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Abstract

A classical gauge model based on the Lie group SU(3)r ® U(1)n
with exotic quarks is reformulated within the formalism of non-associative
geometry associated to an L-cycle. The N charges of the fermionic parti-
cles and the related parameters constraints are uniquely determinedalge-
braic consequences. Moreover, the number of scalar particles are dictated
by the non-associativity of the geometry. As a byproduct of this formal-
ism, the scalar, charged and neutral gauge bosons masses as well as the
mixing angles are derived. Furthermore, various expressions of the vec-
tor and axial couplings of the quarks and leptons with the neutral gauge
bosons and lower bounds of the very heavy gauge bosons are also obtained.

PACS: 24.85.4+p, 13.85.Hd, 13.87.-a

1 Introduction

One of the greatest achievement of the noncommutative geometry (NCG ) is the
geometrization of the standard model [1, 2, 3]. NCG provides a framework where
the Higgs boson may be treated at the same level as the W *and Z° bosons.
In this approach, one introduces additional discrete dimensions to the ordinary
space-time. If the gauge bosons are associated to the continuous space-time, the
Higgs boson results from gauging the discrete directions. In the NCG Connes’
approach, a universal formula for an action associated with a noncommutative
geometry, defined by a spectal triple is proposed. It is based on the spectrum of
the Dirac operator and is a geometric invariant. The new symmetry principle is
the automorphism of an algebra A which combines both diffeomorphisms and
internal symmetries. Applied to the geometry defined by the spectrum of the
standard model gives an action that unifies gravity with the standard model at
a very high energy scale. However, Connes’ prescription is compatible only with



linear representations of the matrix group which imposes very stringent con-
straints on gauge models. Indeed, it was shown that [4, 5] the only models which
can be constructed in this approach are the standard model, the Pati-Salam [6]
and the Pati-Mohapatra models [7, 8]. Now, if one takes into account the reality
condition of the K-cycle [9], the last two models are ruled out leaving at the end
the standard model as the unique model compatible with Connes’ prescription.
It is worth to mention that they are other formulations of NCG where there is
no a such restriction [10,11,12,13,14]. Recently, Wulkenhaar has proposed a
modification to the noncommutative geometry where the differential geometry
is formulated in terms of a graded differential Lie algebras instead of unital as-
sociative algebras as it is the case in Connes’ approach [15,16]. Its application
to a list of physical models has been successful. Among this list figure out the
standard model [17], the flipped SU(5)®@U (1) [18] , SO(10) models [19] and left-
right gauge model [20] etc.... The interesting feature of Wulkenhaar’s approach
or nonassociative geometry (NAG) is the use of a graded Lie algebra and the
obtention of mass relations between fermions and bosons masses as in Connes’
formalism. On the other hand, the number of fermion families in nature and
the pattern of fermion masses and mixing angles are two of the most intriguing
puzzles in modern particle physics. Over the last decade, the 3—3 — 1 extension
of the standard model (SM) for the strong and electroweak interactions, based
on the local gauge group SU.(3) ® SUL(3)L ® Ux (1) have been studied exten-
sively [21,22,23,24, 25,26, 27,28]. It provides an interesting attempt to answer
the question on family replication. In fact, this extension has among its best
features that several models can be constructed so that anomaly cancellation
is achieved by an interplay between the families [21,22, 23,24, 25, 26,27, 28]. In
some of them [21,22,23,24], the anomaly cancellation implies quarks with ex-
otic electric charges —4/3 and 5/3. Moreover, some models based on the 3—3—1
local gauge structure are suitable to describe some neutrino properties, because
they include in a natural way most of the ingredients needed to explain the
masses and mixing. [28,29,30,31,32,33]. The goal of this paper is to enlarge
the list of NCG physical models [17,18,19,20] by reformulating the 3 — 3 — 1
model within the Wulkenhaar’s approach of a graded Lie algebra and derive
as an output of this prescription, the various mass spectrum relations, mixing
angles and V' — A couplings in the weak neutral currents for quarks and leptons.
The paper is organized as follows: In section2, we present the general formal-
ism of Wulkenhaar’s non associative geometry and the L-cycle. In section 3,
we omit the strong interaction sector and construct (within this approach) the
bosonic and fermionic actions of the SUL(3)L ® Ux (1) model for electroweak
interactions and derive the fuzzy mass, mixing angles and couplings relations as
an output. Finally, in section 4 we draw our conclusions.

2 General Formalism

The fundamental object in NAG is the L—cycle (g, H, D, m,T), constituted of:



1)A Hilbert space H:
H=L*(X,S)®CF (1)

where L? (X, S) is a the square integrable bispinors Hilbert space.
2)A unitary skew adjoint Lie algebra g of bounded operators on the Hilbert
space H:
g=C0"X)®a 2)

where @ and C* (X)) are a matrix Lie algebra and an algebra of smooth functions
on a compact Euclidean space-time manifold X respectively.
3)A total self adjoint non degenerate Dirac operator D with a compact re-
solvant such that :
D=D®1lr+7" @M

where D and ~° are the Dirac operator of the spin connection and the chirality

operator on L?(X,S) and M the Dirac operator associated to the discrete
algebra a.

4)A representation 7 of g on H which is given by:
r=1I®7 (3)

where T is the representation of @ on C¥' (F is the number of families).
5)A graded operator T, acting on H which has the form:

with the following properties:
T2 = idy ()
L7 (g)] =0 (6)
and
{I',D} =0 (7

Here T is the graded operator acting on C¥" and idy stands for identity over the
Hilbert space H. Now, the prescription towards the construction of a classical

gauge theory associated to the L-cycle requires the following[17, 18, 19, 20]:
i) A space Q'a generated by elements w! of the type:

wl = Z [aZ, ... [al,dad] ...] az, € a (8)
a,z>0

where d is the universal exterior derivative. The representation 7 acts on the
space Q'a as:



=)

Q'a — Mp(C)

a,z>0

We define also another mapping such that:

- Qla—>MF(C
W) = Y )R, MA@ )
a,z>0

ii) A space Q"a spanned by elements w™ of the form:

a,z>0

where w; , € 2'a. We can also extend 7 and o to Q" a as follows:

7 ([whwt]) =7 (W) 7 (WF) — (—1)*7 (W*) 7 ('), (12)
and
o ([wl,wk]) =0 (w')7 (wk)—ir\ (wk) o (wh)-7(wh) o (wk)—(—l)k c (wk) 7 (w)
(13)

iii) Define for k > 2, 7 (3*a) such that:

7 (S*a) == { (W), 0" € QF tanker 7}. (14)
iv) Define spaces r’ a C Mp(C) and r* @ C Mp(C) such that :
r’a = —( Oa)* :f(roa) T, (15)
r'a = —(r'a)" = -T (r'a) r

[ra,7 (a)] C 7 (a),
[roaﬁ (Qla)] cw (Qla)
{r%a,7(a)} C {7 (a),7 (a)} + 7 (2%a),
{r%a,7 (2'a)} C {7 (a),7 (R'a)} + 7 (2%a)
[r'a,7 (a)] C 7 (2'a)
{r'a,7 (V'a)} C {7 (a) ,7 (a)} + 7 (Qa)

These additional structures are needed for the construction of a connection form

p and a curvature §. The latter are not in general elements of 2'a and 22a. This



is one of the main differences between Connes’s and Wulkenhaar’s approachs to
NCG.

