Hence,

(d iω)(Xv, Yv) = − iω([Xv, Yv]) = − iω([X, Y ]v) = ̂[X, Y ]v = −[X̂, Ŷ ],

which means that the structural equation holds.

Case 3. X ∈ iVu and Y ∈ iHu

Notice that iω(Y ) = 0 and Y iω(X) = 0 with the same reason as in Case 2.

One can shows that [X, Y ] ∈ iHu in this case. In fact, let X is induced by rRϕt ,

where ϕt is the 1-parameter subgroup of H◦i
generated by X̂v. Then

[X, Y ] = LXY = lim
t→0

1

t
(d iRϕtY − Y )

implies that [X, Y ] ∈ iHu since Y and (d iRϕt)Y are horizontal by Theorem

6.5.10(ii). Whence, iω([X, Y ]) = 0. Therefore, (d iω)(X, Y ) = 0, which consis-

tent with the right hand side of the structure equation. �

Notice that the structural equation can be also written as

iΩ = d iω +
1

2
[ iω, iω], and Ω = dω +

1

2
[ω, ω]

since [ω, ω](X, Y ) = 2[ω(X), ω(Y )] for any 1-form ω. Using the structural equation,

we can also establish the Bianchi’s identity for principal fiber bundles P̃ α(M̃,LG)

following.
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Theorem 6.5.14(Bianchi) Let iω, 1 ≤ i ≤ l and ω be local or global connection

forms on a principal fiber bundle P̃ α(M̃,LG). Then

(d iΩ)h = 0, and (dΩ)h = 0.

Proof We only check that (d iΩ)h = 0 since the proof for (dΩ)h = 0 is similar.

applying Theorem 6.5.13, by definition, we now that

(d iΩ)h(X, Y, Z) = dd iωh(X, Y, Z) +
1

2
d[ iω, iω]h(X, Y, Z) = 0

because of

dd iωh(X, Y, Z) = 0, and d[ iω, iω]h(X, Y, Z) = 0

by applying Theorem 5.2.4 and iω vanishes on horizontal vectors. �

§6.6 REMARKS

6.6.1 Combinatorial Riemannian Submanifold. A combinatorial manifold

is a combination of manifolds underlying a connected graph G. So it is natural

to characterize its combinatorial submanifolds by properties of its graph and sub-

manifolds. In fact, a special kind of combinatorial submanifolds, i.e., combinato-

rial in-submanifolds are characterized by such way, for example, the Theorem 4.2.5

etc. in Section 4.2.2. Similarly, not like these Gauss’s, Codazzi’s or Ricci’s formu-

lae in Section 6.1, we can also describe combinatorial Riemannian submanifolds in

such way by formulae on submanifolds of Riemannian manifolds and subgraphs of

a connected graph. This will enables us to find new characters on combinatorial

Riemannian submanifolds.

6.6.2 Fundamental Equations. The discussion in Section 6.2 shows that we

can also establish these fundamental equations, such as the Gauss’s, the Codazzi’s

or the Ricci’s for combinatorial Riemannian submanifold in global or local forms.

But in fact, to solve these partially differential equations, even for Riemannian sub-

manifolds of the Euclidean space Rn, is very difficult. In references, we can only

find a few solutions for special cases, i.e., additional conditions added. So the classi-

cal techniques for solving these partially differential equations is not effective. New
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solving techniques for functional equations, particularly, the partially differential

equations should be produced. Even through, these Gauss’s, Codazzi’s or Ricci’s

equations can be also seen as a kind of geometrical equations of fields. So they are

important in physics.

6.6.3 Embedding. By the Whitney’s result on embedding a smooth manifold in a

Euclidean space, any manifold is a submanifold of a Euclidean space. Theorem 6.3.6

generalizes this result to combinatorial Riemannian submanifolds, which definitely

answers a question in [Mao12]. Certainly, a combinatorial Riemannian submani-

fold can be embedded into some combinatorial Euclidean spaces, i.e., the result in

Theorem 6.3.7 with its corollary. Even through, there are many research problems

on embedding a combinatorial Riemannian manifold or generally, a combinatorial

manifold into a combinatorial Riemannian manifold or a smoothly combinatorial

manifold. But the fundamental is to embed a smoothly combinatorial manifold

into a combinatorial Euclidean space. For this objective, Theorem 6.3.7 is only an

elementary such result.

6.6.4 Topological Multi-Group. In modern view point, a topological group is

a union of a topological space and a group, i.e., a Smarandache multi-space with

multiple 2. That is the motivation introducing topological multi-groups, topolog-

ical multi-rings or topological multi-fields. The classification of locally compacted

topological fields, i.e., Theorem 6.4.4 is a wonderful result obtained by a Russian

mathematician Pontrjagin in 1930s. This result can be generalized to topological

multi-spaces, i.e., Theorem 6.4.5.

In topological groups, a topological subgroup of a topological group is a sub-

group of this topological group in algebra. The same is hold for topological multi-

group. Besides, the most fancy thing on topological multi-groups is the appearance

of homomorphism theorem, i.e., the Theorem 6.4.3 which is as the same as Theorem

2.3.2 for homomorphism theorems in multi-groups.

6.6.5 Lie Multi-Group. Topological groups were gotten attention after S.Lie

introducing the conception of Lie group, which is a union of a manifold and a group

with group operation differentiable. Today, Lie group has become a fundamental

tool in theoretical physics, particularly, in mechanics and gauge theory. Analogy, for

dealing with combinatorial fields in the following chapters, we therefore introduce Lie
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multi-groups, which is a union of a combinatorial manifold and a multi-group with

group operations differentiable. Certainly, it has similar properties as the Lie group,

also combinatorial behaviors. Elementary results on Lie groups and Lie algebra are

generalized to Lie multi-groups in Section 6.4. But there are still many valuable

works on Lie multi-groups should be done, for example, the representation theory

for Lie multi-groups, the classification of Lie algebras on Lie multi-groups, · · ·, etc..

6.6.6 Principal Fiber Bundle. A classical principal fiber bundle is essentially a

combining of a manifold, its covering manifold associated with a Lie group. Today,

it has been a fundamental conception in modern differential geometry and physics.

The principal fiber bundle discussed in Section 6.5 is an extended one of the clas-

sical, which is a Smarandachely principal fiber bundle underlying a combinatorial

structure G, i.e., a combinatorial principal fiber bundle.

The voltage assignment technique α : GL → G is widely used in the topological

graph theory for find a regular covering of a graph G, particularly, to get the genus

of a graph in [GrT1]. Certainly, this kind of regular covering GLα of GL posses many

automorphisms, particularly, the right action R(G) on vertices of GLα. More results

can be found in references, such as those of [GrT1], [MNS1], [Mao1] and [Whi1].

Combining the voltage assignment technique α : GL → G with l classical prin-

cipal fiber bundles PM1(M1,H◦1), PM2(M2,H◦2), · · ·, PMl
(Ml,H◦l

) produces the

combinatorial principal fiber bundles P̃ α(M̃,LG) in Construction 6.5.1 in Section

6.5 analogous to classical principal fiber bundles. For example, their gauge transfor-

mations are completely determined in Theorem 6.5.5. The behavior of P̃ α(M̃,LG)

likewise to classical principal fiber bundles enables us to introduce those of local

or global Ehresmann connections, to determine those of local or global curvature

forms, and to find structure equations or Bianchi identity on such principal fiber

bundles. All of these are important in combinatorial fields of Chapter 8.



CHAPTER 7.

Fields with Dynamics

Nature never deceives us; it is we who deceive ourselves.

Rousseau, a French thinker.

All known matters are made of atoms and sub-atomic particles, held together

by four fundamental forces: gravity, electro-magnetism, strong nuclear force

and weak force, partially explained by the Relativity Theory and Quantum

Field Theory. The former is characterized by actions in external fields, the

later by actions in internal fields under the dynamics. Both of these fields

can be established by the Least Action Principle. For this objective, we in-

troduce variational principle, Lagrangian equations, Euler-Lagrange equations

and Hamiltonian equations in Section 7.1. In section 7.2, the gravitational field

and Einstein gravitational field equations are presented, also show the Newto-

nian field to be that of a limitation of Einstein’s. Applying the Schwarzschild

metric, spherical symmetric solutions of Einstein gravitational field equations

can be found in this section. This section also discussed the singularity of

Schwarzschild geometry. For a preparation of the interaction, we discuss elec-

tromagnetism, such as those of electrostatic, magnetostatic and electromag-

netic fields in Section 7.3. The Maxwell equations can be found in this section.

Section 7.4 is devoted to the interaction, i.e., the gauge fields including Abelian

and non-Abelian gauge fields (Yang-Mills fields) with Higgs mechanisms and

C, P, T transformations in details. This section also presents the differential

geometry of gauge fields and its mathematical meaning of spontaneous sym-

metry broken in gauge fields. It should be noted that an Greek index µ usually

denote the scope 0, 1, 2, · · ·, but an arabic i only the scope 1, 2, · · ·, i.e., without

0 in the context.
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§7.1 MECHANICAL FIELDS

7.1.1 Particle Dynamic. The phase of a physical particle A of quality m is

determined by a pair {x,v} of its position x and directed velocity v at x in its

geometrical space P , such as those shown in Fig.7.1.1.

*
A

x
v

P

γ(t)

Fig.7.1.1

If A is moving in a conservative field Rn with potential energy U(x), then x =

(x1(t), x2(t), · · · , xn(t)) = γ(t) and

v = (v1, v2, · · · , vn) =
dx

dt
= (ẋ1, ẋ2, · · · , ẋn) (7− 1)

at t. In other words, v is a tangent vector at v ∈ Rn, i.e., v ∈ T (Rn). In this field,

the force acting on A is

F = −∂U
∂x

= −(
∂U

∂x1
e1 +

∂U

∂x2
e2 + · · ·+ ∂U

∂xn
en). (7− 2)

By the second law of Newton, we know the force F acting on A is

F = m
d2x

dt2
= mẍ (7− 3)

that is

(− ∂U
∂x1

,− ∂U
∂x2

, · · · ,− ∂U
∂xn

) = (mẍ1, mẍ2, · · · , mẍn). (7− 4)

By definition, its momentum and moving energy are respective

p = mv = mẋ

and

T =
1

2
mv2

1 +
1

2
mv2

2 + · · ·+ 1

2
mv2

n =
1

2
mv2,
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where v = |v|. Furthermore, if the particle A moves from times t1 to t2, then

∫ t2

t1

F · dt = p|t2 − p|t1 = mv2 −mv1

by the momentum theorem in undergraduate physics.

We deduce the Lagrange equations for the particle A. First, inner multiply both

sides of (7− 4) by dx = (dx1, dx2, · · · , dxn) on, we find that

−
n∑

i=1

∂U

∂xi
dxi =

n∑

i=1

mẍidxi. (7− 5)

Let q = (q1, q2, · · · , qn) be its generalized coordinates of A at t. Then we know

that

xi = xi(q1, q2, · · · , qn), i = 1, 2, · · · , n. (7− 6)

Differentiating (7− 6), we get that

dxi =

n∑

k=1

∂xi
∂qk

dqk (7− 7)

for i = 1, 2, · · · , n. Therefore, we know that

n∑

i=1

mẍidxi =

n∑

i=1

n∑

k=1

mẍi
∂xi
∂qk

dqk =

n∑

k=1

n∑

i=1

mẍi
∂xi
∂qk

dqk. (7− 8)

Notice that

dU =

n∑

i=1

∂U

∂xi
dxi =

n∑

k=1

∂U

∂qk
dqk. (7− 9)

Substitute (7− 8) and (7− 9) into (7− 5), we get that

n∑

k=1

(

n∑

i=1

mẍi
∂xi
∂qk

)dqk = −
n∑

i=1

∂U

∂qk
dqk.

Since dqk, k = 1, 2, · · · , n are independent, there must be

n∑

i=1

mẍi
∂xi
∂qk

= −∂U
∂qk

, k = 1, 2, · · · , n. (7− 10)

Calculation shows that

n∑

i=1

mẍi
∂xi
∂qk

=
d

dt
(

n∑

i=1

mẋi
∂xi
∂qk

)−
n∑

i=1

mẋi
d

dt

∂xi
∂qk

. (7− 11)
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Substitute (7− 11) into (7− 10), we know that

d

dt
(
n∑

i=1

mẋi
∂xi
∂qk

)−
n∑

i=1

mẋi
d

dt

∂xi
∂qk

= −
n∑

i=1

∂U

∂qk
dqk (7− 12)

for k = 1, 2, · · · , n. For simplifying (7− 12), we need the differentiations of xi and

∂xi/∂qk with respect to t following.

ẋi =
dxi
dt

=
n∑

k=1

∂xi
∂qk

q̇k, (7− 13)

d

dt

∂xi
∂qk

=
n∑

l=1

∂2xi
∂qk∂ql

q̇l =
∂

∂ql

n∑

l=1

∂xi
∂ql

q̇l =
∂

∂qk
ẋi. (7− 14)

Notice that ∂xi/∂qk is independent on q̇k. Differentiating (7 − 13) with respect to

q̇k, we get that

∂ẋi
∂q̇k

=
∂xi
∂qk

. (7− 15)

Substitute (7− 14) and (7− 15) into (7− 12), we have that

d

dt
(

n∑

i=1

mẋi
∂ẋi
∂q̇k

)−
n∑

i=1

mẋi
∂ẋi
∂qk

= −
n∑

i=1

∂U

∂qk
dqk (7− 16)

for k = 1, 2, · · · , n. Because of the moving energy of A

T =
1

2
mv2 =

n∑

i=1

1

2
mẋ2

i ,

partially differentiating it with respect to qk and q̇k, we find that

∂T

∂qk
=

n∑

i=1

mẋi
∂ẋi
∂qk

,
∂T

∂q̇k
=

n∑

i=1

mẋi
∂ẋi
∂q̇k

. (7− 17)

Comparing (7− 16) with (7− 17), we can rewrite (7− 16) as follows.

d

dt

∂T

∂q̇k
− ∂T

∂qk
= −∂U

∂qk
, k = 1, 2, · · · , n. (7− 18)

Since A is moving in a conservative field, U(x) is independent on q̇k. We have that

∂U/∂q̇k = 0 for k = 1, 2, · · · , n. By moving the right side to the left in (7− 18), we

consequently get the Lagrange equations for the particle A following.

d

dt

∂L
∂q̇k
− ∂L
∂qk

= 0, k = 1, 2, · · · , n, (7− 19)



Sec.7.1 Mechanical Fields 355

where L = T − U is called the Lagrangian of A and

fk =
∂L
∂qk

, pk =
∂L
∂q̇k

, k = 1, 2, · · · , n (7− 20)

the respective generalized force and generalized momentum in this conservative field.

7.1.2 Variational Principle. Let K be a closed set of a normed space B with

a norm ‖ · ‖ and C(K ) the family of functions on K . A functional J on K is a

mapping J : C(K ) → R, denoted by J [F ] for F ∈ C(K ). For a chosen function

F0(K ) ∈ C(K ),the difference F (K )− F0(K ) is called the variation of F (K ) at

F0(K ), denoted by

δF (K ) = F (K )− F0(K ).

For example, let K = [x0, x1], then we know that δf = f(x) − f0(x) for f ∈
C[x0, x1], x ∈ [x0, x1] and δf(x0) = δf(x0) = 0, particularly, δx = 0. By definition,

we furthermore know that

δ
df

dx
=
df

dx
− df0

dx
=

d

dx
δf,

i.e., [δ, d
dx

] = 0. In mechanical fields, the following linear functionals

J [y(x)] =

∫ x1

x0

F (x, y(x), y′(x))dx (7− 21)

are fundamental, where y′ = dy/dx. So we concentrate our attention on such func-

tionals and their variations. Assuming F ∈ C[x0, x1] is 2-differentiable and applying

Taylor’s formula, then

∆J = J [y(x) + δy]− J [y(x)]

=

∫ x1

x0

F (x, y(x) + δy, y′(x) + δy′)dx−
∫ x1

x0

F (x, y(x), y′(x))dx

=

∫ x1

x0

(F (x, y(x) + δy, y′(x) + δy′)dx− F (x, y(x), y′(x)))dx

=

x1∫

x0

(
∂F

∂y
δy +

∂F

∂y′
δy′)dx+ o(D1[y(x) + δy, y(x)]). (7− 22)

The first term in (7−22) is called the first order variation or just variation of J [y(x)],

denoted by

δJ =

x1∫

x0

(
∂F

∂y
δy +

∂F

∂y′
δy′)dx. (7− 23)
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By calculus, if F (x, y(x), y′(x)) is C∞-differentiable, then

∆F = F (x, y(x) + δy(x), y′(x) + δy′(x))− F (x, y(x), y′(x))

=
∂F

∂y
δy +

∂F

∂y′
δy′ + · · · .

Whence,

δF =
∂F

∂y
δy +

∂F

∂y′
δy′.

We can rewrite (7− 23) as follows.

δJ = δ

∫ x1

x0

F (x, y(x), y′(x))dx =

∫ x1

x0

δF (x, y(x), y′(x))dx.

Similarly, if the functional

J [y1, y2, · · · , yn] =

∫ x1

x0

F (x, y1, y2, · · · , yn, y′1, y′2, · · · , y′n)dx (7− 24)

and F, yi, y
′
i for 1 ≤ i ≤ n are differentiable, then

δJ =

∫ x1

x0

δFdx =

∫ x1

x0

(
n∑

i=1

∂F

∂yi
δyi +

n∑

i=1

∂F

∂y′i
δy′i)dx. (7− 25)

The following properties of variation are immediately gotten by definition.

(i) δ(F1 + F2) = δF1 + δF2;

(ii) δ(F1F2) = F1δF2 + F2δF1, particularly, δ(F n) = nF n−1δF ;

(iii) δ(F1

F2
) = F2δF1−F1δF2

F 2
2

;

(iv) δF (k) = (δF )(k), where f (k) = dkF/Dxk;

(v) δ
∫ x1

x0
Fdx =

∫ x1

x0
δFdx.

For example, let F = F (x, y(x), y′(x)). Then

δ(F1F2) =
∂F1F2

∂y
δy +

∂F1F2

∂y′
δy′

= (F1
∂F2

∂y
+ F2

∂F1

∂y
)δy + (F1

∂F2

∂y′
+ F2

∂F1

∂y′
)δy′

= F1(
∂F2

∂y
δy +

∂F2

∂y′
δy′) + F2(

∂F1

∂y
δy +

∂F1

∂y′
δy′)

= F1δF2 + F2δF1.
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Let F0(K ) ∈ C(K ). If for ∀F (K ) ∈ C(K ), J [F (K )]−J [F0(K )] ≥ 0 or ≤ 0,

then F0(K ) is called the global maximum or minimum value of J [F (K )] in K . If

J [F (K )]−J [F0(K )] ≥ 0 or ≤ 0 hold in a ǫ-neighborhood of F0(K ), then F0(K ) is

called the maximal or minimal value of J [F (K )] in K . For such functional values,

we have a simple criterion following.

Theorem 7.1.1 The functional J [y(x)] in (7-21) has maximal or minimal value at

y(x) only if δJ = 0.

Proof Let ǫ be a small parameter. We define a function

Φ(ǫ) = J [y(x) + ǫδy] =

∫ x1

x0

F (x, y(x) + ǫδy, y′(x) + ǫδy′)dx.

Then J [y(x)] = Φ(0) and

Φ′(ǫ) =

∫ x1

x0

(
F (x, y(x) + ǫδy, y′(x) + ǫδy′)

∂y
δy+

F (x, y(x) + ǫδy, y′(x) + ǫδy′)

∂y′
δy′)dx.

Whence,

Φ′(0) =

∫ x1

x0

(
∂F

∂y
δy +

∂F

∂y′
δy′)dx = δJ.

For a given y(x) and δy, Φ(ǫ) is a function on the variable ǫ. By the assumption,

J [y(x)] attains its maximal or minimal value at y(x), i.e., ǫ = 0. By Fermat theorem

in calculus, there must be Φ′(0) = 0. Therefore, δJ = 0. �

7.1.3 Hamiltonian principle. A mechanical field is defined to be a particle family

Σ constraint on a physical law L , i.e., each particle in Σ is abided by a mechanical

law L , where Σ maybe discrete or continuous. Usually, L can be represented by

a system of functional equations in a properly chosen reference system. So we can

also describe a mechanical field to be all solving particles of a system of functional

equations, particularly, partially differential equations. Whence, a geometrical way

for representing a mechanical field Σ is by a manifold M consisting of elements

following:

(i) A configuration space M of n-differentiable manifold, where n is the free-

dom of the mechanical field;

(ii) A chosen geometrical structure Ω on the vector field TM and a differ-

entiable energy function T : M × TM → R, i.e., the Riemannian metric on TM
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determined by

T =
1

2
〈v, v〉 , v ∈ TM ;

(iii) A force field given by a 1-form

ω =

n∑

i=1

ωidxi = ωidxi.

Denoted by T(M,ω) a mechanical field. For determining states of mechani-

cal fields, there is a universal principle in physics, i.e., the Hamiltonian principle

presented in the following.

Hamiltonian Principle Let T(M,ω) be a mechanical field. Then there exists a

variational S : T(M,ω) → R action on T(M,ω) whose true colors appears at the

minimum value of S[(T(M,ω)], i.e., δS = 0 by Theorem 7.1.1.

In philosophy, the Hamiltonian principle reflects a harmonizing ruler for all

things developing in the universe, i.e., a minimum consuming for the developing of

universe. In fact, all mechanical systems known by human beings are abided this

principle. Applying this principle, we can establish classical mechanical fields, such

as those of Lagrange’s, Hamiltonian, the gravitational fields,· · ·, etc. in this chapter.

7.1.4 Lagrange Field. Let q(t) = (q1(t), q2(t), · · · , qn(t)) be a generalized coor-

dinate system for a mechanical field T(M,ω). A Lagrange field is a mechanical field

with a differentiable Lagrangian L : TM → R, L = L(t,q(t), q̇(t)), i.e., T = L.

Notice the least action is independent on evolving time of a mechanical field. In a

Lagrange field, the variational action is usually determined by

S =

∫ t2

t1

L(t,q(t), q̇(t))dt. (7− 26)

In fact, this variational action is as the same as (7− 24).

Theorem 7.1.2 Let T(M,ω) be a Lagrange field with a Lagrangian L(t,q(t), q̇(t)).

Then
∂L
∂qi
− d

dt

∂L
∂q̇i

= 0

for i = 1, 2, · · · , n.

Proof By (7− 25), we know that

δS =

∫ t2

t1

(

n∑

i=1

∂L
∂qi

δqi +

n∑

i=1

∂L
∂q̇i

δq̇i)dt. (7− 27)
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Notice that δq̇i = d
dt
δqi and

∫ t2

t1

∂L
∂q̇i

δq̇i)dt =
∂L
∂q̇i

δqi|t2t1 −
∫ t2

t1

d

dt

∂L
∂q̇i

δqidt

Because of δq(t1) = δq(t2) = 0, we get that

∫ t2

t1

∂L
∂q̇i

δq̇i)dt = −
∫ t2

t1

d

dt

∂L
∂q̇i

δqidt (7− 28)

for i = 1, 2, · · · , n. Substituting (7− 28) into (7− 27), we find that

δS =

∫ t2

t1

n∑

i=1

(
∂L
∂qi
− d

dt

∂L
∂q̇i

)δqidt. (7− 29)

Applying the Hamiltonian principle, there must be δS = 0 for arbitrary δqi,

i = 1, 2, · · · , n. But this can be only happens if each coefficient of δqi is 0 in (7−29),

that is,

∂L
∂qi
− d

dt

∂L
∂q̇i

= 0, i = 1, 2, · · · , n. �

These Lagrange equations can be used to determine the motion equations of

mechanical fields, particularly, a particle system in practice. In such cases, a La-

grangian is determined by L = T − U , where T and U are respective the moving

energy and potential energy.

Example 7.1.1 A simple pendulum with arm length l (neglect its mass) and a

mass m of vibrating ram. Such as those shown in Fig.7.1.2, where θ is the angle

between its plumb and arm. Then we know that

T =
1

2
m(lθ̇)2, U = −mgl cos θ

and

L = T − U =
1

2
m(lθ̇)2 +mgl cos θ.
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? mm

lθ

Fig.7.1.2

Applying Theorem 7.1.2, we know that

∂

∂θ
[
1

2
m(lθ̇)2 +mgl cos θ]− d

dt

∂

∂θ̇
[
1

2
m(lθ̇)2 +mgl cos θ] = 0.

That is,

θ̈ +
g

l
sin θ = 0.

7.1.5 Hamiltonian Field. A Hamiltonian field is a mechanical field with a

differentiable Hamiltonian H : TM → R determined by

H(t), q̇(t),p(t)) =

n∑

i=1

piq̇i − L(t,q(t), q̇(t)), (7− 30)

where pi = ∂L/∂q̇i is the generalized momentum of field. A Hamiltonian is usually

denoted by H(t,q(t),p(t)). In a Hamiltonian field, the variational action is

S =

∫ t2

t1

(

n∑

i=1

piq̇i − L(t,q(t), q̇(t)))dt. (7− 31)

Applying the Hamiltonian principle, we can find equations of a Hamiltonian

field following.

Theorem 7.1.3 Let T(M,ω) be a Hamiltonian field with a HamiltonianH(t,q(t),p(t)).

Then
dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

for i = 1, 2, · · · , n.
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Proof Consider the variation of S in (7-31). Notice that q̇idt = dqi and ṗidt =

dpi. Applying (7-25), we know that

δS =
n∑

i=1

∫ t2

t1

[δpidqi + pidδqi −
∂H

∂qi
δqidt−

∂H

∂pi
δpidt]. (7− 32)

Since ∫ t2

t1

pidδqi = piδqi|t2t1 −
∫ t2

t1

δqidpi

by integration of parts and δqi(t1) = δqi(t2) = 0, we find that

∫ t2

t1

pidδqi = −
∫ t2

t1

δqidpi. (7−33)

Substituting (7− 33) into (7− 32), we finally get that

δS =

n∑

i=1

∫ t2

t1

[(dqi−
∂H

∂pi
dt)δpi−(dpi+

∂H

∂qi
dt)δqi]. (7−34)

According to the Hamiltonian principle, there must be δS = 0 for arbitrary

δqi, δpi, i = 1, 2, · · · , n. This can be only happens when each coefficient of δqi, δpi is

0 for i = 1, 2, · · · , n, i.e.,
dqi
dt

=
∂H

∂pi

dpi
dt

= −∂H
∂qi

.

This completes the proof. �

By definition, the Lagrangian and Hamiltonian are related by H +L =
n∑
i=1

piq̇i.

We can also directly deduce these Hamiltonian equations as follows.

For a fixed time t, we know that

dL =
n∑

i=1

∂L
∂qi

dqi +
n∑

i=1

∂L
∂q̇i

dq̇i.

Notice that
∂L
∂q̇i

= pi and
∂L
∂qi

= fi = ṗi

by (7− 20). Therefore,

dL =

n∑

i=1

ṗidqi +

n∑

i=1

pidq̇i. (7− 35)
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Calculation shows that

d(

n∑

i=1

piq̇i) =

n∑

i=1

q̇idpi +

n∑

i=1

pidq̇i. (7− 36)

Subtracting the equation (7− 35) from (7− 36), we get that

d(
n∑
i=1

piq̇i − L) =
n∑
i=1

q̇idpi −
n∑
i=1

ṗidqi,

i.e.,

dH =
n∑

i=1

q̇idpi −
n∑

i=1

ṗidqi. (7− 37)

By definition, we also know that

dH =

n∑

i=1

∂H

∂qi
dqi +

n∑

i=1

∂H

∂pi
dpi. (7− 38)

Comparing (7− 37) with (7− 38), we then get these Hamiltonian equations

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, i = 1, 2, · · · , n.

7.1.6 Conservation Law. A functional F (t,q(t),p(t)) on a mechanical field

T(M,ω) is conservative if it is invariable at all times, i.e., dF/dt = 0. Calculation

shows that

dF

dt
=
∂F

∂t
+

n∑

i=1

(
∂F

∂qi

dqi
dt

+
∂F

∂pi

dpi
dt

). (7− 39)

Substitute Hamiltonian equations into (7− 39). We find that

dF

dt
=
∂F

∂t
+

n∑

i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi
). (7− 40)

Define the Poisson bracket {H,F} of H,F to be

{H,F}PB =
n∑

i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi
). (7− 41)

Then we have

dF

dt
=
∂F

∂t
+ {H,F}PB. (7− 42)
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Theorem 7.1.4 Let T(M,ω) be a Hamiltonian mechanical field. Then

dqi
dt

= {H, qi}PB,
dpi
dt

= {H, pi}PB

for i = 1, 2, · · · , n.

