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Abstract: In this short essay, I am starting from very basic concepts to try, step by step, to establish a valid

physical relation between speed, energy and time. My intention, just from the start, is to by pass the Theory of

Relativity and also avoid the application of the Lorentz transformation as canned good. If it has to be part of

the solution it shall also arise spontaneously during the formulations as it ended up being the case.

In the derivations that follow, I am using the expression MV^2 / 2 to emphasize the fact that it refers to kinetic

energy and not to relativistic mass energy, though, in the calculations, it doesn't make much of a difference

apart from a conceptual one. All derivations bellow are as seen from the moving or a co-moving frame of

reference.
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Eh h F⋅= El h f⋅= where h is the Plank's constant,  F a higher frequency and f a lower frequency.
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Here  f is to be taken as a reference frequency for a body at rest. Possibly de Broglie frequency f
M c

2
⋅

h
=  .  Now let's see

where F comes from. For that matter we resort to the Doppler equations for a moving electromagnetic source.
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Fig [1] illustrates the situation. When at rest, the mean source frequency is f and will be centered on the diagram For a

moving source the rest frequency will be shifted in the trailing edge direction and the new center frequency location is

here named Doppler center. It can easily be proven that the frequency F at the Doppler center is the arithmetic mean of

the forward and backward frequencies ff
 and fb

. As can be seen next, it has a shorter wave length and consequently a

higher energy content than frequency f. This comes about, obviously, because an existing asymmetry between the limits
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In what follows c, the speed of light, has been substituted for V, the higher speed .
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From [9] we have
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The relativistic time dilation equation [16] was obtained without resorting to SRT and, as can be seen, the Lorentz

transformation emerged spontaneously, as expected, when we converted energy to frequency  to time.

From fig [1] the angle φ is given by [17]
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which leads to the very simple relations
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