v) Define spaces j’a, j'a and j?> a C Mp(C) as:

ia = da
jla = cla
ja = ¢ a+%(320) + {7 (a) ,7 (a)} (16)
and such that:
cla=— (coa)* =T (c’a r
cla=— (cla)* =-T (c'a) T (17)
c’a=—(c?a)" = T (ca)T
la 7(a) = cla.7 (a) =0
c’a.7 (V'a) =claxw (Q'a) =0
[c®a,7(a)] =0

vi) The connection form p has the following structure:

p=>(ch@omd+ P @ml) (18)
«
where ¢!, € AY, & € A%, mY € r’a, m! € r'a and A* is the differential space
of k—forms represented by the gamma matrices.
vii) The curvature 6 is computed from the connection p as:

0 =dp+p* —i{y5®@ M,p}+5,4(p)° + Iy, (19)
where
J2g=(A?23%) @ (A’ @ J'a) @ (A’ ® J%a) (20)

and 4 is the extension of id ® ¢ to elements of the form as in eq.(19).
viii) Select the representative e () ortogonal to J2g (elimination of the junks
forms j € J?g ) such that:

e(0) =dp+p® —i{y" @ M, p} +54(p)7° +j (21)
and
/da: Tr(e(0)j') =0 Vi€ J%g (22)
X



where the trace Tr inludes that in Mp(C) and over gamma matrices.
ix)Calculate the bosonic and fermionic actions Sp and Sg respectively such
that:

Sp = / dxziFTr (e(6))? (23)
- 90
and
Sp = / dzy* (D + ip) (24)
X

Here gq is a coupling constant and ¢ € H (matter fields).
x) Finally, perform a Wick rotation.

3 NAG Construction of the model

3.1 Motivation

The 3 — 3 — 1 model, based on the gauge group SU(3). ® SU3), @ U(1)n
is particularly interesting and possibly the simplest way to enlarge the gauge
group SU(3). ® SU(2), @ U(1)y. The price we must pay is the introduction
of exotic quarks with electric charges 5/3 and —4/3. The main motivations to
study this kind of model are: The natural prediction of three generations based
on anomaly cancellation. Thus, the family number must be three. This result
comes from the fact that the model is anomaly-free only if we have equal number
of triplets and antitriplets, counting the SU(3). colors, and requiring the sum of
all fermion charges to vanish. The triangle anomaly cancellation occurs for the
three, or multiply of three, together and not generation by generation like in the
standard model (SM). It is worth to mention also that the incorporation of the
third family of quarks differently from the other two, leads to potentially large
flavor changing neutral currents. The extra neutral vector boson Z’ conserves
flavor in the leptonic but not in the quark sector. Moreover, it is the simplest
model that includes bileptons. The lepton number is violated explicitly by the
charged scalar and heavy vector bosons exchange including a vector field with
a double electric charge. The model has also several sources of C'P violation

implemented spontaneously or explicitly. Denoting by:

Ve u
L' = e ; Q'=Vv2| d (25)
e’ J1

The triplet (resp. singlet ) representations for the left (L) (resp. right (R))
handed fields (leptons L'and quarks Q') are:

2
Ly~ (13,0 Qp~(3,3,+3) (26)



and

Lig ~ (L,1,0); Lyp~(1,1,-1); Lgp~(1,1,+1)
2 1 5

Q%R ~ (371a+§); Q%RN (3717_5); QéRN (3717"_5) (27)
The numbers 0, 2/3 in eq.(26) and 2/3,—1/3 and 5/3 in eq.(27) are U(1)n
charges. The normalization factor v/2 is introduced for practical reasons as it
will be clear later. The electric charge operator Q). is defined in terms of the N
charges as:

1
% =2 ()\3 - \/§>\8) 4 N.lsxs (28)

where A3 and Ag are the usual Gell-Mann matrices.The other two leptons and
quarks generations

Uy Ur

L~ | | L= 7 (29)
MC 7_(}
s b

Q= c | =1t (30)
Jo J3

belong to the representations:

Li ~(1,3,0); L} ~(1,3,0) (31)

Lip~ (11,0 I3g~(L1,-1); L3g~ (1,1,+1) (32)
Lip~ (1,1,0) Idp~(1,1,-1); L~ (1,1,+1) (3)
@G~ B3 5): QB3 —) (34)
@G~ (L3 Ga~ G145 QGe~B1-3) ()
b (31 -2) Qe (B 40) Qle~ (-3 (36)

Here u, d, s, ¢, b, t and .Jy, Js, J3 stand for the wave function of the up, down,
strange, charm, bottom, top and exotic quarks respectively.

3.2 NAG construction of the 3-3-1 model
The discrete L-cycle denoted by (a,H, M) consists of the Lie algebra

a=su(3) ® su(3) ®u(l) > {a},as,a1} (37)

For the three generations, the total internal Hilbert space is C"2 labelled by the
elements:



(Qir, Q. Qi Qi Qfre Qs Lip, L, Lip, Lig, Lin (L?S%v )"
38

where 7 = 1,3, Q%L, Q%, @3, Qln, Q% Q3p € CP @ C? and L), L3, L3,

Lip, L?y, L3, € C3. In what follows, we omit the strong interactions sector. In

3

this case, the Lie algebra a acts on H via the representation:

#(a1,a3) = ( mq(ar, as) 0 ) (39)

0 mi(a1,as)

Using the fact that the elements of the su(3) algebra have the general represen-
tation:

fs+fs fi—ife fi—ifs
az= | fit+ifa —fs+fs fe—if7 (40)
fatifs fe+ifr  —2fs
and since one of the family of quarks is incorporated differently from the other
two, the representation 7g(a1, as) of quarks has to have the following form:

a 0 a 0, a 0
0 —3®L )7\ 0 —30L J’\ 0 -3l )’

mo(a1,a3) = ifodiag R 5 0
ﬂ®133:7\1®133 < 2

0 —% ®1Is
(41)
f3+ fs 0, fi—ife 0, fa—ifs 0,
0 (fs+ fs) @I 0 (fi—if2) @1y 0 (fa—ifs) @1y
fi+ife 0, fs—f3 0, fe —if7 0,
+i 0 (fitifo) @1y 0 (fs = f3) @1y 0 (fe —ifr) @1y
fa+ifs 0, Je t+ifz 0, —2fs 0,
0 (fa+ifs) @1y 0 (fe +if7) @1y 0 —2fs @1y
09

where the f; ’s are real numbers and a, ﬁ, 4 and 3 are hermitique operators for
which the eigenvalues on the states Q! are denoted by

aQl, = (;511' + 025 + 53j) o’Qly

BQl, = (;%‘ + 025 + 53j) 018’ Qlp

AQln = (;513' + 025 + 53]-) 027" Qlp

Q) = Gélj + 85 + 53j) 5367 Q7 (42)

(more properties of these operators will be discussed later). It is very important
to mention that in order to keep our construction as clear as possible, we have

09

09



choosen the operators coefficients associated with u(1) algebra &, ,CA'], 4 and 3 a
priori with arbitrary eigenvalues when acting on the quarks. As in ref.[20], we
will see when we discuss the electromagnetic interaction terms in the fermionic
action that (as expected)the eigenvalues o, B, 7/ and &7 correspond exactlty
to the N charges of the commutative model [21]. Similarly, for the leptons, the
representation 7;(a1, as) has to have the form:

Filar,ag) = ifodiag (& 915, & 91, & 01, f 91,7 91,8 ©L) (43)

(fs+f)ely (fi—ify) Iy (fi—if;) @13
(fi+ify)ely (fs—fi)oly (fo—iff) @13 09
(fitify) oLy (fg+ifr) @Iy —2f;®I3

09 I3

+t

where the f! ’s are real numbers. Similarly for leptons, we assign operators

~/ ~ ‘
coefficients @', ,4’ and § arbitrary fo which their action (eigenvalues) o/,
B, ~" and §"” are such that:

a'lLi, = oL, (44)
B IL?R = B K L{R
’AY,LgR = 7 L?R
g/LgR = & LgR

will be determined later and correspond to the leptons N charges like in the
original commutative model[21]. Regarding the mass matrix M of the L-cycle,
it has the form:

MQ 05
M= 45
( 015 My (45)
where

03 03 03 MQl 03 03

03 03 03 03 03 Mgs

Mo=1 M5 05 05 05 05 O (46)

03 M52 03 03 03 03

03 03 Még 03 03 03
and

Mg = 5 47
L Mj, 03 03 03 03 03 (47)

05 M;, 03 03 03 03
03 03 Mzg 03 03 03

Here Mg: and My: € M3(C) are the mass matrices of the fermions (quarks and



leptons) such that:

m, O 0 mg O 0 myj,
MQI = 0 mg 0 s MQZ = 0 me 0 s MQS = 0 m.j,
0 0 my 0 0 my 0
(48)
and
my, 0 0 me O 0
MLI = 0 m,,# 0 y ML2 = MLS = 0 my 0 (49)
0 0 my 0 0 m,

It is worth to mention that in this formalism the graded operator T is given by:

T = diag (—1s, —T3,~Is, I3, I3, I, =I5, — T3, =I5, T3, 13, Is) (50)
The space T (Qla) is generated by elements of the type:

P eF ) = 3 Fad) o [7(2), [F (a)), [FiM 7 (00)]] -] (1)

ag, = (ai, a3) (52)

Direct simplifications lead to the following decomposition:

1
1 _ TQ 0
=% 3) 3)

where
0o !
1 _ . 1Q
Q Z<75Q 0 > (54
" Ao O (55)
L Téz 0
with
. MQlkn MQ2]€12 MQ3k‘13 ) Mélkfl _MélkIQ
TIQ: 7M£51]€T2 MQQkQQ MQSng 5 T2Q: Mégkfg Mégk;2
—Mgikis —Mg2k3s Mgskss Mégkfg Mégkgg
(56)
and
) Mk Mok,  Mpskis ) Mpkyy —Mpikiy, —Mjakis
Tu = —Mj, 15 Mpakyy  Mpsksg » T = Mr», 1 Mz2k/2*2 —MZ2’€’23
~Mpikyy —Miakgy  Mysk Mkl Mikf  Mik
(57)

10



: / / ! / / /
The coeflicients ki1, k12, k13, ka2, ka3, kss, k11, k1o, ki3, kb9, ks and k5, are

given by:

ki = ifi+ fo

kiz = ifat+fs

kas = ife+ f7 (58)
ki = i(f3+f8+(a—3) fo)

koo = i(—fz+ fs+(a—7)fo)

ksz = —i (—2f8 + (a - 3) fo)

and
Ko = ifi+f
13 = ifi+f
s = ifg+fr (59)
W= iR (@-8)R)
ko = i(=fi+fi+ (@ —7)f)

Wy = —i(-2+ (a8 ;)

In what follows, and in order to have a consistency in the model within N AG,
we take the real parameters f; s and f!’s equal . Moreover, we will also concen-
trate only on the quark sector and give the corresponding results for the lepton
sector accordingly. Regarding the elements 72 € 7 (Q2%a), they are obtained by
summing up elements of the type:

™ ={r 7} (60)

Straightforward calculations give the following form for the quarks, :

2
2 _ |TigQ 09
T = 61
@ {09 Tgcj (1)
where L L )
) C%l 12 513
TiQ = §%1 %2 %3 (62)
Cs1 C32 (a3
and

2 2 2
) %1 12 513
TaQ = (o1 22 23 (63)
2 2 2
(31 C32 (33

11



with
(1
(39
(33
(51
(1o
(31
(i3
(32
(33

and

-2 (knk;MQlM&}l + Kiok12 Mgz M2 + kfsklgMQaMég)
-2 (klzkbMQlMél + kook3o Mgz Mg + k23/€§3MQ3M53)
—2(k13kisMqr M{1 + kazkss Mgz M2 + kaskss Mgs Mfs)
2 (kioki1 Mor Mg — kiykoo Mgz My — kiskas Mos M)
2 (klgkllMQlMél — kiako Mgz M2 — k13k§3MQ3M53)
2(k13k11MQ1MQ1 + k12k23MQ2MQ2 - k13k33MQ3MQ3)
2(k1ak11 Mgr My + kiokas Mgz Mg — kisk3s Mgs Mf)s)
2(—kigk12Mqr M + kiskao Mgz Mg — kigkas Mgs M)
2(—kiskioMqr Mo + kaskaa Mgz M2 — kask3s Mgs M)

(h = —2(kjykie + Ky ka1 + kighis) Moi Mgy,
(oo = —2(kiskas + k3okao + kigkia) M2 M
(33 = —2(kjskss + kiskas + kiskis) Mgs M)
C§1 = 2(kiy (k3o — kiy) — kaskis) MQlMQ2
C%z = 2(ki2 (ko2 — k71) — k23k13) MQQMél
C§1 = 2 (k 13 (k33 kll) k23) MQ1M53
(ly = 2(kiz (kss — kl ) + k1okas) Mgs My
(Bo = 2(k3y (kaz — ki) — kiokis) Mo2 M
(33 = 2(kos (k3y — ks3) — kiphkn 3) Mqs Mg

(64)

Regarding & (wl) , by using the expression of eq.(11) and after straightforward

calculations, one can show that it takes (for the quarks) the form:

0Qu1 0Qiz 0Qis
0Qa1 0Qa22 0Q2s 09
0Qa1 0Q32 0TQs2

09 09

ﬁ(wl) —o0gQ=

12

(67)



where

(68)

TQu 2[(f2+ £2) Mgugs + (7 + f7) Mq1q2]
0Qu (ife + fr) (=ifa+ f5) (Mgegr 4+ 2Mqigs) + 2ifs (—if1 + fa) Mg2gr
TQs (—ifa+ f5) (=ifs = 3fs) Mgrgs — (=ifs + fr) (=ifi + fo) (Mgigs + 2Mgaq2)
TQu (—ifo + fr) (ifa+ f5) (Mgagr + 2Mqgrqs) — 2ifs (ify + f2) Mgagn
0Qus 2[(f§ + f7) Mo2qs + (ff + f3) Mg2]
0Qs = (ifo+ f1)(3fs —ifs) Mg — (ifa+ f5) (—ifi + f2) (Mgeqs +2Mgiq2)
0Qi, = (ifa+ f5)(ifs —3fs) Mgigs — (ifs + fr) (ifs + f2) (Mgigs +2Mgsq2)
0Qss = (ifo+ fr)(3fs —ifs) Mg — (ifa+ f5) (—ifi + f2) (Mgeqs +2Mgiq2)
0Qu = 2[(f5 +J7) Mozgo + (f7 + f3) Mors]
with
Mgigi = Mgi My, — Moi My, (69)
One can show that 77, takes the form:
TH =Tg +0q =diag (T35,73q) + 0q (70)
where
/1 /1 71
2 oo R
me=| G G G ()
31 32 33
with
o= ¢h (72)
/212 = ng
b = Cis
/211 = (kip (K11 — ko2) — kaskis) M{QZQl}
B = (k2 (ki — k3o) — kizkis) Migig2y
sio=  (Kis (Kf) — kas) + kiakss) Migsqry
o= (ki (kn = k3) + k127<¢23) Myqrqsy
312 = (k35 (k32 — ks3) — ki3) JM{Q3Q2
by = (kas (ka2 — k33) — ku 3) Miq2qs)
and

M{Qin} = MQle)z + MQjMéj (73)

Thus, T% can be rewritten as:

T4 = diag (11, T3¢) mod o (2'a)