Proof Let F = qi in (7− 41). Then we have that

{H, qi}PB =
n∑

k=1

(
∂qi
∂qk

∂H

∂pk
− ∂qi
∂pk

∂H

∂qk
).

Notice that qi and pi, i = 1, 2, · · · , n are independent. There are must be

∂qi
∂pk

= 0,
∂qi
∂qk

= δik

for k = 1, 2, · · · , n. Whence, {H, qi}FB = ∂H/∂pi. Similarly, {H, pi}FB = ∂H/∂qi.

According to Theorem 7.1.3, we finally get that

dqi
dt

= {H, qi}PB,
dpi
dt

= {H, pi}PB

for i = 1, 2, · · · , n. �

If F is not self-evidently dependent on t, i.e., F = F (q(t),p(t)), the formula

(7− 42) comes to be

dF

dt
= {H,F}PB. (7− 43)

Therefore, F is conservative if and only if {H,F}PB = 0 in this case. Furthermore,

if H is not self-evidently dependent on t, because of pi = ∂L/∂q̇i and ṗi = ∂L/∂qi,
we find that

dH

dt
=

d

dt
[
n∑

i=1

piq̇i −L(q(t), q̇(t))]

=

n∑

i=1

(ṗiq̇i + piq̈i)−
n∑

i=1

(
∂L
∂qi

q̇i +
∂L
∂q̇
q̈i)

=

n∑

i=1

(ṗiq̇i + piq̈i)−
n∑

i=1

(ṗiq̇i + piq̈i)

= 0,

i.e., H is conservative. Usually, H is called the mechanical energy of such fields

T(M,ω), denoted by E. Whence, we have
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Theorem 7.1.5 If the Hamiltonian H of a mechanical field T(M,ω) is not self-

evidently dependent on t, then T(M,ω) is conservative of mechanical energy.

7.1.7 Euler-Lagrange Equation. All of the above are finite freedom systems

with Lagrangian. For infinite freedom systems such as those of gauge fields in

Section 7.4 characterized by a field variable φ(x) with infinite freedoms, we need to

generalize Lagrange equations in Section 7.1.4 with Lagrange density. In this case,

the Lagrangian is chosen to be an integration over the space as follows:

L =

∫
d3xL (φ, ∂µφ), (7− 44)

where L (φ, ∂µφ) is called the Lagrange density of field. Applying the Lagrange

density, the Lagrange equations are generalized to the Euler-Lagrange equations

following.

Theorem 7.1.6 Let φ(t, x) be a field with a Lagrangian L defined by (7−44). Then

∂µ
∂L

∂∂µφ
− ∂L

∂φ
= 0.

Proof Now the action I is an integration of L over time x0, i.e.,

I =
1

c

∫
d4xL (φ, ∂µφ).

Whence, we know that

δI =

∫
d4x

(
∂L

∂φ
δφ+

∂L

∂(∂µφ)
δ(∂µφ)

)

=

∫
d4x

[(
∂L

∂φ
− ∂µ

∂L

∂∂µφ

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)]
= 0

by the Hamiltonian principle. The last term can be turned into a surface integral

over the boundary of region of this integration in which δφ = 0. Whence, the surface

integral vanishes. We get that

δI =

∫
d4x

(
∂L

∂φ
− ∂µ

∂L

∂∂µφ

)
δφ = 0

for arbitrary δφ. Therefore, we must have

∂µ
∂L

∂∂µφ
− ∂L

∂φ
= 0. �



Sec.7.2 Gravitational Field 365

§7.2 GRAVITATIONAL FIELD

7.2.1 Newtonian Gravitational Field. Newton’s gravitational theory is a R3

field theory, independent on the time t ∈ R, or an absolute time t. In Newton’s

mechanics, he assumed that the action between particles is action at a distance,

which means the interaction take place instantly. Certainly, this assumption is

contradicted to the notion of modern physics, in which one assumes the interactions

are carrying through intermediate particles. Even so, we would like to begin the

discussion at it since it is the fundamental of modern gravitational theory.

The universal gravitational law of Newton determines the gravitation F between

masses M and n of distance r to be

F = −GMm

r2

with G = 6.673×10−8cm3/gs2, which is the fundamental of Newtonian gravitational

field. Let ρ(x) be the mass density of the Newtonian gravitational field at a point

x = (x, y, z) ∈ R3. Then its potential energy Φ(x) at x is defined to be

Φ(x) = −
∫

Gρ(x′)

‖x− x′‖d
3x′.

Then

∂Φ(x)

∂x
= −

∫ ∂[ Gρ(x
′)

‖x−x′‖
]

∂x
d3x′ = −

∫
Gρ(x′)(x− x′)
‖x− x′‖3 d3x′ = −Fx.

Similarly,
∂Φ(x)

∂y
= −

∫
Gρ(x′)(y − y′)
‖x− x′‖3 d3x′ = −Fy,

∂Φ(x)

∂z
= −

∫
Gρ(x′)(z − z′)
‖x− x′‖3 d3x′ = −Fz .

Whence, the force acting on a particle with mass m is

F = −m(
∂Φ(x)

∂x1
,
∂Φ(x)

∂x2
,
∂Φ(x)

∂x3
).

These gravitational forces are very weak compared with other forces. For example,

the ratio of the gravitational force to the electric force between two electrons are

Fgravitation/Felectricity = 0.24 × 10−42. Calculation also shows that Φ(x) satisfies the

Poisson equation following:

∂2Φ(x)

∂x
+
∂2Φ(x)

∂y
+
∂2Φ(x)

∂z
= 4πGρ(x),



366 Chap.7 Fields with Dynamics

i.e., the potential energy Φ(x) is a solution of the Poisson equation at x.

7.2.2 Einstein’s Spacetime. A Minkowskian spacetime is a flat-space with the

square of line element

d2s = ηµνdx
µdxν = −c2dt2 + dx2 + dy2 + dz2

where c is the speed of light and ηµν is the Minkowskian metrics following,

ηµν =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



.

For a particle moving in a gravitational field, there are two kinds of forces

acting on it. One is the inertial force. Another is the gravitational force. Besides,

any reference frame for the gravitational field is selected by the observer, as we have

shown in Section 7.1. Wether there are relation among them? The answer is YES

by principles of equivalence and covariance following presented by Einstein in 1915

after a ten years speculation.

[Principle of Equivalence] These gravitational forces and inertial forces acting

on a particle in a gravitational field are equivalent and indistinguishable from each

other.

[Principle of Covariance] An equation describing the law of physics should have

the same form in all reference frame.

The Einstein’s spacetime is in fact a curved R4 spacetime (x0, x1, x2, x3), i.e., a

Riemannian space with the square of line element

ds2 = gµν(x)dxµdxν

for µ, ν = 0, 1, 2, 3, where gµν(x) are ten functions of the space and time coordi-

nates, called Riemannian metrics. According to the principle of equivalence, one

can introduce inertial coordinate system in Einstein’s spacetime which enables it flat

locally, i.e., transfer these Riemannian metrics to Minkowskian ones and eliminate

the gravitational forces locally. That is, one entry is positive and other three are

negative in the diagonal of the matrix [gµν ]. Whence,
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|gµν | =

∣∣∣∣∣∣∣∣∣∣

g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

∣∣∣∣∣∣∣∣∣∣

< 0.

For a given spacetime, let (x0, x1, x2, x3) be its coordinate system and

x′µ = fµ(x0, x1, x2, x3)

another coordinate transformation, where µ = 0, 1, 2 and 3. If the Jacobian

g =

∣∣∣∣
∂x′

∂x

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∂f0

∂x0 · · · ∂f3

∂x0

· · · · · · · · ·
∂f0

∂x3 · · · ∂f3

∂x3

∣∣∣∣∣∣∣∣
6= 0,

then we can invert the coordinate transformation by

xµ = gµ(x′0, x′1, x′2, x′3),

and the differential of the two coordinate system are related by

dx′µ =
∂x′µ

∂xν
dxν =

∂fµ

∂xν
dxν ,

dxµ =
∂xµ

∂x′ν
dxν =

∂gµ

∂x′ν
dx′ν .

The principle of covariance means that gµν are tensors, which means we should

apply the materials in Chapters 5− 6 to characterize laws of physics. For example,

the transformation ruler for an ordinary covariant tensor Tαβ of order 2 can be seen

as a matrix equation

T ′
αβ =

∂xµ

∂x′α
Tµν

∂xν

∂x′β
.

Applying the rule for the determinants of a product of matrices, we know that

∣∣T ′
αβ

∣∣ =
∣∣∣∣
∂x

∂x′

∣∣∣∣
2

|Tαβ| ,

particularly, let Tαβ be the metric tensor gµν , we get that

g′ =

∣∣∣∣
∂x

∂x′

∣∣∣∣
2

g. (7− 45)
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Besides, by calculus we have

d4x′ =

∣∣∣∣
∂x

∂x′

∣∣∣∣
2

d4x. (7− 46)

Combining the equation (7−45) with (7−46), we get a relation following for volume

elements:

√
−g′d4x′ =

√−gd4x, (7− 47)

which means that the expression
√−gd4x is an invariant volume element.

7.2.3 Einstein Gravitational Field. By the discussion of Section 7.2.2, these

gravitational field equations should be constrained on principles of equivalence and

covariance, which will go over into the Poisson equation

∇2Φ(x) = 4πGρ(x),

i.e., Newtonian field equation in a certain limit, where

∇2 =
∂2

∂x
+
∂2

∂y
+
∂2

∂z
.

In fact, Einstein gave his gravitation field equations as follows:

Rµν −
1

2
gµνR = κTµν , (7− 48)

where Rµν = Rα
µαν = gαβRαµβν , R = gµνRµν are the respective Ricci tensor, Ricci

scalar curvature and

κ =
8πG

c4
= 2.08× 10−48cm−1 · g−1 · s2.

The Einstein gravitational equations (7−48) can be also deduced by the Hamil-

tonian principle. Choose the variational action of gravitational field to be

I =

∫ √−g(LG − 2κLF )d4x, (7− 49)

where LG = R is the Lagrangian for the gravitational filed and LF = LF (gµν, gµν,α )

the Lagrangian for all other fields with f,α = ∂/∂xα for a function f . Define the

energy-momentum tensor Tµν to be

Tµν =
2√−g

{
∂
√−gLF
∂gµν

− ∂

∂xα

[
∂
√−gLF
∂gµν,α

]}
.
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Then we have

Theorem 7.2.1 δI = 0 is equivalent to equations (7− 48).

Proof We prove that

δI =

∫ √−g(Rµν −
1

2
gµνR − κTµν)δgµνd4x. (7− 50)

Varying the first part of the integral (7− 49), we find that

δ

∫ √−gRd4x = δ

∫ √−ggµνRµνd
4x

=

∫ √−ggµνδRµνd
4x+

∫
Rµνδ(

√−ggµν)d4x (7− 51)

Notice that

δRµν = δ

{
∂Γρµν
∂xρ

−
∂Γρµρ
∂xν

+ ΓσµνΓ
ρ
ρσ − ΓσµρΓ

ρ
νσ

}

= δ

(
∂Γρµν
∂xρ

)
− δ

(
∂Γρµρ
∂xν

)
+ δ(ΓσµνΓ

ρ
ρσ)− δ(ΓσµρΓρνσ)

=
∂(δΓρµν)

∂xρ
− ∂(δΓρµρ)

∂xν
.

Consequently, the integrand of the first integral on the right-hand side of (7−51)

can be written to

√−ggµνRµν =
√−ggµν

{
∂(δΓρµν)

∂xρ
− ∂(δΓρµρ)

∂xν

}

=
√−g

{
∂(gµνδΓρµν)

∂xρ
− ∂(gµνδΓρµρ)

∂xν

}

=
√−g

{
∂(gµνδΓαµν)

∂xα
− ∂(gµαδΓρµρ)

∂xα

}

=
√−g∇αV

α,

where V α = gµαδΓρµρ − gµαδΓρµρ is a contravariant vector and

∇αV
α =

∂V α

∂xα
+ ΓαµαV

µ,

where

Γαµα = gανΓνµα =
1

2g

∂g

∂xν
=

1√−g
∂
√−g
∂xν

.
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Applying the Gauss theorem, we know that

∫ √−ggµνδRµνd
4x =

∫
∂(
√−gV α)

∂xα
d4x = 0

for the first integral on the right-hand side of (7− 51).

Now the second integral on the right-hand side of (7− 51) gives

∫
Rµνδ(

√−ggµν)d4x =

∫ √−gRµνδ(g
µν)d4x+

∫
Rµνg

µνδ(
√−g)d4x

=

∫ √−gRµνδ(g
µν)d4x+

∫
Rδ(
√−g)d4x. (7− 52)

Notice that

δ
√−g = −1

2

1√−gδg = −1

2

√−ggµνδgµν .

Whence, we get that
∫
Rµνδ(

√−ggµν)d4x =

∫ √−g(Rµν −
1

2
gµνR)δgµνd4x. (7− 53)

Now summing up results above, we consequently get the following

δ

∫ √−gRd4x =

∫ √−g(Rµν −
1

2
gµνR)δgµνd4x (7− 54)

for the variation of the gravitational part of the action (7− 51). Notice that LF =

LF (gµν , gµν,α ) by assumption. For its second part, we obtain

δ

∫ √−gLFd4x =

∫ [
∂(
√−gLF )

∂gµν
δgµν +

∂(
√−gLF )

∂gµν,α
δgµν,α

]
.

The second term on the right-hand-side of the above equation can be written as a

surface integral which contributes nothing for its vanishing of the variation at the

integration boundaries, minus another term following,

δ

∫ √−gLFd4x =

∫ {
∂(
√−gLF )

∂gµν
δgµν − ∂

∂xα

[
∂(
√−gLF )

∂gµν,α

]}
δgµνd4x

=
1

2

∫ √−gTµνδgµνd4x. (7− 55)

Summing up equations (7− 49), (7− 51), (7− 54) and (7− 55), we finally get

that

δI =

∫ √−g(Rµν −
1

2
gµνR− κTµν)δgµνd4x,
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namely, the equation (7 − 49). Since this equation is assumed to be valid for an

arbitrary variation δgµν , we therefore conclude that the integrand in (7−49) should

be zero, i.e.,

Rµν −
1

2
gµνR = κTµν .

This completes the proof. �

7.2.4 Limitation of Einstein’s Equation. In the limiting case of cdt ≫ dxk,

k = 1, 2, 3, we obtain the Newtonian field equation from Einstein’s equation (7−47)

by approximation methods as follows.

Notice that

T = Tµνg
µν ≃ Tµνη

µν ≃ T00η
00 = T00.

Whence,

R00 = κT00 +
1

2
g00R

≃ κT00 +
1

2
η00R =

1

2
κT00 =

1

2
κc2ρ(x),

where ρ(x) is the mass density of the matter distribution.

Now by Theorem 5.3.4, we know that

Γk00 =
1

2
gkλ
(

2
∂gλ0

∂x0
− ∂g00

∂xλ

)

≃ −1

2
ηkλ

∂g00

∂xλ
=

1

2
δkl
∂g00

∂xl
=

1

2

∂g00

∂xk
.

Therefore,

R00 =
∂Γρ00
∂xρ

− ∂Γρ0ρ
∂x0

+ Γσ00Γ
ρ
ρσ − Γσ0ρΓ

ρ
0σ

≃ ∂Γρ00
∂xρ

≃ ∂Γs00
∂xs

≃ 1

2

∂2g00

∂xs∂xs
=

1

2
∇2g00 ≃

1

c2
∇2Φ(x).

Equating the two expressions on R00, we finally get that

∇2Φ(x) = 4πGρ(x),

where κ = 8πG
c4

.

7.2.5 Schwarzschild Metric. A Schwarzschild metric is a spherically symmetric

Riemannian metric

d2s = gµνdx
µν (7− 56)
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used to describe the solution of Einstein gravitational field equations in vacuum

due to a spherically symmetric distribution of matter. Usually, the coordinates for

such space can be chosen to be the spherical coordinates (r, θ, φ), and consequently

(t, r, θ, φ) the coordinates of a spherically symmetric spacetime. Then a standard

such metric can be written as follows:

d2s = B(r)dt2 − A(r)dr2 − r2dθ2 − r2 sin2 θdφ2, (7− 57)

i.e., g00 = gtt = B(r), g11 = grr = −A(r), g22 = gθθ = −r2, g33 = gφφ = −r2 sin2 θ

and all other metric tensors equal to 0. Therefore, gtt = 1/B(r), grr = −1/A(r),

gθθ = −1/r2 and gφφ = −1/r2 sin2 θ.

For solving Einstein gravitational field equations, we need to calculate all non-

zero connections Γρµν . By definition, we know that

Γρµν =
gρσ

2

(
∂gσµ
∂xν

+
∂gσν
∂xµ

− ∂gµν
∂xσ

)
.

Notice that all non-diagonal metric tensors equal to 0. Calculation shows that

Γrφφ = −g
rr

2

∂gφφ
∂xr

= −1

2
(
−1

A
)
∂

∂
(r2 sin2 θ) = − r

A
sin2 θ.

Similarly,

Γrrr =
A′

2A
, Γttt =

B′

2B
, Γtrr =

B′

2A
, Γθrθ = Γφrφ =

1

r
,

Γrθθ = − r
A
, Γrφφ = − r

A
sin2 θ, Γφθφ = cot θ, Γθφφ = − sin θ cos θ, (7− 58)

where A′ = dA
dr

, B′ = dB
dr

and all other connections are equal to 0.

Now we calculate non-zero Ricci tensors. By definition,

Rµν =
∂Γρµν
∂xρ

−
∂Γρµρ
∂xν

+ ΓσµνΓ
ρ
ρσ − ΓσµρΓ

ρ
νσ.

Whence,

R00 = Rtt = −∂Γ
r
tt

∂xr
+ 2ΓtrtΓ

r
tt − Γrtt(Γ

r
rr + Γθrθ + Γφrφ + Γtrt)

= −
(
B′

2A

)′

+
B′2

2AB
− B′

2A

(
A′

2A
+

2

r
+
B′

2B

)

= −B
′′

2A
+
B′

4A

(
A′

A
+
B′

B

)
− B′

rA
,
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R11 = Rrr = − ∂

∂xr
(Γrrr + Γθrθ + Γφrφ + Γtrt)−

∂Γrrr
∂xr

+(ΓrrrΓ
r
rr + ΓθrθΓ

θ
rθ + ΓφrφΓ

φ
rφ + ΓtrtΓ

t
rt)

−Γrrr(Γ
r
rr + Γθrθ + Γφrφ + Γtrt)

=

(
2

r
+
B′

2B

)′

+

(
2

r2
+
B′2

4B2

)
− A′

2A

(
2

r
+
B′

2B

)

=
BB′′ − B′2

2B2
+
B′2

4B2
− A′B′

4AB
− A′

rA
.

Similar calculations show that all Ricci tensors are as follows:

Rtt = −B
′′

2A
+
B′

4A

(
A′

A
+
B′

B

)
− B′

rA
,

Rrr =
B′′

2B
− B′

4B

(
A′

A
+
B′

B

)
− A′

rA
,

Rθθ =
r

2A

(
−A

′

A
+
B′

B

)
+

1

A
− 1,

Rφφ = sin2 θRθθ and Rµν = 0 if µ 6= ν. (7− 59)

Our object is to solve Einstein gravitational field equations in vacuum space,

i.e., Rµν = 0. Notice that

Rtt

B
+
Rrr

A
= − 1

rA

(
A′

A
+
B′

B

)
= −BA

′ + AB′

rA2B
= 0,

that is, BA′ + AB′ = (AB)′ = 0. Whence, AB =constant.

Now at the infinite point ∞, the line element (7 − 56) should turn to the

Minkowskian metric

ds2 = dt2 − dx2 − dy2 − dz2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2.

Therefore, lim
r→∞

A(r) = lim
r→∞

B(r) = 1. So

A(r) =
1

B(r)
, A′ = −B

′

B2
. (7− 60)

Substitute (7− 60) into Rθθ = 0, we find that

Rθθ = rB′ +B − 1 =
d

dr
(rB)− 1 = 0.

Therefore, rB(r) = r − rg, i.e., B(r) = 1 − rg/r. When r → ∞, the spacetime

should turn to flat. In this case, Einstein gravitational field equations will turn to
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Newtonian gravitational equation, i.e., rg = 2Gm. Thereafter,

B(r) = 1− 2Gm

r
. (7− 61)

Substituting (7− 61) into (7− 57), we get the Schwarzschild metric as follows:

ds2 =

(
1− 2mG

r

)
dt2 − dr2

1− 2mG
r

− r2dθ2 − r2 sin2 θdφ2,

or

ds2 =
(
1− rg

r

)
dt2 − dr2

1− rg
r

− r2dθ2 − r2 sin2 θdφ2. (7− 62)

We therefore obtain the covariant metric tensor for the spherically symmetric grav-

itational filed following:

gµν =




1− rg
r

0 0 0

0 −
(
1− rg

r

)−1
0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ



. (7− 63)

By (7− 63), we also know that the infinitesimal distance of two points in time or in

space is (
1− rg

r

)
dt2, dl2 =

dr2

1− rg
r

+ r2dθ2 + r2 sin2 θdφ2,

respectively.

The above solution is assumed that A and B are independent on time t in the

spherically symmetric coordinates. Generally, let A = A(r, t) and B = B(r, t), i.e.,

the line element is

ds2 = B(r, t)dt2 − A(r, t)dr2 − r2(dθ2 + sin2 θdφ2).

Then there are 3 non-zero connections Γρµν more than (7-58) in this case following:

Γrtr =
Ȧ

2A
, Γttt =

Ḃ

2B
, Γtrr =

Ȧ

2B
,

where Ȧ = ∂A
∂t

and Ḃ = ∂B
∂t

. These formulae (7− 59) are turned to the followings:

Rrr =
B′′

2B
− B′2

4B2
− A′B′

4AB
− A′

Ar
+

Ä

2B
− ȦḂ

4B2
− Ȧ2

4AB
,
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Rθθ = −1 +
1

A
− rA′

2A2
+

rB′

2AB
,

Rφφ = Rθθ sin2 θ,

Rtt = −B
′′

2A
+
A′B′

4A2
− B′

Ar
+

B′2

4AB
+

Ä

2A
− Ȧ2

4A2
− ȦḂ

4AB
,

Rtr = − Ȧ

Ar

and all other Ricci tensors Rrθ = Rrφ = Rθφ = Rθt = Rφt = 0. Now the equation

Rµν = 0 implies that Ȧ = 0. Whence, A is independent on t. We find that

Rrr =
B′′

2B
− B′2

4B2
− A′B′

4AB
− A′

Ar
,

and

Rtt = −B
′′

2A
+
A′B′

4A2
− B′

Ar
+

B′2

4AB
.

They are the same as in (7− 59). Similarly,

Rrr

A
+
Rtt

B
= − 1

rA

(
A′

A
+
B′

B

)
= 0, and Rθθ = 0.

We get that (AB)′ = 0 and (r/A)′ = 1. Whence,

A(r) =
1

1− rs
r

, B(r, t) = f(t)
(
1− rs

r

)
,

i.e., the line element

ds2 = f(t)
(
1− rg

r

)
dt2 − 1

1− rg
r

dr2 − r2(dθ2 + sin2 θdφ2).

There is another way for solving Einstein gravitational field equations due to

a spherically symmetric distribution of matter, i.e., expresses the coefficients of dt2

and dr2 in exponential forms following

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2).

In this case, the metric tensors are as follows:

gµν =




eν 0 0 0

0 −eλ 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ



.
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Then the nonzero connections are then given by

Γttt =
ν̇

2
, Γttr =

ν ′

2
, Γtrr =

λ̇

2
eλ−ν ;

Γrtt =
ν ′

2
eλ−ν , Γrtr =

λ̇

2
, Γrrr =

λ′

2
;

Γrθθ = −re−λ, Γrφφ = −r2 sin2 θe−λ, Γθrθ =
1

r
;

Γθφφ = − sin θ cos θ, Γφrφ =
1

r
, Γφθφ = cot θ.

Then we can determine all nonzero Ricci tensors Rµν and find the solution (7− 62)

of equations Rµν = 0.

7.2.6 Schwarzschild Singularity. In the solution (7 − 62), the number rg is

important to the structure of Schwarzschild spacetime (ct, r, θ, φ). The Schwarzschild

radius rs is defined to be

rs =
rg
c2

=
2Gm

c2
.

At its surface r = rs, these metric tensors grr diverge and gtt vanishes, which giving

the existence of a singularity in Schwarzschild spacetime.

One can show that each line with constants t, θ and φ are geodesic lines. These

geodesic lines are spacelike if r > rs and timelike if r < rs. But the tangent vector

of a geodesic line undergoes a parallel transport along this line and can not change

from timelike to spacelike. Whence, the two regions r > rs and r < rs can not join

smoothly at the surface r = rs.

We can also find this fact if we examine the radical null directions along dθ =

φ = 0. In such a case, we have

ds2 =
(
1− rs

r

)
dt2 −

(
1− rs

r

)−1

dr2 = 0.

Therefore, the radical null directions must satisfy the following equation

dr

dt
= ±

(
1− rs

r

)

in units in which the speed of light is unity. Notice that the timelike directions are

contained within the light cone, we know that in the region r > rs the opening of

light cone decreases with r and tends to 0 at r = rs, such as those shown in Fig.7.2.1

following.
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6 t

rs r

Fig. 7.2.1

In the region r < rs the parametric lines of the time t become spacelike. Con-

sequently, the light cones rotate 90◦, such as those shown in Fig.4.2.1, and their

openings increase when moving from r = 0 to r = rs. Comparing the light cones

on both sides of r = rs, we can easy find that these regions on the two sides of the

surface r = rs do not join smoothly at r = rs.

7.2.7 Kruskal Coordinate. For removing the singularity appeared in Schwarzschild

spacetime, Kruskal introduced a new spherically symmetric coordinate system, in

which radical light rays have the slope dr/dt = ±1 everywhere. Then the metric

will have a form

gµν =




f 2 0 0 0

0 −f 2 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ



. (7− 64)

Identifying (7− 63) with (7− 64), and requiring the function f to depend only on r

and to remain finite and nonzero for u = v = 0, we find a transformation between

the exterior of the spherically singularity r > rs and the quadrant u > |v| with new

variables following:

v =

(
r

rs
− 1

) 1
2

exp

(
r

2rs

)
sinh

(
t

2rs

)
,

u =

(
r

rs
− 1

) 1
2

exp

(
r

2rs

)
cosh

(
t

2rs

)
.
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The inverse transformations are given by

(
r

rs
− 1

)
exp

(
r

2rs

)
= u2 − v2,

t

2rs
= arctanh

(v
u

)

and the function f is defined by

f 2 =
32Gm3

r
exp

(
− r
rs

)

= a transcendental function of u2 − v2.

This new coordinates present an analytic extension E of the limited region S

of the Schwarzschild spacetime without singularity for r > rs. The metric in the

extended region joins on smoothly and without singularity to the metric at the

boundary of S at r = rs. This fact may be seen by a direction examination of the

geodesics, i.e., every geodesic followed in which ever direction, either runs into the

barrier of intrinsic singularity at r = 0, i.e., v2 − u2 = 1, or is continuable infinitely.

Notice that this transformation also presents a bridge between two otherwise Eu-

clidean spaces in topology, which can be interpreted as the throat of a wormhole

connecting two distant regions in a Euclidean space.

§7.3 ELECTROMAGNETIC FIELD

An electromagnetic field is a physical field produced by electrically charged objects.

It affects the behavior of charged objects in the vicinity of the field and extends

indefinitely throughout space and describes the electromagnetic interaction.

This field can be viewed as a combination of an electric field and a magnetic

field. The electric field is produced by stationary charges, and the magnetic field by

moving charges, i.e., currents, which are often described as the sources of the electro-

magnetic field. Usually, the charges and currents interact with the electromagnetic

field is described by Maxwell’s equations and the Lorentz force law.

