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Abstract

It is a part of my Algebraic General Topology research.

In this article, I introduce the concepts of funcoids, which generalize proximity spaces

and reloids, which generalize uniform spaces. The concept of funcoid is generalized concept

of proximity, the concept of reloid is cleared from superfluous details (generalized) concept of

uniformity. Also funcoids generalize pretopologies and preclosures. Also funcoids and reloids

are generalizations of binary relations whose domains and ranges are filters (instead of sets).

Also funcoids and reloids can be considered as a generalization of (oriented) graphs, this

provides us with a common generalization of analysis and discrete mathematics.

The concept of continuity is defined by an algebraic formula (instead of old messy epsilon-

delta notation) for arbitrarymorphisms (including funcoids and reloids) of a partially ordered

category. In one formula are generalized continuity, proximity continuity, and uniform con-

tinuity.
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1 Common

1.1 Draft status

This article is a draft, an almost ready preprint.
This text refers to a preprint edition of [15]. Theorem number clashes may appear due editing

both of these manuscripts.

1.2 Earlier works

Some mathematicians researched generalizations of proximities and uniformities before me but they
have failed to reach the right degree of generalization which is presented in this work allowing to
represent properties of spaces with algebraic (or categorical) formulas.

Proximity structures were introduced by Smirnov in [5].
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Some references to predecessors:

• In [6], [7], [12], [2], [19] are studied generalized uniformities and proximities.

• Proximities and uniformities are also studied in [10], [11], [18], [20], [21].

• [8] and [9] contains recent progress in quasi-uniform spaces. [9] has a very long list of related
literature.

Some works ([17]) about proximity spaces consider relationships of proximities and compact topo-
logical spaces. In this work is not done the attempt to define or research their generalization,
compactness of funcoids or reloids. It seems potentially productive to attempt to borrow the
definitions and procedures from the above mentioned works. I hope to do this study in a separate
article.

[4] studies mappings between proximity structures. (In this work no attempt to research
mappings between funcoids is done.) [13] researches relationships of quasi-uniform spaces and
topological spaces. [1] studies how proximity structures can be treated as uniform structures
and compactification regarding proximity and uniform spaces.

1.3 Used concepts, notation and statements

The set of functions from a set A to a set B is denoted as BA.
I will often skip parentheses and write fx instead of f(x) to denote the result of a function f

acting on the argument x.
I will call small sets members of some Grothendieck universe. (Let us assume the axiom of

existence of a Grothendieck universe.)
Let f is a small binary relation.
I will denote 〈f 〉X = {fα | α∈X} and X [f ]Y ⇔∃x∈X, y ∈Y :x f y for small sets X , Y .
By just 〈f 〉 and [f ] I will denote the corresponding function and relation on small sets.
λx∈D: f(x)= {(x; f(x)) | x∈D} for every formula f(x) depended on a variable x and set D.
I will denote the least and the greatest element of a poset A as 0A and 1A respectively.
For elements a and b of a lattice with a minimal element I will denote a≍ b when a ∩ b is the

minimal element of the lattice and a� b otherwise. See [15] for a more general notion.

1.3.1 Filters

In this work the word filter will refer to a filter on a set (in contrast to [15] where filters are
considered on arbitrary posets). Note that I do not require filters to be proper.

I will call the set of filters on a set A (base set) ordered reverse to set-theoretic inclusion of
filters the set of filter objects on A and denote it F(A) or just F when the base set is implied and
call its element filter objects (f.o. for short). I will denote upF the filter corresponding to a filter
object F . So we have A⊆B⇔ upA⊇ upB for every filter objects A and B on the same set.

In this particular manuscript, we will not equate principal filter objects with corresponding sets
as it is done in [15]. Instead we will have Base(A) equal to the unique base of a f.o. A. I will denote
↑AX (or just ↑X when A is implied) the principal filter object on A corresponding to the set X.

Filters are studied in the work [15].
Every set F(A) is a complete lattice and we will apply lattice operations to subsets of such sets

without explicitly mentioning F(A).
Prior reading of [15] is needed to fully understand this work.
Filter objects corresponding to ultrafilters are atoms of the lattice F(A) and will be called

atomic filter objects (on A).
Also we will need to introduce the concept of generalized filter base.

Definition 1. Generalized filter base is a set S ∈PF \ {0F} such that

∀A,B ∈S∃C ∈S: C ⊆A∩B.

Proposition 2. Let S is a generalized filter base. If A1,	 ,An∈S (n∈N), then

∃C ∈S: C ⊆A1∩	 ∩An.
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Proof. Can be easily proved by induction. �

Theorem 3. If S is a generalized filter base, then up
⋂

S=
⋃

〈up〉S.

Proof. Obviously up
⋂

S ⊇
⋃

〈up〉S. Reversely, let K ∈ up
⋂

S; then K = A1 ∩ 	 ∩ An

where Ai ∈ upAi where Ai ∈ S, i = 1, 	 , n, n ∈N; so exists C ∈ S such that C ⊆ A1 ∩ 	 ∩ An ⊆
↑(A1∩	 ∩An) = ↑K, K ∈up C, K ∈

⋃

〈up〉S. �

Corollary 4. If S is a generalized filter base, then
⋂

S=0F⇔ 0F∈S.

Proof.
⋂

S=0F⇔∅∈up
⋂

S⇔∅∈
⋃

〈up〉S⇔∃X ∈S: ∅∈ upX ⇔ 0F∈S. �

Obvious 5. If S is a filter base on a set A then 〈↑A〉S is a generalized filter base.

Definition 6. I will call shifted filtrator a triple (A; Z; ↑) where A and Z are posets and ↑ is an
order embedding from Z to A.

Some concepts and notation can be defined for shifted filtrators through similar concepts for

filtrators: 〈↑〉up a=up(A;〈↑〉Z) a; 〈↑〉Cor a=Cor(A;〈↑〉Z) a, etc.
For a set A and the set of f.o. F on this set we will consider the shifted filtrator (F;A; ↑).

2 Partially ordered dagger categories

2.1 Partially ordered categories

Definition 7. I will call a partially ordered (pre)category a (pre)category together with partial
order ⊆ on each of its Hom-sets with the additional requirement that

f1⊆ f2∧ g1⊆ g2⇒ g1 ◦ f1⊆ g2 ◦ f2

for every morphisms f1, g1, f2, g2 such that Src f1 = Src f2 ∧ Dst f1 = Dst f2 = Src g1 = Src g2 ∧
Dst g1=Dst g2.

2.2 Dagger categories

Definition 8. I will call a dagger precategory a precategory together with an involutive con-
travariant identity-on-objects prefunctor x� x†.

In other words, a dagger precategory is a precategory equipped with a function x� x† on its
set of morphisms which reverses the source and the destination and is subject to the following
identities for every morphisms f and g:

1. f ††= f ;

2. (g ◦ f)†= f † ◦ g†.

Definition 9. I will call a dagger category a category together with an involutive contravariant
identity-on-objects functor x� x†.

In other words, a dagger category is a category equipped with a function x� x† on its set of
morphisms which reverses the source and the destination and is subject to the following identities
for every morphisms f and g and object A:

1. f ††= f ;

2. (g ◦ f)†= f † ◦ g†;

3. (1A)
†=1A.

Theorem 10. If a category is a dagger precategory then it is a dagger category.
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Proof. We need to prove only that (1A)
†=1A. Really

(1A)
†=(1A)

† ◦ 1A=(1A)
† ◦ (1A)††=((1A)

† ◦ 1A)†=(1A)
††=1A. �

For a partially ordered dagger (pre)category I will additionally require (for every morphisms f and
g)

f †⊆ g†⇔ f ⊆ g.

An example of dagger category is the categoryRel whose objects are sets and whose morphisms are
binary relations between these sets with usual composition of binary relations and with f †= f−1.

Definition 11. A morphism f of a dagger category is called unitary when it is an isomorphism
and f †= f−1.

Definition 12. Symmetric (endo)morphism of a dagger precategory is such a morphism f that
f = f †.

Definition 13. Transitive (endo)morphism of a precategory is such a morphism f that f = f ◦ f .

Theorem 14. The following conditions are equivalent for a morphism f of a dagger precategory:

1. f is symmetric and transitive.

2. f = f † ◦ f .

Proof.

(1)⇒(2). If f is symmetric and transitive then f † ◦ f = f ◦ f = f .

(2)⇒(1). f †= (f † ◦ f)†= f † ◦ f ††= f † ◦ f = f , so f is symmetric. f = f † ◦ f = f ◦ f , so f is
transitive. �

2.2.1 Some special classes of morphisms

Definition 15. For a partially ordered dagger category I will call monovalued morphism such a
morphism f that f ◦ f †⊆ 1Dst f.

Definition 16. For a partially ordered dagger category I will call entirely defined morphism such
a morphism f that f † ◦ f ⊇ 1Src f.

Definition 17. For a partially ordered dagger category I will call injective morphism such a
morphism f that f † ◦ f ⊆ 1Src f.

Definition 18. For a partially ordered dagger category I will call surjective morphism such a
morphism f that f ◦ f †⊇ 1Dst f.

Remark 19. It’s easy to show that this is a generalization of monovalued, entirely defined,
injective, and surjective binary relations as morphisms of the category Rel.

Obvious 20. “Injective morphism” is a dual of “monovalued morphism” and “surjective morphism”
is a dual of “entirely defined morphism”.

Definition 21. For a given partially ordered dagger category C the category of monovalued
(entirely defined, injective, surjective) morphisms of C is the category with the same set of objects
as of C and the set of morphisms being the set of monovalued (entirely defined, injective, surjective)
morphisms of C with the composition of morphisms the same as in C.

We need to prove that these are really categories, that is that composition of monovalued
(entirely defined) morphisms is monovalued (entirely defined) and that identity morphisms are
monovalued and entirely defined.
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Proof. We will prove only for monovalued morphisms and entirely defined morphisms, as injective
and surjective morphisms are their duals.

Monovalued. Let f and g are monovalued morphisms, Dst f = Src g. (g ◦ f) ◦ (g ◦ f)† =

g◦ f ◦ f †◦ g†⊆ g◦1Dst f ◦ g†= g◦1Src g◦ g†= g◦ g†⊆1Dst g=1Dst(g◦f). So g ◦ f is monovalued.

That identity morphisms are monovalued follows from the following: 1A ◦ (1A)† = 1A ◦
1A=1A=1Dst 1A

⊆ 1Dst 1A.

Entirely defined. Let f and g are entirely defined morphisms, Dst f=Src g. (g◦ f)†◦(g◦ f)=
f † ◦ g† ◦ g ◦ f ⊇ f † ◦ 1Src g ◦ f = f † ◦ 1Dst f ◦ f = f † ◦ f ⊇ 1Src f =1Src(g◦f). So g ◦ f is entirely
defined.

That identity morphisms are entirely defined follows from the following: (1A)
† ◦ 1A =

1A ◦ 1A=1A=1Src 1A ⊇ 1Src 1A
. �

Definition 22. I will call a bijective morphism a morphism which is entirely defined, monovalued,
injective, and surjective.

Obvious 23. Bijective morphisms form a full subcategory.

Proposition 24. If a morphism is bijective then it is an isomorphism.

