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Preface to the Second Edition

Accompanied with humanity into the 21st century, a highlight trend for developing
a science is its overlap and hybrid, and harmoniously with other sciences, which
enables one to handle complex systems in the WORLD. This is also for develop-
ing mathematics. As a powerful tool for dealing with relations among objectives,
combinatorics, including combinatorial theory and graph theory mushroomed in last
century. Its related with algebra, probability theory and geometry has made it to an
important subject in mathematics and interesting results emerged in large number
without metrics. Today, the time is come for applying combinatorial technique to
other mathematics and other sciences besides just to find combinatorial behavior
for objectives. That is the motivation of this book, i.e., to survey mathematics and

fields by combinatorial principle.

In The 2nd Conference on Combinatorics and Graph Theory of China (Aug.
16-19, 2006, Tianjing), I formally presented a combinatorial conjecture on mathe-
matical sciences (abbreviated to CC Conjecture), i.e., a mathematical science can
be reconstructed from or made by combinatorialization, implicated in the foreword
of Chapter 5 of my book Automorphism groups of Maps, Surfaces and Smarandache
Geometries (USA, 2005). This conjecture is essentially a philosophic notion for de-
veloping mathematical sciences of 21st century, which means that we can combine
different fields into a union one and then determines its behavior quantitatively. It
is this notion that urges me to research mathematics and physics by combinatorics,
i.e., mathematical combinatorics beginning in 2004 when I was a post-doctor of Chi-
nese Academy of Mathematics and System Science. It finally brought about me one
self-contained book, the first edition of this book, published by InfoQuest Publisher

in 2009. This edition is a revisited edition, also includes the development of a few
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topics discussed in the first edition.
Contents in this edition are outlined following.

Chapters 1 and 2 are the fundamental of this book. In Chapter 1, we briefly
introduce combinatorial principle with graphs, such as those of multi-sets, Boolean
algebra, multi-posets, countable sets, graphs and enumeration techniques, including
inclusion-exclusion principle with applications, enumerating mappings, vertex-edge
labeled graphs and rooted maps underlying a graph. The final section discusses the
combinatorial principle in philosophy and the CC conjecture, also with its implica-

tions for mathematics. All of these are useful in following chapters.

Chapter 2 is essentially an algebraic combinatorics, i.e., an application of com-
binatorial principle to algebraic systems, including algebraic systems, multi-systems
with diagrams. The algebraic structures, such as those of groups, rings, fields and
modules were generalized to a combinatorial one. We also consider actions of multi-
groups on finite multi-sets, which extends a few well-known results in classical per-
mutation groups. Some interesting properties of Cayley graphs of finite groups can

be also found in this chapter.

Chapter 3 is a survey of topology with Smarandache geometry. Terminologies in
algebraic topology, such as those of fundamental groups, covering space, simplicial
homology group and some important results, for example, the Seifert and Van-
Kampen theorem are introduced. For extending application spaces of Seifert and
Van-Kampen theorem, a generalized Seifert and Van-Kampen theorem can be also
found in here. As a preparing for Smarandache n-manifolds, a popular introduction
to Euclidean spaces, differential forms in R" and the Stokes theorem on simplicial
complexes are presented in Section 3.2. In Section 3.3-3.5, these pseudo-Euclidean
spaces, Smarandache geometry, map geometry, Smarandache manifold with differen-
tial, principal fiber bundles and geometrical inclusions in pseudo-manifold geometry

are seriously discussed.

Chapters 4 — 6 are mainly on combinatorial manifolds motivated by the com-
binatorial principle on topological or smooth manifolds. In Chapter 4, we discuss
topological behaviors of combinatorial manifolds with characteristics, such as Eu-
clidean spaces and their combinatorial characteristics, topology on combinatorial
manifolds, vertex-edge labeled graphs, Euler-Poincaré characteristic, fundamental

groups, singular homology groups on combinatorial manifolds or just manifolds and
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regular covering of combinatorial manifold by voltage assignment. Some well-known
results in topology, for example, the Mayer-Vietoris theorem on singular homology

groups can be found.

Chapters 5 and 6 form the main parts of combinatorial differential geome-
try, which provides the fundamental for applying it to physics and other sciences.
Chapter 5 discuss tangent and cotangent vector space, tensor fields and exterior dif-
ferentiation on combinatorial manifolds, connections and curvatures on tensors or
combinatorial Riemannian manifolds, integrations and the generalization of Stokes’
and Gauss’ theorem, and so on. Chapter 6 contains three parts. The first concen-
trates on combinatorial submanifold of smooth combinatorial manifolds with fun-
damental equations. The second generalizes topological groups to multiple one, for
example Lie multi-groups. The third is a combinatorial generalization of principal
fiber bundles to combinatorial manifolds by voltage assignment technique, which
provides the mathematical fundamental for discussing combinatorial gauge fields in
Chapter 8.

Chapters 7 and 8 introduce the applications of combinatorial manifolds to fields.
For this objective, variational principle, Lagrange equations and Euler-Lagrange
equations in mechanical fields, Einstein’s general relativity with gravitational field,
Maxwell field and Abelian or Yang-Mills gauge fields are introduced in Chapter 7.
Applying combinatorial geometry discussed in Chapters 4 — 6, we then generalize
fields to combinatorial fields under the projective principle, i.e., a physics law in
a combinatorial field is invariant under a projection on its a field in Chapter 8.
Then, we show how to determine equations of combinatorial fields by Lagrange
density, to solve equations of combinatorial gravitational fields and how to construct
combinatorial gauge basis and fields. Elementary applications of combinatorial fields
to many-body mechanics, cosmology, physical structure, economical or engineering

fields can be also found in this chapter.

This edition is preparing beginning from July, 2010. All of these materials are
valuable for researchers or graduate students in topological graph theory with enu-
meration, topology, Smarandache geometry, Riemannian geometry, gravitational or
quantum fields, many-body system and globally quantifying economy. For preparing
this book, many colleagues and friends of mine have given me enthusiastic support

and endless helps. Without their help, this book will never appears today. Here I
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must mention some of them. On the first, I would like to give my sincerely thanks
to Dr.Perze for his encourage and endless help. Without his suggestion, I would do
some else works, can not investigate mathematical combinatorics for years and finish
this book. Second, I would like to thank Professors Feng Tian, Yanpei Liu, Mingyao
Xu, Fuji Zhang, Jiyi Yan and Wenpeng Zhang for them interested in my research
works. Their encourage and warmhearted support advance this book. Thanks are
also given to Professors Han Ren, Junliang Cai, Yuanqgiu Huang, Rongxia Hao,
Deming Li, Wenguang Zai, Goudong Liu, Weili He and Erling Wei for their kindly
helps and often discussing problems in mathematics altogether. Partially research
results of mine were reported at Chinese Academy of Mathematics & System Sci-
ences, Beijing Jiaotong University, Beijing Normal University, East-China Normal
University and Hunan Normal University in past years. Some of them were also re-
ported at The 2nd and 3rd Conference on Graph Theory and Combinatorics of China
in 2006 and 2008, The 3rd and 4th International Conference on Number Theory and
Smarandache’s Problems of Northwest of China in 2007 and 2008. My sincerely
thanks are also give to these audiences discussing mathematical topics with me in
these periods.

Of course, I am responsible for the correctness all of these materials presented
here. Any suggestions for improving this book and solutions for open problems in

this book are welcome.

L.F.Mao

July, 2011
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All that we are is the result of what we have thought. The mind
15 everything. What we think, we become.

Buddha.



CHAPTER 1.

Combinatorial Principle with Graphs

They are able because they think they are able.

By Virgil, an ancient Roman poet.

The combinatorial principle implies that one can combining different fields
into a unifying one under rules in sciences and then find its useful behav-
iors. In fact, each mathematical science is such a combination with metrics
unless the combinatorics, which was for caters the need of computer sci-
ence and games in the past century. Now the combinatorics has become
a powerful tool for dealing with relations among objectives by works of
mathematicians. Its techniques and conclusions enables that it is possible
to survey a classical mathematical science by combinatorics today. In this
chapter, we introduce main ideas and techniques in combinatorics, includ-
ing multi-sets with operations, partially ordered sets, countable sets, graphs
with enumeration and combinatorial principle. Certainly, this chapter can
be also viewed as a brief introduction to combinatorics and graphs with

enumeration, also a speculation on the essence of combinatorics.
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§1.1 MULTI-SETS WITH OPERATIONS

1.1.1 Set. A multi-set is a union of sets distinct two by two. So we introduce sets

on the first. A set G is a collection of objects with a property &2, denoted by
S = {x|x posses property Z}.

For examples,

A={(z,y, 22" +y* + 2" =1},
B = {stars in the Universe}

are two sets by definition. In philosophy, a SET is a category consisting of parts.
That is why we use conceptions of SET or PROPERTY without distinction, or
distinguish them just by context in mathematics sometimes.

An element x possessing property & is said an element of the set &, denoted
by z € &. Conversely, an element y without the property & is not an element of
S, denoted y ¢ &. We denote by |S| the cardinality of a set &. In the case of finite
set, |G| is just the number of elements in .

Let &1 and G5 be two sets. If for Va € G4, there must be z € G4, then we say
that &, is a subset of Gy or &, is included in &5, denoted by &; C S5, A subset
S, of Gy is proper, denoted by &; C G, if there exists an element y € G, with
y ¢ S5 hold. Further, the void (empty) set (), i.e., |@] = 0 is a subset of all sets by
definition.

There sets &1, G5 are said to be equal, denoted by &, = G, if x € G, implies
r € Gy, and vice versa. Applying subsets, we know a fundamental criterion on

isomorphic sets.

Theorem 1.1.1 Two sets &1 and Sy are equal if and only if &1 C S and S, C &;.

This criterion can simplifies a presentation of a set sometimes. For example,

for a given prime p the set A can be presented by
A={pn|n>1}

Notice that the relation of inclusion C is reflexive, also transitive, but not

symmetric. Otherwise, by Theorem 1.1, if &; C G5 and &, C &4, then we must
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find that ©&; = G,. In summary, the inclusion relation C for subsets shares with

following properties:
Reflexive: For any &, 6 C G;
Antisymmetric: If 61 C G5 and &5 C G4, then &1 = Gy;
Transitive: If &1 € 65 and 65 C 63, then &, = Gs5.

A set of cardinality 7 is called an i-set. All subsets of a set G naturally form a
set Z(6), called the power set of &. For a finite set &, we know the number of its

subsets.

Theorem 1.1.2 Let G be a finite set. Then

|2(6)| = 218,

S
Proof Notice that for any integer i,1 < ¢ < |G|, there are | ‘ ) non-
i
isomorphic subsets of cardinality ¢ in &. Therefore, we find that
S
S
|9<6>|=Z('.‘>=26'. 0
i=1 t

1.1.2 Operation. For subsets S,7T in a power set (&), binary operations on
them can be introduced as follows.

The union S UT and intersection S N'T of sets S and T are respective defined
by
SUT:{x\xGSOerT},
SmT:{x|x€Sandx€T}.

These operations U, N have analogy with ordinary operations - , 4+ in a real

field R, such as those of described in the following laws.
Idempotent: X JX =X and XX = X
Commutative: X T =TUJX and XT =T X;
Associative: X JTUR)=(XUT)URand XNTNOR)=XNT)NR;
Distributive: X J(T'NR)=(XUT)NXUR) and
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XATUR) = (XNT)UKXNR).

These idempotent, commutative and associative laws can be verified immedi-
ately by definition. For the distributive law, let x € X J(T'R) = (XUT) (X
UR). Thenx € Xorz € T(R,ie.,z € Tandz € R. Now if x € X, we know that
x € XUT and x € X UR. Whence, we get that z € (X |J7T) (X JR). Otherwise,
reTR,ie,zeT and x € R. We also get that x € (X JT) (X UR).

Conversely, for Vo € (X JT)N(XUJR), we know that x € X|JT and = €
XUR,ie,ze XorxzeTandz € R. If v € X, we get that x € X J(T'N R).
If z € T and z € R, we also get that € X |J(T'(R). Therefore, X | J(T'R) =
(XUT)N(XUR) by definition.

Similar discussion can also verifies the law X (T'UR) = (XNT)UXNR).

Theorem 1.1.3 Let & be a set and X, T € P(S). Then conditions following are
equivalent.

(1) X CT;

(i) XNT=X;

(ii) XUT =T.

Proof The conditions (1) = (2) and (1) = (3) are obvious. Now if X N7 = X

or XUT =T, then for Vx € X, there must be x € T', namely, X C T. Whence,
these conditions (2) = (1) and (3) = (1). O

For the empty set () and & itself, we also have special properties following.
Universal bounds: ) C X C & for X € #(6);
Union: PUX =X and SUX = G;
Intersection: fNX=0and GNX = X.

Let & be a set and X € Z(S). Define the complement X of X in & to be
X={y|lyecSbuty¢gX}.

Then we know three laws on complementation of a set following related to union

and intersection.

Complementarityy. X NX =0 and X UX = &;
— X

=

Involution:
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Dualization: XUT=XNTand XNT =XUT.

These complementarity and involution laws can be immediately found by def-
inition. For the dualization, let + € X UT. Then z € & but « € X UT, i.e.,
v ¢ X and x € T. Whence, x € X and x € T. Therefore, x € X NT. Now for
Ve € XNT, there must bez € X andx € T, ie, r € Gbut v ¢ X and v ¢ T.
Hence, z ¢ X UT. This fact implies that € X UT. By definition, we find that
X UT = XNT. Similarly, we can also get the law X N T = X UT.

For two sets S and T', the Cartesian product S x T of S and T' is defined to be
all ordered pairs of elements (a,b) for Va € S and Vb € T', i.e.,

SxT={(a,b)|lac S,beT}.

A binary operation o on a set S is an injection mapping o : S x S — S. Generally,
a subset R of S x S is called a binary relation on S, and for ¥(a,b) € R, denoted by
aRb that a has relation R with b in S. A relation R on S is equivalent if it is

Reflexive:  aRa for Va € S
Symmetric: aRb implies bRa for Va,b € S;
Transitive aRb and bRc imply aRc for Va,b,c € S.

1.1.3 Boolean Algebra. A Boolean algebra is a set % with two operations vee
V and wedge A, such that for Va, b, ¢ € A properties following hold.
(7) The idempotent laws

aVa=ala=a,

the commutative laws

aVb=bVa, aNb=bAa,

and the associative laws
aV(bVe)=(aVvb Ve aN(bAc)=(aNb)Ac.
(7) The absorption laws
aV(anb)=aA(aVDb)=a.
(77i) The distributive laws, i.e.,

aV(bne)=(aNb)V(aNc), aN(bVec)=(aNb)V(aAc).
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(iv) There exist two universal bound elements O, I in % such that
OVa=a, ONa=0, IVa=1,1Na=a.
(v) There is a 1 — 1 mapping ¢ : @ — @ obeyed laws
avVa=1, aNa=O0.

Now choose operations U = V, N = A and universal bounds I = &, O = () in
Z(6). We know that

Theorem 1.1.4 Let & be a set. Then the power set P(&) forms a Boolean algebra

under these union, intersection and complement operations. O]

For an abstractly Boolean algebra %, some basic laws can be immediately found

by its definition. For instance, we know each of laws following.

Law B1 Fach of these identities a NV x = x and a N x = a for all x € X implies
that a = O, and dually, each of these identities aV x = a and a A x = x implies that
a=1.

For example, if a V& = x for all x € A, then a V O = O in particular. But
aV O = a by the axiom (iv). Hence a = O. Similarly, we can get a = O or a = [
from all other identities.

Law B2 ForVa,be A, aVb=>bif and only if a Nb = a.

In fact, if a Vb = b, then a Ab = a A (aVb) = a by the absorption law (i7).
Conversely, if a Ab = a, then a Vb = (a Ab) Vb = b by the commutative and
absorption laws.

Law B3 These equations aV x = aVy and a Nz = a Ay together imply that x = y.

Certainly, by the absorption, distributive and commutative laws we have

r = zA(aVz)=xA(aVy)
= (Aha)V(@Vy)=(yAz)V(yVa)
= yA(@Va)=yA(yVa)=y.

Law B4 ForVx,y € %,

Sl

=z, (zAy)=TVYy and (zVy)=TAT.
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Notice that TAx = 2 AT = O and TV = VT = 1. By Law B3, the
complement @ is unique for Va € 4. We know that T = x. Now by distributive,

associative laws, we find that
(@AY ANEVY) = (@AYyAT)V(zAyAY)
= (@AT)AY) V(A (Y ATD))
= OANyY)V(xANO)=0VvVO=0
and
(zAy)V(EVY) = @VIVYA(YVIVY)
= (zVIVYA[YVYVT)
= (IVy)yAN(IVvT)=1IVI=1I

Therefore, again by the uniqueness of complements, we get that W =TV7.
The identity m =T A7 can be found similarly.

For variables zy,xs, -+, x, in 4, polynomials f(x1,xs,- -, x,) built up from
operations V and A are called Boolean polynomials. Each Boolean polynomial has

a canonical form ensured in the next result.

Theorem 1.1.5 Any Boolean polynomial in x1,xs,- -, x, can be reduced either to

O or to join of some canonical forms
LA Py A Ay,
where each p; = x; or T;.

Proof According to the definition of Boolean algebra and laws B1— B4, a canon-

ical form for a Boolean polynomial, for example, f(z1,xe,23) = 21 V23V 23 V23V

(r2 V x1), can be gotten by programming following.

STEP 1. If any complement occurs outside any parenthesis in the polynomial,

moved it inside by Law B4.

After all these complements have been moved all the way inside, the polynomial
involving only vees and wedges action on complement and uncomplement letters.
Thus, in our example: f(z1, 22, 23) = [T1 AT3 A (22 V x3)] V (T2 A 21).

STEP 2. If any A stands outside a parenthesis which contains a V, then the N\ can
be moved inside by applying the distributive law.
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There result a polynomial in which all meets A are formed before any join V,
i.e., a join of terms in which each term is a meet of complement and uncomplement

letters. In the above example, f(z1, 22, 23) = (T AT3Ax2) V(T1 ATsAx3) V(T2 Axy).

STEP 3. If a letter y appears twice in one term, omit one occurrence by yAy =y. If
y appears both complement and uncomplement, omit the whole term since y\Na Ny =
O and OVb=0> for all a,b € A.

Thus in our example, we know that f(z1, 22, x3) = (Ty ATz A x2) V (2 A x1).
STEP 4. If some term T fail to contain just a letter z by STEP 3, then replace it
by (T AN z)V (T ANZ), in each of which z occurs exactly once.

By this step, our Boolean polynomial transfers to f(x1, z2, x3) = (T1 AT3Axa)V
(1’2 AN T A 1'3) V (1’2 VAN T /\fg).

STEP 5. Rearrange letters appearing in each term in their natural order.

Thus in our example, we finally get its canonical form f(z1, 9, x3) = (Ty Aza A
fg) V (ZL’l N i) N 1’3) V (1’1 VAN i) N fg).
This completes the proof. O

Corollary 1.1.1 There are 2" canonical forms and 22" Boolean polynomials in

variable 1, s, - -+, z, in a Boolean algebra % with |%4| > n.

Defining a mapping 1 : 8 — {0, 1} by n(z;) = 1 or 0 according to p; = x; or
p; = T; in Theorem 1.1.5, we get a bijection between these Boolean polynomials in
variable 1, xg, - - -, x,, and the set of all 2" n-digit binary numbers. For the example

in the proof of Theorem 1.5, we have

n(f(x1, 22, x5)) = 010,111, 110.

1.1.4 Multi-Set. For an integer n > 1, a multi-set X is a union of sets Xy, X,

-+, X, distinct two by two. Examples of multi-sets can be found in the following.
< =RT,

where R = {integers}, T" = {polyhedrons}.

9 =G Jc:JGs
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where G; = {grvaitional field}, Gy = {electric field} and G3 = {magnetic field}. By
definition, a multi-set is also a set only with a union structure. The inverse of this

proposition is also true for sets with cardinality> 2.

Theorem 1.1.6 Any set X with | X| > 2 is a multi-set.

Proof Let a,b € X be two different elements in X. Define X; = X \ {a},
Xy = X \ {b}. Then we know that

X=X Jxe,

i.e., X is a multi-set. 0

According to Theorem 1.5, we find that an equality following.
{sets with cardinality > 2} = {multi — sets}.

This equality can be characterized more accurately by introducing some important

parameters.

Theorem 1.1.7 For a set % with cardinality> 2 and integers k > 1,s > 0, there
exist k sets Ry, Ro, -+, Ry, distinct two by two such that

with

if and only iof
|%Z| > k + s.

Proof Assume there are sets k sets Ry, Ro, - - -, Ry, distinct two by two such that
k k
Z = |J R; and | ] Ri| = s. Notice that for any sets X and Y with X NY =)
i=1 i=1

XY= 1X]+ Y]

and there is a subset

k k k
U(Ri \ (U R\ R;)) U(m R;) € U R;

i=1 i=1 i=

—_



10 Chap.1 Combinatorial Principle with Graphs

with
R \(URt\Rnﬂ(ﬂRi) =0,
we find that
k k k
|%’|=URZ- > U URt\R U(' R;)|
= |U®: URt\R \+\ﬂ )|
> klji-s. B

Now if |Z| > k + s, let
{a17a27"'7ak7b17b27"'7b8} g‘@
with a; # a;, b; # b; if i # j. Construct sets

Rl :{a2a"'aakablab2>”'abs}a

Ry = %\ {az},
Ry = %\ {as},
Ry, = %\ {ax}

Then we get that
k k
% =|JRi and [\ Ri={b1, by, b}
i=1 i=1

This completes the proof. O

Corollary 1.1.2 For a set Z with cardinality> 2 and an integer k > 1, there exist
k sets Ry, Ry, -+, Ry distinct two by two such that

if and only if
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81.2 Multi-Posets

1.2.1 Partially Ordered Set. A multi-poset is a union of partially ordered sets
distinct two by two. We firstly introduce partially ordered set in this subsection.
A partially ordered set (X, P), or poset in short, consists of a non-empty set X
and a binary relation P on X which is reflexive, anti-symmetric and transitive. For
convenience, = < y are used to denote (z,y) € P. In addition, let x < y denote that
x <y butx#y. Ifr<yand there are no elements z € X such that = < z < y,
then y is said to cover z.

A common example of posets is the power set Z(.S) with the binary operation
U on a set S. Another is (X, P), where X and P is defined in the following:

X - {67 a? b? C? d}7

P ={(a,a), (b,b),(c,c),(d,d),(ee),(a,b),(a,c),(dc),(ea),(ed)),(ec),(eb)}.

Partially ordered sets with a finite number of elements can be conveniently
represented by Hasse diagrams. A Hasse diagram of a poset (X, P) is drawing in
which the elements of X are placed on the Euclid plane R? so that if y covers z,
then y is placed at a higher lever than x and joined to x by a line segment. For the

second example above, its Hasse diagram is shown in Fig.1.2.1.

b c

Fig.1.2.1

Two distinct elements = any y in a poset (X, P) are called comparable if either
x < yory < x, and incomparable otherwise. A poset in which any two elements
are comparable is called a chain or ordered set, and one in which no two elements
are comparable is called an antichain or unordered set.

A subposet of a poset (X, P) is a poset (Y,Q) in which Y C X and @Q is the
restriction of P to Y x Y. Two posets (X, P) and (X', P') are called isomorphic
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if there is a one-to-one correspondence 7 : X — X’ such that z < y in P if and
only if 7(z) < 7(y) in P’. A poset (Y, Q) is said to be embedded in (X, P), denoted
by (Y,Q) C (X, P) if (Y, Q) is isomorphic to a subposet of (X, P). For two partial
orders P and () on a set X, we call Q an extension of P if P C () and a linear
extension of P if () is a chain. It is obvious that any poset (X, P) has a linear
extension and the intersection of all linear extension of P is P itself. This fact can

be restated as follows:

for any two incomparable elements x and y in a poset (X, P), there is one linear

extension of P in which x <y, and another in which y < x.

Denote a linear order L : x1 < 9 < --- < x, by L: [x1, 29, -, x,]. For a given
poset (X, P), a realizer {Ly, Lo,---,L;} of P is a collection R of linear extension
whose intersection is P, i.e., x < y in P if and only if x < y in every L;,; 1 <1 < ¢.
The it dimension dim(X, P) of a poset (X, P) is defined to be the minimum order
of realters R of P and the rank rank(X, P) of (X, P) to be the maximum order of
realizers R in which there are no proper subset of R is again a realizer of (X, P).
For example, dim(X,P) = 1 or rank(X, P) = 1 if and only if it is a chain and
dim(X, P) = 2 if it is an n-element antichain for n > 2. For n > 3, we construct a
infinite family, called the standard n-dimensional poset S° with dimension and rank
n.

For n > 3, the poset SY consists of n maximal elements ay,as, -, a, and n
minimal elements b, by, - - -, b, with b; < a; for any integers 1 <4,7 <n with i # j.

Then we know the next result.

Theorem 1.2.1 For any integer n > 3, dimS® = rankS° = n.

Proof Consider the set R = {Ly, Lo, -+, L, } of linear extensions of S® with
Lk . [bla Tty bk‘—la bk‘-i—la Tty bn7 A, bk7 a1,y Ap—1, a’k‘-i—la Tty a’n]'

Notice that if ¢ # j, then b; < a; < b; < aj in L;, and b; < a; < b; < @; in
L; for any integers i, j,1 < i,j < n. Whence, R is a realizer of S2. We know that
dimS? < n.

Now if R* is any realizer of S°, then for each k = 1,2, -, n, by definition some

elements of R* must have a5 < by, and‘furthermore, we can easily find that there are
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no linear extensions L of S? such that a; < b; and a; < b; for two integers i, j, i # j.
This fact enables us to get that dimS? > n.

Therefore, we have dimS? = n.

For rankS? = n, notice that rankS? >dimS? > n. Now observe that a family
R of linear extension of SY is a realizer if and only if , for i = 1,2, - -+, n, there‘exists

a L; € R at least such that a; < b;. Hence, n is also an upper bound of rankS?. [

1.2.2 Multi-Poset. A multi-poset ()Z', ﬁ) is a union of posets (X1, Py), (X2, P»),
-+, (X, Py) distinet two by two for an integer s > 2, i.e.,

(Xa P) - U(XZ’ P,),
i=1
also call it an s-poset. If each (X, P;) is a chain for any integers 1 < i < s, we call

it an s-chain. For a finite poset, we know the next result.

Theorem 1.2.2 Any finite poset (X, P) is a multi-chain.

Proof Applying the induction on the cardinality | X|. If | X| = 1, the assertion
is obvious. Now assume the assertion is true for any integer |X| < k. Consider the
case of | X| =k + 1.

Choose a maximal element a; € X. If there are no elements a, in X such that
as < aq, then the element a; is incomparable with all other elements in X. Whence,
(X \ {a1}, P) is also a poset. We know that (X \ {a1}, P) is a multi-chain by the
induction assumption. Therefore, (X, P) = (X \ {a1}, P)U L, is also a multi-chain,
where Ly = [a4].

If there is an element ay in X covered by a;, consider the element as in X
again. Similarly, if there are no elements a3 in X covered by ay, then Ly = [ag, aq] is
itself a chain. By the induction assumption, X \ {a;,as} is a multi-chain. Whence,
(X, P)= (X \{ay,a2}, P)U Ly is a multi-chain.

Otherwise, there are elements a3 in X covered by as. Assume a;, a;_1,- -+, a2, a1

is a maximal sequence such that a;,; is covered by a; in (X, P), then L; = [a;, a;_1, - - -,

as,a1] is a chain. Consider (X \ {ay, a9, -+, a;—1,0a:}, P). It is still a poset with
| X \ {ai,a2, - ,a4-1,a;}| < k. By the induction assumption, it is a multi-chain.
Whence,

(X, P) = (X\{ar, a9, -, a1, 0}, P)|_J Ly
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is also a multi-chain. In conclusion, we get that (X, P) is a multi-chain in the case
of | X| = k + 1. By the induction principle, we get that (X, P) is a multi-chain for
any X with |X| > 1. O

Now consider the inverse problem, i.e., when is a multi-poset just a poset? We

find conditions in the following result.

Ce

Theorem 1.2.3 An s-poset (5(, ﬁ) = U (X, P) is a poset if and only if for any
=1

integeri,5,1 <i,j <s, (z,y) € P; and (y, z) € P; imply that (x,2) € P.

-
I

Proof Let (5(, ﬁ) be a poset. For any integer i, 7,1 <1, < s, since (z,y) € P,

and (y,z) € P; also imply (z,y), (y,z) € P. By the transitive laws in (X, P), we
know that (z, z) € P.

On the other hand, for any integer ¢, 5,1 < 1,7 <, if (z,y) € P, and (y, 2) € P;
imply that (z,z2) € P, we prove ()Z’ , ]3) is a poset. Certainly, we only need to check
these reflexive laws, antisymmetric laws and transitive laws hold in ()Z' , ﬁ), which

is divided into three discussions.

(1) For Vz € )Af, there must exist an integer 7,1 < i < s such that z € X; by
definition. Whence, (z,x) € P,. Hence, (x,x) € ﬁ, i.e., the reflexive laws is hold in
(X, P).

(ii) Choose two elements z,y € X. If (z,y) € P and (y,z) € P, then there are
integers integers 7, 7,1 < 1,7 < s such that (z,y) € P, and (y,z) € P; by definition.
According to the assumption, we know that (x,z) € P, which is the antisymmetric
laws in (X, P).

(737) The transitive laws are implied by the assumption. For if (z,y) € P
and (y,z) € P for two elements x,y € X , by definition there must exist integers
i,j,1 <i,j < s such that (z,y) € P, and (y,2) € P;. Whence, (z,2) € P by the

assumption.

Combining these discussions, we know that ()? , ]3) is a poset. O

Certainly, we can also find more properties for multi-posets under particular
conditions. For example, construct different posets by introducing new partially
orders in a multi-poset. All these are referred to these readers interested on this

topics.
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81.3 COUNTABLE SETS

1.3.1 Mapping. A mapping f from a set X to Y is a subset of X x Y such that
for Vo e X, |f(N({z} xY)| =1, ie, fN({z} xY) only has one element. Usually,
we denote a mapping f from X to Y by f : X — Y and f(z) the second component
of the unique element of f N ({z} x Y), called the image of x under f. Usually, we
denote all mappings from X to Y by Y¥.

Let f: X — Y be a mapping. For any subsets U C X and V C Y, define the
image f(U) of U under f to be

FU) = {f(w)| for Yu € U}
and the inverse f~1(V) of V under f to be
V) ={ue X|f(u) eV}
Generally, for U C X, we have
Uc f(fU))

by definition. A mapping f : X — Y is called injection if for Vy € Y, |f N (X x
{y})| < 1 and surjection if | f N (X x {y})| > 1. If it is both injection and surjection,
Le, [fN(X x{y})| =1, then it is called a bijection or a 1 — 1 mapping.

A bijection f : X — X is called a permutation of X. In the case of finite, there

is a useful way for representing a permutation 7 on X, |X| = n by a 2 x n table

’Z'l ’Z'2 “ .. xn
T = ,
Yy Y2 - Yn,

where, z;,y; € X and x; # x;, y; # y; if ¢ # j for 1 < 4,7 < n. For instance, let
X =1{1,2,3,4,5,6}. Then

123456 78

2 356 1487

is a permutation. All permutations of X form a set, denoted by [[(X). The identity

following,

on X is a particular permutation 1x € [[(X) given by 1x(x) =z for all z € X.
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For three sets X,Y and Z,let f: X — Y and h: Y — Z be mapping. Define
a mapping ho f: X — Z, called the composition of f and h by

ho f(x) = h(f(x))
for Vo € X. It can be verified immediately that
(ho )y =f"on™

by definition. We have a characteristic for bijections from X to Y by composition

operations.

Theorem 1.3.1 A mapping f : X — Y is a bijection if and only if there exists a
mapping h : Y — X such that foh =1y and ho f = 1x.

Proof 1f f is a bijection, then for Vy € Y, there is a unique x € X such
that f(z) = y. Define a mapping h : Y — X by h(y) = x for Vy € Y and its

correspondent x. Then it can be verified immediately that
foh=1y and ho f = 1x.

Now if there exists a mapping h : Y — X such that foh =1y and ho f = 15,
we claim that f is surjective and injective. Otherwise, if f is not surjective, then
there exists an element y € Y such that f~'(y) = 0. Thereafter, for any mapping
h:Y — X, there must be

(foh)(y) = f(hy)) #y.

Contradicts the assumption foh = 1y. If f is not injective, then there are elements
x1, T € X, 11 # x9 such that f(x;) = f(z2) = y. Then for any mapping h: Y — X
we get that
(ho f)(z1) = h(y) = (ho f)(x2).
Whence, ho f # 1x. Contradicts the assumption again.
This completes the proof. O

1.3.2 Countable Set. For two sets X and Y, the equality X| = |Y], i.e., X and
Y have the same cardinality means that there is a bijection f from X to Y. A set
X is said to be countable if it is bijective with the set Z of natural numbers. We

know properties of countable sets and infinite sets following.
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Theorem 1.3.2(Paradox of Galileo) Any countable set X has a bijection onto a

proper subset of itself, i.e., the cardinal of a set maybe equal to its a subset.

Proof Since X is countable, we can represent the set X by

Now choose a proper subset X’ = X \ {x;} and define a bijection f : X —
X\ {a1} by
f(@:) = @i
for any integer 7,1 <1i < +o00. Whence, |X \ {z1}| = | X]. O
Theorem 1.3.3 Any infinite set X contains a countable subset.

Proof First, choose any element z; € X. From X \ {21}, then choose a second
element x9 and from X \ {z, 25} a third element x3, and so on. Since X is infinite,
for any integer n, X \ {x1, 22, -+, z,} can never be empty. Whence, we can always
choose an new element z,,1 in the set X \ {x1, 22, --,2,}. This process can be
never stop until we have constructed a subset X’ = {z;]1 < i < 400} C X i.e., a
countable subset X’ of X. O

Corollary 1.3.1(Dedekind-Peirce) A set X is infinite if and only if it has a bijection
with a proper subset of itself.

Proof 1f X is a finite set of cardinal number n, then there is a bijection f : X —
{1,2,---,n}. If there is a bijection h from X to its a proper subset Y with cardinal
number k, then by definition we deduce that & = |Y| = | X| = n. By assumption, Y
is a proper subset of a finite set X. Whence, there must be k£ < n, a contradiction.
This means that there are no bijection from a finite set to its a proper subset.

Conversely, let X be an infinite set. According to Theorem 1.3.3, X contains a
countable subset X’ = {x1, 25, --}. Now define a bijection f from X to its a proper
subset X'\ {z1} by

f() = { Tit1, i‘f r=ux; € X/,
z, ifreX\X.
Whence, X has a bijection with a proper subset X'\ {1} of itself. O
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§1.4 GRAPHS

1.4.1 Graph. A graph G is an ordered 3-tuple (V| E; I'), where V| E are finite sets,
V#Qand I : E— V x V. Call V the vertex set and E the edge set of G, denoted
by V(G) and E(G), respectively. An elements v € V(G) is incident with an element
e € E(G) if I(e) = (v,z) or (z,v) for an x € V(G). Usually, if (u,v) = (v,u)
for Vu,v € V, GG is called a graph, otherwise, a directed graph with an orientation
u — v on each edge (u,v).

The cardinal numbers of |V(G)| and |E(G)| are called its order and size of a
graph G, denoted by |G| and (G), respectively.

Let G be a graph. It be can represented by locating each vertex u of G by a
point p(u), p(u) # p(v) if w # v and an edge (u,v) by a curve connecting points
p(u) and p(v) on a plane R?, where p : G — P is a mapping from the V(G) to R

For example, a graph G = (V| E; I) with V' = {vy, v, v3, 04}, B = {e1, €9, €3, €4, €5,
€g, €7, €8, €9, €10+ and I(e;) = (v;,v5),1 <1 < 4;1(e5) = (v1,v2) = (v9,v1), I(eg) =
(v3,v4) = (vg,v3),I(eg) = I(e7) = (vo,v3) = (v3,v2),I(es) = I(eg) = (v4,v1) =
(v1,v4) can be drawn on a plane as shown in Fig.1.4.1

€1 €2
(%1 €5 V2
€6
€9 €10 €7
Uy €s U3
€4 €3
Fig. 1.4.1

Let G = (V, E;I) be a graph. For Ve € E, if I(e) = (u,u),u € V, then e is
called a loop. For non-loop edges eq,es € E, if I(e;) = I(ez), then ey, ey are called
multiple edges of G. A graph is simple if it is loopless without multiple edges, i.e.,
I(e) = (u,v) implies that u # v, and I(ey) # I(es) if €1 # eq for Ve, ey € E(G). In
the case of simple graphs, an edge (u,v) is commonly abbreviated to uv.

A walk of a graph G is an alternating sequence of vertices and edges u1, 1, us, €,

e e, Uy, With e; = (ug, ui4q) for 1 < i < mn. The number n is called the length of
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the walk. A walk is closed if u; = u,41, and opened, otherwise. For example, the
sequence e e5U2egU3E3U3E7U2E20o 1s a walk in Fig.1.3.1. A walk is a trail if all its
edges are distinct and a path if all the vertices are distinct also. A closed path is
called a circuit usually.

A graph G = (V, E; I) is connected if there is a path connecting any two vertices
in this graph. In a graph, a maximal connected subgraph is called a component.
A graph G is k-connected if removing vertices less than k from G still remains a
connected graph. Let G be a graph. For Vu € V(G), the neighborhood Ng(u) of
the vertex u in G is defined by Ng(u) = {v|V(u,v) € E(G)}. The cardinal number
| N (u)] is called the valency of verter u in G and denoted by pe(u). A vertex v with
pc(v) = 0 is an isolated vertex and pg(v) = 1 a pendent vertezr. Now we arrange
all vertices valency of G as a sequence pg(u) > pa(v) > -+ > pg(w). Call this
sequence the wvalency sequence of G. By enumerating edges in E(G), the following

equality is obvious.

S pelw) = 21E(G).

ueV(G)
A graph G with a vertex set V(G) = {v1,v9,---,v,} and an edge set E(G) =
{e1,e2,---,¢e,} can be also described by means of matrixes. One such matrix is a

pxq adjacency matriz A(G) = [aij]pxq, where a;; = |I7(v;,v;)|. Thus, the adjacency
matrix of a graph G is symmetric and is a 0, I-matrix having 0 entries on its main

diagonal if G is simple. For example, the matrix A(G) of the graph in Fig.4.1 is

0
2
A(G) =
@) 1
1

= = O N

1
1
2
0

N D = =

Let G1 = (Vi, E1; 11) and Gy = (Va, Eg; I5) be two graphs. They are identical,
denoted by Gy = Gy if Vi = Vo, By = FEy and I; = I5. If there exists a 1 — 1
mapping ¢ : Ey — Es and ¢ : V; — V5 such that ¢li(e) = Iyp(e) for Ve € E; with
the convention that ¢(u,v) = (¢(u), p(v)), then we say that Gy is isomorphic to
G5, denoted by G; = G9 and ¢ an isomorphism between G and G5. For simple
graphs Hy, Hy, this definition can be simplified by (u,v) € I1(E;) if and only if
(o(u), p(v)) € Ir(Ey) for Yu,v € V.
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For example, let G; = (Vi, Ey; 1) and Gy = (Va, Es; I5) be two graphs with
‘/1 = {Ula V2, U3}7
Ey = {e1,ez,e3, 64},
11(61) = (01702)7]1(62) = (02703)711(63) = (03,111)711(64) = ('Ulavl)

and

Vo = {U1,U2,U3}7
Ey ={f1, f2, f3, f1},
I(f1) = (w1, u2), Io(f2) = (ug, uz), Ir(f3) = (u3, u1), la(fa) = (u2, ua),

i.e., those graphs shown in Fig.1.4.2.

€4 fa
es e1 fl f2
U3 2 (% us f U2
3
Gl G2
Fig. 1.4.2

Define a mapping ¢ : E1|JVi — Ey|J Vs by

ple1) = fa, @le2) = f3,0(e3) = f1,0(eq) = fu

and ¢(v;) = u; for 1 < i < 3. It can be verified immediately that ¢I,(e) = Irp(e)
for Ve € E;. Therefore, ¢ is an isomorphism between G; and Gy, i.e., G; and Go
are isomorphic.

If Gy = Gy = G, an isomorphism between (G; and (G5 is called an automorphism
of G. All automorphisms of a graph G form a group under the composition opera-
tion, i.e., ¢0(x) = ¢(6(x)), where x € E(G)|JV(G). We denote this automorphism
group by AutG.

For a simple graph G of n vertices, it can be verified that AutG < S,,, the

symmetry group action on n vertices of G. But for non-simple graph, the situation is
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more complex. For example, the automorphism groups of graphs K,, and B,, shown
in Fig.1.4.3, respectively called complete graphs and bouquets, are Autk,, = S,, and
AutB,, = S,,, where m = |V(K,,)| and n = |E(B,)|.

K6 B4

Fig. 1.4.3

1.4.2 Subgraph. A graph H = (Vi, Ey; 1) is a subgraph of a graph G = (V, E; I)
fViCV,EiCFEandl : By — Vi x V. Weuse H C G to denote that H is
a subgraph of GG. For example, graphs G, G5, G5 are subgraphs of the graph G in
Fig.1.4.4.

Uy U2 Uy Uz Uy U2
Uyg us Uz Ug4 U3 Uy
G G1 Gy G
Fig. 1.44

For a nonempty subset U of the vertex set V(G) of a graph G, the subgraph
(U) of G induced by U is a graph having vertex set U and whose edge set consists of
these edges of G incident with elements of U. A subgraph H of G is called vertex-
induced it H = (U) for some subset U of V(G). Similarly, for a nonempty subset
F of E(G), the subgraph (F') induced by F'in G is a graph having edge set F' and
whose vertex set consists of vertices of G incident with at least one edge of F. A
subgraph H of G is edge-induced if H = (F') for some subset F' of E(G). In Fig.3.6,
subgraphs G and Gy are both vertex-induced subgraphs ({uy, us}), ({ug, us}) and
edge-induced subgraphs ({(u1,u4)}), ({(ug, us)}).