7.3.1 Electrostatic Field. An electrostatic field is a region of space characterized

by the existence of a force generated by electric charge. Denote by F the force acting
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on an electrically charged particle with charge q located at x, due to the presence

of a charge q′ located at x′. Let ∇ = ( ∂
∂x1
, ∂
∂x2
, ∂
∂x3

). According to Coulomb�s law

this force in vacuum is given by the expression

F(x) =
qq′

4πε0

x− x′
|x− x′|3 = − qq′

4πε0
∇
(

1

|x− x′|

)
, (7− 65)

A vectorial electrostatic field Estat is defined by a limiting process

Estat = lim
q→0

F

q
,

where F is the force defined in equation (7 − 65), from a net electric charge q′ on

the test particle with a small electric net electric charge q. Since the purpose of the

limiting process is to assure that the test charge q does not distort the field set up

by q′, the expression for Estat does not depend explicitly on q but only on the charge

q′ and the relative radius vector x − x′. Applying (7 − 65), the electric field Estat

at the observation point x due to a field-producing electric charge q′ at the source

point x′ is determined by

Estat(x) =
q′

4πε0

x− x′
|x− x′|3 = − q′

4πε0
∇
(

1

|x− x′|

)
. (7− 66)

If there are m discrete electric charges q′i located at the points x′i for i =

1, 2, 3, · · · , m, the assumption of linearity of vacuum allows us to superimpose their

individual electric fields into a total electric field

Estat(x) =
1

4πε0

m∑

i=1

q′
x− x′i
|x− x′i|3

. (7− 67)

Denote the electric charge density located at x within a volume V by ρ(x),

which is measured in C/m3 in SI units. Then the summation in (7− 67) is replaced

by an integration following:

Estat(x) =
1

4πε0

∫

V

d3(x′)ρ(x′)
x− x′
|x− x′|3

= − 1

4πε0

∫

V

d3(x′)ρ(x′)∇
(

1

|x− x′|

)

= − 1

4πε0

∇
∫

V

d3(x′)
ρ(x′)

|x− x′| , (7− 68)

where we use the fact that ρ(x′) does not depend on the unprimed coordinates on

which ∇ operates. Notice that under the assumption of linear superposition, the



380 Chap.7 Fields with Dynamics

equation (7-68) is valid for an arbitrary distribution of electric charges including

discrete charges, in which case ρ can be expressed in the Dirac delta distributions

following:

ρ(x) =
∑

i

qiδ(x− x′i).

Inserting this expression into (7−68), we have (7−67) again. By (7−68), we know

that

∇ · Estat(x) = ∇ · 1

4πε0

∫

V ′

d3(x′)ρ(x′)
x− x′
|x− x′|3

= − 1

4πε0

∫

V ′

d3(x′)ρ(x′)∇ · ∇
(

1

|x− x′|

)

= − 1

4πε0

∫

V ′

d3(x′)ρ(x′)∇2

(
1

|x− x′|

)

=
1

ε0

∫

V ′

d3(x′)ρ(x′)δ(x− x′i) =
ρ(x)

ε0

. (7− 69)

Notice that ∇×(∇α(x)) = 0 for any scalar field α(x), x ∈ R3. We immediately

get that

∇× Estat(x) = − 1

4πε0

∇×
(
∇
∫

V ′

d3(x′)
ρ(x′)

|x− x′|

)
= 0, (7− 70)

which means that Estat is an irrotational field. Whence, a electrostatic filed can be

characterized in terms of two equations following:

∇ · Estat(x) = −ρ(x)
ε0

, (7− 71)

∇× Estat(x) = 0. (7− 72)

7.3.2 Magnetostatic Field. A magnetostatic field is generated when electric

charge carriers such as electrons move through space or within an electrical conduc-

tor, and the interaction between these currents. Let F denote such a force acting on

a small loop C, with tangential line element dl located at x and carrying a current

I in the direction of dl, due to the presence of a small loop C ′ with tangential line

element dl′ located at x and carrying a current I ′ in the direction of dl′, such as

those shown in Fig.7.3.1.
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C ′

C

O

x

x′

x− x′Idl

I ′dl′

Fig.7.3.1

According to Ampère’s law, this force in vacuum is given by

F(x) =
µ0II

′

4π

∮

C

dl

∮

C′

dl′ × x− x′
|x− x′|3

= −µ0II
′

4π

∮

C

dl ×
∮

C′

dl′ ×∇
(

1

|x− x′|

)
,

where µ0 = 4π× 10−7 ≈ 1.2566× 10−6H/m. Since a× (b× c) = b(a · c)− c(a · b)

= ba · c− ca · b, we know that

F(x) = −µ0II
′

4π

∮

C

dl′
∮

C′

dl∇
(

1

|x− x′|

)
− µ0II

′

4π

∮

C

∮

C′

(
x− x′
|x− x′|3

)
dldl′.

Notice that the integrand in the first integral is an exact differential and it vanishes.

We get that

F(x) = −µ0II
′

4π

∮

C

∮

C′

(
x− x′
|x− x′|3

)
dldl′. (7− 73)

A static vectorial magnetic field Bstat is defined by

dBstat(x) =
µ0I

′

4π
dl′ × x− x′

|x− x′|3 ,

which means that dBstat at x is set up by the line element dl′ at x′, called the

magnetic flux density. Let dl′ = j(x′)d3x′. Then

Bstat(x) =
µ0

4π

∫

V ′

d3x′j(x′)× x− x′
|x− x′|3

= −µ0

4π

∫

V ′

d3x′j(x′)×∇
(

1

|x− x′|

)

=
µ0

4π
∇×

∫

V ′

d3x′
j(x′)

|x− x′| , (7− 74)
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where we use the fact that j(x′) does not depend on the unprimed coordinates on

which ∇ operates. By his definition, we also know that

F(x) = I

∮

C

dl ×Bstat(x). (7− 75)

Since ∇ · (∇× a) = 0 for any a, we get that

∇ ·Bstat(x) =
µ0

4π
∇ ·
(
∇×

∫

V ′

d3x′
j(x′)

|x− x′|

)
= 0. (7− 76)

Applying ∇× (∇× a) = ∇(∇ · a)−∇2a = ∇∇ · a−∇ · ∇a, we then know that

∇×Bstat(x) =
µ0

4π
∇×

(
∇×

∫

V ′

d3x′
j(x′)

|x− x′|

)

= −µ0

4π

∫

V ′

d3x′j(x′)∇2

(
1

|x− x′|

)
+
µ0

4π

∫

V ′

d3x′[j(x′) · ∇′]∇′

(
1

|x− x′|

)
.

Notice that ∇ · (αa) = a · ∇α + α∇ · a. Integrating the second one by parts, we

know that
∫

V ′

d3x′[j(x′) · ∇′]∇′

(
1

|x− x′|

)

= x̂k

∫

V ′

d3x′∇′

{
j(x′)

[
∂

∂x′k

(
1

|x− x′|

)]}
−
∫

V ′

d3x′[∇′ · j(x′)]∇′

(
1

|x− x′|

)

= x̂k

∫

S′

d3x′n̂′j(x′)
∂

∂x′k

(
1

|x− x′|

)
−
∫

V ′

d3x′[∇′ · j(x′)]∇′

(
1

|x− x′|

)
,

where n̂ is the normal unit vector of S ′ directed along the outward pointing,

x̂1 = sin θ cosφr̂ + cos θ cos φθ̂ + sinφφ̂,

x̂2 = sin θ sinφr̂ + cos θ sinφθ̂ + cosφφ̂,

x̂3 = cos θr̂ − sin θθ̂

and

r̂ = sin θ cos φx̂1 + sin θ sinφx̂2 + cos θx̂3,

θ̂ = cos θ cosφx̂1 + cos θ cosφx̂2 − sin θx̂3,

φ̂ = − sin φx̂1 + cosφx̂2.

So dS = d2xn̂. Applying Gauss’s theorem, also note that ∇ · j = 0, we know this

integral vanishes. Therefore,

∇×Bstat(x) = µ0

∫

V ′

d3x′j(x′)δ(x−x′) = µ0j(x). (7−77)
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Whence, a magnetostatic filed can be characterized in terms of two equations fol-

lowing:

∇ ·Bstat(x) = 0, (7− 78)

∇×Bstat(x) = µ0j(x). (7− 79)

7.3.3 Electromagnetic Field. An electromagnetic filed characterized by E, B

are dependent on both position x and time t. In this case, let j(t, x) denote the time-

dependent electric current density, particularly, it can be defined as j(t, x) = vρ(t, x)

where v is the velocity of the electric charge density ρ for simplicity. Then the electric

charge conservation law can be formulated in the equation of continuity

∂ρ(t, x)

∂t
+∇ · j(t, x) = 0,

i.e., the time rate of change of electric charge ρ(t, x) is balanced by a divergence

in the electric current density j(t, x). Set ∇ · j(t, x) = −∂ρ(t, x)/∂t. Similar to the

derivation of equation (7− 77), we get that

∇×B(t, x) = µ0

∫

V ′

d3x′j(t, x′)δ(x− x′) +
µ0

4π

∂

∂t

∫

V ′

d3x′ρ(t, x′)∇′

(
1

|x− x′|

)

= µ0j(t, x) + µ0
∂

∂t
ε0E(t, x),

where

E(t, x) = − 1

4πε0

∇
∫

V ′

d3x′
ρ(t, x′)

|x− x′|
and it is assumed that

1

4πε0

∫

V ′

d3x′ρ(t, x′)∇
(

1)

|x− x′|

)
=

∂

∂t

[
− 1

4πε0

∇
∫

V ′

d3x′
ρ(t, x′))

|x− x′|

]
=

∂

∂t
E(t, x).

Notice that ε0µ0 = 107

4πc2
× 4π × 10−7(H/m) = 1/c2(s2/m2). We finally get that

∇×B(t, x) = µ0j(t, x
′) +

1

c2
∂

∂t
E(t, x). (7− 80)

If the current is caused by an applied electric field E(t, x)applied to a conducting

medium, this electric field will exert work on the charges in the medium and there

would be some energy loss unless the medium is superconducting. The rate at which

this energy is expended is j · E per unit volume. If E is irrotational (conservative),

j will decay away with time. Stationary currents therefore require that an electric
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field which corresponds to an electromotive force (EMF), denoted by EEMF . In the

presence of such a field EEMF , the Ohm�s law takes the form following

j(t, x) = σ(Estat + EEMF ),

where σ is the electric conductivity (S/m). Then the electromotive force is defined

by

E =

∮

C

dl · (Estat + EEMF ),

where dl is a tangential line element of the closed loop C. By (7−70), ∇×Estat(x) =

0,which means that Estat is a conservative field. This implies that the closed line

integral of Estat in above vanishes. Whence,

E =

∮

C

dl · EEMF . (7− 81)

Experimentally, a nonconservative EMF field can be produced in a closed circuit

C if the magnetic flux through C varies with time. In Fig.7.3.2, it is shown that a

varying magnetic flux induced by a loop C which moves with velocity v in a spatially

varying magnetic field B(x). 6
- 6℄ �
dl

v

d2xn̂
B(x)B(x)

C

Fig.7.3.2

Whence,

E(t) =

∮

C

dl · E(t, x) = − d

dt
Φm(t)

= − d

dt

∫

S

d2xn̂ ·B(t, x) = −
∫

S

d2xn̂ · ∂
∂t

B(t, x), (7− 82)

where Φm is the magnetic flux and S the surface encircled by C. Applying Stokes’

theorem ∮

C

a · dl =

∫

S

dS · (∇× a)
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in R3 to (7− 82), we find the differential equation following

∇×E(t, x) = − ∂

∂t
B(t, x). (7− 83)

Similarly, we can also get the following likewise that of equation (7− 76).

∇ ·B(t, x) = 0 and ∇ ·E(t, x) =
1

ε0

ρ(x) (7− 84)

7.3.4 Maxwell Equation. All of (7−80), (7−83) and (7−84) consist of Maxwell

equations, i.e.,

∇ · E(t, x) =
1

ε0

ρ(x),

∇× E(t, x) = − ∂
∂t

B(t, x),

∇ ·B(t, x) = 0,

∇×B(t, x) = µ0j(t, x
′) + 1

c2
∂
∂t

E(t, x)

on electromagnetic field, where ρ(t, x), j(t, x) are respective the electric charge and

electric current.

According to Einstein’s general relativity, we need to express the electromag-

netic fields in a tensor form where the components are functions of the covariant

form of the four-potential Aµ = (φ/c,A). Define the four tensor

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
= ∂µAν − ∂νAµ

of rank 2 called the electromagnetic field tensor, where ∂µ = (∂t,∇). In matrix

representation, the contravariant field tensor can be written as follows:

F µν =




0 Ex/c Ey/c Ez/c

Ex/c 0 Bz By

Ey/c Bz 0 Bx

Ez/c By Bx 0



.

Similarly, the covariant field tensor is obtained from the contravariant field

tensor in the usual manner by index lowering

Fµν = gµκgνλF
κλ = ∂µAν − ∂νAµ
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with a matrix representation

Fµν =




0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0



.

Then the two Maxwell source equations can be written

∂µF
µν = µ0j

ν . (7− 85)

In fact, let ν = 0 corresponding to the first/leftmost column in the matrix

representation of the covariant component form of the electromagnetic field tensor

F µν , we find that

∂F 00

∂x0
+
∂F 10

∂x1
+
∂F 20

∂x2
+
∂F 30

∂x3
= 0 +

1

c

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)

=
1

c
∇ ·E = µ0j

0 = µ0cρ = ρ/ε0,

i.e.,

∇ ·E =
ρ

ε0
.

For ν = 1, the equation (7− 85) yields that

∂F 01

∂x0
+
∂F 11

∂x1
+
∂F 21

∂x2
+
∂F 31

∂x3
= − 1

c2
∂Ex
∂t

+ 0 +
∂Bz

∂y
− ∂By

∂z
= µ0j

1 = µ0jx,

which can be rewritten as

∂Bz

∂y
− ∂By

∂z
− ε0µ0

∂Ex
∂t

= µ0jx,

i.e.,

(∇×B)x = µ0jx + ε0µ0
∂Ex
∂t

and similarly for ν = 2, 3. Consequently, we get the result in three-vector form

∇×B = µ0j(t, x) + ε0µ0
∂E

∂t
.

Choose the Lagrange density L EM of a electromagnetic field to be

L
EM = jνAν +

1

4µ0

F µνFµν .
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Then the equation (7− 85) is implied by the lagrange equations shown in the next

result.

Theorem 7.3.1 The equation (7−85) is equivalent to the Euler-Lagrange equations

∂L EM

∂Aν
− ∂µ

[
∂L EM

∂(∂µAν)

]
= 0.

Proof By definition of F µν and Fµν , we know that

F µνFµν = −2E2
x/c

2 − 2E2
y/c

2 − 2E2
z/c

2 + 2B2
x + 2B2

y + 2B2
z

= −2E2/c2 + 2B2 = 2(B2 −E2/c2).

Whence,

∂L EM

∂Aν
= jv. (7− 86)

Notice that

∂µ

[
∂L EM

∂(∂µAν)

]
=

1

4µ0
∂µ

[
∂

∂(∂µAν)
(F κλFκλ)

]

=
1

4µ0
∂µ

{
∂

∂(∂µAν)
[(∂κAλ − ∂λAκ)(∂κAλ − ∂λAκ)]

}

=
1

2µ0
∂µ

[
∂

∂(∂µAν)
(∂κAλ∂κAλ − ∂κAλ∂λAκ)

]
.

But

∂

∂(∂µAν)
(∂κAλ∂κAλ) = ∂κAλ

∂

∂(∂µAν)
∂κAλ + ∂κAλ

∂

∂(∂µAν)
∂κAλ

= ∂κAλ
∂

∂(∂µAν)
∂κAλ + ∂κAλ

∂

∂(∂µAν)
gκα∂αg

λβAβ

= ∂κAλ
∂

∂(∂µAν)
∂κAλ + gκαgλβ∂κAλ

∂

∂(∂µAν)
∂αAβ

= ∂κAλ
∂

∂(∂µAν)
∂κAλ + ∂αAβ

∂

∂(∂µAν)
∂αAβ

= 2∂µAν .

Similarly,
∂

∂(∂µAν)
(∂κAλ∂λAκ) = 2∂νAµ.
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Whence,

∂µ

[
∂L EM

∂(∂µAν)

]
=

1

µ0
∂µ(∂

µAν − ∂νAµ) =
1

µ0
∂µF

µν .

Thereafter, we get that

∂L EM

∂Aν
− ∂µ

[
∂LEM
∂(∂µAν)

]
= jν − 1

µ0
∂µF

µν = 0

by Euler-Lagrange equations, which means that

∂µF
µν = µ0j

ν ,

which is the equation (7− 86). �

Similarly, let

ǫµνκλ =





1 if µνκλ is an even permutation of 0, 1, 2, 3,

0 if at least two of µ, ν, κ, λ are equal,

−1 if µνκλ is an odd permutation of 0, 1, 2, 3.

Then the dual electromagnetic tensor ∗F µν is defined by

∗F µν =
1

2
ǫµνκλFκλ,

or in a matrix form of the dual field tensor following

∗F µν =




0 −cBx −cBy −cBz

cBx 0 Ez −Ey
cBy −Ez 0 Ex

cBz Ey −Ex 0



.

Then the covariant form of the two Maxwell field equations

∇× E(t, x) = − ∂
∂t

B(t, x),

∇ ·B(t, x) = 0

can then be written

∂ ∗F µν = 0,

or equivalently,

∂κFµν + ∂µFνκ + ∂νFκµ = 0, (7− 87)
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which is just the Jacobi identity.

7.3.5 Electromagnetic Field with Gravitation. We determine the gravita-

tional field with a nonvanishing energy-momentum tensor Tµν , i.e., the solution of

Einstein gravitational field equations in vacuum due to a spherically symmetric dis-

tribution of a body with mass m and charged q. In this case, such a metric can be

also written as

d2s = B(r)dt2 − A(r)dr2 − r2dθ2 − r2 sin2 θdφ2.

By (7− 66), we know that E(r) = q/r2 and

F µν =
E(r)

c2




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0




and Fµν =
E(r)

c2




0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0



,

i.e., F01 = F 10 = E/c2, F10 = F 01 = −E/c2 and all other entries vanish in such a

case, where indexes 0 = t, 1 = r, 2 = θ and 3 = φ. Calculations show that

F01F
01 = F10F

10 = −E2/c2,

FλτF
λτ = F10F

01 + F01F
10 = −2E2.

In an electromagnetic filed, we know that Tµν = −(gσνFµλF
σλ + E2

2
gµν) by

definition. Whence,

T00 = −(g0σF0λF
σλ +

E2

2
g00) =

E2

2c4
B,

T11 = −g11(F10F
10 +

E2

2
) = −E

2

2c4
A,

T22 =
E2

2c4
r2, T33 =

E2

2c4
r2 sin2 θ

and all of others Tµν = 0, i.e.,

Tµν =
E(r)

c2




B 0 0 0

0 −A 0 0

0 0 r2 0

0 0 0 r2 sin2 θ



.
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These Ricci’s tensors are the same as (7−58). Now we need to solve the Einstein

gravitational field equations

Rµν = −8πGTµν ,

i.e.,

Rtt = −4Gπq2

c4r4
B, Rrr =

4Gπq2

c4r4
A,

Rθθ = −4Gπq2

c4r2
, Rφφ =

4Gπq2

c4r2
sin2 θ.

Similarly, we also know that

Rtt

B
+
Rrr

A
= 0,

which implies that A = 1/B and

Rθθ =
d

dr
(rB)− 1 = −4Gπq2

c4r2
.

Integrating this equation, we find that

rB − r =
4Gπq2

c4r
+ k.

Whence,

B(r) = 1 +
4Gπq2

c4r2
+
k

r
.

Notice that if r →∞, then

gtt = 1− 2Gm

c2r
= 1 +

4Gπq2

c4r2
+
k

r
.

Whence k = −2Gm/c2 and

B(r) = 1 +
4Gπq2

c4r2
− 2Gm

c2r
.

Consequently, We get that

ds2 = (1 +
4Gπq2

c4r2
− 2Gm

c2r
)dt2 − dr2

1 + 4Gπq2

c4r2
− 2Gm

c2r

− r2dθ2 − r2 sin2 θdφ2.

Denote by rs = 2Gm/c2 and r2
q = 4Gπq2/c4, then we have the metric of a

charged q body with mass m following:

ds2 = (1 +
r2
q

r2
− rs

r
)dt2 − dr2

1 +
r2q
r2
− rs

r

− r2dθ2 − r2 sin2 θdφ2. (7− 88)
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§7.4 GAUGE FIELD

These symmetry transformations lies in the Einstein’s principle of covariance, i.e.,

laws of physics should take the same form independently of any coordinate frame

are referred to as external symmetries. For knowing the behavior of the world,

one also needs internal parameters, such as those of charge, baryonic number,· · ·,
etc., called gauge basis which uniquely determine the behavior of the physical object

under consideration. The correspondent symmetry transformations on these internal

parameters, usually called gauge transformation, leaving invariant of physical laws

which are functional relations in internal parameters are termed internal symmetries.

A gauge field is such a mathematical model with local or global symmetries

under a group, a finite-dimensional Lie group in most cases action on its gauge

basis at an individual point in space and time, together with a set of techniques for

making physical predictions consistent with the symmetries of the model, which is a

generalization of Einstein’s principle of covariance to that of internal field. Whence,

the gauge theory can be applied to describe interaction of elementary particles, and

perhaps, it maybe unifies the existent four forces in physics. Usually, this gauge

invariance is adopted in a mathematical form following.

Gauge Invariant Principle A gauge field equation, particularly, the Lagrange

density of a gauge field is invariant under gauge transformations on this field.

7.4.1 Gauge Scalar Field. Let φ(x) be a complex scalar field with a mass m.

Then its Lagrange density can be written as

L = ∂µφ
†∂µφ−m2φ†φ,

where φ† is the Hermitian conjugate of φ, ∂µ = (∂t,−∇) and φ, φ† are independent.

In this case, the Euler-Lagrange equations are respective

∂µ
∂L

∂(∂µφ†)
− ∂L

∂φ†
= ∂µ∂

µφ+m2φ = (∂2 +m2)φ = 0,

∂µ
∂L

∂(∂µφ)
− ∂L

∂φ
= ∂µ∂

µφ† +m2φ† = (∂2 +m2)φ† = 0.

Consider its gauge transformation φ → φ′ = eiγφ for a real number γ. By

the gauge principle of invariance, the Lagrange density L is invariant under this
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transformation. In this case, δφ = iγφ, δφ† = −iγφ†, δ∂µφ = iγ∂µφ, δ∂µφ
† =

−iγ∂µφ†. Whence, we get that

δL = iγ

(
∂L

∂φ
φ− φ†∂L

∂φ†
+

∂L

∂∂µφ
∂µφ− ∂µφ† ∂L

∂∂µφ†

)

= iγ∂µ

(
∂L

∂∂µφ
φ− φ† ∂L

∂∂µφ†

)
(7− 89)

by applying

∂µ
∂L

∂(∂µφ)
− ∂L

∂φ
= 0, ∂µ

∂L

∂(∂µφ†)
− ∂L

∂φ†
= 0.

Let δL = 0 in (7− 89), we get the continuous equation

∂µj
µ = 0,

where

jµ =
q

i

(
∂L

∂∂µφ
φ− φ† ∂L

∂∂µφ†

)
,

i2 = −1 and q is a real number. Therefore,

jµ = iq(φ†∂µφ− (∂µφ†)φ).

If γ is a function of x, i.e., γ(x), we need to find the Lagrange density L in

this case. Notice that

∂µ(e
iγφ) = eiγ(∂µ + i∂µγ)φ.

For ensuring the invariance of L , we need to replace the operator ∂µ acting on φ

by Dµ = ∂µ + irAµ, where Aµ = Aµ(x) is a field and r a constant. We choose

Dµ → D′
µ = ∂µ + irA′

µ,

Aµ → A′
µ = Aµ −

1

q
∂µγ

and

L = (Dµφ)†(Dµφ)−m2φ†φ.

Then we have

Dµφ→ (Dµφ)′ = D′
µφ

′ = eiγDµφ,

i.e., L is invariant under the transformation φ→ φ′ = eiγφ.
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Now consider a set of n non-interacting complex scalar fields with equal masses

m. Then an action is the sum of the usual action for each scalar field φi, 1 ≤ i ≤ n

following

I =

∫
d4x

n∑

i=1

(
1

2
∂µφi∂

µφi −
1

2
m2φ2

i

)
.

Let Φ = (φ1, φ2, · · · , φn)t. In this case, the Lagrange density can be compactly

written as

L =
1

2
(∂µΦ)t∂µΦ− 1

2
m2ΦtΦ.

Then it is clear that the Lagrangian is invariant under the transformation Φ→ GΦ

whenever G is a n× n matrix in orthogonal group O(n).

7.4.2 Maxwell Field. If a field φ is gauge invariant in the transformation

φ(x) → φ′(x) = eiγ(x)φ(x), then there must exists a coupling field Aµ(x) of φ(x)

such that Aµ(x) is invariant under the gauge transformation

Aµ(x)→ A′
µ(x) = Aµ(x) + ∂µχ(x),

where χ(x) ∝ γ(x) is a real function. In this case, the gauge field F µν and the

Lagrange density L can be respective chosen as

F µν = ∂µAν − ∂νAµ, L = −1

4
FµνF

µν .

We call L the Maxwell-Lagrange density and Aµ the Maxwell filed. Applying the

Euler-Lagrange equations, the Maxwell field should be determined by equations

L

∂Aµ
− ∂µ

L

∂∂µAν
= 0 + ∂µ∂

µAν − ∂µ∂νAµ = ∂µF
µν = 0.

By the definition of F µν and Jacobian identity established in Theorem 5.1.2,

the following identity

∂λFµν + ∂µFνλ + ∂νFλµ = 0

holds. Whence, a Maxwell field is determined by

∂µF
µν = 0,

∂κFµν + ∂µFνκ + ∂νFκµ = 0.

By the definition of F µν , the 4 coordinates used to describe the field Aµ are not

complete independent. So we can choose additional gauge conditions as follows.
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Lorentz Gauge: ∂µA
µ = 0.

Lorentz gauge condition is coinvariant, but it can not removes all non-physical

freedoms appeared in a Maxwell filed. In fact, the number of freedom of a Maxwell

filed is 3 after the Lorentz gauge added.

Coulomb Gauge: ∇ ·A = 0 and ∇2A0 = −ρ, where ρ is the charge density of

field.

Radiation Gauge: ∇ ·A = 0 and A0 = 0.

The Coulomb gauge and radiation gauge conditions remove all these non-

physical freedoms in a Maxwell field, but it will lose the invariance of filed. In

fact, the number of freedom of a Maxwell filed is 2 after the Coulomb gauge or

radiation gauge added.

7.4.3 Weyl Field. A Weyl field ψ(x) is determined by an equation following

∂0ψ = bi∂iψ + Cψ,

where bi and C are undetermined coefficients and ψ(x) characterizes the spinor of

field. Acting by ∂0 on both sides of this equation, we find that

∂2
0ψ = (bi∂i + C)∂0ψ = (bi∂i + C)2ψ

=

[
1

2
(bibj + bjbi)∂i∂j + 2Cbi∂i + C2

]
ψ. (7− 90)

Let C = 0 and {bi, bj} = bibj + bjbi = −2gij. Then we obtain the d’Almbert equation

∂µ∂
µψ = 0

from the equation (7− 90). Notice bi must be a matrix if bibj + bjbi = −2gij and ψ

in a vector space with dimensional≥ 2. For dimensional 2 space, we have

bi = ±σi

where

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]

are Pauli matrixes and {σi, σj} = −2gij. In this case, the Weyl equation comes to

be

∂0ψ = ±σi∂iψ. (7− 91)
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Let

xi → xi
′

= aijx
j

be a rotation transformation of the external field of dimensional 3. Whence, [aij ]

is a 3 × 3 real orthogonal matrix with aika
k
j = δij. Correspondent to this rotation

transformation, let

ψ → ψ′ = Λψ

be a rotation transformation of the internal field. Substitute this transformation

and ∂i = aji∂
′
j into (7− 91), we find that

∂0ψ
′ = ±ΛσiΛ−1aji∂

′
jψ

′. (7− 92)

If the form of equation (7− 92) is as the same as (7− 91), we should have

ajiΛσ
iΛ−1 = σj ,

or equivalently,

Λ−1σiΛ = aijσ
j . (7− 93)

We show the equation (7− 93) indeed has solutions. Consider an infinitesimal

rotation

aij = gij + ǫijkθ
k.

of the external field. Then its correspondent infinitesimal rotation of the internal

can be written as

Λ = 1 + iεiσ
i.

Substituting these two formulae into (7− 93) and neglecting the terms with power

more than 2 of εi, we find that

σi + iεj(σ
iσj − σjσi) = σi + ǫijkσ

jθk.