13



Now, using the conditions of eqs.(16), (17), (18), we can show that:

r’a = 7(a) (74)
rla = 7 (Qla)

j%a = 0

jla = 0

and

j’a =7 (S%a)e({7(a),7(a)} ® diag (RI;5,RI ) 3 Jodbdiag (Ag + Ag, Al + A))Bdiag (Jg, J))
(75)

We remind that the ideal 7 (%2 a) is given as a set of elements jo € Jy =7 (%2 a)

of the form:

jo= Y [Flal),...[7 (al), [M* 7 (al)]] ..] (76)
a,z>0
where
0= > [7(a2),..[7 (al), [-iM,7 (al)]] ...] (77)
a,z>0

If we use the parametrization:

Y ch®@ba=¢, €N ®C (78)
D el ®a1a =Y ¢\ Difoa =ido € A @ u(l) (79)
and
ZC}% Raza = A €A @su(3)

Yk @ilfsa+fsa) D ch®@i(fia—ifoa) Y ch®i(fia—ifsa)
| S eihatibg - @il f) fjcé@i(fea—z'fm)(g )
f:cmi(fmﬂfm) icg®z(f6a+if7a) a_zzc;,@z’fga
io(éA3+A8) i(Al—iAg)a i(Ag —iAs) )

= | A +ids) —i(As— Ag) i(Ag — iAs)
Z(A4 + ZA5) Z(A(; + ZA7) —27Ag

The connection p (see eq.(19)), has the following bloc diagonal matrix form:

=(" 1) (s1)

14



where

Al H!
o= (43 74 <82>
P PQ
and . )
A H
_ | P Pr
P = 2 2 (83)
: ( ol ot )
with
) i(Azg +adp) ® I3 PtA_1o @13 iA_4s @15
pg = iA12 ® 13 i(—A_gg + aAo) ® 13 iA_57 ® 13
1A45 @ I3 1Ag7 @ I3 (*27:A8 + ZaAO) ® I3
(84)
) i,@AO ® 15 03 03
pg = 03 Z'/Y\AQ &® 13 R 03 (85)
03 10A) @15
—w Po Mgr  —in 9 Mge  —in® Py Ms
’L’)/ d)lMQl —i’y5¢5MQ2 —i’yS¢3MQ3 (86)
iy ¢2MQ1 i'y5¢3MQz —i’y5¢6MQ3
—iy ¢4 'L.’YS&&M 1 iy ¢2
—iy 451 =Y s Mpe iy ¢3 (87)
—iP P My —in oy Mys iy ¢6
piA = 1A @13 —iA_33®1I3 iA_g7 QI3 (88)
1Ay @13 1Agr @13 —2tAs @ I3
) 03 03 03
o = 03 —idy®1;3 03 (89)
03 03 iAo @13
. —i’)/5¢4ML1 —i’ysalMLQ —i’y5?2ML3
pi = oMy i esMpz —in o3 Mps (90)
O heMpy i PsMpe  —iy’pgMps
and . .
o —i7° oM i*y5¢71M 1’75?2M
P = _i75?1M 2 —iyhs M7 i75¢§M 2 (91)
—iV oy M7y —iV’hy @ Mys —i oM,

Here Ay,; = (A; £ 1A;j). It is very important to mention that the Higgs mul-
tiplets representations of su(3) are uniquely determined by the fermionic mass
matrix. In fact, the degrees of freedom of the scalar particles ¢;, i = 1,6
are dictated and imposed by NAG and which looks like the 3 —3 — 1 eco-
nomical model where there are just two Higgs triplets[34, 35]. Moreover, this
minimal scalar sector (as it will be shown later) is able to break the symmetry
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SU(3).®SU3)L ® U(1)n spontaneously to SU(3). ® U(1)em, in one step. The

o~ ~ ~/ -~/
action of the hermitique operators &, 3,5 , 8, @', 8,5 and § on the scalar
matter and vector fields ¢, and Ay respectively is denoted by:

a¢i = a/% = ag; (92)
B@' = B/¢i = 5@‘
’AY¢¢ = ’AY/@ = 7¢i
8¢ = 80, =30,
(3a+3+3+3) Ao = Va Ay (93)
and
(36" +B +7 +38) 4, =0 (94)

where «, 3, v and ¢ are arbitrary real numbers. The parameter x is related to
the N charges and is a generation independent (see eq.(112)). Notice also that
contrary to the Wulkenhaar construction to the flipped SU(5) ® U(1) grand
unified theory (GUT) within the framework of NAG [18]where the matrix Lie
algebra su(5) is considered as an input and the u(1) part with its representation
on the fermions as an algebraic consequence, we have considered in this paper
(as it was done in our reference [20])the matrix Lie algebra su(5) @ u(1). The
reason was that in reference [18], in order to compute the structure of elements
belonging to r’a after decomposing them into irreducible su(5) representations,
the condition [ra,7 (a)] C 7 (a) yields to a block structure where the compat-
ibility with the two conditions {r’a,7 (a)} C {# (a),7 (a)} + 7 (2%a) and
{r%a,7 (Q'a)} C {7 (a),7 (Q'a)} + 7 (23a) implies that the connection
form has a structure with an additional u(1) part with a unique representation
on the fermionic Hilbert space. This is not the case in our model.
Let us now compute the anticommutator {7 (a1, as), (a1, as) }where:

{%(ala a3)7 %(alv a‘3)} = diag ({%Q (alv a3)7 %Q(alv a‘3)} ) {%l(ah a?))v %l(ala a3)})

(95)
Direct simplifications lead to the following form:
{Talar, a3), mg(ar,a3)} = Ag + Aq (96)
where
_~0(3+8) a1 2 __/~04  ~05
&, el a(la-id) el a(h —i )8l
2SS EPR ~0(3-8) _[~06  ~07
o —o a()\a+z)\a oL, @ ol a()\a —z)\a)®13
Q /204 -0 __/~06  ~07 _~08
a(Aa +z)\a>®13 a()\a +ma)®13 4@, @1
09
(97)
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and

(/)\\1 + 612&) ® 15 (/):1 — Z/)\\Q) ® Is (}:3 — ’L/):4) ® I3 03
(Xl + iXQ) ® I3 (XQ + a2X) ® I (X5 - z‘Xﬁ) ® I3 0;
~ s N 3 A2
Ag=2 ()\3 + Z)\4) ® I3 ()\5 + Z)\G) ® I3 ()\ + )\) ® I3 Azj)?,
03 03 03 ,6 A® Ig
03 03 03 03
(98)

/A\Z(?H-S) 3\\1 /A\2 /A\O4 XOS /A\O(3—8) /A\OG XO'? /A\OS

154 y Yoy N MM MM MM Yy o Y Tt ) a0
and A\¢ € R. Similarly, for leptons the anticommutator {m;(a1,as),m;(a1,as)}
takes the following form :

The parameters

{mi(a1,a3),m(a1,a3)} = Ay + A (99)
where
~0(3+8 ~1 o~ ~04  ~05
& o1, & (A - i) 0Ty & (Ao —ide) 0T
2 S ~0(3-8) /<06 ~07
Aol @O ti)els  ai) el a(M-wM)®h
! /04 ~05 ., /~06  ~0T _~08
(I(Aa,+zAm)<®Ig & (Aa,+zAm)<®Ig 46/ %, @15
09
(100)
and
(Xl + a’2X) ® 13 (Xl - iX2> @1, (Xg - z‘L) ® 13 0;
~ ~ 9 2 ~ ~
(/\1 + Z)\g) ® I3 ()\ + 6/2/\> ® I3 (/\5 — Z/\6) ® I3 03
(X +‘X)®I (X +‘X)®I (X3+“’2X>®I 0
A = 3+ iMg 3 5+ 1Xg 3 a 3 3 3
03 03 03 ﬁ A® Ig
03 03 03 03
03 03 03 03
(101)
~0(34+8) ~0(3—8) ~08 ~04 ~05 ~06 ~07 ~1 ~2 ~1 ~2 ~3 ~ ~ ~ ~ ~ ~
Here )‘oc s N ’ a7)‘a7)‘a7Aa7/\a7/\ouAa7)‘a)‘7A7)‘5A17)‘2a)‘37A47/\5

and ¢ € R. For generic masse matrices Mg,, Mo,, Mo,, My,, My,, My, (see
eqs.(49), (50)), eqs.(16), (17) and(18) have the solution j%a = 0 and j'a = 0 and

i’a = 7(S%a) ® ({7(a),7(a)} + diag (RI;3,RI;g))
3> Je@diag (Ag + Ag, A+ A) & diag (Jg, Jp)