For a subgraph H of G, if |V(H)| = |V(G)|, then H is called a spanning
subgraph of G. In Fig.4.6, the subgraph Gj is a spanning subgraph of the graph G.
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A complete subgraph of a graph is called a clique, and its a k-regular vertex-

spanning subgraph also called a k-factor.

1.4.3 Labeled Graph. A labeled graph on a graph G = (V, E; ) is a mapping
0; : VUE — L for a label set L, denoted by G*. If 0, : E — Q or 0, : V — 0,
then G* is called a vertex labeled graph or an edge labeled graph, denoted by GV or
G, respectively. Otherwise, it is called a vertez-edge labeled graph. For example,

two vertex-edge labeled graphs on K, are shown in Fig.1.4.5.

Two labeled graphs GlLl, GQL2 are equivalent, denoted by Gfl = GQL2 if there is
an isomorphism 7 : G; — G4 such that 70, (z) = 01,7(x) for Vo € V(G1) U E(Gy).

Whence, we usually consider non-equivalently labeled graphs on a given graph G.

1.4.4 Graph Family. Some important graph families are introduced in the

following.

C1 Forest. A graph without circuits is called a forest, and a tree if it is connected.
A vertex u in a forest F' is called a pendent vertex if pp(u) = 1. The following

characteristic for trees is well-known and can be checked by definition.

Theorem 1.4.1 A graph G is a tree if and only if G is connected and E(G) =
V(G)| —1.

C2. Hamiltonian graph. A graph G is hamiltonian if it has a circuit, called
a hamiltonian circuit containing all vertices of G. Similarly, a path containing all

vertices of a graph G is called a hamiltonian path.

C3. Bouquet and dipole. A graph B, = (V,, Ey; [,) with V, ={ O }, E, =
{e1,ea,--+,e,} and Iy(e;) = (O, O) for any integer i,1 < i < n is called a bouquet of
n edges. Similarly, a graph Dy, = (Vy, Eq; 14) is called a dipole if V; = {O1,05},

Ed = {617 €2,y Csy Cstly "y Cstly Cs 1,7 7 es—l—l—i—t} and
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(01,01), lf 1 S’LS S,
Li(e;) = ¢ (01,0,), ifs+1<i<s+l1,
(02,02), ifs+l+1<i<s+1[0+t.

For example, Bs and Dy 39 are shown in Fig.1.4.6.

D o=e

Fig. 1.4.6

The behavior of bouquets on surfaces fascinated many mathematicians atten-
tion. By a combinatorial view, these connected sums of tori, or these connected
sums of projective planes used in topology are just bouquets on surfaces with one

face.

C4. Complete graph. A complete graph K,, = (V,, E.; 1.) is a simple graph with
Ve = {v1, 09, -, v}, Ee = {ei;,1 <i,j < n,i # j} and I.(e;;) = (v;,v;). Since
K, is simple, it can be also defined by a pair (V| E) with V' = {vy,vs,---,v,} and
E = {vv;,1 <i,j <n,i# j}. The one edge graph K, and the triangle graph K
are both complete graphs. An example Kg is shown in Fig.4.3.

C5. Multi-partite graph. A simple graph G = (V, E; 1) is r-partite for an
integer r > 1 if it is possible to partition V into r subsets Vi, V5, ---,V, such that
for Ve € E, I(e) = (v;,v;) for v; € V;, v; € Vyand i # 5,1 < 4,5 <.

For n = 2, a 2-partite graph is also called a bipartite graph. It can be shown
that a graph is bipartite if and only if there are no odd circuits in this graph. As a
consequence, a tree or a forest is a bipartite graph since both of them are circuit-free.

Let G = (V, E;I) be an r-partite graph and Vi, Vs, -+ V, its r-partite vertex
subsets. If there is an edge e;; € E for Vv, € V; and Vv; € V;, where 1 <14,j <7r,i # j
such that I(e) = (v;,v;), then G is called a complete r-partite graph, denoted by
G = K(|Vi|,|Val,---,|V;]). By this definition, a complete graph is nothing but a
complete 1-partite graph.

C6. Regular graph. A graph G is reqular of valency k if pe(u) = k for Vu € V(G).
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These graphs are also called k-regular. A 3-regular graph is often referred to a cubic

graph.

C7. Planar graph. A graph is planar if it can be drawn on the plane in such a
way that edges are disjoint expect possibly for endpoints. When we remove vertices
and edges of a planar graph G from the plane, each remained connected region is
called a face of GG. The length of the boundary of a face is called its valency. Two
planar graphs are shown in Fig.1.4.7.

tetrahedron cube

Fig. 1.4.7

C8. Embedded graph. A graph G is embeddable into a topological space R if
there is a one-to-one continuous mapping f : G — & in such a way that edges are
disjoint except possibly on endpoints. An embedded graph on a topological space S
is a graph embeddable on this space.

Many research works are concentred on graphs on surfaces, i.e., dimensional
2 manifolds without boundary, which brings about two trends, i.e., topological
graph theory and combinatorial map theory. Readers can find more information
in references [GrT1], [Liul]-[Liu3], [Maol], [MoT1], [Tutl] and [Whil]. But if the
dimensional> 3, the situation is simple for the existence of rectilinear embeddings of

a simple graph in Euclid spaces R", n > 3 following.

Definition 1.4.1 For an integer n > 1, a rectilinear embedding of G in R" is a

one-to-one continuous mapping 7 : G — E such that

(i) forVee E(G), n(e) is a segment of a straight line in R™;

(17) for any two edges e; = (u,v),ea = (x,y) in E(G), (7(er) \ {m(u),n(v)})N
(m(e2) \ {m(z), w(y)}) = 0.
Theorem 1.4.1 There is a rectilinear embedding for any simple graph G in R™ for

n > 3.

Proof We only need to prove this assertion for n = 3. In R?, choose n
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points (ty,12,3), (ta, t2,13), -+, (tn, t2,12), where t1,ty,---,t, are n different real
numbers. For integers i, j,k,[,1 <1, 7, k, 1 < n, if a straight line passing through ver-
tices (t;,t7,t}) and (t;,13,17) intersects with a straight line passing through vertices

(ty, t3,t3) and (;,17,¢}), then there must be

th—ti tj—t; t—t
th—t; -t ti—t; | =0,

th—td -t} )1}

which implies that there exist integers s, f € {k,l,i,7}, s # f such that t, = t;, a
contradiction.

Let V(G) = {vi,v9,-+-,v,}. We embed the graph G in R3® by a mapping
7: G — R? with w(v;) = (t;,¢3,t}) for 1 <4 < n and if v;v; € E(G), define 7(v;v;)

177

being the segment between points (t;,t7,t?) and (t;,t5,t7) of a straight line passing
through points (t;,t7,¢}) and (t;,¢7,3). Then 7 is a rectilinear embedding of the
graph G in R3. O

1.4.5 Operation on Graphs. A union G1|J G2 of graphs G; with G is defined
by

V(G JGa) =i\ Ve, E(Gi|Ga) = Ei| B, I(EL | Bs) = Li(Ey) | L(E).

A graph consists of k£ disjoint copies of a graph H, k > 1 is denoted by G = kH.

As an example, we find that

5
Ko =S
=1

for graphs shown in Fig.1.4.8 following

3
4 4 °
5 5
‘ 6 | 6 6 6
2 3 4 5
S

3 4
S15 S14 S13 S1.2

2
1
1.1

Fig. 1.4.8

n—1
and generally, K, = |J S1,;. Notice that kG is a multigraph with edge multiple k

=1
for any integer k, k > 2 and a simple graph G.
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A complement G of a graph G is a graph with vertex set V(G) such that vertices
are adjacent in G if and only if these are not adjacent in G. A join G1 + G4 of G4
with G is defined by

V(Gh + Ga) = V(G [ JV(Ga),

E(Gy + Gy) = E(G1) | B(Ga) | {(u,v)[u € V(Gh),v € V(Ga)}

and
I(Gy + Go) = I(G1) | I(Ga) | T (1, 0) = (u,v)|u € V(Gh),v € V(Ga)}.

Applying the join operation, we know that

K(m,n) = K,, + K,.

A cartesian product G7 x Go of graphs G with Gy is defined by V(G x Gy) =
V(Gy) x V(G3) and two vertices (u1,us) and (v1,vq) of Gy X Go are adjacent if and
only if either u; = vy and (ug, v9) € E(Gg) or uy = vy and (uq,v1) € E(G1).

1.5 ENUMERATION TECHNIQUES

1.5.1 Enumeration Principle. The enumeration problem on a finite set is to
count and find closed formula for elements in this set. A fundamental principle for

solving this problem in general is on account of the enumeration principle:

For finite sets X and Y, the equality | X| = |Y'| holds if and only if there is a
bijection f: X — Y.

Certainly, if the set Y can be easily countable, then we can find a closed formula

for elements in X.

1.5.2 Inclusion-exclusion principle. By definition, the following equalities on
sets X and Y are known.
| X x Y| = |X][[Y],

XY= 1x]+1Y = XY
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Usually, the first equality is called the product principle and the second, inclusion-

exclusion principle can be generalized to n sets Xy, Xo, -+, X,,.

Theorem 1.5.1 Let Xy, Xy, -+, X, be finite sets. Then

n

|UXz'| => (-1 > X0 ()X ()] Xal-

s=1 {i1,is3C{1,2,--,n}

n
Proof To prove this equality, assume an element = € J X; is exactly appearing

=1

s s
in s sets Xj,, Xi,, -+, Xj,. Then it is counted s times in ) [ Xj,[, and ( ) ) times
j=1

in > | X1, N X4, -+ etc.. Generally, for any integers k < s, it is counted
lla€{in, is}

S . .
times In

To sum up, it is counted

() () ecr(2)oraire

n

> (=1t > X ()X () ) Xl

s=1 {i17"'7i8}g{1727"'7n}

Z ‘XllmXbﬂ”'ﬂXlk‘-

l17--'7lk€{i17--'7i5}

times in

Whence, we get

Uxit=> 0 > (X)X,
i=1 s=1 {i1, 05 }C{1,2,+,n}
by the enumeration principle. O

The inclusion-exclusion principle is very useful in dealing with enumeration
problems. For example, an Euler function ¢ is a mapping ¢ : ZT — Z on the

integer set Z™ given by
o(n) ={k € Z|0 <k <nand (k,n) = 1},

for any integer n € Z", where (k,n) is the maximum common divisor of k£ and n.

Assume all prime divisors in n are py, pa, - - -, p; and define

X;=1{ke€Zl0 <k <nand (k,n)=p},
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for any integer 7,1 <14 < [. Then by the inclusion-exclusion principle, we find that

on) = |{k€Z|0<k<nand (kn)=1}

= |{1>2a>n}\(UXz)|

D ST DR oF o R¥o 1Y
}

s=1 {i1,yis JC{1,2,,1
D S B e ey
i Pt aciga PP pip2- P
= n(l-—)1-—)-(1-—)
P P2 2
l 1
= n]J0--)
paiey Di

1.5.3 Enumerating Mappings. This subsection concentrates on the enumera-
tion of bijections, injections and surjections from a given set X to Y. For conve-

nience, define three sets
Bij(YX) = {f € Y¥|f is an bijection},
Inj(Y™) = {f € Y*|f is an injection},
Sur(YX) = {f € Y¥|f is an surjection}.

Then, we immediately get

Theorem 1.5.2 Let X and Y be finite sets. Then

YL if [X] =Y

and
. 0 if 1X]> 1Y,
[Tnj(Y™)| = { Y] .
Y= xn if |X] <Yl
Proof 1f | X| # |Y|, there are no bijections from X to Y by definition. Whence,
we only need to consider the case of | X| = |Y|. Let X = {xy,29,---,2,} and Y =

{y1,Y2, -+, yn}. For any permutation p on yi, s, -, y,, the mapping determined

by
(p(yl) p(y2) - p(%))
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is a bijection from X to Y, and vice versa. Whence,

|BZ.].(YX”:{O i X # 1Y,
nl= Y[l if [X[=]Y]|

Similarly, if |X| > |Y|, there are no injections from X to Y by definition.
Whence, we only need to consider the case of | X| < |Y|. For any subset Y’ C Y
with |Y’| = | X, notice that there are |Y’|! = |X]|! bijections from X to Y, i.e., | X|!

Y

surjections from X to Y. Now there are ways choosing the subset Y’ in

Y. Therefore, the number |Inj(Y )| of surjections from X to Y is

Y o IV
< X ) i)

This completes the proof. O

The situation for | Sur(Y )| is more complicated than these cases of determining
|Bij(YX)| and |Inj(Y*)|, which need to apply the inclusion-exclusion principle with

techniques.

Theorem 1.5.3 Let X andY be finite sets. Then

1Yl
|SUT(YX | _ \Y\ Z < |Y| )ilX.

Proof For any sets X = {z1,x9,--+,2,} and Y, by the product principle we
know that

Y| = |yl cyleb s cytend
= |yled|yled)ylesd) =y

Now let @ : Y* — Z(Y') be a mapping defined by

=Y Jrx) -y f(x

Notice that f € Sur(Y™X) is a surjection if and only if ®(f) = (). For any subset
SCY, let
Xs={feY¥|SCo(f)}.
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Then calculation shows that

Xs| = HfeY*[scae(hH}
= {revrx)cylJs-vy)sH
= [Y{Js-y[)sIM=(v|-shX.

Applying the inclusion-exclusion principle, we find that

[Sur(Y¥)| = [Y¥\ | X
0£SCY
Y]
= Y= (=)BI(y] = s
i=1
v
= Y (=) (v =)
i=0 |S|=i
[Y]
Y]
= > (-1 ( (Jy] =)~
i=0 U
Y]
_ 'Y'Z ( Y )ixy
Y Y
The last equality applies the fact ( | | ) = ( |Y‘| | _ ) on binomial coeffi-
7 —1

cients.

1.5.4 Enumerating Vertex-Edge Labeled Graphs. For a given graph G and
a labeled set L, can how many non-equivalent labeled graphs G* be obtained? We

know the result following.

Theorem 1.5.4 Let G be a graph and L a finite labeled set. Then there are
|L||V(G)\+|E(G)\
|AutG|?
non-equivalent labeled graphs by labeling 07, : V(G) U E(G) — L.

Proof A vertex-edge labeled graph on a graph can be obtained in two steps.
The first is labeling its vertices. The second is labeling its edges on its vertex
labeled graph. Notice there are |L|V(@)! vertex labelings 6y, : V(G) — L. If there
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is an automorphism f € AutG such that (GV)/ = GV, then it can show easily that
f = lawg, i-e., [(AutG)gv| = 1. Applying a famous result in permutation groups,
i.e., |[;||z"| = |T| for any finite permutation group I' and x € ', we know that the
orbital length of G¥ under the action of AutG is |[AutG|. Therefore, there are

LIV @)
|AutG|

non-equivalent vertex labeled graphs by labeling 7, : V(G) — L on vertices in G.

Similarly, for a given vertex labeled graph GY, there are

LV
|AutG|

non-equivalent edge labeled graphs by labeling 0, : E(G) — L on edges in G.

Whence, applying the product principle for enumeration, we find there are
|L|IV(@HE@G)
|AutG|?
non-equivalent labeled graphs by labeling 07, : V(G) U E(G) — L. O

If each element in L appears one times at most, i.e. [0 (x) N L| < 1 for
Ve € V(G)U E(G), then |L| > |V(G)| + |E(G)| if there exist such labeling. In this

labelings 6, : V(G) U E(G) — L with |0,(z) N L| < 1. Particularly, choose
|L| = |V(G)| + |E(G)| as usual, then there are (|V(G)| + |E(G)])! such labelings.

Similar to Theorem 1.5.4, we know the result following.

Theorem 1.5.5 Let G be a graph and L a finite labeled set with |L| > |V (G)| +

|E(G)|. Then there are
V(G)| + [E(G)]

|AutG|?
non-equivalent labeled graphs by labeling 01, : V(G)UE(G) — L with |0, (x)NL| <1,

and particularly
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(V@) + E@))!
|AutG|?
non-equivalent labeled graphs if |L| = |V(G)| + |E(G)]. O

For vertex or edge labeled graphs,i.e., |L| = |V(G)| or |L| = |E(G)|, we can get
similar results on the numbers of non-equivalent such labeled graphs shown in the

following.

Corollary 1.5.1 Let G be a graph. Then there are

viar - 1EG)!
|AutG| |AutG|

non-equivalent vertex or edge labeled graphs.

There is a closed formula for the number of non-equivalent vertex-edge labeled

trees with a given order, shown in the following.

Theorem 1.5.6 Let T be a tree of order p. Then there are

(2p — 1P (p+ 1)
non-equivalent vertez-edge labeled trees.

Proof Let T be a vertex-edge labeled tree with a label set L = {1,2,---,2p—1}.
Remove the pendent vertex having the smallest label a; and the incident edge with
label ¢;. Assume that b; was the vertex adjacent to a;. Among the remaining
p — 1 vertices let ay be the pendent vertex with the smallest label and by the vertex
adjacent to as. Remove the edge (ag, by) with label cy. Repeated this programming
on the remaining p—2 vertices, and then on p—3 vertices, and so on. It is terminated
after p — 2 steps as only two vertices are left. Then the vertex-edge labeled tree

uniquely defines two sequences

(blab2>"'>bp—2)a (51)

(Cla C2,y 0, Cp—29, Cp—l)? (52)

where ¢,_; is the label on the edge connecting the last two vertices. For example,
the sequences (5.1) and (5.2) are respective (1,1,4) and (6, 7,8, 9) for the tree shown
in Fig.1.5.1.
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Fig.1.5.1

Conversely, given sequences (by, b, -+, b,—2) and (¢, ca, -+, ¢p—1) of 2p — 3 la-
bels, a vertex-edge labeled tree of order p can be uniquely constructed as follows.

First, determine the first number in 1,2,3,---,2p — 1 that does not appear
in (by,ba,---,b,_2), say a; and define an edge (ay,b;) with a label ¢;. Removing
by, c1 from these sequences. Find a smallest number not appearing in the remaining
sequence (bg,Ca, -+, b,_a,¢p_2), say ay and define an edge (aq, b2) with a label c,.
This construction is continued until there are no element left. At the final, the last
two elements remaining in L are connected with the label c,_;.

For each of the p — 2 elements in the sequence (5 — 1), we can choose any one
of numbers in L, thus

(2p — 1P~

(p — 2)-tuples. For the remained two vertices and elements in the sequence (5 — 2),

<p+1>2!:(p—|—1)!
p—1

(2p —1)P2(p+1)!

we have

choices. Therefore, there are

such different pairs (5 — 1) and (5 — 2). Notice that each of them defines a district
vertex-edge labeled tree of p vertices. Since each vertex-edge labeled tree uniquely
defines a pair of there sequences and vice versa. We find the number of vertex-edge
labeled trees of order p asserted in this theorem. O

Similarly, we can also get the number of vertex labeled trees of order p, which

was firstly gotten by Cayley in 1889 shown in the next result.

Theorem 1.5.7(Cayley, 1889) Let T be a tree of order p. Then there are pP=?2

non-equivalent vertex labeled trees. O
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1.5.5 Enumerating Rooted Maps. A combinatorial map is a connected graph
G cellularly embedded in a surface. By the work of Tutte ( See [Tut2] for details), a
combinatorial map can be also defined algebraically as a pair M = (X, 3, P), where
X, is the disjoint union of quadricells Kz of z € X K is the Klein 4-elements
group and P is a basic permutation,i.e, for Vo € X, 5, P*x # az for any positive

integer k, acting on &, 5 satisfying the following axioms:
Axiom (i) aP =P lq;
Axiom (ii) The group ¥; =< a, 3, P > is transitive on &, 3.
According to the condition (i7), the vertices of a combinatorial map are defined
as the pairs of conjugate of P action on &, 3 and edges the orbits of K on X, g3,

for example, {x, ax, fx,afz}, an edge of map. A combinatorial map is called non-

orientable if it satisfying the following Axiom (ii7). Otherwise, orientable.
Axiom (zii) The group ¥, = (a3, P) is transitive on X, g.

A rooted map is a combinatorial map M" with an element r € X, 3 marked
beforehand. Two combinatorial maps M; = (&, 5,P1) and My = (X7 5, P) are

called isomorphic if there exists a bijection &,
XL, — X2,
such that for Vo € X} 4,

a(r) = ag(r), 6(x) = f¢(x) and EPi(z) = Paé(x)

and ¢ is called an isomorphism between M; and Ms. If M; = My = M, an iso-
morphism & on M is called an automorphism of M. All such automorphisms of a
combinatorial map M form a group, called the automorphism group of M, denoted
by AutM. Similarly, Two rooted maps M|, MJ are said to be isomorphic if there
is an isomorphism 6 between them such that 6(ry) = r9, where ry, 7y are the roots
of M and MJ. It is well known that AutM™ is trivial.

Let G be a simple graph. Then we get the number of rooted maps underlying

G in the next result.

Theorem 1.5.8 For a given map M, the number (M) of non-isomorphic roots on

de(M
M is |A61(1t1\/[)|’ where (M) is the size of M.




Sec.1.5 Enumeration Technique 35

Proof By definition, two roots r; and ry are isomorphic if and only if there is
an automorphism & of M such that {(r1) = ro. Whence, the non-isomorphic roots is
the number of orbits of X, g under the action of AutM. For Vr € U, we have know
that (AutM), = AutM" is a trivial group. According to |[AutM| = |[(AutM), ||rAuM],
we find that [r2"M| = |AutM|. Whence, the length of orbit of 7 € X, 5 under the
action of AutM is |AutM|.

Therefore, the number of non-isomorphic roots on M is

_ Xl 4e(M)

= = . U
|AutM|  |AutM]|

r(M)

According to Theorem 1.5.8, the number of rooted maps on onientable surfaces

underlying a simple graph G is obtained in the following.

Theorem 1.5.9 The number r°(G) of non-isomorphic rooted maps on orientable
surfaces underlying a simple graph G is

2¢(G) II (p(v) = 1)!

veV(G)
|AutG| ’

where (G), p(v) denote the size of G and the valency of vertex v, respectively.

r2(G) =

Proof Denotes the set of all non-isomorphic orientable maps underlying G' by
MPO(G). According to Theorem 1.5.7, we know that

TO(G) _ Z 45(M>

|Aut M|
MeMO(G)

From [AutG x (a) | = [(AutG x {a)) || MAWE*(@)| we get that

AutG x () |
MAutGX(a) _ ‘
| | |Aut M |
Therefore, we get that
4e(M)
@ —
@) = ) [AutM|
MeM{(G)
B 4e(Q) Z [AutG x (o) |
JAutG x (a) | |AutM]|
MeMO(G)
2¢(G) Aut@ 2:(G)[E°(G))
MAWGx(a) — 22T AT
|[AutG| Z | | [AwtG|

MeMO(G)
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where £9(G) = Y |MAWEX@)]| s all orientable embeddings of G. By a result
MeMO(G)
in [BiW1] for embedding a graph on onientable surfaces, we know that

€@ = 11 (o) -1
veV(Q)

Whence, we finally get that

2¢(G) 11 (p(v) = 1)!

veV(G)

|AutG|

r2(G) =

This completes the proof. O

Notice that every tree on surface is planar. We get the following conclusion.

Theorem 1.5.10 The number of rooted tree of order n is

2 T (p(v) - 1)!

veV(T)

r(T) = |AutT|

1.5.6 Automorphism Groups Identity of Trees. These enumerating results
in Theorems 1.5.6 — 1.5.7 and 1.5.10 can be rewritten in automorphism groups

equalities combining with Theorem 1.5.4 and Corollary 1.5.1.

Corollary 1.5.2 Let T(p — 1) be a set of trees of order p. Then

Z : -
' Y
To1) |AutT| p!

d—1)!
Z dell_)[(T)( ) (2]9 - 3)'

I(p— 1)
Tero) |AutT| pl(p —1)!
and
2 — 1) ’
g |AutT| (2p —1)!

Proof By Theorems 1.5.6 —1.5.7, the number of vertex labeled and vertex-edge
labeled trees are pP~2, (2p — 1)P~%(p + 1)!, respectively. Notice that the number of

2p — 2)!
% found by Harray and Tutte in 1964 (See [Liu2] for
pp—1):
details). Applying Theorems 1.5.4 and 1.5.10, we get these automorphism groups

identities. O

rooted tree of size p is
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81.6 COMBINATORIAL PRINCIPLE

1.6.1 Proposition in Logic. The multi-laterality of our WORLD implies multi-
systems to be its best candidate model for ones cognition on the WORLD. This is
also included in a well-known Chinese ancient book TAO TEH KING written by
LAO ZI. In this book we can find many sentences for cognition of our WORLD,
such as those of the following ([Luj1]-[Luj2],[Sim1]).

SENTENCE 1. All things that we can acknowledge is determined by our eyes, or
ears, or nose, or tongue, or body or passions, i.e., these six organs. Such as those

shown in Fig.1.6.1.

unknown

unknown

Fig.1.6.1

SENTENCE 2. The Tao gives birth to One. One gives birth to Two. Two
gives birth to Three. Three gives birth to all things. All things have their backs to
the female and stand facing the male. When male and female combine, all things

achieve harmony. Shown in Fig.1.6.2.

)
SR

| unknown | theoretically deduced | known ‘

Fig.1.6.2
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SENTENCE 3. Mankind follows the earth. FEarth follows the universe. The

universe follows the Tao. The Tao follows only itself. Such as those shown in

Fig.1.6.3.

Fig.1.6.3

SENTENCE 4. Have and Not have exist jointly ahead of the birth of the earth
and the sky. This means that any thing have two sides. One is the positive. Another
is the negative. We can not say a thing existing or not just by our six organs because

its existence independent on our living.

What can we learn from these words? All these sentences mean that our world
is a multi-one. For characterizing its behavior, We should construct a multi-system
model for the WORLD, also called parallel universes ([Mao3], [Tegl]), such as those
shown in Fig.1.6.4.

Fig.1.6.4

How can we apply these sentences in mathematics of the 21st century? We

make some analysis on this question by mathematical logic following.

A proposition p on a set X is a declarative sentence on elements in ¥ that is
either true or false but not both. The statements it is not the case that p and it is
the opposite case that p are still propositions, called the negation or anti-proposition
of p, denoted by non-p or anti-p, respectively. Generally, non — p # anti — p. The

structure of anti-p is very clear, but non-p is not. An oppositive or negation of a
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proposition are shown in Fig.1.6.5.
non-p
NN
() (@) er( 7 Foom
STTTS

non-p

Fig.1.6.5

For a given proposition, what can we say it is true or false? A proposition and
its non-proposition jointly exist in the world. Its truth or false can be only decided
by logic inference, independent on one knowing it or not.

A norm inference is called implication. An implication p — q, i.e., if p then q,
is a proposition that is false when p is true but ¢ false and true otherwise. There
are three propositions related with p — ¢, namely, ¢ — p, -¢ — —p and —-p — —q,
called the converse, contrapositive and inverse of p — ¢. Two propositions are called
equivalent if they have the same truth value. It can be shown immediately that an
implication and its contrapositive are equivalent. This fact is commonly used in
mathematical proofs, i.e., we can either prove the proposition p — ¢ or =¢ — —p in

the proof of p — ¢, not the both.
1.6.2 Mathematical System. A rule on a set ¥ is a mapping

DX Do XD —
| S —

for some integers n. A mathematical system is a pair (3;R), where X is a set
consisting mathematical objects, infinite or finite and R is a collection of rules on
> by logic providing all these resultants are still in X, i.e., elements in 3 is closed
under rules in R.

Two mathematical systems (X1;Rq) and (X9; Ry) are isomorphic if there is a

1 — 1 mapping w : ¥; — Y, such that for elements a,b, -, c € ¥,
w(Ri(a,b,---,¢)) = Ra(w(a),w(d), -, w(c)) € Xs.

Generally, we do not distinguish isomorphic systems in mathematics. Examples

for mathematical systems are shown in the following.
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Example 1.6.1 A group (G; o) in classical algebra is a mathematical system (Xq; Rq),
where X7 = G and
Ra = {RY; RS, Ry},
with
RY: (zoy)oz=mxo0(yoz) for Va,y,z € G;
RS there is an element 1 € G such that 7 o 15 = z for Va € G;

RS for Vo € G, there is an element y,y € G, such that z oy = 1¢.

Example 1.6.2 A ring (R;+, o) with two binary closed operations “+”, “o”is a
mathematical system (X;R), where X = R and R = {Ry; Rs, R3, R4} with

Ri: x+y,xoy € R for Va,y € R,

Ry: (R;+) is a commutative group, i.e., z +y =y + z for Vz,y € R;

R3: (R;o0) is a semigroup;

Ry zo(y+z)=xzoy+xozand (r+y)oz=x0z+yozforVr,y z€R.

Example 1.6.3 a Euclidean geometry on the plane R? is a a mathematical system
(Xg;RE), where ¥ = {points and lines on R*} and Ry = {Hilbert’s 21 axioms on

Euclidean geometry}.

A mathematical (X;R) can be constructed dependent on the set 3 or on rules
R. The former requires each rule in R closed in ¥. But the later requires that
R(a,b,---,c) in the final set i, which means that 3 maybe an extended of the set
Y. In this case, we say S is generated by 3 under rules R, denoted by (3;R).

Combining mathematical systems with the view of LAO ZHI in Subsection
1.6.1, we should construct these mathematical systems (X; R) in which a proposition
with its non-proposition validated turn up in the set X, or invalidated but in multiple

ways in 2.

Definition 1.6.1 A rule in a mathematical system (3;R) is said to be Smaran-
dachely denied if it behaves in at least two different ways within the same set 33, i.e.,
validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache system (3;R) is a mathematical system which has at least one

Smarandachely denied rule in R.

Definition 1.6.2 For an integer m > 2, let (X1;R1), (X2;Ra), -+, (Xm; Rm) be

m mathematical systems different two by two. A Smarandache multi-space is a pair
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(3 R) with

i=1 i=1
Certainly, we can construct Smarandache systems by applying Smarandache

multi-spaces, particularly, Smarandache geometries appeared in the next chapter.

1.6.3 Combinatorial System. These Smarandache systems (3;R) defined in
Definition 1.6.1 consider the behavior of a proposition and its non-proposition in
the same set ¥ without distinguishing the guises of these non-propositions. In fact,
there are many appearing ways for non-propositions of a proposition in >». For

describing their behavior, we need combinatorial systems.

Definition 1.6.3 A combinatorial system 6¢ is a union of mathematical systems
(215 R1), (B0 Ra), -+, (Bms Rin) for an integer m, i.e.,

tc = (6 i 6722)
i=1 i=1
with an underlying connected graph structure G, where
V(G) = {51,252, -+, En},
B(G) = { (5,5) | Si()5 #0.1 < i,j < m).

Unless its combinatorial structure G, these cardinalities |X; () %;], called the
coupling constants in a combinatorial system % also determine its structure if
YiNXE; # 0 for integers 1 < i,j < m. For emphasizing its coupling constants,
we denote a combinatorial system ¢ by 6¢(lij, 1 <i,7 <m) if l;; = |X;(2;] # 0.

Let Cfg) and Cfg) be two combinatorial systems with

) =z URY), €@ = (U= UrRP),
i=1 i=1 i=1 i=1
A homomorphism w : Cfg) — %C(f) is a mapping w : |J 25” - U 252) and @ :
i=1 i=1
U Rgl)) - U RZ@) such that
i=1 i=1
w

5, (aR\VD) = @ 5, (R\)e

Ei(a)w Ez(b>
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for Va,b € 22(1)7 1 < i < m, where w|y, denotes the constraint mapping of w on the
mathematical system (X;, R;). Further more, if @ : %”él) — %G(z) is a 1 — 1 mapping,
then we say these ‘5((;1) and ‘5((;2) are isomorphic with an isomorphism w between
them.

A homomorphism w : ‘56(;1) — C(f) naturally induces a mappings w|g on the

graph G; and G by

wlg: V(G) — w(V(Gy)) C V(Gy) and
wlg: (8:,%) € E(Gy) — (w(X), w(X;))) € E(Gs),1 <1i,j <m.

With these notations, a criterion for isomorphic combinatorial systems is presented

in the following.

Theorem 1.6.1 Two combinatorial systems %ﬂél) and ‘5((;2) are isomorphic if and

only if there is a 1 — 1 mapping w : %él) — %C(f) such that

(i) w|2§1) is an isomorphism and w‘zl(.l) () = w|z§_1)(:c) forvx e 2§1>m2§1), 1<
] < m;
(17) w|g : Gy — Gy is an isomorphism.

Proof If w : CKG(I) — ‘56(;2) is an isomorphism, considering the constraint map-
pings of w on the mathematical system (3;, R;) for an integer i, 1 < i < m and the
graph Ggl), then we find isomorphisms w@| ) and @|g.

Conversely, if these isomorphism w| 1 < i < m and w|g exist, we can

251) )
construct a mapping w : %”G(l) — ‘5((;2) by

w(a) =wlg,(a) if a€d; and w(o) =wly, (o) if o€ R, 1 <i<m.
Then we know that

@5, (aRMD) = w5, (a)w s, (RM) s, (b)

)

for Va,b € 2,@1), 1 <i < m by definition. Whence, w : Cfél) — Cfg) is a homomor-
phism. Similarly, we can know that @™ : ‘5((;2) — %”él) is also an homomorphism.

Therefore, w is an isomorphism between ‘5((;1) and %((f). O

For understanding well the multiple behavior of world, a combinatorial system
should be constructed. Then what is its relation with classical mathematical sci-

ences? What is its developing way for mathematical sciences? 1 presented an idea
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of combinatorial notion in Chapter 5 of [Maol], then formally as the Combinatorial
Congecture for Mathematics in [Mao4] and [Maol0], the later is reported at the 2nd
Conference on Combinatorics and Graph Theory of China in 2006.

Combinatorial Conjecture Any mathematical system (3;R) is a combinatorial

system 6 (lij, 1 < 1,5 <m).

This conjecture is not just an open problem, but more likes a deeply thought,
which opens a entirely way for advancing the modern mathematics and theoretical
physics. In fact, it is an extending of TAO TEH KING, Smarandache’s notion by
combinatorics, but with more delicateness. Here, we need further clarification for
this conjecture. In fact, it indeed means a combinatorial notion on mathematical

objects following for researchers.

(7) There is a combinatorial structure and finite rules for a classical math-
ematical system, which means one can make combinatorialization for all classical
mathematical subjects.

(77) One can generalizes a classical mathematical system by this combinatorial
notion such that it is a particular case in this generalization.

(#4) One can make one combination of different branches in mathematics and
find new results after then.

(7v)  One can understand our WORLD by this combinatorial notion, establish
combinatorial models for it and then find its behavior, for example,

what is true colors of the Universe, for instance its dimension?

This combinatorial notion enables ones to establish a combinatorial model for
the WORLD, i.e., combinatorial Universe (see Chapter 8 of this book) characterizing
the WORLD, not like the classical physics by applying an isolated sphere model or
a Euclidean space model. Whence, researching on a mathematical system can not
be ended if it has not been combinatorialization and all mathematical systems can

not be ended if its combinatorialization has not completed yet.

§1.7 REMARKS

1.7.1. Combinatorics has made great progress in the 20th century with many

important results found. Essentially, it can be seen as an extending subject on
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sets or a branch of algebra with some one’s intuition, such as these graphs. But
it is indeed come into being under the logic, namely, a subject of mathematics.
For materials in Sections 1.1 — 1.3, further information and results can be found in
references [BiM1], [Hual] and [NiD1]. The concept of multi-set and multi-poset are
introduced here by Smarandache’s notion in [Smal]. Sections 1.4 — 1.5 are a brief
introduction to graphs and enumerating techniques. More results and techniques
can be found in reference [BoM1], [CaM1], [ChL1], [GrW1] and [Tutl], etc. for

readers interesting in combinatorics with applications.

1.7.2 The research on multi-poset proposed in Section 3 is an application of the
combinatorial notion, i.e., combining different fields into a unifying one. It needs
both of the knowledge of posets and combinatorics, namely, posets with combina-
torial structure. Further research on multi-poset will enrich one’s knowledge on

posets.

1.7.3 These graph families enumerated in Section 4 is not complete. It only presents
common families or frequently met in papers on graphs. But for C8, i.e., embed-
ded graphs, more words should be added in here. Generally, an embedded graph
on a topological space R is a one-to-one continuous mapping f : G — R in such a
way that edges are disjoint except possibly on endpoints, namely, a 1-CW complex
embedded in a topological space [Griil]. In last century, many researches are con-
centrated on the case of R being a surface, i.e., a closed 2-manifold. In fact, the
terminology embedded graph is usually means a graph embedded on a surface, not in
a general topological space. For this spacial case, more and more techniques beyond
combinatorics are applied, for example, [GrT1], [Whil] and [Maol] apply topology
with algebra, particularly, automorphism groups, [Liul]-[Liu3] use topology with
algebra, algorithm, mathematical analysis, particularly, functional equations and
[MoT1] adopts combinatorial topology. Certainly, there are many open problems
in this field. Beyond embedded graphs on surfaces, few results are observable on

publications for embedded graphs in a topological space, not these surfaces.

1.7.4 A combinatorial map is originally as an object of decomposition surface with
2-cell components. Its algebraic definition by Klein 4-group in Subsection 1.5.5 is
suggested by Tutte ([Tut2]) in 1973. We adopted a formally definition appeared in

[Liu2]. It should be noted that a widely approach for enumeration of rooted maps
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on surface is by analytic technique. Usually, this approach applies four STEPS as

follows:

STEP 1: Decompose the set of rooted maps . .
STEP 2: Establish functional equations satisfied by the enumeration function f ,.
STEP 3: Find properly parametric expression.

STEP 4: Solving these functional equations, usually by Lagrange or other inversion.

The interested readers are referred to references [Liu2|-[Liu4] for such enumeration.
But in here, Theorem 1.5.8 clarifies non-isomorphic roots on a combinatorial map
is essentially orbits under the action of its automorphism group and Theorem 1.5.9
presents a closed formula for counting rooted maps underlying a graph G, which

also makes known the essence of enumeration of rooted maps.

1.7.5 These three equalities in Corollary 1.5.2 are interesting, which present closed
formulae for automorphism groups of trees with given size. The first equality was
noted first by Babai in 1974. The second is gotten by Mao and Liu in [MaLl] in
2003. The third identity, i.e.,

1 (2p —1)P2(p+1)!
Z |AutT|?2 (2p — 1)!

TeT (p—1)

in Corollary 1.5.2 is a new identity. All of these identities are found by the applica-

tion of enumeration principle shown in Subsection 1.5.1.

1.7.6 The original form of the Combinatorial Conjecture for Mathematics discussed
in Section 1.6 is that mathematical science can be reconstructed from or made by
combinatorialization, abbreviated to CCM Conjecture in [Mao4] and [Maol0]. Its
importance is in combinatorial notion for entirely developing mathematical sciences,

which produces an enormous creative power for modern mathematics and physics.

1.7.7 The relation of Smarandache’s notion with LAO ZHI's thought was first
pointed out by the author in [Mao19], reported at the 4th International Conference
on Number Theory and Smarandache Problems of Northwest of China in Xianyang,
2008. Here, combinatorial systems is a generalization of Smarandache systems, also
an application of LAO ZHI's thought to mathematics. Complete words in TAO
TEH KING written by LAO ZHI can be found in [Sim1]. Further analysis on LAO
ZHTs thought can consults references [Lujl]-[Luj2] and [WaW1], particularly [Lujl].
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1.7.8 It should be noted that all objects in combinatorics are without metrics,
which enables its results concise and formulae with mathematical beauty. But most
of them are only beneficial for pure or classical combinatorics, not the entirety of
mathematics or sciences for its lack of metrics. The goal of combinatorics is to find
combinatorial counterpart in mathematics, not just these results only with purely
combinatorial importance. For contributing it to the entire science, a good idea
is pull-back these metrics ignored in classical combinatorics to construct the math-
ematical combinatorics suggested by the author in [Maol]. The reference [Mao2]
is such a monograph with Smarandache multi-spaces. In fact, the material in the
following chapters is on mathematical combinatorics, particularly on combinato-
rial differential geometry and its application, i.e., combinatorial fields in theoretical

physics.



CHAPTER 2.

Algebraic Combinatorics

If the facts don’t fit the theory, change the facts.
By Albert Einstein, an American theoretical physicist.

One increasingly realizes that our world is not an individual but a multiple
or combinatorial one, which enables modern sciences overlap and hybrid,
i.e., with a combinatorial structure. To be consistency with the science
development, the mathematics should be also combinatorial, not just the
classical combinatorics without metrics, but the mathematical combinatorics
resulting in the combinatorial conjecture for mathematics, i.e., CCM Con-
jecture presented by the author in 2005. The importance of this conjecture
is not in it being an open problem, but in its role for advancing mathemat-
ics. For introducing more readers known this heartening combinatorial no-
tion for mathematical sciences, this chapter introduces the combinatorially
algebraic theory, i.e., algebraic combinatorics, including algebraic system,
multi-operation system, multi-group, multi-ring, multi-ideal, multi-module,
action of multi-group and combinatorial algebraic system, ..., etc.. Other
fields followed from this notion, such as those of Smarandache geometries

and combinatorial differential geometry are shown in the following chapters.
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§2.1 ALGEBRAIC SYSTEMS

2.1.1 Algebraic System. Let &/ be a set and o an operation on 7. If o :
o X of — of, i.e., closed then we call o/ an algebraic system under the operation
o, denoted by (&7;0). For example, let &7 = {1,2,3}. Define operations X1, X5 on
o/ by following tables.