Proof. Let f is bijective. Then f ◦ f †⊆ 1Dst f, f
† ◦ f ⊇ 1Src f, f

† ◦ f ⊆ 1Src f, f ◦ f †⊇ 1Dst f. Thus

f ◦ f †=1Dst f and f † ◦ f =1Src f that is f † is an inverse of f . �

3 Funcoids

3.1 Informal introduction into funcoids

Funcoids are a generalization of proximity spaces and a generalization of pretopological spaces.
Also funcoids are a generalization of binary relations.

That funcoids are a common generalization of “spaces” (proximity spaces, (pre)topological
spaces) and binary relations (including monovalued functions) makes them smart for describing
properties of functions in regard of spaces. For example the statement “f is a continuous function
from a space µ to a space ν” can be described in terms of funcoids as the formula f ◦ µ⊆ ν ◦ f (see
below for details).

Most naturally funcoids appear as a generalization of proximity spaces.

Let δ be a proximity that is certain binary relation so that A δ B is defined for every sets A

and B. We will extend it from sets to filter objects by the formula:

A δ ′B⇔∀A∈upA, B ∈ upB:AδB.

Then (as it will be proved below) there exist two functions α, β ∈FF such that

A δ ′B⇔B∩FαA� 0F⇔A∩F βB � 0F.

The pair (α;β) is called funcoid when B∩FαA� 0F⇔A∩F βB� 0F. So funcoids are a generalization
of proximity spaces.

Funcoids consist of two components the first α and the second β. The first component of a
funcoid f is denoted as 〈f 〉 and the second component is denoted as 〈f−1〉. (The similarity of this
notation with the notation for the image of a set under a function is not a coincidence, we will see
that in the case of discrete funcoids (see below) these coincide.)

One of the most important properties of a funcoid is that it is uniquely determined by just one
of its components. That is a funcoid f is uniquely determined by the function 〈f 〉. Moreover a
funcoid f is uniquely determined by 〈f 〉|P⋃

dom 〈f 〉 that is by values of function 〈f 〉 on sets.

Next we will consider some examples of funcoids determined by specified values of the first
component on sets.
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Funcoids as a generalization of pretopological spaces: Let α be a pretopological space that is a

map α∈F℧ for some set ℧. Then we define α′X=
def⋃F {αx | x∈X} for every set X ∈P℧. We will

prove that there exists a unique funcoid f such that α′= 〈f 〉|P℧. So funcoids are a generalization
of pretopological spaces. Funcoids are also a generalization of preclosure operators: For every
preclosure operator p on a set ℧ exists a unique funcoid f such that 〈f 〉|P℧=↑ ◦ p.

For every binary relation p on a set ℧ it exists unique funcoid f such that ∀X ∈P℧: 〈f 〉↑X =
↑〈p〉X (where 〈p〉 is defined in the introduction), recall that a funcoid is uniquely determined
by the values of its first component on sets. I will call such funcoids discrete. So funcoids are a
generalization of binary relations.

Composition of binary relations (i.e. of discrete funcoids) complies with the formulas:

〈g ◦ f 〉= 〈g〉 ◦ 〈f 〉 and 〈(g ◦ f)−1〉= 〈f−1〉 ◦ 〈g−1〉.

By the same formulas we can define composition of every two funcoids. Funcoids with this com-
position form a category (the category of funcoids).

Also funcoids can be reversed (like reversal of X and Y in a binary relation) by the formula
(α; β)−1= (β; α). In particular case if µ is a proximity we have µ−1= µ because proximities are
symmetric.

Funcoids behave similarly to (multivalued) functions but acting on filter objects instead of
acting on sets. Below these will be defined domain and image of a funcoid (the domain and the
image of a funcoid are filter objects).

3.2 Basic definitions

Definition 25. Let’s call a funcoid from a set A to a set B a quadruple (A; B; α; β) where
α∈F(B)F(A), β ∈F(A)F(B) such that

∀X ∈F(A),Y ∈F(B): (Y � αX ⇔X � βY).

Futher we will assume that all funcoids in consideration are small without mentioning it explicitly.

Definition 26. Source and destination of every funcoid (A;B;α; β) are defined as

Src(A;B;α; β) =A and Dst(A;B;α; β)=B.

I will denote FCD(A;B) the set of funcoids from A to B.
I will denote FCD the set of all funcoids (for small sets).

Definition 27. 〈(A;B;α; β)〉=
def

α for a funcoid (A;B;α; β).

Definition 28. (A;B;α; β)−1=(B;A; β;α) for a funcoid (A;B;α; β).

Proposition 29. If f is a funcoid then f−1 is also a funcoid.

Proof. It follows from symmetry in the definition of funcoid. �

Obvious 30. (f−1)−1= f for a funcoid f .

Definition 31. The relation [f ] ∈ P(F(Src f) × F(Dst f)) is defined (for every funcoid f and

X ∈F(Src f), Y ∈F(Dst f)) by the formula X [f ]Y=
def

Y � 〈f 〉X .

Obvious 32. X [f ]Y=Y � 〈f 〉X ⇔X � 〈f−1〉Y for every funcoid f and X ∈F(Src f), Y ∈F(Dst f).

Obvious 33. [f−1] = [f ]−1 for a funcoid f .

Theorem 34. Let A, B are small sets.

1. For given value of 〈f 〉 exists no more than one funcoid f ∈FCD(A;B).

Funcoids 7



2. For given value of [f ] exists no more than one funcoid f ∈FCD(A;B).

Proof. Let f , g ∈FCD(A;B).
Obviously 〈f 〉 = 〈g〉 ⇒ [f ] = [g] and 〈f−1〉 = 〈g−1〉 ⇒ [f ] = [g]. So enough to prove that

[f ] = [g]⇒〈f 〉= 〈g〉.
Provided that [f ] = [g] we have Y � 〈f 〉X ⇔ X [f ]Y ⇔ X [g]Y ⇔ Y � 〈g〉X and consequently

〈f 〉X = 〈g〉X for every X ∈F(A) and Y ∈F(B) because a set of filter objects is separable [15], thus
〈f 〉= 〈g〉. �

Proposition 35. 〈f 〉0F(Src f)=0F(Dst f) for every funcoid f .

Proof. Y � 〈f 〉0F(Src f)⇔ 0F(Src f)� 〈f−1〉Y ⇔ 0⇔Y � 0F(Dst f). Thus 〈f 〉0F(Src f)= 0F(Dst f) by
separability of filter objects. �

Proposition 36. 〈f 〉(I ∪J )= 〈f 〉I ∪ 〈f 〉J for every funcoid f and I ,J ∈F(Src f).

Proof.

⋆〈f 〉(I ∪J ) =

{Y ∈F | Y � 〈f 〉(I ∪ J )} =

{Y ∈F | I ∪ J � 〈f−1〉Y} = (by corollary 10 in [15])

{Y ∈F | I � 〈f−1〉Y ∨J � 〈f−1〉Y} =

{Y ∈F | Y � 〈f 〉I ∨ Y � 〈f 〉J } =

{Y ∈F | Y � 〈f 〉I ∪ 〈f 〉J } =

⋆(〈f 〉I ∪ 〈f 〉J ).

Thus 〈f 〉(I ∪J )= 〈f 〉I ∪ 〈f 〉J because F(Dst f) is separable. �

Proposition 37. For every f ∈ FCD(A;B) for every small sets A and B we have:

1. K[f ]I ∪ J ⇔K[f ]I ∨K[f ]J for every I ,J ∈F(B), K∈F(A).

2. I ∪J [f ]K⇔I[f ]K∨J [f ]K for every I ,J ∈F(A), K∈F(B).

Proof. 1. K[f ]I ∪ J ⇔ (I ∪ J ) ∩ 〈f 〉K � 0F(B) ⇔ (I ∩ 〈f 〉K) ∪ (J ∩ 〈f 〉K) � 0F(B) ⇔

I ∩〈f 〉K� 0F(B)∨J ∩ 〈f 〉K� 0F(B)⇔K[f ]I ∨K[f ]J .
2. Similar. �

3.2.1 Composition of funcoids

Definition 38. Funcoids f and g are composable when Dst f =Src g.

Definition 39. Composition of composable funcoids is defined by the formula

(B;C;α2; β2) ◦ (A;B;α1; β1)= (A;C;α2 ◦α1; β1 ◦ β2).

Proposition 40. If f , g are composable funcoids then g ◦ f is a funcoid.

Proof. Let f =(A;B;α1; β1), g=(B;C;α2; β2). For every X ∈F(A), Y ∈F(C) we have

Y � (α2 ◦α1)X ⇔Y � α2α1X ⇔α1X � β2Y⇔X � β1β2Y⇔X � (β1 ◦ β2)Y.

So (A;C;α2 ◦α1; β1 ◦ β2) is a funcoid. �

Obvious 41. 〈g ◦ f 〉= 〈g〉 ◦ 〈f 〉 for every composable funcoids f and g.

Proposition 42. (h◦ g) ◦ f = h ◦ (g ◦ f) for every composable funcoids f , g, h.

Proof.
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〈(h ◦ g) ◦ f 〉= 〈h ◦ g〉 ◦ 〈f 〉=(〈h〉 ◦ 〈g〉) ◦ 〈f 〉= 〈h〉 ◦ (〈g〉 ◦ 〈f 〉)= 〈h〉 ◦ 〈g ◦ f 〉= 〈h ◦ (g ◦ f)〉. �

Theorem 43. (g ◦ f)−1= f−1 ◦ g−1 for every composable funcoids f and g.

Proof. 〈(g ◦ f)−1〉= 〈f−1〉 ◦ 〈g−1〉= 〈f−1 ◦ g−1〉. �

3.3 Funcoid as continuation

Let f is a funcoid.

Definition 44. 〈f 〉∗ is the function P(Src f)→F(Dst f) defined by the formula

〈f 〉∗X = 〈f 〉↑Src fX.

Definition 45. [f ]∗ is the relation between P(Src f) and P(Dst f) defined by the formula

X[f ]∗Y = ↑Src fX [f ]↑Dst fY .

Obvious 46.

1. 〈f 〉∗= 〈f 〉 ◦ ↑Src f;

2. [f ]∗=(↑Dst f)−1 ◦ [f ] ◦ ↑Src f.

Theorem 47. For every funcoid f and X ∈F(Src f) and Y ∈F(Dst f)

1. 〈f 〉X =
⋂

〈〈f 〉∗〉upX ;

2. X [f ]Y⇔∀X ∈ upX , Y ∈ upY :X [f ]∗Y .

Proof. 2. X [f ]Y ⇔ Y ∩ 〈f 〉X � 0F(Dst f) ⇔∀Y ∈ up Y : ↑Dst fY ∩ 〈f 〉X � 0F(Dst f) ⇔∀Y ∈ up Y:
X [f ]↑Dst fY .

Analogously X [f ]Y⇔∀X ∈upX : ↑Src fX [f ]Y. Combining these two equivalences we get

X [f ]Y⇔∀X ∈ upX , Y ∈ upY : ↑Src fX [f ]↑Dst fY ⇔∀X ∈upX , Y ∈upY:X [f ]∗Y .