Solving this equation, we get that εi = θi/2. Whence,

Λ = 1− i

2
θ · σ, (7− 94)

where θ = (θ1, θ2, θ3). Consequently, the Weyl equation is gauge invariant under the

rotation of external field if the internal field rotates with ψ → Λψ in (7− 94).



396 Chap.7 Fields with Dynamics

The reflection P and time-reversal transformation T on a field are respective

xi → aijx
j , xi → bijx

j with (aij), (bij) following

(aµν ) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




and (bµν ) =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



.

Similarly, we can show the Weyl equation is not invariant under the reflection P

and time-reversal transformation T , but invariant under a reflection following a

time-reversal transformations PT and TP .

A particle-antiparticle transformation C is a substitution a particle p by its

antiparticle Ant− p. For Weyl field, since σ2(σi)∗ = −σiσ2, we get

∂0ψC = ∓σi∂iψC
for a field transformation ψ → ψC = Cψ = ηCσ

2ψ∗, where ηC is a constant with

η∗CηC = 1. Comparing this equation with the Weyl equation, this equation char-

acterizes a particle ψC with a reverse spiral of ψ. Whence, the Weyl field is not

invariant under particle-antiparticle transformations C, but is invariant under CP .

7.4.4 Dirac Field. The Dirac field ψ(x) is determined by an equation following:

(iγµ∂µ −m)ψ = 0, (7− 95)

where γµ is a 4× 4 matrix, called Dirac matrix and ψ a 4-component spinor. Cal-

culation shows that

{γµ, γν} = γµγν + γνγµ = 2gµν

and

γ0 =

[
I2×2 02×2

02×2 −I2×2

]
, γi =

[
02×2 σi

−σi 02×2

]
.

Now let

ψ =

(
ψL

ψR

)
,

where ψL, ψR are left-handed and right-handed Weyl spinors. Then the Dirac equa-

tion can be rewritten as
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(iγµ∂µ −m)ψ =

[
−m i(∂0 + σ · ∇)

i(∂0 − σ · ∇) m

](
ψL

ψR

)
= 0.

If we set m = 0, then the Dirac equation are decoupled to two Weyl equations

i(∂0 − σ · ∇)ψL = 0, i(∂0 + σ · ∇)ψR = 0.

Let Xµ → xµ
′

= aµνx
ν be a Lorentz transformation of external field with ψ →

Λψ the correspondent transformation of the internal. Substituting ψ′ = Λψ and

∂µ = aµν∂
′
ν into the equation (7− 95), we know that

(iΛγµΛ−1aνµ∂
′
ν −m)ψ′ = 0.

If its form is the same as (7− 95), we must have

ΛγµΛ−1aνµ = γν ,

or equivalently,

ΛγµΛ−1 = aµνγ
ν . (7− 96)

Now let

Λ = I4×4 +
1

4
εµνγ

µγν = 1 +
1

8
εµν(γ

µγν − γνγmu), (7− 97)

where ενµ = −εµν . It can be verified that the identify (7− 96) holds, i.e., the Dirac

equation (7− 95) is covariant under the Lorentz transformation.

Similar to the discussion of Weyl equation, we consider the invariance of Dirac

equation under rotation, reflection and time-reversal transformations.

(1)Rotation. For an infinitesimal rotation, εij = ǫijkθ
k and ε0i = 0. Substitute

them into (7− 97), we find that

Λ = 1− i

2
θ ·Σ,

where θ = (0, θ1, θ2, θ3) and

Σi = − i
2
ǫijkγ

jγk =

[
σi 02×2

02×2 σi

]
.

(2)Reflection. Let xµ → aµνx
ν be a reflection. Substituting it into (7 − 96), we

have
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Λ−1γ0Λ = γ0, Λ−1γiΛ = γi.

Solving these equations, we get that Λ = ηPγ
0, where ηP is a constant with η∗PηP = 1.

(3)Time-Reverse. Let xµ → aµνx
ν be a time-reversal transformation. Consider

the complex conjugate of the Dirac equation (7− 95), we know

(−iγµ∗∂µ −m)ψ∗ = 0,

i.e.,

[i(−γ0∂0 − γ1∂1 + γ2∂2 − γ3∂3)−m]ψ∗ = 0.

Substituting it with ∂µ = aνµ∂
′
ν , we find that

[i(γ0∂′0 − γ1∂′1 + γ2∂′2 − γ3∂′3)−m]ψ∗ = 0. (7− 98)

Acting by Λ on the left side of (7− 98), we get that

[i(Λγ0Λ−1∂′0 − Λγ1Λ−1∂′1 + Λγ2Λ−1∂′2 − Λγ3Λ−1∂′3)−m]Λψ∗ = 0. (7− 99)

Comparing (7− 99) with (7− 95), we know that

Λγ0Λ−1 = γ0, Λγ1Λ−1 = −γ1,

Λγ2Λ−1 = γ2, Λγ3Λ−1 = −γ3.

Solving these equations, we get that Λ = ηTγ
2γ3, where ηT is a constant with

η∗TηT = 1. Whence, the time-reversal transformation of Dirac spinor is ψ → ψT =

Tψ = ηTγ
2γ3ψ∗.

(4)Particle-Antiparticle. A particle-antiparticle transformation C on Dirac field

is ψ → ψC = Cψ = iγ2ψ∗. Assume spinor fields is gauge invariant. By introducing

a gauge field Aµ, the equation (7− 95) turns out

[γµ(i∂µ − qAµ)−m]ψ = 0, (7− 100)

where the coupled number q is called charge. The complex conjugate of the equation

(7− 100) is

[γµ∗(−i∂µ − qAµ)−m]ψ∗ = 0. (7− 101)

Notice that Aµ is real and γ2∗ = −γ2. Acting by iγ2 on the equation (7− 101), we

finally get that
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[γµ(i∂µ + qAµ)−m]ψC = 0, (7− 102)

Comparing the equation (7 − 102) with (7 − 100), we know that equation (7 −
102) characterizes a Dirac field of charge −q. Whence, Dirac field is C invariant.

Consequently, Dirac field is symmetric with respect to C, P and T transformations.

7.4.5 Yang-Mills Field. These gauge fields in Sections 7.4.1-7.4.4 are all Abelian,

i.e., φ(x)→ φ′(x) = eiγ(x)φ(x) with a commutative γ(x), but the Yang-Mills field is

non-Abelian characterizing of interactions. First, we explain the Yang-Mills SU(2)-

field following.

Let a field ψ be an isospin doublet ψ =

(
ψ1

ψ2

)
. Under a local SU(2) trans-

formation, we get that

ψ(x)→ ψ′(x) = e
−iσ·θ(x)

2 ψ(x),

where σ = (σ1, σ2, σ3) are the Pauli matrices satisfying

[
σi

2
,
σj

2
] = iεijk

σk

2
, 1 ≤ i, j, k ≤ 3

and θ = (θ1, θ2, θ3). For constructing a gauge-invariant Lagrange density, we intro-

duce the vector gauge fields Aµ = (A1
µ, A

2
µ, A

3
µ) to form covariant derivative

Dµψ =

(
∂µ − ig

σ ·Aµ

2

)
ψ,

where g is the coupling constant. By gauge invariant principle, Dµψ must have the

same transformation property as ψ, i.e.,

Dµψ → (Dµψ)′ = e
−iσ·θ(x)

2 Dµψ.

This implies that
(
∂µ − ig

σ ·A′
µ

2

)
(e

−iσ·θ(x)
2 ψ) = e

−iσ·θ(x)
2

(
∂µ − ig

σ ·Aµ

2

)
ψ,

i.e., (
∂µe

−iσ·θ(x)
2 − ig

σ ·A′
µ

2
e

−iσ·θ(x)
2

)
ψ = −ige−iσ·θ(x)

2
σ ·Aµ

2
.

Whence, we get that

σ ·A′
µ

2
= e

−iσ·θ(x)
2

σ ·Aµ

2
e

iσ·θ(x)
2 − i

g
(∂µe

−iσ·θ(x)
2 )e

iσ·θ(x)
2 ,
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which determines the transformation law for gauge fields. Foe an infinitesimal vari-

ation θ(x)≪ 1, we know that

e
−iσ·θ(x)

2 ≈ 1− iσ · θ(x)

2

and

σ ·A′
µ

2
=

σ ·Aµ

2
− iθjAkµ

[
σi

2
,
σj

2

]
− 1

g

(σ
2
· ∂µθ

)

=
σ ·Aµ

2
+

1

2
εijkσiθjAkµ −

1

g

(σ
2
· ∂µθ

)
,

i.e.,

A′i
µ = Aiµ + εijkθjAkµ −

1

g
∂µθ

i.

Similarly, consider the combination

(DµDν −DνDµ)ψ = ig

(
σi

2
F i
µν

)
ψ

with
σ · Fµν

2
= ∂µ

σ ·Aν

2
− ∂ν

σ ·Aµ

2
− ig

[
σ ·Aµ

2
,
σ ·Aν

2

]
,

i.e.,

F i
µν = ∂µA

i
ν − ∂νAiµ + gεijkAjµA

k
ν . (7− 103)

By the gauge invariant principle, we have

[(DµDν −DνDµ)ψ]′ = e
−iσ·θ(x)

2 (DµDν −DνDµ)ψ. (7− 104)

Substitute F i
µν in (7− 103) into (7− 104), we know that

σ · F′
µνe

−iσ·θ(x)
2 ψ = e

−iσ·θ(x)
2 σ · Fµνψ,

i.e.,

σ · F′
µν = e

−iσ·θ(x)
2 σ · Fµνe

iσ·θ(x)
2 .

For an infinitesimal transformation θi ≪ 1, this translates into

F ′i
µν = F i

µν + εijkθjF k
µν .

Notice Fµν is not gauge invariant in this case. Whence, 1
4
FµνF

µν is not a gauge

invariant again. But
1

2
tr(FµνF

µν) = −1

4
F i
µνF

iµν
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is a gauge invariant. We can choose

L =
1

2
tr(FµνF

µν) = −1

4
F i
µνF

iµν

to be its Lagrange density and find its equations of motion by Euler-Lagrange equa-

tions, where

F i
µν = ∂µA

i
ν − ∂νAiµ + gεijkAjµA

k
ν ,

Dµψ =

(
∂µ − ig

σ ·Aµ

2

)
.

Generally, the Lagrange density of Yang-Mills SU(n)-field is determined by

L = −1

2
Tr(F µν

a F a
µν).

Applying the Euler-Lagrange equations, we can also get the equations of motion of

Yang-Mills SU(n) fields for n ≥ 2.

7.4.6 Higgs Mechanism. The gauge invariance is in the central place of quantum

field theory. But it can be broken in adding certain non-invariant terms to its

Lagrangian by a spontaneous symmetry broken mechanism.

For example, let φ4 be a complex scalar field with Lagrange density

L = ∂µφ
†∂µφ− V (φ, φ†) = ∂µφ

†∂µφ−m2φ†φ− λ2(φ†φ)2,

where m and λ are two parameters of φ. We have know that this field is invariant

under the transformation

φ→ φ′ = eiγφ

for a real number γ. Its ground state, i.e., the vacuum state φ0 appearing in points

with minimal potential, namely,

∂V

∂φ†
= m2φ+ 2λφ(φ†φ) = 0. (7− 105)

If m2 > 0, the minimal point appears at φ = φ† = 0. The solution of equation

(7− 105) is unique. Whence, its vacuum state is unique.

If m2 < 0, the potential surface is a U-shape shown in Fig.7.4.1 and the minimal

points appears at

|φ|2 = −m
2

2λ
= a2, λ > 0,
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i.e., |φ| = a. The equation (7 − 105) has infinite many solutions. But the exact

vacuum state is only one of them, i.e., the gauge symmetry is broken, there are

no gauge symmetry in this case. Such field is called Higgs field. Its correspondent

particle is called Higgs particle.

-6
+

V

−a a

Reφ

Imφ

Fig.7.4.1

One can only observes the excitation on its average value a of a filed by exper-

iment. So we can write

φ(x) = a+
1√
2
(h(x) + iρ(x)), (7− 106)

where, by using the Dirac’s vector notation

〈v| = (v1, v2, · · ·), |v〉 = (v1, v2, · · ·)t

and

〈v| · |u〉 = (v1, v2, · · ·) ·




u1

u2

...


 = v1u2 + v2u2 + · · · = 〈v|u〉 ,

there is 〈0|h|0〉 = 〈0|ρ|0〉 = 0, i.e., h(x), ρ(x) can be observed by experiment.

Substitute this into the formula of L , we ge that

L =
1

2
(∂µh)

2 +
1

2
(∂µρ)

2 − λv2h2 − λvh(h2 + ρ2)− λ

4
(h2 + ρ2)2

with v =
√

2a. By this formula, we know that the field h has mass
√

2λv, a direct

ratio of a, also a field ρ without mass, called Goldstone particle.

Now we consider the symmetry broken of local gauge fields following.
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Abelian Gauge Field. Consider a complex scalar field φ4. Its Lagrange density

is

L = (∂µ − igAµ)φ†(∂µ + igAµ)φ−m2φ†φ− λ(φ†φ)2 − 1

4
FµνF

µν

= ∂µφ
†∂µφ−m2φ†φ− λ(φ†φ)2 − igφ†

↔

∂µ φA
µ + g2φ†φAµA

µ − 1

4
FµνF

µν ,

where Aµ is an Abelian gauge field, Fµν = ∂µAν − ∂νAµ and
↔

∂µ is determined by

A
↔

∂µ B = A
∂B

∂xµ
− ∂A

∂xµ

with formulae following hold

A
↔

∂µ (B + C) = A
↔

∂µ B + A
↔

∂µ C,

(A+B)
↔

∂µ C) = A
↔

∂µ C +B
↔

∂µ C,

A
↔

∂µ B = −B
↔

∂µ A,

A
↔

∂µ A = 0.

Choose the vacuum state φ in (7 − 106) and neglect the constant term. We

have that

L =
1

2
(∂µh)

2 +
1

2
(∂µρ)

2 − λv2h2 − 1

4
FµνF

µν +
1

2
g2v2AµA

µ

− λvh(h2 + ρ2)− λ

4
(h2 + ρ2)2 + gv∂µρA

µ

+ gh
↔

∂µ ρA
µ + g2vhAµA

µ +
1

2
g2(h2 + ρ2)AµA

µ.

Here, the first row arises in the fields h, ρ and the gauge field Aµ, and the last two

rows arise in the self-interactions in h, ρ and their interaction with Aµ. In this case,

the gauge field acquired a mass gv.

In the case of unitary gauge, i.e., ρ = 0 in the gauge transformation φ→ eiγ(x).

Then the Lagrange density turns into

L = −1

4
FµνF

µν +
1

2
g2v2AµA

µ +
1

2
(∂µh)

2 − λv2h2

− λvh3 − 1

4
λh4 + g2vhAµA

µ +
1

2
g2h2AµA

µ.

Whence, there are only gauge Aµ and Higgs, but without Goldstone’s particles in a

unitary gauge field.
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Non-Abelian Gauge Field. Consider an isospin doublet ψ =

(
ψ1

ψ2

)
gauge

field under local SU(2) transformations. Its Lagrange density is

L = (Dµφ)†Dµφ−m2φ†φ− λ(φ†φ)2 − 1

4
F i
µνF

iµν .

For m2 < 0, the vacuum state is in

〈
0|φ†φ|0

〉
= −m

2

2λ
= a2.

Now φ1 = χ1 + iχ2 and φ2 = χ3 + iχ4. Therefore,

φ†φ = χ2
1 + χ2

2 + χ2
3 + χ2

4,

a sphere of radius a in he space of dimensional 4. Now we can choose the vacuum

state

φ(x) =
1√
2

[
0

v + h(x)

]
.

Calculations show that

V = m2φ†φ+ λ(φ†φ)2 = λ(φ†φ)(φ†φ− v2) =
λ

4
((h2 + 2vh)2 − v4),

(Dµφ)†Dµφ = ∂µφ
†∂µφ+ ig∂µφ

†Aµφ− igφ†Aµ∂
µφ+ g2φ†AµA

µφ

=
1

2
(∂µh)

2 +
1

2
g2(v + h)2AµA

µ.

Whence, we get its Lagrange density to be

L = −1

4
F i
µνF

iµν +
1

2
g2v2AµA

µ +
1

2
(∂µh)

2 − λv2h2

− λvh3 − 1

4
λh4 + g2vhAµA

µ +
1

2
g2h2AµA

µ +
1

4
λv4,

where the first row arises in the coupling of the gauge and Higgs particles and in

the second row, the first two terms arise in the coupling of Higgs particle, the third

and fourth terms in their coupling with gauge particle.

7.4.7 Geometry of Gauge Field. Geometrically, a gauge basis is nothing but

a choice of a local sections of principal bundle P (M,G) and a gauge transformation

is a mapping between such sections. We establish such a model for gauge fields in

this subsection.



Sec.7.4 Gauge Field 405

Let P (M,G ) be a principal fibre bundle over a manifold M , a spacetime. Then

by definition, there is a projection π : P →M and a Lie-group G acting on P with

conditions following hold:

(1) G acts differentiably on P to the right without fixed point, i.e., (x, g) ∈
P × G → x ◦ g ∈ P and x ◦ g = x implies that g = 1G ;

(2) The projection π : P → M is differentiably onto and each fiber π−1(x) =

{p ◦ g|g ∈ G , π(p) = x} is a closed submanifold of P for x ∈M ;

(3) For x ∈ M , there is a local trivialization, also called a choice of gauge

Tu of P over M , i.e., any x ∈ M has a neighborhood Ux and a diffeomorphism

Tu : π−1(Ux)→ Ux × G with Tu(p) = (π(p), su(p)) such that

su : π−1(Ux)→ G , su(pg) = su(p)g

for ∀g ∈ G , p ∈ π−1(Ux).

By definition, a principal fibre bundle P (M,G ) is G -invariant. So we can view

it to be a gauge field and find its potential and strength in mathematics. Let ω be

the connection 1-form, Ω = dω the curvature 2-form of a connection on P (M,G )

and s : M → P , π ◦ s = idM be a local cross section of P (M,G ). Consider

A = s∗ω =
∑
µ

Aµdx
µ ∈ F 1(M4), (7− 107)

F = s∗Ω =
∑
Fµνdx

µ ∧ dxν ∈ F 2(M4), dF = 0. (7− 108)

Then we identify forms in (7− 107) and (7− 108) with the gauge potential and field

strength, respectively.

Let Λ : M → R and s′ : M → P , s′(x) = eiΛ(x)s(x). If A′ = s′∗ω, then we have

ω′(X) = g−1ω(X ′)g + g−1dg, g ∈ G , dg ∈ Tg(G ), X = dRgX
′, (7− 109)

which yields that

A′ = A+ dA, dF ′ = dF.

We explain the gauge fields discussed in this section are special forms of this

model, particularly, the Maxwell and Yang-Mills SU(2) gauge fields and the essen-

tially mathematical meaning of spontaneous symmetry broken following.

Maxwell Gauge Field ψ. dimM = 4 and G = SO(2)

Notice that SO(2) is the group of rotations in the plane which leaves a plane
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vector v2 = v · vt invariant. Any irreducible representation of SO(2) = S1 and

equivalent to one of the unitary representation ϕn : S1 → S1 by ϕn(z) = zn for

∀z ∈ S1. In this case, any section of P (M,SO(2)) can be represented by a mapping

s(ez) = z−n for e ∈ P , z ∈ S1.

Consider the 1-form A as the local principal gauge potential of an invariant

connection on a principal U(1)-bundle and the electromagnetic 2-form F as its

curvature. We have shown in Subsection 7.3.4 that Maxwell field is determined by

equations ∂µF
µν = µ0j

ν with the Jacobi identity. Let Ψ : M → C2 be the pull-back

of ψ by a section s : Ψ = ψs = s∗ψ. Then it is a gauge transformation of ψ.

Yang-Mills Field. The Yang-Mills potentials Aα = Aαµdx
µ give rise to the Yang-

Mills field

Bα
µν =

∂Aαν
∂xµ

−
∂Aαµ
∂xν

+
1

2
cαρσ(A

ρ
µA

σ
ν −AρνAσµ),

where cαρσ is determined in [Xρ, Xσ] = cαρσXα. Then

A2 = AµAνd
µdν =

1

2
[Aµ, Aν ]dx

µdxν .

Now the gauge transformation in (7− 109) is

A→ A′ = UAU † + UdU † = UAU † + U∂U †dxµ.

Whence,

dA→ dA′ = dUAU † + U(dA)U † − UAdU † + (dU)dU †,

A2 → A′2 = UA2U † + UAdU † + U(dU †)UAU † + U(dU †)UdU †

= UA2U † + UAdU † − (dU)AU † − (dU)du†.

We finally find that

dA+ A2 → dA′ + A′2 = U(dA + A2)U †,

i.e., F = dA+ A2 is gauge invariant with local forms

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ],

which is just the Fµν of the Yang-Mills fields by a proper chosen constant iq in Aµ.
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Spontaneous Symmetry Broken. Let Φ0 be the vacuum state in a field ψ with

the Lagrangian L = L1 + V (Φ), where V (Φ) stands for the interaction potential, G

a gauge group and g → ϕ(g) a representation of G . Define

M0 = ϕ(G )Φ0 = {ϕ(g)Φ0|g ∈ G } (7-107)

and GΦ0 = G0 = {g ∈ G |ϕ(g)Φ0 = Φ0} is the isotropy subgroup of G at Φ0. Then

M0 is a homogenous space of G , i.e.,

M0 = G /G0 = {gG0|g ∈ G }. (7-108)

Definition 7.4.1 A gauge symmetry G associated with a Lagrangian field theoretical

model L is said to be spontaneously broken if and only if there is a vacuum manifold

M0 defined in (7−108) obtained from a given vacuum state Φ0 defined in (7−107).

If we require that V (Φ0) = 0 and V (ϕ(g)Φ) = V (Φ), then V (ϕ(g)Φ0) = 0.

Consequently, we can rewrite M0 as

M0 = {Φ|V (Φ) = 0}.

Generally, one classifies the following cases:

Case 1. G = G0

In this case, the gauge symmetry is exact and the vacuum Φ0 is unique.

Case 2. 1G ∈ G0 ⊂ G

In this case, the gauge symmetry is partly spontaneously broken.

Case 3. G = {1G }

In this case, the gauge symmetry is completely broken.

Physically, G0 is important since it is the exact symmetry group of the field,

i.e., the original gauge symmetry G is broken down to G0 by Φ0.

For example, let L = L1 + V (Φ) be an SO(3)-invariant Lagrange density and

V (Φ) = 1
2
µ2Φ2

i − 1
4
λ(Φ2

i )
2, λ > 0. Then the necessary conditions for the minimum

value of V (Φ) which characterizes spontaneous symmetry broken requires

∂V

∂Φi
|Φi=Φ0

i
= 0 = µ2Φ2

i − λΦ2
iΦi ⇒ Φ02

i =
µ2

λ
.

Whence, the vacuum manifold M0 of field that minimize the potential V ()Φ is given
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by

M0 = S2 =

{
Φi|Φ2

i =
µ2

λ

}
,

which corresponds to a spontaneous symmetry broken G = SO(3) → SO(2) = G0.

By Definition 7.4.1, we know that

M0 = SO(3)/SO(2) ∼= S2

on account of

ϕ(g)Φα
0 = Φα

0 ⇔ ϕ(g) =




0

A 0

0 0 1


 , A ∈ SO(2),

where Φα
0 = (0, 0,Φ0), Φ0 =

√
µ2/λ. Consequently, the natural C∞-action

SO(3)× S2 → S2; (g,Φ)→ ϕ(g)Φ; ‖ϕ(g)Φ‖ = ‖Φ‖ =

√
µ2

λ

is a transitive transformation.

§7.5 REMARKS

7.5.1 Operator Equation. Let S, P be two metric spaces and T̂ : S→ P a

continuous mapping. For f ∈M ⊂ P, the equation

T̂u = f

with some boundary conditions is called an operator equation. Applying the inverse

mapping theorem, its solution is generally a manifold constraints on conditions if

M is a manifold. Certainly, those of Weyl’s, Dirac’s, Maxwell’s and Yang-Mills’s

partially differential equations discussed in this chapter are such equations. In fact, a

behavior of fields usually reflects geometrical properties with invariants, particularly,

the dynamics behavior of fields. This fact enables us to determine the behavior of a

field not dependent on the exact solutions of equations since it is usually difficult to

obtain, but on their differentially geometrical properties of manifolds. That is why

we survey the gauge fields by principal fibre bundles in Section 7.4.7. Certainly,

there are many such works should be carried out on this trend.
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7.5.2 Equation of Motion. The combination of the least action principle with

the Lagrangian can be used both to the external and internal fields, particularly for

determining the equations of motion of a field. More techniques for such ideas can

be found in references [Ble1], [Car1], [ChL1], [Wan1], [Sve1], etc. on fields. In fact,

the quantum field theory is essentially a theory established on Lagrangian by the

least action principle. Certainly, there are many works in this field should be done,

both in theoretical and practise, and find the inner motivation in matters.

7.5.3 Gravitational Field. In Newtonian’s gravitational theory, the gravitation

is transferred by eith and the action is at a distance, i.e., the action is takes place

instantly. Einstein explained the gravitation to be concretely in spacetime, i.e.,

a character of spacetime, not an external action. This means the central role of

Riemannian geometry in Einstein’s gravitational theory. Certainly, different metric

ds deduces different structure of spacetime, such as those solutions in [Car1] for

different metric we can find. Which is proper for our WORLD? Usually, one chose

the simplest metric, i.e., the Schwarzschild metric and its solutions to explain the

nature. Is it really happens so?

7.5.4 Electromagnetic Field. The electromagnetic theory is a unified theory

of electric and magnetic theory, which turns out the Maxwell equations of electro-

magnetic field. More materials can be found in [Thi1] and [Wan1]. For establishing

a covariant theory for electromagnetic fields, one applies the differential forms and

proved that these Maxwell equations can be also included in Euler-Lagrange equa-

tions of motion. However, the essence of electromagnetism is still an open problem

for human beings, for example, we do not even know its dimension. Certainly,

the existent electromagnetic field is attached with a Minkowskian spacetime, i.e.,

4-dimensional. But if we distinct the observed matter in a dimensional 4-space from

electromagnetism, we do not even know weather the rest is still a dimensional 4. So

the dimension 4 in electromagnetic theory is added by human beings. Then what is

its true color?

7.5.5 Gauge Field with Interaction. Einstein’s principle of covariance means

that a physical of external field is independent on the artificially reference frame

chosen by human beings. This is essentially a kind of symmetry of external fields.

A gauge symmetry is such a generalization for interaction. More results can be found
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in references [Ble1], [ChL1], [Wan1] and [Sve1]. For its geometry counterpart, the

reader is refereed to [Ble1]. Certainly, a gauge symmetry is dependent on its gauge

basis. Then how to choose its basis is a fundamental question. Weather can we find

a concise ruler for all gauge fields? The theory of principal fibre bundles presents

such a tool. That is why we can generalize gauge symmetry to combinatorial fields

in next chapter.

7.5.6 Unified Field. Many physicists, such as those of Einstein, Weyl, Klein,

Veblen, Pauli, Schouten and Thirty, · · · etc. had attempted to constructing a unified

field theory, i.e., the gravitational field with quantum field since 1919. Today, we

have know an effective theory to unify the gravitational with electromagnetic field,

for example, in references [Ble1], [Car1] and [Wes1]. By allowing the increasing of

dimensional from 4 to 11, the String theory also presents a mathematical technique

to unify the gravitational field with quantum field. In next chapter, we will analyze

their space structure by combinatorial differential geometry established in Chapters

4−6 and show that we can establish infinite many such unified field theory under the

combinatorial notion in Section 2.1. So the main objective for us is to distinguish

which is effective and which can be used to our WORLD.



CHAPTER 8.

Combinatorial Fields with Applications

We think in generalities, but we live in detail.

By A.N.Whitehead, a British mathematician.

The combinatorial manifold can presents a naturally mathematical model for

combinations of fields. This chapter presents a general idea for such works,

i.e., how to establish such a model and how to determine its behavior by its geo-

metrical properties or results on combinatorial manifolds. For such objectives,

we give a combinatorial model for fields with interactions in Section 8.1. Then,

we determine the equations of fields in Section 8.2, which are an immediately

consequence of Euler-Lagrange equations. It should be noted that the form

of equations of combinatorial field is dependent on the Lagrange density LM̃

with that of fields Mi for integers 1 ≤ i ≤ m, in which each kind of equations

determine a geometry of combinatorial fields. Notice the spherical symmetric

solution of Einstein’s field equations in vacuum is well-known. We determine

the line element ds of combinatorial gravitational fields in Section 8.3, which

is not difficult if all these line elements dsi, 1 ≤ i ≤ m are known beforehand.