X1 1 2 3 X9 1 2 3

1 2 3 1 1 2 3

2 3 1 3 1 2

3 3 1 2 3 2 3 1
table 2.1.1

Then we get two algebraic systems (&7; x1) and (& X3). Notice that in an algebraic
system (7;0), we can get an unique element a o b € & for Va,b € o7 .

2.1.2 Associative and Commutative Law. We introduce the associative and

commutative laws in the following definition.
Definition 2.1.1 An algebraic system (<f;0) is associative if
(aob)oc=ao(boc)
forYa,b,c € .
Definition 2.1.2 An algebraic system (f;0) is commutative if
aob=boa
forVa,b e o .
We know results for associative and commutative systems following.

Theorem 2.1.1 Let (&7;0) be an associative system. Then for ay,aq, -, a, € A,
the product a;oaqgo- - -oa, 1s uniquely determined and independent on the calculating

order.

Proof The proof is by induction. For convenience, let a; o as o --- o a, denote
the calculating order

(...((aloa2)oa3)o-~-)0an.
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If n = 3, the claim is true by definition. Assume the claim is true for any
integers n < k. We consider the case of n = k£ 4 1. By definition, the last step for

any calculating order [[ must be a result of two elements, i.e.,
II=1I-1I
1 2
Apply the inductive assumption, we can assume that
H=(---((aloaz)oas)o---)oaz

1

and

H:(-..((al+1oal+2>Oal+3>o...)Oak_i_l.
2

Therefore, we get that

IR
= (-(aoax)o--Joao(-(ay10a42)0- ) 0ar
(aroaz)o---)oao((- (a1 0ap2) 0 - 0ag)oag)

(

(
= (
(-

-.-(a/lOa2)0-.-)oa/lo(.-.(a/l+loal+2>O.-.Oak>>oak+1

((a10az)oaz)o---)oags

by the inductive assumption. Applying the inductive principle, the proof is com-

pleted. O
Theorem 2.1.2 Let (<7;0) be an associative and commutative system, ay, as, -+, a, €
/. Then for any permutation © on indexes 1,2, -+, n,

QAr(1) © Qr(2) © O lg(p) = A1 © G20 -+ O dy.

Proof We prove this result by induction on n. The claim is obvious for cases

of n < 2. Now assume the claim is true for any integer [ < n — 1, i.e.,
(1) © Qr(2) ©*** O Ar() = A1 © A O - -+ O q.
Not loss of generality, let 7(k) = n. Then we know that

Ar(1) © Qr(2) © O lgn) = (aw(l) Olr2)©---0 aw(k—l))
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Oy, © (an(k—i-l) O Qg(k+42) OO aﬂ(n))
= (Gr(1) O Gr(2) O O Ar(r—1))

O((@m(k+1) © An(kt2) © -+ © Un(m)) © )
= ((ar@) © ar(2) 0+ 0 arr-1))

O(an(k—i-l) O Qg(k+42) OO aﬂ(n))) O Gy

= a1 0ay0---0a,

by the inductive assumption. 0

Let (27;0) be an algebraic system. If there exists an element 1! (or 17) such
that

lloa=a or aol’ =a

for Va € o, then 1! (17) is called a left unit (or right unit) in (7;0). If 1, and 17

exist simultaneously, then there must be
=1loly=17=1,
i.e., a unit 1, in (&7;0). For example, the algebraic system (7; x;) on {1,2,3} in
previous examples is a such algebraic system, but (&7; X5) only posses a left unit
1y, = 1.
For a € & in an algebraic system (&;0) with a unit 1., if there exists an
element b € &7 such that

aob=1, or boa=1,,

then we call b a right inverse element (or a left inverse element) of a. If aob =
boa = 1,, then b is called an inverse element of a in (&;0), denoted by b = a™'.
For example, 27! = 3 and 37! = 2 in (& x;).

2.1.3 Group. An algebraic system (&7;0) is a group if it is associative with a
unit 1, and inverse element a~! for Va € 7, denoted by &/ usually. A group is
called finite ( or infinite ) if |7| is finite ( or infinite). For examples, the sets <7,
permutations I1(X') under operations xi, composition on a finite set X form finite

groups (&7; x1) and Sym/(X) respectively.

2.1.4 Isomorphism of Systems. Two algebraic systems (& ;01) and (@;05)

are called homomorphic if there exists a mapping ¢ : j — % such that ¢(a o b) =
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¢(a) oy ¢(b) for Va,b € <. If this mapping is a bijection, then these algebraic
systems are called isomorphic. In the case of @ = o = &/ and o; = oy = o, an

isomorphism between (o7;01) and (#; 09) is called an automorphism on (<;0).

Theorem 2.1.3 Let (<f;0) be an algebraic system. Then all automorphisms on

(e 0) form a group under the composition operation, denoted by Aut(</;0).

Proof For two automorphisms ¢; and ¢ on (7;0), it is obvious that

G152(aob) = q52(a) o si6(b)

for Ya,b € o by definition, i.e., Aut(</;0) is an algebraic system. Define an auto-
morphism 14, by 17,(a) = a and an automorphism ¢! by ¢71(b) = a if ¢(a) = b
for Va,b € o7. Then 1y, is the unit and ¢! is the inverse element of ¢ in Aut(<7;0).
By definition, Aut(./;0) is a group under the composition operation. O

2.1.5 Homomorphism Theorem. Now let (o7;0) be an algebraic system and
B C o, if (A;o0) is still an algebraic system, then we call it an algebraic sub-
system of (<f;0), denoted by & < . Similarly, an algebraic sub-system is called
a subgroup if it is group itself.

Let (&7;0) be an algebraic system and % < /. For Va € &7, define a coset
ao B of Bin o by

ao B ={aoblVb e A}.

Define a quotient set & = <7/ /% consists of all cosets of # in &/ and let R be a
minimal set with & = {r o Z|r € R}, called a representation of . Then

Theorem 2.1.4 If (#;0) is a subgroup of an associative system (<;0), then

(i) forVa,be o, (a0 B)N(boB) =0 oraocPB =bo R, i.c., S is a partition
of A

(77) define an operation ® on & by
(a0 B)e(boB) = (aob)oAB,

then (S;e) is an associative algebraic system, called a quotient system of <7 to AB.
Particularly, if there is a representation R whose each element has an inverse in

(o 0) with unit 1., then (S;e) is a group, called a quotient group of </ to A.
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Proof For (i), notice that if
(aoB)N(boRB) #10)

for a,b € o7, then there are elements c,co € % such that a oc; = bocy. By
assumption, (Z;o0) is a subgroup of («7;0), we know that there exists an inverse

element ¢;' € 4, i.e., a=bocyoc;'. Therefore, we get that

aoB = (bocyoci')oR
= {(bocyocit)oc|Ve € &}
= {boc|Vc e A}
= boA
by the associative law and (%;0) is a group gain, i.e., (a0 ZB)N(bo B) = D or
aoAB="boA.

By definition of e on & and (i), we know that (&;e) is an algebraic system.
For Va, b, c € <7, by the associative laws in (&7;0), we find that

(a0 B)e(boRB))e(coRB) = o AB)e(coR)
oc)oB = (ao(boc))o AR
Yo ((boc)o RB)

Yo ((boPB)e(coR)).

Now if there is a representation R whose each element has an inverse in (.<7; o)
with unit 1., then it is easy to know that 1, 0% is the unit and a~! 0 % the inverse

element of a 0 Z in 6. Whence, (S;e) is a group. O
Corollary 2.1.1 For a subgroup (%;0) of a group (&;0), (&;e) is a group.

Corollary 2.1.2(Lagrange theorem) For a subgroup (%;0) of a group (&;0),

8] | ]

Proof Since a o ¢y = a o ¢y implies that ¢; = ¢, in this case, we know that

a0 2| = |#|



Sec.2.1 Algebraic Systems 53

for Ya € o/. Applying Theorem 2.1.4(i), we find that

7| = |ro %] =|R||#,

reR

for a representation R, i.e., | 4| | |</]. O

Although the operation e in & is introduced by the operation o in <7, it may

be @ # o. Now if e = o, i.e.,
(a0 B)o(boB) = (acb)o B, 2-1)

the subgroup (%;0) is called a normal subgroup of (%;0), denoted by # < .o/. In

this case, if there exist inverses of a, b, we know that
PBoboAB=boA

by product a~! from the left on both side of (2—1). Now since (%; o) is a subgroup,
we get that
bloBob= 2B,

which is the usually definition for a normal subgroup of a group. Certainly, we can
also get
bo#B=Xob

by this equality, which can be used to define a normal subgroup of a algebraic system
with or without inverse element for an element in this system.

Now let @ : @] — % be a homomorphism from an algebraic system (.27;01)
with unit 1., to (@%;o05) with unit 1,,. Define the inverse set @ (as) for an
element ay € 975 by

w Hag) = {a) € H|w(ar) = as}.

Particularly, if ay = 1., the inverse set @™ !(1,,) is important in algebra and called
the kernel of w and denoted by Ker(zw), which is a normal subgroup of (<7 ; 0q) if it
is associative and each element in Ker(w) has inverse element in (#;0;). In fact,

by definition, for Va,b, ¢ € o/, we know that
(1) (aob)oc=ao(boc) € Ker(w) for w((aob)oc) =w(ao(boc)) = 1u;
(2) 1u, € Ker(w) for w(ley) = 1,
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(3) a! € Ker(w) for Va € Ker(w) if a~! exists in (&;01) since w(a™!) =
@ () = 1o

(4) aoKer(w) = Ker(w) o a for
w(a o Ker(w)) = w(Ker(w) oa) = @w *(w(a))

by definition. Whence, Ker(w) is a normal subgroup of (.27; oy).

Theorem 2.1.5 Let w : @ — 9 be an onto homomorphism from associative
systems (#1;01) to (hy;09) with units 14, , 1o,. Then

h[Ker(w) = (i)
if each element of Ker(w) has an inverse in (#;;01).

Proof We have known that Ker(w) is a subgroup of (<7 ; 01). Whence 7 /Ker(w)
is a quotient system. Define a mapping ¢ : o7 /Ker(w) — o by

¢(a oy Ker(w)) = w(a).

We prove this mapping is an isomorphism. Notice that ¢ is onto by that w is
an onto homomorphism. Now if a o; Ker(w) # b oy Ker(w), then w(a) # w(b).
Otherwise, we find that a o; Ker(w) = b o; Ker(w), a contradiction. Whence,
s(a oy Ker(w)) # ¢(b oy Ker(w)), i.e., ¢ is a bijection from @7 /Ker(w) to .

Since w is a homomorphism, we get that

$((a oy Ker(w)) oy (b oy Ker(w)))
= ¢(a o1 Ker(w)) oy ¢(b 0oy Ker(w))
= w(a) o2 w(b),
i.e., ¢ is an isomorphism from o7 /Ker(w) to (; 0,). O

Corollary 2.1.3 Let w : oy — o5 be an onto homomorphism from groups (& ;o1)
to (oly; 09). Then

i [Ker(w) = (h;02).
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§2.2 MULTI-OPERATION SYSTEMS

2.2.1 Multi-Operation System. A multi-operation system is a pair (7 6)

with a set 7 and an operation set
O={o|1<i<l}

on ¢ such that each pair (J#;0;) is an algebraic system. We also call (J7; 5) an
[-operation system on .

A multi-operation system (¢ 5) is associative if for Va, b, c € 7, Vo, 09 € 5,
there is

(a01 b) 09 C = a 0Oy (b020>.

Such a system is called an associative multi-operation system.

Let (47, 5) be a multi-operation system and 4 C 2, Q C O. If (¥; @) is itself
a multi-operation system, we call (¢4:Q) a multi-operation subsystem of (J,0)),
denoted by (¢;Q) < (2#,0). In those of subsystems, the (¢; ) is taking over an
important position in the following.

Assume (¢;0) < (#,0). For Va € A and o; € O, where 1 < i < [, define a
coset a o; 4 by

a0;%9 ={ao;b| for Vb € 4},

and let
H = U aoY.
a€R,0ePCO
Then the set
2={ao¥Ylae RoecPcO}

is called a quotient set of 4 in S with a representation pair (R, ﬁ), denoted by

g\( RP)- Similar to Theorem 2.1.4, we get the following result.

2.2.2 Isomorphism of Multi-Systems. Two multi-operation systems (J3; 51)
and (%;62) are called homomorphic if there is a mapping w : J4A — % with
W 51 — 52 such that for a,by € 74 and oy € 51, there exists an operation

o9 =w(og) € 52 enables that

w(ay 01 by) = w(ay) oa w(by).
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Similarly, if w is a bijection, (#4:0;) and (J4; Os) are called isomorphic, and if
IO = 5 = H, wis called an automorphism on .

Theorem 2.2.1 Let (7, 5) be an associative multi-operation system with a unit

1of0rVo€6 and ¢ C .

(1) If G is closed for operations in O and forYa € 9,0 € O, there eists
an inverse element aZ' in (4;0), then there is a representation pair (R, P) such
that the quotient set %|(R7]5) is a partition of €, i.e., for a,b € F Yoy, 09 € 6,
(@01 9)N(boy¥) =0 orao1 9 =boy 9.

(ii) For Yo € O, define an operation o on §|(R,13) by
(@019)o(bog¥) = (aob)o; 9.

Then (g\( R.P); O) is an associative multi-operation system. Particularly, if there is
a representation pair (R, ﬁ) such that for o' € ﬁ, any element in R has an inverse
in (A;0"), then (gthg),O/) is a group.

Proof For a,b € A, if there are operations oy, 0, € O with (a0;%)N(boy¥) £ 0,
then there must exist g1, g2 € ¢ such that a oy g = bogy go. By assumption, there is

an inverse element c; ' in the system (¥;0,). We find that

aolg = (bOgggOlcl_l)Olg
= bOQ(gzOlcl_lOlg):bozg

by the associative law. This implies that g\( R.P) is a partition of 7.

Notice that §|( .7 18 closed under operations in P by definition. It is a multi-

2

operation system. For Va,b,c € R and operations o;, 0y, 03,0%, 02 € P we know

that

(a0 9) ot (boy 9)) o? (cos3¥) = ((a ot b) o1 ¥) o? (co39Y)
= ((ac'b)o*c)o ¥

and

(a019) o' ((boy¥)o® (co39)) = (a019)or((bo’c)or¥)
= (ao'(bo®c)) 01 ¥.
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by definition. Since (J#, O) is associative, we have (ao'b)o?c = aol (bo2¢). Whence,

we get that

((a019) ol (boyF))0* (co3F) = (a019) o' ((box¥) 0 (c039)),

ie., (§|( r.p): O) Is an associative multi-operation system.

If any element in R has an inverse in (J¢;0'), then we know that ¢ is a unit
and a~! o’ ¢ is the inverse element of a o' ¢ in the system (%k r.p) ©), namely, it
Is a group again. U

Let Z(O) be the set of all units 1,,0 € O in a multi-operation system (;O).
Define a multi-kernel Kerw of a homomorphism w : (H:01) — (H5;0,) by

Kerw ={ a € #4 | w(a) = 1, € Z(0,) }.

Then we know the homomorphism theorem for multi-operation systems in the

following.

Theorem 2.2.2 Let w be an onto homomorphism from associative systems (H7; 61)
to (4; 0s) with (Z(05);05) an algebraic system with unit 1o~ for Vo= € Oy and
inverse x4 for Va € (Z(O,) in ((Z(Os);07). Then there are representation pairs
(R, ﬁl) and (Ry, ﬁg), where P, C 5, P, C Oy such that

(Kerw; O;) ™™ (Z(0n); Op) 1
if each element of Kerw has an inverse in (F8;0) foro € 0.

Proof Notice that Kerw is an associative subsystem of (o4; 51) In fact, for

Vki, ko € Kerw and Yo € 51, there is an operation o~ € 52 such that
w(ky 0 ky) = w(k1) o~ w(ky) € Z(Oy)

since 7 (52) is an algebraic system. Whence, Kerw is an associative subsystem of
(74; 51) By assumption, for any operation o € O, each element a € Kerw has an
inverse a~! in (J#;0). Let w: (J4;0) — (Hs;07). We know that

waoa™) = w(a)o” w(a™) = 1o,

ie., wla™) = wla)™ in (H4;07). Because Z(O,) is an algebraic system with an
inverse z7! for Vo € Z(0s) in ((Z(0s);07), we find that w(a™) € Z(O,), namely,

ale I/{\e/rw.
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Define a mapping o : %7 O) (H3; 0s)

| 1 1 - ‘ 2,172 by
(Kerw: 0y) ®P) 7 (T(0y); 0,) B2
o(aoKerw) =o(a) o~ 1(62)

for Va € Ry, 0 € Py, where w : (J4;0) — (;07). We prove ¢ is an isomorphism.

Notice that o is onto by that w is an onto homomorphism. Now if a o, Kerw £ b oy

Ker(w) for a,b € Ry and oy, 05 € Py, then w(a)o; Z(0y) # w(b)oy Z(O,). Otherwise,

we find that a o Kerw = b oy I/(\e/rw, a contradiction. Whence, a(a 04 I/{\e/rw) #
(74;01) 5 to (75; 0,) |

(Kerw; Oy) 7 (T(0,); 0y) P2

Since w is a homomorphism, we get that

(b oy Kerw), i.e., o is a bijection from

o((a oy Kerw) o (boy Kerw)) = o(a oy Kerw) o~ (b oy Kerw)
= (w(a) oy Z(0)) o~ (w(b) 03 Z(02))

= o((a oy Kerw) o~ o(b oy Kerw),

(%;01)

i.e., o is an isomorphism from ——=

(Kerw; Oy)

(%7 62)

to ————=— ]
|(R1 P1) (2(02) 02) | (R2, P2

Corollary 2.2.1 Let (,%”1;01), (%;02) be multi-operation systems with groups
(A 01), (Hs;05) for Yo, € Oy, Yos € Oy and w : (H4;0,) — (5;0,) a ho-
momorphism. Then there are representation pairs (Rl,ﬁl) and (Rg,ﬁg), where
ﬁl C 51, ﬁg - 52 such that

(54;0y)
(Kerw 01)

(H5; 62) |
(Z(0s); Oz) )

|(R1 P

Particularly, if (J%; 52) is a group, we get an interesting result following.

Corollary 2.2.2 Let (5#;0) be a multi-operation system and w : (J; 0) — (<o)
a onto homomorphism from (A, 5) to a group (&7;0). Then there are representa-
tion pairs (R, ﬁ), P C O such that

(jf O))|RP) >~ (52{;0).

(Kerw; O

2.2.3 Distribute Law. A multi-operation system (#; O) is distributive if O =
01U O, with Oy N O, = () such that
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aoy(boyc) = (ao;b)oy(ao;c)and (bogc)oya=(boja)oy(coya)

for Ya,b,c € A and Yo, € Oy, oy € O,. Denoted such a system by (;0; —
0;). In this case, the associative means that systems (#;0;) and (J; O,) are
associative, respectively.

Similar to Theorems 2.1.1 and 2.1.2, we can also obtain the next result for

distributive laws in a multi-operation system.

Theorem 2.2.3 Let (#; 07 — Os) be an associative system for operations in Os,
a,by, by, -+, b, € 7 and o € O, 0, € Oy for1 <i<n—1. Then

a0(51015202"'0n—1bn):(aob1)01 (aob2)02"'0n—1 (aobn>7
(byogbyog---op_1by)oa=(byoa)oy(byoa)oy-- 0,1 (byoa)

Proof For the case of n = 2, these equalities are hold by definition. Now assume
that they are hold for any integer n < k. Then we find that

ao(byoybyoy---opbri) = (aoby)oy(aoby)oy---opy(ao(byopi1brir))

= (aoby)oy(aoby) oy -0y (aoby)orr (aobryr)
by the inductive assumption. Therefore,

Olo(bl015202"'0n—1bn)Z(Clobl)ol (a'ob2)o2"'on—1 (aobn)

is hold for any integer n > 2. Similarly, we can also prove that
(byogbyog -0, 1by)oa=(byoa)oy(byoa)oy-- 0,1 (byoa) U

2.2.4 Multi-Group and Multi-Ring. An associative multi-operation system
(A; 01 — Os) is said to be a multi-group if (H;0) is a group for Yo € O; U Os,
a multi-ring (or multi-field) if Op = {1 <1 <1}, Oy = {+4|1 < i <[} with rings
(or multi-field) (25 +;, ;) for 1 < i <. We call them [-group, [-ring or [-field for
abbreviation. It is obvious that a multi-group is a group if |O; UOs| = 1 and a ring
or field if |Oy] = |Os| =1 in classical algebra. Likewise, We also denote these units
of a l-ring (#;0; — Oy) by 1., and 04, in the ring (#;+;,-;). Notice that for
Va € 7, by these distribute laws we find that

a~ib:a~i(b—|—i0+i):a~ib—|—ia~i0+i,

bla:(b—i—ZOh)Za:bla—i—ZOJmZa
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for Vb € 2. Whence,

a -; O+i = 0+i and O'H a = 0+i'

Similarly, a multi-operation subsystem of (7;0; — Q) is said a multi-
subgroup, multi-subring or multi-subfield if it is a multi-group, multi-ring or multi-field
itself.

Now let (;O; — O,) be an associative multi-operation system. We find
these criterions for multi-subgroups and multi-subrings of (#;O; — Os) in the

following.

Theorem 2.2.4 Let (7; Oy — Oy be a multi-group, H C 7. Then (H; O1 — Os)
15 a

(1) multi-subgroup if and only if for Va,b € H, o € O; U0y, aobs! € H;

(73) multi-subring if and only if for Ya,b € H, ; € O and V+; € Os), a -
b, a+; b;.l € H, particularly, a multi-field if a -; b;l, a —+; b;.l € H, where, O; =
{1 <i <1}, Oy = {+]1 <i <1}.

Proof The necessity of conditions (i) and (i) is obvious. Now we consider their
sufficiency.

For (i), we only need to prove that (H;o) is a group for Yo € O; U Oy. In
fact, it is associative by the definition of multi-groups. For Va € H, we get that
lo=aoca;!' € H and 1,0a;' € H. Whence, (H;o0) is a group.

Similarly for (ii), the conditions a-;b, a+; b;.l € H imply that (H; +;) is a group
and closed in operation -; € ;. These associative or distributive laws are hold by
(A5 +, ;) being a ring for any integer i,1 < < [. Particularly, a -; b_' € H imply
that (H;-;) is also a group. Whence, (#; +;, ;) is a field for any integer i, 1 < i <
in this case. O

A multi-ring (#;07 — Og) with O = {4|1 < i <}, Oy = {+;]1 <i <[}
is integral if for Va,b € ¢ and an integer i, 1 < i <[, ao;b="0bo;a, 1,, # 04;
and @ o; b = 04, implies that a = 04, or b = 04,. If [ = 1, an integral [-ring is
the integral ring by definition. For the case of multi-rings with finite elements, an

integral multi-ring is nothing but a multi-field. See the next result.

Theorem 2.2.5 A finitely integral multi-ring is a multi-field.
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Proof Let (; O — O,) be a finitely integral multi-ring with 7 = {ay,as-- -, a,},
where O; = {+|1 <@ <}, Oy = {+;|1 <i <[}. For any integer i, 1 < i < [, choose
an element a € ¢ and a # 0,,. Then

@ O; a1, AOC; Az, +, GO;an

are n elements. If ao;ay = ao; ay, i.e., ao; (as+; at_l) = 04,. By definition, we know
that a, +; at_l = 0+;, namely, as, = a;. That is, these ao; a1, ao;as, -+, ao;a, are

different two by two. Whence,

H ={ao;ay, aojas, -+, ao;a, }.

Now assume ao; a; = 1.,, then a=*

= ag, i.e., each element of 77 has an inverse
in (4;-;), which implies it is a commutative group. Therefore, (J7; +;, ;) is a field

for any integer 7,1 <17 <. U

Corollary 2.2.3 Any finitely integral domain is a field.

2.2.5 Multi-Ideal. Let (J#;0] — O)), (#;0% — O3) be multi-rings with
OFr={M1<i<l}, Ok ={+F1<i<l}fork=1,2and go: (H;01 — O}) —
(02 — 02) a homomorphism. Define a zero kernel Kerp of o by

Kergo = {a € #o(a) = 0,2,1 < i < b}

Then, for Vi € 5 and a € Kergo, ola-th) =04 ,0(;)h =0, ie,a;h€ Keroo.
Similarly, h -; a € I/(\er/og. These properties imply the conception of multi-ideals of a
multi-ring introduced following.

Choose a subset Z C 7. For Vh € 7, a € I, if there are

hoja€Z and ao; heH,

then 7 is said a multi-ideal. Previous discussion shows that the zero kernel I?(::r/og of
a homomorphism g on a multi-ring is a multi-ideal. Now let Z be a multi-ideal of
(A; O1 — O,). According to Corollary 2.2.1, we know that there is a representation
pair (Rq, P,) such that

f:{a+iI|a€R2, _'_iEPQ}

is a commutative multi-group. By the distributive laws, we find that
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(a+,Z)-j(b+1rI) = a-jb+ra-; T+ Ib+,Z-;T
= ajb—i—kI

Similar to the proof of Theorem 2.2.1, we also know these associative and
distributive laws follow in (i O; — O3). Whence, (f ;01 — Oy) is also a multi-
ring, called the quotient multi-ring of (7; 01 — Os), denoted by (7 : I).

Define a mapping ¢ : (; 01 — Os) — (S :I) by o(a) = a +;Z for Va €

if a € a+; Z. Then it can be checked immediately that it is a homomorphism with

I?gr/og:I.

Therefore, we conclude that any multi-ideal is a zero kernel of a homomorphism

on a multi-ring. The following result is a special case of Theorem 2.2.2.

Theorem 2.2.6 Let (74;0] — O) and (#4;0? — ©O32) be multi-rings and
w : (J4;0)) — (H5;02) be an onto homomorphism with (Z(O3); O3) be a multi-
operation system, where Z(O3) denotes all units in (#3; O3). Then there exist rep-
resentation pairs (Ry, P1), (Ry, Py) such that
(76, 0F — O§)| i

T 03) et

(% : I)|(R1,151) =

Particularly, if (%; O? — O3) is a ring, we get an interesting result following.

Corollary 2.2.4 Let (;0, — Os) be a multi-ring, (R;+,-) a ring and w :
(A;0y) — (R;+) be an onto homomorphism. Then there exists a representation
pair (R, P) such that

(A Dlpp = B+ ).

§2.3 MULTI-MODULES

2.3.1 Multi-Module. There multi-modules are generalization of linear spaces
in linear algebra by applying results in last section. Let O = { +; | 1 < i < m},
O; = {4]1 < i < m} and Oy = {+;]1 < i < m} be operation sets, (#;0O)
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a commutative m-group with units 04, and (Z;0; — O,) a multi-ring with a
unit 1. for V- € O;. For any integer i, 1 < ¢ < m, define a binary operation
Xi: XX M— M byax;xforae X, ve # such that for Va,b € Z,Vr,y € A,

conditions following hold:

(1) ax;(x+;y)=ax;x+;a%X;y;
(ii) (a+ib) X & = a X; & +; b x; x;
(17i) (a - b) x;x =a x; (bx;x);

() 1, x;2 = x.
Then (#;0) is said an algebraic multi-module over (%#;O; — Os) abbreviated
to an m-module and denoted by Mod(.Z(0O) : Z(0O; — O3)). In the case of
m = 1, It is obvious that Mod(.Z(0) : Z(O; — Os)) is a module, particularly,
if (Z;0, — O,) is a field, then Mod(#Z(O) : Z(O, — O,)) is a linear space in
classical algebra.

For any integer k, a; € # and x; € .#, where 1 < i, k < s, equalities following

are hold by induction on the definition of m-modules.

aXp (1 4+ o +k - FrTs) = a Xg X1 +5 @ Xg Lo +p - Fp Qs Xp T,

(@14,ao+k - - - Fras) X T = a1 X T 45 Qg X T 45 - - g Q5 Xp T,

(al'k}a'Q'k‘””kaS) xkl’:al Xk(a2xk...x(asxkx)...)
and
1-¢1 Xiy (1'i2 Xig =0 Xigy (1'is i :L’)) =7
for integers iy, 9, -, is € {1,2,---,m}.

Notice that for Va,z € #,1 <1i < m,
ax;r=ax;(x+;0y,)=ax;x+;ax;0q,

we find that a x; 04, = 04,. Similarly, 0;. x;a = 04,. Applying this fact, we know
that
a X; T +; aj” X; T = (CL—FZCLI_Z) X; X = O‘h X; = 0+i

and

CLXZ'LU—FZ'CLXZ‘ZL’_T_i:CLXZ'(ZL’—FZ'I_T_Z.):CLXZ‘O_FZ.:O_FZ..
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We know that

(ax; ), =ay

xix:ax,-x;_.

Notice that a x; = 04, does not always mean a = 0;, or x = 04, in an m-

module Mod(.Z(0) : Z(O1 — O)) unless a; is existing in (%; +iy i) if £ 04,

Now choose Mod(.#,(0;) : %,(0Of — OJ)) an m-module with operation sets
O ={+|1<i<m}, O ={4l<i<m} O ={+/]1 <i<m}and
Mod(Ao(Os) : %9(OF — O3)) an n-module with operation sets Oy = { +7 | 1 <
i<n}, 02 ={21<i<n}, O ={+/]1 <i<n}. They are said homomorphic if

there is a mapping ¢ : .#, — 5 such that for any integer i, 1 < i < m,
(1) wz+iy)=ux)+" (y) for Yo,y € A, where 1(+]) = +" € Oy;
(7i) tla x; x) = a x; (x) for Vo € 4.

If ¢ is a bijection, these modules Mod (.4 (0;) : Z,(Of — O1)) and Mod(#5(0,) :
Ko (0} — 03)) are said to be isomorphic, denoted by

Let Mod(.#(O) : Z(0O; — O)) be an m-module. For a multi-subgroup
(AN50) of (A;0), if for any integer i, 1 < i < m, a X;x € A for YVa € #Z and
x € A, then by definition it is itself an m-module, called a multi-submodule of
Mod (4 (0) : Z(O1 — Os)).

Now if Mod (A4 (O) : Z(O; — Os)) is a multi-submodule of Mod(.Z (O) :
H (O — Oy)), by Theorem 2.3.2, we can get a quotient multi-group %‘(R’};) with

a representation pair (R, ﬁ) under operations
(ad+iAN)+ (b4 ) =(a+b) +; AN

for Va,b € R,+ € O. For convenience, we denote elements x +; .4 in %|(R,f5) by

(™. For an integer i,1 < i < m and Va € %, define

a X; () = (CL X ZL’)(Z)

Then it can be shown immediately that
(i) ax; (WﬁW) =ax; 20 +;a x; yO;

(i1) (a4ib) x; 20 = a x; 20 +; b x; 0);
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(idi) (@ - b) x; 20 = a x; (b x; 20);

(iv) 1, x; 20 = 20

i'e"(%k}z,ﬁ) : X) is also an m-module, called a quotient module of Mod(.Z (O) :
Z(O1 — O3)) to Mod(A(O) : Z(O1 — Os)). Denoted by Mod (.4 /. A).
The result on homomorphisms of m-modules following is an immediately con-

sequence of Theorem 2.2.6.

Theorem 2.3.1 Let Mod(.#,(0,) : %,(0f — OL)), Mod(A>(0s) : Zo(O? —
03)) be multi-modules with O; = { +, | 1 <i < m}, Oy ={ +/ |1 < i < n},
Ol ={i<i<m}, Of={H[1<i<m}, O} ={1<i<n}, O ={H|1<
i <n} and t: Mod(4,(0y) : #,(0] — O)) — Mod(A>(0s) : Bo(O? — O3))
be a onto homomorphism with (Z(Os); Og) a multi-group, where Z(O3) denotes all

units in the commutative multi-group (Ms; Os). Then there exist representation
pai'r’s (Rl, ﬁl), (Rg, ﬁg) such that

Mod(A /N )| gy 5y = Mod(Aa(02)/T(O2)) 1, 1

where A = Kerv is the kernel of v. Particularly, if (Z(Os);Os) is trivial, i.e.,
1 Z(Oy)| = 1, then

Mod(A | N )|, 5y = Mod(A(Oy) : Zo(OF = O5))| s, -

Proof Notice that (Z(O3); Os) is a commutative multi-group. We can certainly
construct a quotient module Mod(.#5(02)/Z(0,)). Applying Theorem 2.3.6, we
find that

Mod (A [N )| g, ) = Mod(A:(02)/T(O)) i, p,)-

Notice that Mod(.#5(0s)/Z(03)) = Mod(.4(0s) : %o(0? — ©O3)) in the
case of |[Z(O3)| = 1. We get the isomorphism as desired. O

Corollary 2.3.1 Let Mod(.#(O) : Z(0O1 — O3)) be an m-module with O =
{+i|1<i<m}, Oy ={4]1 <i<m}, Oy ={+1 <i<m}, M amodule on a
ring (R;+,-) and v : Mod(.#,(0,) : %,(0} — O)) — M a onto homomorphism
with Kere = A", Then there exists a representation pair (R, ﬁ) such that

MOd(‘%/‘/V)‘(R’,ﬁ) = M7
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particularly, if Mod (. (O) : Z(0O1 — Os)) is a module A , then

MIN = M.

2.3.2 Finite Dimensional Multi-Module. For constructing multi-submodules
of an m-module Mod(Z(0) : Z(O; — Oy)) with O = { +;, | 1 < i < m},
O; = {4]1 <i <m}, Oy = {+|1 < i < m}, a general way is described in the
following.

Let S C .# with |S| = n. Define its linearly spanning set <§|,%’> in Mod(.# (0O) :
Z(O1 — O3)) to be

m n

<§|,@> = {@@O&U X [L’Z’j| Qi € e@,l’ij € § },
i=1 j=1
where
@@aij X5y = Q11 X1 T11 +1 0 F1 G1n X1 T
i=1 j=1
+Wagy xg o1 +o -+ - 42 gy X2 Top
_|_(2) ........................... _|_(3)
Am1 Xm Tml _'_m te +m Qmn Xm Tmn
with +1, +@ +6) ¢ O and particularly, if 4, = 49 = --- = +,,, it is denoted
by > x; as usual. It can be checked easily that <§ |,9?> is a multi-submodule of
i=1

Mod(.#(0) : (O — O)), call it generated by S in Mod(.#(0) : Z#(O) —
0s,)). 1If S is finite, we also say that <§ \9?> is finitely generated. Particularly, if

S = {z}, then <§L@> is called a cyclic multi-submodule of Mod(.# (O) : Z(0, —
0s)), denoted by Zz. Notice that

R :{@aixix|ai€%}
i=1

by definition. For any finite set S , if for any integer s,1 < s < m,

m S
DD xi v = 0.

i=1 j=1
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implies that a;; = 01 for 1 <4 < m,1 < j < n, then we say that {z;[1 <@ <
m,1 < j < n} is independent and S a basis of the multi-module Mod (. (O)
H(Oy — Oy)), denoted by <§L@> = Mod(#(0) : Z(O; — Oy)).

For a multi-ring (#; O; — O,) with a unit 1. for V- € Oy, where O; = {-|1 <
i <m} and Oy = {+;|1 <i < m}, let

L@(n) = {(,’,Ul,flfg, e 7xn>| x; € ‘@71 <1< n}
Define operations

(I1,362, e '7xn> +; (y1,y27 o ~,yn) = (xl‘i‘iylaxri‘iy% e ',In-i-iyn)
and
a X; (x17x27”'7xn) = (a'ixlva'ix27”'7a'ixn>

for Va € # and integers 1 < i < m. Then it can be immediately known that 2™
is a multi-module Mod(Z™ : Z(0O; — ©,)). We construct a basis of this special
multi-module in the following.

For any integer k,1 < k < n, let

e = <1'k70-i-k7""0-i-k);

€y = (O_i_k,l.k,---,o_i_k);

Notice that

(21,29, ,2y) = T1 Xp € +4 To Xp € +4 -+ Ty X €.
We find that each element in 2™ is generated by e1, e,, - -, e,. Now since
($1a L2, '>$n) = (O+ka O+ka Ty O—|—k)
implies that x; = 0y, for any integer i,1 <4 < n. Whence, {e;,es,---,e,} is a

basis of Mod(Z™ : Z(0; — O5)).

Theorem 2.3.2 Let Mod(.#(O) : Z(O; — Oy)) = <§|%’> be a finitely generated

multi-module with S = {uy,ug, -, un}. Then
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Proof Define a mapping 9 : . (O) — Z™ by J(u;) = e;, I(a x; u;) = a X e,
and J(u; + uj) = €; +4 e; for any integers ¢, j, k, where 1 < i,j,k < n. Then we

know that I o
ﬁ(@@aij X ul) = @@CLZ’J’ X; €;.

i=1 j=1 i=1 j=1
Whence, ¥ is a homomorphism. Notice that it is also 1 — 1 and onto. We know
that ¢ is an isomorphism between Mod(.Z (O) : Z(O; — Os)) and Mod(Z™ :

§2.4 ACTIONS OF MULTI-GROUPS

2.4.1 Construction of Permutation Multi-Group. Let X = {z1,29,---}

be a finite set. As defined in Subsection 1.3.1, a composition operation on two
X1 To - Tp
T = ,
i Y2 o Yn,
Yi Y2 - Yn
21 k2 ottt Zp, 7
are defined to be

o — Ty T2 0 Ip Yo Y2 o0 Yo} [ T1 T2 o T
Yi Y2 - YUns 21 B2t Zn, 21 Ry ottt Zp,

As we have pointed out in Section 2.1.3, all permutations form a group I1(X)

permutations

and

Va)
I
N

under the composition operation.
For ¥p € II(X), define an operation o, : II(X) x II(X) — II(X) by

oo,s=ops, forVo,¢ell(X).

Then we have

Theorem 2.4.1 (II(X);0,) is a group.
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Proof We check these conditions for a group hold in (II(X);o,). In fact, for
VT, 0,6 € TI(X),

(Topo)ops = (7po)o,s = Tpops
= Tp(0oys) =T0,(00,5).

The unit in (TI(X);0,) is 1,, = p~'. In fact, for V8 € TI(X), we have that

°p
plo,0=00,p7' =0.

For an element o € II(X), o' = p~to~p~t = (pop)~t. In fact,

Op
oo, (pop) t=opp o lpl=pt =1,

(pop)topo=pTloTlpTipo =pt = 1o,
By definition, we know that (I1(X);0,) is a group. O
Notice that if p = 1x, the operation o, is just the composition operation and
(II(X);0,) is the symmetric group Sym(X) on X. Furthermore, Theorem 2.5.1
opens a general way for constructing multi-groups on permutations, which enables

us to find the next result.

Theorem 2.4.2 Let I' be a permutation group on X, i.e., I' < Sim(X). For given
m permutations py,pa, -+, pm € L', (I';Op) with Op = {o,,p € P},P = {p;,1 <

i < m} is a permutation multi-group, denoted by G¥..

Proof First, we check that (I';{o,,,1 < ¢ < m}) is an associative system.
Actually, for Vo,¢,7 € 4 and p,q € {p1,p2, -+, Pm}, we know that
(To,0) 0,5 = (Tpo)o, < = Tpogs
= Tp(0045) =70y (0045).
Similar to the proof of Theorem 2.4.1, we know that (I';0,,) is a group for any
integer 4,1 < i <m. In fact, 1,, = p; " and O'O_pl_ = (piop;)~ "t in (Z;0p,). U

The construction for permutation multi-groups shown in Theorems 2.4.1 —2.4.2

can be also transferred to permutations on vector as follows, which is useful in some

circumstances.
Choose m permutations py, ps,---,Pm on X. An m-permutation on x € X is
defined by
p(m) T = (p1($)7p2(55)7 e 7pm(x>>7
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1.€., an m-vector on x.

Denoted by I1®)(X) all such s-vectors p(™. Let o be an operation on X. Define

a bullet operation of two m-permutations

P(m) - (plaan o 'apm)a
Q(Sm) = (Q17(J27"'7Qm)

on o by

P e Q(S) = (p1oqi,p20q2," ", P © Gm)-
Whence, if there are [-operations o;, 1 < i < [ on X, we obtain an s-permutation sys-
tem I1*)(X) under these [ bullet operations e;, 1 <i < [, denoted by (II'*)(X); ®!),
where ©! = {eo;|1 <i <},

Theorem 2.4.3 Any s-operation system (,0) on A with units 1o, for each op-

eration o;,1 < i < s in O is isomorphic to an s-permutation system (II)(2): ®3).

Proof For a € 7, define an s-permutation o, € I1%)(J#) by
0a(x) = (@01 w0022, -, a0, 1)

for Vo € J2.
Now let 7 : s — I16)(#) be determined by 7(a) = o) for VYa € . Since

aa(10'> = (a o1 10i7 T @05 1Oi7a7aoi+1 107,'7 T, a0 10i)7

7

we know that for a,b € €, o, # o3, if a # b. Hence, 7 is a 1 — 1 and onto mapping.
For Vi, 1 <7 < s and Vz € 5, we find that

(@0 O)(E) = Fanlt)
= (CLOibOlx,aOibOQ.fI}'"",CLOZ'bOS,’L‘)
= (aoyx,ao09x,---,a0,x)e; (boyx,bogx, -+ bosx)

= ou(z) e; op(x) = m(a) &; w(b)(x).

Therefore, m(ao;b) = m(a)e; w(b), which implies that 7 is an isomorphism from

(A, 0) to (I (#); ). O

According to Theorem 2.4.3, these algebraic multi-systems are the same as

permutation multi-systems, particularly for multi-groups.
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Corollary 2.4.1 Any s-group (#,0) with O = {o;|]1 < i < s} is isomorphic to an
s-permutation multi-group (1) (F); ©3).

Proof Tt can be shown easily that (II¢)(2); ®%) is a multi-group if (2, 0) is
a multi-group. U
For the special case of s = 1 in Corollary 2.4.1, we get the well-known Cayley

result on groups.