(102)
(103)
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where Jg and J; have the form:

~2 ~2 ~2 ~2
Jo = diag AL+ at Ao A2 @ )\/?Q,)\?,-l-a )\0,)\1A-2|->\8+ﬁ Ao, o1,
)\2+)‘8+7 >‘07)‘3+)\8+6 )\0
(104)

and

)
J = diag (( R R o ) 91
vo+vs+7 Ao, v3+vs+6 Ao
(105)
for jo € 7 (%Qa)and Aoy A1, Ao, A3, Ag, V1, Ve, v3 € R, We remind that in the
analysis of 7 (%20,), we must find the space of elements o (wl), where w! €
Q'an ker7.For the factorization and elimination of the junks forms, the problem
consists of solving the eq.(23) which is equivalent to finding for each given
72 € 7 (022%a) an element j € J = js © diag (Aq + Ag, A+ X)) @ diag (Jg, J))
such that
Trj™ (r*+j) =0,Yj € J (106)

Notice that, since J is block diagonal, the off-diagonal blocks T?’j do not con-

tribute to the trace in eq.(105). Straightforward but lengthy calculation using
Mapple package gives the following constraints:

M 4318+ AE? = g (kaokiy + Kigkas + Kfykn) TrMg, M,
Mo+ 298 £ Ag&® = g (kaokiy + Kighas + Kiokon) TrMo, Mg,
N + dasd + Nod2 = g (ights + Kighas + kjghss) TrMo, Mp,
2 +ypa = % (—k3skis + kis (koo + kiy)) TrMy

@ = g (Kihl + K (—has + K1) TrMy
Gbp® = g (—hiaki+ Ky (—has + ) TrMy

~2
A1+ As + AoB = (klgkfz + kfgklg + k‘iklk‘u) T’I"]\4Ql]\4é§)1 (107)

Ao+ As + 207" = = (kiokiy + k3skos + kipkao) TrMo, M,

2
A3+ s+ A0 =

O = O = O =

(k‘f3k113 + k§3k23 + k§3k33) TTMQ3 MZ)S
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~12 2

vi+ 218 + Ao (KoK + kyskys + Ky Ky ) TrMp, My,

9
~ -~ 2 * * * *
12] + l‘Qa/ + )\oalz = § (k/12k/12 + kégklgg + ]{3/22]{52) T‘T‘]\4LQJ\4L2

~ ~ 2 * * * *
vs + 438 + N\&? = 9 (K5kis + koskos + kaskss) TrMp, M7,

~ 1 * * *

2+ yd = 9 (KT5 (kY + koo) + kaskys) Trv,
~ 1 * * * 7.0%

2+ = 9 (K75 (kY7 + kaz) + Ki5kos) Trv,
~ 1 * * *

23 +ysd = 9 (ks (—koy + ka3) + kiokys) Trvs

~12 1
v +rg+ Ao = 9 (Klokts + Ei5k1s + BNy kY TrMp, M7,
~ 1 " . X "
vy + vg + )\0’7/2 = 9 (Kiak1s + koskas + koskss) TrMyp, My,
)\ 3’2 _ 1 Ix 7./ kl* k:/ k/* k/ T M M*
v +vg+ A0 = 9( 13Kk13 + kaskas + kgskss) TrMp, My
where:
o = /):O(3+8) = Xo(afs) e Xos
1 - o y L2 — Ny y L3 — Ny
~1 2 ~04  ~05 ~06  ~07
N = )‘a—’_Z)‘ava:)‘a +7’)‘aay3:)‘a +Z)‘oz
z1 = /):1 +7;/):2722:/):3+’L'X4,Z3:/)\\5+i/):6
My = MQ,q.y, M2 = Miq,q.), Mz = M{q,q.)
Wi = Mp,p,y,Wa=Mp 1}, Ws = Mp,1,) (108)

Thus, we have found j € J = jo @ diag (Ag + Ag, Ai + Ay) & diag (Jg, J;) or
equivalently where the relations of eqs.(106) hold such that the representative
e () is ortogonal to J = J?g and the junks forms are eliminated. It is wotrth to
mention and since we are dealing with the same scalar and vector bosons while
considering quarks or leptons, one has to have for consistency:

~0(3+8) ~0(3+8) ~0(3-8)  ~0(3-8) ~08  ~08

>‘a = )\a ) )‘a )‘a 7>‘a - )‘a (109)
~1 ~2 ~1 ~2 ~04 ~05 ~04 ~05 ~06 ~07 ~06 ~07
Ay id, = AgtidgAg Fidg = Ay +idg A +ihg = Ay +irg
M+ida = A +iX2,X3+iX4:X3+ix473\\5+1&6:XeriXﬁ
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3.2.1 Bosonic action
Now, if we denote by:
—~ 1
MQiQi = MQLMg)L - gtTMQiMéi (110)

— 1
My, = My, Mg, — gtrMp, My,

and after use of the relations of eqs.(106), the expression of the matrix p (see
eqs.(81) — (91)) and a Wick rotation, one can show that the bosonic action Sp
takes the form:

Sp = 361 /dxtr( (0)%) = 361 /dm (Lo+ £1+ £3) (111)
X X

Here gg is the U(1) 5 gauge coupling constant. After straightforward but tedious

simpliﬁcations we obtain the following expressions:
— 2 — _
(£0) = 18 ——{Tr ((MQ1Q1> + (MLlLl) ) rl(bl + Gatdy + ( 1)@22)
+27T'r ((MQ1Q1MQ2Q2 + ML1L1ML2L2>) |(¢)4 - 55) ¢1 - $2$3|2
— 2 — 2 _ _ _
+1 (((Mesen) + (Wara)) ) uo + Bt + s = 1) 05 - 1)’
+21'r (( 3Q3MQ2Q2 + MLszML3L3)> |(¢5 - a(i) ¢3 - 5251|2
+77 ((Wav) "+ (3zasa) ) (Bt + a0 + (B 1) (66~ 1)’

+27'r ((MQ3Q3MQ1Q1 + ML3L3ML1L1>) |(¢6 — b4) P2 — 5351‘2}

(£1) = 18193{[” (|dpy + (=i ((B — ) Ag — Ass)) ¢y + iA_g70y + iA12 (¢4 + 1)|?)