By considering the gauge bases and their combination, we initially research in

what conditions on gauge bases can bring a combinatorial gauge field in Section

8.4. We also give a way for determining Lagrange density by embedded graphs

on surfaces, which includes Z2 gauge theory as its conclusion. Applications of

combinatorial fields to establishing model of many-body systems are present in

Section 8.5, for example, the many-body mechanics, cosmology and physical

structure. Besides, this section also establish models for economic fields in

general by combinatorial fields, particularly, the circulating economical field,

which suggests a quantitative method for such economical systems.
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§8.1 COMBINATORIAL FIELDS

8.1.1 Combinatorial Field. The multi-laterality of WORLD implies the combi-

natorial fields in discussion. A combinatorial field C consists of fields C1, C2, · · · , Cn
with interactions between Ci and Cj for some integers i, j, 1 ≤ i 6= j ≤ n. Two

combinatorial fields are shown in Fig.8.1.1, where in (a) each pair {Ci, Cj} has in-

teraction for integers 1 ≤ i 6= j ≤ 4, but in (b) only pair {Ci, Ci+1} has interaction,

i, i+ 1 ≡ (mod4).

C4

C1

C2 C3

C1

C2C4

C3

(a) (b)

Fig. 8.1.1

Such combinatorial fields with interactions are widely existing. For example,

let C1, C2, · · · , Cn be n electric fields Estat
1 , Estat

2 , · · ·, Estat
n . Then it is a electrically

combinatorial field with interactions. A combinatorial field C naturally induces a

multi-action S . For example, let FEiEj
be the force action between Ei, Ej. We

immediately get a multi-action S = ∪i,jFEiEj
between Estat

1 , Estat
2 , · · ·, Estat

n . The

two multi-actions induced by combinatorial fields in Fig.8.1.1 are shown in Fig.8.1.2.

C1 C2

C3C4

-�?6 ?6-� 3+ ~} C1 C2

C3C4

-� ?6-�6?
(a) (b)

Fig. 8.1.2

In fact, all things in our WORLD are local or global combinatorial fields. The

question now is how can we characterize such systems by mathematics?
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Notice that an action
−→
A always appears with an anti-action

←−
A . Consequently,

such a pair of action can be denoted by an edge
−→
A
←−
A . This fact enables us to define

a vertex-edge labeled graph GL[C ] for a combinatorial field C by

V (GL[C ]) = {v1, v2, · · · , vn},

E(GL[C ]) = {vivj | if ∃−→C i
←−
C j between Ci and Cj for 1 ≤ i 6= j ≤ n}

with labels

θL(vi) = Ci, θL(vivj) =
−→
C i
←−
C j.

For example, the vertex-edge labeled graphs correspondent to combinatorial fields

in Fig.8.1.1 are shown in Fig.8.1.3, in where the vertex-edge labeled graphs in (a),

(b) are respectively correspondent to the combinatorial field (a) or (b) in Fig.8.1.1.

C1

C2

C3C4

C1 C2

C3 C4

(a) (b)

−→
C 1
←−
C 2

−→
C 1
←−
C 3

−→
C 1
←−
C 4

−→
C 2
←−
C 3

−→
C 2
←−
C 4

−→
C 3
←−
C 4

−→
C 1
←−
C 2

−→
C 2
←−
C 3

−→
C 3
←−
C 4

−→
C 4
←−
C 1

Fig.8.1.3

We have know that a field maybe changes dependent on times in the last chap-

ter. Certainly, a combinatorial field maybe also varies on times. In this case, a

combinatorial field C is functional of the times t1, t2, · · · , tn, where ti is the time

parameter of the field Ci for 1 ≤ i ≤ n, denoted by C (t1, t2, · · · , tn). If there exists

a mapping T transfers each time parameter ti, 1 ≤ i ≤ n to one time parameter

t, i.e., there is a time parameter t for fields C1, C2, · · · , Cn, we denote such a com-

binatorial field by C (t). Correspondingly, its vertex-edge labeled graph denoted by

GL[C (t1, t2, · · · , tn)] or GL[C (t)].

We classify actions
−→
A between fields C1 and C2 by the dimensions of action

spaces C1 ∩ C2. An action
−→
A is called a k-dimensional action if dim(C1 ∩ C2) = k
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for an integer k ≥ 1. Generally, if dim(C1 ∩ C2) = 0, there are no actions between

C1 and C2, and one can only observes 3-dimensional actions. So we need first to

research the structure of configuration space for combinatorial fields.

8.1.2 Combinatorial Configuration Space. As we have shown in Chapter 7,

a field can be presented by its a state function ψ(x) in a reference frame {x}, and

characterized by partially differential equations, such as those of the following:

Scalar field: (∂2 +m2)ψ = 0,

Weyl field: ∂0ψ = ±σi∂iψ,

Dirac field: (iγµ∂µ −m)ψ = 0,

These configuration spaces are all the Minkowskian. Then what can we do for

combinatorial fields? Considering the character of fields, a natural way is to charac-

terize each field Ci, 1 ≤ i ≤ n of them by itself reference frame {x}. Consequently,

we get a combinatorial configuration space, i.e., a combinatorial Euclidean space for

combinatorial fields. This enables us to classify combinatorial fields of C1, C2, · · · , Cn
into two categories:

Type I. n = 1.

In this category, the external actions between fields are all the same. We es-

tablish principles following on actions between fields.

Action Principle of Fields. There are always exist an action
−→
A between two

fields C1 and C2 of a Type I combinatorial field, i.e., dim(C1 ∩ C2) ≥ 1.

Infinite Principle of Action. An action between two fields in a Type I combina-

torial field can be found at any point on a spatial direction in their intersection.

Applying these principles enables us to know that if the configuration spaces

C1, C2, · · · , Cn are respective R4
1 = (ict1, x1, y1, z1), R4

2 = (ict2, x2, y2, z2), · · ·, R4
n =

(ictn, xn, yn, zn), then the configuration space C (t1, t2, · · · , tn) of C1, C2, · · · , Cn is a

combinatorial Euclidean space EG(4). Particularly, if R4
1 = R4

2 = · · · = R4
n = R4 =

(ict, x, y, z), the configuration space C (t) is still R4 = (ict, x, y, z). Notice that the

underlying graph of EG(4) is Kn. According to Theorems 4.1.2 and 4.1.4, we know
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the maximum dimension of C to be 3n+ 1 and the minimum dimension

dimminC = 4 + s,

where the integer s ≥ 0 is determined by

(
r + s− 1

r

)
< n ≤

(
r + s

r

)
.

Now if we can establish a time parameter t for all fields C1, C2, · · · , Cn, then

Theorems 4.1.2 and 4.1.5 imply the maximum dimension 2n + 2 and the minimum

dimension

dimminC =





4, if n = 1,

5, if 2 ≤ n ≤ 4,

6, if 5 ≤ n ≤ 10,

3 + ⌈√n⌉, if n ≥ 11.

of C (t). In this case, the action on a field Ci comes from all other fields Cj, j 6=
i, 1 ≤ j ≤ n in a combinatorial field C (t), which can be depicted as in Fig.8.1.4.

Ci

C1

C2

Ci−1Ci+1

Cn R-�6?-� 	� I
Fig.8.1.4

Therefore, there are always exist an action between fields Ci and Cj for any

integers i, j, 1 ≤ i.j ≤ n in Type I combinatorial fields. However, if
−→
A ≈ 0, i.e.,

there are asymptotically no actions between Ci and Cj for any integers i, j, 1 ≤
i.j ≤ n in consideration, the combinatorial field C (t) is called to be free, which can

be characterized immediately by equation systems of these fields.
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Let the reference frames of field Ci be {ict, xi1, xi2, xi3} for 1 ≤ i ≤ n with

{xi1, xi2, xi3} ∩ {xj1, xj2, xj3} 6= ∅ for 1 ≤ i 6= j ≤ n. Then we can characterize

a Type I combinatorial free-field C (t) of scalar fields, Weyl fields or Dirac fields

C1, C2, · · · , Cn by partially differential equation system as follows:

Combinatorial Scalar Free-Fields:

(∂2 +m2
1)ψ(ict, x11, x12, x13) = 0,

(∂2 +m2
2)ψ(ict, x21, x22, x23) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·,

(∂2 +m2
n)ψ(ict, xn1, xn2, xn3) = 0.

Combinatorial Weyl Free-Field:

∂0ψ(ict, x11, x12, x13) = ±σi∂iψ(ict, x11, x12, x13),

∂0ψ(ict, x21, x22, x23) = ±σi∂iψ(ict, x21, x22, x23),

· · · · · · · · · · · · · · · · · · · · · · · · · · ·,
∂0ψ(ict, xn1, xn2, xn3) = ±σi∂iψ(ict, xn1, xn2, xn3).

Combinatorial Dirac Free-Field:

(iγµ∂µ −m1)ψ(ict, x11, x12, x13) = 0,

(iγµ∂µ −m2)ψ(ict, x21, x22, x23) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·,
(iγµ∂µ −mn)ψ(ict, xn1, xn2, xn3) = 0.

Type II. n ≥ 2.

In this category, the external actions between fields are multi-actions and 0 ≤
dim(C1 ∩ C2) ≤ min{dimC1, dimC2}, i.e., there maybe exists or non-exists actions

between fields in a Type II combinatorial field.

Let Ωi = {ict, xi1, xi2, xi3} be the domain of field Ci for 1 ≤ i ≤ n with

{xi1, xi2, xi3} ∩ {xj1, xj2, xj3} 6= ∅ for some integers 1 ≤ i 6= j ≤ n. Similar to

Type I combinatorial free-fields, we can also characterize a Type II combinatorial

free-field C (t) of scalar fields, Weyl fields and Dirac fields C1, C2, · · · , Cn by partially
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differential equation system as follows:

(∂2 +m2
1)ψ(ict, x11, x12, x13) = 0,

(∂2 +m2
2)ψ(ict, x21, x22, x23) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·,
(∂2 +m2

k)ψ(ict, xk1, xk2, xk3) = 0.

∂0ψ(ict, x(k+1)1, x(k+1)2, x(k+1)3) = ±σi∂iψ(ict, x(k+1)1, x(k+1)2, x(k+1)3),

∂0ψ(ict, x(k+2)1, x(k+2)2, x(k+2)3) = ±σi∂iψ(ict, x(k+2)1, x(k+2)2, x(k+2)3),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·,
∂0ψ(ict, xl1, xl2, xl3) = ±σi∂iψ(ict, xl1, xl2, xl3).

(iγµ∂µ −ml+1)ψ(ict, x(l+1)1, x(l+1)2, x(l+1)3) = 0,

(iγµ∂µ −ml+2)ψ(ict, x(l+2)1, x(l+2)2, x(l+2)3) = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·,
(iγµ∂µ −mn)ψ(ict, xn1, xn2, xn3) = 0.

In this combinatorial filed, there are respective complete subgraphs Kk, Kl−k+1

and Kn−l+1 in its underlying graph GL[C (t)].

8.1.3 Geometry on Combinatorial Field. In the view of experiment, we

can only observe behavior of particles in the field where we live, and get a multi-

information in a combinatorial reference frame. So it is important to establish a

geometrical model for combinatorial fields.

Notice that each configuration space in last subsection is in fact a combinatorial

manifold. This fact enables us to introduce a geometrical model on combinatorial

manifold for a combinatorial field C (t) following:

(i) A configuration space M̃(n1, · · · , nm), i.e., a combinatorial differentiable

manifold of manifolds Mn1 , Mn2 , · · ·, Mnm ;

(ii) A chosen geometrical structure Ω on the vector field TM̃ and a differen-

tiable energy function T : M̃×TM̃ → R, i.e., the combinatorial Riemannian metric

on TM̃ determined by

T =
1

2
〈v, v〉 , v ∈ TM̃ ;
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(iii) A force field given by a 1-form

ω =
∑

µ,ν

ωµνdxµν = ωµνdxµν .

This model establishes the the dynamics on a combinatorial field, which enables

us to apply results in Chapters 4 − 6, i.e., combinatorial differential geometry for

characterizing the behaviors of combinatorial fields, such as those of tensor fields

T rs (M̃), k-forms Λk(M̃), exterior differentiation d̃ : Λ(M̃) → Λ(M̃) connections

D̃, Lie multi-groups LG and principle fibre bundles P̃ (M̃,LG), · · ·, etc. on com-

binatorial Riemannian manifolds. Whence, we can apply the Einstein’s covariance

principle to construct equations of combinatorial manifolds, i.e., tensor equations on

its correspondent combinatorial manifold M̃ of a combinatorial field, where GL[M̃ ]

maybe any connected graph.

For example, we have known the interaction equations of gravitational field,

Maxwell field and Yang-Mills field are as follows:

Gravitational field: Rµν − 1
2
gµνR = κTµν ,

Maxwell field: ∂µF
µν = 0 and ∂κFµν + ∂µFνκ + ∂νFκµ = 0,

Yang-Mills field: DµF a
µν = 0 and DκF

a
µν +DµF

a
νκ +DνF

a
κµ = 0.

Whence, we can characterize the behavior of combinatorial fields by equations

of connection, curvature tensors, metric tensors, · · · with a form following:

F
(κ1λ1)···(κrλr)
(µ1ν1)···(µsνs)

= 0.

Notice we can only observe behavior of particles in R4 in practice. So considering

the tensor equation

F
(κ1λ1)(κ2λ2)
(µ1ν1)(µ2ν2) = 0.

of type (2, 2) is enough in consideration.

8.1.4 Projective Principle in Combinatorial Field. As we known, there are

two kind of anthropic principles following:

Weak Anthropic Principle All observations of human beings on the WORLD

are limited by our survival conditions.
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This principle also alluded by an ancient Chinese philosopher LAO ZI in his

book TAO TEH KING by words that all things we can acknowledge is determined

by our eyes, or ears, or nose, or tongue, or body or passions, i.e., these six organs.

In other words, with the help of developing technology, we can only extend our

recognized scope. This recognizing process is endless. So an asymptotic result on

the WORLD with a proper precision is enough for various applications of human

beings.

Strong Anthropic Principle The born of life is essentially originated in the

characterization of WORLD at sometimes.

This principle means that the born of human beings is not accidental, but in-

evitable in the WORLD. Whence, there is a deep regulation of WORLD which forces

the human being come into being. In other words, one can finds that regulation and

then finally recognizes the whole WORLD, i.e., life appeared in the WORLD is

a definite conclusion of this regulation. So one wishes to find that regulation by

mathematics, for instance the Theory of Everything.

It should be noted that one can only observes unilateral results on the WORLD,

alluded also in the mortal of the proverb of six blind men and an elephant. Whence,

each observation is meaningful only in a particular reference frame. But the Ein-

stein’s general relativity theory essentially means that a physical law is independent

on the reference frame adopted by a researcher. That is why we need combinato-

rial tensor equations to characterize a physical law in a combinatorial field. For

determining the behavior of combinatorial fields, we need the projective principle

following, which is an extension of Einstein’s covariance principle to combinatorial

fields.

Projective Principle A physics law in a combinatorial field is invariant under a

projection on its a field.

By combinatorial differential geometry established in Chapters 4−6, this prin-

ciple can be rephrase as follows.

Projective Principle Let (M̃, g, D̃) be a combinatorial Riemannian manifold and

F ∈ T rs (M̃) with a local form F
(κ1λ1)···(κrλr)
(µ1ν1)···(µsνs)

eκ1λ1 ⊗ · · · ⊗ eκrλrω
µ1ν1 ⊗ · · · ⊗ ωµsνs in

(Up, [ϕp]). If
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F
(κ1λ1)···(κrλr)
(µ1ν1)···(µsνs)

= 0

for integers 1 ≤ µi ≤ s(p), 1 ≤ νi ≤ nµi
with 1 ≤ i ≤ s and 1 ≤ κj ≤ s(p), 1 ≤ λj ≤

nκj
with 1 ≤ j ≤ r, then for any integer µ, 1 ≤ µ ≤ s(p), there must be

F
(µλ1)···(µλr)
(µν1)···(µνs) = 0

for integers νi, 1 ≤ νi ≤ nµ with 1 ≤ i ≤ s.

Applying this projective principle enables us to find solutions of combinato-

rial tensor equation characterizing a combinatorial field underlying a combinatorial

structure G in follows sections.

§8.2 EQUATION OF COMBINATORIAL FIELD

8.2.1 Lagrangian on Combinatorial Field. For establishing these motion

equations of a combinatorial field C (t), we need to determine its Lagrangian density

first. Generally, this Lagrange density can be constructed by applying properties of

its vertex-edge labeled graph GL[C (t)] for our objective. Applying Theorem 4.2.4,

we can formally present this problem following.

Problem 8.2.1 Let GL[M̃ ] be a vertex-edge labeled graph of a combinatorial manifold

M̃ consisting of n manifolds M1,M2, · · · ,Mn with labels

θL : V (GL[M̃ ])→ {LMi
, 1 ≤ i ≤ n},

θL : E(GL[M̃ ])→ {Tij for ∀(Mi,Mj) ∈ E(GL[M̃ ])},

where LMi
: TMi → R, Tij : T (Mi ∩Mj)→ R. Construct a function

LGL[M̃ ] : GL[M̃ ]→ R

such that GL[M̃ ] is invariant under the projection of LGL[M̃ ] on Mi for 1 ≤ i ≤ n.

There are many ways for constructing the function LGL[M̃ ] under conditions in

Problem 8.2.1. If LGL[M̃ ] is a homogeneous polynomial of degree l, let KH(L ,T )

be an algebraic linear space generated by homogeneous polynomials of LMi
, Tij of

degree l over field R for 1 ≤ i, j ≤ n. Then LGL[M̃ ] ∈ KH(L ,T ) in this case.

By elements in KH(L ,T ), we obtain various Lagrange density. However, we only
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classify these LGL[M̃ ] by linearity or non-linearity for consideration following.

Case 1. Linear

In this case, the general expression of the Lagrange density LGL[M̃ ] is

LGL[M̃ ] =
n∑
i=1

aiLMi
+

∑
(Mi,Mj)∈E(GL[M̃ ])

bijTij + C,

where ai, bij and C are undetermined coefficients in R. Consider the projection

L |Mi
of LGL[M̃ ] on Mi, 1 ≤ i ≤ n. We get that

LGL[M̃ ]|Mi
= aiLMi

+
∑

(Mi,Mj)∈E(GL[M̃ ])

bijTij + C.

Let ai = 1 and bij = 1 for 1 ≤ i, j ≤ n and

L i
int = LMi

, L i
ext =

∑
(Mi,Mj)∈E(GL[M̃ ])

Tij + C.

Then we know that

LGL[M̃ ]|Mi
= L i

int + L i
ext,

i.e., the projection L |Mi
of LGL[M̃ ] on field Mi consists of two parts. The first

comes from the interaction Li in field Mi and the second comes from the external

action L i
ext from fields Mj to Mi for ∀(Mi,Mj) ∈ E(GL[M̃ ]), which also means

that external actions L i
ext between fields Mi, Mj for ∀(Mi,Mj) ∈ E(GL[M̃ ]) are

transferred to an interaction of the combinatorial field C (t).

If we choose ai = 1 but bij = −1 for 1 ≤ i, j ≤ n, then

LGL[M̃ ] =
n∑
i=1

LMi
− ∑

(Mi,Mj)∈E(GL[M̃ ])

Tij − C

with its projection

LGL[M̃ ]|Mi
= L i

int −L i
ext

on Mi for 1 ≤ i ≤ n. This can be explained to be a net Lagrange density on Mi

without intersection.

The simplest case of LGL[M̃ ] is by choosing ai = 1 and bij = 0 for 1 ≤ i, j ≤ n,

i.e.,

LGL[M̃ ] =
n∑
i=1

LMi
.
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This Lagrange density has meaning only if there are no actions between fieldsMi, Mj

for any integers 1 ≤ i, j ≤ n, i.e., E(GL[M̃ ]) = ∅. We have assumed that GL[M̃ ]

is connected in Chapter 4, which means that E(GL[M̃ ]) = ∅ only if n = 1. So we

do not choose this formula to be the Lagrange density of combinatorial fields in the

discussion following.

Case 2. Non-Linear

In this case, the Lagrange density LGL[M̃ ] is a non-linear function of LMi
and

Tij for 1 ≤ i, j ≤ n. Let the minimum and maximum indexes j for (Mi,Mj) ∈
E(GL[M̃ ]) are il and iu, respectively. Denote by

x = (x1, x2, · · ·) = (LM1,LM2, · · · ,LMn,T11l , · · · ,T11u , · · · ,T22l , · · · , ).

If LGL[M̃ ] is k + 1 differentiable, k ≥ 0 by Taylor’s formula we know that

LGL[M̃ ] = LGL[M̃ ](0) +

n∑

i=1

[
∂LGL[M̃ ]

∂xi

]

xi=0

xi +
1

2!

n∑

i,j=1

[
∂2LGL[M̃ ]

∂xi∂xj

]

xi,xj=0

xixj

+ · · ·+ 1

k!

n∑

i1,i2,···,ik=1

[
∂kLGL[M̃ ]

∂xi1∂xi2 · · ·∂xik

]

xij
=0,1≤j≤k

xi1xi2 · · ·xik

+R(x1, x2, · · ·),

where

lim
‖x‖→0

R(x1, x2, · · ·)
‖x‖ = 0.

Certainly, we can choose the first s terms

LGL[M̃ ](0) +

n∑

i=1

[
∂LGL[M̃ ]

∂xi

]

xi=0

xi +
1

2!

n∑

i,j=1

[
∂2LGL[M̃ ]

∂xi∂xj

]

xi,xj=0

xixj

+ · · ·+ 1

k!

n∑

i1,i2,···,ik=1

[
∂kLGL[M̃ ]

∂xi1∂xi2 · · ·∂xik

]

xij
=0,1≤j≤k

xi1xi2 · · ·xik

to be the asymptotic value of Lagrange density LGL[M̃ ], particularly, the linear parts

LGL[M̃ ](0) +
n∑

i=1

[
∂LGL[M̃ ]

∂LMi

]

LMi
=0

LMi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

[
∂LGL[M̃ ]

∂Tij

]

Tij=0

Tij

in most cases on combinatorial fields.
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Now we consider the net value of Lagrange density on combinatorial fields M̃

without intersections. Certainly, we can determine it by applying the inclusion-

exclusion principle. For example, if GL[M̃ ] is K3-free, similar to the proof of Corol-

lary 4.2.4, we know that the net Lagrange density is

LGL[M̃ ] =
∑

(Mi,Mj)∈E(GL[M̃ ])

(LMi
+ LMj

−Tij)

=
∑

(Mi,Mj)∈E(GL[M̃ ])

(LMi
+ LMj

)−
∑

(Mi,Mj)∈E(GL[M̃ ])

Tij

=
∑

Mi)∈V (GL[M̃ ])

L
2
Mi
−

∑

(Mi,Mj)∈E(GL[M̃ ])

Tij ,

which is a polynomial of degree 2 with a projection

LGL[M̃ ]|Mi
= L

2
Mi
−

∑

(Mi,Mj)∈E(GL[M̃ ])

Tij

on the field Mi.

Similarly, we also do not choose the expression

L
s1
M1

+ L
s2
M2

+ · · ·+ L
sn

Mn

with si ≥ 2 for 1 ≤ i ≤ n to be the Lagrange density LGL[M̃ ] because it has meaning

only if there are no actions between fields Mi, Mj for any integers 1 ≤ i, j ≤ n, i.e.,

E(GL[M̃ ]) = ∅ since it has physical meaning only if n = 1.

We can verify immediately that the underlying graph GL[M̃ ] is invariant under

the projection of LGL[M̃ ] on each Mi for 1 ≤ i ≤ n for all Lagrange densities in

Cases 1 and 2.

8.2.2 Hamiltonian on Combinatorial Field. We have know from Section 7.1.5

that the Hamiltonian H of a field φ(x) is defined by

H =

∫
d3xH,

where H = πφ̇−L is the Hamilton density of the field φ(x) with π = ∂L /∂φ.

Likewise the Lagrange density, we can also determine the equations of a field

φ(x) by Hamilton density such as those of equations in Theorem 7.1.3 following

d

dt

(
∂L

∂φ

)
= −∂H

∂φ
,

dφ

dt
=

∂H
∂
(
∂L

∂φ

) .
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Whence, for determining the equations of motion of a combinatorial field, it is also

enough to find its Hamilton density. Now the disguise of Problem 8.2.1 is turned to

the following.

Problem 8.2.2 Let GL[M̃ ] be a vertex-edge labeled graph of a combinatorial manifold

M̃ consisting of n manifolds M1,M2, · · · ,Mn with labels

θL : V (GL[M̃ ])→ {HMi
, 1 ≤ i ≤ n},

θL : E(GL[M̃ ])→ {Hij for ∀(Mi,Mj) ∈ E(GL[M̃ ])},

where HMi
: TMi → R, Hij : T (Mi ∩Mj)→ R. Construct a function

HGL[M̃ ] : GL[M̃ ]→ R

such that GL[M̃ ] is invariant under the projection of HGL[M̃ ] on Mi for 1 ≤ i ≤ n.

For fields Mi, Mi ∩Mj , 1 ≤ i, j ≤ n, we have known their Hamilton densities

to be respective

HMi
= πiφ̇Mi

−LMi
and Hij = πijφ̇Mi∩Mj

− Tij (8− 1)

by definition, where πi = ∂LMi
/∂φ̇Mi

and πij = ∂Tij/∂φ̇Mi∩Mj
. Similar to the case

of Lagrange densities, we classify these Hamilton densities on linearity following.

Case 1. Linear

In this case, the general expression of the Hamilton density HGL[M̃ ] is

HGL[M̃ ] =
n∑

i=1

aiHMi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

bijHij + C

=
n∑

i=1

ai(πiφ̇Mi
−LMi

) +
∑

(Mi,Mj)∈E(GL[M̃ ])

bij(πijφ̇Mi∩Mj
− Tij) + C

=
n∑

i=1

aiπiφ̇Mi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

bijπijφ̇Mi∩Mj

−
n∑

i=1

aiLMi
−

∑

(Mi,Mj)∈E(GL[M̃ ])

bijTij + C

Similarly, let the minimum and maximum indexes j for (Mi,Mj) ∈ E(GL[M̃ ])

are il and iu, respectively. Denote by
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φ = (a1φ̇M1, · · · , anφ̇Mn, b11l φ̇M1∩M1l
, · · · , b11u φ̇M1∩M1u , · · · , bnnuφ̇Mn∩Mnu ),

π = (π1, π2, · · · , πn, π11l , · · · , π11u , · · · , πnnu).

Then
〈
φ, π

〉
=

n∑

i=1

aiπiφ̇Mi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

bijπijφ̇Mi∩Mj
.

Choose a linear Lagrange density of the vertex-edge labeled graph GL[M̃ ] to be

LGL[M̃ ] =
n∑
i=1

aiLMi
+

∑
(Mi,Mj)∈E(GL[M̃ ])

bijTij − C.

We finally get that

HGL[M̃ ] =
〈
φ, π

〉
−LGL[M̃ ], (8− 2)

which is a generalization of the relation of Hamilton density with that of Lagrange

density of a field. Furthermore, if {HMi
,Hij; 1 ≤ i, j ≤ n} and {LMi

,Lij; 1 ≤ i, j ≤
n} are orthogonal in this case, then we get the following consequence.

Theorem 8.2.1 If the Hamilton density HGL[M̃ ] is linear and {HMi
,Hij; 1 ≤ i, j ≤

n}, {LMi
,Lij; 1 ≤ i, j ≤ n} are both orthogonal, then

〈HMi
,H〉 = 〈LMi

,L 〉 , , 〈Hij,H〉 = 〈Tij ,L 〉

for integers 1 ≤ i, j ≤ n.

Case 2. Non-Linear

In this case, the Hamilton density HGL[M̃ ] is a non-linear function of HMi
and

Hij , also a non-linear function of LMi
, Tij and φMi

, φMi∩Mj
for 1 ≤ i, j ≤ n, i.e.,

HGL[M̃ ] = HGL[M̃ ](HMi
,Hij; 1 ≤ i, j ≤ n)

= HGL[M̃ ](πiφ̇Mi
−LMi

, πijφ̇Mi∩Mj
− Tij ; 1 ≤ i, j ≤ n)

Denote by

y = (y1, y2, · · ·) = (HM1 ,HM2, · · · ,HMn,H11, · · · ,H11l , · · · ,H11u ,H22l · · ·).