1. Y ∩ 〈f 〉X � ∅⇔X [f ]Y⇔∀X ∈upX : ↑Src fX [f ]Y⇔∀X ∈ upX :Y ∩ 〈f 〉∗X � 0F(Dst f).
Let’s denote W = {Y ∩ 〈f 〉∗X | X ∈ upX }. We will prove that W is a generalized filter base.

To prove this enough to show that V = {〈f 〉∗X | X ∈upX } is a generalized filter base.
Let P ,Q∈ V . Then P = 〈f 〉∗A, Q= 〈f 〉∗B where A, B ∈ upX ; A∩B ∈ upX and R⊆P ∩Q

for R= 〈f 〉∗(A∩B)∈ V . So V is a generalized filter base and thus W is a generalized filter base.

0F(Dst f) � W ⇔
⋂

W � 0F(Dst f) by the corollary 4 of the theorem 3. That is

∀X ∈upX :Y ∩ 〈f 〉∗X � 0F(Dst f)⇔Y ∩
⋂

〈〈f 〉∗〉upX � 0F(Dst f).

Comparing with the above, Y ∩〈f 〉X � ∅⇔Y ∩
⋂

〈〈f 〉∗〉upX � 0F(Dst f). So 〈f 〉X =
⋂

〈〈f 〉∗〉upX
because the lattice of filter objects is separable. �

Proposition 48. For every f ∈ FCD(A;B) we have (for every I , J ∈PA)

〈f 〉∗ ∅=0F(B), 〈f 〉∗(I ∪J) = 〈f 〉∗ I ∪ 〈f 〉∗ J

and
¬(∅[f ]∗I), I ∪ J [f ]∗K⇔ I[f ]∗K ∨ J [f ]∗K (for every I , J ∈PA, K ∈PB),
¬(I[f ]∗∅), K[f ]∗I ∪J⇔K[f ]∗I ∨K[f ]∗J (for every I , J ∈PB, K ∈PA).

Proof. 〈f 〉∗ ∅ = 〈f 〉↑A∅ = 〈f 〉0F(A) = 0F(B); 〈f 〉∗(I ∪ J) = 〈f 〉↑A(I ∪ J) = 〈f 〉(↑AI ∪ ↑AJ) =

〈f 〉↑AI ∪ 〈f 〉↑AJ = 〈f 〉∗ I ∪ 〈f 〉∗ J .

I[f ]∗∅ ⇔ 0F(B) � 〈f 〉↑AI ⇔ 0; I ∪ J [f ]∗K ⇔ ↑A(I ∪ J)[f ]↑BK ⇔ ↑BK � 〈f 〉∗(I ∪ J) ⇔

↑BK � 〈f 〉∗ I ∪ 〈f 〉∗ J⇔↑BK � 〈f 〉∗ I ∨↑BK � 〈f 〉∗J⇔ I[f ]∗K ∨ J [f ]∗K.
The rest follows from symmetry. �
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Theorem 49. Fix small sets A and B. Let LF =λf ∈FCD(A;B): 〈f 〉∗ and LR=λf ∈FCD(A;B):
[f ]∗.

1. LF is a bijection from the set FCD(A;B) to the set of functions α∈F(B)PA that obey the
conditions (for every I , J ∈PA)

α∅=0F(B), α(I ∪ J)=αI ∪αJ. (1)

For such α it holds (for every X ∈F(A))

〈LF
−1α〉X =

⋂

〈α〉upX (2)

2. LR is a bijection from the set FCD(A;B) to the set of binary relations δ ∈P(PA×PB)
that obey the conditions

¬(∅ δ I), I ∪J δK⇔ I δK ∨J δK (for every I , J ∈PA, K ∈PB),
¬(I δ ∅), K δ I ∪ J⇔K δ I ∨K δJ (for every I , J ∈PB, K ∈PA).

(3)

For such δ it holds (for every X ∈F(A), Y ∈F(B))

X [LR
−1δ]Y⇔∀X ∈upX , Y ∈upY :X δY . (4)

Proof. Injectivity of LF and LR, formulas (2) (for α ∈ im LF) and (4) (for δ ∈ im LR), formulas
(1) and (3) follow from two previous theorems. The only thing remained to prove is that for every
α and δ that obey the above conditions exists a corresponding funcoid f .

2. Let define α∈F(B)PA by the formula ∂(αX)= {Y ∈PB | X δY } for every X ∈PA. (It is
obvious that {Y ∈PB | X δY } is a free star.) Analogously it can be defined β ∈F(A)PB by the

formula ∂(βX) = {X ∈PA | X δ Y }. Let’s continue α and β to α′∈ F(B)F(A) and β ′∈ F(A)F(B)

by the formulas

α′X =
⋂

〈α〉upX and β ′X =
⋂

〈β 〉upX

and δ to δ ′∈P(F(A)×F(B)) by the formula

X δ ′Y⇔∀X ∈ upX , Y ∈up Y:X δY .

Y ∩α′X � 0F(B)⇔Y ∩
⋂

〈α〉upX � 0F(B)⇔
⋂

〈Y ∩ 〉〈α〉upX � 0F(B). Let’s prove that

W = 〈Y ∩ 〉〈α〉upX

is a generalized filter base: To prove it is enough to show that 〈α〉upX is a generalized filter base.
If A,B ∈ 〈α〉upX then exist X1, X2∈upX such that A=αX1 and B=αX2.

Then α(X1∩X2)∈〈α〉upX . So 〈α〉upX is a generalized filter base and thus W is a generalized
filter base.

Accordingly the corollary 4 of the theorem 3,
⋂

〈Y ∩ 〉〈α〉upX � 0F(B) is equivalent to

∀X ∈ upX :Y ∩αX � 0F(B),

what is equivalent to ∀X ∈upX , Y ∈upY:↑BY ∩αX � 0F(B)⇔∀X ∈upX , Y ∈upY :Y ∈∂(αX)⇔

∀X ∈ up X , Y ∈ up Y: X δ Y . Combining the equivalencies we get Y ∩ α′X � 0F(B) ⇔ X δ ′ Y.

Analogously X ∩ β ′Y � 0F(A)⇔X δ ′ Y . So Y ∩ α′X � 0F(B)⇔X ∩ β ′Y � 0F(A), that is (A;B; α′;

β ′) is a funcoid. From the formula Y ∩α′X � 0F(B)⇔X δ ′Y it follows that

X[(A;B;α′; β ′)]∗Y ⇔↑BY ∩α′↑AX � 0F(B)⇔↑BX δ ′ ↑AY ⇔X δY .

1. Let define the relation δ ∈P(PA×PB) by the formula X δY ⇔↑BY ∩αX � 0F(B).

That ¬(∅ δ I) and ¬(I δ ∅) is obvious. We have I ∪ J δ K ⇔ ↑BK ∩ α(I ∪ J) � 0F(B) ⇔

↑BK ∩ (αI ∪αJ)� 0F(B)⇔↑BK ∩αI � 0F(B)∨↑BK ∩αI � 0F(B)⇔ I δK ∨J δK and

K δI ∪J⇔↑B(I ∪J)∩αK � 0F(B)⇔ (↑BI ∪↑BJ)∩αK � 0F(B)⇔ (↑BI ∩αK)∪ (↑BJ ∩αK)�
0F(B)⇔↑BI ∩αK � 0F(B)∨↑BJ ∩αK � 0F(B)⇔K δ I ∨K δJ .

That is the formulas (3) are true.
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Accordingly the above there exist a funcoid f such that

X [f ]Y⇔∀X ∈upX , Y ∈upY:X δY .

∀X ∈PA,Y ∈PB:
(

↑BY ∩〈f 〉↑AX � ∅⇔↑AX [f ]↑BY ⇔X δY ⇔↑BY ∩αX � 0F(B)
)

, consequently

∀X ∈PA:αX = 〈f 〉↑AX = 〈f 〉∗X . �

Note that by the last theorem to every proximity δ corresponds a unique funcoid. So funcoids
are a generalization of (quasi-)proximity structures.

Reverse funcoids can be considered as a generalization of conjugate quasi-proximity.

Definition 50. Any small (multivalued) function F :A→B corresponds to a funcoid ↑FCD(A;B)F ∈

FCD(A;B), where by definition
〈

↑FCD(A;B)F
〉

X =
⋂

〈↑B〉〈〈F 〉〉upX for every X ∈F(A).

Using the last theorem it is easy to show that this definition is monovalued and does not
contradict to former stuff. (Take α= ↑B ◦ 〈F 〉.)

Definition 51. Funcoids corresponding to a binary relation (= multivalued function) are called
discrete funcoids.

We may equate discrete funcoids with corresponding binary relations by the method of
appendix B in [15]. This is useful for describing relationships of funcoids and binary relations,
such as for the formulas of continuous functions and continuous funcoids (see below).

Theorem 52. If S is a generalized filter base on Src f then 〈f 〉
⋂

S=
⋂

〈〈f 〉〉S for every funcoid f .

Proof. 〈f 〉
⋂

S ⊆〈f 〉X for every X ∈S and thus 〈f 〉
⋂

S ⊆
⋂

〈〈f 〉〉S.
By properties of generalized filter bases:
〈f 〉

⋂

S =
⋂

〈〈f 〉∗〉up
⋂

S =
⋂

〈〈f 〉∗〉{X | ∃P ∈ S: X ∈ up P} =
⋂

{〈f 〉∗X | ∃P ∈ S:
X ∈ upP}⊇

⋂

{〈f 〉P | P ∈S}=
⋂

〈〈f 〉〉S. �

3.4 Lattices of funcoids

Definition 53. f ⊆ g=
def

[f ]⊆ [g] for f , g ∈FCD.

Thus every FCD(A;B) is a poset. (Taken into account that [f ]� [g] if f � g.)

Definition 54. I will call a shifted filtrator of funcoids the shifted filtrator

(FCD(A;B);P(A×B); ↑FCD(A;B))

for some small sets A, B.

up f =
def

up
(

FCD(A;B);P(A×B);↑FCD(A;B)
)

f for every funcoid f ∈ FCD(A;B).

Lemma 55. 〈f 〉∗X =
⋂

{↑Dst f 〈F 〉X | F ∈up f } for every funcoid f and set X ∈P(Src f).

Proof. Obviously 〈f 〉∗X ⊆
⋂

{↑Dst f 〈F 〉X | F ∈up f }.
Let B ∈up 〈f 〉∗X. Let FB =X ×B ∪ ((Src f) \X)× (Dst f).
〈FB〉X =B.
We have ∅ � P ⊆ X ⇒ 〈FB〉P = B ⊇ 〈f 〉∗P and P * X ⇒ 〈FB〉P = Dst f ⊇ 〈f 〉∗P . Thus

〈FB〉P ⊇〈f 〉∗P for every set P ∈P(Src f) and so ↑FCD(Src f ;Dst f)FB ⊇ f that is FB ∈ up f .

Thus ∀B ∈up 〈f 〉∗X :B ∈up
⋂

{↑Dst f 〈F 〉X | F ∈up f } because B ∈up ↑Dst f 〈FB〉X.

So
⋂

{↑Dst f 〈F 〉X | F ∈ up f }⊆ 〈f 〉∗X . �

Theorem 56. 〈f 〉X =
⋂
{〈

↑FCD(Src f ;Dst f)F
〉

X | F ∈up f
}

for every funcoid f and X ∈F(Src f).