+t1" |d¢2 71. (2A8 =+ ( — Ot) Ao )¢2 + lA 67¢1 =+ ZA_45 ((,254 + 1)| )

)
+tr(|dpy +iA_450y +iA_12¢) + (—iAss + (B — @) Ag) (¢4+1)| ITr (Myq,q.y + ML, L,})
)

+[tr(|dey + (=i (v — @) Ao — Ass)) ¢ + @3 (—iAus) +iAr2 (05 + 1)| )
+tr(|dps — iAusdy + (=i (24s + (v — @) Ag)) 3 — iAe7 (¢5 + 1)| )
(| ds + i A1ay +iA g1 + (i (A_gs — (v — @) Ao)) (&5 + 1)[)]
tr (| +iAssy + iAerés + (i (5 — @) Ao — 24)) (65 + 1))
+tr(|dps + iA_12¢5 + (i (A_ss + (6 — @) Ag)) ¢35 + 1467 (¢ + 1)|)
tr(|ds + (i (5 — @) Ag + Ass)) by + iA 1205 + iA_ss (9 +1)|”

2
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2

1 1 2 1 1
(.£2) = %t'r <dA3 + +§ {Ag,Ag}) + <dA8 + +§ {Ag,Ag}) —+ +36g8 xtr (dAo)2
6 18 2
+tr (;d(Ai +idis1) + 5 ; {(Ai £iA;41), (A + z'AiH)}) (114)
where

= (3ad + 57+ —|—5j)2 = Z(N charges)®, Vj=1,3 (115)

3.2.2 Fermionic action

In what follows, the quarks (resp. leptons) wave functions V¢, (resp.Wp; ) are

denoted by: 4 ' 4 4 4 4

Vqi (@11, Qo @3, Q1 Qo Qi) (116)
and

V(L By Dy I o Do D) (117)

After a Wick rotation and making the following redefinitions for the gauge fields:

190 0
Ay = =AW 118
0 \/57 w (118)
Asip = Ay £ Ay = igy" (W, FiW]) = igy" WS (119)
Asgs = Ay £ iAs = igy" (W, FiW]) = igy"V,F (120)
Aser = Ag + A7 = igy* (=W TiW]) = igy* U+ (121)
Ag = igy" W (122)

and

Ag = igy" W} (123)

we get the following fermionic interactions (the vector gauge bosons and scalar
fields (Yukawa terms) are denoted by L;n: and Ly ykewa respectively): For
quarks,
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ig
Ling = L= Z{ fo QlRﬁ] “W0Q1R+Q2R’Y W, R+Q3R5] “WIQ4 ]
j=1

+igl—-Q1y" (W + WS+ WD) Qf, + Qb (W — WS — ad W)

+Qa" (2WE — W) Qhp + Qe Wi Qhy — Qo W,HQI,

_@?’;R'Y“Vp_ Qi+ @{R'Y“VJQ%;L + QéR’Y“U;_QgL

~Qb" U QhL ]} (124)
and

EYukawa = £Q ! Z[ !
\/TT (Mi@u@:) + MiL,1,))

Yukawa — E
J
—=J % —j . —j )
My (@1061Qr — Q65 Qb — Qrrds@hp + )

m; (@105 — 0h6:Qln — Qhd3Qin +
1

VT (Miguq.) + Miz,1,))
1

\/T’I“ (M{Q3Q3} + M{L3L3})

Megs (—@{L%QgR - @émﬁ;@érz + @gL%QéR + C'C)] (

Here ’c.c’ means complex conjugate and g denotes the SU(3), gauge couplings
constant. Similarly for leptons one has:

290 — . — . . — .
Lint = L, = Z{ LJzR’Y”W;?L%R + LéRWMWSLéR] +igl-=Ly 7" (WS + WS) Lig
I, A (W2 —W8) L}, + 2Ly A" WL, + T py" W, LY, — Dypy" W, L],
*ZQR’Y“V:L{L + fle’V”V[LéL + f?sR’Y”UI+L%L - Z;R’YHU;:iLl]%L]} (126)
and

L 1 ML
£Yuk:awa = ‘CYukawa = 7 Z[
VI (Miguquy + Mz,1.,))

(ZJILQSTLgR - ZJQLQSSL%R - Z‘ng%L%R + C-C)

(ZJIL¢4L{R - Z;L¢1L{R - Z?’;LQJ);L{R ‘*’(‘]:233)
ng

\/TT (M(QaQuy + MiL,1.0})
ng

\/TT (M(@s0sy + MiLs15})

(_fledbLg’;R - Z;L(Z%LéR + f?sL%LéR + C~C)]
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4 NAS mass, couplings and mixing angles

4.1 Scalar bosons

In order to read correctly the lagrangian density of eq.(111), let us first make
the following scalar fields redefinitions:

3

o, = ﬁgoﬂgﬁi, i=173 (128)
and
3 =
P —-1= ﬁgo%ifbi, =45 (129)
If we set
=1
9‘51 = le = [TT (M{QlQl} + M{Q2Q2} + M{LlLl} + M{L2L2})] ?
O, = Qz =[Tr (Mg.q1} + M(QuQuy + Miz,L,) + Miz,1.))] *
-1
Q5, = Qz = [Tr (MQ,.) + M(QuQu} + M(Lo12} + M{1,14))]
9‘3’4 = 934 = [TT (M{Q1Q1} + M{LlLl})] = (130)
-1
O, = Qés = [Tr (M{Q,quy + M(L,1.))] ?
=1
Q5, = Qg = [Tr (Mg, + Mz,1,))] 7

then, the lagrangian density £y of eq.(111) takes the following form:

6

9
Ly = ggg ZGJ (131)
=1
where
0, = w (X(‘bl, ®y) + §X(¢’27 Do) + X (P4, @4)>
~ ~ = ~ = —_— 2
Oy = 2w |X(Ps, P1) — X(P5, P1) — X (P2, P3)
~ —_— ~ —_— ~ = 2
O3 = ws (X((I)h 1) + x(P3, P3) + x(Ps, ‘1)5))
~ ~ - ~ — =y 2
Oy = 2wy |x(P5, P3) — x(Ps, P3) — X (P2, 1) (132)
~ _— ~ _— ~ _~ 2
05 = @5 (x(®2B2) + (3, B5) + (s, B))
o - 2
O = 2w |x(Ps, P2) — x(Ps, P2) — x(P3, P1)
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X(A, B) = QA0pA.B (133)

and

w = Qéj (134)
wy = TIr <MQ1Q1MQ2Q2 + MLlLlj\ZLQLz)

w3 = Qi:

wy = TIr (MQQQQM%% + MLQLQML3L3>

ws = Q%:

wg = 1Ir <MQ3Q3MQ1Q1 + MLgsz\ZLlLl)

Notice that Ly looks like the minimal scalar field potential with two triplets
Higgs bosons. If we choose the vaccum expectation values of the generic scalar
fields as:

<<T>j> = 0, j=1,3 (135)

<‘5J> = V-3, j :4,6

the usual analysis shows that this set of VeV breaks the symmetry in one single
step:

SU3)e® SUB), @ U(1)y — SU(3). @ U(1)g (136)

For the particular value vo = 0 or v; = 0, the symmetry breaking chain becomes:

SU(3).@SU(3),@U(1)y —* SU(3).@SU(3),@U(1)xy —"°" ¥ SU(3).2U(1)q

After the Higgs mechanism, the scalar bosons masses become: 150
M(%l = %g%Q%l (Q% viw — 205 Qg U1U2w2+Q%2U§W3> (138)
M<%2 = 2939%2 (9\217101@1 205 Q U103w6+Q%3v§w5)
M§>3 = 2959%3 (92@ viws — 203 .05 v2v3W4+QQ v3w5>
M, = i,
R i
ME = Taiod,
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4.2 Vector gauge fields
4.2.1 Charged gauge bosons

In the basis {W*,V* U**} and after the one step spontaneous symmetry
breaking (SSB) and Higgs mechanism, the charged gauge bosons mass matrix
Meap reads:

v+ v3 0 0
Mcgp = ¢* 0 v} + 3 0 (139)
0 0 v3 + v2

and consequently, one deduces that:

M s = g* (v +03) (140)

Me = g* (vi +v3) (141)
and

M = g (13 +43) (142)

4.2.2 Neutral gauge bosons

For the neutral gauge bosons, and after straightforward simplifications using
eq.(112), one gets (after SSB) in the basis {Wg,Wg,Wﬁ}the following sym-
metric non diagonal mass matrix Mygp:

My Mz Mis
Myep = | M2 My Mg (143)
Mz Mz  Msz3

where )
My = (- aft s (o 0-ad] )
Myy = g° [v} + v3) (145)
Mgz = g* [v] + v3 + 3] (146)
Mia = 22 [~ 0) i} + (a - )] (147)
Mia= 2[5 a)itt (- 20 -0 (19
and

Mss = g° [v] — 03] (149)

If we set v1 = v9 and in order to have a one vanishing eigenvalue (representing
the rest mass square of the photon M3)7 one has to have the constraint:

— M7, Mg — Mis Moy + Myy My Msz = 0 (150)

25



leading to the relations:

d—a=p0—7 (151)

and

a=4 (152)

The remaining non vanishing eingenvalues denoted by M# and M3 which can be
identified with the mass square of the Z’ and Z° bosons respectively are given
by:

2
M? = M3}, = [go (y—a)*+ 492] v3 (153)
x
and )
4g° [370 (v—a)* + 292}
Y TV e o (154)
{%‘) (y—a)" + 492}
Now, if we introduce a mixing angle 6 such that:
tan = 2 (155)

gV

and if we require that the Z and W¥ gauge bosons masses are the same as that
of the standard model, then, one can show easily that:

4sin* 0,
tan? g = i (156)
(v —a)” (6cos?8, — 1)
or equivalently
1+1(y—a)® tan26
cos B, = ir=a) (157)

143 (v — )’ tan® g

where 6,, is the Weinberg mixing angle. From the expression of eq.(155), one
deduces that cos? 0, > é. This lower limit is compatible with the experimental

value cos? 6, ~ 0.76. Notice also that if sin? 4, ~ %, one gets:

12
tanf ~ + \/7 158
halV7 (158)

Regarding the eigenstates related to Mvz, M2, and M% eigenvalues, one can
show that they are given by the following expressions:

B, =S5 [<11WB + ClQWS =+ Clswfﬂ (159)

Z/; = %Z! I:CQIW/? + CQQWE) + <23W§} (160)
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and

Z, =Sz [C31W3 + C32W3 + C33W3] (161)
where
Ci1=Ca1 =C5 =1 (162)
—a
Cra=Cr3=C33 = =9 tan (163)
Cp =10 (164)
Cy3 =2cotf (165)
2cot 0 y—-«
4-32 - 5 ('Y _ 0[) =+ 10 (166)
o~ (2 2 2 \—1/2
Sp = (Cn + (i + C13) (167)
~1/2
Sz = (31 + (32 +C5s) (168)
and L1
Sz = (Gi+ G +(3) (169)

Of course, the above transformations can be shown to be a result of a general

rotation with Euler angles (&, B, ﬁ) . In fact abbreviating the sine and cosine

functions as s and c respectively, the corresponding rotation matrix R (54, E, ﬁ)

is:

. Cac; — Sa0557 70&87 — S&CECW SES&
R (Oz, B, ’y) = sacy + CaCgsy —Sasy + CacCzCy —SpCa (170)
8585 8565 CB
where: ( )
Y-
Gz =Ci3 =C33 = — 5 tan 0 (171)
Cpp=0 (172)
(93 = 2cotd (173)
2cot 6 Y-
= 174
C32 5 (,}/ _ a) + 10 ( )
tan7y = (39 (175)
tand= 312 (14 2)2 (14 2) (176)
C23
and
~ atan~y
cot = tan o tan vy (177)

V/1—tan® atan®5
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If for example o = % and v = —%, then, &,B and 7 get the values & ~ —15,96,
B ~ —68,13"and ¥ ~ 54,38  respectively. As an illustration, we has dis-

~

played in fig.1, tana (solid line, denoted by tan«),tan 5 (dashed line,denoted
by tan 3) and tan7 (dotted line,denoted by tan<y) as a function of tan . Notice

that in the interval of § € [2.29°,27.92°], tan (resp.tan?y) is an increasing
(resp.decreasing) function of 6 while tan & is almost constant.

— tfanw
258 5
- tanp
tarry
24+
and T
[}
= 15
=2
[ia]
A
u-] -
o ]
=
'E [
o4
T T T T T T . : . : I
] 0.1 0z 03 oa o o
tang

Fig.1 tan c, tanB and tan+y as a function of tan 6

4.3 Fermions electromagnetic interaction term

To be more specific and keep our result as clear as possible, let us take the
first generation of quarks (u,d, Jq). it is easy to show that the electromagnetic

lagrangian density £ 5M takes the form:
g —1 —1 —1
£5M = 7(%9 (51621’7“3#@% + ’YlQQ'YMBuQ% + 51Q37“B#Q§) (178)

where

4cot (1 +4cot) (1+ 3 tan?0) (179)
(24 +tang — 16 cot? @ — 4 cot @ — 5 tan? 9)
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with the constraints
St—al=al =9l =1 (180)

and
T=aol (181)

By identifying the u quark charge in eq.(177), one deduces that:

9o
0= 182
o= (182)
and
g =2 (183)
-3
(e stands for the electric charge) and consequently :
1
1 _ -
T3
5
§t=< 184
- (184)

Notice that the values of 8',~4! and §' are compatible with the constraints of
eq.(179) and correspond exactly to the N charges of the left and right handed
first generation quarks of the commutative model[21]. Thus, N AG reproduces
uniquely as an output, the values of the particles N charges. Similarly, for the
second and third generations of quarks (s, ¢, J2) and (b, ¢, J3), one can show that:

523 23 = 23 _ 423 =1 (185)
and
B = ﬁ?’:c>42:o<3:—1
3
2
2 _ .3_ -
o= =4y
4
52 = 53:7§ (186)

The same study can be done for the leptons to obtain:

5/]‘ _ O/j _ O/j _ ,y/j -1
ﬂ/j = adv =0
A= -1 (187)
87 = +1,¥j=173

It is very important to notice the remarquable result which is the universality
of the following relations :

§—ad = -y =6" i =aF -4 =1

Fo= o =p"=a"Vj=13 (188)
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independently from the type of particles (leptons or quarks) and generation.
More intersting, similar relations hold also for the parameters «, 3,7+ and .
This is probably related to the free anomaly of the model. Moreover, the value
of the x parameter which is related to the quark IV charges and as it is mentioned
in subsection3.2, gets a constant value independently of the generation type. In
fact, one can check easily (using eqs.(93) — (94)) that « = 4 for the quarks and
vanishs for leptons.

4.4 V — A fermions-neutral gauge bosons couplings

If we denote by £V¢ the neutral currents lagrangian density coupled to both
ZY and Z° massive vector bosons such as:

LNC = £59 + £7¢ (189)
where
—g — i i : — i i ~
£3° =55 > [Qﬁv“ (ggfz — ggfzﬁs) QI Z, + Qiy" (Q%Zf — gf,’zws) Q! ZL]
w .
i, j
(190)
and
0 N~ g (N g T (Y 1
"{:gc = 2cos .. Z {LZ'YH (gv”z - gA’Z"Ys) LgZ/A + LW‘ (gV’Z, - 9,&2/'75) szﬂ
w ’L’, ]
(191)

we deduce the following V' — A fermions-neutral gauge bosons couplings ggfz,

o o o 1 o1 L
9v,z1» 9a,7> 94,75 9v,z> v, 21> gA,Z’and 9a,z+
i)For quarks:

v,z = 32 T U33 T €33y |, Gy 7z = 33 €321 194,z = ~9a,22 = 331
(192)
S opifd g i ] g9 —pild. iy
vz = gy —l33 —€yla |, 9y 7 = t33 — e4lay |,
j