If HGL[M̃ ] is s+ 1 differentiable, s ≥ 0, by Taylor’s formula we know that

HGL[M̃ ] = HGL[M̃ ](0) +
n∑

i=1

[
∂HGL[M̃ ]

∂yi

]

yi=0

yi +
1

2!

n∑

i,j=1

[
∂2HGL[M̃ ]

∂yi∂yj

]

yi,yj=0

yiyj
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+ · · ·+ 1

s!

n∑

i1,i2,···,is=1

[
∂sHGL[M̃ ]

∂yi1∂yi2 · · ·∂yis

]

yij
=0,1≤j≤s

yi1yi2 · · · yis

+K(y1, y2, · · ·),

where

lim
‖y‖→0

K(y1, y2, · · ·)
‖y‖ = 0.

Certainly, we can also choose the first s terms

HGL[M̃ ](0) +

n∑

i=1

[
∂HGL[M̃ ]

∂yi

]

yi=0

yi +
1

2!

n∑

i,j=1

[
∂2HGL[M̃ ]

∂yi∂yj

]

yi,yj=0

yiyj

+ · · ·+ 1

s!

n∑

i1,i2,···,is=1

[
∂sHGL[M̃ ]

∂yi1∂yi2 · · ·∂yis

]

yij
=0,1≤j≤s

yi1yi2 · · · yis

to be the asymptotic value of Hamilton density HGL[M̃ ], particularly, the linear parts

HGL[M̃ ](0) +

n∑

i=1

[
∂HGL[M̃ ]

∂HMi

]

HMi
=0

HMi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

[
∂HGL[M̃ ]

∂Hij

]

Hij=0

Hij

in most cases on combinatorial fields. Denote the linear part of HGL[M̃ ] by HL
GL[M̃ ]

,

Φ = (A1φ̇M1, · · · , Anφ̇Mn, B11l φ̇M1∩M1l
, · · · , B11uφ̇M1∩M1u , · · · , Bnnuφ̇Mn∩Mnu ),

π = (π1, π2, · · · , πn, π11l , · · · , π11u , · · · , πnnu)

and

L
L
GL[M̃ ]

= −HGL[M̃ ](0) +
n∑

i=1

AiLMi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

BijTij ,

where

Ai = (

[
∂HGL[M̃ ]

∂HMi

]

HMi
=0

, Bij =

[
∂HGL[M̃ ]

∂Hij

]

Hij=0

for 1 ≤ i, j ≤ n. Applying formulae in (8− 1), we know that

HL
GL[M̃ ]

= HGL[M̃ ](0) +

n∑

i=1

AiHMi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

BijHij

= HGL[M̃ ](0) +

n∑

i=1

Ai(πiφ̇Mi
−LMi

)

+
∑

(Mi,Mj)∈E(GL[M̃ ])

Bij(πijφ̇Mi∩Mj
−Tij)

=
〈
Φ, π

〉
−L

L
GL[M̃ ]

.
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That is,

HL
GL[M̃ ]

=
〈
Φ, π

〉
−L L

GL[M̃ ]
, (8− 3)

i.e., a generalization of the relation of Hamilton density with Lagrange density.

Generally, there are no relation (8− 3) for the non-liner parts of Hamilton density

HGL[M̃ ] with that of Lagrange density LGL[M̃ ].

8.2.3 Equation of Combinatorial Field. By the Euler-Lagrange equation, we

know that the equation of motion of a combinatorial field C (t) are

∂µ
∂LGL[M̃ ]

∂∂µφM̃
−
∂LGL[M̃ ]

∂φM̃
= 0, (8− 4)

where φM̃ is the wave function of combinatorial field C (t). Applying the equation

(8− 4) and these linear Lagrange densities in last subsection, we consider combina-

torial scalar fields, Dirac fields and gravitational fields, gauge fields following.

Combinatorial Scalar Fields.

For a scalar field φ(x), we have known its Lagrange density is chosen to be

L =
1

2
(∂µφ∂

µφ−m2φ2).

Now if fields M1,M2, · · · ,Mn are harmonizing, i.e., we can establish a wave function

φM̃ on a reference frame {ict, x1, x2, x3} for the combinatorial field M̃(t), then we

can choose the Lagrange density LGL[M̃ ] to be

LGL[M̃ ] =
1

2
(∂µφM̃∂

µφM̃ −m2φ2
M̃

).

Applying (8− 4), we know that its equation is

∂µ
∂LGL[M̃ ]

∂∂µφM̃
−
∂LGL[M̃ ]

∂φM̃
= ∂µ∂

µφM̃ +m2φM̃ = (∂2 +m2)φM̃ = 0,

which is the same as that of scalar fields. But in general, M1,M2, · · · ,Mn are not

harmonizing. So we can only find the equation of M̃(t) by combinatorial techniques.

Without loss of generality, let

φM̃ =

n∑

i=1

ciφMi
,
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LGL[M̃ ] =
1

2

n∑

i=1

(∂µi
φMi

∂µiφMi
−m2

iφ
2
Mi

) +
∑

(Mi,Mj)∈E(GL[M̃ ])

bijφMi
φMj

+ C,

i.e.,

LGL[M̃ ] =

n∑

i=1

LMi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

bijTij + C

with LMi
= 1

2
(∂µi

φMi
∂µiφMi

− m2
iφ

2
Mi

), Tij = φMi
φMj

, µi = µMi
and constants

bij , mi, ci, C for integers 1 ≤ i, j ≤ n. Calculations show that

∂LGL[M̃ ]

∂∂µφM̃
=

n∑

i=1

∂LGL[M̃ ]

∂∂µi
φMi

∂∂µi
φMi

∂∂µφM̃
=

n∑

i=1

1

ci
∂µiφMi

and
∂LGL[M̃ ]

∂φM̃
= −

n∑

i=1

m2
i

ci
+

∑

(Mi,Mj)∈E(GL[M̃ ])

bij

(
φMj

ci
+
φMi

cj

)
.

Whence, by (8− 4) we get the equation of combinatorial scalar field C (t) following:

n∑

i=1

1

ci
(∂µ∂

µi +m2
i )φMi

−
∑

(Mi,Mj)∈E(GL[M̃ ])

bij

(
φMj

ci
+
φMi

cj

)
= 0. (8− 5)

This equation contains all cases discussed before.

Case 1. |V (GL[M̃ ])| = 1

In this case, bij = 0, ci = 1 and ∂µi
= ∂µ. We get the equation of scalar field

following

(∂2 +m2)φM̃ = 0,

where φM̃ is in fact a wave function of field.

Case 2. Free

In this case, bij = 0, i.e., there are no action between Ci, Cj for 1 ≤ i, j ≤ n.

We get the equation
n∑

i=1

(∂µ∂
µi +m2

i )φMi
= 0.

Applying the projective principle, we get the equations of combinatorial scalar free-

field following, which is the same as in Section 8.1.2.
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



(∂2 +m2
1)ψ(ict, x11, x12, x13) = 0

(∂2 +m2
2)ψ(ict, x21, x22, x23) = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
(∂2 +m2

n)ψ(ict, xn1, xn2, xn3) = 0.

Case 3. Non-Free

In this case, bij 6= 0. For simplicity, let ci = 1 for 1 ≤ i ≤ n. Then the equation

(8− 5) turns to

n∑

i=1

(∂µ∂
µi +m2

i )φMi
−

∑

(Mi,Mj)∈E(GL[M̃ ])

bij(φMj
+ φMi

) = 0.

Applying the projective principle again, we get the equations of combinatorial scalar

field with interactions following.





(∂2
1 +m2

1 −
∑

(M1,Mj)∈E(GL[M̃ ])

b1j)φM1 = 0

(∂2
2 +m2

2 −
∑

(M2,Mj)∈E(GL[M̃ ])

b2j)φM2 = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(∂2
n +m2

n −
∑

(Mn,Mj)∈E(GL[M̃ ])

bnj)φMn = 0.

where, for an integer i, 1 ≤ i ≤ n,
∑

(Mi,Mj)∈E(GL[M̃ ])

bijφMi
is a term of linear action

of fields Mj to Mi for any integer j such that (Mi,Mj) ∈ E(GL[M̃ ]). This partial

differential equation system can be used to determine the behavior of combinatorial

scalar fields. Certainly, we can also apply non-linear action term to analyze their

behavior and find more efficient results on combinatorial scalar fields.

Combinatorial Dirac Fields.

For a Dirac field φ(x), we have known its Lagrange density is

L = ψ(iγµ∂µ −m)ψ.

For simplicity, we consider the linear Lagrange density LGL[M̃ ] on LMi
and Tij

for 1 ≤ i, j ≤ n, i.e.,
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φM̃ =
n∑
i=1

ciφMi
;

LGL[M̃ ] =
n∑
i=1

ψMi
(iγµi∂µi

−mi)ψMi
+

∑
(Mi,Mj)∈E(GL[M̃ ])

bijψMi
ψMj

+ C,

where bij , mi, ci, C are constants for integers 1 ≤ i, j ≤ n. Applying the Euler-

Lagrange equation (8−4), we get the equation of combinatorial Dirac field following

n∑

i=1

1

ci
(iγµi∂µ −mi)ψMi

−
∑

(Mi,Mj)∈E(GL[M̃ ])

bij

(
ψMj

ci
+
ψMi

cj

)
= 0. (8− 6)

Let ci = 1, 1 ≤ i ≤ n. Applying the projective principle, we get equations

following





(iγµ1∂µ1 −m1 −
∑

(M1,Mj)∈E(GL[M̃ ])

b1j)ψM1 = 0

(iγµ2∂µ2 −m2 −
∑

(M2,Mj)∈E(GL[M̃ ])

b2j)ψM2 = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(iγµn∂µn −mn −

∑
(Mn,Mj)∈E(GL[M̃ ])

bnj)ψMn = 0. (8− 7)

Certainly, if GL[M̃ ] is trivial, we get the Dirac equation by (8 − 6). Similar

to the discussion of combinatorial scalar fields, we can apply equations (8− 6) and

(8− 7) to determine the behavior of combinatorial Dirac fields.

Combinatorial Scalar and Dirac Field.

Let C (t) be a combinatorial field M̃ of k scalar fields M1,M2, · · · ,Mk and

s Dirac fields M1,M2, · · · ,Ms with GL[M̃ ] = GL
S + GL

D, where GL
S , G

L
D are the

respective induced subgraphs of scalar fields or Dirac fields in GL[M̃ ]. We choose

the Lagrange density of C (t) to be a linear combination

LGL[M̃ ] = L1 + L2 + L3 + L4 + L5, and φM̃ =

k∑

i=1

ciφMi
+

s∑

j=1

cjψMj

where L1 = 1
2

n∑
i=1

(∂µi
φMi

∂µiφMi
−m2

iφ
2
Mi

),

L2 =
n∑
i=1

ψMi
(iγµi∂µi

−mi)ψMi
,
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L3 =
∑

(Mi,Mj)∈E(GL
S )

b1ijφMi
φMj

,

L4 =
∑

(M i,Mj)∈E(GL
D

)

b2ijψM iψMj ,

L5 =
∑

(Mi,Mj)∈E(GL
S ,G

L
D)

b3ijφMi
ψMj

with constants bij , mi, ci for integers 1 ≤ i, j ≤ n. Applying the Euler-Lagrange

equation (8−4), we get the equation of combinatorial scalar and Dirac field following

k∑

i=1

1

ci
(∂µ∂

µi +m2
i )φMi

+
s∑

j=1

1

cj
(iγµi∂µ −m′

j)ψMj

−
∑

(Mi,Mj)∈E(GL
S
)

b1ij

(
φMj

ci
+
φMi

cj

)
−

∑

(M i,Mj)∈E(GL
D

)

b2ij

(
ψMj

ci
+
ψM i

cj

)

−
∑

(Mi,Mj)∈E(GL
S ,G

L
D)

b3ij

(
ψMj

ci
+
φMi

cj

)
) = 0.

For simplicity, let ci = cj = 1, 1 ≤ i ≤ k, 1 ≤ j ≤ s. Then applying the

projective principle on a scalar field Mi, we get that





(∂2
1 +m2

1 −
∑

(M1,Mj)∈E(GL
S )

b11j −
∑

(M1,Mj)∈E(GL
S ,G

L
D)

b31j)φM1 = 0

(∂2
2 +m2

2 −
∑

(M2,Mj)∈E(GL
S )

b12j −
∑

(M2,Mj)∈E(GL
S ,G

L
D)

b32j)φM2 = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(∂2
k +m2

k −
∑

(Mk ,Mj)∈E(GL
S )

b1kj −
∑

(Mk,Mj)∈E(GL
S ,G

L
D)

b3kj)φMk
= 0. (8− 8)

Applying the projective principle on a Dirac field M j , we get that





(iγµ1∂µ1 −m′
1 −

∑
(M1,Mj)∈E(GL

D)

b21j −
∑

(M1,Mj)∈E(GL
S ,G

L
D)

b31j)ψM1 = 0

(iγµ2∂µ2 −m′
2 −

∑
(M2,Mj)∈E(GL

D)

b22j −
∑

(M2,Mj)∈E(GL
S ,G

L
D)

b32j)ψM2 = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(iγµs∂µs −m′

s −
∑

(Ms,Mj)∈E(GL
D

)

b2sj −
∑

(Ms,Mj)∈E(GL
S
,GL

D
)

b3sj)ψMs = 0. (8− 9)
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In equations (8− 8) and (8− 9), for an integer i, 1 ≤ i ≤ n,

∑

(Mi,Mj)∈E(GL
S )

b1ijφMi
,

∑

(M i,Mj)∈E(GL
D)

b2ijψMj

and ∑

(Mi,Mj)∈E(GL
S ,G

L
D)

b3ijφMi
,

∑

(Mi,Mj)∈E(GL
S ,G

L
D)

b3ijψM i

are linear action terms. We can use (8 − 8) and (8 − 9) to determine the behavior

of combinatorial scalar and Dirac fields.

8.2.4 Tensor Equation on Combinatorial Field. Applying the combinatorial

geometrical model of combinatorial field established in Subsection 8.1.3, we can

characterize these combinatorial fields M̃(t) of gravitational field, Maxwell field or

Yang-Mills field M1,M2, · · · ,Mn by tensor equations following.

Combinatorial Gravitational Field:

For a gravitational field, we have known its Lagrange density is chosen to be

L = R− 2κLF ,

where R is the Ricci scalar curvature, κ = −8πG and LF the Lagrange density for

all other fields. We have shown in Theorem 7.2.1 that by this Lagrange density, the

Euler-Lagrange equations of gravitational field are tensor equations following

Rµν −
1

2
gµνR = κEµν .

Now for a combinatorial field M̃(t) of gravitational fields M1,M2, · · · ,Mn, by

the combinatorial geometrical model established in Section 8.1.3, we naturally choose

its Lagrange density LGL[M̃ ] to be

L = R̃− 2κLF ,

where

R̃ = g(µν)(κλ)R̃(µν)(κλ), R̃(µν)(κλ) = R̃σς
(µν)(σς)(κλ) .

Then by applying the Euler-Lagrange equation, we get the equation of combi-

natorial gravitational field following

R̃(µν)(κλ) −
1

2
R̃g(µν)(κλ) = κE(µν)(κλ), (8− 10)
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Applying the projective principle on a gravitational field Mi, we then get equa-

tions of gravitational field following

Rµν −
1

2
gµνR = κEµν

since R̃(µν)(κλ)|Ci
= Rµν , R̃|Ci

= R, g(µν)(κλ)|Ci
= gµν and E(µν)(κλ)|Ci

= Eµν .

Certainly, the equations (8−10) can be also established likewise Theorem 7.2.1.

We will find special solutions of (8− 10) in Section 8.3.

Combinatorial Yang-Mills Fields.

We have known the Lagrange density of a Yang-Mills field is chosen to be

L =
1

2
tr(FµνF

µν) = −1

4
F i
µνF

iµν

with equations

DµF a
µν = 0 and DκF

a
µν +DµF

a
νκ +DνF

a
κµ = 0.

For a combinatorial field M̃(t) of gauge fields M1,M2, · · · ,Mn, we choose its

Lagrange density LGL[M̃ ] to be

LGL[M̃ ] =
1

2
tr(F(µν)(κλ)F

(µν)(κλ)) = −1

4
F ι

(µν)(κλ)F
ι(µν)(κλ).

Then applying the Euler-Lagrange equation (8− 4), we can establish the equations

of combinatorial Yang-Mills field as follows.

D̃µνF (µν)(στ) = 0 and D̃κλF(µν)(στ) + D̃µνF(στ)(κλ) + D̃στF(κλ)(µν) = 0.

As a special case of the equations of combinatorial Yang-Mills fields, we conse-

quently get the equations of combinatorial Maxwell field following:

∂µνF
(µν)(στ) = 0 and ∂κλF(µν)(στ) + ∂µνF(στ)(κλ) + ∂στF(κλ)(µν) = 0.

It should be noted that D̃µν |Mi
= Dµ, F (µν)(στ)|Mi

= F µν , F(µν)(στ)|Mi
= Fµν

D̃κλ|Mi
= Dκ. Applying the projective principle, we consequently get the equations

of Yang-Mills field

DµF a
µν = 0 and DκF

a
µν +DµF

a
νκ +DνF

a
κµ = 0.
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Combinatorial Gravitational and Yang-Mills Fields.

Theoretically, the equation (8−4) can enables us to find equations of combina-

torial fields consists of scalar fields, Dirac fields, gravitational fields and Yang-Mills

fields. The main work is to find its Lagrange density. For example, let M̃(t) be a

combinatorial field M̃ of gravitational fields Mi, 1 ≤ i ≤ k and Yang-Mills fields

M j , 1 ≤ j ≤ s with GL[M̃ ] = GL
S + GL

D, where GL
S , G

L
D are the respective induced

subgraphs of gravitational fields or Yang-Mills fields in GL[M̃ ], we can chosen the

Lagrange density LGL[M̃ ] to be a linear combination

LGL[M̃ ] = R̃− 2κLF +
1

2
tr(FµνF

µν) +
∑

(Mi,Mj)∈E(GL
S ,G

L
D)

bijφMi
ψMj + C

with

φM̃ =
k∑
i=1

ciφMi
+

s∑
j=1

cjψMj ,

where κ, bij , ci, c
j are constants for 1 ≤ i ≤ k, 1 ≤ j ≤ s and then find the

equation by the Euler-Lagrange equation, or directly by the least action principle

following:

R(µν)(στ) −
1

2
g(µν)(στ)R + κE(µν)(στ) + D̃µνF

(µν)(στ)

−
∑

(Mi,Mj)∈E(GL
S ,G

L
D)

bij

(
ψMj

ci
+
φMi

cj

)
) = 0

For simplicity, let ci = cj = 1 for 1 ≤ i ≤ k, 1 ≤ j ≤ s. Applying the projective

principle on gravitational fields Mi, 1 ≤ i ≤ k, we find that

R(µν)(στ) −
1

2
g(µν)(στ)R + κE(µν)(στ) −

∑

(Mi,Mj)∈E(GL
S ,G

L
D)

bijφMi
= 0.

Now if we adapt the Einstein’s idea of geometriclization on gravitation in combi-

natorial gravitational fields, then bij = 0 for integers i, j such that (Mi,M
j) ∈

E(GL
S , G

L
D), i.e.

R(µν)(στ) −
1

2
g(µν)(στ)R + κE(µν)(στ) = 0,

which are called equations of combinatorial gravitational field and will be further

discussed in next section. Similarly, applying the projective principle on Yang-Mills
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fields M j , 1 ≤ j ≤ s, we know that

D̃µνF
(µν)(στ) −

∑

(Mi,Mj)∈E(GL
S ,G

L
D)

bijψMj = 0.

Particularly, if we apply the projective principle on a Yang-Mills field or a Maxwell

field M j0 for an integer j0, 1 ≤ j0 ≤ s, we get that

DµF
µν − ∑

(Mi,Mj0)∈E(GL
S
,GL

D
)

bijψMj0 = 0,

∂µF
µν − ∑

(Mi,Mj0 )∈E(GL
S ,G

L
D)

bijψMj0 = 0

for D̃µν |Mj0 = Dµ and D̃µν |Mj0 = ∂µ if M j0 is a Maxwell field. In the extremal

case of bij = 0, i.e., there are no actions between gravitational fields and Yang-Mills

fields, we get the system of Einstein’s and Yang-Mills equations

R(µν)(στ) −
1

2
g(µν)(στ)R = κE(µν)(στ), DµνF

(µν)(στ) = 0.

§8.3 COMBINATORIAL GRAVITATIONAL FIELDS

For given integers 0 < n1 < n2 < · · · < nm, m ≥ 1, a combinatorial gravita-

tional field M̃(t) is a combinatorial Riemannian manifold (M̃, g, D̃) with M̃ =

M̃(n1, n2, · · · , nm) determined by tensor equations

R(µν)(στ) −
1

2
g(µν)(στ)R = −8πGE(µν)(στ).

We find their solutions under additional conditions in this section.

8.3.1 Combinatorial Metric. Let Ã be an atlas on (M̃, g, D̃). Choose a local

chart (U ;̟) in Ã. By definition, if ϕp : Up →
s(p)⋃
i=1

Bni(p) and ŝ(p) = dim(
s(p)⋂
i=1

Bni(p)),

then [ϕp] is an s(p)× ns(p) matrix shown following.

[ϕp] =




x11

s(p)
· · · x1ŝ(p)

s(p)
x1(ŝ(p)+1) · · · x1n1 · · · 0

x21

s(p)
· · · x2ŝ(p)

s(p)
x2(ŝ(p)+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xs(p)1

s(p)
· · · xs(p)ŝ(p)

s(p)
xs(p)(ŝ(p)+1) · · · · · · xs(p)ns(p)−1 xs(p)ns(p)



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with xis = xjs for 1 ≤ i, j ≤ s(p), 1 ≤ s ≤ ŝ(p). A combinatorial metric is defined

by

ds2 = g(µν)(κλ)dx
µνdxκλ, (8− 11)

where g(µν)(κλ) is the Riemannian metric in (M̃, g, D̃). Generally, we can choose a

orthogonal basis {e11, · · · , e1n1 , · · · , es(p)ns(p)
} for ϕp[U ], p ∈ M̃(t), i.e., 〈eµν , eκλ〉 =

δ
(κλ)
(µν) . Then the formula (8− 11) turns to

ds2 = g(µν)(µν)(dx
µν)2

=

s(p)∑

µ=1

ŝ(p)∑

ν=1

g(µν)(µν)(dx
µν)2 +

s(p)∑

µ=1

ŝ(p)+1∑

ν=1

g(µν)(µν)(dx
µν)2

=
1

s2(p)

ŝ(p)∑

ν=1

(

s(p)∑

µ=1

g(µν)(µν))dx
ν +

s(p)∑

µ=1

ŝ(p)+1∑

ν=1

g(µν)(µν)(dx
µν)2.

Then we therefore find an important relation of combinatorial metric with that of

its projections following.

Theorem 8.3.1 Let µds
2 be the metric of φ−1

p (Bnµ(p)) for integers 1 ≤ µ ≤ s(p).

Then

ds2 = 1ds
2 + 2ds

2 + · · ·+ s(p)ds
2.

Proof Applying the projective principle, we immediately know that

µds
2 = ds2|φ−1

p (Bnµ(p)), 1 ≤ µ ≤ s(p).

Whence, we find that

ds2 = g(µν)(µν)(dx
µν)2 =

s(p)∑

µ=1

ni(p)∑

ν=1

g(µν)(µν)(dx
µν)2

=

s(p)∑

µ=1

ds2|φ−1
p (Bnµ(p)) =

s(p)∑

µ=1

µds
2.

�

This relation enables us to solve the equations of combinatorial gravitational

fields M̃(t) by using that of gravitational fields known.

8.3.2 Combinatorial Schwarzschild Metric. Let M be a gravitational field.

We have known its Schwarzschild metric, i.e., a spherically symmetric solution of
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Einstein’s gravitational equations in vacuum is

ds2 =
(
1− rs

r

)
dt2 − dr2

1− rs
r

− r2dθ2 − r2 sin2 θdφ2 (8− 12)

in last chapter, where rs = 2Gm/c2. Now we generalize it to combinatorial gravita-

tional fields to find the solutions of equations

R(µν)(στ) −
1

2
g(µν)(στ)R = −8πGE(µν)(στ)

in vacuum, i.e., E(µν)(στ) = 0. By the Action Principle of Fields in Subsection 8.1.2,

the underlying graph of combinatorial field consisting of m gravitational fields is

a complete graph Km. For such a objective, we only consider the homogenous

combinatorial Euclidean spaces M̃ =
⋃m
i=1 Rni, i.e., for any point p ∈ M̃ ,

[ϕp] =




x11 · · · x1m̂ x1(m̂)+1) · · · x1n1 · · · 0

x21 · · · x2m̂ x2(m̂+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ xm(m̂+1) · · · · · · · · · xmnm




with m̂ = dim(
m⋂
i=1

Rni) a constant for ∀p ∈
m⋂
i=1

Rni and xil = xl

m
for 1 ≤ i ≤ m, 1 ≤

l ≤ m̂.

Let M̃(t) be a combinatorial field of gravitational fields M1,M2, · · · ,Mm with

masses m1, m2, · · · , mm respectively. For usually undergoing, we consider the case

of nµ = 4 for 1 ≤ µ ≤ m since line elements have been found concretely in classical

gravitational field in these cases. Now establish m spherical coordinate subframe

(tµ; rµ, θµ, φµ) with its originality at the center of such a mass space. Then we have

known its a spherically symmetric solution by (8− 12) to be

ds2
µ = (1− rµs

rµ
)dt2µ − (1− rµs

rµ
)−1dr2

µ − r2
µ(dθ

2
µ + sin2 θµdφ

2
µ).

for 1 ≤ µ ≤ m with rµs = 2Gmµ/c
2. By Theorem 8.3.1, we know that

ds2 = 1ds
2 + 2ds

2 + · · ·+ mds
2,

where µds
2 = ds2

µ by the projective principle on combinatorial fields. Notice that

1 ≤ m̂ ≤ 4. We therefore get combinatorial metrics dependent on m̂ following.

Case 1. m̂ = 1, i.e., tµ = t for 1 ≤ µ ≤ m.
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In this case, the combinatorial metric ds is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2rµ

)
dt2 −

m∑

µ=1

(1− 2Gmµ

c2rµ
)−1dr2

µ −
m∑

µ=1

r2
µ(dθ

2
µ + sin2 θµdφ

2
µ).

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ, or tµ = t and φµ = φ

for 1 ≤ µ ≤ m.

We consider the following subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 − (

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

)dr2 −
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2
µ),

which can only happens if these m fields are at a same point O in a space. Particu-

larly, if mµ = M for 1 ≤ µ ≤ m, the masses of M1,M2, · · · ,Mm are the same, then

rµg = 2GM is a constant, which enables us knowing that

ds2 =

(
1− 2GM

c2r

)
mdt2 −

(
1− 2GM

c2r

)−1

mdr2 −
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2
µ).

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− 2Gmµ

c2rµ

)
dt2

−
m∑

µ=1

(
1− 2Gmµ

c2rµ

)−1

dr2
µ −

m∑

µ=1

r2
µ(dθ

2 + sin2 θdφ2
µ).

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− 2Gmµ

c2rµ

)
dt2 − (

m∑

µ=1

(
1− 2Gmµ

c2rµ

)−1

)dr2
µ −

m∑

µ=1

r2
µ(dθ

2
µ + sin2 θµdφ

2).

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r and φµ = φ, or

or tµ = t, θµ = θ and φµ = φ for 1 ≤ µ ≤ m.
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We consider three subcases following.

Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 −mr2dθ2 − r2 sin2 θ

m∑

µ=1

dφ2
µ.

Subcase 3.2. tµ = t, rµ = r and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 − r2
m∑

µ=1

(dθ2
µ + sin2 θµdφ

2).

There subcases 3.1 and 3.2 can be only happen if the centers of these m fields

are at a same point O in a space.

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− 2Gmµ

c2rµ

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2rµ

)−1

dr2
µ −

m∑

µ=1

rµ(dθ
2 + sin2 θdφ2).

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for 1 ≤ µ ≤ m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 −mr2(dθ2 + sin2 θdφ2).