Proof.
⋂
{〈

↑FCD(Src f ;Dst f)F
〉

X | F ∈ up f
}

=
⋂

{
⋂

〈↑Dst f 〉〈〈F 〉〉up X | F ∈ up f } =
⋂

{
⋂

{↑Dst f 〈F 〉X | X ∈ up X } | F ∈ up f } =
⋂

{
⋂

{↑Dst f 〈F 〉X | F ∈ up f } | X ∈ up X } =
⋂

{↑Dst f 〈f 〉∗X | X ∈ upX }= 〈f 〉X (the lemma used). �
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Conjecture 57. Every filtrator of funcoids is:

1. with separable core;

2. with co-separable core.

Below it is shown that FCD(A;B) are complete lattices for every small sets A and B. We will apply
lattice operations to subsets of such sets without explicitly mentioning FCD(A;B).

Theorem 58. FCD(A; B) is a complete lattice (for every small sets A and B). For every R ∈
PFCD(A;B) and X ∈PA, Y ∈PB

1. X [
⋃

R]∗Y ⇔∃f ∈R:X [f ]∗Y ;

2. 〈
⋃

R〉∗X =
⋃

{〈f 〉∗X | f ∈R}.

Proof. Accordingly [14] to prove that it is a complete lattice enough to prove existence of all joins.

2. αX=
def⋃

{〈f 〉∗X | f ∈R}. We have α∅= ∅;

α(I ∪ J) =
⋃

{〈f 〉∗(I ∪J) | f ∈R}

=
⋃

{〈f 〉∗I ∪ 〈f 〉∗ J | f ∈R}

=
⋃

{〈f 〉∗I | f ∈R}∪
⋃

{〈f 〉∗J | f ∈R}

= αI ∪αJ.

So 〈h〉 ◦ ↑A=α for some funcoid h. Obviously

∀f ∈R:h⊇ f. (5)

And h is the least funcoid for which holds the condition (5). So h=
⋃

R.

1. X [
⋃

R]∗Y ⇔↑Dst fY ∩ 〈
⋃

R〉∗X � 0F(Dst f)⇔↑Dst fY ∩
⋃

{〈f 〉∗X | f ∈R}� 0F(Dst f)⇔

∃f ∈R: ↑Dst fY ∩ 〈f 〉∗X � 0F(Dst f)⇔∃f ∈R:X[f ]∗Y (used the theorem 40 in [15]). �

In the next theorem, compared to the previous one, the class of infinite unions is replaced with lesser
class of finite unions and simultaneously class of sets is changed to more wide class of filter objects.

Theorem 59. For every f , g ∈ FCD(A;B) and X ∈F(A) (for every small sets A, B)

1. 〈f ∪ g〉X = 〈f 〉X ∪ 〈g〉X ;

2. [f ∪ g] = [f ]∪ [g].

Proof.

1. Let αX =
def

〈f 〉X ∪ 〈g〉X ; βY=
def

〈f−1〉Y ∪ 〈g−1〉Y for every X ∈F(A), Y ∈F(B). Then

Y ∩αX � ∅ ⇔ Y ∩ 〈f 〉X � 0F(B)∨ Y ∩ 〈g〉X � 0F(B)

⇔ X ∩ 〈f−1〉Y � 0F(A)∨X ∩ 〈g−1〉Y � 0F(A)

⇔ X ∩ βY � 0F(A).

So h= (A;B; α; β) is a funcoid. Obviously h ⊇ f and h ⊇ g. If p ⊇ f and p ⊇ g for some
funcoid p then 〈p〉X ⊇ 〈f 〉X ∪ 〈g〉X = 〈h〉X that is p⊇h. So f ∪ g= h.

2. X [f ∪ g]Y ⇔ Y ∩ 〈f ∪ g〉X � 0F(B) ⇔ Y ∩ (〈f 〉X ∪ 〈g〉X ) � 0F(B) ⇔ Y ∩ 〈f 〉X � 0F(B) ∨

Y ∩ 〈g〉X � 0F(B)⇔X [f ]Y ∨X [g]Y for every X ∈F(A), Y ∈F(B). �

3.5 More on composition of funcoids

Proposition 60. [g ◦ f ] = [g] ◦ 〈f 〉= 〈g−1〉−1 ◦ [f ] for every composable funcoids f and g.

Proof. X [g ◦ f ]Y⇔Y ∩〈g ◦ f 〉X � 0F(Dst g)⇔Y∩〈g〉〈f 〉X � 0F(Dst g)⇔〈f 〉X [g]Y⇔X ([g]◦ 〈f 〉)Y
for every X ∈F(Src f), Y ∈F(Dst g). [g ◦ f ]= [(f−1 ◦ g−1)−1]= [f−1 ◦ g−1]−1=([f−1] ◦ 〈g−1〉)−1=
〈g−1〉−1 ◦ [f ]. �
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The following theorem is a variant for funcoids of the statement (which defines compositions
of relations) that x(g ◦ f)z⇔∃y(xf y∧ y gz) for every x and z and every binary relations f and g.

Theorem 61. For every small sets A, B, C and f ∈ FCD(A; B), g ∈ FCD(B; C) and X ∈ F(A),
Z ∈F(C).

X [g ◦ f ]Z⇔∃y ∈ atoms 1F(B): (X [f ]y∧ y[g]Z).

Proof.

∃y ∈ atoms 1F(B): (X [f ]y ∧ y[g]Z) ⇔ ∃y ∈ atoms 1F(B):
(

Z ∩ 〈g〉y � 0F(C)∧ y ∩ 〈f 〉X � 0F(B)
)

⇔ ∃y ∈ atoms 1F(B): (Z ∩ 〈g〉y� 0F(C)∧ y⊆〈f 〉X )

⇒ Z ∩〈g〉〈f 〉X � 0F(C)

⇔ X [g ◦ f ]Z.

Reversely, if X [g ◦ f ]Z then 〈f 〉X [g]Z, consequently exists y ∈ atoms 〈f 〉X such that y[g]Z; we
have X [f ]y. �

Theorem 62. For every small sets A, B, C

1. f ◦ (g∪ h)= f ◦ g ∪ f ◦ h for g, h∈FCD(A;B) and f ∈FCD(B;C);

2. (g∪ h) ◦ f = g ◦ f ∪h ◦ f for g, h∈FCD(B;C) and f ∈FCD(A;B).

Proof. I will prove only the first equality because the other is analogous.
For every X ,Z ∈F

X [f ◦ (g ∪h)]Z ⇔ ∃y ∈ atoms 1F(B): (X [g ∪h]y ∧ y[f ]Z)

⇔ ∃y ∈ atoms 1F(B): ((X [g]y ∨ X [h]y)∧ y[f ]Z)

⇔ ∃y ∈ atoms 1F(B): (X [g]y ∧ y[f ]Z ∨ X [h]y ∧ y[f ]Z)

⇔ ∃y ∈ atoms 1F(B): (X [g]y ∧ y[f ]Z)∨ ∃y ∈ atoms 1F(B): (X [h]y ∧ y[f ]Z)

⇔ X [f ◦ g]Z ∨ X [f ◦ h]Z

⇔ X [f ◦ g∪ f ◦ h]Z.

�

3.6 Domain and range of a funcoid

Definition 63. Let A is a small set. The identity funcoid IFCD(A)=(A;A; (=)|F(A); (=)|F(A)).

Obvious 64. The identity funcoid is a funcoid.

Definition 65. Let A is a small set, A∈F(A). The restricted identity funcoid

IA
FCD=(A;A;A∩;A∩ ).

Proposition 66. The restricted identity funcoid is a funcoid.

Proof. We need to prove that (A∩X )∩ Y � ∅⇔ (A∩Y)∩X � ∅ what is obvious. �

Obvious 67.

1.
(

IFCD(A)
)

−1= IFCD(A);

2. (IA
FCD)−1= IA

FCD.

Obvious 68. For every X ,Y ∈F(A)

1. X
[

IFCD(A)
]

Y⇔X ∩Y � ∅.

2. X [IA
FCD]Y⇔A∩X ∩Y � ∅.
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Definition 69. I will define restricting of a funcoid f to a filter object A∈F(Src f) by the formula

f |A=
def

f ◦ IA
FCD.

Definition 70. Image of a funcoid f will be defined by the formula im f = 〈f 〉1F(Src f).
Domain of a funcoid f is defined by the formula dom f = imf−1.

Proposition 71. 〈f 〉X = 〈f 〉(X ∩dom f) for every f ∈FCD, X ∈F(Src f).

Proof. For every Y ∈ F(Dst f) we have Y ∩ 〈f 〉(X ∩ dom f) � 0F(Dst f)⇔X ∩ dom f ∩ 〈f−1〉Y �
0F(Src f)⇔X ∩ imf−1∩ 〈f−1〉Y � 0F(Src f)⇔X ∩ 〈f−1〉Y � 0F(Src f)⇔Y ∩ 〈f 〉X � 0F(Dst f). Thus
〈f 〉X = 〈f 〉(X ∩dom f) because the lattice of filter objects is separable. �

Proposition 72. X ∩dom f � 0F(Src f)⇔〈f 〉X � 0F(Dst f) for every f ∈FCD, X ∈F(Src f).

Proof. X ∩ dom f � 0F(Src f) ⇔ X ∩ 〈f−1〉1F(Dst f) � 0F(Src f) ⇔ 1F(Dst f) ∩ 〈f 〉X � 0F(Dst f) ⇔
〈f 〉X � 0F(Dst f). �

Corollary 73. dom f =
⋃
{

a∈ atoms 1F(Src f) | 〈f 〉a� 0F(Dst f)
}

.

Proof. This follows from the fact that F(Src f) is an atomistic lattice. �

Proposition 74. dom f |A=A∩ dom f for every funcoid f and A∈F(Src f).

Proof. dom f |A=im (IA
FCD ◦ f−1)= 〈IA

FCD〉〈f−1〉1(Dst f)=A∩ 〈f−1〉1(Dst f)=A∩dom f . �

Theorem 75. im f =
⋂

〈↑Dst f 〉〈im〉up f and dom f =
⋂

〈↑Src f 〉〈dom〉up f for every funcoid f .

Proof. im f = 〈f 〉1F(Src f) =
⋂
{〈

↑FCD(Src f ;Dst f)F
〉

1F(Src f) | F ∈ up f
}

=
⋂

{↑Dst fim F | F ∈

up f }=
⋂

〈↑Dst f 〉〈im〉up f (used the theorem 56).
The second formula follows from symmetry. �

Proposition 76. For every composable funcoids f , g:

1. If im f ⊇ dom g then im(g ◦ f)= im g.

2. If im f ⊆ dom g then dom(g ◦ f) =dom f .

Proof.

1. im(g ◦ f) = 〈g ◦ f 〉1F(Src f) = 〈g〉〈f 〉1F(Src f) = 〈g〉im f = 〈g〉(im f ∩ dom g) = 〈g〉dom g =

〈g〉1F(Src g)= im g.

2. dom(g ◦ f)= im(f−1 ◦ g−1) what by proved above is equal to im f−1 that is dom f . �

3.7 Categories of funcoids

I will define two categories, the category of funcoids and the category of funcoid triples .
The category of funcoids is defined as follows:

• Objects are small sets.