Jaz = P’ [_téz + 135 + 5351%1} ,gff?zf =D’ {_tgs + Eétjm} (193)

and
J J . . PR Qj Qj . . A
Gv'y =gyg =D’ [Qtéz + 5]1%1} Az =Gag =D’ [*21%2 + 5j2t:]31} (194)

ii)For leptons

Lj . . . Lj . . . Lj Lj A
gyiz = —D’ [téz + t%g}  Gy'z =P’ [*téz + t:]as} 1Galz = —9a'z =Dty
(195)
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Ll

gy = P’ [tgm — 33+ 7%1} s Gyg =D’ [th + t?n} ;
L T , , i o )
Gitz = B [th+th+th] gkt = D [ty + 6]

and

Lj Lj . . . Lj Lj . .
Wz =9y =P {27%3 - t':j%l} 9477 = 9alz =D [_2t§3 - t'%J

where:
Dj:D:%
X
e =— (ozj —|—(5j) tan 6
e} = (a/ — &) tan@
sé = —2a7 tan 6
e =—(a? +979) tand
Eg = (ozj f'yj) tan 6
t31 =SBz (12003
ts2 = SBSz (C1a — Ca3)
t21 = SBS2¢12(C32 — C12)
tss = SBSz (C52 — (12)
and

X =SSz Sy (—C23C32 — (€12)* + C12Cas + C12C32)

(196)

(197)

(198)

199
200
201
202

(199)
(200)
(201)
(202)
(203)
(204)
(205)
(206)
(207)

(208)

Notice that in NAG and contrary to reference [21](commutative case), the
exotic quarks couple to the Z° gauge boson not only through vector but axial
current as well. Fig.2 represents the vector (solid line,denoted by g{?z,) and

axial (dashed line,denoted by ¢! /) couplings of the J; exotic quark with the
7' gauge boson as a function of tand. Notice that and contrary to the vector

component, the axial coupling is negative and decreases rapidly.
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tane

Fig.2 Vector and axial couplings of J; exotic quark with Z’ boson as a
function of tan 6.

Following reference [21], strong bounds on the masses of the exotic vector
bosons coming from flavour changing neutral currents (FCNC) induced by

. . . N —0 =0 .
Z%can be obtained if one considers the contribution to K — K ¢ mass difference
due to the exchange of a heavy neutral boson. If one takes for simplicity two
family mixing, one has in the lagrangian density a term like:

g Mzo
1 My

cosf,.sinf,. [E’y“ (ggéz — gg%z,'yg)) s — dy* (g‘Q,i‘Z — gg?zﬁs) s} ZL

(209)
where Q3 (resp.Q?%) denotes the d (resp.s )quark. Then, one at low energies one
obtains the effective interaction:

2 2 2 s 2
g° ( Mzo cos” 6,.sin“ 0, 5y 12
Lopr == d~y* — 210
ff 16 <MW> M%O/ r’y (Cv CaY )S] ( )
with ol o
¢, =cC, =gyy —gyy =Dtanb (211)

We remind the reader that the contribution of the c-quark in the standard model
is [36,37] :
2

Gra m - 1 2
SM __ F Qe 2 2 5
Lorr = VRS VoI 51512 ™ cos” 6, sin” .. {d’y“Q(l — )5] (212)
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where )
¢ _Gr
ST
and 0., o, and G stand for the Cabbibo angle, electromagnetic fine structure
coupling constant and Fermi constant respectively. Now, if we assume that any

(213)

additional contribution to the F% — ?g mass difference from the Z% boson
cannot be much bigger than the contribution of the charmed quark [38], then
we get the following lower bound:
2m M
M%O/ pe 77‘;[/92

~

tan® 0 tan® 6, (214)

e Mg
and consequently the VeV wvs has a lower limit:

2 > \/iﬂ- M‘%V

v
3™~ AGra. m2

This implies ( if vg > v1,v2 and using eqs.(140) and (141)) that:

Db? tan? gf tan %0,/ [tan2 g0 (v — a)® + 4} (215)

4
%:Ar/r[z%VDz tan? @ tan’ 6,/ [tan2 g0 (v — a)2 + 4} (216)
For (v — a)2 = 1, one gets Myo = 21.76TeV vz ~ 13.49TeV and My =+ y+ ~
10,517T¢eV. Fig.3 (resp.Figd) displays the variation of the lower bound of Mo
(resp.My= =) as a function of tan §. Notice that although 6 is small, the vari-
ations of Myo, (vesp.My =+ y+) are very important ~ O(4TeV) — O(14TeV)
(resp.~ O(2TeV) — O(7TeV) in the interval 6 € [18.107* — 28.107*].

M [Tex
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Fig.3 Variation of lower bound of Mo as function of tan 6.
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Figure 1: Fig.4 Variation of My+ y+ as a function of tan ¢
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5 Conclusions

We have reformulated a classical gauge model based on the gauge Lie group
SU3). ® SU(3)L ® U(1)y with exotic quarks within the formalism of non-
associative geometry N AG associated to an L-cycle. In fact, we have determined
the elements of the representation 7 acting on the space 2'a and Q%a of the
1-forms and 2-forms respectively and defining the 7 : 2'a — MrC mapping.
The elements of the Junks forms defining the spaces j%a ,j'a and j? a C Mp(C)
are also determined and its elimination requires some constraints on the var-
ious NAG parameters (see eq.(106)). The elements of the r¥ a C MpC and
r! a C Mp(C) spaces needed for the construction of a connection form p and
a curvature 6 are also identified and defined. The structure of the connection p
and the representative e () of the curvature orthogonal to J?g have been con-
structed and the bosonic as well as fermionic actions are computed after a Wick
rotation. Since one of the family of quarks is incorporated differently from the
other two, we were obliged to introduce in the representatlon 7TQ (a1,a3) and

71 (a1, az)of quarks and leptons respectively the operators @, ﬁ, ~, 3 etc...where
their action leads to the IV charges of the fermionic particles in various gen-
erations and are uniquely determined. More interesting is the universality of
the constraints imposed on the parameters representing these N charges (see
egs.(187)). This is probably another form of the anomaly cancellation and can
be considered as an output of NAG. Furthermore, the number of the scalar
bosons are imposed by NAG and it is similar to that of the economical non-
supersymmetric 3 — 3 — 1 model with two Higgs triplets. Thus, the degrees of
freedom in the scalar sector are dictated by NAG. Regarding the predictions
of this formalism, we have obtained a relation between the Weinberg angle 6.,
some free parameters representing the eigenvalues of the operators &, 3,4 and
4 on the scalar particles and the mixing angle 6 (see eq.(156)). We have also
derived the expressions of the various scalar, charged gauge bosons and neutral
gauge bosons masses. In fact, following the argument of reference[21], we have
obtained lower limits of the Mzo and My + y+ as functions of the § angle. We
have also determined the mixing angles between the neutral gauge bosons A
, Z9 and the photon B represented by the Euler rotation angles &, 3 and 7.
Concerning, the various expressions of the V' — A couplings of the quarks and
leptons with the Z% and Z° gauge bosons, they are also derived and given ex-
plicitly in terms of the mixing angle 6, and the free parameter «, g,etc... It is
to be noted that contrary to the commutative case, the exotic quarks couple to
the Z° gauge boson not only through vector but axial current as well. Finally,
all the previous results are valid only at the tree level. As it is argued in our
reference [10]in the framework of NCG, there is no satisfactory quantization
procedure which has been developed yet treating the gauge and Higgs bosons
in an equal footing. Therefore, we expect that the quantum fluctuations may
badly violate the resulted tree level NAG constraints, masses and couplings
relations. In principle, the change in the quantization rules is needed around
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certain energy scale and we have to assume that just below such a scale, the
standard quantization method makes a good approximation.
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