Particularly, if mµ = M for 1 ≤ µ ≤ m, we get that

ds2 =

(
1− 2GM

c2r

)
mdt2 −

(
1− 2GM

c2r

)−1

mdr2 −mr2(dθ2 + sin2 θdφ2).

Define a coordinate transformation (t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√
m, r
√
m, θ, φ).

Then the previous formula turns to

ds2 =

(
1− 2GM

c2r

)
dst

2 − dsr
2

1− 2GM
c2r

− sr
2(dsθ

2 + sin2
sθdsφ

2)
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in this new coordinate system ( st, sr, sθ, sφ), whose geometrical behavior likes

that of the gravitational field.

8.3.3 Combinatorial Reissner-Nordström Metric. The Schwarzschild met-

ric is a spherically symmetric solution of the Einstein’s gravitational equations in

conditions E(µν)(στ) = 0. In some special cases, we can also find their solutions for

the case E(µν)(στ) 6= 0. The Reissner-Nordström metric is such a case with

E(µν)(στ) =
1

4π

(
1

4
gµνFαβF

αβ − FµαF α
ν

)

in the Maxwell field with total mass m and total charge e, where Fαβ and F αβ are

given in Subsection 7.3.4. Its metrics takes the following form:

gµν =




1− rs
r

+ r2e
r2

0 0 0

0 −
(
1− rs

r
+ r2e

r2

)−1

0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ



,

where rs = 2Gm/c2 and r2
e = 4Gπe2/c4. In this case, its line element ds is given by

ds2 =

(
1− rs

r
+
r2
e

r2

)
dt2−

(
1− rs

r
+
r2
e

r2

)−1

dr2− r2(dθ2 +sin2 θdφ2). (8−13)

Obviously, if e = 0, i.e., there are no charges in the gravitational field, then the

equations (8− 13) turns to the Schwarzschild metric (8− 12).

Now let M̃(t) be a combinatorial field of charged gravitational fieldsM1,M2, · · · ,
Mm with masses m1, m2, · · · , mm and charges e1, e2, · · · , em, respectively. Similar to

the case of Schwarzschild metric, we consider the case of nµ = 4 for 1 ≤ µ ≤ m. We

establish m spherical coordinate subframe (tµ; rµ, θµ, φµ) with its originality at the

center of such a mass space. Then we know its a spherically symmetric solution by

(8− 13) to be

ds2
µ =

(
1− rµs

rµ
+
r2
µe

r2
µ

)
dt2µ −

(
1− rµs

rµ
+
r2
µe

r2
µ

)−1

dr2
µ − r2

µ(dθ
2
µ + sin2 θµdφ

2
µ).

Likewise the case of Schwarzschild metric, we consider combinatorial fields of

charged gravitational fields dependent on the intersection dimension m̂ following.

Case 1. m̂ = 1, i.e., tµ = t for 1 ≤ µ ≤ m.
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In this case, by applying Theorem 8.3.1 we get the combinatorial metric

ds2 =

m∑

µ=1

(
1− rµs

rµ
+
r2
µe

r2
µ

)
dt2−

m∑

µ=1

(
1− rµs

rµ
+
r2
µe

r2
µ

)−1

dr2
µ−

m∑

µ=1

r2
µ(dθ

2
µ+sin2 θµdφ

2
µ).

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ, or tµ = t and φµ = φ

for 1 ≤ µ ≤ m.

Consider the following three subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)
dt2−

m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)−1

dr2−
m∑

µ=1

r2(dθ2
µ+sin2 θµdφ

2
µ),

which can only happens if these m fields are at a same point O in a space. Particu-

larly, if mµ = M and eµ = e for 1 ≤ µ ≤ m, we find that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2

1− 2GM
c2r

+ 4πGe4

c4r2

−
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2
µ).

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, by applying Theorem 8.3.1 we know that the combinatorial

metric is

ds2 =
m∑

µ=1

(
1− rµs

rµ
+
r2
µe

r2
µ

)
dt2−

m∑

µ=1

(
1− rµs

rµ
+
r2
µe

r2
µ

)−1

dr2
µ−

m∑

µ=1

r2
µ(dθ

2+sin2 θdφ2
µ).

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, we know that the combinatorial metric is

ds2 =

m∑

µ=1

(
1− rµs

rµ
+
r2
µe

r2
µ

)
dt2−

m∑

µ=1

(
1− rµs

rµ
+
r2
µe

r2
µ

)−1

dr2
µ−

m∑

µ=1

r2
µ(dθ

2
µ+sin2 θµdφ

2).

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r and φµ = φ, or

or tµ = t, θµ = θ and φµ = φ for 1 ≤ µ ≤ m.

We consider three subcases following.
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Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, by applying Theorem 8.3.1 we obtain that the combinatorial

metric is

ds2 =
m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)
dt2−

m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)−1

dr2−
m∑

µ=1

r2(dθ2+sin2 θdφ2
µ).

Particularly, if mµ = M and eµ = e for 1 ≤ µ ≤ m, then we get that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2

1− 2GM
c2r

+ 4πGe4

c4r2

−
m∑

µ=1

r2(dθ2 + sin2 θdφ2
µ).

Subcase 3.2. tµ = t, rµ = r and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)
dt2−

m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)−1

dr2−
m∑

µ=1

r2(dθ2
µ+sin2 θµdφ

2).

Particularly, if mµ = M and eµ = e for 1 ≤ µ ≤ m, then we get that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2

1− 2GM
c2r

+ 4πGe4

c4r2

−
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2).

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =
m∑

µ=1

(
1− rµs

rµ
+
r2
µe

r2
µ

)
dt2−

m∑

µ=1

(
1− rµs

rµ
+
r2
µe

r2
µ

)−1

dr2
µ−

m∑

µ=1

r2
µ(dθ

2+sin2 θdφ2).

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for 1 ≤ µ ≤ m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)
dt2

−
m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)−1

dr2 −mr2(dθ2 + sin2 θdφ2).
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Furthermore, if mµ = M and eµ = e for 1 ≤ µ ≤ m, we obtain that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2

1− 2GM
c2r

+ 4πGe4

c4r2

−mr2(dθ2 + sin2 θdφ2).

Similarly, we define the coordinate transformation (t, r, θ, φ)→ ( st, sr, sθ, sφ) =

(t
√
m, r
√
m, θ, φ). Then the previous formula turns to

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
dst

2 − dsr
2

1− 2GM
c2r

+ 4πGe4

c4r2

− sr
2(dsθ

2 + sin2
sθdsφ

2)

in this new coordinate system ( st, sr, sθ, sφ), whose geometrical behavior likes

that of a charged gravitational field.

8.3.4 Multi-Time System. Let M̃(t) be a combinatorial field consisting of fields

M1,M2, · · · ,Mm on reference frames (t1, r1, θ1, φ1), · · ·, (tm, rm, θm, φm), respectively.

These combinatorial fields discussed in last two subsections are all with tµ = t

for 1 ≤ µ ≤ m, i.e., we can establish one time variable t for all fields in this

combinatorial field. But if we can not determine all the behavior of living things in

the WORLD implied in the weak anthropic principle, for example, the uncertainty

of micro-particles, we can not find such a time variable t for all fields. Then we need

a multi-time system for describing the WORLD.

A multi-time system is such a combinatorial field M̃(t) consisting of fields

M1,M2, · · · ,Mm on reference frames (t1, r1, θ1, φ1), · · ·, (tm, rm, θm, φm), and there

are always exist two integers κ, λ, 1 ≤ κ 6= λ ≤ m such that tκ 6= tλ. The philosoph-

ical meaning of multi-time systems is nothing but a refection of the strong anthropic

principle. So it is worth to characterize such systems.

For this objective, a more interesting case appears in m̂ = 3, rµ = r, θµ =

θ, φµ = φ, i.e., beings live in the same dimensional 3 space, but with different

notions on the time. Applying Theorem 8.3.1, we know the Schwarzschild and

Reissner-Nordström metrics in this case following.

Schwarzschild Multi-Time System. In this case, the combinatorial metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2µ −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 −mr2(dθ2 + sin2 θdφ2).

Applying the projective principle to this equation, we get metrics on gravitational
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fields M1,M2, · · · ,Mm following:

ds2
1 =

(
1− 2Gm1

c2r

)
dt21 −

(
1− 2Gm1

c2r

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

ds2
2 =

(
1− 2Gm2

c2r

)
dt22 −

(
1− 2Gm2

c2r

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,

ds2
m =

(
1− 2Gmm

c2r

)
dt2m −

(
1− 2Gmm

c2r

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

Particularly, if mµ = M for 1 ≤ µ ≤ m, we then get that

ds2 =

(
1− 2GM

c2r

) m∑

µ=1

dt2µ −
(

1− 2GM

c2r

)−1

mdr2 −mr2(dθ2 + sin2 θdφ2).

Its projection on the gravitational field Mµ is

ds2
µ =

(
1− 2GM

c2r

)
dt2µ −

(
1− 2GM

c2r

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

i.e., the Schwarzschild metric on Mµ, 1 ≤ µ ≤ m.

Reissner-Nordström Multi-Time System. In this case, the combinatorial

metric is

ds2 =

m∑

µ=1

(
1− 2Gmµ

c2r
+

4πGe4µ
c4r2

)
dt2µ

−
m∑

µ=1

(
1− 2Gmµ

c2r
+

4πGe4µ
c4r2

)−1

dr2 −mr2(dθ2 + sin2 θdφ2).

Similarly, by the projective principle we obtain the metrics on charged gravita-

tional fields M1,M2, · · · ,Mm following.

ds2
1 =

(
1− 2Gm1

c2r
+

4πGe4
1

c4r2

)
dt21 −

(
1− 2Gm1

c2r
+

4πGe4
1

c4r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

ds2
2 =

(
1− 2Gm2

c2r
+

4πGe4
2

c4r2

)
dt22 −

(
1− 2Gm2

c2r
+

4πGe4
2

c4r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2),

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,

ds2
m =

(
1− 2Gmm

c2r
+

4πGe4
m

c4r2

)
dt2m−

(
1− 2Gm2

c2r
+

4πGe4
2

c4r2

)−1

dr2−r2(dθ2 +sin2 θdφ2).
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Furthermore, if mµ = M and eµ = e for 1 ≤ µ ≤ m, we obtain that

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

) m∑

µ=1

dt2

−
(

1− 2GM

c2r
+

4πGe4

c4r2

)−1

mdr2 −mr2(dθ2 + sin2 θdφ2).

Its projection on the charged gravitational field Mµ is

ds2
µ =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
dt2µ−

(
1− 2GM

c2r
+

4πGe4

c4r2

)−1

dr2−r2(dθ2+sin2 θdφ2)

i.e., the Reissner-Nordström metric on Mµ, 1 ≤ µ ≤ m.

As a by-product, these calculations and formulas mean that these beings with

time notion different from that of human beings will recognize differently the struc-

ture of our universe if these beings are intellectual enough to do so.

8.3.5 Physical Condition. A simple calculation shows that the dimension of

the homogenous combinatorial Euclidean space M̃(t) in Subsections 8.3.2− 8.3.3 is

dimM̃(t) = 4m+ (1−m)m̂, (8− 14)

for example, dimM̃(t) = 10, 13, 16 if m̂ = 1 and m = 3, 4, 5. In this subsection,

we analyze these combinatorial metrics in Subsections 8.3.2 − 8.3.3 by observation

of human beings. So we need to discuss two fundamental questions following:

Firstly, what is the visible geometry of human beings? The visible geometry

is determined by the structure of our eyes. In fact, it is the spherical geometry of

dimensional 3. That is why the sky looks like a spherical surface. For this result, see

references [Rei1], [Yaf1] and [Bel1] in details. In these geometrical elements, such as

those of point, line, ray, block, body,· · ·, etc., we can only see the image of bodies

on our spherical surface, i.e., surface blocks.

Secondly, what is the geometry of transferring information? Here, the term

information includes information known or not known by human beings. So the

geometry of transferring information consists of all possible transferring routes. In

other words, a combinatorial geometry of dimensional≥ 1. Therefore, not all infor-

mation transferring can be seen by our eyes. But some of them can be felt by our

six organs with the helps of apparatus if needed. For example, the magnetism or

electromagnetism can be only detected by apparatus.
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These geometrical notions enable us to explain the physical conditions on com-

binatorial metrics, for example, the Schwarzschild or Reissner-Nordström metrics.

Case 1. m̂ = 4.

In this case, by the formula (8 − 14) we get that dimM̃(t) = 4, i.e., all fields

M1,M2, · · · ,Mm are in R4, which is the most enjoyed case by human beings. We

have gotten the Schwarzschild metric

ds2 =
m∑

µ=1

(
1− 2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1− 2Gmµ

c2r

)−1

dr2 −mr2(dθ2 + sin2 θdφ2)

for combinatorial gravitational fields or the Reissner-Nordström metric

ds2 =

m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)
dt2 − dr2

m∑
µ=1

(
1− rµs

r
+

r2µe

r2

) −mr2(dθ2 + sin2 θdφ2)

for charged combinatorial gravitational fields in vacuum in Subsections 8.3.2−8.3.3.

If it is so, all the behavior of WORLD can be realized finally by human beings,

particularly, the observed interval is ds and all natural things can be come true by

experiments. This also means that the discover of science will be ended, i.e., we

can find an ultimate theory for the WORLD - the Theory of Everything. This is

the earnest wish of Einstein himself beginning, and then more physicists devoted all

their lifetime to do so in last century.

But unfortunately, the existence of Theory of Everything is contradicts to the

weak anthropic principle, and more and more natural phenomenons show that the

WORLD is a multiple one. Whence, this case maybe wrong.

Case 2. m̂ ≤ 3.

If the WORLD is so, then dimM̃(t) ≥ 5. In this case, we know the com-

binatorial Schwarzschild metrics and combinatorial Reissner-Nordström metrics in

Subsection 8.2.2−8.2.3, for example, if tµ = t, rµ = r and φµ = φ, the combinatorial

Schwarzschild metric is

ds2 =
m∑

µ=1

(
1− rµs

r

)
dt2 −

m∑

µ=1

dr2

(
1− rµs

r

) −
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2)

and the combinatorial Reissner-Nordström metric is

ds2 =

m∑

µ=1

(
1− rµs

r
+
r2
µe

r2

)
dt2 −

m∑

µ=1

dr2

(
1− rµs

r
+

r2µe

r2

) −
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2).
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Particularly, if mµ = M and eµ = e for 1 ≤ µ ≤ m, then we get that

ds2 =

(
1− 2GM

c2r

)
mdt2 − mdr2

(
1− 2GM

c2r

) −
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2)

for combinatorial gravitational field and

ds2 =

(
1− 2GM

c2r
+

4πGe4

c4r2

)
mdt2 − mdr2

(
1− 2GM

c2r
+ 4πGe4

c4r2

) −
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2)

for charged combinatorial gravitational field in vacuum. In this case, the observed

interval in the field Mo where human beings live is

dso = a(t, r, θ, φ)dt2 − b(t, r, θ, φ)dr2 − c(t, r, θ, φ)dθ2 − d(t, r, θ, φ)dφ2.

Then how to we explain the differences ds − dso in physics? Notice that we can

only observe the line element dso, namely, a projection of ds on Mo. Whence, all

contributions in ds− dso come from the spatial direction not observable by human

beings. In this case, we are difficult to determine the exact behavior, sometimes only

partial information of the WORLD, which means that each law on the WORLD

determined by human beings is an approximate result and hold with conditions.

Furthermore, if m̂ ≤ 3 holds, since there are infinite underlying connected

graphs, i.e., there are infinite combinations of existent fields, we can not find an

ultimate theory for the WORLD, i.e., there are no a Theory of Everything on the

WORLD. This means the science is approximate and only a real SCIENCE con-

straint on conditions, which also implies that the discover of science will endless

forever.

8.3.6 Parallel Probe. If the Universe is a Euclidean space with dimensional≥ 3,

we get a conclusion by Theorem 4.1.11 following.

Theorem 8.3.2 Let Rn be a Euclidean space with n ≥ 4. Then there is a combina-

torial Euclidean space EKm(3) such that

Rn ∼= EKm(3)

with m = n−1
2

or m = n− 2.

Theorem 8.3.2 suggests that we can visualize a particle in Euclidean space Rn

by detecting its partially behavior in each R3. That is to say, we are needed to

establish a parallel probe for Euclidean space Rn if n ≥ 4.
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A parallel probe on a combinatorial Euclidean space EG(n1, n2, · · · , nm) is a set of

probes established on each Euclidean space Rni for integers 1 ≤ i ≤ m, particularly

for EG(3) which one can detects a particle in its each space R3 such as those shown

in Fig.8.3.1 in where G = K4 and there are four probes P1, P2, P3, P4.

R3 R3

R3 R3

P1 P2

P3 P4

- ? ?�
- 6 �6

Fig.8.3.1

Notice that data obtained by such parallel probe is a set of local data F (xi1, xi2, xi3)

for 1 ≤ i ≤ m underlying G, i.e., the detecting data in a spatial ǫ should be same if

ǫ ∈ R3
u ∩R3

v, where R3
u denotes the R3 at u ∈ V (G) and (R3

u,R
3
v) ∈ E(G).

For data not in the R3 we lived, it is reasonable that we can conclude that all

are the same as we obtained. Then we can only analyze the global behavior of a

particle in Euclidean space Rn with n ≥ 4.

8.3.7 Physical Realization. A generally accepted notion on the formation of

Universe is the Big Bang theory ([Teg1]), i.e., the origin of Universe is from an

exploded at a singular point on its beginning. Notice that the geometry in the Big

Bang theory is just a Euclidean R3 geometry, i.e., a visible geometry by human

beings. Then how is it came into being for a combinatorial spacetime? Weather

it is contradicts to the experimental data? We will explain these questions in this

subsection.

Realization 8.3.1 A combinatorial spacetime (CG|t) was formed by |G| times Big

Bang in an early space.

Certainly, if there is just one time Big Bang, then there exists one spacetime

observed by us, not a multiple or combinatorial spacetime. But there are no argu-
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ments for this claim. It is only an assumption on the origin of Universe. If it is not

exploded in one time, but in m ≥ 2 times in different spatial directions, what will

happens for the structure of spacetime?

The process of Big Bang model can be applied for explaining the formation of

combinatorial spacetimes. Assume the dimension of original space is bigger enough

and there are m explosions for the origin of Universe. Then likewise the standard

process of Big Bang, each time of Big Bang brought a spacetime. After the m Big

Bangs, we finally get a multi-spacetime underlying a combinatorial structure, i.e., a

combinatorial spacetime (CG|t) with |G| = m, such as those shown in Fig.8.3.2 for

G = C4 or K3.

E1

E4 E2

E3

(a) (b)

E1

E2 E3

Fig.8.3.2

where Ei denotes ith time explosion for 1 ≤ i ≤ 4. In the process of m Big Bangs,

we do not assume that each explosion Ei, 1 ≤ i ≤ m was happened in a Euclidean

space R3, but in Rn for n ≥ 3. Whence, the intersection Ei ∩ Ej means the same

spatial directions in explosions Ei and Ej for 1 ≤ i, j ≤ m. Whence, information in

Ei or Ej appeared along directions in Ei ∩Ej will both be reflected in Ej or Ei. As

we have said in Subsection 8.3.5, if dimEi ∩ Ej ≤ 2, then such information can not

be seen by us but only can be detected by apparatus, such as those of the magnetism

or electromagnetism.

Realization 8.3.2 The spacetime lived by us is an intersection of other spacetimes.

For an integer m ≥ 1, let M1,M2, · · · ,Mm be S3 with an expanding rate γ > 0

meters per second for simplicity. Then a simple calculation shows that its volume

turns to 4πn3γ3

3
after n seconds with radius R = nγ. By the result of WMAP, we

have known the age of space lived by us is homogenous with 137 light years, which
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means that each explosion intersected with space lived by us is taken place at least

137 light years before. Therefore, the space lived by us is an intersection of spaces

exploded before at least 137 light years. Calculation shows the radius of space came

into being by such an explosion is at least

1.37× 108 × 3× 105 × 365× 24× 60× 60γ m ≈ 1.3× 1020γ m.

Notice that the Hobble constant H0 ≈ 7 × 104m/s and γ ≥ H0 by definition. We

finally get the radius in each Big Bang≥ 1.3 × 1020 × 7 × 104m = 9.1 × 1022m.

Whence, if there is an Big Bang explosion 9.1 × 1022m far from us today, we can

only observe it after 137 light years, i.e., it few affects on the space lived by us.

Otherwise, if a Big Bang happens very nearly from us, for example, only 1 light

years, then it will affects our living space, particularly, the earth within 1 years. If

so, we will detect affecting datum from such a Big Bang finally.

Realization 8.3.3 Each experimental data on Universe obtained by human beings

is synthesized, not be in one of its spacetimes.

Today, we have known a few datum on the Universe by COBE or WMAP. In

these data, the one well-known is the 2.7oK cosmic microwave background radiation.

Generally, this data is thought to be an evidence of Big Bang theory. If the Universe

is combinatorial, how to we explain it? First, the 2.7oK is not contributed by one

Big Bang in R3, but by many times before 137 light years, i.e., it is a synthesized

data. Second, the 2.7oK is surveyed by WMAP, an explorer satellite in R3. By

the projective principle in Section 3, it is only a projection of the cosmic microwave

background radiation in the Universe on space R3 lived by us. In fact, all datum on

the Universe surveyed by human beings can be explained in such a way. So there are

no contradiction between combinatorial model and datum on the Universe already

known by us, but it reflects the combinatorial behavior of the Universe.

§8.4 COMBINATORIAL GAUGE FIELDS

A combinatorial gauge field M̃(t) is a combinatorial field of gauge fields M1,M2,

· · · ,Mm underlying a combinatorial structure G with local or global symmetries

under a finite-dimensional Lie multi-group action on its gauge basis at an individual

point in space and time, which leaves invariant of physical laws, particularly, the
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Lagrange density L of M̃(t). We mainly consider the following problem in this

section.

Problem 8.4.1 For gauge fields M1,M2, · · · ,Mm with respective Lagrange densities

LM1 , LM2 , · · · ,LMm and action by Lie groups H◦1,H◦2, · · · ,H◦m, find conditions

on LGL[M̃ ](t), the Lie multi-group H̃ and GL[M̃(t)] such that the combinatorial field

M̃(t) consisting of M1,M2, · · · ,Mm is a combinatorial gauge filed.

8.4.1 Gauge Multi-Basis. For any integer i, 1 ≤ i ≤ m, let Mi be gauge fields

with a basis BMi
and τi : BMi

→ BMi
a gauge transformation, i.e., LMi

(Bτi
Mi

) =

LMi
(BMi

). We first determine a gauge transformation

τM̃ :
m⋃

i=1

BMi
→

m⋃

i=1

BMi

on the gauge multi-basis
m⋃
i=1

BMi
and a Lagrange density LM̃ with

τM̃ |Mi
= τi, LM̃ |Mi

= LMi

for integers 1 ≤ i ≤ m such that

LM̃(
m⋃

i=1

BMi
)τM̃ = LM̃(

m⋃

i=1

BMi
).

By Theorem 3.1.2 the Gluing Lemma, we know that if τi agree on overlaps,

i.e., τi|BMi
∩BMj

= τj |BMi
∩BMj

for all integers 1 ≤ i, j ≤ m, then there exists a unique

continuous τM̃ :
m⋃
i=1

BMi
→

m⋃
i=1

BMi
with τM̃ |Mi

= τi for all integers 1 ≤ i ≤ m.

Notice that τi|BMi
∩BMj

= τj |BMi
∩BMj

hold only if (BMi
∩ BMj

)τi = BMi
∩ BMj

for any integer 1 ≤ j ≤ m. This is hold in condition. For example, if each τi is the

identity mapping, i.e., τi = 1BMi
, 1 ≤ i ≤ m, then it is obvious that (BMi

∩BMj
)τi =

BMi
∩BMj

, and furthermore, τi|BMi
∩BMj

= τj |BMi
∩BMj

for integers 1 ≤ i, j ≤ m.

Now we define a characteristic mapping χMi
on {BMi

; 1 ≤ i ≤ m} as follows:

χMi
(X) =

{
1, if X = BMi

,

0, otherwise.

Then

τM̃ =

m∑

i=1

χMi
τi.
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In this case, the Lagrange density

LM̃ =

m∑

i=1

χMi
LMi

on M̃ holds with LM̃ |Mi
= LMi

for each integer 1 ≤ i ≤ m. Particularly, if

Mi = M, 1 ≤ i ≤ m, then
m⋃

i=1

BMi
= BM .

Whence,

τM̃ = (χM1 + χM2 + · · ·+ χMn)τM ,

LM̃ = (χM1 + χM2 + · · ·+ χMn)LM ,

where τM is a gauge transformation on the gauge field M . Notice that χM1 +χM2 +

· · ·+ χMn is a constant on {BMi
, 1 ≤ i ≤ m}, i.e.,

(χM1 + χM2 + · · ·+ χMn)(BMi
) = 1

for integers 1 ≤ i ≤ m, but it maybe not a constant on
m⋃
i=1

BMi
for different positions

of fields Mi, 1 ≤ i ≤ m in space.

Let the motion equation of gauge fields Mi be Fi(LMi
) = 0 for 1 ≤ i ≤ m.

Applying Theorem 7.1.6, we then know the field equation of combinatorial field M̃

of M1,M2, · · · ,Mm to be

χM1F1(LM1) + χM2F2(LM2) + · · ·+ χMmFm(LMm) = 0

for the linearity of differential operation ∂/∂φ. For example, let M̃ be a combina-

torial field consisting of just two gauge field, a scalar field M1 and a Dirac field M2.

Then the field equation of M̃ is as follows:

χM1(∂
2 +m2)ψM1 + χM2(iγ

µ∂µ −m)ψM2 = 0.

8.4.2 Combinatorial Gauge Basis. Let M̃ be a combinatorial field of gauge

fields M1,M2, · · · ,Mm. The multi-basis
m⋃
i=1

BMi
is a combinatorial gauge basis if for

any automorphism g ∈ AutGL[M̃ ],

LM̃(

m⋃

i=1

BMi
)τM̃◦g = LM̃ (

m⋃

i=1

BMi
),
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where τM̃ ◦ g means τM̃ composting with an automorphism g, a bijection on gauge

multi-basis
m⋃
i=1

BMi
. Now if Ω1, Ω2, · · · ,Ωs are these orbits of fields M1,M2, · · · ,Mm

under the action of AutGL[M̃ ], then there must be that

Mα
1 = Mα

2 if Mα
1 ,M

α
2 ∈ Ωα, 1 ≤ α ≤ s

by the condition τM̃ |Mg
i

= τi, 1 ≤ i ≤ m. Applying the characteristic mapping χMi

in Section 8.4.1, we know that

τM̃ =

s∑

α=1

(
∑

Mα
i ∈Ωα

χMα
i
)τi.

In this case, the Lagrange density

LM̃ =
s∑

α=1

|(
∑

Mα
i ∈Ωα

χMα
i
)LMi

on M̃ holds with LM̃ |Mi
= LMi

for each integer 1 ≤ i ≤ m.

We discussed two interesting cases following.

Case 1. GL[M̃ ] is transitive.

Because GL[M̃ ] is transitive, there are only one orbit Ω = {M1,M2, · · · ,Mm}.
Whence, Mi = M for integers 1 ≤ i ≤ m, i.e., the combinatorial field M̃ is consisting

of one gauge field M underlying a transitive graph GL[M̃ ].

In this case, we easily know that

m⋃

i=1

BMi
= BM ,

τM̃ = (χM1 + χM2 + · · ·+ χMm)τM

and

LM̃ = (χM1 + χM2 + · · ·+ χMm)LM ,

which is the same as the case of gauge multi-basis with a combinatorial gauge basis.

Case 2. GL[M̃ ] is non-symmetric.

SinceGL[M̃ ] is non-symmetric, i.e., AutGL[M̃ ] is trivial, there fieldsM1,M2, · · · ,
Mm are distinct two by two. Whence, the combinatorial field M̃ is consisting
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of gauge fields M1,M2, · · · ,Mm underlying a non-symmetric graph GL[M̃ ] with

τi|BMi
∩BMj

= τj |BMi
∩BMj

for all integers 1 ≤ i, j ≤ m.

In this case, τM̃ and LM̃ are also the same as the case of gauge multi-basis with

a combinatorial gauge basis.