• The set of morphisms from a set A to a set B is FCD(A;B).

• The composition is the composition of funcoids.

• Identity morphism for a set is the identity funcoid for that set.

To show it is really a category is trivial.
The category of funcoid triples is defined as follows:

• Objects are filter objects on small sets.

• The morphisms from a f.o. A to a f.o. B are triples (f ; A; B) where f ∈ FCD(Base(A);
Base(B)) and dom f ⊆A∧ im f ⊆B.
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• The composition is defined by the formula (g;B; C) ◦ (f ;A;B)= (g ◦ f ;A; C).

• Identity morphism for an f.o. A is IA
FCD.

To prove that it is really a category is trivial.

3.8 Specifying funcoids by functions or relations on atomic filter objects

Theorem 77. For every funcoid f and X ∈F(Src f), Y ∈F(Dst f)

1. 〈f 〉X =
⋃

〈〈f 〉〉atomsX ;

2. X [f ]Y⇔∃x∈ atomsX , y ∈ atomsY :x[f ]y.

Proof. 1.

Y ∩ 〈f 〉X � 0F(Dst f) ⇔ X ∩〈f−1〉Y � 0F(Src f)

⇔ ∃x∈ atomsX :x∩ 〈f−1〉Y � 0F(Src f)

⇔ ∃x∈ atomsX :Y ∩ 〈f 〉x� 0F(Dst f).

∂ 〈f 〉X =
⋃

〈∂ 〉 〈〈f 〉〉atomsX = ∂
⋃

〈〈f 〉〉atomsX .

2. If X [f ]Y, then Y ∩ 〈f 〉X � 0F(Dst f), consequently exists y ∈ atoms Y such that y ∩ 〈f 〉X �
0F(Dst f), X [f ]y. Repeating this second time we get that there exist x∈ atomsX such that x[f ]y.
From this follows

∃x∈ atomsX , y ∈ atomsY :x[f ]y.

The reverse is obvious. �

Theorem 78. Let A and B be small sets.

1. A function α∈F (B)atoms 1F(A)

such that (for every a∈ atoms 1F(A))

αa⊆
⋂
〈
⋃

◦ 〈α〉 ◦ atoms ◦ ↑A
〉

up a (6)

can be continued to the function 〈f 〉 for a unique f ∈ FCD(A;B);

〈f 〉X =
⋃

〈α〉atomsX (7)

for every X ∈F(A).

2. A relation δ ∈P(atomsA× atomsB) such that (for every a∈ atomsA, b∈ atomsB)

∀X ∈up a, Y ∈up b∃x∈ atoms ↑AX, y ∈ atoms ↑BY :x δ y⇒ a δ b (8)

can be continued to the relation [f ] for a unique f ∈FCD(A;B);

X [f ]Y⇔∃x∈ atomsX , y ∈ atomsY :x δ y (9)

for every X ∈F(A), Y ∈F(B).

Proof. Existence of no more than one such funcoids and formulas (7) and (9) follow from the
previous theorem.

1. Consider the function α′∈F(B)PA defined by the formula (for every X ∈PA)

α′X =
⋃

〈α〉atoms ↑AX.

Obviously α′ ∅=0F(B). For every I , J ∈PA

α′(I ∪J) =
⋃

〈α′〉atoms ↑A(I ∪J)

=
⋃

〈α′〉(atoms ↑AI ∪ atoms ↑AJ)

=
⋃

(〈α′〉atoms ↑AI ∪ 〈α′〉atoms ↑AJ)

=
⋃

〈α′〉 atoms ↑AI ∪
⋃

〈α′〉atoms ↑AJ.

= α′ I ∪α′ J.
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Let continue α′ till a funcoid f (by the theorem 49): 〈f 〉X =
⋂

〈α′〉upX .
Let’s prove the reverse of (6):

⋂
〈
⋃

◦ 〈α〉 ◦ atoms ◦ ↑A
〉

up a =
⋂
〈
⋃

◦ 〈α〉
〉

〈atoms〉〈↑A〉up a

⊆
⋂
〈
⋃

◦ 〈α〉
〉

{{a}}

=
⋂
{(
⋃

◦ 〈α〉
)

{a}
}

=
⋂
{
⋃

〈α〉{a}
}

=
⋂
{
⋃

{αa}
}

=
⋂

{αa}=αa.

Finally,

αa=
⋂
〈
⋃

◦ 〈α〉 ◦ atoms ◦ ↑A
〉

up a=
⋂

〈α′〉up a= 〈f 〉a,

so 〈f 〉 is a continuation of α.
2. Consider the relation δ ′∈P(PA×PB) defined by the formula (for everyX ∈PA, Y ∈PB)

X δ ′Y ⇔∃x∈ atoms ↑AX, y ∈ atoms ↑BY :x δ y.

Obviously ¬(X δ ′ ∅) and ¬(∅ δ ′Y ).
For suitable I and J we have:

(I ∪J) δ ′Y ⇔ ∃x∈ atoms ↑A(I ∪J), y ∈ atoms ↑BY :x δ y

⇔ ∃x∈ atoms ↑AI ∪ atoms ↑AJ , y ∈ atoms ↑BY :x δ y

⇔ ∃x∈ atoms ↑AI , y ∈ atoms ↑BY :x δ y ∨∃x∈ atoms ↑AJ , y ∈ atoms ↑BY :x δ y

⇔ I δ ′Y ∨ J δ ′Y ;

analogously X δ ′ (I ∪ J)⇔X δ ′ I ∨X δ ′ J for suitable I and J . Let’s continue δ ′ till a funcoid f

(by the theorem 49):

X [f ]Y⇔∀X ∈ upX , Y ∈up Y:X δ ′Y

The reverse of (8) implication is trivial, so

∀X ∈up a, Y ∈ up b ∃x∈ atoms ↑AX, y ∈ atoms ↑BY :x δ y⇔ a δ b.

∀X ∈up a, Y ∈ up b ∃x∈ atoms ↑AX, y ∈ atoms ↑BY :x δ y⇔∀X ∈ up a, Y ∈up b:X δ ′Y ⇔ a[f ]b.
So a δ b⇔ a[f ]b, that is [f ] is a continuation of δ. �

One of uses of the previous theorem is the proof of the following theorem:

Theorem 79. If A, B are small sets, R∈PFCD(A;B), x∈ atoms 1F(A), y ∈ atoms 1F(B), then

1. 〈
⋂

R〉x=
⋂

{〈f 〉x | f ∈R};

2. x[
⋂

R]y⇔∀f ∈R:x[f ]y.

Proof. 2. Let denote x δ y⇔∀f ∈R:x[f ]y.

∀X ∈up a, Y ∈ up b ∃x∈ atoms ↑AX, y ∈ atoms ↑BY :x δ y⇔

∀f ∈R,X ∈up a, Y ∈up b ∃x∈ atoms ↑AX, y ∈ atoms ↑BY :x[f ]y⇒

∀f ∈R,X ∈up a, Y ∈ up b:X[f ]∗Y ⇒

∀f ∈R: a[f ]b⇔

a δ b.

So, by the theorem 78, δ can be continued till [p] for some funcoid p∈FCD(A;B).
For every funcoid q ∈ FCD(A; B) such that ∀f ∈ R: q ⊆ f we have x[q]y ⇒ ∀f ∈ R:

x[f ]y⇔x δ y⇔x[p]y, so q ⊆ p. Consequently p=
⋂

R.
From this x[

⋂

R]y⇔∀f ∈R:x[f ]y.
1. From the former y ∈ atoms 〈

⋂

R〉x ⇔ y ∩ 〈
⋂

R〉x � 0F(B) ⇔ ∀f ∈ R: y ∩ 〈f 〉x � ∅ ⇔

y ∈
⋂

〈atoms〉{〈f 〉x | f ∈R}⇔ y ∈ atoms
⋂

{〈f 〉x | f ∈R} for every y ∈ atoms 1F(A). From this
follows 〈

⋂

R〉x=
⋂

{〈f 〉x | f ∈R}. �

16 Section 3



3.9 Direct product of filter objects

A generalization of direct (Cartesian) product of two sets is funcoidal product of two filter objects:

Definition 80. Funcoidal product of filter objects A and B is such a funcoid A ×FCD B ∈
FCD(Base(A);Base(B)) that for every X ∈F(Base(A)), Y ∈F(Base(B))

X [A×FCDB]Y⇔X ∩A� ∅∧ Y ∩B � ∅.

Proposition 81. A×FCDB is really a funcoid and

〈A×FCDB〉X =

{

B if X � A;
∅ if X ≍A.

Proof. Obvious. �

Obvious 82. ↑FCD(U ;V )(A×B)= ↑UA×FCD ↑VB for sets A⊆U and B ⊆V (for some small sets U
and V ).

Proposition 83. f ⊆A×FCDB⇔ dom f ⊆A∧ im f ⊆B for every f ∈ FCD(A;B) and A∈ F(A),
B ∈F(B).

Proof. If f ⊆ A ×FCD B then dom f ⊆ dom(A ×FCD B) ⊆ A, im f ⊆ im(A ×FCD B) ⊆ B. If
dom f ⊆A∧ im f ⊆B then

∀X ∈F(A),Y ∈F(B): (X [f ]Y⇒X ∩A� 0F(A)∧Y ∩B � 0F(B));

consequently f ⊆A×FCDB. �

The following theorem gives a formula for calculating an important particular case of intersec-
tion on the lattice of funcoids:

Theorem 84. f ∩ (A×FCDB)= IB
FCD◦ f ◦ IA

FCD for every funcoid f and A∈F(Src f), B∈F(Dst f).

Proof. h=
def

IB
FCD ◦ f ◦ IA

FCD. For every X ∈F(Src f)

〈h〉X = 〈IB
FCD〉〈f 〉〈IA

FCD〉X =B ∩ 〈f 〉(A∩X ).

From this, as easy to show, h ⊆ f and h ⊆ A ×FCD B. If g ⊆ f ∧ g ⊆ A ×FCD B for a
g ∈FCD(Src f ;Dst f) then dom g ⊆A, im g ⊆B,

〈g〉X =B ∩ 〈g〉(A∩X )⊆B ∩ 〈f 〉(A∩X )= 〈IB
FCD〉〈f 〉〈IA

FCD〉 X = 〈h〉X ,

g ⊆h. So h= f ∩FCD (A×FCDB). �

Corollary 85. f |A=f ∩ (A×FCD 1F(Dst f)) for every f ∈ FCD and A∈F(Src f).

Proof. f ∩ (A×FCD 1F(Dst f))= I1F(Dst f)
FCD ◦ f ◦ IA

FCD= f ◦ IA
FCD= f |A. �

Corollary 86. f � (A×FCDB)⇔A[f ]B for every f ∈FCD, A∈F(Src f), B ∈F(Dst f).

Proof. f � (A×FCDB)⇔〈f ∩ (A×FCDB)〉∗(Src f)� 0F(Dst f)⇔〈IB
FCD◦ f ◦IA〉∗(Src f)� 0F(Dst f)⇔

〈IB
FCD〉〈f 〉〈IA

FCD〉1F(Src f) � 0F(Dst f) ⇔ B ∩ 〈f 〉(A ∩ 1F(Src f)) � 0F(Dst f) ⇔ B ∩ 〈f 〉A � 0F(Dst f) ⇔
A[f ]B. �

Corollary 87. Every filtrator of funcoids is star-separable.