Corollary 2.4.2(Cayley) A group G is isomorphic to a permutation group.

As shown in Theorem 2.4.2, many operations can be defined on a permutation
group G, which enables it to be a permutation multi-group, and generally, these
operations o;,1 < ¢ < s on permutations in Theorem 2.4.3 need not to be the
composition of permutations. If we choose all 0;,1 < i < s to be just the composition
of permutation, then all bullet operations in ®7 is the same, denoted by ©. We find
an interesting result following which also implies the Cayley’s result on groups, i.e.,
Corollary 2.4.2.

(n!)!

Theorem 2.4.4 (II®¥)(#); ®) is a group of order DL
n! — s)!

Proof By definition, we know that

P(S)(ZE) © Q(s)(if) = (PQ:1(7), PQa(x), - - -, PsQs())

for VP®) Q®) € ) () and Vo € . Whence, (1,1,---,1) (I entries 1) is the
unit and (P~®) = (P7', Pyt oo P71 the inverse of P®) = (P, Py,---,P,) in
(I (#); ®). Therefore, (II)(J7); ®) is a group.

Calculation shows that the order of II)(2#) is

which completes the proof. O

2.4.2 Action of Multi-group. Let (42?,/5) be a multi-group, where o = U 7,
i=1

O = U O;, and X = J X; a multi-set. An action ¢ of (Q}’Tﬁ) on X is defined to
i=1 i=1
be a homomorphism

p:(50)— |98

1=1
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for sets P, P, ---, P, > 1 of permutations, i.e., for Vh € 7, 1 < i < m, there is a

permutation ¢(h) : # — 2" with conditions following hold,
w(hog)=@(h)p(c)p(g), for h,g € # and o € O;.

Whence, we only need to consider the action of permutation multi-groups on
multi-sets. Let = (,QZ 5) be a multi-group action on a multi-set X, denoted by ¥4 .
For a subset A C )?, x € A, we define

o/ ={29|Yge¥} and 4, ={g|a' =2,g€9},

called the orbit and stabilizer of x under the action of ¢4 and sets

Grn={gl|la9=x,9€9 for Vo € A},
g(A):{g|A9:A,g€% for VCL’EA},

respectively. Then we know the result following.

Theorem 2.4.5 Let I’ be a permutation group action on X and 9% a permutation
multi-group (I'; Op) with P = {p1,pa, -+, pm} and p; € T for integers 1 < i < m.
Then

(i) 1981 = [(ZF)alla?% ], Vo € X
(ii) for VA C X, ((9%)a,Op) is a permutation multi-group if and only if
pi € P for1<i<m.

Proof By definition, we know that
(@8, =T,, and 2% = 2

forz € X and A C X. Assume that 2' = {x1, 29, -+, 2} with 29 = ;. Then we

must have l
r=|Jgl..
i=1

In fact, for Vh € T, let 2" = 21,1 < k < m. Then 2" = 2%, i.e., g - Whence,
we get that hgk_1 € I'y, namely, h € g,I',.

For integers i, j,i # j, there are must be ¢;,I'; N g;I’; = 0. Otherwise, there
exist hi, hy € I'y such that g;hy = g;he. We get that z; = 29 = poihehi — g9 — xj,

a contradiction.
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Therefore, we find that
] = T = [Toll2"] = [(ZF)e]l27%].

This is the assertion (i). For (ii), notice that (4% )a = T'a and T is itself a
permutation group. Applying Theorem 2.4.2, we find it. O
Particularly, for a permutation group I' action on €, i.e., all p; = 1x for 1 <

1 < m, we get a consequence of Theorem 2.4.5.

Corollary 2.4.3 Let I" be a permutation group action on ). Then
(i) [T = [Tall2"], Vo €
(17) for VA C Q, I'a is a permutation group.

Theorem 2.4.6 Let I be a permutation group action on X and 4% a permutation
multi-group (I'; Op) with P = {p1,p2,- -, Pm}, pi € T for integers 1 < i < m and
Orb(X) the orbital sets of 9¥ action on X. Then

|Orb(X 77 Z 1B (p)

pesy

where ®(p) is the fized set of p, i.e., P(p) = {xr € X|2? = z}.

Proof Consider a set E = {(p,z) € 4f x X|2? = z}. Then we know that
E(p,*) = ®(p) and E(x,z) = (4¥),. Counting these elements in E, we find that

Yo 1e@) =) (%)

P
peYE reX

Now let x;,1 < < |Orb( )| be representations of different orbits in Orb(X).
For an element y in a: , let y = zf for an element g € ¥¥. Now if h € (¥4{),,
ie., y" = y, then we ﬁnd that (29)" = 29. Whence, 29" ' = z;. We obtain
that ghg™' € (9%).,, namely, h € g7 (4¥).,9. Therefore, (9%), C g H9E).0.
Similarly, we get that (4¥)., C g(9%),97", ie., (9¥), = g7 (9%).,9. We know
that [(4%),| = |(4¥).,] for any element in xf’lg, 1 <4 < |Orb(X)|. This enables us
to obtain that

|Orb(X))|
Yol = D @)= Y D %)
pEGE zeX i=1 <§§

yex

i
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|Orb(X)) or |Orb(X))
= Y 1w NED = ) 9]
i=1 i=1
= |Ord(X)||95|
by applying Theorem 2.4.5. This completes the proof. 0

For a permutation group I' action on €2, i.e., all p; = 1x for 1 < i < m, we get

the famous Burnside’s Lemma by Theorem 2.4.6.

Corollary 2.4.4(Burnside’s Lemma) Let I' be a permutation group action on §).
Then
1
|0rb(Q)] = T > 129l

gel

A permutation multi-group 4% is transitive on X if |Orb(X)| = 1, i.e., for any
elements z,y € X, there is an element g € 4£ such that 29 = y. In this case, we

know formulae following by Theorems 2.5.5 and 2.5.6.

9] = 1XIFX).] and |9 = ) |@(p)]

P
PEYx

Similarly, a permutation multi-group %% is k-transitive on X if for any two
k-tuples (x1, 29, -+, x%) and (y1,va, -+, yx), there is an element g € ¥¥ such that
xd = y; for any integer i,1 < ¢ < k. It is well-known that Sym(X) is | X|-transitive

on a finite set X.

Theorem 2.4.7 Let I’ be a transitive group action on X and 9% a permutation
multi-group (I'; Op) with P = {p1,pa,- -+, pm} and p; € T for integers 1 < i < m.

Then for an integer k,
(1) (I'; X) is k-transitive if and only if (I'y; X \ {z}) is (k — 1)-transitive;
(ii) 9L is k-transitive on X if and only if (9¥). is (k—1)-transitive on X\ {z}.

Proof 1f T' is k-transitive on X, it is obvious that I' is (k — 1)-transitive on
X itself. Conversely, if I', is (k — 1)-transitive on X \ {x}, then for two k-tuples
(x1,m9, -+, x) and (y1, Yo, -+, Yx), there are elements g;,g, € I' and h € T', such
that

g1 __ 92 __ g1\h g2
af' =z, yi* =« and (27"
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for any integer 7,2 < i < k. Therefore,
-1
2 =y 1<i <kl

We know that I" is ‘k-transitive on X. This is the assertion of (7).

By definition, ¢¥ is k-transitive on X if and only if ' is k-transitive, i.e., (4¥),
is (k — 1)-transitive on X \ {x} by (i), which is the assertion of (7). O

Applying Theorems 2.4.5 and 2.4.7 repeatedly, we get an interesting conse-

quence for k-transitive multi-groups.

Theorem 2.4.8 Let 9% be a k-transitive multi-group and A C X with |A| = k.
Then

951 = [X[(1X] = 1) - (IX] = &+ 1](ZK)al-
O

Particularly, a k-transitive multi-group 4% with (9| = | X|(|X|—1) - (| X]| -
k—+1| is called a sharply k-transitive multi-group. For example, choose I' = Sym(X)
with | X| = n, i.e., the symmetric group S,, and permutations p; € S,, 1 <1i < m,
we get an n-transitive multi-group (S,; Op) with P = {p1,p2, -+, Pm }-

Let T' be a transitive group action on X and ¢¥ a permutation multi-group
(I'; Op) with P = {p1,p2, -+, Pm},p; € I for integers 1 < i < m. An equivalent
relation R on X is ¥¥-admissible if for V(z,y) € R, there is (z9,y7) € R for
Vg € 9¥. For a given set X and permutation multi-group 4%, it can be shown

easily by definition that

R=XxX or R={(z,z)lx € X}

are ¢f-admissible, called trivially 9% -admissible relations. A transitive multi-group
G is primitive if there are no ¢+ -admissible relations R on X unless R = X x X or
R ={(z,x)|z € X}, i.e., the trivially relations. The next result shows the existence

of primitive multi-groups.
Theorem 2.4.9 Every k-transitive multi-group 9G¥ is primitive if k > 2.

Proof Otherwise, there is a ¥¥-admissible relations R on X such that R #
X x X and R # {(x,z)|r € X}. Whence, there must exists (z,y) € R, z,y € X
and x # y. By assumption, ¥¥ is k-transitive on X, k > 2. For Vz € X, there is
an element g € 4¥ such that 29 = x and y? = 2. This fact implies that (z,z) € R
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for Vz € X by definition. Notice that R is an equivalence relation on X. For
Vz1, 20 € X, we get (21, 7), (z, 22) € R. Thereafter, (21, 22) € R, namely, R = X x X,
a contradiction. 0

There is a simple criterion for determining which permutation multi-group is

primitive by maximal stabilizers following.

Theorem 2.4.10 A transitive multi-group 9% is primitive if and only if there is an
element v € X such that p € (9%), for Vp € P and if there is a permutation multi-
group (H; 6p) enabling (95).; Op) < (H; Op) < GE, then (H; 6p) = (9E).; Op)

or G

Proof 1f (H; Op) be a multi-group with ((4¥),; Op) < (H; Op) < 4E for an

element x € X, define a relation
R={ (a%a%") | g €4, he M }.

for a chosen operation o € @p. Then R is a 4¥-admissible equivalent relation. In
fact, it is ¥¥-admissible, reflexive and symmetric by definition. For its transitive-
ness, let (s,t) € R, (t,u) € R. Then there are elements gy, g, € ¥4 and hy,hy € H
such that

s =9, t:xg10h17 t = 292, u = r92°h2

Hence, 92 egioh — z,ie., g5t ogioh, € H. Whence, g5 0 g1, g7 0gs € H. Let
g* =g1, h* = g o gy0hy. We find that s = 29", u = 29°°"". Therefore, (s,u) € R.
This concludes that R is an equivalent relation.

Now if ¢¥ is primitive, then R = {(x,z)|x € X} or R = X x X by definition.
Assume R = {(x,z)|x € X}. Then s = 29 and t = 29" implies that s = ¢ for
Vg € 9 and h € H. Particularly, for g = 1., we find that 2" = x for Vh € H, i.e.,
(M Op) = (91).: Op).

If R=X x X, then (z,2) € R for Vf € 4£. In this case, there must exist
g € 9 and h € H such that x = 29, 27 = 29°". Whence, g € (9£).; Op) < (H; Op)
and gl oh™ o f € (9L).;0p) < (H; Op). Therefore, f € H and (H;Op) =
(SD); Op).

Conversely, assume R to be a ¢¥-admissible equivalent relation and there is
an element z € X such that p € (4%), for Vp € P, (9%).; Op) < (H; Op) < 94
implies that (H; Op) = ((9%).; Op) or (9%); Op). Define
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H={he9f| (z,2") e R }.

Then (H; Op) is multi-subgroup of % which contains a multi-subgroup ((4%).; Op)
by definition. Whence, (H; Op) = ((9£).; Op) or GL.

If (H;0p) = ((9%).; Op), then w is only equivalent to itself. Since ¥¥ is
transitive on X, we know that R = {(z,z)|x € X}.

If (H;0p) = 9%, by the transitiveness of ¥¥ on X again, we find that R =
X x X. Combining these discussions, we conclude that ¢¥ is primitive. O

Choose p = 1x for each p € P in Theorem 2.4.10, we get a well-known result

in classical permutation groups following.

Corollary 2.4.5 A transitive group I is primitive if and only if there is an element
x € X such that a subgroup H with I'y < H < T hold implies that H = 1", or .

Now let T" be a permutation group action on a set X and P C II(X). We have
shown in Theorem 2.4.2 that (I'; Op) is a multi-group if P C I'. Then what can we
say if not all p € P are in I'? For this case, we introduce a new multi-group (f, Op)

on X, the permutation multi-group generated by P in I' by

F:{glop1920p2”'oplgl+l|gierapj€P7 1§Z§l+171§]§l}7

denoted by (T'%). This multi-group has good behavior like 4%, also a kind way of
extending a group to a multi-group. For convenience, a group generated by a set S

with the operation in I' is denoted by (S).

Theorem 2.4.11 Let I' be a permutation group action on a set X and P C I1(X).
Then

(1) <F§> = (I'U P)y, particularly, <F§> = 9L if and only if P C T;

(13) for any subgroup A of I, there exists a subset P C I" such that
(Ax; 0p) = (TX).

Proof By definition, for Va,b € I' and p € P, we know that

ao,b = apb.
Choosing a = b = 1, we find that

CLOpb = D
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ie, ' C r. Whence,
(TuP). c(I'Y).
Now for Vg; € I"'and p; € P, 1 < <[1+1,1<j <[, we know that

g1 ©py 92 Opy = Op; Ji+1 = G1P192P2 * * - Pigi+1,

which means that

(T%) c(TUP)p.
Therefore,

(I'E)y =T UP)p.

Now if (I'%) = 4F ie, (TUP). = T, there must be P C I'. According to

Theorem 2.4.2, this concludes the assertion (7).

For the assertion (ii), notice that if P =T\ A, we get that

(A%) = (AU P

by (7). Whence, there always exists a subset P C I' such that

(A%; 0p) = (T'%).
O

Theorem 2.4.12 Let I' be a permutation group action on a set X. For an integer
k> 1, there is a set P € II(X) with |P| < k such that (I'Y) is k-transitive.

Proof Notice that the symmetric group Sym/(X) is | X|-transitive for any finite
set X. If T is k-transitive on X, choose P = () enabling the conclusion true. Other-
wise, assume these orbits of I' action on X to be Oy, Oy, - - -, Oy, where s = |Orb(X)|.

Construct a permutation p € I1(X) by

p o= (1,22, -, 2s),
where z; € O;, 1 < i < s and let P = {p} C Sym(X). Applying Theorem 2.4.11,
we know that (I'}Y) = (I'U P),. is transitive on X with |P| = 1.
Now for an integer k, if (I'y!) is k-transitive with |P;| < k, let Of, 0%, - -+, O} be
these orbits of the stabilizer <F§1>y1

a permutation

ypooy, ACEIOD 0D XA\ {y1, 9, -+ i} Construct
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q = (ZlaZZa"'azl)a

where z; € O}, 1 <i <l and let P, = P, U{q}. Applying Theorem 2.4.11 again,

we find that <F§2>y1y2myk is transitive on X \ {y1, vz, -, yx}, where |Py| < |Py| + 1.

Therefore, <1"§2> is (k + 1)-transitive on X with |P;| < k+ 1 by Theorem 2.4.7.
Applying the induction principle, we get the conclusion. U

Notice that any k-transitive multi-group is primitive if & > 2 by Theorem 2.4.9.
We have a corollary following by Theorem 2.4.12.

Corollary 2.4.6 Let I' be a permutation group action on a set X. There is a set
P € II(X) such that (T'Y) is primitive.

§2.5 COMBINATORIAL ALGEBRAIC SYSTEMS

2.5.1 Algebraic Multi-System. An algebraic multi-system is a pair (JZ?,/ 5) with

A = U A, and 0 = U O,
i=1
such that for any integer 7,1 < i < m, (J;0;) is a multi-operation system. For
an algebraic multi-operation system (,QZ 5;) and an integer i,1 < ¢ < m, a homo-
morphism p; : (,Q//\: % ) — (J4; O;) is called a sectional projection, which is useful in
multi-systems.
Two multi-systems (JZZJ, o), (Q/%; 0>), where o = Lnjl A% and 0 = Lnjl OF

for k = 1, 2 are homomorphic if there is a mapping o : 42?1/% essz;such that op;
is a homomorphism for any integer 7,1 < ¢ < m. By this definition, we know the

existent conditions for homomorphisms on algebraic multi-systems following.

Theorem 2.5.1 There exists a homomorphzsm from an algebraic multi-system
(42?1/, 01) to (%, 03), where Ay = U O and O = U OF for k=1, 2 if and only

=1

if there are homomorphisms ny,ma, -+, Nm on (G (91) (2108, -, (oL 0L)
such that

77@"%;10%31 = ﬁj\%;lm,%ﬂjl

for any integer 1 <i,j5 < m.
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Proof By definition, if there is a homomorphism o : (42/%; ﬁl) — (Q/f; 52), then
op; is a homomorphism on (J4'; O}) for any integer 7,1 <1i < m.

On the other hand, if there are homomorphisms 7,79, -+, 0y, on (4% OF),
(A508), -+, (A5 0L), define a mapping o : (4; 01) — (a; O2) by o(a) = n(a)
if a € 2'. Then it can be checked immediately that o is a homomorphism. O

Let o : (Q/fz 0)) — (ggz{?; 0) be a homomorphism with a unit 1, for each oper-
ation o € 52. Similar to the case of multi-operation systems, we define the multi-
kernel Ker(o) by

Ker(o)={a€ @ | ofa) =1, for Yo € 0y }.
Then we have the homomorphism theorem on algebraic multi-systems following.

Theorem 2.5.2 Let (42?1/, o), (,Q%; 0y) be algebraic multi-systems, where oy =
U »*, O = U OF for k = 1,2 and o : (42?1/, o)) — (42?2/, 05) a onto homomor-
i=1

i=1

phism with a multi-group (Z?; O?) for any integer i,1 < i < m. Then there are
representation pairs (Ry, P) and (Ra, Py) such that
L I /1
(Ker(0);0,) ™™ (Z(0); 0p)
where (Z(02); O2) = U (I 02).
i=1
Proof By definition, we know that of 1 : (J';0)) — (H,; 0%,) is also an
onto homomorphism for any integer 7,1 < ¢ < m. Applying Theorem 2.2.2 and
Corollary 2.2.1, we can find representation pairs (R}, P!) and (R2, P?) such that
(A 0}) . (A Oo)
(Ker(o] 1); OF) (Z2,.,; O?

(R},PY) o(i)} Datiy) (B PL)

Notice that . .
=\ AF, 0,=|]O!
i=1 i=1
for k =1,2 and
Ker(0) = U Ker (o 1)
i=1

We finally get that

(i) | o (O
(Ker(o); 0) ™7 (Z(02):05) "
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with . .
ék:URf and ﬁk:Uﬁf
i=1

i=1

for k=1 or 2. O

2.5.2 Diagram of Multi-System. Let (A;o0) be an algebraic system with
operation “o” . We associate a labeled graph G*[A] with (A;0) by

V(GHA]) = 4,
E(GY[A]) = {(a, c) with label ob |if aob = c for Va,b,c € A},

as shown in Fig.2.5.1.

[acb=c] °

a C

Fig.2.5.1

The advantage of this diagram on systems is that we can find acb = ¢ for any
edge in G¥[A], if its vertices are a,c with a label ob and vice versa immediately. For

example, the labeled graph G*[Z,] of an Abelian group Z, is shown in Fig.2.5.2.

+0( 0 1 1 )40
13
3 +2 +2N 3T +1
+14
42
to
ol 3 +1 2 110
Fig.2.5.2

Some structure properties on these diagrams G[A] of systems are shown in the

following.

Property 1. The labeled graph GL[A] is connected if and only if there are no
partition A = Ay |J As such that for Ya; € Ay, Yas € Ay, there are no definition for

aj o ay in (A;o).
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If GL[A] is disconnected, we choose one component C' and let 4; = V(C).
Define Ay, = V(G*[A]) \ V(C). Then we get a partition A = A;|J A, and for

Va, € Ay, Yay € As, there are no definition for a; o ay in (A4;0), a contradiction.

Property 2. If there is a unit 14 in (A;0), then there exists a verter 14 in GL[A]
such that the label on the edge (14,x) is ox.

For a multiple 2-edge (a, b) in a directed graph, if two orientations on edges are
both to a or both to b, then we say it a parallel multiple 2-edge. If one orientation

is to a and another is to b, then we say it an opposite multiple 2-edge.

Property 3. ForVa € A, if a;' exists, then there is an opposite multiple 2-edge

(14,a) in GE[A] with labels oa and oa*, respectively.

Property 4. ForVa,b € A if aob = boa, then there are edges (a,x) and (b, z),
x € A in (A;0) with labels w(a,z) = ob and w(b, z) = oa in GL[A], respectively.

Property 5. If the cancelation law holds in (A;0), i.e., for¥Va,b,c € A, if aob = aoc
then b = c, then there are no parallel multiple 2-edges in G*[A].

These properties 2 — 5 are gotten by definition. Each of these cases is shown in
(1),(2),(3) and (4) in Fig.2.5.3.

a
a b /\
oaq ob
oa oaq~! ob oa

Fig.2.5.3

Now we consider the diagrams of algebraic multi-systems. Let (JZ/Z 0 ) be an
algebraic multi-system with
o =) and 6= O
i=1 i=1

such that (477; O;) is a multi-operation system for any integer i,1 < i < m, where
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the operation set O; = {o;;|1 < j < n;}. Define a labeled graph G*[«/] associated
with (42?,/ 0) by

3

Gl = U U 6*[(#is o)

=17
where GL[(7;0,)] is the associated labeled graph of (J;0;;) for 1 < i < m,

1 < j < ny;. The importance of G¥[«/] is displayed in the next result.
Theorem 2.5.3 Let (fﬁszz 6"~1), (42/%;, 52) be two algebraic multi-systems. Then
(h; 01) = (o 6))

if and only iof

Glla) = G*[oh).

Proof If (Q/fz ﬁl) = (ggz{?; 6"~2), by definition, there is a 1 — 1 mapping w : o —
eg%;with W : 51 — 52 such that for Va, b € esz?fand o] € 51, there exists an operation
0y € Oy with the equality following hold,

w(a oy b) = w(a)os w(b).

Not loss of generality, assume a oy b = ¢ in (% 01). Then for an edge (a,c¢) with a

label o;b in G [52/7\;], there is an edge (w(a),w(c)) with a label oow(b) in GL[Q};], ie.,
w is an equivalence from G%[o#] to GL[ah). Therefore, GE[ot] = GL[a).

Conversely, if GLla] = GF[ah), let @ be a such equivalence from GL[<] to

GL|ah)], then for an edge (a,c) with a label o1b in G, by definition we know

that (w(a),w(c)) with a label w(o;)w(b) is an edge in G*[a%]. Whence,
w(a 01 b) = w(a)w(or)w(b),
i.e., w: @ — b is an isomorphism from (Q/f; 0)) to (ggz{?; 05). O

Generally, let (52?{, 51), (52?;, 52) be two algebraic multi-systems associated with

labeled graphs G [JZZJ],GL[QZ]. A homomorphism u : GL[@ — GL[Q};] is a map-
ping ¢ : V(GE[A]) — V(GE[ah)) and o : €y — Oy such that w(a,c) = (i(a), (c))

with a label ¢(0)c(b) for V(a,c) € E(G*|«]) with a label ob. We get a result on

homomorphisms of labeled graphs following.

Theorem 2.5.4 Let (,QZV, o), (42?2/, 0y) be algebraic multi-systems, where oy =
U sk, Op = U OF for k = 1,2 and ¢ : (% 0,) — (Q/KZ 0») a homomorphism.

i=1 i=1
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Then there is a homomorphism 1 : G¥|at)| — G [at] from GLA] to G [at) induced
by .

Proof By definition, we know that o : V(GF[#]) — V(GL|a4]). Now if
(a,¢) € E(GEa#]) with a label ob, then there must be a o b = c¢ in (: 6}).
Hence, t(a)i(o)e(b) = t(c) in (,Qf%;, 03), where (o) € O, by definition. Whence,
(t(a),i(c)) € E(GF[o#]) with a label t(o)u(b) in GE[aA], i.e., ¢ is a homomorphism
between G|« ] and GE[<7),]. Therefore, ¢ induced a homomorphism from G%[« ]
to GLlah)]. O

Notice that an algebraic multi-system (42?: % ) is a combinatorial system %t with
an underlying graph I', called a I'-multi-system, where

V(D) = (AL < < m),

E(T) = {(J, #)|3a € b € H, with (a,0) € E(GF[]) for 1 <i,j < m}.

We obtain conditions for an algebraic multi-system with a graphical structure

in the following.

Theorem 2.5.5 Let (JzZﬁ’N) be an algebraic multi-system. Then it is

(1) a circuit multi-system if and only if there is arrangement 76,1 <i < m

for 74, 75, - - -, H;, such that
A (A A0, A (A, #0
for any integer i(mod m), 1 <i <m but
YAREE

for integers j # i —1,i,i+ 1(mod m);
(11) a star multi-system if and only if there is arrangement 7,1 < i < m for
IO, 5, - -, I, such that

A, (A4, #0 but A, (A =0

for integers 1 < i,5 < m,i # j.
(1ii) a tree multi-system if and only if any subset of o/ is not a circuit multi-

system under operations in O.
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Proof By definition, these conditions really ensure a circuit, star, or a tree
multi-system, and conversely, a circuit, star, or a tree multi-system constrains these

conditions, respectively. 0

Now if an associative system (.47;0) has a unit and inverse element a_! for any
element a € o/, i.e., a group, then for any elements x,y € 7, there is an edge
(v,y) € E(GF[«/]). In fact, by definition, there is an element z € & such that
;' oy = 2. Whence, z o z = y. By definition, there is an edge (z,y) with a label
oz in GL[&7], and an edge (y, ) with label 2. Thereafter, the diagram of a group
is a complete graph attached with a loop at each vertex, denoted by K|[<7;0]. As
a by-product, the diagram G* [é] of a m-group G is a union of m complete graphs
with the same vertices, each attached with m loops.

Summarizing previous discussion, we can sketch the diagram of a multi-group

as follows.
Theorem 2.5.6 Let (,Q/Zﬁ) be a multi-group with o = U 4, 0 = Uao;, O, =
i=1 =1
{0ij;1 < j < n;} and (F;0i;) a group for integers i,5, 1 < i < m,1 < i < n,.
Then its diagram G*[o/] is
G = | K[ 0y).
i=1j=1
O

Corollary 2.5.1 The diagram of a field (€; 4+, 0) is a union of two complete graphs

attached with 2 loops at each vertew.

Corollary 2.5.2 Let (<7 0) be a multi-group. Then G* (<7 is hamiltonian if and
only if 6r is hamiltonian.
Proof Notice that 4t is an resultant graph in G*[«7] shrinking each U K[7; 0,5

j=1
to a vertex 7 for 1 < i < m by definition. Whence, %t is hamiltonian if G (o] is

hamiltonian.

Conversely, if 1 is hamiltonian, we can easily find a hamiltonian circuit in
G*[o/] by applying Theorem 2.6.6. O

2.5.3 Cayley Diagram. Besides these diagrams of multi-systems described in

Theorem 2.5.5, these is another diagram for a multi-system of finitely generated,
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called Cayley diagrams of multi-systems defined in the following.

A multi-system (,QZ % ) is finitely generatedif there are finite elements aq, as, - - -, as
in .« such that for Yz € ,QZ

€r = a.’El Ol awg 02 ”'Oll a:E”

where a,, € {aj,as,---,as} and o; € 0. Denoted by o = <a1,a2, R 5>
Let (JZ/Z % ) be a finitely generated multi-system with a generating set S , 0 =
{o;]1 <i < m}. A Cayley diagram Cay(g: S) of (fﬁsz’\jﬁ) is defined by

V(Cay(ef - 8)) = o,
E(Cay(egffv: S)) = {(g, h) with a label g~*o; h | Ji,g ' o; h € S, 1 <i < m}.

For the case of multi-groups (42?,/ % ), some elementary properties are presented
in [Mao3], particularly, if (QZ % ) is a group, these Cayley diagrams are nothing but
the Cayley graphs of finite groups introduced in graph theory following.

Let T’ be a finite generated group and S C I' such that 1pr &€ S and S~! =
{z7 Yo € 8} = S. A Cayley graph Cay(T' : S) is a simple graph with vertex set
V(G) = T and edge set E(G) = {(g,h)|g"'h € S}. By the definition of Cayley
graphs, we know that a Cayley graph Cay(I' : S) is complete if and only if S =
'\ {1r} and connected if and only if I = (S).

Theorem 2.5.7 A Cayley graph Cay(' : S) is vertez-transitive.

Proof For Vg € I', define a permutation ¢, on V(Cay(I': S)) =TI by (,(h) =
gh,h € I'. Then (, is an automorphism of Cay(I' : S) for (h,k) € E(Cay(I' : 5)) =
Bk € S = (gh) H(gh) € S = (G(h). ¢, (k) € E(Cay(T : 9)).

Now we know that (y,-1(h) = (kh™')h = k for Vh, k € T. Whence, Cay(T : S)
is vertex-transitive. U

A Cayley graph of a finite group I' can be decomposed into 1-factors or 2-factors

in a natural way as stated in the following result.

Theorem 2.5.8 Let G be a vertex-transitive graph and let H be a reqular subgroup

of AutG. Then for any chosen vertex x,z € V(Q), there is a factorization

G = b @' | P b @y,

yeNG(w)7|H(z,y)‘:1 yeNG(m)y‘H(z,y)|:2
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for G such that (z,y)" is a 2-factor if |H(, | =1 and a 1-factor if |H, | = 2.

Proof We prove the following claims.

Claim 1. Vz € V(G),2" = V(GQ) and H, = 1y.

Claim 2. ForY(z,y), (u,w) € E(G), (z,y)T N(u,w)? =0 or (z,y)" = (u,w)?.
Claims 1 and 2 are holden by definition.

Claim 3. ForV(z,y) € E(G),|Huy|l=1 or 2.

Assume that |H, )| # 1. Since we know that (z,y)" = (z,y), i.e., (z",y") =
(z,y) for any element h € H,,). Thereby we get that 2" =z and y" =y or 2" =y
and y" = z. For the first case we know h = 1y by Claim 1. For the second, we get
that 2" = z. Therefore, h? = 1y .

Now if there exists an element g € H(;,)\{1x,h}, then we get 29 = y = 2" and

y9 = x = y". Thereby we get ¢ = h by Claim 1, a contradiction. So we get that
‘H(wﬂ)‘ = 2

Claim 4. For any (z,y) € E(G), if |Hy| = 1, then (z,y)" is a 2-factor.

Because 2 = V(G) C V({(z,y)")) C V(G), so V({(z,y)")) = V(G). There-
fore, (x,y)" is a spanning subgraph of G.

Since H acting on V/(G) is transitive, there exists an element h € H such that
2" = y. Tt is obvious that o(h) is finite and o(h) # 2. Otherwise, we have |H(, )| >
2, a contradiction. Now (z,y)® = zzhzh”...zh" "™
G. Consider the right coset decomposition of H on (h). Suppose H = LSJ (h) a;,
(hya;(h)ya; =0,1f i # j, and a; = 1y. -

Now let X = {ay, as, ..., as}. We know that for any a,b € X, ((h) a) (((h)b) =0
if a # b. Since (z,y)"* = ((z,5)"™)* and (z,y)"* = ((z,y)™)? are also circuits,
if V({(z,y)"* )NV ({(z,y)"")) # 0 for some a,b € X,a # b, then there must
be two elements f,g € (h) such that 2/¢ = 29° . According to Claim 1, we get
that fa = gb, that is ab™! € (h). So (h)a = (h)b and a = b, contradicts to the

assumption that a # b.

x is a circuit in the graph

Thereafter we know that (x,4)” = |J (z,y)™? is a disjoint union of circuits.
acX
So (z,y)" is a 2-factor of the graph G.

Claim 5. For any (z,y) € E(G), (z,y)" is an 1-factor if |H(, )| = 2.
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Similar to the proof of Claim 4, we know that V (((z,y)?)) = V(G) and (z,y)”
is a spanning subgraph of the graph G.

Let Hy,,) = {1y, h}, where 2" = y and y" = z. Notice that (z,y)* = (z,y)
for Va E H,,). Consider the coset decomposition of H on H(,,), we know that
H = Usz i, where Hiy)bi(VHyb; = 0if @ # 5,1 < 4,5 < t. Now let
L= {H(xy b, 1 <i<t}. We get a decomposition

(z,9)" = J(z,9)"
bel

for (z,y)". Notice that if b = H, ,)b; € L, (z,y)" is an edge of G. Now if there exist
two elements ¢,d € L,c = H ) f and d = H(,,g, [ # g such that V({(x,v)%))
V({(z,y)*)) # 0, there must be 2/ = 29 or o/ = y9. If 2/ = 29, we get f =g
by Claim 1, contradicts to the assumption that f # g. If o/ = y9 = 2", where
h € Hey, we get f = hg and fg=' € Hey), 50 Hgyyf = Hyg. According to
the definition of L, we get f = g, also contradicts to the assumption that f # g.
Therefore, (z,y) is an 1-factor of the graph G.

Now we can prove the assertion in this theorem. According to Claim 1- Claim
4, we get that

G = b @' | P b @y

YENG (), H(4,y)|=1 YENG(2),|H(s,y)|=2

for any chosen vertex z,z € V(G). By Claims 5 and 6, we know that (z,y)

a 2-factor if |H,)| = 1 and is a 1-factor if |H(,,)| = 2. Whence, the desired

factorization for GG is obtained. 0
By Theorem 2.5.8, we can always choose the vertex x = 1p and H the right

regular transformation group on I' for a Cayley graph Cay(I" : .S). Whence, we find

a factorization following

Theorem 2.5.9 Let I' be a finite group with a subset S,S™' =S, 1 € S and H is

the right transformation group on I'. Then there is a factorization

G=| P )" |P| P rns)"

s€S,82#1 s€8,s2=1r
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for the Cayley graph Cay(I' : S) such that (1, s)? is a 2-factor if s> # 1p and
1-factor if s> = 1p.

Proof For any h € Hy. ), if h # 1p, then we get that 1ph = s and sh = 1r,
that is s? = 1p. According to Theorem 2.5.8, we get the factorization for the Cayley
graph Cay(I': 9). O

More properties of Cayley graphs can be found in referenceS [Xuml]| and
[XHL1]. But for multi-groups, few results can be found for Cayley diagrams of
multi-groups unless the result following appeared in [Mao3]. So to find out such

behaviors for multi-systems is a good topic for researchers.

Theorem 2.5.10 Let Cay(f : §) be a Cayley diagram of a multi-group (f, 5) with
=T, 6={c]1 <i<m}andS=1JS;, ' =(S;0;) for1 <i<m. Then
i=1 =1

Cay(T : S) = Lnj Cay(T; : S;).
i=1

§2.6 REMARKS

2.6.1 These conceptions of multi-group, multi-ring, multi-field and multi-vector
space are first presented in [Mao5]-[Mao8] by Smarandache multi-spaces. In Section
2.2, we consider their general case, i.e., multi-operation systems and extend the
homomorphism theorem to this multi-system. Section 2.3 is a generalization of
works in [Mao7]| to multi-modules. There are many trends or topics in multi-systems
should be researched, such as extending those of results in groups, rings or linear

spaces to multi-systems.

2.6.2 Considering the action of multi-systems on multi-sets is an interesting prob-
lem, which requires us to generalize permutation groups to permutation multi-
groups. This kind of action, i.e., multi-groups on finite multi-sets can be found
in [Mao20]. The construction in Theorems 2.4.1 and 2.4.2 can be also applied to
abstract multi-groups. But in fact, an action of a multi-group acting on a multi-set
dependent on their combinatorial structures. This means general research on the

action of multi-groups must consider their underlying labeled graphs, which is a



90 Chap.2 Algebraic Combinatorics

candidate topic for postgraduate students.

2.6.3 The topic discussed in Section 2.5 can be seen as an application of com-
binatorial notion to classical algebra. In fact, there are many research trends in

combinatorial algebraic systems, in algebra or combinatorics. For example,
(1) Given an underlying combinatorial structure G, what can we say about its
algebraic behavior?

(2) What can we know on its graphical structure, such as in what condition it

has a hamiltonian circuit, or a 1-factor?
(3) When it is reqular?

..., ete..

2.6.4 For Cayley diagrams C’ay(esszv : §) of multi-systems (,;zz/ 5;), particularly,
multi-groups, there are many open problems not be solved yet. For example,

(1) What can we know on their structure?

(2) Determine those properties of Cayley diagrams C’ay(esszv: §) which Cayley
graphs of finite groups have.

..., ete..



CHAPTER 3.

Topology with Smarandache Geometry

There 1s always one good, that is knowledge; there is only one evil, that
1S 1gnorance.

By Socrates, an ancient Greek philosopher.

A Smarandache geometry is a geometrical Smarandache system, which
means that there is a Smarandachely denied axiom in this geometri-
cal system, i.e., both validated and invalidated, or just invalidated but
in multiple distinct ways, which is a generalization of classical geome-
tries. For example, these Fuclid, Lobachevshy-Bolyai-Gauss and Rie-
mannian geometries maybe united altogether in a same space by some
Smarandache geometries. A Smarandache geometry can be either par-
tially Euclidean and partially non-Euclidean, or non-Euclidean connected
with the relativity theory because they include Riemannian geometry in
a subspace, also with the parallel universes in physics because they com-
bine separate spaces into one space too. A Smarandache manifold is a
topological or differential manifold which supports a Smarandache ge-
ometry. For an introduction on Smarandache manifolds, Sections 3.1
and 3.2 present the fundamental of algebraic topology and differential
on Euclidean spaces for the following discussion. In Section 3.3, we de-
fine Smarandache geometries, also with some well-known models, such as
Iseri’s s-manifolds on the plane and Mao’s map geometries on surfaces.
Then a more general way for constructing Smarandache manifolds, i.e.,
pseudo-manifolds is shown in Section.3.4. Finally, we also introduce dif-

ferential structure on pseudo-manifolds in this chapter.
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§3.1 ALGEBRAIC TOPOLOGY

3.1.1 Topological Space. A topology on a set S is a collection € of subsets of S

called open sets such that

(T1) 0 € € and S € €
(T2) if Ul, U, € (f’ then U, NU, € (g;

(T3) the union of any collection of open sets is open.

The pair (S5, %) is called a topological space.

Example 3.1.1 Let R be the set of real numbers. We have knows these open
intervals (a, b) for a < b,a,b € R in elementary mathematics. Define open sets in R
to be a union of finite open intervals. Then it can be shown conditions T1-T3 are

hold. Consequently, R is a topological space.

A set V is closed in a topological space S if S\ V' is opened. If A is a subset of
a topological space S, the relative topological on A in S is defined by

¢1={UNA|VU €% }.
Applied these identities

(i) 0NA=0,SNA=A4
() (UhNnUx))NA=(UNANU;NA);
(i) Ul N 4) = (Ul 14

o

in Boolean algebra, we know that %4 is indeed a topology on A, which is called a
subspace with topology %4 of S.

For a point u in a topological space S, its an open neighborhood in S is an open
set U such that v € U and a neighborhood in S is a set containing some of its open
neighborhoods. Similarly, for a subset A of S, a set U is an open neighborhood or
neighborhood of A is U is open itself or a set containing some open neighborhoods
of that set in .S. A basisin S is a collection A of subsets of S such that S = UgezB
and By, By € #,x € B; N By implies that dB3 € 4 with x € B3 C B; N By hold.

A topological space S is called Hausdorffif each two distinct points have disjoint
neighborhoods and first countable if for each p € S there is a sequence {U,} of
neighborhoods of p such that for any neighborhood U of p, there is an n such that

U, C U. A topological space is called second countable if it has a countable basis.
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For a point sequence {z,} in a topological space S, if there is a point x € S
such that for every neighborhood U of u, there is an integer N such that n > N
implies z,, € U, then we say that {u,} converges to u or u is a limit point of {u,}.

Let S and T be topological spaces with ¢ : S — T a mapping. ¢ is continuous
at u € S if for every neighborhood V' of ¢(u), there is a neighborhood U of u such
that p(U) C V. Furthermore, if ¢ is continuous at any point u in S, ¢ is called a

continuous mapping.

Theorem 3.1.1 Let R, S and T be topological spaces. If f: R— S and g:S — T
are continuous at x € R and f(x) € S, then the composition mapping gf : R — T

1s also continuous at x.

Proof Since f and g are respective continuous at z € R and f(z) € S, for
any open neighborhood W of point g(f(z)) € T, g~*(W) is opened neighborhood of
f(z)in S. Whence, f~1(g~1(W)) is an opened neighborhood of x in R by definition.

Therefore, g(f) is continuous at x. O

The following result, usually called Gluing Lemma, is very useful in constructing

continuous mappings on a union of spaces.

Theorem 3.1.2 Assume that a space X is a finite union of closed subsets: X =
U Xi. If for some space Y, there are continuous maps f; : X; — Y that agree on
i=1

overlaps, i.e., filx.nx, = filx.nx, for alli,j, then there exists a unique continuous

f: X =Y with f|x, = fi for alli.
Proof Obviously, the mapping f defined by
f(x) = fi(z), zeX;

is the unique well defined mapping from X to Y with restrictions f

x, = [; hold for
all 7. So we only need to establish the continuity of f on X. In fact, if U is an open
set in Y, then

n

o) = X O) =X 7o)

= YN oy =N i) = U £ w).

i=1 i=1 i=1
By assumption, each f; is continuous. We know that f;'(U) is open in X;.

Whence, f~1(U) is open in X, i.e., f is continuous on X. O
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A collection C C 2% is called a cover of X if
Uc = X.
cec
If each set in C is open, C is called an opened cover and if |C| is finite, it is called a
finite cover of X. A topological space is compact if there exists a finite cover in its any
opened cover and locally compact if it is Hausdorff with a compact neighborhood for
its each point. As a consequence of Theorem 3.1.2, we can apply the gluing lemma

to ascertain continuous mappings shown in the next.