8.4.3 Combinatorial Gauge Field. By gauge principle, a globally or locally

combinatorial gauge field is a combinatorial field M̃ under a gauge transformation

τM̃ : M̃ → M̃ independent or dependent on the field variable x. If a combinatorial

gauge field M̃ is consisting of gauge fields M1,M2, · · · ,Mm, we can easily find that

M̃ is a globally combinatorial gauge field only if each gauge field is global. By the

discussion of Subsection 8.4.2, we have known that a combinatorial field consisting

of gauge fields M1,M2, · · · ,Mm is a combinatorial gauge field if Mα
1 = Mα

2 for

∀Mα
1 ,M

α
2 ∈ Ωα, where Ωα, 1 ≤ α ≤ s are orbits of M1,M2, · · · ,Mm under the

action of AutGL[M̃ ]. In this case, each gauge transformation can be represented

by τ ◦ g, where τ is a gauge transformation on a gauge field Mi, 1 ≤ i ≤ m and

g ∈ AutGL[M̃ ] and

τM̃ =
s∑

α=1

(
∑

Mα
i ∈Ωα

χMα
i
)τi, LM̃ =

s∑

α=1

|(
∑

Mα
i ∈Ωα

χMα
i
)LMi

.

All of these are dependent on the characteristic mapping χMi
, 1 ≤ i ≤ m, and

difficult for use. Then

whether can we construct the gauge transformation τM̃ and Lagrange density

LM̃ independent on χMi
, 1 ≤ i ≤ m?

Certainly, the answer is YES! We can really construct locally combinatorial gauge

fields by applying embedded graphs on surfaces as follows.

Let ς : GL[M̃ ] → S be an embedding of the graph GL[M̃ ] on a surface S, i.e.,

a compact 2-manifold without boundary with a face set F = {F1, F2, · · · , Fl} on S.

By assumption, if (Mi1 ,Mi2) ∈ E(GL[M̃ ]), then Mi1∩Mi2 is also a gauge filed under

the action of τi1 |Mi1
∩Mi2

= τi2 |Mi1
∩Mi2

. Whence, we can always choose a Lagrange

density LMi1
∩Mi2

.

Now relabel vertices and edges of GL[M̃ ] by

ML
i = LMi

, (Mi,Mj)
L = LMi1

∩Mi2
for 1 ≤ i, j ≤ m
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with (Mj ,Mi)
L = −(Mi,Mj)

L, and if Fi = Mi1Mi2 · · ·Mis , then label the face Fi by

FL
i = LMi1

∩Mi2
+ LMi2

∩Mi3
+ · · ·+ LMis∩Mi1

,

called the fluctuation on Fi. Choose the Lagrange density

LM̃ =
1

4c1

∑

(Mi,Mj )∈E(F )

F∈F

(L̇Mi∩Mj
+ LMi

−LMj
)2 − c2

2

∑

F∈F

(FL)2,

where c1, c2 are constants. Then LM̃ is invariant under the action of τ ◦g for a gauge

transformation τ on a gauge field Mi, 1 ≤ i ≤ m and g ∈ AutGL[M̃ ]. Furthermore,

define a transformation

ι : LMi∩Mj
→ LMi∩Mj

+ φj(t)− φi(t),

ι : LMi
(t)→ LMi

(t) + φ̇i(t),

where φi(t) is a function on field Mi, 1 ≤ i ≤ m. Calculation shows that

ι : L̇Mi∩Mj
+ LMi

−LMj

→ L̇Mi∩Mj
+ φ̇j(t)− φ̇i(t) + LMi

+ φ̇i(t)−LMj
− φ̇j(t)

= L̇Mi∩Mj
+ LMi

−LMj

and

ι : FL
i = LMi1

∩Mi2
+ LMi2

∩Mi3
+ · · ·+ LMis∩Mi1

→ LMi1
∩Mi2

+ φ̇i2(t)− φ̇i1(t) + · · ·+ LMis∩Mi1
+ φ̇i1(t)− φ̇is(t)

= LMi1
∩Mi2

+ LMi2
∩Mi3

+ · · ·+ LMis∩Mi1
= FL

i .

Therefore, L ι
M̃

= LM̃ , i.e., ι is a gauge transformation. This construction can be

used to describe physical objectives. For example, let GL[M̃ ] be a normal lattice

partially show in Fig.8.4.1 following,

i j

Fig.8.4.1
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Let the label on vertex i be Li = a0(i), a scalar and a label on edge (i, j) be

LMi∩Mj
= aij, a vector with aji = −aij . Choose constants c1 = J and c2 = q and

LM̃ =
1

4J

∑

i,µ=x,y

(ȧi,i+µ + a0(i)− a0(i + µ))2 − q

2

∑

F

(FL)2.

Then as it was done in [Wen1], we can use this combinatorial gauge field to describe

spin liquids, also explain some fundamental questions in physics.

8.4.4 Geometry on Combinatorial Gauge Field. We have presented a ge-

ometrical model of combinatorial field in Subsection 8.1.3. Combining this model

with combinatorially principal fiber bundles discussed in Section 6.5, we can estab-

lish a geometrical model of combinatorial gauge field, which also enables us to know

what is the gauge basis of a combinatorial gauge field.

Likewise the geometrical model of gauge field, let P̃ α(M̃,LG) be a combi-

natorially principal fibre bundle over a differentiably combinatorial manifold M̃

consisting of Mi, 1 ≤ i ≤ l, (GL[M̃ ], α) a voltage graph with a voltage assign-

ment α : GL[M̃ ] → G over a finite group G, which naturally induced a projection

π : GL[P̃ ]→ GL[M̃ ] and PMi
(Mi,H◦i

), 1 ≤ i ≤ l a family of principal fiber bundles

over manifolds M1,M2, · · · ,Ml. By Construction 6.5.1, P̃ α(M̃,LG) is constructed

by for ∀M ∈ V (GL[M̃ ]), place PM on each lifting vertex MLα in the fiber π−1(M)

of GLα[M̃ ] if π(PM) = M . Consequently, we know that

P̃ =
⋃

M∈V (GL[M̃ ])

PM , LG =
⋃

M∈V (GL[M̃ ])

HM

and a projection Π = πΠMπ
−1 for ∀M ∈ V (GL[M̃ ]). By definition, a combinatorial

principal fiber bundle P̃ α(M̃,LG) is AutGLα[M̃ ]×LG-invariant. So it is naturally

a combinatorial gauge field under the action of AutGLα[M̃ ] × LG. We clarify its

gauge and gauge transformations first.

For a combinatorial principal fiber bundle P̃ α(M̃,LG), we know its a local

trivialization LT is such a diffeomorphism T x : Π−1(Ux) → Ux ×LG for ∀x ∈ M◦i

with

T x|Π−1
i (Ux) = T xi : Π−1

i (Ux)→ Ux ×H◦i
; x→ T xi (x) = (Πi(x), ǫ(x)),

such that ǫ(x ◦i g) = ǫ(x) ◦i g for ∀g ∈ H◦i
, ǫ(x) ∈ H◦i

. In physics, such a local

trivialization T x, x ∈ M̃ is called a gauge.
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If we denote by BMi
the gauge basis of PMi

(Mi,H◦i
) consisting of such gauges

T x, x ∈ Mi for integers 1 ≤ i ≤ l, then we know the gauge basis of combinatorial

gauge field M̃ is
l⋃
i=1

BMi
underlying the graph GL[M̃ ]. According to the discussion in

Subsections 8.4.1−8.4.2, we can always find a general form of gauge transformation

τM̃ action on
l⋃
i=1

BMi
by applying gauge transformations τi on Mi and characteristic

mapping χMi
for integers 1 ≤ i ≤ l.

Notice that an automorphism of P̃ can not ensure the invariance of Lagrange

density LM̃ in general. A gauge transformation of P̃ α(M̃,LG) is such an automor-

phism ω : P̃ → P̃ with ω =identity transformation on M̃ , i.e., Π(p) = Π(ω(p)) for

p ∈ P̃ . Whence, LM̃ is invariant under the action of ω, i.e.,

LM̃(

l⋃

i=1

BMi
)ω = LM̃(

l⋃

i=1

BMi
).

As we have discussed in Subsections 6.5.3− 6.5.4, there gauge transformations

come from two sources. One is the gauge transformations τMi
of the gauge field Mi,

1 ≤ i ≤ l. Another is the symmetries of the lifting graph GLα[M̃ ], which extends the

inner symmetries to the outer in a combinatorial field. Whence, the combinatorial

principal fiber bundle enables us to find more gauge fields for applications.

Now let
1
ω be the local connection 1-form,

2

Ω= d̃
1
ω the curvature 2-form of a

local connection on P̃ α(M̃,LG) and Λ : M̃ → P̃ , Π ◦ Λ = idM̃ be a local cross

section of P̃ α(M̃,LG). Similar to that of gauge fields, we consider

Ã = Λ∗ 1
ω=

∑

µν

Aµνdx
µν ,

F̃ = Λ∗
2

Ω=
∑

F(µν)(κλ)dx
µν ∧ dxκλ, d̃ F̃ = 0,

which are called the combinatorial gauge potential and combinatorial field strength,

respectively. Let γ : M̃ → R and Λ′ : M̃ → P̃ , Λ′(x) = eiγ(x)Λ(x). If Ã′ = Λ′∗ 1
ω,

then we have
1

ω′ (X) = g−1 1
ω (X ′)g + g−1dg, g ∈ LG,

for dg ∈ Tg(LG), X = d̃RgX
′ by properties of local connections on combinato-

rial principal fiber bundles discussed in Section 6.5, which finally yields equations

following

Ã′ = Ã+ d̃ Ã, d̃ F̃ ′ = d̃ F̃ , (8− 15)
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i.e., the gauge transformation law on field. The equation (8 − 15) enables one to

obtain the local form of F̃ as they contributions to Maxwell or Yang-Mills fields in

Subsection 7.4.7.

Now if we choose
1
ω and

2

Ω= d̃
1
ω be the global connection 1-form, the curvature

2-form of a global connection on P̃ α(M̃,LG), respectively, we can similarly establish

equations (8− 15) by applying properties of global connections on a combinatorial

principal fiber bundle P̃ α(M̃,LG) established in Section 6.5, and then apply them

to determine the behaviors of combinatorial gauge fields.

8.4.5 Higgs Mechanism on Combinatorial Gauge Field. Let ΦM̃0 be the vac-

uum state in a combinatorial gauge field M̃ consisting of gauge fieldsM1,M2, · · · ,Mm

with the Lagrangian LM̃ = L1+VM̃(ΦM̃), where VM̃(ΦM̃) stands for the interaction

potential in M̃ , AutGL[M̃ ]×LG a gauge multi-group and g → ϕ(g) a representation

of AutGL[M̃ ]×LG. Define

ΦM̃0 = ϕ(AutGL[M̃ ]×LG)ΦM̃0 = {ϕ(g)ΦM̃0|g ∈ AutGL[M̃ ]×LG}, (8−16)

and (AutGL[M̃ ] × LG)0 = {g ∈ AutGL[M̃ ] × LG|ϕ(g)ΦM̃0 = ΦM̃0}. Then M̃0 is

called a homogenous space of AutGL[M̃ ]×LG, that is,

M̃0 = AutGL[M̃ ]×LG/(AutGL[M̃ ]×LG)0

= {ϕ(g)ΦM̃0|g ∈ AutGL[M̃ ]×LG}. (8− 17)

Similarly, a gauge symmetry in AutGL[M̃ ]×LG associated with a combinatorial

gauge field is said to be spontaneously broken if and only if there is a vacuum

manifold M̃0 defined in (8− 17) gotten by a vacuum state ΦM̃0 defined in (8− 16).

Furthermore, if we let VM̃(ΦM̃0) = 0 and VM̃(ϕ(g)ΦM̃) = V (ΦM̃), then there must

be VM̃(ϕ(g)ΦM̃0) = 0. Therefore, we can rewrite M̃0 = {ΦM̃ |VM̃(ΦM̃ ) = 0}.
Notice that ΦM̃ |Mi

= ΦMi
and VM̃ |Mi

= VMi
for 1 ≤ i ≤ m. Whence, by

ap[plying the characteristic mapping χMi
we know that

ΦM̃ =
m∑

i=1

χMi
ΦMi

,

VM̃ =

m∑

i=1

χMi
VMi

.
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Now if VMi
(ΦM0

i
) = 0, define M̃0 to be a combinatorial field consisting of M0

i ,

1 ≤ i ≤ m, i.e.,

ΦM̃0 =
m∑

i=1

χMi
ΦM0

i
.

Then we get that

VM̃(ΦM̃0) = VM̃(

m∑

k=1

χMk
ΦM0

k
)

=
m∑

k=1

χMk
VMk

(
m∑

i=1

χMi
ΦM0

i
)

=
m∑

k=1

χMk
VMk

(ΦM0
k
) = 0.

Conversely, if VM̃(ΦM̃0) = 0, then VM̃(ΦM̃0)|Mi
= 0, i.e., VMi

(ΦM̃0)|Mi
) = 0

for integers 1 ≤ i ≤ m. Let M0
i = M̃0|Mi

. Then ΦM0
i

= ΦM̃0)|Mi
. We get that

VMi
(ΦM0

i
) = 0, i.e.,

ΦM̃0) =
m∑

i=1

χMi
ΦM0

i
.

Summing up all discussion in the above, we get the next result.

Theorem 8.4.1 Let M̃ be consisting of gauge fields M1,M2, · · · ,Mm with the La-

grangian LM̃ = L1 + VM̃(ΦM̃ ). If ΦM̃0 is its vacuum state of M̃ and ΦM̃0 |Mi
=

ΦM0
i
, 1 ≤ i ≤ m, Then M̃0 is a combinatorial field consisting of M0

i for 1 ≤ i ≤ m.

Particularly, if Mi = M for integers 1 ≤ i ≤ m, then we get that

VM̃(ΦM̃) = 0 ⇔ (

m∑

i=1

χMi
)VM(ΦM) = 0.

Notice that we can not get

VM̃(ΦM̃ ) = 0 ⇔ VM(ΦM) = 0 (8− 18)

in general. Now if (8− 18) hold, then we must get that χ1 = χ2 = · · · = χm = 1M ,

i.e., GL[M̃ ] is a transitive graph and all these gauge fields M are in a same space,

for example, the Minkowskian space { (ict, x, y, z) | x, y, z ∈ R3, t ∈ R}.
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§8.5 APPLICATIONS

The multi-laterality of WORLD alludes multi-lateralities of things in the WORLD,

also more applicable aspects of combinatorial fields. In fact, as we wish to recognize

the behavior of a family of things with interactions, the best model of candidates is

nothing but a smoothly combinatorial field.

8.5.1 Many-Body Mechanics. The many-body mechanics is an area which

provides the framework for understanding the collective behavior of vast assemblies

of interacting particles, such as those of solar system, milky way, · · ·, etc.. We

have known a physical laws that govern the motion of an individual particle may be

simple or not, but the behavior of collection particles maybe extremely complex.

Let Oxyz be an inertial frame of a space R3 and n bodies P1, P2, · · ·, Pn
with masses m1, m2, · · ·, mn and coordinates (x1, y1, z1), (x2, y2, z2), · · ·, (xn, yn, zn),

respectively. For simplicity, we assume the inactions are all conquered by that

Newtonian gravitation. Consider the body Pi. It is gravitated by other bodies Pj,

1 ≤ j ≤ n, j 6= i. We know that the vector rij from Pi to Pj is

rij = (xj − xi, yj − yi, zj − zi) ,

such as those shown in Fig.8.5.1. 6
-/

-
O

x

y

z

Pi Pj
rij

Fig.8.5.1

Then the unit vector r0
ij from Pi to Pj is

r0
ij =

(
xj − xi
|PiPj |

,
yj − yi
|PiPj |

,
zj − zi
|PiPj |

)
,
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where

|PiPj | =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2.

Applying the universal gravitational law of Newtonian, the gravitation Fij on Pi

contributed by Pj is

Fij =
Gmimj

|PiPj|2
r0
ij = Gmimj

(
xj − xi
|PiPj |3

,
yj − yi
|PiPj |3

,
zj − zi
|PiPj |3

)

= Gmimj

(
∂Uij
∂xi

,
∂Uij
∂yi

,
∂Uij
∂zi

)
,

where

Uij =
1

|PiPj |
=

1√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2

.

Whence, the gravitation Fi on Pi is

Fi =
n∑

j=1,j 6=i

Fij

=

n∑

j=1,j 6=i

Gmimj

(
∂Uij
∂xi

,
∂Uij
∂yi

,
∂Uij
∂zi

)

= Gmi∇i

(
n∑

j=1,j 6=i

mjUij

)
,

where ∇i =

(
∂

∂xi
,
∂

∂yi
,
∂

∂zi

)
. By the second Newtonian law, the motion equation

of Pi in the frame Oxyz should be

mir̈i = Fi = Gmi∇i

(
n∑

j=1,j 6=i

mjUij

)
.

Denoted by

U =
n∑

j=1,j>i

Gmimj

|PiPj|
.

Then we get the motion equation of Pi to be

miẍi =
∂U

∂xi
, miÿi =

∂U

∂yi
, miz̈i =

∂U

∂zi

for 1 ≤ i ≤ n, where V = −U is the potential energy of this n-body system.

Now we characterize n-body system by combinatorial manifold with interaction

of gravitation. Let Mi be the gravitational field around the body Pi for 1 ≤ i ≤ n
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in space R3. Then the combinatorial Euclidean space EKn(3) consisting of Mi, 1 ≤
i ≤ n is a combinatorial gravitational field. By the discussion of Sections 8.2 and

8.3, its behaviors can be characterized by the tensor the following equations

R(µν)(στ) −
1

2
g(µν)(στ)R = −8πGE(µν)(στ),

where 1 ≤ µ, ν, σ, τ ≤ 3.

For example, let M̃ be the field of solar system, then P1 =Sun, P2 =Mercury,

P3 =Venus, P4 =Earth, P5 =Mars, P6 =Jupiter, P7 =Saturn, P8 =Uranus and

P9 =Neptune, such as those shown in Fig. 8.5.2.

Sun

Mercury

VenusEarth

Mars

Jupiter

SaturnUranus Neptune

Fig.8.5.2

Then, we can apply the combinatorial field M̃ with GL[M̃ ] = K9 for its development

in R3 on the time t.

Notice that the solar system is not a conservation system. It is an opened

system. As we turn these actions between planets to internal actions of M̃ , there

are still external actions coming from other planets not in solar system. So we can

only find an approximate model by combinatorial field. More choice of planets in

the universe beyond the solar system, for example, a combinatorial field on milky

way, then more accurate result on the behavior of solar system will be found.

8.5.2 Cosmology. Modern cosmology was established upon Einstein’s general rel-

ativity, which claims that our universe was brought about a Big Bang and from that

point, the time began. But there are no an argument explaining why just exploded
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once. It seems more reasonable that exploded many times if one Big Bang is allowed

to happen for the WORLD. Then the universe is not lonely existent, but parallel

with other universes. If so, a right model of the WORLD should be a combinatorial

one Ũ consisting of universes U1, U2, · · · , Un for some integers n ≥ 2, where Ui is an

unverse brought about by the ith Big Bang, a manifold in mathematics.

Applying the sheaf structure of space in algebraic geometry, a multi-space model

for the universe was given in references [Mao3] and [Mao10]. Combining that model

with combinatorial fields, we present a combinatorial model of the universe following.

A combinatorial universe is constructed by a triple (Ω,∆, T ), where

Ω =
⋃

i≥0

Ωi, ∆ =
⋃

i≥0

Oi

and T = {ti; i ≥ 0} are respectively called the universes, the operation or the time

set with the following conditions hold.

(1) (Ω,∆) is a combinatorial field M̃(ti; i ≥ 0) underling a combinatorial

structure G and dependent on T , i.e., (Ωi, Oi) is dependent on time parameter ti for

any integer i, i ≥ 0.

(2) For any integer i, i ≥ 0, there is a sub-field sequence

(S) : Ωi ⊃ · · · ⊃ Ωi1 ⊃ Ωi0

in the field (Ωi, Oi) and for two sub-fields (Ωij , Oi) and (Ωil, Oi), if Ωij ⊃ Ωil, then

there is a homomorphism ρΩij ,Ωil
: (Ωij , Oi)→ (Ωil, Oi) such that

(i) for ∀(Ωi1, Oi), (Ωi2, Oi)(Ωi3, Oi) ∈ (S), if Ωi1 ⊃ Ωi2 ⊃ Ωi3, then

ρΩi1,Ωi3
= ρΩi1,Ωi2

◦ ρΩi2,Ωi3
,

where�◦�denotes the composition operation on homomorphisms.

(ii) for ∀g, h ∈ Ωi, if for any integer i, ρΩ,Ωi
(g) = ρΩ,Ωi

(h), then g = h.

(iii) for ∀i, if there is an fi ∈ Ωi with

ρΩi,Ωi

⋂
Ωj

(fi) = ρΩj ,Ωi

⋂
Ωj

(fj)

for integers i, j,Ωi

⋂
Ωj 6= ∅, then there exists an f ∈ Ω such that ρΩ,Ωi

(f) = fi for

any integer i.
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If we do not consider its combinatorial structure GL[M̃ ], M̃(ti; i ≥ 0) is become

a multi-space. Because the choice of GL[M̃ ] and integer n is arbitrary, we can

establish infinite such combinatorial models for the universe. The central problem

in front of us is to determine which is the proper one.

Certainly, the simplest case is |GL[M̃ ]| = 1, overlooking the combinatorial

structure GL[M̃ ]. For example, for dimensional 5 or 6 spaces, it has been established

a dynamical theory in [Pap1]and [Pap2]. In this dynamics, we look for a solution

in the Einstein’s equation of gravitational field in 6-dimensional spacetime with a

metric of the form

ds2 = −n2(t, y, z)dt2 + a2(t, y, z)d

2∑

k

+b2(t, y, z)dy2 + d2(t, y, z)dz2

where d
∑2

k represents the 3-dimensional spatial sections metric with k = −1, 0, 1,

corresponding to the hyperbolic, flat and elliptic spaces, respectively. For a 5-

dimensional spacetime, deletes the undefinite z in this metric form. Now consider

a 4-brane moving in a 6-dimensional Schwarzschild-ADS spacetime, the metric can

be written as

ds2 = −h(z)dt2 +
z2

l2
d

2∑

k

+h−1(z)dz2,

where

d

2∑

k

=
dr2

1− kr2
+ r2dΩ2

(2) + (1− kr2)dy2,

h(z) = k +
z2

l2
− M

z3

and the energy-momentum tensor on the brane is

T̂µν = hναT
α
µ −

1

4
Thµν

with T αµ = diag(−ρ, p, p, p, p̂). Then the equation of a 4-dimensional universe moving

in a 6-spacetime is

2
R̈

R
+ 3(

Ṙ

R
)2 = −3

κ4
(6)

64
ρ2 −

κ4
(6)

8
ρp− 3

κ

R2
− 5

l2

by applying the Darmois-Israel conditions for a moving brane, i.e., [Kµν ] = −κ2
(6)T̂µν ,

where Kµν is the extrinsic curvature tensor. Similarly, for the case of a(z) 6= b(z),
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the equations of motion of the brane are

d2ḋṘ− dR̈√
1 + d2Ṙ2

−
√

1 + d2Ṙ2

n
(dṅṘ +

∂zn

d
− (d∂zn− n∂zd)Ṙ2) = −

κ4
(6)

8
(3(p+ ρ) + p̂),

∂za

ad

√
1 + d2Ṙ2 = −

κ4
(6)

8
(ρ+ p− p̂),

∂zb

bd

√
1 + d2Ṙ2 = −

κ4
(6)

8
(ρ− 3(p− p̂)).

Problem 8.5.1 Establish dynamics of combinatorial universe by solve combinatorial

Einstein’s gravitational equations in Section 8.2 for a given structure G, particularly,

the complete graph Kn for n ≥ 2.

8.5.3 Physical Structure. The uncertainty of particle reflects its multi-laterality,

also reveals the shortage of classical wave function in physics. As we have seen in

Subsection 8.5.1, the multi-laterality of particle can characterized by a wave function

φ(x) on a combinatorial space M̃(t) consisting of spaces M1(t),M2(t), · · · ,Mn(t) for

n ≥ 2. For example, to determine the behavior of freely electron, we can apply the

combinatorial Dirac field, such as

φM̃ =
n∑
i=1

ciφMi
;

LGL[M̃ ] =
n∑
i=1

ψMi
(iγµi∂µi

−mi)ψMi
+

∑
(Mi,Mj)∈E(GL[M̃ ])

bijψMi
ψMj

+ C,

where bij , mi, ci, C are constants for integers 1 ≤ i, j ≤ n and with

n∑

i=1

1

ci
(iγµi∂µ −mi)ψMi

−
∑

(Mi,Mj)∈E(GL[M̃ ])

bij

(
ψMj

ci
+
ψMi

cj

)
= 0

the equation of field established in Subsection 8.2.3.

An application of combinatorial field to physical structure is that it can presents

a model for atoms, molecules and generally for matters. In fact, the wave particle

duality in physics implied that an effective model for quantum particles should be

a combinatorial one, at least a combinatorial field M̃ consisting of two fields. As

we just said, the combinatorial field can provides a physical model for many-body

systems, which naturally can be used for quantum many-body system, such as those

of atoms, molecules and other substances.
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8.5.4 Economical Field. An economical field is an organized system of functional

arrangement of parts. Let P1(t, x), P2(t, x), · · · , Ps(t, x), s ≥ 1 be parts dependent on

factors x in an economical field ẼS. Certainly, some of P1(t, x), P2(t, x), · · · , Ps(t, x)
may be completely or partially confined by others. If we view each parts Pi(t, x) to

be a field, or a smooth manifold in mathematics, then ẼS is a combinatorial fields

consisting of fields P1(t, x), P2(t, x), · · · , Ps(t, x). Therefore, we can apply results,

such as those of differential properties on combinatorial manifolds in Chapters 4−
6 to grasp the behavior of an economical field and then release the econometric

forecasting for regional or global economy.

As a special case, a locally circulating economical field is a combinatorial field

M̃L(t) consisting of economical fields M1(t),M2(t), · · · ,Mk(t) underlying a directed

circuit G[M̃L] =
−→
C k for an integer k ≥ 2, such as those shown in Fig.8.5.3.

-/ oM1(t)

M2(t) Ms(t)

Fig.8.5.3

and a global circulating economical field M̃G(t) consisting of economical fields M1(t),

M2(t), · · · ,Mn(t) underlying a graph G[M̃G] such that each field Mi is in a locally

circulating economical field for 1 ≤ i ≤ n. In graphical terminology, there is a cycle

decomposition

G[M̃G =

l⋃

i=1

−→
C i

for the directed graph G[M̃G]. Such a economical field is indeed a conservation

system. For example, to set up a conservation system of human being with nature

in harmony, i.e., to make use of matter and energy rationally and everlastingly�to

decrease the unfavorable effect that economic activities may make upon our natural

environment as far as possible, which implies to establish a locally circulating field

for the global economy following.
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-/ oUtility resources

Green product Recyclic resource

Fig.8.5.4

Whence, we can establish a combinatorial model consisting of local economic com-

munities in our society, not just a local or a country, but the global. Then, we

can decide the economic growth rates for the globalism by combinatorial differen-

tial geometry in Chapters 5 − 6, i.e., a rational rate of the development of human

being’s society harmoniously with the natural WORLD, which can be determined

if all factors in this economical field and the acting strength are known. That is a

global economical science for our social world and need to research furthermore.

8.5.5 Engineering Field. Besides applications of combinatorial fields to physics

and economics, there are many other aspects for which combinatorial fields can be

applied. For example:

(1) Exploit Resource with Utilizing. This is a system between the utilizing

U(t), exploiting E(t) with renew rate R(t) at a period t for our resource, such as

those shown in Fig.8.5.5.

R(t)

U
U(t) E(t)

�
Fig.8.5.5
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i.e., the amount of exploiting is equal to that of utilizing with minimum wastage,

both of them is constrained by the renew rate of resource at time t. Then the exploit

resource with utilizing system is such a combinatorial field M̃(t) that each kind of

resource is under such constraint shown in Fig.8.5.5, where the resource means the

certain or uncertain resources in our WORLD.

(2) Epidemic Illness Control. This is a system between the epidemic sources,

fields epidemic rate and cure rate. Similarly to the exploit resource with utilizing,

we can also establish a combinatorial field under the constraint of epidemic rate is

less than that of cure rate. · · ·, etc..

For quantifying the global of local behavior of any system with interactions

between parts, or in other words, many-body systems in natural or social science,

the combinatorial field presents us a mathematical machinery. So it is worth to noted

such applications of combinatorial field and generally, the combinatorial principle

for our WORLD.
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