Proof. The set of direct products of principal filter objects is a separation subset of the lattice of
funcoids. �

Funcoids 17



Theorem 88. Let A, B are small sets. If S ∈P(F(A)×F(B)) then

⋂

{A×FCDB | (A;B)∈S}=
⋂

domS ×FCD
⋂

imS.

Proof. If x∈ atoms 1F(A) then by the theorem 79
〈
⋂

{A×FCDB | (A;B)∈S}
〉

x=
⋂

{〈A×FCDB〉x | (A;B)∈S}.

If x� ⋂ domS then

∀(A;B)∈S: (x∩A� 0F(A)∧ 〈A×FCDB〉x=B);

{〈A×FCDB〉x | (A;B)∈S}= imS;

if x≍
⋂

domS then

∃(A;B)∈S: (x∩A=0F(A)∧ 〈A×FCDB〉x=0F(B));

{〈A×FCDB〉x | (A;B)∈S}∋ 0F(B).

So

〈
⋂

{A×FCDB | (A;B)∈S}
〉

x=

{

⋂

imS if x� ⋂ domS;

0F(B) if x≍
⋂

domS.

From this follows the statement of the theorem. �

Corollary 89. For every A0,A1∈F(A), B0,B1∈F(B) (for every small sets A, B)

(A0×FCDB0)∩ (A1×FCDB1)= (A0∩A1)×FCD (B0∩B1).

Proof. (A0×FCD B0) ∩ (A1×FCD B1) =
⋂

{A0×FCD B0,A1×FCD B1} what is by the last theorem

equal to (A0∩A1)×FCD (B0∩B1). �

Theorem 90. If A, B are small sets and A∈F(A) thenA×FCD is a complete homomorphism of

the lattice F(B) to a complete sublattice of the lattice FCD(A;B), if also A � 0F(A) then it is an
isomorphism.

Proof. Let S ∈PF(B), X ∈PA, x∈ atoms 1F(A).
〈
⋃

〈A×FCD 〉S
〉

X =
⋃

{〈A×FCDB〉X | B ∈S}

=

{

⋃

S ifX ∈ ⋆∂A

0F(B) ifX � ⋆∂A

=
〈

A×FCD
⋃

S
〉

X ;

〈
⋂

〈A×FCD 〉S
〉

x =
⋂

{〈A×FCDB〉x | B ∈S}

=

{

⋂

S if x� A

0F(B) if x≍A

=
〈

A×FCD
⋂

S
〉

x.

If A� 0F(A) then obviously the function A×FCD is injective. �

The following proposition states that cutting a rectangle of atomic width from a funcoid always
produces a rectangular (representable as a direct product of filter objects) funcoid (of atomic
width).

Proposition 91. If f ∈ FCD and a is an atomic filter object on Src f then

f |a=a×FCD 〈f 〉a.
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Proof. Let X ∈F(Src f).

X � a⇒〈f |a〉X = 〈f 〉a, X ≍ a⇒〈f |a〉X =0F(Dst f). �

3.10 Atomic funcoids

Theorem 92. An f ∈ FCD(A;B) is an atom of the lattice FCD(A;B) (for small sets A, B) iff it
is direct product of two atomic filter objects.

Proof.

⇒. Let f ∈FCD(A;B) is an atom of the lattice FCD(A;B). Let’s get elements a∈atomsdom f

and b∈ atoms 〈f 〉a. Then for every X ∈F(A)

X ≍ a⇒〈a×FCD b〉X =0F(B)⊆〈f 〉X , X � a⇒〈a×FCD b〉X = b⊆〈f 〉X .

So a×FCD b⊆ f ; because f is atomic we have f = a×FCD b.

⇐. Let a ∈ atoms 1F(A), b ∈ atoms 1F(B), f ∈ FCD(A; B). If b ≍ 〈f 〉a then ¬(a[f ]b),

f ≍ a×FCD b; if b⊆ 〈f 〉a then ∀X ∈ F(A): (X � a⇒〈f 〉X ⊇ b), f ⊇ a×FCD b. Consequently

f ≍ a×FCD b∨ f ⊇ a×FCD b; that is a×FCD b is an atomic filter object. �

Theorem 93. The lattice FCD(A;B) is atomic (for every small sets A, B).

Proof. Let f is a non-empty funcoid. Then dom f � ∅, thus by the theorem 46 in [15] exists
a ∈ atoms dom f . So 〈f 〉a � 0F(B) thus exists b ∈ atoms 〈f 〉a. Finally the atomic funcoid
a×FCD b⊆ f . �

Theorem 94. The lattice FCD(A;B) is separable (for every small sets A, B).

Proof. Let f , g∈FCD(A;B), f ⊂ g. Then exists a∈atoms1F(A) such that 〈f 〉a⊂〈g〉a. So because
the lattice F(B) is atomically separable then exists b∈ atoms 1F(B) such that 〈f 〉a∩ b=0F(B) and

b⊆〈g〉a. For every x∈ atoms 1F(A)

〈f 〉a∩ 〈a×FCD b〉a= 〈f 〉a∩ b=0F(B),

x� a⇒〈f 〉x∩ 〈a×FCD b〉x= 〈f 〉x∩ 0F(B)=0F(B).

Thus 〈f 〉x∩ 〈a×FCD b〉x=0F(B) and consequently f ≍ a×FCD b.

〈a×FCD b〉a= b⊆〈g〉a,

x� a⇒〈a×FCD b〉x=0F(B)⊆〈g〉a.

Thus 〈a×FCD b〉x⊆〈g〉x and consequently a×FCD b⊆ g.
So the lattice FCD(A;B) is separable by the theorem 19 in [15]. �

Corollary 95. The lattice FCD(A;B) is:

1. separable;

2. atomically separable;

3. conforming to Wallman’s disjunction property.

Proof. By the theorem 22 in [15]. �

Remark 96. For more ways to characterize (atomic) separability of the lattice of funcoids see
[15], subsections “Separation subsets and full stars” and “Atomically separable lattices”.

Corollary 97. The lattice FCD(A;B) is an atomistic lattice.

Proof. Let f ∈FCD(A;B). Suppose contrary to the statement to be proved that
⋃

atoms f ⊂ f .
Then it exists a∈ atoms f such that a∩

⋃

atoms f = ∅ what is impossible. �

Funcoids 19



Proposition 98. atoms(f ∪ g)= atoms f ∪ atoms g for every funcoids f , g∈FCD(A;B) (for every
small sets A and B).

Proof. a×FCD b� f ∪ g⇔a[f ∪ g]b⇔ a[f ]b∨ a[g]b⇔a×FCD b� f ∨ a×FCD b� g for every atomic
filter objects a and b. �

Theorem 99. For every f , g, h∈ FCD(A;B), R∈PFCD(A;B) (for every small sets A and B)

1. f ∩ (g∪ h)= (f ∩ g)∪ (f ∩h);

2. f ∪
⋂

R=
⋂

〈f ∪ 〉R.

Proof. We will take in account that the lattice of funcoids is an atomistic lattice.

1. atoms(f ∩ (g ∪ h)) = atoms f ∩ atoms(g ∪ h) = atoms f ∩ (atoms g ∪ atoms h) = (atoms f ∩
atoms g)∪ (atoms f ∩ atomsh)= atoms(f ∩ g)∪ atoms(f ∩h) = atoms((f ∩ g)∪ (f ∩h)).

2. atoms(f ∪
⋂

R) = atoms f ∪ atoms
⋂

R = atoms f ∪
⋂

〈atoms〉R =
⋂

〈(atoms f) ∪
〉〈atoms〉R=

⋂

〈atoms〉〈f ∪ 〉R= atoms
⋂

〈f ∪ 〉R. (Used the following equality.)

〈(atoms f)∪ 〉〈atoms〉R =

{(atoms f)∪A | A∈ 〈atoms〉R} =

{(atoms f)∪A | ∃C ∈R:A= atomsC} =

{(atoms f)∪ (atomsC) | C ∈R} =

{atoms(f ∪C) | C ∈R} =

{atomsB | ∃C ∈R:B= f ∪C} =

{atomsB | B ∈ 〈f ∪ 〉R} =

〈atoms〉〈f ∪ 〉R.

�

Note that distributivity of the lattice of funcoids is proved through using atoms of this lattice. I
have never seen such method of proving distributivity.

Corollary 100. The lattice FCD(A;B) is co-brouwerian (for every small sets A and B).

The next proposition is one more (among the theorem 61) generalization for funcoids of com-
position of relations.

Proposition 101. For every composable funcoids f , g

atoms(g ◦ f) =
{

x ×FCD z | x ∈ atoms 1F(Src f), z ∈ atoms 1F(Dst g), ∃ y ∈ atoms 1F(Dst f):

(x×FCD y ∈ atoms f ∧ y×FCD z ∈ atoms g)
}

.

Proof. (x ×FCD z) ∩ (g ◦ f) � ∅ ⇔ x[g ◦ f ]z ⇔ ∃y ∈ atoms 1F(Dst f): (x[f ]y ∧ y[g]z) ⇔

∃y ∈ atoms 1F(Dst f): ((x×FCD y)∩ f � ∅∧ (y×FCD z)∩ g� ∅) (it was used the theorem 61). �

3.11 Complete funcoids

Definition 102. I will call co-complete such a funcoid f that 〈f 〉∗X is a principal f.o. for every
X ∈P(Src f).

Remark 103. I will call generalized closure such a function α ∈PBPA (for some small sets A,
B) that

1. α∅= ∅;

2. ∀I , J ∈PA:α(I ∪ J)=αI ∪αJ .

Obvious 104. A funcoid f is co-complete iff 〈f 〉∗= ↑Dst f ◦α for a generalized closure α.
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Remark 105. Thus funcoids can be considered as a generalization of generalized closures. A
topological space in Kuratowski sense is the same as reflexive and transitive generalized closure.
So topological spaces can be considered as a special case of funcoids.

Definition 106. I will call a complete funcoid a funcoid whose reverse is co-complete.

Theorem 107. The following conditions are equivalent for every funcoid f :

1. funcoid f is complete;

2. ∀S ∈PF(Src f), J ∈P(Dst f): (
⋃

S[f ]↑Dst fJ⇔∃I ∈S: I[f ]↑Dst fJ);

3. ∀S ∈PP(Src f), J ∈P(Dst f): (
⋃

S[f ]∗J⇔∃I ∈S: I [f ]∗J);

4. ∀S ∈PF(Src f): 〈f 〉
⋃

S=
⋃

〈〈f 〉〉S;

5. ∀S ∈PP(Src f): 〈f 〉∗
⋃

S=
⋃

〈〈f 〉∗〉S;

6. ∀A∈P(Src f): 〈f 〉∗A=
⋃

{〈f 〉∗{a} | a∈A}.

Proof.

(3)⇒(1). For every S ∈PP(Src f), J ∈P(Dst f)

↑Src f
⋃

S ∩ 〈f−1〉∗J � 0Src f ⇔∃I ∈S: ↑Src fI ∩ 〈f−1〉∗J � 0Src f , (10)

consequently by the theorem 52 in [15] we have that 〈f−1〉∗J is a principal f.o.