Corollary 3.1.1 Let {A1, As,---, A,} be a finite opened cover. If a mapping f :

X — Y s continuous constrained on each A;, 1 <1 < n, then f is a continuous
mapping.

Let S and T be two topological spaces. We say that S is homeomorphic to
T if there is a 1 — 1 continuous mapping ¢ : S — T such that its inverse ¢! :
T — § is also continuous. Such mapping ¢ is called a homeomorphic or topological
mapping. An invariant of topological spaces is said topological invariant if it is not
variable under homeomorphic mappings. In topology, a fundamental problem is to
classify topological spaces, or equivalently, to determine wether two given spaces are
homeomorphic. Certainly, we have known many homeomorphic spaces, particularly,

spaces shown in the following example.
Example 3.1.2 Each of the following topological space pairs are homeomorphic.
(1) A Euclidean space R" and an opened unit n-ball B" = {(zy, zq, - - -, T,) |23+
x4+ ad <1}
(2) A Euclidean plane R? and a unit sphere S* = {(x,y, 2)|2? + y* + 2% = 1}
with one point (g, Yo, 20) on it removed;
(3) A unit circle with an equilateral triangle.

For example, a homeomorphic mapping f from B™ to R" for case (1) is defined

by
fley,zo, - my) = (T1, 29, Tp)
1—\/1'%+1’%+...+x%
for V(z1, 29, -+, 2,) € B" with an inverse
f_l(il?bil?z,---,zn)— (1,29, ,2y)

B R ]



Sec.3.1 Topological Spaces 95

for V(x1, 29, -+, x,) € R™

Let (xo,Yo,20) be the north pole with coordinate (0,0,1) and the Euclidean
plane R? be a plane containing the circle { (z,y) | 22 + y?> = 1}. Then a homeo-
morphic mapping g from S? to R? is defined by

g(:l?,y,z) = (:7 1— 2

for case (2). Readers are required to find a homeomorphic mapping for case (3).
3.1.2 Metric Space. A metric space (M;p) is a set M associated with a metric

function p: M x M — RT = {z | x € R,z > 0} with conditions following for p hold
for Vo,y,z € M.

(1)(definiteness) p(x,y) =0 if and only if x = y;
(ii) (symmetry) p(z,y) = p(y, v);

(i) (triangle inequality) p(x,y) + p(y, 2) > p(z, 2).

For example, the standard metric function on a Euclidean space R" is defined

n

Z(% - yi)

i=1

p(x,y) =

for Vx = (z1, 29, -+, x,) and y = (y1,y2, -+, yn) € R™
Let (M ;p) be a metric space. For a given number ¢ > 0 and Vp € M, the
€ — disk on p is defined by

Dc(p)={qeM]|plgp) <e}

A metric topology on (M;p) is a collection of unions of such disks. Indeed, it
is really a topology on M with conditions (T1)-(T3) hold.

In fact, the conditions (T1) and (T2) are clearly hold. For the condition (T3), let
x € D.,(x1)N De,(x9) and 0 < €, = min{e; — p(x, x1), €2 — p(x, x2)}. ThenD, (x) C
D¢, (z1) N D, (x5) since for Vy € D, (x),

py, 1) < ply, =) + p(z, 21) < €& + p(a, 71) < 1.
Similarly, we know that p(y,x) < €. Therefore, D, (x) C D, (x1) N D, (x2),
we find that
DEl(Il)ﬂDéz(I2) = U DEI(SL’),

€Dy (x1)NDey (22)
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i.e., it enables the condition (T3) hold.

Let (M; p) be a metric space. For a point x € M and A C M, define p(x, A) =
inf{d(z,a)|la € A} if A # 0, otherwise, p(z,0) = oo. The diameter of a set A C M
is defined by diam(A) = sup{p(z,y)|z,y € A}. Now let x1, 29, -+, x,, - be a point
sequence in a metric space (M; p). If there is a point 2 € M such that for every ¢ > 0
there is an integer N implies that p(z,,x) < € providing n > N, then we say the
sequence {x,} converges to x or x is a limit point of {x,}, denoted by 71113010 Ty = T.

The following result, called Lebesgue lemma, is a useful result in metric spaces.

Theorem 3.1.3(Lebesgue Lemma) Let {V,|a € II} be an opened cover of a compact
metric space (M; p). Then there exists a positive number \ such that each subset A
of diameter less than X is contained in one of member of {V,|a € I1}. The number

A is called the Lebesgue number.

Proof The proof is by contradiction. If there no such Lebesgue number A,
choosing numbers €1, €y, -+ with lim ¢, = 0, we con construct a sequence A; D
Ay D -+ with diameter diam(A,,) n:_):@, but each A,, is not a subset of one member
in {V,|a € I1} for n > 1. Whence, nll—{go diam(A,) = 0. Choose a point z, in each

A, and x € () A;. Then lim z, = x.

i>1 n—oo
Now let z € V,,, and D (z) an e-disk of x in V,,. Since lim diam(A,) = 0, let
m be a sufficient large number such that diam(A,,) < ¢/2 and z,, € D,5(x). For
Yy € A,,, we find that

p(y,x) < py,Tm) + p(Tm, T)

< diam(A4,,) + % <€,

which means that y € D.(x) C V,,, i.e., A, C V,,, a contradiction. O

3.1.3 Fundamental Group. A topological space S is connected if there are
no open subspaces A and B such that S = AU B with A, B # 0. A useful way
for characterizing connectedness is by arcwise connectedness. Certainly, topological

spaces are arcwise connected in most cases considered in topology.

Definition 3.1.1 Let S be a topological space and I = [0,1] C R. An arc a in S
is a continuous mapping a : I — S with initial point a(0) and end point a(1), and

S is called arcwise connected if every two points in S can be joined by an arc in S.
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An arc a : 1 — S is a loop based at p if a(0) = a(l) = p € S. A degenerated loop
e: ] —x €S8, ie, mapping each element in I to a point x, usually called a point

loop.

For example, let G be a planar 2-connected graph on R? and S is a topological
space consisting of points on each e € E(G). Then S is a arcwise connected space
by definition. For a circuit C' in GG, we choose any point p on C. Then C' is a loop
e, in S based at p.

Definition 3.1.2 Let a and b be two arcs in a topological space S with a(1) = b(0).
A product mapping a - b of a with b is defined by

b() a(2t), if 0<t<i,
a - =
b2t —1), if 1<t<

and an inverse mapping a = a(l —t) by a.

Notice that a-b : I — S and @ : I — S are continuous by Corollary 3.1.1.
Whence, they are indeed arcs by definition, called the product arc of a with b and
the inverse arc of a. Sometimes it is needed to distinguish the orientation of an arc.
We say the arc a orientation preserving and its inverse @ orientation reversing.

Now let a,b be arcs in a topological space S. Properties following are hold by

definition.
(P1) @ = «;
(P2) b-@ = a- b providing ab existing;

(P3) e, = e,, where x =¢e(0) = e(1).

Definition 3.1.3 Let S be a topological space and a,b : I — S two arcs with
a(0) = b(0) and a(1) = b(1). If there exists a continuous mapping

H:IxI—S

such that H(t,0) = a(t), H(t,1) = b(t) forVt € I, then a and b are said homotopic,
denoted by a ~ b and H a homotopic mapping from a to b.

Theorem 3.1.4 The homotopic ~ is an equivalent relation, i.e, all arcs homotopic

to an arc a is an equivalent arc class, denoted by |al.
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Proof Let a, b, c be arcs in a topological space S, a >~ b and b ~ ¢ with homotopic
mappings H; and Hy. Then

(1) a~aifchoose H:Ix1— Sby H(ts)=a(t) for Vs € I.

(1i) b ~ a if choose H(t,s) = Hi(t,1 — s) for Vs,t € I which is obviously
continuous;

(i11) a ~ c if choose H(t,s) = Hy(x,2t)) for 0 < t < 5 and Hy(x,2t — 1) for
% <t <1 by applying the gluing lemma for the continuity. 0
Theorem 3.1.5 Let a,b,c and d be arcs in a topological space S. Then

(i) a~bifa~b

(i) a-b~c-difa~b, c~d witha-c an arc.

proof Let Hy be a homotopic mapping from a to b. Define a continuous mapping
H :1x1I — Sby H(ts) = Hi(l —t,s) for Vt,s € I. Then we find that
H'(t,0) = a(t) and H'(t,1) = b(t). Whence, we get that @ ~ b, i.e., the assertion
(4)-

For (i), let Hy be a homotopic mapping from ¢ to d. Define a mapping H :
IxI—Shby

t
t

—_ N

H(t ) H1(2t, 8), if
78 =
Hy(2t —1,5), if

o= O

IA A
IA A

Notice that a(l) = ¢(0) and Hy(1,s) = a(l) = ¢(0) = H(0,s). Applying

Corollary 3.1.1, we know that H is continuous. Therefore, a-b >~ ¢ - d. 0

Definition 3.1.4 For a topological space S and xg € S, let m (S, zo) be a set con-
sisting of equivalent classes of loops based at xy. Define an operation o in (S, zg)
by

[a]o[bt] =[a-b] and [a]™' =[a""].

Then we know that (S, zo) is a group shown in the next.

Theorem 3.1.6 (S, xg) is a group.

Proof We check each condition of a group for (S, xy). First, it is closed under
the operation o since [a] o [b] = [a - b] is an equivalent class of loop a - b based at
for V[al, [b] € m1(S, x0).
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Now let a,b,c: I — S be three loops based at xy. By Definition 3.1.2, we know

that
a(4t), if 0<t<4,
(a-b)-c(t) =< b4t —1), if L<r<l
c(2t—1), if $<t<1
and
a(2t), if 0<t<4,
a-(b-o)(t) =4 b(dt—2), if L<t<3,
c(4t—3), if 2<t<1
Consider a function H : I x I — S defined by
a(75). it 0<t<
H(t,s) =4 b4t —1—s), if = <p< 52

t
t
c(1 -0y i =2 <<,

Then H is continuous by applying Corollary 3.1.1, H(¢,0) = ((a - b) - ¢)(t) and
H(t,1) = (a-(b-c))(t). Consequently, we know that ([a] o [b]) o [¢] = [a] o ([b] o [¢]).
Now let e,, : I — xy € S be the point loop at xy. Then it is easily to check

that
a-a>~eg, a0 e,
and
€ A2 A, A€y A
We conclude that (.S, zo) is a group with a unit [e,,] and an inverse element
[a™!] for any [a] € 71(S, zo) by definition. O

Let S be a topological space, xg,z; € S and £ an arc from zy to x;. For
Vla] € m(S,x), we know that £ o [a] o £7! € (S, 71) (see Fig.3.1.1 below).
Whence, the mapping £4 = £ o[a] o £71: 7(S, 29) — 71 (S, 7).

-
T

/"

Zo

Fig.3.1.1
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Theorem 3.1.7 Let S be a topological space. If xg,x1 € S and £ is an arc from x
to xy in S, then m (S, xo) = m (S, z1).

Proof We have known that £, : m(S,z9) — m(S,21). Now for [a],[b] €
(S, z0), [a] # [b], we find that

£4(a)) = £l 0 £71 £ £ o) 0 £71 = £4([t]),
ie., £4is a1l — 1 mapping. Let [¢] € m (S, zp). Then

£ o £4(d) = £olaoL™ o LofoL™ = Lolaoe, ofa]o £
= £oldoft]o£™ = £y(la]o b]).

Therefore, £4 is a homomorphism.

Similarly, £ ; = £ o[a]o £ is also a homomorphism from 7 (S, x1) to m(

0)
0)

and (S, x1). Whence, £4 is an isomorphism. O

S,x
and i;l ofy =le,,], £x0L," = [e,,] are the identity mappings between (S, x

Theorem 3.1.7 implies that all fundamental groups in an arcwise connected
space S are isomorphic, i.e., independent on the choice of base point x5. Whence,
we can denote its fundamental group by m(S). Particularly, if m;(S) = {[es,]}, S is
called a simply connected space. The Euclidean space R"™ and n-ball B™ for n > 2
are well-known examples of simply connected spaces.

For a non-simply connected space S, to determine its fundamental group is com-
plicated. For example, the fundamental group of n-sphere S™ = { (1, 2, - -, x,) | 23+

i+ =11%is

v, if > 2,

seeing [Amrl] or [Masl] for details.

Theorem 3.1.8 Let G be an embedded graph on a topological space S and T a
spanning tree in G. Then m(G) = (T +e|e€ E(G\T) ).

Proof We prove this assertion by induction on the number of n = |E(T)|. If
n = 0, G is a bouquet, then each edge e is a loop itself. A closed walk on G is a
combination of edges e in F(G), i.e., m(G) = (e | e € E(G) ) in this case.
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Assume the assertion is true for n =k, i.e., m(G) = (T +e | e € E(G) \ {e} ).
Consider the case of n = k 4+ 1. For any edge ¢ € F(T), we consider the embedded
graph G /e, which means continuously to contract € to a point v in S. A closed walk
on (G passes or not through € in GG is homotopic to a walk passes or not through v in
G/e for kK(T') = 1. Therefore, we conclude that m(G) = (T +e| e € E(G)\ {e} )

by the induction assumption. O

3.1.4 Seifert and Van-Kampen Theorem. Calculating fundamental groups of
topological spaces is a hard work. Until today, the useful tool for finding fundamental

groups of spaces is still the well-known Seifert and Van-Kampen theorem following.

Theorem 3.1.9 (Seifert and Van-Kampen) Let X = U UV with U, V' open subsets
and let X, U, V, UNYV be non-empty arcwise-connected with xro € UNV and H a

group. If there are homomorphisms

o1 :m(U,xo) = H and ¢p:m(V,20) = H

and
11 ¢1
ﬂ-l(Uv IO)
Ji
P
(U NV, xg) —mi(X,20)----- —H
J2
—m(V, 10) ——
12 <f>2

with ¢ - i1 = ¢g - ia, where iy : m (U NV, z9) — m (U, x0), is : m (U NV,x9) —
m(V,xo), j1 : m(U,z0) — m (X, 20) and jo : m(V,x0) — m(X,x0) are homomor-
phisms induced by inclusion mappings, then there exists a unique homomorphism
O m(X,x9) — H such that - j; = ¢1 and P - jo = ¢s.

Applying Theorem 3.1.9, it is easily to determine the fundamental group of

such spaces X = U UV with U NV an arcwise connected following.

Theorem 3.1.10 (Seifert and Van-Kampen, classical version) Let spaces X,U,V
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and xq be in Theorem 1.1. If
J:m(U, o) xm(V,z9) — m (X, x0)

15 an extension homomorphism of j1 and 75, then j is an epimorphism with kernel
Kerj generated by i7" (g)ia(g), g € m(U NV, x0), i.e.,

71 (U, 20) * m1(V, 20)
[i7'(g) - i2(9)| g € m(U NV, x0)]

where [A], A C ¢ denotes the minimal normal subgroup of a group ¢ included A.

m (X, xg) =

The complete proofs of Theorems 3.1.9 and 3.1.10 can be found in the reference

[Masl]. Corollaries following is appropriate in practical applications.

Corollary 3.1.2 Let X, Xy be two open sets of a topological space X with X =
X1 U Xo, Xo simply connected and X, X1 and Xy = X1 N Xy non-empty arcwise
connected, then for Vxy € X,

7T1(X1, $0)
[ (i1)x([a])lla] € m1(Xo, z0) |

Corollary 3.1.3 Let X, Xy be two open sets of a topological space X with X =
X1 U Xy, If there X, X1, Xy are non-empty arcwise connected and Xy = X1 N X,

m (X, z) =

simply connected, then for Vo € X,

m (X, x0) = m (X1, x0)m(Xa, 20).

Corollary 3.1.3 can be applied to find the fundamental group of an embedded
graph, particularly, a bouquet B,, = U L; consisting of n loops L;,1 < i < n again

i=1
following, which is the same as in Theorem 3.1.8.

Let x¢ be the common point in B,,. Forn = 2, let U = By—{x1}, V = By—{x2},
where x1 € Ly and x9 € Ly. Then U NV is simply connected. Applying Corollary
3.1.2, we get that

7T1(BQ,ZL'0) = 7T1(U, ZL’Q)Wl(V, [L’()) = <L1> <L2> = <L1,L2> .

Generally, let x; € L;, W; = L; — {x;} for 1 <i <n and

U=L |- (W. and V=L Ln.
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Then UV = Sy, an arcwise connected star. Whence,
m1(By, 0) = m(U,0) * 1 (V,0) = (L) x m(B,_1,0).
By induction induction, we finally find the fundamental group
T (B, O) = (L;, 1 <i<mn).

3.1.5 Space Attached with Graphs. A topological graph G is a pair (S, S°) of
a Hausdorff space S with its a subset S° such that

(1) SY is discrete, closed subspaces of S;

(2) S — SY is a disjoint union of open subsets ey, e, - -+, €, each of which is
homeomorphic to an open interval (0, 1);

(3) The boundary €; — ¢; of e; consists of one or two points. If & — e; consists of
two points, then (€;, ;) is homeomorphic to the pair ([0, 1], (0,1)); if € — e; consists
of one point, then (€;, ¢;) is homeomorphic to the pair (S, St — {1});

(4) A subset A C G is open if and only if ANE; is open for 1 <i < m.

A topological space X attached with a graph G is such a space X ® G such that
X(G#0, G¢X

and there are semi-edges e™ € (X (N G)\ G, et € G\ X. An example for X © G can
be found in Fig.3.1.2.

N AN

Xod

Fig.3.1.2

Theorem 3.1.11 Let X be arcwise-connected space, G a graph and H the subgraph
XNGin X ©G. Then forxg € X NG,
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T (X, z9) * 71 (G, o)
(i7" (e, )iz(0we, )] €x € B(H)\ Typan)]’

where iy @ m(H,x0) — X, i : m(H,z9) — G are homomorphisms induced by

7T1(X © G> $0) =

inclusion mappings, Tspan 15 a spanning tree in H, oy = AxexBy is a loop associated
with an edge ey = axby € H \ Tspan, xo € G and Ay, By are unique paths from x to
ay or from by to xg in Tspan.-

Proof This result is an immediately conclusion of the Seifert-Van Kampen
theorem. Let U = X and V = G. Then X ©G = X UG and X NG = H.
By definition, there are both semi-edges in G and H. Whence, they are opened.
Applying the Seifert-Van Kampen theorem, we get that

7T1(X, Io) * 7T1(G, ZL’Q)

[iv ' (9)i2(9)] g € m (X NG, z)]’

Notice that the fundamental group of a graph H is completely determined by

7T1(X © Gv xO) =

those of its cycles. Applying Theorem 3.1.8,
7T1(H> 1’0) = <O‘)\|6)\ € E(H) \ Tspan> s

where Ty,qy, is a spanning tree in H, ay = Aye)B, is a loop associated with an edge
ex = axby € H \ Tspan, x9 € G and A,, B, are unique paths from z, to a, or from

by to xg in Typ,,. We finally get the following conclusion,

(X, o) * (G, x0)
[7;1_1(0(6)\)’@(046)\)‘ ex € E(H> \Tspan)]

1 (X®G7 213'0) =

Corollary 3.1.4 Let X be arcwise-connected space, G a graph. If X NG in X © G
18 a tree, then
7T1(X ® G, ZL’Q) = 7T1(X, Io) x 7T1(G, ZL’()).

Particularly, if G is graphs shown in Fig.3.1.3 following

xow X @
m To Ty Ty - I
T
Bm

ST

m

Fig.3.1.3
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and X NG = K, Then
m (X © By, x0) = m (X, mo) # (Li]1 < i <m),
where L; is the loop of parallel edges (xg,z;) in BL for 1 <i<m—1 and

7T1(X O] Sﬁ,l’o) = 7T1(X,I‘0).

Theorem 3.1.12 Let Z,,0G be a topological space consisting of m arcwise connected
spaces X1, Xo, -+, Xpm, Xi N X; = 0 for 1 < i,5 < m attached with a graph G,
V(G) = {xo, 21, -, 211}, m <1 such that X; NG = {x;} for 0 <i <1 —1. Then

T ( Zm © G, xg) = (H?Tl(Xi*,xo))*Wl(GJo)
i=1

& (H 7T1(XZ',LL’Z')> *771(G7 LL’()),

where X} = X;U(zo,x;) with X; N (xo,x;) = {x;} for (vo,z;) € E(G), integers
1<t <m.

Proof The proof is by induction on m. If m = 1, the result is hold by Corollary
3.1.4. Now assume the result on Z,, ® G is hold for m < k < [ — 1. Consider
m=k+1 <l LetU = Z,0Gand V = X ,1. Then we know that 2} ,60G = UUV
and UNV ={zp1}

Applying the Seifert-Van Kampen theorem, we find that

7T1(U, $k+1) * 7T1(V7 $k+1)

[i7'(9)i2(9)| g € T (U NV, zp41)]
(2% © G, x0) * T (Xpg1, Tit1)

T (21 © G, Tppy1)

S T [ @R) g€ (e ]

= (H wl(Xf,x0)> * 7T1(G,SL’0)) Ty (X1, 1)
k+1

o~ Hm(Xj,xo)> * 11 (G, o)

o H?Tl(Xi,SL’Z’)) * 1 (G, 29),

by the induction assumption. U
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Particularly, for the graph BL or star SI in Fig.3.1.3, we get the following

conclusion.

Corollary 3.1.5 Let G be the graph BL or star SL. Then

(L ® BL 1) = (HM(X;,%))*M(BZH%)
i=1

= (H Wl(Xiaxi—l)) * <Lz|]_ S 'l S m) s
i=1

where L; is the loop of parallel edges (xg,x;) in BL for integers 1 <i < m —1 and

T X © S, o) = H7T1(X£k,930) = H7T1(Xi,£l?i—1)-
i=1 i=1

Corollary 3.1.6 Let X = Z,, ® G be a topological space with simply-connected
spaces X; for integers 1 <i < m and 2o € X N G. Then we know that

7T1(X, Io) = 7T1(G,SL’0).

3.1.6 Generalized Seifert-Van Kampen Theorem. These results shown in
Subsection 3.1.5 enables one to generalize the Seifert-Van Kampen theorem to the

case of U N'V maybe not arcwise-connected following.

Theorem 3.1.13 Let X = U UV, U,V C X be open subsets, X, U, V arcwise
connected and let C,Cs, - - -, C,, be arcwise connected components in U NV for an
integerm > 1, x; 1 € C;, b(xg,x;—1) CV an arc: I — X with b(0) = x¢,b(1) = ;4
and b(xg, 2,1 )NU = {xg, 2;_1}, CF = C;|Jb(x0, 7i_1) for any integeri, 1 <i < m,

H a group and there are homomorphisms

o, 7T1(UUb($o,$i—1),$o) — H, ¢ m(V,zo) — H

such that
7T1(U U b(x0> Ti-1, l’o)) R —
Jil
& 0]
m(CF xy) —— m(X,z9) - . H
Ji2
T (V)7 IL’(])

132 o
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with ¢¢ - iy = @b - iz, where iy : m(CE x0) — m (U U b0, 7_1),T0), s :
m(CF, o) — m(V, xo) and jn = m(UUb(xg, 2i—1,20)) — 71 (X, Z0), Jio : m(V, 20)) —
m (X, o) are homomorphisms induced by inclusion mappings, then there exists a
unique homomorphism ® : (X, x9) — H such that ® - j;; = ¢} and @ - jio = ¢}
for integers 1 <1 < m.

Proof Define U¥ = UJ{ b(zo,7;) | 1 < i < m — 1}. Then we get that
X =UPUV,UF,V C X are still opened with an arcwise-connected intersection
UENV = 2, ®SE where ST is a graph formed by arcs b(zg, z; 1), 1 <i < m.

m

Notice that 2;, © Sm” = |J CF and CFNCF = {xo} for 1 <i,j <m, i #j.
i=1
Therefore, we get that

7Tl(=%/'rn © S;I;va0> = ®7T1(C7ZE7':U0)’
=1

This fact enables us knowing that there is a unique m-tuple (hq, hg, -+, hy), h; €
7 (CF x; 1), 1 <i < m such that

for V. c Wl(%m O) Sg;, ZL’()).
By definition,

'éil : Wl(CiE‘,l’()) — 7T1(Uﬂ b(l’o,l’i_l),l’o),

Z11'2 : 7T1(CiEa xO) - 71-1(‘/; [L’())

are homomorphisms induced by inclusion mappings. We know that there are homo-

morphisms

21151 . 7T1(</lm//‘m © SZ;,ZL'Q) — Wl(UE,l’o),
L (%, 05T %
iy : T (L © Sy, 20) — TV, 20)
with iﬂm(CZE,xo) = i1, if\m(cfm) = iz for integers 1 < i < m.

Similarly, because of

7T1(UE,ZL'0) = Uﬂ'l(U U b(l’o,l’i_l,xo))

i=1
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and

Jir : (U Ub(wo, 21, 70)) — m1(X, 20),
jig . 7T1(V — 7T1(X, 1’0)

being homomorphisms induced by inclusion mappings, there are homomorphisms
gv rm(U”, m0) — mi(X,mo), Jy : m(V,20) — m(X, o)

induced by inclusion mappings with j{* | ub(o,zi_1,00) = Jils Ja lm(Viwe) = Jiz for
integers 1 < i < m also.
Define ¢ and ¢ by

m

¢f(fﬂ) = H(bil(iil(hi))v Q%E(f) = H%(%z(h
i=1 1=1
Then they are naturally homomorphic extensions of homomorphisms ¢}, ¢} for

integers 1 < i < m. Notice that ¢! -i;; = @b - iz for integers 1 < i < m, we get that

EB) = of it (H m)

i.e., the following diagram

iy T
ﬂ-l(UE7 IO)
i
5 d
m (U NV, zg) —m(X,z0) ----~ H
Jz
: m1(V, 2o)
iy 3
is commutative with ¢F - if = ¢ i€ Applying Theorem 3.1.9, we know that there

exists a unique homomorphlsm <I> . m(X,29) — H such that ® - jF = ¢F and
- i = ¢F. Whence, ® - j;; = ¢% and @ - j» = ¢, for integers 1 < i < m. O
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The following result is a generalization of the classical Seifert-Van Kampen

theorem to the case of maybe non-arcwise connected.

Theorem 3.1.14 Let X, U, V, CF, b(xg, x;_1) be arcwise connected spaces for any
integeri, 1 <i < m asin Theorem 3.1.13, U¥ = U J{ b(wg, ;) | 1 <i <m—1} and
BL a graph formed by arcs a(xg, x;_1), b(xo, wi_1), 1 < i < m, where a(xg, ;1) C U
is an arc : I — X with a(0) = zo,a(l) = x,-1 and a(zg,z;-1) NV = {z, xi_1}.
Then

71 (U, 20) x w1 (V, o) * m (BL, x0)

(iP)"1(g) - ialg)| g € ﬁ m1(CE, o)

1=

m (X, xo) =

where if : m(UP NV, z¢) — m(UF,20) and if : 7 (U¥ NV, z0) — m(V,z0) are

homomorphisms induced by inclusion mappings.

Proof Similarly, X = UPUV,U¥ V C X are opened with UF NV = 2,,© ST,
By the proof of Theorem 3.1.13 we have known that there are homomorphisms ¢
and ¢¥ such that ¢¥ - i = ¢L - i¥. Applying Theorem 3.1.10, we get that

T (UE, z0) x 7 (V, 20)

) = G ()7 € mUP A Voo

Notice that UP N VE = 2, ® ST. We have known that
7T1(UE, ZL’Q) = 7T1(U, ZL’Q) * 71'1(33;, ZL’Q)

by Corollary 3.1.4. As we have shown in the proof of Theorem 3.1.13, an element
S in m (2 © S x) can be uniquely represented by

where h; € m(CE x4), 1 <i < m. We finally get that
(U, 20) * 71 (V, 20) * 71 (BT 2)

{(z’frl(g) () g € fTm(CF.r0)

)

7T1(X7 IO) =

The form of elements in 7 (2,51, 7o) appeared in Corollary 3.1.5 enables one

to obtain another generalization of classical Seifert-Van Kampen theorem following.
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Theorem 3.1.15 Let X, U, V, Cy,Cy, - - -, C,, be arcwise-connected spaces, b(xg, x;_1)
arcs for any integeri, 1 <1i < m asin Theorem 3.1.13, U¥ = U |J{ b(zo, z;_1) | 1 <
i <m} and BL a graph formed by arcs a(zo, z;_1), b(zo,vi-1), 1 <i < m. Then

7T1(U, 930) * 7T1(V>=To) * 7T1(Bg;>550)

(i) (0) - B (@) g € [[m(Coin)

7T1(X7 Io) =

)

where i : T (UE NV, x0) — 7 (UE,20) and i¥ : m(U¥ NV, 29) — m(V,20) are

homomorphisms induced by inclusion mappings.

Proof Notice that UF NV = 2, ® SL. Applying Corollary 3.1.5, replacing

0 S = [ (7 0) 0 0 € [T m(CF.)

(2 @ Sy 20) = [(Z{E)_l(g) ~iy (9)] g € H?Tl(Ci,Ii_l)]

i=1

in the proof of Theorem 3.1.14. We get this conclusion. U
Particularly, we get corollaries following by Theorems 3.1.13, 3.1.14 and 3.1.15.

Corollary 3.1.7 Let X = U UV, UV C X be open subsets and X, U, V and

UNV arcwise connected. Then

(U, x0) * 7 (V, 1)
[il_l(g) ~ig(g)] g € m(UNYV, Io)} ’

7T1(X7 IO) =

where iy @ m (U NV, x9) — m(U,z0) and iy : m (U NV, 29) — m(V,x) are homo-
morphisms induced by inclusion mappings.

Corollary 3.1.8 Let X, U, V, C;, a(xg, x;), b(xg, ;) for integers i, 1 <1i < m be
as in Theorem 3.1.13. If each C; is simply-connected, then

™ (X, x0) = m (U, 20) * m(V, o) * w1 (B, o).

Proof Notice that CF,CF ... CE are all simply-connected by assumption.

Applying Theorem 3.1.15, we easily get this conclusion. 0
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Corollary 3.1.9 Let X, U, V, C;, a(xg, z;), b(xo,x;) for integers i, 1 <i < m be
as in Theorem 3.1.13. If V is simply-connected, then

7T1(U, IL’(]) * 7T1(Bg;, IL’Q)

(iF)1(g) - i£(9)] g € T] m(CF,0)

i=1

m (X, xo) =

Y

where i¥ T (UF NV, 20) — 7 (UE, 29) and if + m(UP NV, z0) — 71(V,20) are

homomorphisms induced by inclusion mappings.

3.1.7 Covering Space. A covering space S of S consisting of a space S with
a continuous mapping p : S — S such that each point € S has an arcwise
connected neighborhood U, and each arcwise connected component of p~!(U,) is
mapped topologically onto U, by p. An opened neighborhoods U, that satisfies the
condition just stated is called an elementary neighborhood and p is often called a
projection from S to S.

For example, let p : R — S! be defined by

p(t) = (sin(t), cos(t))
for any real number ¢ € R. Then the pair (R, p) is a covering space of the unit

circle S*. In this example, each opened subinterval on S! serves as an elementary

neighborhood.

Definition 3.1.5 Let S,T be topological spaces, xo € S,yo € T and f : (T,yo) —
(S, x9) a continuous mapping. If (§, p) is a covering space of S, To € S, o= p(To)

and there exists a mapping f': (T,yo) — (S, %) such that

f= flop,
then f' is a lifting of f, particularly, if f is an arc, f' is called a lifting arc.

Theorem 3.1.16 Let (g,p) be a covering space of S, To € X and p(To) = wp.
Then there exists a unique lifting arc f' : I — S with initial point xy for each arc

f 1 — S with initial point xy.

Proof 1If the arc f were contained in an arcwise connected neighborhood U,
let V be an arcwise connected component of p~!(U) which contains Zy, then there
would exist a unique f!in V since p topologically maps V onto U by definition.

Now let {U;} be a covering of S by elementary neighborhoods. Then {f~'(U;)}
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is an opened cover of the unit interval I, a compact metric space. Choose an integer
n so large that 1/n is less than the Lebesgue number of this cover. We divide the
interval I into these closed subintervals [0, 1/n],[1/n,2/n],---,[(n — 1)/n,1].

According to Theorem 3.1.3, f maps each subinterval into an elementary neigh-
borhood in {U;}. Define f! a successive lifting over these subintervals. Its connect-
edness is confirmed by Corollary 3.1.1.

For the uniqueness, assume f! and f! be two liftings of an arc f : I — S with
fizo) = fi(xg) at the initial point zy. Denote A = {z € I|f\(z) = fl(z)}. We
prove that A = I. In fact, we only need to prove it is both closed and opened.

If Ais closed, let z; € A and z = pfi(z1) = pfi(z1). Then fl(x) # fi(xy).
We show this will lead to a contradiction. For this object, let U be an elementary
neighborhood of x and V;, V3 the different components of p~!(U) containing f!(z;)
and fl(z), respectively, i.e., Vi NV, = ). For the connectedness of f!, i, we can
find a neighborhood W of x; such that fi(W) C V; and fi(W) C Vi. Applying
the fact that any neighborhood W of 27 must meet A, i.e., f(WNA) CVoNVi, a
contradiction. Whence, A is closed.

Similarly, if A is closed, a contradiction can be also find. Therefore, A is both
closed and opened. Since A # (), we find that A = I, i.e., fl = fl. O

Theorem 3.1.17 Let (g, p) be a covering space of S, Ty € S and p(To) = x9. Then

(i) the induced homomorphism p, : ©(S,%o) — (S, o) is a monomorphism;
(i1) for ¥ € p~Y(xo), the subgroups p*7r(§, To) are exactly a conjugacy class of

subgroups of (S, xg).

Proof Applying Theorem 3.1.16, for 7o € S and p(Zy) = x¢, there is a unique
mapping on loops from S with base point 7y to S with base point zy. Now let
L;: I — g, i =1, 2 be two arcs with the same initial point 7y in S. We prove that
if pLy ~ pLo, then L ~ L.

Notice that pL; ~ pLs implies the existence of a continuous mapping H :
I x I — S such that H(s,0) = pli(s) and H(s,1) = pLy(s). Similar to the proof
of Theorem 3.1.16, we can find numbers 0 = s5 < s1 < --- < s,, =l and 0 =ty <
ty < --- < t, = 1 such that each rectangle [s,_1,s;] X [t;_1,%;] is mapped into an
elementary neighborhood in S by H.

Now we construct a mapping G : [ x [ — S with pG = H, G(0,0) = 7y hold
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by the following procedure.

First, we can choose G to be a lifting of H over [0, s1] x [0, ¢;] since H maps this
rectangle into an elementary neighborhood of p(zy). Then we extend the definition
of G successively over the rectangles [s;_1,s;] x [0,¢] for ¢ = 2,3,---,m by taking
care that it is agree on the common edge of two successive rectangles, which enables
us to get G over the strip I x [0, ¢;]. Similarly, we can extend it over these rectangles
I X [t1,ta], [ta,t3],- -+, etc.. Consequently, we get a lifting H' of H, i.e., L; ~ Lo by
this construction.

Particularly, If L; and Ly were two loops, we get the induced monomorphism
homomorphism p, : 7(S, Zo) — 7(S, zo). This is the assertion of ().

For (ii), suppose T; and %, are two points of S such that p(Z;) = p(Z») = zo.
Choose a class L of arcs in S from Z; to Z». Similar to the proof of Theorem 3.1.7,
we know that .2 = L[a]L™",[a] € 7(S,71) defines an isomorphism . : 7(S,7;) —
7(S, 7). Whence, p.(7(S,71)) = p.(L)7(S, Z2)p. (L™). Notice that p,(L) is a loop
with a base point zo. We know that p,(L) € 7(S, o), i.e., ps7(S, %) are exactly a

conjugacy class of subgroups of 7(S, xg). O

Theorem 3.1.18 If (g, p) is a covering space of S, then the sets p~*(x) have the

same cardinal number for all x € S.

Proof For any points x; and x5 € S, choosing an arc f in S with initial point x;
and terminal point zo. Applying f, we can define a mapping ¥ : p~*(z1) — p~*(22)
by the following procedure.

For Vy; € p~Y(x1), we lift f to an arc f! in S with initial point y; such that
pf! = f. Denoted by y» the terminal point of f!. Define W(y;) = y».

By applying the inverse arc f~!, we can define U=!(y,) = y; in an analogous
way. Therefore, ¢ is a 1 — 1 mapping form p~'(x;) to p~*(x»). O

The common cardinal number of the sets p~(x) for x € S is called the number
of sheets of the covering space (§, p) on S. If [p~Y(z)| = n for x € S, we also say it
is an n-sheeted covering.

We present an example for constructing covering spaces of graphs by voltage

assignment.

Example 3.1.3 Let G be a connected graph and (I';o) a group. For each edge

e € E(G),e = uv, an orientation on e is an orientation on e from u to v, denoted by
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e = (u,v) , called plus orientation and its minus orientation, from v to u, denoted
by e7! = (v,u). For a given graph G with plus and minus orientation on its edges,
a voltage assignment on GG is a mapping « from the plus-edges of G into a group
I satisfying a(e™) = a7 (e),e € E(G). These elements a(e),e € E(G) are called
voltages, and (G, «) a voltage graph over the group (I'; o).

For a voltage graph (G, «), its lifting G* = (V(G?), E(G®); [(G*)) is defined
by

V(G*) =V(GQ) x T, (u,a) € V(G) x I' abbreviated to ug;

E(GY) = {(ta, Vaop)| €™ = (u,v) € E(Q),a(e™) = b}

and
I(G*) = {(ua, Vaob) | L(€) = (g, Vaop) T1.f € = (Uq, Vo) € E(GV)}.

This is a |['|-sheet covering of the graph G. For example, let G = K3 and
[' = Z5. Then the voltage graph (K3, ) with o : K3 — Z5 and its lifting are shown
in Fig.3.1.4.

Uo
U
Uy
0 1
w,
Vo
w 0 v we » U1
(G, a) Ge
Fig.3.1.4

We can find easily that there is a unique lifting path in I with an initial point
T for each path with an initial point x in ', and for Vz € T, |[p~!(z)| = 2.

Let (§1, p1) and (52, p2) be two covering spaces of S. We say them equivalent
if there is a continuous mapping ¢ : (gl,pl) — (§2,p2) such that p; = pyp, par-
ticularly, if ¢ : (§ ,p) — (§ ,D), we say ¢ an automorphism of covering space (§ ,D)
onto itself. If so, according to Theorem 3.1.17, pl*ﬁ(gl,fl) and p2*7r(§1,252) both

are conjugacy classes in 7(.S, zg). Furthermore, we know the following result.

Theorem 3.1.19 Two covering spaces (gl,pl) and (§2,p2) of S are equivalent if
and only if for any two points T, € §1, Ty € Sy with p1(T1) = pa(T2) = w0, these
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subgroups p1*7r(§1, T1) and p2*7r(§1, To) belong to a same conjugacy class in (S, xg).

3.1.8 Simplicial Homology Group. A n-simplex s = [aj,as,---,a,] in a
Euclidean space is a set

n+1 n+1

s={> Na;|\; >0and > X\ =1},

i=1 =1
abbreviated to s sometimes, where each a;, 1 < i < n is called a vertexr of s and n
the dimensional of s. For two simplexes s, = [by, by, -+ -, b,,] and s, = [ay, az, -+ -, ay],
if {b1,bo, -+, by} C {ay, a9, -, a,}, i.e., each vertex in s, is a vertex of s,, then s,
is called a face of s,, denoted by s; < s,.

Let K be a collection of simplices. It is called a simplicial complex if

(1) if s,t € K, then s Nt is either empty or a common face of s and of ¢;
(17) ift <sand s € K, then t € K.

Usually, its underlying space is defined by |K| = |J s, i.e., the union of all the
seK
simplexes of K. See Fig.3.1.5 for examples. In other words, an underlying space is

a multi-simplex. The maximum dimensional number of simplex in K is called the

dimensional of K, denoted by dimK.

simplicial complex non-simplicial complex

Fig.3.1.5

A topological space P is a polyhedron if there exists a simplicial complex K
and a homomorphism h : |K| — P. An orientation on a simplicial complex K is
a partial order on its vertices whose restriction on the vertices of any simplex in K
is a linear order. Notice that two orientations on a simplex are the same if their
vertex permutations are different on an even permutation. Whence, there are only
two orientations on a simplex determined by its all odd or even vertex permutations.

Usually, we denote one orientation of s by s denoted by s = aga; - - - a,, if its vertices
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are agp, a, - - -, a, formally, and another by —s = —agpa; - - - a,, in the context.

Definition 3.1.6 Let K be a simplicial complex with an orientation and T,(k) all
q-dimensional simplexes in K, where ¢ > 0, an integer. A g-dimensional chain on
K is a mapping ¢ : T,(K) — Z such that f(—s) = —f(s). The commutative group
generated by all g-chains of K under the addition operation is called a q-dimensional

chain group, denoted by Cy(K).

If there are a oriented g-dimensional simplexes s;,5,,---, s, in K, define a
standard chain ¢y : T,(K) — {1, =1} by ¢o(s;) = 1 and ¢p(—s;) = —1 for 1 <i < a,.
These standard g-dimensional chains co(s;), co(s3), - -+, co(S,,) are also denoted by

Qq
if there are no ambiguous in the context. Then a chain ¢ = Y ¢(s;)s;
i=1

81,89, aﬁaq

for Ve € Cy(K) by definition.

Definition 3.1.7 A boundary homomorphism 0, : Cy(K) — Cy—1(K) on a simplex

s = apay, - -aq s defined by

q
Dys = Z(—l)iaoal Gy,

1=0

where a; means delete the vertex a; and extending it to Ve € Cy(K) by linearity, i.e.,

fore=73"c(s;)s; € Cy(K),

=1

Qq

0,(c) = > els)9y(s)

i=1
and 0,(c) =0 if ¢ <0 or ¢ > dimK.

For example, we know that 0yaga; = a1 —ag and dragaias = ayas —agas+aga; =
apay + ajas + asaq for simplexes in Fig.3.1.6.

Qg

¢ a
0 1 a as

Fig. 3.1.6
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These boundary homomorphisms J, have an important property shown in the

next result, which brings about the conception of chain complez.

Theorem 3.1.20 0,10, =0 forVq € Z.

Proof We only need to prove that 9,10, = 0for Vs € T, (K) and 1 < ¢ < dimK.
Assume s = apay - - - a,. Then by definition, we know that

q
010y = 01> _(—1)'agar -3 - - ay)
1=0
q

oD DG I RH)

i=1
q i—1
= YOS Wagar )
i=1 j=1
q .
_I_ Z (_l)j_la,oa,l .. az .. /a\] .. .aq
J=i+1
— Z (=) agay - a; -+ a; -+ - aq
0<j<i<q
_ Z (=) agay - @ -~ @ - - - ag
0<i<j<q
= 0.
This completes the proof. O

A chain complezx (¢;0) is a sequence of Abelian groups and homomorphisms
9g+1 9q
00— - — q+1—>Cq—>Cq_1—>---—>0

such that 9,0,41 = 0 for Vg € Z. Whence, ImJ,+; C Kerd, in a chain complex
(€59).
By Theorem 3.1.20, we know that chain groups C,(K) with homomorphisms

0, on a simplicial complex K is a chain complex

0=+ = Cpa(K) " C(K) 2 Cpma(K) = -+ = 0.

The simplicial homology group is defined in the next.
Definition 3.1.8 Let K be an oriented simplicial complex with a chain complex

0=+ = Cyn () ™5 CyK) 4 Cpa () = - = 0.
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Then Z,(K) = Kerd,, B,(K) =Imd,+1 and H, = Z,(K)/B,(K) are called the group
of simplicial q-cycles, the group of simplicial g-boundaries and the ¢ simplicial
homology group, respectively. An element in Z,(K) or B,(K) is called q-cycles or
q-boundary.

Generally, we define the ¢'* homology group H, = Kerd,/Imd,,; in a chain
complex (€’;0).

By definition 3.1.8, two ¢-dimensional chains ¢ and ¢’ in Cy(K) are called ho-
mologic if they are in the same coset of B,(K), i.e., ¢ — ¢ € B,(K). Denoted by
¢ ~ . Notice that a planar triangulation is a simplicial complex K with dimK = 2.

See Fig.3.1.7 for an example.

Fig.3.1.7

In this planar graph, abc, abd, acd and bed are 2-simplexes, called surfaces. Now
define their orientations to bea - b —c¢c—a,a - b—d — a,a — ¢ — d — a and

b—c—d—b. Then c = abc — abd + acd — bcd is a 2-cycle since

826 = 82(abc) — 82(abd) + 82(acd) — 82(bcd)
= bc—ac+ab—bd+ ad —ab+ cd — ad + ac — cd + bd — bc = 0.

Definition 3.1.9 Let K be an oriented simplicial complex with a chain complex
with a, g-dimensional simplexes, where ¢ = 0,1,---,dimK. The Euler-Poincaré
characteristic x(K) of K is defined by

dimK

X(K) = Z (—1)%aq.

q=0

For example, the Euler -Poincaré characteristic of 2-complex in Fig.3.1.7 is

X(K):ag—@1+@0:4—6+4:2.
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Theorem 3.1.21 Let K be an oriented simplicial complex. Then

dimK

X(K) = Y (=1)"rankH, (K),

q=0
where rankG denotes the cardinal number of a free Abelian group G.

Proof Consider the chain complex
Oq11 04
0=+ Gy () ™ Cy(K) 2 Oy () =+ =0
Notice that each C,(K) is a free Abelian group of rank «,. By definition,
H,=Z,K)/B,(K) = Kerd,/Im0d,+,. Then

rankH,(K) = rankZ,(K) — rank B, (K).

In fact, each basis {B1, By, -, Brankp, ()} of By(K) can be extended to a basis
{21, 25, Zrankz, ()} by adding a basis {Hy, Hy, - - -, Huankm, ()} of Hy(K).
Applying Corollary 2.2.3, we get that B, (K) = C,(K)/Z,(K). Whence,

rankB,_1(K) = o, — rankZ, (K)

Notice that rankB_;(K) = rankBgimx = 0 by definition, we find that

dimK

X(E) = Y (~1)a,
q=0
dimK
= ) (=1)%(rankZ,(K) + rank B, (K))
q=0
dimK
= ) (—1)(rankZ,(K) — rank B, (K))
q=0
dimK
= ) (—1)rankH,(K). O
q=0
3.1.9 Surface. For aninteger n > 1, an n-dimensional manifold is a second count-
able Hausdorff space such that each point has an open neighborhood homomorphic
to a Euclidean space R" of dimension n, abbreviated to n-manifold.
For example, a Fuclidean space R™ is itself an n-manifold by definition, and

the n-sphere

S" = (1,22, tagr) RVt ad ik = 1)
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is also an n-manifold.

Classifying n-manifolds for a given integer n is an important but more complex
object in topology. However, for n = 2, this classification is complete(see [Masl] for
details), particularly for surfaces, i.e., 2-connected manifolds without boundary.

T.Radé presented a representation for surfaces by proved that there exists a
triangulation {7;,i > 1} on any surface S in 1925, usually called T.Radd theorem,
which enables one to define a surface combinatorially, i.e., a surface is topological
equivalent to a polygon with even number of edges by identifying each pairs of edges
along a given direction on it. If label each pair of edges by a letter e, e € £, a surface
S is also identifying with a cyclic permutation such that each edge e,e € £ just
appears two times in S, one is e and another is e™!. Let a, b, c, - - - denote the letters
in £ and A, B, C, - - - the sections of successive letters in a linear order on a surface

S (or a string of letters on S). Then, a surface can be represented as follows:
S = ("',A,Q,B,G_I,C,"'),

where, a € £,A, B, C denote a string of letters. Define three elementary transfor-

mations as follows:
(A,a,a ', B) & (A, B);
(O9) (i) (A,a,b,B, b7 a ') & (A ¢, B, cb);
(i) (A,a,b,B,a,b) < (A, c, B,c);
(i) (A,a,B,C,a™',D) < (B,a, A, D,a ', C);
(it) (A,a,B,C,a,D) = (B,a,A,C~t a,D71).

(03)

If a surface S can be obtained from Sy by these elementary transformations
01-0O3, we say that S is elementary equivalent with Sy, denoted by S ~g; Sp. Then

we can get the classification theorem surfaces.

Theorem 3.1.22 A surface is homeomorphic to one of the following standard sur-
faces:
(Py) the sphere: aa™;

(P,) the connected sum of n,n > 1 tori:

~1p-1 —1p-1 ~1p-1.
arbyay by "asbeas by - anbpan b

(Qn) the connected sum of n,n > 1 projective planes:
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1410209 -+ * ApQy,.

Proof By operations O; — O3, we can prove that
AaBbCa *Db~'E ~p; ADCBEaba™'b",
AcBcC ~pg AB 'ec,
Accaba™ b~ ~pg; Accaabb.

Applying the inductive method on the cardinality of £, we get the conclusion. [

Now let S be a topological space with a collection % of open sets and ~g is an
equivalence on points in S. For convenience, denote Clu] = {v € S|v ~g u} and
S/ ~g= {Clu]|u € S}. There is a natural mapping p form S to S/ ~g determined
by p(u) = [u], similar to these covering spaces.

We define a set U in S/ ~g to be open if p~}(U) € S is opened in S. With
these open sets in S/ ~g, S/ ~g become a topological space, called the quotient
space of S under ~g.

For example, the combinatorial definition of surface is just an application of the
quotient space, i.e., a polygon S with even number of edges under an equivalence
~g on pairs of edges along a given direction. Some well-known surfaces, such as the

sphere, the torus and Klein Bottle, are shown in Fig.3.1.8.

sphere torus projective plane  Klein bottle
Fig.3.1.8

Theorem 3.1.23([Masl-2],[Youl]) These fundamental and homology groups of sur-

faces are respective

m(Py) = (1), the trivial group;
™ (Fn) = (a1, by, -+ an, by) / <H aibiai_lbi_1> ;
i=1

11(Qn) = (c1, 2, cn) | <1f[1 cl-cl->

and
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Z, q=0, 2
2n
0, q# 0,
Za q= 0,
n—1
Hy(@n) = 2070 - 0LZ0Z,, q=1
0, q#0,1,
for any integer n > 0. O

§3.2 EUCLIDEAN GEOMETRY
3.2.1 Euclidean Space. A Fuclidean space on a real vector space E over a field
Z is a mapping

(-,) : ExE — R with (€1,6) — (€1,6,) for Ve;, e, € E

such that for €,e,,e, € E, o € ¥

(E1) {601+ 22) = (e.20) + (6,2
(E2) (e, ae1) = a (e, 21);
(E3) (&1,€2) = (€2, 21);
(E4) (e,e) > 0 and (e,e) = 0 if and only if € = 0.

In a Euclidean space E, the number +/(€,€) is called its norm, denoted by ||€||
for abbreviation.

It can be shown that

i) (0,€) = (e,0) =0 for Ve € E;

(i) <2xi€},zlyi€§> Zszyj <€Z,€]> for & € E, where 1 < ¢ <
1= 1=

1=11=
max{m,n} and s = 1 or 2.

In fact, let & =€ = 0 in (E1), we find that (€,0) = 0. Then applying (E3),
we get that (0,€) = 0. This is the formula in (3).
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For (i7), applying (E1)-(E2), we know that

<szy> _ Z<leel,yl >
1= ]:

j=1

By
. Zyi<ei,gxiai>
TR

i=1 j=1
- S nne),
i=1 j=1
Theorem 3.2.1 Let E be a Fuclidean space. Then for Ve, es € E,
(1) [(er,e2) | < [[edllfezl;
(i) [[&n + el < (el + [[e2]l-

Proof Notice that the inequality (7) is hold if €, or €5 = 0. Assume e; # 0. Let

(€1,e2)

122/ Since
(e1,e1)

Tr =
<Eg — LL’El,ég — LL’El> = <€2,€2> -2 <§1,€2> T -+ <€1,§1> SL’2 Z 0.

Replacing x by > in it, we find that
(&1,@1) (€2, 8) — (€1,8)" > 0.
Therefore, we get that

| (e | < el

For the inequality (i), applying the inequality (i), we know that

€1+ €9,€ + E9)

€1,e1) + 2 (e, e) + (€2, )

1,€1) + 2| (e1,8) | + (€s,€2)

e, e1) + 2| (er, @) [||| (2, e1) || + (€2, €2)
el + [[e2])*.

I @) |I* =

il
6]

IN

{
{
{
{
(
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Whence,

[er + 22l < [lexfl + [le2]l-

Chap.3 Smarandache manifolds

U

Definition 3.2.1 Let E be a Euclidean space, @, b € E, @ # 0, b # 0. The angle

between @ and b are determined by

_ (a9

el

Notice that by Theorem 3.2.1(7), we always have that

c f@h)

= Tl =

Whence, the angle between @ and b is well-defined.

Definition 3.2.2 Let E be a Fuclidean space, T, § € E. T and i are orthogonal

if (z,y) = 0. If there is a basis €1,€,--+,€, of E such that €,€s,-- €, are

orthogonal two by two, then this basis is called an orthogonal basis. Furthermore, if

€| =1 for 1 < i <m, an orthogonal basis €,€s, - -, €, is called a normal basis.

Theorem 3.2.2 Any n-dimensional Fuclidean space E has an orthogonal basis.

Proof Let ay,as,---,a, be a basis of E. We construct an orthogonal basis
by, by, - - -, by, of this space. Notice that <51,51> £ 0, choose b; = @; and let

- _ <a2,bl>—
b g
A A

Then by is a linear combination of @; and @, and

(@2, b1)

(ba,by) = (a2, b1) — (0) (b1,b1) =0,
i.e., by is orthogonal with b;.

Assume we have constructed by, by, - - -, by for an integer 1
each of which is a linear combination of @i, @, -, a@;, 1 < 1
(b1, b1y, (b2,b2) -+, (bp—1,be—1) # 0. Let

B —a <?k>_51>51 <ak,bz>— o (@, bi— 1> —

IA A

(b1, 01) <b2,bz> (br—1, bk 1>

k<n—1, and
k. Notice that
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Then b, is a linear combination of @, @, - - -, a1 and

(BB = <ak,5i>_<6’f’51> <51,5,->_..._M<Bk_1,5,->

(b1, b1) (br—1,b—1)
= (@b - <ak’b><bl,b>—0

i, bi)

fori=1,2,---,k — 1. Apply the induction principle, this proof is completes. O

Corollary 3.2.1 Any n-dimensional Fuclidean space E has a normal basis.

Proof According to Theorem 3.2.2, any n-dimensional Euclidean space E has

an orthogonal basis @1, @a, -+, Gm. Now let &, = ||2||’ € = ||§§||= e B = ”g::”.
Then we find that ( >
_ Q;, Q;
<6' €‘> = ——— =0
R AN o
and B
o il _
H_H [
for 1 <14,j < m by definition. Whence, €,€5,---,€,, is a normal basis. O

Definition 3.2.3 Two Euclidean spaces Eq, Eq respectively over fields %1, %y are
isomorphic if there is a 1 — 1 mapping h : By — Eg such that for Ve,,e; € Eq and
o€ ﬁl,

(Z) h(?l + 52) h(el) -+ h(eg)
(i) h(ae) = ah(e);
(iit) (€1,82) = (h(€1), h(e2)).

Theorem 3.2.3 Two finite dimensional Euclidean spaces Eq, Eq are isomorphic if
and only if dimE; = dimE,.

Proof By Definition 3.2.3, we get dimE; = dimE, if E;, E5 are isomorphic.

Now if dimE; = dimE,, we prove that they are isomorphic. Assume dimE; =
dimE,; = n. Applying Corollary 3.2.1, choose normal bases @y, as, - - -, a, of E; and
b1, by, - -+, by of Ey, respectively. Define a 1 — 1 mapping h : E; — E5 by h(a@;) = b;

for 1 <i < n and extend it linearity on E;, we know that

h(z 1) = Z 2 h(a@;).
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Let > x;a; and > y;a; be two elements in E;. Then we find that
i=1 i=1

<Z iy, Z yﬁi> = Z ZiYi
i=1 i=1 i=1
and .
< Z xzaz Z Yi@; > = Z ZilYi-
i=1

Therefore, we get that

<i xiaiaiyiai> = < leal Zylal>' ]
i=1 i=1

Notice that the Euclidean space R™ is an n-dimensional space with a normal
basis €, = (1,0,---,0), €& = (0,1,---,0), ---, €&, = (0,0,---, 1) if define

<(I1,.§(}2 o '7':(:”)7 (y17y27 o 7yn)> = leyl
=1

for (z1,29- -+, 2,), (Y1, Y2, -+, yn) € R™. Consequently, we know the next result.
Corollary 3.2.2 Any n-dimensional Euclidean space E is isomorphic to R™.

3.2.2 Linear Mapping. For two vector space E;, Ey over fields %1, %5, respec-

tively, a mapping T : E; — Es is linear if
T(aa+b) = T (a)+ T(b)

for Va,b € E; and Va € .%.
If #, = %3 = R, all such linear mappings 7" from E; to E; forms a linear space
over R, denoted by L(Eq, E;). It is obvious that L(E;, Ey) C ES'.

Theorem 3.2.4 If dimE; = n, dimEy; = m, then dimL(E;, Ey) = nm.

Proof Let €},€},---, €. and €},€3,---,€2, be basis of E; and E,, respectively.

For each pa‘ir (%])7 1 S { S n, 1 S] S m, deﬁne an element lU ~ L(E17E2) with
I;() =2 and I;(el) =0 if k1.

Then for T = Y xe; € E;, we have Zij(f) = xﬁ?. We prove that Zij, 1 <i<n,
i=1
1 < j <'m consists of a basis of L(E;, Es).
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In fact, if there are numbers z;; € R, 1 <7 <n, 1 < j <m such that

n m

Z Z xijzij = 67

i=1 j=1
then

ZZxU N =0@E)=0

=1 j=1

for e , 1 <i < n. Whence, we find that

m
Jj=1
2

Since e7,¢e3,- -, €2, are linearly independent, we get z;; = 0 for 1 < j < m.

T m

Therefore, ZU, 1 <1< n, 1< 7 <m are linearly independent.
Now let f S L(El,Eg). If

j=1
then .
F@D) = 1
7=1

By the linearity of f, we get that

f= Zﬂkyg_ZZNU ij>
7=1

=1

I
1 j=1

=

i.e., f is linearly spanned by [;;, 1 <i<n, 1<j <m.
Consequently, dimL(E;, Es) = nm. O

In L(E, E,), if E; = R, the linear space L(E,R) consists of linear functionals
fE — R, is called the dual space of E, denoted by E*. According to Theorem

3.2.4, we get the next consequence.

Corollary 3.2.3 dimE* = dimE.

Now let Eq,Es,---,E; and F be linear spaces over fields %1, %, ---,.%;, and
Z , respectively, a mapping

T:EixEyx---xE, - F
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is called k-multilinear if T is linear in each argument separately, i.e.,

f(gl’...’agi +ﬂ?m"'a€k> — af(?l, By B 4_6%(517 . ..77i’...7§k)
for a, 6 € %#;, 1 <i < k. All such multilinear mappings also form a vector space,
denoted by L(Eq, Eo, -+, Eg; F). Particularly, if E; = E for 1 < i < k, this space is
denoted by L*(E, F).

Let E and F be vector spaces over R. For any integers p,q > 0, the space of

multilinear mappings

T:E*x---inxEx---x]E;ﬁF

~
q

p
is called a F-valued tensor. All such tensors are denoted by T7(E, F). For the case
F = R, we denote the T74(E, R) by TP4(E).

If Uy, W, -+, W, € E and 03,75, -+, 7, € B, then T @+ QW, @T; @+ - RV, €
TP9(E) is defined by

U@ QU RV @+ @V (T], Ty Y1, Yg) = Ty (W) - - T (Wp)V5 (T) - - - g (7).

Let €,---,€, be a basis of E and €7, ---,€; of its dual E*. Then similar to

Theorem 3.2.4, we know that any T e TP9(E) can be uniquely written as

T= > T8 ® 08,08 0 - QF,
i17"'7ip7j17"'7jq

for components Tﬁ];’ € R.

3.2.3 Differential Calculus on R". Let R"”, R™ be Euclidean spaces. For an

opened set U C R"™, let f: U — R™ be a mapping from U into R™, i.e.,

f(l'l,l'z, e xn) — (fl(l'ly T, - .’xn)’ f2(l’1, Tg, o+ e ’xn)’ cee fm(l’l,l’g, cee xn))’
also written it by f = (f* f%---, f™) for abbreviation. Then f is said to be
differentiable at a point T € U if there exists a linear mapping A € L(R", R™) such
that
f@+h)=f@) + Ah+r(h)
with r: U — R™,
rih)

lim
o ||7]|
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for all h € R™ with T+ h € U hold. This linear mapping A is called the differential
of f at T € U, denoted by
A = fi(z) = df ().

Furthermore, if f is differentiable at each T € U, the mapping df = f': U —
L(R™ R™) determined by T — df(Z) is called the derivative of f in U.

For integers n, m > 1, it is easily to know that a linear mapping 7' : R" — R™
is differentiable at any point 7 € R™ and if f,g : U — R™ are differentiable at
T € U C R", then

d(f +9)(T) = df (T) + dg(7);
d(f9)(@) = f(T)dg(T) + g(T)df (T);
d(AT) = Adf (),

where A € R.
A map f:U C R" — R™ is said to have n partial derivatives

De, f(T) = lim fos ti) /@ _ df(fd: ) 1<i<n,

at T € U, if all these n mappings ¢;(t) = f(T + t¢;) are differentiable at ¢t = 0. We
usually denote the D, f(T) by aan(f)

Theorem 3.2.5 Let f: U C R"™ — R™ be a differentiable mapping. The the matriz
of the differential df (T) with respect to the normal bases of R™ and R™ is given by

| (7)) ... 2L (3) o
(AD) =] : | =@, 1<i<n 1< <m,
£
L@ Y@

which is referred to as the Jacobian matriz and its determinant det(gf_ (T)) the

Jacobian of f at the point T € U, usually denoted by

8(f17_,_7fm)
8(561,"',5%)

= det(5 (7))

Proof Let T = (x1,---,2,) €U CR", T+ h = (1 +hy, -, 2, + hy) € U.
Then for such h,

Flay+ o, wg+ho) = P, an) =Y Alhi+ 19 (hy, - hy).

i=1
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Particularly, the choice h = (0,---,0, h;,0,---,0) enables us to obtain
fj(xl,'",zi_1,$i+hi,xi+1,"‘,xn) —fj(l'l,"‘,l'n)

hi

= AT 4 79(0, - hy, -+, 0),

which yields that

for h; — 0. ]

Corollary 3.2.4 Let f: U C R" -V C R™ and g : V — RP be differentiable
mappings. Then the composite mapping h = gf : U — RP is also differentiable with

its differential, the chain rule.
dg(T) = dg(f(T))df (T).

Proof Not loss of generality, let f = (f'---,f™) and g = (¢',---,g") be
differentiable at T € U, ¥ = f(T) and h = (h',--- hP), respectively. Applying the
chain rule on h* = g*(f1,---, f™),1 < k < p in one variable, we find that

OnF T~ gk of

8@- = 8—y] 81’2 ‘

Choose the normal bases of R, R™ and R?. Then by Theorem 3.2.5, we know
that

D@ P
ah(z) = | : .
L@ @
@ @) L@ L@
| SE |
o0 @ () @ @
— dg(/ (7))df )

O
For an integer k£ > 1, a mapping f : U C R" — R™ is said to be differentiable
of order k if
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d*f =d(d*Y): U c R" — L(R",R™) = L(R", L(R"™, - - -, L(R®, R™)));

df = f
exists. If d*f is continuous, f is said to be of class C* and class C* if it is of class
C* for any integer k.

A bijective mapping f : U — V, where U,V C R, is a C*-diffeomorphism if
f € C*U,R") and f~! € C*(V,R"). Certainly, a C*-diffeomorphism mapping is
also a homeomorphism.

For determining a C*-diffeomorphism mapping, the following implicit function

theorem is usually applicable. Its proof can be found in, for example [AbM1].

Theorem 3.2.6 Let U be an open subset of R" x R™ and f: U — R™ a mapping
of class C* 1 < k < co. If f(To,¥o) = 0 at the point (To,Y,) € U and the m x m

matriz 017/ 0y' (To,Y,) is non-singular, i.e.,
afr -
det(y(:co,yo)) #0, where 1<1i,j5<m.
yl

Then there exist opened neighborhoods V' of Ty in R™ and W of 5, in R™ and a C*
mapping g : V. — W such that V- x W C U and for each (Z,y) € V x W,

f@y)=0=y=yg(@).

3.2.4 Differential Form. Let R" be an Euclidean space with a normal basis
€,€2,+,€,. Then VT € R", there is a unique n-tuple (1, zs, -+, x,), z; € R, such
that

T = T1€1 + To€ + + -+ + X, €.

For needing in research tangent spaces of differential manifolds in the following

chapters, we consider a vector space
GA)=NaoAN N - BA"

generated by differentials dzq, dxs, - - -, dx,, under an operation A. Each element in

AY is a real number, and elements in A have a form

n
§ ai(zlaan"'axn)dxia
=1
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where a;(x1, 22, -+, x,) is a function on R™. In the space A2, elements have a form
Z aim (Il, Lo, -+, In>dl’ll A dl’i2.
i1 <19
Notice that dx;, Adz;, = —dx;, Adx;, by the definition of A. Generally, elements
in A¥ 1 <k <n, have a form
Z (P (.]71, Loy, l’n)d,f“ N dIZ‘Q VANRIEIAN dl‘lk
11 <ig<--<ip
A differential k-form is an element in A* for 1 < k < n. It is said in class of
C if each function a;4y.., (1, T2, - - -, ) is of class C*°. By definition, an element

in G(A) can be represented as

n
a(xlvx% T '7xn) + Zai(xlvx% T 7xn)d'r2
=1

n
+ Z ailig(zla Loy >$n)dxi1 A dxiz + -

11 <12

n

+ Z ai1i2...ik(x1,x2,-~-,xn)daji1 /\dl‘l2 A /\dl’lk + .-
11 <t <---<ip

+a1 2.0 (T1, To, -, Ty)day Adxg A -+ A d,.

145

An eaterior differential operator d : A¥ — AF*!is defined by

Oailiz...i
dw = Z Z(dezl) Ndziy N ANdxg,

i1<ia<--<iy, i=1
for a differential k-form
W= Z Qiyigiy (T15 T2y - -+, Ty )dxyy Ndiy N -+ - Nday, € AF.
i1 <ig<--<iy,
A differential form w is called to be closed if dw = 0 and exact if there exists a
differential form w such that dw = w. We know that each exact differential form is

closed in the next result.

Theorem 3.2.7 ddw = 0.

Proof Since d is a linear mapping, we only need to prove this claim on a

monomial. Let w = a(xy, xo, -+, x,)dxy A--- Adx;,. Then

"0
dw = Za—j.dxi/\dxil A ANd, .
i=1 v
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Therefore, we get that

ddw = Zd d:cmdx“ - Ady,

= Z 3 ———dz; Ndx; Ndxy, N ANda,

= xlﬁx]

= 8:17-&% (dx; Ndz; + dxj AN dx) Ndzg, A -+ Adxg,
i et

=0

U

3.2.5 Stokes’ Theorem on Simplicial Complex. A standard p-simplex s, in
R? is defined by

p
§p:{(x1,---,:vp)ERp|Zzi§1, 0<uz; <1for0<i<p}.
i=1

Now let w € AP be a differential p-form with

W = Z ailiQ__,Z-p (.]71, Loy, l’n)d,f“ N dIZ‘Q VANRRRIVAY dl‘ip.

11 <t <-<ip

Its integral on s,, is defined by

/w— E / /amz iy (T1, oy -+ ) dig dy, -+ - ds

11 <2<+ <lp N !

where the summands of the right hand expression are ordinary multiple integrals,

and for a chain ¢, = > \;s), € C,(RP), the integral of w on ¢, is determined by

[

i>1
Sp

Theorem 3.2.8 For any p-chain ¢, € C,(R?), p > 1 and a differentiable (p — 1)-

Jorm w,
for fu

dcp cp
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Proof By definition, it is suffices to check that
/ w = / dw
9s, Sp
in the case of w being a monomial, i.e.,

w=a(@)dzy N---Ndz; N--- Ndzx,

with a fixed j, 1 < j < p on a p-simplex s, = aga; - - - a,. Then we find that

p
/dw — /(Z%dazi)/\dm/\---/\dfc\j/\---/\dxp
: 5, =1 ¢
. da
= (—1)77! 8xial:vl/\---/\alxp

Sp

_ (—1) /[a(B)—a(A)]d:)sl---dZEj---d:)sp,

40
L
where ggzl is a (p — 1)-simplex determined by ggzl(xl, c By, @), a(A) =
a(zy,-,xj-1,0,---,2,) and a(B) = a(zy, -, xj_1,1 — (x1 + - +7; + -+ +

Tp), -+, Tp), see Fig.3.2.1 for details.

Ty

@;

Qg
az T2

ay
T
Fig.3.2.1
Thus
/dw = (—1) / a(A)dzy -+ -dz; -+ -dr, + (—=1)77! / a(B)dxy ---dx; - - - dx,
sy @ 0@
Sp—1 =p—1
= (—1) / w+ (1)1 / a(B)dzy -+ -dZ; - - - dx,,.
2@ o@D

=p—1 =p—1
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Let 7 be a mapping 7 : ap — a; and a; — a; if i # j, which defines a mapping

on coordinates (xy, %o, -, x,) — (z;,21,- -+, 2, -+, %p). Whence,
) . R
/w = /a(B) ($1,$2,A, ) dy - --dz; - - dz,
/ 8(25]‘,25'1,"',25]‘,"',251))
al?, al?,
_ (—1)j_1/a(B)dx1-~-d§j-~-dxp.
al?,

Notice that if ¢ # 0 or 7, then

ap” 1
Whence, we find that
1 [ws ey [o=3 e o
al?, al’, 0 Gy
and
p .

/(U: / w:Z(—l)Z/(U,

Js P, ) =0 at

2p Z(_l)ig;71 =p—1

i=0

where Q;_l = apay - - - @; - - - a,. Therefore, we get that

/dw = (—1)j/w+(—1)j_1/a(B)dx1-~-d§j-~-dxp

Zp Q;Ql Qiﬁl
= (—=1) / w+ (=177 (=1) / w = /w.
o@) o© 8§p
=p—1 =p—1
This completes the proof. O

83.3 SMARANDACHE N-MANIFOLDS

3.3.1 Smarandache Geometry. Let (M;p) be a metric space, i.e., a geometrical

system. An axiom is said to be Smarandachely deniedin (M; p) if this axiom behaves
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in at least two different ways within M, i.e., validated and invalided, or only invalided
but in multiple distinct ways. A Smarandache geometry is a geometry which has at
least one Smarandachely denied axiom, which was first introduced by Smarandache
in [Sma2] and then a formal definition in [KuAl].

As we known, an axiom system of an Fuclid geometry is consisted of five axioms

following;:

E1) there is a straight line between any two points.

(E1)

(E2) a finite straight line can produce a infinite straight line continuously.
(E3) any point and a distance can describe a circle.

(E4)

(

E5) if a straight line falling on two straight lines make the interior angles

all right angles are equal to one another.

on the same side less than two right angles, then the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two right angles.
The last axiom (E5) is usually replaced by:

(E5”) given a line and a point exterior this line, there is one line parallel to

this line.

Notice that in a Lobachevshy-Bolyai-Gauss geometry, also called the hyperbolic
geometry, the axiom (E5) is replaced by

(L5) there are infinitely many lines parallel to a given line passing through an

exterior point,

and in a Riemannian geometry, also called the elliptic geometry, the axiom (E5) is
replaced by (R5):

there is no parallel to a given line passing through an exterior point.

There are many ways for constructing Smarandache geometries, particularly, by
denying some axioms in Fuclidean geometry done as in Lobachevshy-Bolyai-Gauss
geometry and Riemannian geometry.

For example, let R? be a Euclidean plane, points A, B € R? and [ a straight
line, where each straight line passes through A will turn 30° degree to the upper
and passes through B will turn 30° degree to the down such as those shown in Fig.
3.3.1. Then each line passing through A in F; will intersect with [, lines passing

through B in F;, will not intersect with [ and there is only one line passing through
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other points does not intersect with [.

Fig.3.3.1

A nice model on Smarandache geometries, namely s-manifolds on the plane was

found by Iseri in [Isel], which is defined as follows:

An s-manifold is any collection C(T,n) of these equilateral triangular disks
T;, 1 <1 <n satisfying the following conditions:

(i) each edge e is the identification of at most two edges e;, e; in two distinct
triangular disks T;,T;,1 < i,j <n and ¢ # j;

(17) each vertex v is the identification of one vertex in each of five, six or seven

distinct triangular disks.

The vertices are classified by the number of the disks around them. A vertex
around five, six or seven triangular disks is called an elliptic vertex, an Fuclidean

vertex or a hyperbolic vertex, respectively.

Ly

Fig.3.3.2

In a plane, an elliptic vertex O, a Euclidean vertex P and a hyperbolic ver-
tex @ and an s-line L;, Ly or L3 passes through points O, P or () are shown in
Fig.3.3.2(a), (b), (¢), respectively.

As shown in [Isel] and [Mao3], there are many ways for constructing a Smaran-
dache geometry, such as those of denial one or more axioms of a Euclidean geometry

by new axiom or its anti-axiom,..., etc.
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3.3.2 Map Geometry. A map geometry is gotten by endowing an angular
function p : V(M) — [0,47) on a map M, which was first introduced in [Mao2] as
a generalization of Iseri’s model on surfaces. In fact, the essence in Iseri’s model
is not these numbers 5,6 or 7, but in these angles 300°, 360° and 420° on vertices,

which determines a vertex is elliptic, Euclidean or hyperbolic on the plane.

Definition 3.3.1 Let M be a combinatorial map on a surface S with each vertex

valency> 3 and p : V(M) — [0,47), i.e., endow each vertex u,u € V(M) with

4
pa(w)’
without boundary, p(u) an angle factor on u and orientable or non-orientable if M

a real number p(u),0 < p(u) < The pair (M, ) is called a map geometry

18 orientable or not.

Certainly, a vertex v € V(M) with py(u)p(u) < 27, = 27 or > 27 can be

realized in a Euclidean space R?, such as those shown in Fig.3.3.3.

u

Fig.3.3.3

A point u in a map geometry (M, 1) is said to be elliptic, Euclidean or hyperbolic
if ppr(u)p(u) < 2w, payr(u)p(u) = 27 or ppr(w)p(u) > 2m. If p(u) = 60°, we find
these elliptic, Euclidean or hyperbolic vertices are just the same in Iseri’s model,
which means that these s-manifolds are a special map geometry. If a line passes
M with the entering ray and equal

to 180° only when u is Euclidean. For convenience, we always assume that a line

through a point u, it must has an angle

passing through an elliptic point turn to the left and a hyperbolic point to the right

on the plane.

Theorem 3.3.1 Let M be a map on a locally orientable surface with |M| > 3 and
pu(uw) > 3 for Yu € V(M). Then there exists an angle factor p : V(M) — [0, 4m)
such that (M, ) is a Smarandache geometry by denial the aziom (E5) with axioms
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(E5),(L5) and (R5).

Proof By the assumption pys(u) > 3, we can always choose an angle factor p
such that p(u)py(u) < 27, p(v)par(u) = 2 or p(w)pp(u) > 2w for three vertices
u,v,w € V(M), i.e., there elliptic, or Euclidean, or hyperbolic points exist in (M, p)

simultaneously. The proof is divided into three cases.
Case 1. M is a planar map

Choose L being a line under the map M, not intersection with it, u € (M, ).
Then if u is Euclidean, there is one and only one line passing through u not inter-
secting with L, and if u is elliptic, there are infinite many lines passing through u
not intersecting with L, but if u is hyperbolic, then each line passing through u will
intersect with L. See for example, Fig.3.3.4 in where the planar graph is a complete
graph K, on a sphere and points 1,2 are elliptic, 3 is Euclidean but the point 4
is hyperbolic. Then all lines in the field A do not intersect with L, but each line
passing through the point 4 will intersect with the line L. Therefore, (M, pu) is a
Smarandache geometry by denial the axiom (E5) with these axioms (E5), (L5) and
(R5).

Case 2. M is an orientable map

According to Theorem 3.1.15 of classifying surfaces, We only need to prove this

assertion on a torus. In this case, lines on a torus has the following property (see
[NiS1] for details):

if the slope ¢ of a line L is a rational number, then L is a closed line on the
torus. Otherwise, L is infinite, and moreover L passes arbitrarily close to every

point on the torus.
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Whence, if L; is a line on a torus with an irrational slope not passing through an
elliptic or a hyperbolic point, then for any point u exterior to Ly, if u is a Fuclidean
point, then there is only one line passing through u not intersecting with L;, and if
u is elliptic or hyperbolic, any m-line passing through u will intersect with L.
Now let Ly be a line on the torus with a rational slope not passing through an
elliptic or a hyperbolic point, such as the the line Ly shown in Fig.3.3.5, in where
v is a Euclidean point. If u is a Euclidean point, then each line L passing through
u with rational slope in the area A will not intersect with Lo, but each line passing

through u with irrational slope in the area A will intersect with L.

1

t-(

Fig.3.3.5

Therefore, (M, u) is a Smarandache geometry by denial the axiom (E5) with
axioms (E5), (L5) and (R5) in the orientable case.

Case 3. M is a non-orientable map

Similar to the Case 2, we only need to prove this result for the projective plane.
A line in a projective plane is shown in Fig.3.3.6(a), (b) or (c), in where case (a) is
a line passing through a Euclidean point, (b) passing through an elliptic point and
(c) passing through a hyperbolic point.

1
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Let L be a line passing through the center of the circle. Then if u is a Euclidean
point, there is only one line passing through u such as the case (a) in Fig.3.3.7. If v
is an elliptic point then there is an m-line passing through it and intersecting with
L such as the case (b) in Fig.3.3.7. We assume the point 1 is a point such that
there exists a line passing through 1 and 0, then any line in the shade of Fig.3.3.7(b)

passing through v will intersect with L.

2

i
01 L 2o L1 ' Lo20

Fig.3.3.7

If w is a Euclidean point and there is a line passing through it not intersecting
with L such as the case (¢) in Fig.3.3.7, then any line in the shade of Fig.3.3.7(c)
passing through w will not intersect with L. Since the position of the vertices of
a map M on a projective plane can be choose as our wish, we know (M, pu) is a
Smarandache geometry by denial the axiom (E5) with axioms (E5),(L5) and (R5).

Combining discussions of Cases 1,2 and 3, the proof is complete. O

These map geometries determined in Theorem 3.3.1 are all without boundary,
which are a generalization of polyhedral geometry, i.e., Riemannian geometry. Gen-
erally, we can also introduce map geometries with deleting some faces, i.e., map

geometries with boundary.

Definition 3.3.2 Let (M, ) be a map geometry without boundary, faces fi, fa, -+,
fie F(M), 1 <1< p(M)—=1. If S(M)\{ f1, f2,- -+, fi} is connected, then (M, i)~ =
(S(M)\{f1, fo,- -+, i}, i) is called a map geometry with boundary fi1, fa, -+, fi, and
orientable or not if (M, u) is orientable or not, where S(M) denotes the underlying
surface of M.

Similarly, map geometries with boundary can also provide Smarandache ge-

ometries, which is convinced in the following for [ = 1.

Theorem 3.3.2 Let M be a map on a locally orientable surface with order> 3, vertex
valency> 3 and a face f € F(M). Then there is an angle factor p: V(M) — |0, 47)
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such that (M, ;1)~! is a Smarandache geometry by denial the axiom (E5) with these
azioms (E5),(L5) and (R5).

Proof Divide the discussion into planar map, orientable map on a torus and
non-orientable map on a projective plane dependent on M, respectively. Similar
to the proof of Theorem 3.3.1, We can prove (M, u)~" is a Smarandache geometry
by denial the axiom (E5) with these axioms (E5),(L5) and (R5) in each case. In
fact, the proof applies here, only need to note that a line in a map geometry with

boundary is terminated at its boundary. 0

A Poincaré’s model for hyperbolic geometry is an upper half-plane in which lines
are upper half-circles with center on the z-axis or upper straight lines perpendicular

to the x-axis such as those shown in Fig.3.3.8.

Ly L,

L Ls
L?’/{

Fig.3.3.8

Now let all infinite points be a same point. Then the Poincaré’s model for
hyperbolic geometry turns to a Klein model for hyperbolic geometry which uses a
boundary circle and lines are straight line segment in this circle, such as those shown
in Fig.3.3.9.

e
<
7
o
N
7
S
Fig.3.3.9

Whence, a Klein’s model is nothing but a map geometry with boundary of 1
face determined by Theorem 3.3.2. This fact convinces us that map geometries with

boundary are a generalization of hyperbolic geometry.
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3.3.3 Pseudo-Euclidean Space. Let R" be an n-dimensional Euclidean space
with a normal basis ¢, = (1,0,---,0), €& = (0,1,---,0), -+, & = (0,0,---,1). An
orientation X is a vector OX with HO—XZH = 1 in R", where O = (0,0,---,0).
Usually, an orientation X is denoted by its projections of OX on each g for 1 <

1 < n, le.,
X = (cos(O—XZ,El), COS(O_Xz,Eg), _ COS(O—XZ,En)),

where (O—)(Z ,€;) denotes the angle between vectors OX and €,1 <1 <n. All possible
orientations X in R™ consist of a set &.

A pseudo-FEuclidean space is a pair (R, w|5>), where w|5> :R" — 0 is a
continuous function, i.e., a straight line with an orientation O will has an orientation
5+w|5>(ﬂ) after it passing through a point @ € E. It is obvious that (E, w|5>) =E,
namely the Euclidean space itself if and only if w|5>(ﬂ) =0 for Vu € E.

We have known that a straight line L passing through a point (29,29, -, 2%)
with an orientation O = (X1, Xy, -+, X,,) is defined to be a point set (x1, zo, -+, x,)

determined by an equation system

=2y +tX;
T = LU(Q) +tX2
T, =20 +tX,

for Vt € R in analytic geometry on R", or equivalently, by the equation system

T — ) xy — 2y —

X X5 Xn

Therefore, we can also determine its equation system for a straight line L in a
pseudo-Euclidean space (R",w). By definition, a straight line L passing through a
Euclidean point 2° = (29, 29, - - -, 2°) € R" with an orientation O = (X1, Xa, - -, X,,)

in (R",w) is a point set (xy, 2, -+, x,) determined by an equation system

T = Slf(l] + t(Xl + wl(fo))
To = Sl?g + t(Xg + WQ(EO))
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for Vt € R, or equivalently,

-2y xm—ay oz, —al
Xl —|—u}1(fo) X2 —|—u}2(f0) Xn +wn(fo)’
where w|5>(§0) = (w1 (), wa(T°), - -+, w, (7). Notice that this equation system

dependent on w|—=, it maybe not a linear equation system.

Similarly, let O be an orientation. A point w € R™ is said to be Fuclidean on
orientation O if w|5>(ﬂ) = 0. Otherwise, let w|5>(ﬂ) = (w1(T),wa (), - - -, wy(7)).
The point @ is elliptic or hyperbolic determined by the following inductive program-
ming.