(1)⇒(2). For every S ∈ PF(Src f), J ∈ P(Dst f) we have 〈f−1〉∗J a principal f.o., conse-
quently

⋃

S ∩ 〈f−1〉∗J � 0Src f⇔∃I ∈S: I ∩ 〈f−1〉∗J � 0Src f.

From this follows (2).

(6)⇒(5). 〈f 〉∗
⋃

S =
⋃

{〈f 〉∗{a} | a ∈
⋃

S} =
⋃

{
⋃

{〈f 〉∗{a} | a ∈ A} | A ∈ S} =
⋃

{〈f 〉∗A | A∈S}=
⋃

〈〈f 〉∗〉S.

(2)⇒(4). ↑Dst fJ � 〈f 〉
⋃

S⇔
⋃

S[f ]↑Dst fJ⇔∃I ∈S:I[f ]↑Dst fJ⇔∃I ∈S: ↑Dst fJ � 〈f 〉I⇔

↑Dst fJ � ⋃ 〈〈f 〉〉S (used the theorem 53 in [15]).

(2)⇒(3), (4)⇒(5), (5)⇒(3), (5)⇒(6). Obvious. �

The following proposition shows that complete funcoids are a direct generalization of pre-topolog-
ical spaces.

Proposition 108. To specify a complete funcoid f it is enough to specify 〈f 〉∗ on one-element
sets, values of 〈f 〉∗ on one element sets can be specified arbitrarily.

Proof. From the above theorem is clear that knowing 〈f 〉∗ on one-element sets 〈f 〉∗ can be found
on every set and then its value can be inferred for every filter objects.

Choosing arbitrarily the values of 〈f 〉∗ on one-element sets we can define a complete funcoid

the following way: 〈f 〉∗X=
def ⋃

{〈f 〉∗{α} | α ∈X} for every X ∈ P(Src f). Obviously it is really
a complete funcoid. �

Theorem 109. A funcoid is discrete iff it is both complete and co-complete.

Proof.

⇒. Obvious.

⇐. Let f is both a complete and co-complete funcoid. Consider the relation g defined by
that ↑Dst f 〈g〉{α}= 〈f 〉∗{α} (g is correctly defined because f corresponds to a generalized
closure). Because f is a complete funcoid f is the funcoid corresponding to g. �

Theorem 110. If R∈PFCD(A;B) is a set of (co-)complete funcoids then
⋃

R is a (co-)complete
funcoid (for every small sets A and B).
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Proof. It is enough to prove only for co-complete funcoids. Let R ∈ PFCD(A;B) is a set of co-
complete funcoids. Then for every X ∈P(Src f)

〈
⋃

R
〉∗
X =

⋃

{〈f 〉∗X | f ∈R}

is a principal f.o. (used the theorem 58). �

Corollary 111. If R is a set of binary relations between small sets A and B then
⋃
〈

↑FCD(A;B)
〉

R=

↑FCD(A;B)⋃ R.

Proof. From two last theorems. �

Theorem 112. Filtrators of funcoids are filtered.

Proof. It’s enough to prove that every funcoid is representable as (infinite) meet (on the lattice
FCD(A;B)) of some set of discrete funcoids.

Let f ∈ FCD(A;B), X ∈ PA, Y ∈ up〈f 〉X , g(X ; Y )=
def

↑AX ×FCD ↑BY ∪ ↑AX ×FCD 1F(B). For
every K ∈PA

〈g(X ;Y )〉∗K = 〈↑AX ×FCD ↑BY 〉∗K ∪
〈

↑AX ×FCD 1F(B)
〉∗
K =

















0F(B) ifK = ∅
Y if ∅� K ⊆X

1F(B) ifK *X





⊇〈f 〉∗K;

so g(X;Y )⊇ f . For every X ∈PA
⋂

{〈g(X;Y )〉∗X | Y ∈ up 〈f 〉X}=
⋂

{Y | Y ∈ up 〈f 〉∗X}= 〈f 〉∗X ;

consequently
〈
⋂

{g(X;Y ) | X ∈PA, Y ∈up 〈f 〉∗X}
〉∗
X ⊆〈f 〉∗X

that is
⋂

{g(X;Y ) | X ∈PA, Y ∈up 〈f 〉∗X}⊆ f

and finally

f =
⋂

{g(X;Y ) | X ∈PA, Y ∈up 〈f 〉∗X}. �

Conjecture 113. If f ∈ FCD(B;C) is a complete funcoid and R∈PFCD(A;B) then f ◦
⋃

R=
⋃

〈f ◦ 〉R.

This conjecture can be weakened:

Conjecture 114. If f is a discrete funcoid from B to C and R ∈PFCD(A;B) then f ◦
⋃

R=
⋃

〈f ◦ 〉R.

I will denote ComplFCD and CoComplFCD the sets of complete and co-complete fun-
coids correspondingly. ComplFCD(A; B) are complete funcoids from A to B and likewise with
CoComplFCD(A;B).

Obvious 115. ComplFCD and CoComplFCD are closed regarding composition of funcoids.

Proposition 116. ComplFCD(A;B) and CoComplFCD(A;B) (with induced order) are complete
lattices.

Proof. It follows from the theorem 110. �

Theorem 117. Atoms of the lattice ComplFCD(A; B) are exactly direct products of the form
↑A{α}×FCD b where α∈A and b is an atomic f.o. on B

Proof. First, it’s easy to see that {α}×FCD b are elements of ComplFCD(A;B). Also 0FCD(A;B) is
an element of ComplFCD(A;B).
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↑A{α}×FCD b are atoms of ComplFCD(A;B) because these are atoms of FCD(A;B).

It remains to prove that if f is an atom of ComplFCD(A; B) then f = {α} ×FCD b for some
α∈A and an atomic f.o. b on B.

Suppose f ∈ FCD(A; B) is a non-empty complete funcoid. Then exists α ∈ A such that

〈f 〉∗{α} � 0F(B). Thus ↑A{α} ×FCD b ⊆ f for some atomic f.o. b on B. If f is an atom then

f = ↑A{α}×FCD b. �

Theorem 118.

1. A funcoid f ∈FCD(A;B) is complete iff there exists a function G:Src f→F(Dst f) such that

f =
⋃

{↑A{α}×FCDG(α) | α∈ Src f }. (11)

2. A funcoid f ∈FCD(A;B) is co-complete iff there exists a function G:Dst f→F(Src f) such
that

f =
⋃

{G(α)×FCD ↑A{α} | α∈Dst f }.

Proof. We will prove only the first as the second is symmetric.

⇒. Let f is complete. Then take

G(α)=
⋃
{

b∈ atoms 1F(Dst f) | ∃α∈ Src f : ↑A{α}×FCD b⊆ f
}

and we have (11) obviously.

⇐. Let (11) holds. Then G(α)=
⋃

atomsG(α) and thus

f =
⋃

{{α}×FCD b | α∈ Src f , b∈ atomsG(α)}

and so f is complete. �

Theorem 119.

1. For a complete funcoid f there exist exactly one function F ∈F(Dst f)Src f such that

f =
⋃

{↑Src f{α}×FCDF (α) | α∈Src f }.

2. For a co-complete funcoid f there exist exactly one function F ∈F(Src f)Dst f such that

f =
⋃

{F (α)×FCD ↑Dst f{α} | α∈Dst f }.

Proof. We will prove only the first as the second is similar. Let

f =
⋃

{↑Src f{α}×FCDF (α) | α∈Src f }=
⋃

{↑Src f{α}×FCDG(α) | α∈ Src f }

for some F ,G∈F(Dst f)Src f. We need to prove F =G. Let β ∈Src f .

〈f 〉{β}=
⋃

{〈↑Src f{α}×FCDF (α)〉{β} | α∈ Src f }=F (β).

Similarly 〈f 〉{β}=G(β). So F (β)=G(β). �

3.12 Completion of funcoids

Theorem 120. Cor f =Cor′ f for an element f of a filtrator of funcoids. (Core part is taken for
the shifted filtrator of funcoids.)

Proof. From the theorem 26 in [15] and the corollary 111 and theorem 112. �

Definition 121. Completion of a funcoid f ∈FCD(A;B) is the complete funcoid Compl f ∈FCD(A;
B) defined by the formula 〈Compl f 〉∗{α}= 〈f 〉∗{α} for α∈ Src f .
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Definition 122. Co-completion of a funcoid f is defined by the formula

CoCompl f =(Compl f−1)−1.

Obvious 123. Compl f ⊆ f and CoCompl f ⊆ f for every funcoid f .

Proposition 124. The filtrator (FCD(A;B);ComplFCD(A;B)) is filtered.

Proof. Because the shifted filtrator (FCD(A;B);P(A×B); ↑FCD(A;B)) is filtered. �

Theorem 125. Compl f =Cor(FCD(A;B);ComplFCD(A;B))f =Cor′
(FCD(A;B);ComplFCD(A;B))

f for every
funcoid f ∈FCD(A;B).

Proof. Cor(FCD(A;B);ComplFCD(A;B))f = Cor′
(FCD(A;B);ComplFCD(A;B))

f since (the theorem 26 in
[15]) the filtrator (FCD(A;B);ComplFCD(A;B)) is filtered and with join closed core (the theorem
110).

Let g∈up(FCD(A;B);ComplFCD(A;B)) f . Then g∈ComplFCD(A;B) and g⊇ f . Thus g=Compl g⊇
Compl f .

Thus ∀g ∈up(FCD(A;B);ComplFCD(A;B)) f : g ⊇Compl f .

Let ∀g ∈ up(FCD(A;B);ComplFCD(A;B)) f :h⊆ g for some h∈ComplFCD(A;B).

Then h⊆
⋂

FCD(A;B)up(FCD(A;B);ComplFCD(A;B)) f = f and consequently h=Complh⊆Compl f .
Thus

Compl f =
⋂

ComplFCD(A;B)up(FCD(A;B);ComplFCD(A;B)) f =Cor(FCD(A;B);ComplFCD(A;B))f. �

Theorem 126. 〈CoCompl f 〉∗X =Cor 〈f 〉∗X for every funcoid f and set X ∈P(Src f).

Proof. CoCompl f ⊆ f thus 〈CoCompl f 〉∗X ⊆〈f 〉∗X , but 〈CoCompl f 〉∗X is a principal f.o. thus
〈CoCompl f 〉∗X ⊆Cor 〈f 〉∗X.

Let αX =Cor 〈f 〉∗X. Then α∅=0F(Dst f) and

α(X ∪ Y )=Cor 〈f 〉∗(X ∪ Y )=Cor(〈f 〉∗X ∪ 〈f 〉∗Y ) =Cor 〈f 〉∗X ∪Cor 〈f 〉∗Y =αX ∪αY .

(used the theorem 64 from [15]). Thus α can be continued till 〈g〉 for some funcoid g. This funcoid
is co-complete.

Evidently g is the greatest co-complete element of FCD(Src f ;Dst f) which is lower than f .
Thus g=CoCompl f and so Cor 〈f 〉∗X =αX = 〈g〉∗X = 〈CoCompl f 〉∗X. �

Theorem 127. ComplFCD(A;B) is an atomistic lattice.