STEP 1. If wy(T) < 0, then @ is elliptic; otherwise, hyperbolic if w; (@) > 0;

STEP 2. If wy(u) = we(u) = -+- = wi(u = 0, but w;1(u < 0 then w is elliptic;

otherwise, hyperbolic if w; (@) > 0 for an integer i,0 <i <n — 1.
Denote these elliptic, Euclidean and hyperbolic point sets by
Ve = {u e R™ | wan Euclidean point },
V= {veR" |V an elliptic point }.
7@ = { v € R" | W a hyperbolic point }.
Then we get a partition
R"=V,, U Va U Vhy

on points in R™ with Veu N 1_/')61 =0, Veu N Vhy = () and Vel N Vhy = (). Points in
1_/')61 N Vhy are called non-FEuclidean points.

Now we introduce a linear order < on & by the dictionary arrangement in the

following.

For (xy, 29, -+, x,) and (24, 24,---,2)) € O, if vy = 2,00 = 2, -- -, 0, = 7]
and x4 < x),, for any integer 1,0 < I < n — 1, then define (x1,72, -, 2,) <
(I/laxéa"WI;L)'

By this definition, we know that

wlg @ = wlg@) <wlig@)

for Vu € \761, U E 761“ w e 7hy and a given orientation 6 This fact enables us to
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find an interesting result following.

Theorem 3.3.3 For any orientation O € € in a pseudo-Euclidean space (R", w|=),

@]
if Va #+ 0 and 7@ £, then Vo + ).

Proof By assumption, Vel # () and Vhy # (), we can choose points T € 761 and
w e 7@. Notice that w|5> : R" — 0 is a continuous and (&, <) a linear ordered
set. Applying the generalized intermediate value theorem on continuous mappings

in topology, i.e.,

Let f : X — Y be a continuous mapping with X a connected space and Y a
linear ordered set in the order topology. If a,b € X andy €Y lies between f(a) and
f(b), then there ezists x € X such that f(x) =y.

we know that there is a point 7 € R” such that

w|5(@) =0,

@)

i.e., ¥ is a Euclidean point by definition. U

Corollary 3.3.1 For any orientation Oclina pseudo-Euclidean space (R", w|-—=),

O
if V)eu = (), then either points in (R",w|5>) is elliptic or hyperbolic.
Certainly, a pseudo-Euclidean space (R“,w\ﬁ) is a Smarandache geometry

sometimes explained in the following.

Theorem 3.3.4 A pseudo-Euclidean space (R",w|5>) is a Smarandache geometry
if ?eu,?el # 0, or Veu,l_/)hy # 0, or 761,7@ % () for an orientation O in

R, wlg).

Proof Notice that w|—= () = 0 is an axiom in R", but a Smarandache denied
axiom if Veu,?el # (), or 1_/)%,?@ # (), or V’el,?hy # () for an orientation o
in (R",w|5>) for w|5>(ﬂ) = 0 or # 0 in the former two cases and w\ﬁ(ﬂ) < 0or
> 0 both hold in the last one. Whence, we know that (R", w\ﬁ) is a Smarandache
geometry by definition. O

Notice that there infinite points on a segment of a straight line in R”. Whence,
a necessary for the existence of a straight line is there exist infinite Euclidean points
in (R, w|5>) We find a necessary and sufficient result for the existence of a curve

C'in (R",w|5>) following.
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Theorem 3.3.5 A curve C = (fi(t), fa(t), -, fu(t)) exists in a pseudo-FEuclidean

space (R“,w|5>) for an orientation O if and only if

dfy (1) 1
7'5 = (m) -1,
df(t), N

dt e = <w2(u) - L
dfa() Ly

forYu € C, where w|5> = (Wi, wa, +,Wy).

Proof Let the angle between w|5> and € be 6,, 1 <60, <n.

€3
.................. : X
w3
0
o 02 w2
w1 (P/ E2
.......................................... N
€1
Fig.3.3.10

Then we know that
cost =w;, 1<i<n.

According to the geometrical implication of differential at a point w € R",

seeing also Fig.3.3.10, we know that

df;(t) Lo,
—— tab; 1
dt = 190 wi(u )

—
|
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for 1 < i < n. Therefore, if a curve C' = (f1(t), fo(t),- - -, fu(t)) exists in a pseudo-

Euclidean space (R™, w|5>) for an orientation O, then

dfi(t), I
= (e

for Ve € C'. On the other hand, if

dfi(t) o 1
dat "

|
—

hold for points ¥ for Vt € R, then all points U, ¢ € R consist of a curve C' =
(1), fa(t), -+, fu(t)) in (R",w] ) for the orientation 0. O

Corollary 3.3.2 A straight line L ezists in (R",w\ﬁ) if and only if w|5>(ﬂ) =0
forvVae L and O € 0.

3.3.4 Smarandache Manifold. For an integer n,n > 2, a Smarandache man-
ifold is a n-manifold that supports a Smarandache geometry. Certainly, there are
many ways for construction of Smarandache manifolds. For example, these pseudo-
Euclidean spaces (R”, w|5>) for different homomorphisms w5 and orientations O.
We consider a general family of Smarandache manifolds, i.e., pseudo-manifolds
(M™, A“) in this section, which is a generalization of n-manifolds.

An n-dimensional pseudo-manifold (M™, A“) is a Hausdorff space such that
each points p has an open neighborhood U, homomorphic to a pseudo-Euclidean
space (R",w\ﬁ), where A = {(U,, p%)|p € M"} is its atlas with a homomorphism
ws Uy — (R”,w|5>) and a chart (U, y).

Theorem 3.3.6 For a point p € (M", A”) with a local chart (Uy,, y), ¢ = @, if
and only wa|5>(p) =0.

Proof For Vp € (M", A%), if ¢(p) = wp(p), then w(py(p)) = wp(p). By
the definition of pseudo-Euclidean space (R",w|5>), this can only happens while

w(p) =0. O
A point p € (M", A¥) is elliptic, Euclidean or hyperbolicif w(p,(p)) € (R™, w|5>)
is elliptic, Fuclidean or hyperbolic, respectively. These elliptic and hyperbolic points

also called non-FEuclidean points. We get a consequence by Theorem 3.3.6.
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Corollary 3.3.3 Let (M", A”) be a pseudo-manifold. Then ;= ¢, if and only if

every point in M™ is Fuclidean.

Theorem 3.3.7 Let (M", A“) be an n-dimensional pseudo-manifold, p € M".
If there are Fuclidean and non-Euclidean points simultaneously or two elliptic or
hyperbolic points on an orientation O in (Up, ¢p), then (M™, A“) is a Smarandache

n-manifold.

Proof Notice that two lines Ly, Ly are said locally parallel in a neighborhood
(Up, ¢3) of a point p € (M", A“) if p¥(L;) and @y (Ly) are parallel in (R“,w|5>). If
these conditions hold for (M", A¥), the axiom that there is exactly one line passing
through a point locally parallel a given line is Smarandachely denied since it behaves
in at least two different ways, i.e., one parallel, none parallel, or one parallel, infinite
parallels, or none parallel, infinite parallels, which are verified in the following.

If there are Euclidean and non-Euclidean points in (U,, ;) simultaneously, not
loss of generality, we assume that u is Euclidean but v non-Euclidean, ¢%(v) =

(Wi, wa, -+, wy) with wy < 0.

L j L ;
(v)

(a)

Fig.3.3.11

Let L be a line parallel the axis € in (R”,w|5>). There is only one line L,
locally parallel to (¢%)~'(L) passing through the point u since there is only one line
¢4 (L,) parallel to L in (R™, w|5>) However, if wy > 0, then there are infinite many
lines passing through u locally parallel to ¢, '(L) in (Up, ¢,) since there are infinite
many lines parallel L in (R”,w|5>), such as those shown in Fig.3.3.11(a) in where
each line passing through the point @ = % (u) from the shade field is parallel to L.
But if w; > 0, then there are no lines locally parallel to ()~'(L) in (Uy, ¢%) since
there are no lines passing through the point ¥ = % (v) parallel to L in (R", w|5>),

such as those shown in Fig.3.3.11(b).

If there are two elliptic points u, v along a direction 6, consider the plane P

determined by ¢%(u), ¢ (v) with 0 in (R™, w|5>) Let L be a line intersecting with
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the line ¥ (u)pys(v) in P. Then there are infinite lines passing through u locally
parallel to (¢¢)~'(L) but none line passing through v locally parallel to ¢, *(L) in
(Up, ¢p) since there are infinite many lines or none lines passing through 7 = % (u)

or 7 = ¥ (v) parallel to L in (R",w|5>), such as those shown in Fig.3.3.12.

Ly
Qé

]

Fig.3.3.12

Similarly, we can also get the conclusion on the case of hyperbolic points. Since
there exists a Smarandachely denied axiom in (M™, A“) under these assumptions,
it is indeed a Smarandache manifold. O

Particularly, we have consequences following by Theorem 3.3.7 for pseudo-

Euclidean spaces (R, w|-=).

O
Corollary 3.3.4 For any integer n > 2, if there are Euclidean and non-FEuclidean
points simultaneously or two elliptic or hyperbolic points in an orientation 0 in

(R”,w|5>), then (R",w|5>) is an n-dimensional Smarandache geometry.

Corollary 3.3.4 partially answers an open problem in [Mao3] for establishing

Smarandache geometries in R3.

Corollary 3.3.5 If there are points p,q € (R?, w\a) such thatw|5>(]_9) #(0,0,0) but
w|5>(§) = (0,0,0) or p,q are simultaneously elliptic or hyperbolic in an orientation
O in (R3,w|5>), then (R3,w|5>) is a Smarandache geometry.

Notice that if there only finite non-Euclidean points in (M™, A%), a loop L,
based at a point p € M™ is still a loop of (M™, A¥) based at a point p € (M", A%)
and vice versa. Whence, we get the fundamental groups of pseudo-manifolds with

finite non-Euclidean points.

Theorem 3.3.8 Let (M™, A¥) be a pseudo-manifold with finite non-Euclidean points.
Then

71'1(]\4n>p) = 7Tl((jwn> Aw)>p)

for¥p e (M™ AY). 0
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§3.4 DIFFERENTIAL SMARANDACHE MANIFOLDS

3.4.1 Differential Manifold. A differential n-manifold (M™, A) is an n-manifold
M™, where M™ = |J U; endowed with a C"-differential structure A = {(U,, o )| €
I} on M™ for an iiletjeger r with following conditions hold.

(1) {U,; a € I} is an open covering of M";

(2) ForVa, € I, atlases (Ua, ¢o) and (Ug, @) are equivalent, i.e., U, (\ Uz = 0)
or U, Us # 0 but the overlap maps

vaps ps(Uanu,) = wp(Us) and @sp." : 0s(Uanu,) = ©alUa)

are C;

(3) A is maximal, i.e., if (U, ) is an atlas of M"™ equivalent with one atlas in
A, then (U, ¢) € A.

An n-manifold is smooth if it is endowed with a C*°-differential structure. It
has been known that the base of a tangent space 7, M" of differential n-manifold
(M™, A) consisting of 8?0“1 < i < n for Vp € (M", A). More results on differential
manifolds can be found in [AbM1], [MAR1], [Petl], [Wesl| or [ChL1] for details.

3.4.2 Differential Smarandache Manifold. For an integer r > 1, a C"-
differential Smarandache manifold (M", A¥) is a Smarandache manifold (M", A%)
endowed with a C"-differentiable structure A and w|5> for an orientation 0. A
C*-Smarandache n-manifold (M™, A4¥) is also said to be a smooth Smarandache

manifold. For pseudo-manifolds, we know their differentiable conditions following.

Theorem 3.4.1 A pseudo-Manifold (M"™, A¥) is a C"-differential Smarandache
manifold with an orientation o for an integer r > 1 if conditions following hold.
(1) There is a C"-differential structure A = {(Ua, pa)|e € I} on M™;
(2) w|5> is C7;
(3) There are Euclidean and non-FEuclidean points simultaneously or two elliptic

or hyperbolic points on the orientation O in (Up, ¢p) for a point p € M™.

Proof The condition (1) implies that (M", A) is a C"-differential n-manifold
and conditions (2), (3) ensure (M", A¥) is a differential Smarandache manifold by
definitions and Theorem 3.3.7. O
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3.4.3 Tangent Space on Smarandache Manifold. For a smooth differential
Smarandache manifold (M™, A¥), a function f : M"™ — R is said smooth if for
Vp € M™ with a chart (U,, ¢,),

folgg)™:ep(Uy) = R”

is smooth. Denote all such C*°-functions at a point p € M™ by . A tangent vector

T at p is a mapping v : ¥, — R with conditions following hold.

(1) Vg,h € 3, VA € R, T(h+ Ah) = T(g) + AT (h);
(2) Vg,h €Sy, V' (gh) =T (g)h(p) + g(p) v (h).

Denote all tangent vectors at a point p € (M", A¥) still by T, M™ without am-
biguous and define addition “+”and scalar multiplication “-”for Yu,v € T,M", X €

R and f € &, by

(u+0)(f) = ulf) +v(f), Au)(f)=A-ulf).

Then it can be shown immediately that 7,M™ is a vector space under these two
operations “+”and “-”.

Let p € (M™, A¥) and 7y : (—¢,¢) — R™ be a smooth curve in R" with (0) = p.
In (M", A¥), there are four possible cases for tangent vectors on 7 at the point p,

such as those shown in Fig.3.4.1, in where these L-L represent tangent lines.

Fig.3.4.1

By these positions of tangent lines at a point p on 7, we conclude that there
is one tangent line at a point p on a smooth curve if and only if p is Euclidean in
(M™, A¥). This result enables us to get the dimensional number of a tangent vector
space T,M™ at a point p € (M™, A¥).

Theorem 3.4.2 For a point p € (M", A¥) with a local chart (Uy,, ¢,), if there are

exactly s Buclidean directions along€;,,€,,, - -, €, forp, then the dimension of T, M"
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18
dimT,M" = 2n —s

with a basis

{ax23|p|1<]<8}U{a l|p,a l|p|1§l§nandl7éij,1§j§s}.

Proof We only need to prove that

0 , o~ ot , .
{%\H1§J§3}U{@7@|p|1§l§nandl7ﬁ%1éjﬁs} (3.4.1)

is a basis of T,M". For Vf € ,, since f is smooth, we know that

n o<
f@) = FE)+ Y- Mf( )

for Vo = (z1, 29, -, 2,) € ¢p(Up) by the Taylor formula in R™, where each term in
R ... contains (z; — x7)(z; — 29) - (z, — 20), ¢ € {+, =} for 1 <1 <n but [ # i,
for 1 < j < s and ¢ should be deleted for [ =i;,1 < j <s.
Now let v € T,M". By the condition (1) of definition of tangent vector at a
point p € (M™, A¥), we get that
n N
o(I) = o)+ oY — DT )

i=1

d 0% f 0
TS D ) R LA LA RG]

ij=1
Similarly, application of the condition (2) in definition of tangent vector at a
point p € (M™, A¥) shows that

n 862
=0, Z 8:@ =0,

d o f 0
oD (s = )y — ) S LT =

ij=1
and
U(Ri,j,---,k) =0.
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Whence, we get that
W(f@) = Yo vle) G2 ) = 3 el g blf): (3:42)

The formula (3.4.2) shows that any tangent vector v in 7, M™ can be spanned
by elements in the set (3.4.1).

All elements in the set (3.4.1) are linearly independent. Otherwise, if there are
numbers a',a?, -+ 0% af,ay, a5, a5, a’_, a,_, such that

)N —s8) 'n—s

L9 L0
;aijﬁij_'_ Z a; axi‘p—o,

i1, 0s,1<i<n

where ¢; € {4, —}, then we get that

s 9 .
Cl,ij :(2&23%4‘ Z a:laxz)(Ilj) =0
j= j

i1 iz, vis, 1<i<n
for 1 <j<sand

€q

. d 0 .
CL? = (Zl aij%i_ + Z a? axz)(xz) = 0
= J

i1 iz, s, 1<i<n

for i # iy,i9,- -+, 15,1 <i < n. Therefore, vectors in the set (3.4.1) is a basis of the
tangent vector space T, M™ at the point p € (M", A%). O
Notice that dim7,M™ = n in Theorem 3.4.2 if and only if all these directions

are Fuclidean along €,¢,---,€,. We get a consequence by Theorem 3.4.2.

Corollary 3.4.1 Let (M™, A) be a smooth manifold and p € M™. Then

dim7,M" =n
with a basis
0 )

For Vp € (M", A”), the dual space Ty M™ is called a co-tangent vector space
at p. Now let f € Sy,d € TyM" and v € T,M". The action of d on f, called a
differential operator d : &, — R, is defined by

df = w(/f).
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Then, we can immediately get the result on its basis of co-tangent vector space

at a point p € (M™, A¥) similar to Theorem 3.4.2.

Theorem 3.4.3 For any point p € (M", A¥) with a local chart (U,,v,), if there
are ezvactly s Euclidean directions along €;,,€,,,---,€. for p, then the dimension of
TyM™ is

dimT;M" = 2n—s
with a basis
{dog |, | 1 <j <spUld a|p. dT 2, [ 1 < I <nandl #i;,1 < j < s},

where

d$i|p(%|p) = 6;’ and deixi|p(%§

P):(Sji'

fore; e {+,-}1<i<n.

83.5 PSEUDO-MANIFOLD GEOMETRY

3.5.1 Pseudo-Manifold Geometry. We introduce Minkowskian norms on these

pseudo-manifolds (M™, A“) likewise that in Finsler geometry following.

Definition 3.5.1 A Minkowskian norm on a vector space V' is a function F : V — R
such that

(1) F is smooth on V\{0} and F(v) >0 for Vv e V;
(2) F is 1-homogenous, i.e., F'(Av) = AF(v) for VA > 0;
(3) for ally € V\{0}, the symmetric bilinear form g, : V x V. — R with
0°F(y)
o= 300

i7j

is positive definite for u,v € V.

Denote by TM" = | T,M™.
pe(M™,A)

Definition 3.5.2 A pseudo-manifold geometry is a pseudo-manifold (M™, A¥) en-

dowed with a Minkowskian norm I on T M™.

Then we get the following result.
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Theorem 3.5.1 There are pseudo-manifold geometries.

Proof Consider a Euclidean 2n-dimensional space R**. Then there exists a
Minkowskian norm F'(Z) = |Z| at least. According to Theorem 3.4.2, the dimension
of T, M™ is R*+2(n=9) if w\ﬁ(p) exactly has s Euclidean directions along €, €, - - -, €,.
Whence there are Minkowskian norms on each chart of points in (M™, .A%).

Since (M™, A) has a finite cover {(U,, pa)|a € I}, where [ is a finite index set,
by the decomposition theorem for unit, we know that there are smooth functions
he,a € I such that

Zhazlwithoghagl.

ael

Choose a Minkowskian norm F'* on each chart (U,, ¢o). Define

P h*F*, if peU,,
“ 0, if peU,

for Vp € (M™, ¢*). Now let

F:ZFQ.

acl
Then F' is a Minkowskian norm on T'M" since it satisfies all of these conditions
(1) — (3) in Definition 3.5.1. O
Although the dimension of each tangent vector space maybe different, we can

also introduce principal fiber bundles and connections on pseudo-manifolds.

Definition 3.5.3 A principal fiber bundle (PFB) consists of a pseudo-manifold
(P, A?), a projection 7 : (P, A¥) — (M, A7), a base pseudo-manifold (M, AT“))
and a Lie group G, which is a manifold with group operation G X G — given by
(g,h) — goh being C* mapping, denoted by (P, M,w™ G) such that (1), (2) and
(3) following hold.

(1) There is a right freely action of G on (P, AY), i.e., for Vg € G, there is a
diffeomorphism Ry : (P, AY) — (P, AY) with R,(p*) = p¥g for ¥p € (P, AY) such
that p“(g192) = (p¥g1)go for Vp € (P, AY), Yg1,92 € G and p*e = p* for some
p € (P, AY), e € G if and only if e is the identity element of G.

(2) The map 7 : (P, A?) — (M, AT“)) is onto with 7= (7 (p)) = {pglg € G},

Tw, = wom, and reqular on spatial directions of p, i.e., if the spatial directions of p
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are (wi,ws, -+, wy), then w; and (w;) are both elliptic, or Euclidean, or hyperbolic

and |7~ (7 (w;))| is a constant number independent of p for any integer i,1 < i < n.

(3) ForVz € (M, Ag(“’)) there is an open set U with x € U and a diffeomor-
phism T« (1)~ (U™@) = U™ x G of the form T,(p) = (7(p®), su(p*)), where
sy T HU™ @) — G has the property s,(pg) = s,(p?)g for Vg € G,p € 7= *(U).

We know the following result for principal fiber bundles of pseudo-manifolds.

Theorem 3.5.2 Let (P, M,w™,G) be a PFB. Then
(P,M,w™,G) = (P,M,n,Q)
if and only if all points in pseudo-manifolds (P, AY) are Euclidean.

Proof For Vp € (P, AY), let (U,, ¢,) be a chart at p. Notice that w™ = 7 if and
only if ¢ = ¢, for Vp € (P, AY). According to Theorem 3.3.6, this is equivalent to
that all points in (P,.AY) are Euclidean. O

Definition 3.5.4 Let (P,M,w™, G) be a PFB with dimG = r. A subspace fam-
ily H = {Hylp € (P, AY),dimH, = dimT, )M} of TP is called a connection if
conditions (1) and (2) following hold.

(1) ForVp e (P, AY), there is a decomposition
T,Pp=H,@V,
and the restriction 7|y, : Hy, — TrpM is a linear isomorphism.

(2) H is invariant under the right action of G, i.e., for p € (P, AY), Vg € G,

(Rg)*p(Hp) = pr'

Similar to Theorem 3.5.2, the conception of connection introduced in Definition

3.5.4 is more general than the popular connection on principal fiber bundles.

Theorem 3.5.3 Let (P,M,w™, G) be a PFB with a connection H. For ¥p €
(P, AY), if the number of Euclidean directions of p is Ap(p), then

(dimP — dimM)(2dimP — Ap(p))

dimV, = dim P

Proof Assume these Euclidean directions of the point p being €, %, -+, €\,
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By definition  is regular, we know that 7(€,),7(€), - - -, 7(€x,(p)) are also Euclidean
in (M, AT“)). Now since
T 7(@)) =7 (n(€)) = - =7 (7 (€rp(r))) = 1 = constant,

we get that Ap(p) = pAy, where Ay denotes the correspondent Euclidean directions
in (M, Af(w)). Similarly, consider all directions of the point p, we also get that
dimP = pdimM. Thereafter

dimM
= P Ap(p). (3.5.1)

Now by Definition 3.5.4, T,P = H, PV, i.e.,

Am

dim7,P = dimH, + dimV,,. (3.5.2)

Since m.|g, : H, — TrpM is a linear isomorphism, we know that dimH, =

dimT% ) M. According to Theorem 3.4.2, we get formulae
dimT, P = 2dimP — Ap(p)

and

dim M
dim P
Now replacing these two formulae into (3.5.2), we get that

dimT5 ) M = 2dimM — Ay = 2dimM —

Ap(p).

dimM
dimP

2dimP — A\p(p) = 2dimM — Ap(p) + dimV,

That is,
(dimP — dimM ) (2dimP — Ap(p))

dimP

dimV), =

We immediately get the following consequence by Theorem 3.5.3.

Corollary 3.5.1 Let (P,M,w™,G) be a PFB with a connection H. Then for
Vp € (P, A7),

dimV, = dimP — dimM
if and only if the point p is Fuclidean.

3.5.2 Inclusion in Pseudo-Manifold Geometry. Now we consider conclusions

included in Smarandache geometries, particularly in pseudo-manifold geometries.
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Theorem 3.5.4 A pseudo-manifold geometry (M™, ¢*) with a Minkowskian norm
on TM"™ is a Finsler geometry if and only if all points of (M™, ¢*) are Fuclidean.

Proof According to Theorem 3.3.6, ¢ = ¢, for Vp € (M",¢*) if and only if
p is Euclidean. Whence, by definition (M", ¢*) is a Finsler geometry if and only if
all points of (M", ) are Euclidean. O

Corollary 3.5.2 There are inclusions among Smarandache geometries, Finsler ge-

ometry, Riemann geometry and Weyl geometry:

{Smarandache geometries} O { pseudo-manifold geometries}

D {Finsler geometry} D { Riemann geometry} O { Weyl geometry}.

Proof The first and second inclusions are implied in Theorems 3.3.6 and 3.5.3.
Other inclusions are known in a textbook, such as [ChC1] and [ChL1]. O

Now let us to consider complex manifolds. Let 2! = 2% + /—1y’. In fact, any
complex manifold M is equal to a smooth real manifold M?" with a natural base
{%, (%i} for T, M at each point p € M. Define a Hermite manifold M to be
a manifold M endowed with a Hermite inner product h(p) on the tangent space
(T,M?,J) for ¥p € M, where J is a mapping defined by

0 0 0 0

Toly) = ——bb

a—yi‘pv J(a—@/i|p> -

at each point p € M for any integer 7,1 < i < n. Now let

h(p) = g(p) + vV—1k(p), pe M".

Then a Kdhler manifold is defined to be a Hermite manifold (M, h) with a closed
r satisfying
K(X,)Y)=9(X,JY), VXY € T,M} ¥p € M.

Similar to Theorem 3.5.3 for real manifolds, we know the next result.

Theorem 3.5.5 A pseudo-manifold geometry (M, ¢p*) with a Minkowskian norm

on T'M"™ is a Kahler geometry if and only if F' is a Hermite inner product on M
with all points of (M™, ¢*) being Euclidean.

Proof Notice that a complex manifold M" is equal to a real manifold M?".

Similar to the proof of Theorem 3.5.3, we get the claim. 0
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As a immediately consequence, we get the following inclusions in Smarandache

geometries.

Corollary 3.5.3 There are inclusions among Smarandache geometries, pseudo-manifold

geometry and Kdhler geometry:

{Smarandache geometries } D {pseudo-manifold geometries}

D {Kdihler geometry}.

83.6 REMARKS

3.6.1 These Smarandache geometries were proposed by Smarandache in 1969 by
contradicts axioms (E1) — (E5) in a Euclid geometry, such as those of paradozist
geometry, non-geometry, counter-projective geometry and anti-geometry, see his pa-
per [Sma2] for details. For example, he asked whether there exists a geometry with

axioms (E'1) — (F4) and one of the axioms following:

(1) there are at least a straight line and a point exterior to it in this space for
which any line that passes through the point intersect the initial line.

(17) there are at least a straight line and a point exterior to it in this space for
which only one line passes through the point and does not intersect the initial line.

(77i) there are at least a straight line and a point exterior to it in this space for
which only a finite number of lines Iy, s, - - -, g, k > 2 pass through the point and do
not intersect the initial line.

(1v) there are at least a straight line and a point exterior to it in this space for
which an infinite number of lines pass through the point (but not all of them) and
do not intersect the initial line.

(v) there are at least a straight line and a point exterior to it in this space for

which any line that passes through the point and does not intersect the initial line.

A formal definition of Smarandache geometry is presented by Kuciuk and An-
tholy in [KuAl]. Iseri proved s-manifolds constructed by equilateral triangular
disks T;,1 < 7 < n on the plane can indeed produce the paradoxist geometry,
non-geometry, counter-projective geometry and anti-geometry in [Isel]. For gener-

alizing his idea to surfaces, Mao introduced map geometry on combinatorial maps in
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his postdoctoral report [Mao2], shown that these map geometries also produce these
paradoxist geometry, non-geometry, counter-projective geometry and anti-geometry,
and then introduced the conception of pseudo-plane for general construction of

Smarandache geometries on a Euclidean plane in [Mao3].

3.6.2 There are many good monographs and textbooks on topology and differential
geometry, such as those of [AbM1], [AMR1], [Arm1], [ChL1], [Masl], [Mas2], [Pet1],
[Rot1], [Stil], [Wesl] [ChC1] and [ChL1], ..., etc. These materials presented in
Sections 1 and 2 are self-contained for this book. Many conceptions in here will be

used or generalized to combinatorial manifolds in following chapters.

3.6.3 For constructing Smarandache manifolds of dimensional n > 2, Mao first
constructs Smarandache 2-manifolds by applying combinatorial maps on surfaces,
i.e., map geometries in his post-doctoral research in [Maol-2] and a paper in [Mao4].
Then, he presented a general way for constructing Smarandache manifolds by apply-
ing topological or differential n-manifolds in [Maol1-12]. The material in Sections
3.3 — 3.5 is mainly extracted from his paper [Maol2], but with a different handling
way. Certainly, there are many open problems in Smarandache geometries arising
from an analogizing results in Sections 1 and 2. For example, Theorem 3.3.8 is a
such result. The readers are encouraged to find more such results and construct new

Smarandache manifolds different from pseudo-manifolds.

Problem 3.6.1 Define more Smarandache manifolds other than pseudo-manifolds

and find their topological and differential behaviors.

Problem 3.6.2 Define integrations and then generalize Stokes, Gauss,... theorems

on pseudo-manifolds.

Corollaries 3.5.2 and 3.5.3 are interesting results established in [Mao12], which
convince us that Smarandache geometries are indeed a generalization of geometries
already existence. [SCF1] and other papers also mentioned these two results for
reviewing Mao’s work.

Now we consider some well-known results in Riemannian geometry. Let S be

an orientable compact surface. Then

/ /S Kdo = 2my(S),

where K and x(S) are the Gauss curvature and Euler characteristic of S. This
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formula is the well-known Gauss-Bonnet formula in differential geometry on surfaces.
Then what is its counterpart in pseudo-manifold geometries? This need us to solve

problems following.

(1) Find a suitable definition for curvatures in pseudo-manifold geometries.
(2) Find generalizations of the Gauss-Bonnet formula for pseudo-manifold ge-

ometries, particularly, for pseudo-surfaces.

For an oriently compact Riemannian manifold (M?, g), let

( ) Z 5117 ’Zszhiz ARERRA Qizpﬂizpa

11,92, ,92p

where Q;; is the curvature form under the natural chart {e;} of M and

1, if permutation ¢; - - - 9, is even,
11,002 . . . ..
015, =4 —1, if permutation i; - - - iy, is odd,
0, otherwise.

Chern proved that (see [ChC1] for details)

/sz Q = x(M™).

Certainly, these new kind of global formulae for pseudo-manifold geometries are
valuable to find.

3.6.4 These principal fiber bundles and connections considered in Section 3.5 are
very important in theoretical physics. Physicists have established a gauge theory
on principal fiber bundles of Riemannian manifolds, which can be used to unite
gauge fields with gravitation. In section 3.5, we have introduced those on pseudo-
manifolds. For applying pseudo-manifolds to physics, similar consideration should

induces a new gauge theory, which needs us to solving problems following:

to establish a gauge theory on those of pseudo-manifold geometries with some

additional conditions.

In fact, this object requires us to solve problems following:

(1) find these conditions such that we can establish a gauge theory on pseudo-
manifolds;

(2) find the Yang-Mills equation in a gauge theory on pseudo-manifold;

(3) unify these gauge fields and gravitation.



CHAPTER 4.

Combinatorial Manifolds

Something attempted, something done.

By Menander, an ancient Greek dramatist.

A combinatorial manifold is a topological space consisting of manifolds un-
derlying a combinatorial structure, i.e., a combinatorial system of manifolds.
Certainly, it is a Smarandache system and a geometrical multi-space model of
our WORLD. For introducing this kind of geometrical spaces, we discuss its
topological behavior in this chapter, and then its differential behavior in the
following chapters. As a concrete introduction, Section 4.1 presents a calcula-
tion on the dimension of combinatorial Euclidean spaces and the decomposi-
tion of a Euclidean space with dimension> 4 to combinatorial Euclidean space
with lower dimensions. This model can be also used to describe spacetime of
dimension> 4 in physics. The combinatorial manifold is introduced in Section
4.2. In this section, these topological properties of combinatorial manifold,
such as those of combinatorial submanifold, vertex-edge labeled graphs, com-
binatorial equivalence, homotopy class and Euler-Poincaré characteristic,- - -,
etc. are discussed. Fundamental groups and singular homology groups of
combinatorial manifolds are discussed in Sections 4.3 and 4.4, in where these
groups are obtained for a few cases by applying some well-known theorems in
classical topology. In Section 4.5, the ordinary voltage graph is generalized
to voltage labeled graph. Applying voltage labeled graph with its lifting, this
section presents a combinatorial construction for regular covering of finitely
combinatorial manifolds, which essentially provides for the principal fibre bun-

dles in combinatorial differential geometry in chapters following.
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84.1 COMBINATORIAL SPACES

A combinatorial space ./ is a combinatorial system %5 of geometrical spaces
(X1, R1), (B2;R2), -+, (Xm; Ryn) for an integer m with an underlying graph G in
Definition 2.1.3. We concentrated our attention on each (¥;;R;) being a Euclidean

space for integers 7,1 < i < m in this section.

4.1.1 Combinatorial Euclidean Space. A combinatorial Euclidean space is a
combinatorial system % of Euclidean spaces R™, R"2, - - -, R™" with an underlying
structure G, denoted by &g (n1, - - -, n,,) and abbreviated to &g(r) if ny = - -+ =n,, =
r. It is itself a Euclidean space R™. Whence, it is natural to give rise to a packing

problem on Euclidean spaces following.

Parking Problem Let R™, R™, ---, R" be Euclidean spaces. In what conditions

do they consist of a combinatorial Euclidean space &g(ny, -+, ny)?

By our intuition, this parking problem is related with the dimensions of R™,

R™, ... R™ also with their combinatorial structure G. Notice that a Euclidean
space R" is an n-dimensional vector space with a normal basis € = (1,0,---,0),
€& =(0,1,0---,0), -+, €, = (0,---,0,1), namely, it has n orthogonal orientations.

So if we think any Euclidean space R" is a subspace of a Euclidean space R™> with
a finite but sufficiently large dimension n.,, then two Euclidean spaces R™ and
R™ have a non-empty intersection if and only if they have common orientations.
Whence, we only need to determine the number of different orthogonal orientations
in &(ny, -+, nm).

Denoted by X,,, X,,, -, X,,, consist of these orthogonal orientations in R™1,
Rz, ... R™m respectively. An intersection graph G[X,,, X,,, -, X,,.] of Xy, X0,

-+, Xy, is defined by

V(G[levazv B va]) = {U17U27 ) Um}a
E[XU17XU27 t '7va] = {(Uivvj)‘Xvi vaj 7£ @71 <1 7&] < m}
By definition, we can easily find that

G = G[Xy, Xoyr s X, .

) Um

So we can apply properties of the intersection graph G to the parking problem
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éc(ny, -+, ny) of R™ R"™ ... R™ which transfers the parking problem of Eu-

clidean spaces to a combinatorial problem following.

Intersection Problem For given integers k, m > 2 and ny,ng, - -+, Ny, find finite
sets Y1,Ys, - -+, Y, with their intersection graph being G such that |Y;| = n;, 1 <i <
m, and |Y1UYoU---UY,| = k.

This enables us to find solutions of the parking problem sometimes.

Theorem 4.1.1 Let &(nq, -+, ny) be a combinatorial Euclidean space of R™, R"2,
-+, R™ with an underlying structure G. Then
dimée(ny, -+, ) = > (=1 dim(R™ AR™2 - -- Y R™),
(v;eV(G)|1<i<s)eCLs(Q)
where n,, denotes the dimensional number of the Euclidean space in v; € V(G) and

CLs(G) consists of all complete graphs of order s in G.

Proof By definition, R™ N R™ = () only if there is an edge (R™, R™) in G.
This condition can be generalized to a more general situation, i.e., R™1 N R™2 N
~-NR™ # Q only if (vy, v, -+, 0) = K.

In fact, if R™1 NR™:2N---NR™ # (), then R™: NR" # (), which implies that
(R™i,R™i) € E(G) for any integers 4, j, 1 <4,j <. Therefore, (vi,vs,- -, ;)4 is
a complete graph of order [ in the intersection graph G.

Now we are needed to count these orthogonal orientations in &g(nq,- -+, ny,).
In fact, the number of different orthogonal orientations is

dimég(ny, -, ny) =dim( |J R™)
VeV (G)
by previous discussion. Applying Theorem 1.5.1 the inclusion-exclusion principle,
we find that

dim@ﬁG(n17 oo ’nm) = dll’ﬂ( U an)
veV(G)

(—1)dim(R™ (YR™2 () [|R™)
(—1) dim(R™ (JR™2 ()| R™).

I
(]

{v1,,vs}CV(G)

I
(]

(0, €V(G)|1<i<s)ECLs(G)

O
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Notice that dim(R"™1NR™2N---NR™s) = n,, if s = 1 and dim(R™NR™2) # 0
only if (R™1 ,R™2) € E(G). We get a more applicable formula for calculating
dimég(ny, - -+, nmy) on Kz-free graphs G by Theorem 4.1.1.

Corollary 4.1.1 If G is K3-free, then

dimég(ny, -, nm) = >, ny,— », dim(R™[R™).
veV(G) (u,w)EE(G)
Particularly, if G = vivs - - vy, a circuit for an integer m > 4, then
dimég(ny, -, nm) = >, ny, — > dim(R™ (Y R™i+1),
i=1 i=1
where each index is modulo m.

Now we determine the maximum and minimum dimension of combinatorial

Euclidean spaces of R, R"2, -- - R"™" with an underlying structure G.

Theorem 4.1.2 Let &G (ny,, -+, ny,,) be a combinatorial Euclidean space of R™1,
R™z2, --., R™m with an underlying graph G, V(G) = {vy,va, -+, v, }. Then the
maximum dimension dim .. 6 (N, -+, Mw,,) 0f a(Nyy s+, My,,) 18

dim,,a: 8GNy, My, ) =1 —m+ > n,
veV(Q)

with conditions dim(R™ NR™) =1 for ¥(u,v) € E(G).

Proof Let X,,,X,,, -, X,, consist of these orthogonal orientations in R"1,

R™2, ... R™m respectively. Notice that
|sz‘ UXUj| = |sz| + |ij| - |sz vaj|

for 1 <1 # j < m by Theorem 1.5.1 in the case of n = 2. We immediately know
that |X,, U X, | attains its maximum value only if |X,, N X,,| is minimum. Since
Xy, and X, are nonempty sets, we find that the minimum value of |X,, N X, | =1
if (v;,v5) € E(G).

We finish our proof by the inductive principle. Not loss of generality, assume
(v1,v2) € E(G). Then we have known that | X,, |J X,,| attains its maximum

|X111| + ‘sz‘ -1

only if | X,,NX,,| = 1. Since G is connected, not loss of generality, let v3 be adjacent
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with {v1,v2} in G. Then by

| X, Usz UXv3| = | X, UXU2| + [ Xoa| = [(Xo Usz) ﬂXv3|>

we know that | X,, UX,, UX,,| attains its maximum value only if | X,, UX,,| attains
its maximum and [(X,, U X,,) N X,,| = 1 for (X,, U X,,) N X,, # 0. Whence,
| Xy, N Xyy| = 1 or |X,, N X,,| = 1, or both. In the later case, there must be
| Xy, N Xy, N X, | = 1. Therefore, the maximum value of | X, U X,, U X,.] is

|X111| + |X112| + ‘XUS‘ —2.
Generally, we assume the maximum value of |X,, U X,, U---U X, | to be
|Xv1| + |Xv2| +oet |Xvk| —k+1

for an integer k < m with conditions [X,, N X, | = 1 hold if (v;,v;) € E(G) for
1 <1 # j < k. By the connectedness of GG, without loss of generality, we choose a
vertex vy adjacent with {vy,vg, -+, v} in G and find out the maximum value of

| X, UX, U---UX,, UX, In fact, since

k+1|‘

| X, UX,, U---UX, UX, | X, UXy, U UX, |+ [ X,

- |(Xv1 Usz U "'UXvk)vak+1|a

k+1|

we know that | X, UX,, U---UX, UX,
| X, UX,, U- U X, | attains its maximum and |(X,, UX,, U---UX,, ) Xy, | =1
for (X, UX,,U---UX,, )NX,, ., #0. Whence, |X,,NX,,,,| = 1if (v;, v441) € E(G).

Consequently, we find that the maximum value of | X, UX,, U---UX, UX,

| attains its maximum value only if

k41

k+1| 1s

‘XU1| + |X112| +oeee |XUk‘ + ‘szﬁq‘ — k.

Notice that our process searching for the maximum value of | X,, U X,, U---U
Xy, | does not alter the intersection graph G of X, X,,, -+, X,,. Whence, by the

inductive principle we finally get the maximum dimension dim,,,,&¢ of &g, that is,

dimmang(nvw' ) 'anvm) =l-m+n+ne+--+n,
with conditions dim(R™ N R™) =1 for ¥(u,v) € E(G). O
Determining the minimum value dim,,;,&6(ny, -+, ny) of 8g(ny, -+, n,) is a

difficult problem in general case. But we can still get it for some graph families.
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Theorem 4.1.3 Let &G (ny,, My, -+, M, ) be a combinatorial Fuclidean space of
R™1, R™2, - R™m with an underlying graph G, V(G) = {vi,v9, -, v} and
{v1,v9, -+, v} an independent vertex set in G. Then

l
dimmingG(nUU Ty nvm) Z E Ty
i=1

and with the equality hold if G is a complete bipartite graph K (Vy, V) with partite

sets Vi = {v1,vg,- -, u}, Vo = {vig1, Vg2, - -, U} and
l m
Dz ) m
i=1 i=1+1
Proof Similarly, we use X,,, X,,, -+, X,,, to denote these orthogonal orienta-
tions in R™1, R"™2, ...  R™m respectively. By definition, we know that

X, ()X, =0, 1<i#j<I

for (v;,v;) € E(G). Whence, we get that

m l l
|UXU@| > |Usz| = vai‘
i=1 i=1 i=1

By the assumption,

l m
vai > Z T,
i=1 i=l+1
we can partition X,,, X,,, -+, X, to
Xoy = (U Yi(w))UZ(wn),
i=l+1
Xo, = (U Yi(v2)) U Z(v2),
i=l+1
Xoy = ( LlJle'(vz))UZ(vz)
1=+

!

such that Y |Yi(vg)| = | X,,| for any integer i, [+ 1 < i < m, where Z(v;) maybe
k=1

an empty set for integers i, 1 <17 <. Whence, we can choose

!
Xy = U Yi(w)
k=1
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to replace each X,, for any integer 7, 1 < i < m. Notice that the intersection graph
of Xy, Xoyy o Xupy Xy, 500+, X, 1s still the complete bipartite graph K(V4,V53),
but

m l l

|UXU1'|:|UXU¢| ;nz

=1 i=1 7

Therefore, we get that

dlmmmgG (nv17 T 7nvm) = Z Uz

in the case of complete bipartite graph K (V7, V3) with partite sets Vi = {vy,v9, -+, v},

Vo = {Ul+1, V42, 7Um} and
l m
E Ny, > g Ny, - U
i=1 i=l+1

Although the lower bound of diméy(n,,, - -+, n,, ) in Theorem 4.1.3 is sharp,
but sometimes this bound is not better if GG is given, for example, the complete
graph K, shown in the next results. Consider a complete system of r-subsets of a

set with less than 27 elements. We know the next conclusion.

Theorem 4.1.4 For any integer r > 2, let &, (r) be a combinatorial Fuclidean

space of R",--- R", and there exists an integer s, 0 < s < r — 1 such that
—_——

+s—1 +
r+s <m< r+s .
r r

dim,,;in &k, (1) =1 + 8.

m

Then

Proof We denote by X1, Xs, -+, X,, these sets consist of orthogonal orientations

in m Euclidean spaces R". Then each X;, 1 <17 < m, is an r-set. By assumption,

51 +
T S <m§ T S
r r

and 0 < s < r—1, we know that two r-subsets of an (r+s)-set must have a nonempty

intersection. So we can determine these m r-subsets X, X, -+, X,, by using the
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complete system of r-subsets in an (r+ s)-set, and these m r-subsets X, Xo, .-+, X},

can not be chosen in an (r 4+ s — 1)-set. Therefore, we find that

‘UXZ‘ :T+87
i=1
ie,if 0 <s<r-—1, then
dim,,;, &%, (1) =1 + 5. O

Because of our living world is the space R3, so the combinatorial space of R3 is
particularly interesting in physics. We completely determine its minimum dimension

in the case of K, following.

Theorem 4.1.5 Let &k, (3) be a combinatorial Euclidean space of R?,--- R®. Then
————
3, it m=1,
4 f 2<m<4
dim, iy, (3) = { Pooemes
5, if 5 <m <10,

24 [ym], if m>11.

Proof Let Xq, X5, -+, X,, be these sets consist of orthogonal orientations in
m Euclidean spaces R3, respectively and |X; U X, U---U X,,,| = I. Then each
X;, 1 <i<m,is a 3-set.

5
In the case of m < 10 = < ) ), any s-sets have a nonempty intersection. So

it is easily to check that

3, if m=1,
dim,,;, 8k, (3) = ¢ 4, if 2<m <4,
5. if 5<m<10.

We only consider the case of m > 11. Let X = {u,v,w} be a chosen 3-set.
Notice that any 3-set will intersect X with 1 or 2 elements. Our discussion is divided

into three cases.

Case 1 There exist 3-sets X1, X}, X} such that X1 N X = {u,v}, X;NX = {u,w}
and XN X = {v,w} such as those shown in Fig.4.1.1, where each triangle denotes

a 3-set.
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Fig.4.1.1

Notice that there are no 3-sets X’ such that | X’NX| = 1 in this case. Otherwise,
we can easily find two 3-sets with an empty intersection, a contradiction. Counting
such 3-sets, we know that there are at most 3(v —3)+ 1 3-sets with their intersection

graph being K,,. Thereafter, we know that

m<3(1-3)+1, ide, [>[——]+3.

Case 2 There are 3-sets X, X} but no 3-set X} such that X; N X = {u,v},
XiNX ={u,w} and X;NX = {v,w} such as those shown in Fig.4.1.2, where each

triangle denotes a 3-set.

Fig.4.1.2

In this case, there are no 3-sets X’ such that X' N X = {u} or {w}. Oth-
erwise, we can easily find two 3-sets with an empty intersection, a contradiction.

Enumerating such 3-sets, we know that there are at most

2(l—1)+<l;3)+1

3-sets with their intersection graph still being K,,,. Whence, we get that

-3 V8m T 1
m§2(l—1)+< , >+1, i, 1>[otvemElT,

2
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Case 3 There are a 3-set X| but no 3-sets X}, X} such that X{ N X = {u,v},
XiNX ={u,w} and X;NX = {v,w} such as those shown in Fig.4.1.3, where each

triangle denotes a 3-set.

u\/v

W

Fig.4.1.3

Enumerating 3-sets in this case, we know that there are at most

-2
[—2+2

such 3-sets with their intersection graph still being K,,. Therefore, we find that

[ -2

m§l—2+2<
2

), ie, 1>2+[vm].

Combining these Cases 1 — 3, we know that

-1 V 1
lzmin{(mT1+3,(3+ 82m+ 7

1.2+ [Vm]} =2+ [Vm].

Conversely, there 3-sets constructed in Case 3 show that there indeed exist

3-sets X1, Xs, - -+, X, whose intersection graph is K,,, where

[ =2
m:l—2+2< )
2

if m > 11. This completes the proof. U

Therefore, we get that

For general combinatorial spaces &%, (ny,, -+, n,,,) of R™1 Rz ... RMm,

we get their minimum dimension if n, _ is large enough.

Theorem 4.1.6 Let &k, (ny,, -+, Ny, ) be a combinatorial Euclidean space of R™1,
Rz, o) RMm, myy > nyy > o0 >y, > [logy(gahs—) 1 + 1 and V(K,,) =

{v1,v9, -, vm}. Then

. m+1
dlmmingKm (nvla Ty nUm) = Ty, + Hog2(W)—| :
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Proof Let X,,, X,,, -, X,,, be sets consist of these orthogonal orientations in
R™1, R"™2, ... R™m respectively and

m

s—1
2 < 2k+1 _ 1

+1<2°

for an integer s, where k = n,, — n,,. Then we find that

m+1
[oga (5 =, 1)1 = 5
We construct a family {Y,,,Y,,,--,Y,, } with none being a subset of another,
1Y,,| = |X,,| for 1 <7 < m and its intersection graph is still K,,, but with
|Y01 UYUQU.‘.UK)’HL - nvl +S
In fact, let X, = {21,202, Ty Ty 1,7+ Tny, f a0d U = {ug, ug, - - -, us},

such as those shown in Fig.4.1.4 for s =1 and n,, = 9.

Fig.4.1.4
Choose g elements x;,, x;,,- -+, x;, € X, and h > 1 elements u; , uj,, -, u;, €
U. We construct a finite set
Xg.h = {xi;[uxiw T '7xig7uj17uj27 o '7ujh}
with a cardinal g + h. Let g + h = | X, |, | Xwls -+ | Xo,. |, respectively. We con-

sequently find such sets Y,,,Y,,,---,Y, . Notice that there are no one set being
a subset of another in the family {Y,,,Y.,, -, Y., }. So there must have two el-
ements in each Y,,, 1 < ¢ < m at least such that one is in U and another in

: m—+1
{Tny Tryy 11,7+ 5 Tny, - Now since n,,, > ﬂogQ(iznvl,%_lﬂ + 1, there are

5 () () e
i=1 j=1 v J

different sets Yy, Ys,, - - -, Y, altogether with | X, | = |Y,, |, - -+, [ Xs |Y.,.|.- None

of them is a subset of another and their intersection graph is still K,,,. For example,

m |
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lea {ulal’la"'axnw—l}a

{Ul, xnvz —nug+2) T anQ }a
.................. ,

{uh x”“k—l_””k+2’ ) xnuk}

are such sets with only one element u; in U. See also in Fig.4.1.1 for details. It is

easily to know that

m+1
|YU1UszU"'Uva| =Ny, +8§="mny + [logQ(mﬂ

in our construction.
Conversely, if there exists a family {Y,,,Y,,, -, Y, } such that | X, | = |Ys,|,
2 | X | = [V, | and

m ‘

Vo, Y, - Yol < 1y + 5,

then there at most
k+1 s
k+1 —1
3 () () e
i=1 j=1 ¢ J

different sets in {Y,,, Yo, - - -, Y, } with none being a subset of another. This implies
that there must exists integers i,7,1 < i # j < m with Y, C Y, a contradiction.

Therefore, we get the minimum dimension dim,,;,&%,, of é%,, to be

m—+1

dimmin(g)Km (nv17 o 7nvm) = Ty, + Hng(m)—l =
4.1.2 Combinatorial Fan-Space. A combinatorial fan-space f{(nl, Cee M) 1S
the combinatorial Euclidean space &%, (nq,- -+, ny,) of R™, R™, -..  R™ such that

for any integers 7,7, 1 <1 # j <m,

R"[R"Y = ﬁ R™,
k=1

which is applied for generalizing n-manifolds to combinatorial manifolds in next
section. The dimensional number of ﬁ(nl, -+ ny) is determined immediately by

definition following.
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Theorem 4.1.7 Let f{(nl, <+ My) be a fan-space. Then

dimR(ny, - -+, n) = M+ Z(nz —m),
i=1

where
m
i = dim([ | R"™). O
k=1
For Vp € R(ny, - -+, n,) we can present it by an m x n,, coordinate matrix [z]

following with z; = 7 for 1 <i <m,1 <1 < m.

Tir o Tim Titm)+1l) 0 Timg
_ To1 -or Tom  Ta(m4l) o Long
7] =
Tm1 ° Tmm xm(fﬁ—l—l) o o Tonpm—1  Tmng,

Now let (A) = (aij)mxn and (B) = (bij)mxn be two matrixes. Similar to
Euclidean space, we introduce the inner product ((A), (B)) of (A) and (B) by

((A),(B)) = Zaijbij-

Then we know

Theorem 4.1.8 Let (A),(B),(C) be m x n matrizes and o a constant. Then
(1) (A, B) =(B,A);

(2) (A+B,C)=(A,C)+ (B,C);

(3) (aA, B) = a (B, A);

(4) (A, A) > 0 with equality hold if and only if (A) = Oxn.

Proof (1)-(3) can be gotten immediately by definition. Now calculation shows
that
(A, A) = Za?j >0
irj
and with equality hold if and only if a;; = 0 for any integers ¢,7,1 <7 <m,1 <j <
n, namely, (A) = Opxn- O
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By Theorem 4.1.8, all matrixes of real entries under the inner product form a
Euclidean space. We also generalize some well-known results in Section 3.2 to this

space. The first, Theorem 3.2.1(i) is generalized to the next result.

Theorem 4.1.9 Let (A), (B) be m x n matrizes. Then

((A),(B))” < ((A), (A)((B),(B))
and with equality hold only if (A) = A(B), where X is a real constant.

Proof If (A) = \(B), then (A, B)* = \? (B, B)* = (4, A) (B, B). Now if there
are no constant A\ enabling (A) = A(B), then (A) — A\(B) # Op,x, for any real

number A. According to Theorem 2.1, we know that
((4) = A(B), (4) = A(B)) >0,

ie.,

((A), (A)) = 2 ((4). (B)) + X*((B), (B)) > 0.

Therefore, we find that
A = (=2((A),(B)))* = 4((A), (AN ((B),(B)) < 0,
namely,

((A), (B))* < {(A), () (B), (B)). 0

Corollary 4.1.2 For given real numbers a;;,b;;, 1 <1 <m,1 < j<mn,
O aibi)* < O ai) Db
2 2 2

Now let O be the original point of ﬁ(nl, <+ ). Then [O] = Opxp,,. For
Vp,q € ﬁ(nl, o ), we also call O—fa the vector correspondent to the point p simi-
lar to that of Euclidean spaces, Then p§ = O_)q— O_])) Theorem 4.1.9 enables us to in-
troduce an angle between two vectors pg and uo for points p, q, u, v € f{(nl, Ce M)

Let p,q,u,v € f{(nl, -+ Ny,). Then the angle O between vectors pg and o is
determined by
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under the condition that 0 < 8 < 7.

Corollary 4.1.3 The conception of angle between two vectors is well defined.

Proof Notice that

{lp) = la): [u] = [1)* < (lp) — [als [p) — [a]) (] = [0], [u] = [0])

by Theorem 4.1.9. Thereby, we know that

Therefore there is a unique angle # with 0 < 6 < 7 enabling Definition 2.3 hold. [J
For two points p, ¢ in f{(nl, “+ M), the distance d(p, q) between points p and
q is defined to be \/([p] — [q], [p] — [¢]). We get the following result.

Theorem 4.1.10 For a given integer sequence ny,No, -+, Ny, m > 1 with 0 < n; <

Ny < -+ < Ny, (R(ny,+++,np);d) is a metric space.

Proof We only need to verify that each condition for a metric space is hold in

(R(n1, -+, npm): d). For two point p,q € R(ny, - -+, n,y), by definition we know that

d(p,q) = /(o] — [q]. [p] — la]) = 0

with equality hold if and only if [p] = [¢], namely, p = ¢ and

d(p,q) = /o] — [a], [P — [a]) = V/{[a] — [p). [d] — [p]) = d(q,p).

Now let u € f{(nl, -+« ). By Theorem 4.1.9, we then find that

= ([p] — [ul,
+ ([u] = [q], [u] — [a])
= ([p] = [u], [p] = [u]) + 2([p] = [u], [u] = la]) + {[u] — [d], [u] — [¢])
= (lp] = lal. [p] = la)) = *(p. q)
Whence, d(p,u) + d(u,p) > d(p,q) and (f{(nl, -+, npy);d) is a metric space. O

4.1.3 Decomposition Space into Combinatorial One. As we have shown in

Subsection 4.1.2, a combinatorial fan-space ﬁ(nl, Ng, -+, Ny) can be turned into a
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Euclidean space R™ with n = m+ > (n; —m). Now the inverse question is that for a

i=1
FEuclidean space R", weather there is a combinatorial Euclidean space &g(ny, -+, ny,)
of Euclidean spaces R™, R", ---  R"™ such that dimR™ UR™ U---UR" =n¥?
For combinatorial fan-spaces, we immediately get the following decomposition result

of Euclidean spaces.

Theorem 4.1.11 Let R"™ be a Euclidean space, ny,ng, - -+, n,y, integers with m <

n; <n for1 <i<m and the equation

3

=1

hold for an integer m,1 < m < n. Then there is a combinatorial fan-space f{(nl, No,
e Myy) such that

R" = R(ny,ng, -, ny).

Proof Not loss of generality, assume the normal basis of R" is €, = (1,0,---,0),
€& = (0,1,0---,0), -+, € = (0,---,0,1). Then its coordinate system of R" is
(r1,x9, -+, x,). Since

m
n—im=> (n—m),
=1

choose
Rl = <€1>E27 T '7€ﬁ1a€ﬁ1+17 T '7€n1>;
R2 = <E17E27 T 7Efn7€n1+17€n1+27 te 7En2> ;
R3 = <€1>E27 U 7€ﬁ17€n2+17gn2+27 T a€n3> ;
--------------------------- ;
Rm - <€1>E2> e agﬁwgnmfl—l—lagnm,l-l—% te >Enm> .

Calculation shows that dimR; = n; and dim( () R;) = m. Whence f{(nl, Mgy M)
i=1
is a combinatorial fan-space. By Definition 2.1.3 and Theorems 2.1.1, 4.1.8 —4.1.9,
we then get that

R" = R(ny,ng, -, ny). O
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For an intersection graph G of sets X,,v € V(G), there is a natural labeling
Op with 0g(u,v) = | X, N X,| for Y(u,v) € E(G). This fact enables us to find an

intersecting result following, which generalizes a result of Erdés et al. in [EGP1].

Theorem 4.1.12 Let G¥ be an edge labeled graph on a connected graph G with label-

ing O : E(G) — [1,1]. If n,,v € V(G) are given integers withn, > >  Og(v,u),
u€Ng(v)

then there are sets X,,v € V(G) such that | X,| = n, and | X, N X,| = 0g(v,u) for
veV(G), u € Ng(v).

Proof For (v,u) € E(G), construct a finite set

—

(U> u) = {('Uv u)lﬁ (U> u)2> T (U> u)eE('Uﬂ/«)}'

Now we define

Xo=( U a)lerae o,

u€ENgG(v)
for Vo € V(G), where ¢ = n, — > 6g(v,u). Then we find that these sets
u€ENgG(v)
Xy, v € V(G) satisty | X,| = ny, | XoNXy| = 0r(v,u) for Vo € V(G) and Yu € Ng(v).
This completes the proof. O

As a special case, choosing the labeling 1 on each edge of G' in Theorem 4.1.12,

we get the result of Erdés et al. again.

Corollary 4.1.4 For any graph G, there exist sets X,,v € V(G) with the intersection

graph G, i.e., the minimum number of elements in X,,v € V(G) is less than or equal
to e(G).

Calculation shows that

| U X, = va—% Z Op(v,u)

veV(Q) veV (G (v,u)eE(G)

in the construction of Theorem 4.1.12, we get a decomposition result for a Euclidean

space R" following.

Theorem 4.1.13 Let G be a connected graph and

Z Ny — 3 Z N(v,u)

veV(G) (v,u)EE(G)
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for integers n,, ny, > Y. Op(v,u),v € V(GQ) and npuy > 1, (v,u) € E(G). Then

u€Ng(v)
there is a combinatorial Euclidean space &g(n,,v € V(G)) of R™,v € V(G) such
that R™ = &g(ny, v € V(Q)). O

84.2 COMBINATORIAL MANIFOLDS

4.2.1 Combinatorial Manifold. For a given integer sequence ny,ng, - -+, Ny, M >
1 with 0 < ny <ng < -+ < nyy, a combinatorial manifold M is a Hausdorff space
such that for any point p € ]\7, there is a local chart (U, ¢,) of p, i.e., an open neigh-
borhood U, of p in M and a homoeomorphism v, Uy — R(ni(p), na(p), - -, Ns(p) (D)),

a combinatorial fan-space with

{nl(p)7n2(p>v o '7n5(10)(p)} C {n17n27 T 7nm}
and

U {nl(p)7n2(p>v o '7n8(;0)(p)} = {n17n27 o '7nm}7

peEM

denoted by M(nl, Ny« **y Myy) OF M on the context, and

A={(U,, 0,)lp € M(ni,na, -+ ,nn))}

an atlas on M (n1,n9,+++,My). The maximum value of s(p) and the dimension
s(p)

5(p) = dim( () R™®) are called the dimension and the intersectional dimension of
i=1

M(nl, Ng, -+, Ny) at the point p, respectively.

A combinatorial manifold M is finite if it is just combined by finite manifolds
with an underlying combinatorial structure G without one manifold contained in
the union of others. Certainly, a finitely combinatorial manifold is indeed a combi-
natorial manifold.

Two examples of such combinatorial manifolds with different dimensions in R?
are shown in Fig.4.2.1, in where, (a) represents a combination of a 3-manifold, a

torus and 1-manifold, and (b) a torus with 4 bouquets of 1-manifolds.
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(D) RECE=T

(a) (b)

Fig.4.2.1

By definition, combinatorial manifolds are a generalization of manifolds by
a combinatorial speculation. However, a locally compact n-manifold M"™ without

boundary is itself a combinatorial Euclidean space &g (n, - -+, n) of Euclidean spaces
N—_——
R with an underlying structure G shown in the next result.

Theorem 4.2.1 A locally compact n-manifold M™ is a combinatorial manifold
Mg(n) homeomorphic to a Euclidean space & (n, A € A) with countable graphs
G = G inherent in M"™, denoted by G[M"].

Proof Let M™ be a locally compact n-manifold with an atlas
A [M"] ={ (Ux;pr) | A € A},

where A is a countable set. Then each Uy, A € A is itself an n-manifold by definition.

Define an underlying combinatorial structure G' by
V(G) = {Ux|\ € A},
E(G) ={ (Ux,U)i;,1 <i < hn, + 1 UNNU, #0,\ 0 € A}

where k), is the number of non-homotopic loops formed between U, and U,. Then
we get a combinatorial manifold Mg(n) underlying a countable graph G.

Define a combinatorial Euclidean space &g/(n, A € A) of spaces R" by
V(G") = {ea(Uy)|A € A},

E(G") = { (ea(Un), eU))i, 1 < i < k), + L oa(Un) N u(UL) # 0, A, 0 € A},

where &), is the number of non-homotopic loops in formed between ¢,(U,) and
©.(U,). Notice that o\(Ux) (N ¢.(U,) # 0 if and only if Uy(U, # 0 and k), = K},
for A\,v € A. We know that G = G’ by definition.
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Now we prove that Mg(n) is homeomorphic to &g (n, A € A). By assumption,
M™ is locally compact. Whence, there exists a partition of unity ¢, : Uy, — R",
A € A on the atlas &/[M"]. Let Ay = supp(¢,). Define functions hy : M" — R"
and H : M™ — &z(n) by

() = ex(@)pa(z) if €U,
g —(0,---,0) if x €Uy — Ay

and

H= Zgo,\c,\, and J= Zc;lapf.
AEA AEA

Then hy, H and J all are continuous by the continuity of ¢, and ¢, for VA € A on
M™. Notice that ¢, ¢ '¢acy =the unity function on M". We get that J = H™!,
i.e., H is a homeomorphism from M" to &z (n, A € A). O

By definition, a finitely combinatorial manifold M (ny,ng, -+, ny) is provided
with an underlying structure G. We characterize its structure by applying vertex-
edge labeled graphs on the conception of d-connectedness introduced for integers
d > 1 following.

Definition 4.2.1 For two points p,q in a finitely combinatorial manifold ]\7(711, No,
< M), if there is a sequence By, Bs, -+, By of d-dimensional open balls with two
conditions following hold.

(1)B; C M(nl,ng, o ) for any integer i, 1 <i < s andp € By, q € By;

(2) The dimensional number dim(B; () Bix1) > d for Vi, 1 <i<s—1.
Then points p, q are called d-dimensional connected in M(nl, Ng, -+, Ny and the se-
quence By, By, - -+, B, a d-dimensional path connecting p and q, denoted by P%(p, q).

If each pair p, q of points in the finitely combinatorial manifold M(nl, Mgy« My
1s d-dimensional connected, then M(nl,ng, e My 18 called d-pathwise connected

and say its connectivity> d.

Not loss of generality, we consider only finitely combinatorial manifolds with
a connectivity> 1 in this book. Let M(nl,ng, -++,Ny) be a finitely combinato-
rial manifold and d,d > 1 an integer. We construct a vertex-edge labeled graph

GAM (ny,ng, -+, np)] by

V(Gd[M(nl,ng, nm)]) =W UVQ,
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where V) = {n; — manifolds M"™ in M(nl,ng,---,nm)ﬂ < i < m} and V,
{isolated intersection points Opsn; pmy of M™ M™ in M(nl,n2,~-~,nm) for 1 <

i,7 < m}. Label n; for each n;-manifold in V; and 0 for each vertex in V, and
E(GU[M(ny,na, - nyn)]) = By | Ba,

where E; = {(M™, M") labeled with dim(M™ (Y M™) | dim(M™ (Y M™) > d,1 <
i,j <m} and Ey = {(Opni pymis M™), (Opgri i, M™) labeled with 0] M™ tangent
M™ at the point Oy s for 1 <, 5 < m}.

For example, these correspondent labeled graphs gotten from finitely combina-
torial manifolds in Fig.4.2.1 are shown in Fig.4.2.2, in where d = 1 for (a) and (b),
d = 2 for (c) and (d). Notice if dim(M™ N M") < d — 1, then there are no such
edges (M™ M™) in Gd[ﬁ(nl,ng, Cee )]

O—06=06
(2)

(¢)
Fig.4.2.2

Theorem 4.2.2 Let Gd[ﬂ(nl,ng, - nm)] be a labelled graph of a finitely combi-
natorial manifold M(nl, Ng,*+,Ny). Then

(1) Gd[]\/Z(nl, N, -+, Nm)] s connected only if d < n;.

(2) there exists an integer d,d < ny such that Gd[ﬂ(nl,ng, <o nm)| is con-

nected.

Proof By definition, there is an edge (M™, M") in G4 M (n1,ng,- - -, nm)] for
1 < i,j < m if and only if there is a d-dimensional path P%(p,q) connecting two
points p € M™ and q € M"™ . Notice that

(P*(p,q) \ M™) € M™ and (P*(p,q) \ M™) C M™.



Sec.4.2 Combinatorial Manifolds 183

Whence,
d < min{n;,n;}. (4.2.1)
Now if G4 []\/Z(nl, Ng, -+, Mm)] is connected, then there is a d-path P(M™, M™)
connecting vertices M™ and M for VM™ M € V(G M (ny,ny, - -+, nm)]). Not

loss of generality, assume
P(M™ M"™) = M™M* M2 .- M= M".
Then we get that
d < min{n;, $1, 2, -+, S4—1, 1} (4.2.2)

by (4.2.1). However, by definition we know that

U {nl(p)’ n2(p)a T nS(P)(p)} - {nb N, >nm}' (423)

peM

Therefore, we get that

d < min({_J{m(p),na(p), -+ nsgry(p)}) = min{ny, ny, -+, npn} = m
peM
by combining (4.2.2) with (4.2.3). Notice that points labeled with 0 and 1 are always
connected by a path. We get the conclusion (1).

For the conclusion (2), notice that any finitely combinatorial manifold is al-
ways pathwise 1-connected by definition. Accordingly, G* [M (ny,ng, -+, ny)] is con-
nected. Thereby, there at least one integer, for instance d = 1 enabling G []\7 (n1,na,

-, Ny)| to be connected. This completes the proof. O

According to Theorem 4.2.2, we get immediately two corollaries following.

Corollary 4.2.1 For a given finitely combinatorial manifold ]TJ/, all connected graphs

G M] are isomorphic if d < ny, denoted by G*[M].

Corollary 4.2.2 If there are k 1-manifolds intersect at one point p in a finitely

combinatorial manifold M, then there is an induced subgraph K** in GE[M].

Now we define an edge set E4(M) in GE[M] by

EY(M) = B(G'[M])\ E(G*[M)).
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Then we get a graphical recursion equation for graphs of a finitely combinatorial

manifold M as a by-product.

Theorem 4.2.3 Let M be a finitely combinatorial manifold. Then for any integer

d,d > 1, there is a recursion equation

GH M) = GYM] — E4(M)
for labeled graphs of M.

Proof It can be obtained immediately by definition. OJ

Now let H(ny,na, - - -, n,y,) denote all finitely combinatorial manifolds M (ny,na,
<+, n,y,) and G[0,n,,] all vertex-edge labeled graphs G* with 6y, : V(GF)UE(GY) —
{0,1,--+,n,,} with conditions following hold.

(1)Each induced subgraph by vertices labeled with 1 in G is a union of complete
graphs and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2)For each edge e = (u,v) € E(G), To(e) < min{m(u), 7 (v)}.

Then we know a relation between sets H(ny,na, - - -, ny,) and G([0, ny,], [0, n4,))

following.

Theorem 424 Let1 < ny < ng < -+ < nyu,m > 1 be a given integer se-
quence. Then every finitely combinatorial manifold M € H(ny,ng, -+, ny) de-
fines a vertex-edge labeled graph G([0,n,,]) € G[0,n,]. Conversely, every vertez-
edge labeled graph G([0,n,,]) € G[0,n.,] defines a finitely combinatorial manifold
M € H(ni,ng, -+, ny) with a 1 — 1 mapping 0 : G([0,n,,]) — M such that 0(u)
is a O(u)-manifold in M, 71(u) = dimf(u) and m(v,w) = dim(f(v)(0(w)) for
Vu € V(G([0,nm])) and ¥(v,w) € E(G([0,n.,])).

Proof By definition, for VM € H(ni,ng, - -+, n,y,) there is a vertex-edge labeled
graph G([0, 1)) € G([0,nm]) and a 1 — 1 mapping 6 : M — G([0, n,,]) such that
f(u) is a 6(u)-manifold in M. For completing the proof, we need to construct a
finitely combinatorial manifold M ¢ H(ni,ng, -+, ny) for YVG([0,n,,]) € G[0,n,,)
with 7 (u) = dimf(u) and (v, w) = dim(6(v) () 0(w)) for Yu € V(G([0,n,,))) and
V(v,w) € E(G([0,nn])). The construction is carried out by programming following.

STEP 1. Choose |G(]0,n])| — |Vo| manifolds correspondent to each vertex u with
a dimensional n; if 7 (u) = n;, where V5 = {ulu € V(G([0,n,,])) and 7 (u) = 0}.
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Denoted by Vs all these vertices in G([0,n,,]) with label> 1.

STEP 2. For Vu, € Vs with 7y(u1) = n,,, if its neighborhood set Ne(jo,n,)) (11)

NVar = {vg, 01, 'avf(ul)} with 71(v]) = nu1, 71 (vf) = nag, -, Tl(vf(ul)) = Ms(ur)>
then let the manifold correspondent to the vertex u; with an intersection dimension
7o (uyvl) with manifold correspondent to the vertex v} for 1 < i < s(u1) and define

a vertex set Ay = {u}.

STEP 3. If the vertex set A; = {uy, us, -+, u;} € V5 has been defined and V5 \
Ay # 0, let upyy € Vay \ A with a label n;,, . Assume

(Neomn) (uisn) (Vo) \ A= {0y, 030, -, v}

: 1 _ 2\ _ s(uiy1)y
with 71 (vl ) = mgn, (Vi) = mugae, - (U ™) = Mg s(u,,). Then let the

manifold correspondent to the vertex u;,; with an intersection dimension 73 (u4 10} 1)
with the manifold correspondent to the vertex vli 1 < < s(u;41) and define a
vertex set A = A U{wii1}-

STEP 4. Repeat steps 2 and 3 until a vertex set A; = V5, has been constructed.
This construction is ended if there are no vertices w € V(G) with 7 (w) = 0, i.e.,

V51 = V(G). Otherwise, go to the next step.
STEP 5. For Yw € V(G([0,1,,])) \ V>1, assume Ng(on,.))(w) = {w1, wa, -+, we}.

Let all these manifolds correspondent to vertices wq,ws, -, w, intersects at one

point simultaneously and define a vertex set Ay, ; = Ay ([ J{w}.

STEP 6. Repeat STEP 5 for vertices in V(G([0,n,,])) \ V>1. This construction is

finally ended until a vertex set A}, , = V(G[ni,ns, - - -, n,)) has been constructed.

A finitely combinatorial manifold M correspondent to G ([0, ny]) is gotten when
A}, has been constructed. By this construction, it is easily verified that M e
H(ny,ng, -+, ny,) with 7 (u) = dimf(u) and (v, w) = dim(f(v) () O(w)) for Yu €
V(G([0,n,,))) and Y(v,w) € E(G([0,n,,])). This completes the proof. O

4.2.2 Combinatorial Submanifold. A subset S of a combinatorial manifold
M is called a combinatorial submanifold if it is itself a combinatorial manifold with
GES] < GF []\7 |. For finding some simple criterions of combinatorial submanifolds,
we only consider the case of F' : M — N mapping each manifold of M to a man-

ifold of N , denoted by F' : M, - N , which can be characterized by a purely
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combinatorial manner. In this case, M is called a combinatorial m-submanifold of

N.

For a given vertex-edge labeled graph G = (VI E%) on a graph G = (V, E), its
a subgraph is defined to be a connected subgraph I' < G with labels 7 |r(u) < 71 |¢(u)
for Vu € V(I') and 7|r(u,v) < 7|g(u,v) for V(u,v) € E(T'), denoted by I'* < GZL.
For example, two vertex-edge labeled graphs with an underlying graph K, are shown
in Fig.4.2.3, in which the vertex-edge labeled graphs (b) and (c¢) are subgraphs of
that (a).

4 2
9 3

4 4

3 2

(a) (b) (c)

Fig.4.2.3

For characterizing combinatorial in-submanifolds of a combinatorial manifold
M , we introduce the conceptions of feasible vertex-edge labeled subgraph and labeled

quotient graph in the following.

Definition 4.2.2 Let M be a finitely combinatorial manifold with an underly-
ing graph GY[M]. For VM € V(GY[M)) and U- C Newgg (M) with new labels
72(M, M;) < 7| gy (M, M;) for YM; € UL, let J(M;) = {M]|dim(M N M]) =
To(M, M;), M C M;} and denotes all these distinct representatives of J(M;), M; €
UL by . Define the index oy (M : U*) of M relative to U by
o5 (M : U") = r}éi;l{dim(MUJ(M (M)}
‘e

A vertex-edge labeled subgraph T't of GE[M] is feasible if for Yu € V(I'L),

Ti|r(w) > og7(u : Npo(u)).

Denoted by T <, GE[M] a feasibly vertez-edge labeled subgraph T'F of GL[M].

Definition 4.2.3 Let M be a finitely combinatorial manifold, £ a finite set of
manifolds and F! : M — % an injection such that for VM € V(GF[M]), there
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are no two different N1, Ny € £ with F}(M) N Ny # 0, F/{(M) N Ny # 0 and
for different My, My € V(GF[M]) with F{(My) C Ny, F}(My) C Ny, there exist
N{,Nj € &£ enabling that Ny N N| # () and Ny N Ny # 0. A vertez-edge labeled
quotient graph GE[M]/F} is defined by

V(GL[M]/F}) = {N C Z|3M € V(G*[M]) such that F}(M) C N},
E(GE[M]/FY) = {(Ny, N3)|3(My, My) € E(GF[M]), Ny, Ny € ZLsuch that
Fll(Ml) - Nl,Fll(Mg) C N2 and Fll(Ml) N Fll(MQ) 7& @}

and labeling each vertex N with dimM if F}(M) C N and each edge (Ny, Ny) with
dzm(Ml N MQ) Zf Fl(Ml) C Nl, Fll(M2> C N2 and Fll(Ml) N Fll(MQ) # @

Then, we know the following criterion on combinatorial submanifolds.

Theorem 4.2.5 Let M and N be finitely combinatorial manifolds. Then M is a
combinatorial in-submanifold of N if and only if there exists an injection F} on M
such that

GF[M]/F! <, N.

Proof If M is a combinatorial in-submanifold of N , by definition, we know
that there is an injection F : M — N such that F(M) € V(G[N]) for VM €
V(GEY[M]) and there are no two different Ny, No € % with F}(M) N N, # 0,
F}(M)N Ny # (. Choose F}!' = F. Since F is locally 1 — 1 we get that F(M; N
M,) = F(M;) N F(M,), ie., F(My, M) € E(GIN]) or V(G[N]) for V(M;, M) €
E(GY[M]). Whence, GE[M]/F} < GX[N]. Notice that GX[M] is correspondent with
M. Whence, it is a feasible vertex-edge labeled subgraph of G* [N | by definition.
Therefore, GE[M]/F} <, GF[N].

Now if there exists an injection F}' on M, let TE <, GEN]. Denote by T
the graph GE[N]\ 'L, where GE[N] \ I'* denotes the vertex-edge labeled subgraph
induced by edges in GE[N]\ 'Y with non-zero labels in G[N]. We construct a subset
M* of N by

U o Uy o armm)

M'ev(T (M',M")eE(T)

and define M = Fll_l(ﬁ *). Notice that any open subset of an n-manifold is also

a manifold and F}~'(T'F) is connected by definition. It can be shown that M is a
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finitely combinatorial submanifold of N with GL[M]/F} =~ T'%. O

An injection F} : M — & is monotonic if Ny # N, if FL(M;) C N, and

F}(M,) C Ny for VMy, My € V(GE[M]), My # M. In this case, we get a criterion

for combinatorial submanifolds of a finite combinatorial manifold.

Corollary 4.2.3 For two finitely combinatorial manifolds ]TJ/, N, M is a combina-
torial monotonic submanifold of N if and only if GE[M] <, GX[N].

Proof Notice that F} = 1} in the monotonic case. Whence, GL[M]/F} =
GE[M]/1! = GE[M)]. Thereafter, by Theorem 4.2.9, we know that M is a combina-
torial monotonic submanifold of N if and only if GE[M] <, GE[N]. O

4.2.3 Combinatorial Equivalence. Two finitely combinatorial manifolds Ml (nq,
Noy -y M), Mg(k;l, ko, -+ k) are called equivalent if these correspondent labeled
graphs

G [Mi(ny,ng, -+, mon)] = GHMy Ky s, -+ )

Notice that if ]\71(711, Moy M) ]\72(1{:1, ks, -+, k) are equivalent, then we can
get that {ny,no, -, ny} = {k1, ko, -+, ki} and GL[]\/Zl] = GL[]\/ZQ]. Reversing this
idea enables us classifying finitely combinatorial manifolds in H%(ny, ng, - - -, ny) by

the action of automorphism groups of these correspondent graphs without labels.

Definition 4.2.4 A labeled connected graph GL[M(nl, N, -+, Num)] 18 combinatori-
ally unique if all of its correspondent finitely combinatorial manifolds M(nl, Mgy« M)

are equivalent.

Definition 4.2.5 A labeled graph G[ni,ng, -+, ny] is called class-transitive if the
automorphism group AutG is transitive on {C(n;), 1 < i < m}, where C(n;) denotes

all these vertices with label n;.

We find a characteristic for combinatorially unique graphs following.

Theorem 4.2.6 A labeled connected graph Glny,ng,---,ny] is combinatorially

unique if and only if it is class-transitive.

Proof For two integers i, 7,1 < 4,5 < m, relabel vertices in C(n;) by n; and
vertices in C(n;) by n; in G[ny,ng,---,ny|. Then we get a new labeled graph

G'[ny,ng, -+, ny| in Gny,ng, -+, nyl. According to Theorem 4.2.4, we can get
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two finitely combinatorial manifolds ]\/Zl(nl,ng, e My,) and Mg(k‘l, ko, -+, k) cor-
respondent to G[ny, ng, -+, ny,| and G'[ng, ng, - -+, ny, ).
Now if G[nq,ng, - - -, n,y| is combinatorially unique, we know M, (ny, M2, M)

is equivalent to Mg(k‘l, ko, -+, k), i.e., there is an automorphism 6 € AutG such that
C%n;) = C(ny) for Vi, j,1 <i,j < m.

On the other hand, if G[n,ng,---,n,| is class-transitive, then for integers
i,j,1 <i,j < m, there is an automorphism 7 € AutG such that C™(n;) = C(n;).
Whence, for any re-labeled graph G'[ny, ng, - -+, ny,|, we find that

[

G[n17n27 T '7nm] = G,[n17n27 o '7nm]7

which implies that these finitely combinatorial manifolds correspondent to Gnq, ns,
-+ ] and G'[ng, ng, - - -, nyy,| are combinatorially equivalent, i.e., G[ngy, ng, - -+, 1y,
is combinatorially unique. O

Now assume that for parameters t;;, ¢;s, - - -, t;s,, we have known an enufunction

Cri[Ti1, Tig, ] = Z ni(tin, tio, -+ tis oy g - - - s
ti1,tio,tis
for n;-manifolds, where n;(t;1,t;,- - -, t;s) denotes the number of non-homeomorphic
n;-manifolds with parameters t;1,%;, -+, t;s. For instance the enufunction for com-
pact 2-manifolds with parameter genera is
Cylz](2) =14 ) 2aP.
p>1

Consider the action of AutG[ny, ng, -+, ny| on Gng, ng, - -+, ny,|. If the number
of orbits of the automorphism group AutG[n,, na, - -, n,] action on {C'(n;),1 < i <
m} is mp, then we can only get 7! non-equivalent combinatorial manifolds corre-
spondent to the labeled graph Gny,ng, - -, n,] similar to Theorem 2.4. Calcula-
tion shows that there are [! orbits action by its automorphism group for a complete
(s1+ S + - -+ + s;)-partite graph K (k7' k3, -, k"), where k" denotes that there
are s; partite sets of order k; in this graph for any integer ¢,1 < ¢ <[, particularly,
for K(ny,ng, -+, ny) with n; # n; for 4, 5,1 < i, < m, the number of orbits action
by its automorphism group is m!. Summarizing all these discussions, we get an enu-
function for these finitely combinatorial manifolds M (n1,ng,- -, ny,) correspondent

to a labeled graph G[ny,na, - -+, n,| in G(n1, ng, - - -, ny,) with each label> 1.

Theorem 4.2.7 Let Glny,ng, -+, n,] be a labelled graph in G(ny,ng, -+, ny,) with
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each label> 1. For an integeri,1 < i < m, let the enufunction of non-homeomorphic
n;-manifolds with given parameters ty,to, - -+, be Cymi|xi, Tio, - -] and mo the num-
ber of orbits of the automorphism group AutG[ni,ng, - -, ny] action on {C(n;),1 <
i < m}, then the enufunction of combinatorial manifolds M(nl, N,y Ny COTTE-

spondent to a labeled graph Gny,ng, - -+, ny) is

Cyu (@) = ! H Chrmi |31, Tag, -+ ],
i=1
particularly, if Gny,na, - -+, Ny = K(ET' k32, -+ -, kim) such that the number of par-
tite sets labeled with n; is s; for any integer 1,1 < i < m, then the enufunction

correspondent to K (ki*, k3%, -+ k3m) is

CM(E) = m' H CM’% [Zlfil, Tio, " ]

i=1
and the enufunction correspondent to a complete graph K,, is
C]\“/](f) = H CM’% [Sl?il, Tio, " ]
i=1
Proof Notice that the number of non-equivalent finitely combinatorial manifolds

correspondent to G[ny, ng, - -+, npy| is

WOHni(tihtm e tis)
i=1

for parameters t;1,t;0, -+, tis, 1 < 7 < m by the product principle of enumeration.
Whence, the enufunction of combinatorial manifolds M (ny,ng, 