Proof. Let f ∈ ComplFCD(A; B). 〈f 〉∗X =
⋃

{〈f 〉∗{x} | x ∈X} =
⋃
{〈

f |↑Src f{x}

〉∗
{x} | x ∈

X
}

=
⋃
{〈

f |↑Src f{x}

〉∗
X | x ∈ X

}

, thus f =
⋃
{

f |↑Src f{x} | x ∈ X
}

. It is trivial that every

f |↑Src f{x} is a union of atoms of ComplFCD(A;B). �

Theorem 128. A funcoid f is complete iff it is a join (on the lattice FCD(Src f ;Dst f)) of atomic
complete funcoids.

Proof. Follows from the theorem 110 and the previous theorem. �

Corollary 129. ComplFCD(A;B) is join-closed.

Theorem 130. Compl(
⋃

R)=
⋃

〈Compl〉R for every R∈PFCD(A;B) (for every small sets A,
B).

Proof. 〈Compl(
⋃

R)〉∗X =
⋃

{〈
⋃

R〉∗{α} | α ∈X} =
⋃

{
⋃

{〈f 〉∗{α} | f ∈ R} | α ∈ X} =
⋃

{
⋃

{〈f 〉∗{α} | α∈X} | f ∈R}=
⋃

{〈Compl f 〉∗X | f ∈R}= 〈
⋃

〈Compl〉R〉∗X for every set
X . �

Proposition 131. Compl f =
⋃
{

f |↑Src f{α} | α∈ Src f
}

for every funcoid f .
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Proof. Let denote R the right part of the equality to prove.

〈R〉∗{β}=
⋃
{〈

f |↑Src f{α}

〉∗
{β} | α∈Src f

}

= 〈f 〉∗{β} for every β ∈A and R is complete as

a join of complete funcoids.
Thus R is the completion of f . �

Corollary 132. Compl is a lower adjoint.

Conjecture 133. Compl is not an upper adjoint (in general).

Conjecture 134. Compl f = f \∗ (Ω×FCD℧) for every funcoid f .

This conjecture may be proved by considerations similar to these in the section “Fréchet filter”
in [15].

Lemma 135. Co-completion of a complete funcoid is complete.

Proof. Let f is a complete funcoid.
〈CoCompl f 〉∗X = Cor 〈f 〉∗X = Cor

⋃

{〈f 〉∗{x} | x ∈ X} =
⋃

{Cor 〈f 〉∗{x} | x ∈ X} =
⋃

{〈CoCompl f 〉∗{x} | x∈X} for every set X . Thus CoCompl f is complete. �

Theorem 136. ComplCoCompl f =CoComplCompl f =Cor f for every funcoid f .

Proof. ComplCoCompl f is co-complete since (used the lemma) CoCompl f is co-complete. Thus
ComplCoCompl f is a discrete funcoid. CoCompl f is the the greatest co-complete funcoid under f
and ComplCoCompl f is the greatest complete funcoid under CoCompl f . So ComplCoCompl f is
greater than any discrete funcoid under CoCompl f which is greater than any discrete funcoid under
f . Thus ComplCoCompl f it is the greatest discrete funcoid under f . Thus ComplCoCompl f =
Cor f . Similarly CoComplCompl f =Cor f . �

Question 137. Is ComplFCD(A;B) a co-brouwerian lattice for every small sets A, B?

3.13 Monovalued and injective funcoids

Following the idea of definition of monovalued morphism let’s call monovalued such a funcoid f

that f ◦ f−1⊆ Iim f
FCD.

Similarly, I will call a funcoid injective when f−1 ◦ f ⊆ Idom f
FCD .

Obvious 138. A funcoid f is

• monovalued iff f ◦ f−1⊆ IFCD(Dst f);

• injective iff f−1 ◦ f ⊆ IFCD(Src f).

In other words, a funcoid is monovalued (injective) when it is a monovalued (injective) morphism
of the category of funcoids.

Monovaluedness is dual of injectivity.

Obvious 139.

1. A morphism (f ;A; B) of the category of funcoid triples is monovalued iff the funcoid f is
monovalued.

2. A morphism (f ; A; B) of the category of funcoid triples is injective iff the funcoid f is
injective.

Theorem 140. The following statements are equivalent for a funcoid f :

1. f is monovalued.

2. ∀a∈ atoms 1F(Src f): 〈f 〉a∈ atoms 1F(Dst f)∪
{

0F(Dst f)
}

.

3. ∀I ,J ∈F(Dst f): 〈f−1〉(I ∩J ) = 〈f−1〉I ∩ 〈f−1〉J .
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4. ∀I , J ∈P(Dst f): 〈f−1〉∗(I ∩ J)= 〈f−1〉∗I ∩ 〈f−1〉∗J .

Proof.

(2)⇒(3). Let a∈ atoms 1F(Src f), 〈f 〉a= b. Then because b∈ atoms 1F(Dst f)∪
{

0F(Dst f)
}

(I ∩ J )∩ b� ∅⇔I ∩ b� ∅∧ J ∩ b� ∅;

a[f ](I ∩ J )⇔ a[f ]I ∧ a[f ]J ;

(I ∩J )[f−1]a⇔I[f−1]a∧J [f−1]a;

a∩ 〈f−1〉(I ∩J )� ∅⇔ a∩ 〈f−1〉I � ∅∧ a∩ 〈f−1〉J � ∅;

〈f−1〉(I ∩J )= 〈f−1〉I ∩ 〈f−1〉J .

(3)⇒(1). 〈f−1〉a ∩ 〈f−1〉b = 〈f−1〉(a ∩ b) = 〈f−1〉0F(Dst f) = 0F(Src f) for every two distinct
atomic filter objects a and b on Dst f . This is equivalent to ¬(〈f−1〉a[f ]b); b≍ 〈f 〉〈f−1〉a;
b≍〈f ◦ f−1〉a; ¬(a[f ◦ f−1]b). So a[f ◦ f−1]b⇒a= b for every atomic filter objects a and b.

This is possible only when f ◦ f−1⊆ IFCD(Dst f).

(4)⇒(3). 〈f−1〉(I ∩ J ) =
⋂

〈〈f−1〉∗〉up(I ∩ J ) =
⋂

〈〈f−1〉∗〉{I ∩ J | I ∈ up I , J ∈
up J } =

⋂

{〈f−1〉∗(I ∩ J) | I ∈ up I , J ∈ up J } =
⋂

{〈f−1〉∗I ∩ 〈f−1〉∗J | I ∈ up I ,
J ∈ upJ }=

⋂

{〈f−1〉∗I | I ∈up I}∩
⋂

{〈f−1〉∗J | J ∈ upJ }= 〈f−1〉I ∩ 〈f−1〉J .

(3)⇒(4). Obvious.

¬(2)⇒¬(1). Suppose 〈f 〉a � atoms 1F(Dst f) ∪
{

0F(Dst f)
}

for some a ∈ atomsA. Then there
exist two atomic filter objects p and q on Dst f such that p � q and 〈f 〉a ⊇ p ∧ 〈f 〉a ⊇ q.

Consequently p � 〈f 〉a; a � 〈f−1〉p; a ⊆ 〈f−1〉p; 〈f ◦ f−1〉p = 〈f 〉〈f−1〉p ⊇ 〈f 〉a ⊇ q;

〈f ◦ f−1〉p * p and 〈f ◦ f−1〉p� 0F(Dst f). So it cannot be f ◦ f−1⊆ IFCD(Dst f). �

Corollary 141. A binary relation corresponds to a monovalued funcoid iff it is a function.

Proof. Because ∀I , J ∈ P(im f): 〈f−1〉∗(I ∩ J) = 〈f−1〉∗I ∩ 〈f−1〉∗J is true for a funcoid f

corresponding to a binary relation if and only if it is a function. �

Remark 142. This corollary can be reformulated as follows: For binary relations (discrete fun-
coids) the classic concept of monovaluedness and monovaluedness in the above defined sense of
monovaluedness of a funcoid are the same.

3.14 T0-, T1- and T2-separable funcoids

For funcoids it can be generalized T0-, T1- and T2- separability. Worthwhile note that T0 and T2

separability is defined through T1 separability.

Definition 143. Let call T1-separable such funcoid f that for every α∈Src f , β ∈Dst f is true

α� β⇒¬({α}[f ]∗{β}).

Definition 144. Let call T0-separable such funcoid f ∈ FCD(A;A) that f ∩ f−1 is T1-separable.

Definition 145. Let call T2-separable such funcoid f that the funcoid f−1 ◦ f is T1-separable.

For symmetric transitive funcoids T1- and T2-separability are the same (see theorem 14).

Obvious 146. A funcoid f is T2-separable iff α� β⇒〈f 〉∗{α}≍ 〈f 〉∗{β} for every α, β ∈Src f .

3.15 Filter objects closed regarding a funcoid

Definition 147. Let’s call closed regarding a funcoid f ∈FCD(A;A) such filter object A∈F(Src f)
that 〈f 〉A ⊆A.
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This is a generalization of closedness of a set regarding an unary operation.

Proposition 148. If I and J are closed (regarding some funcoid f), S is a set of closed filter
objects on Src f , then

1. I ∪J is a closed filter object;

2.
⋂

S is a closed filter object.

Proof. Let denote the given funcoid as f . 〈f 〉(I ∪ J ) = 〈f 〉I ∪ 〈f 〉J ⊆ I ∪ J , 〈f 〉
⋂

S ⊆
⋂

〈〈f 〉〉S ⊆
⋂

S. Consequently the filter objects I ∪J and
⋂

S are closed. �

Proposition 149. If S is a set of filter objects closed regarding a complete funcoid, then the filter
object

⋃

S is also closed regarding our funcoid.

Proof. 〈f 〉
⋃

S=
⋃

〈〈f 〉〉S ⊆
⋃

S where f is the given funcoid. �

4 Reloids

Definition 150. I will call a reloid from a small set A to a small set B a triple (A;B;F ) where
F ∈F(A×B).

Definition 151. Source and destination of every reloid (A;B;F ) are defined as

Src(A;B;F ) =A and Dst(A;B;F )=B.

I will denote RLD(A;B) the set of reloids from A to B.
I will denote RLD the set of all reloids (for small sets).

Further we will assume that all reloids in consideration are small.
Reloids are a generalization of uniform spaces. Also reloids are generalization of binary relations

(I will call a reloid (A;B;F ) discrete when F is a principal filter on A×B.)
I will denote up(A;B;F )= upF for every reloid (A;B;F ).

Definition 152. The reverse reloid of a reloid f is defined by the formula

(A;B;F )−1=(B;A; {F−1 | F ∈up f−1}).

Reverse reloid is a generalization of conjugate quasi-uniformity.

I will denote ↑RLD(A;B)f = (A; B; ↑A×Bf) for every small sets A, B and a binary relation
f ⊆A×B.

The order (in fact a complete lattice) on RLD(A;B) is defined by the formula

(A;B;F )⊆ (A;B;G)⇔F ⊆G.

We will apply lattice operations to subsets of RLD(A;B) without explicitly mentioning RLD(A;B).

4.1 Composition of reloids

Definition 153. Reloids f and g are composable when Dst f = Src g.

Definition 154. Composition of (composable) reloids is defined by the formula

g ◦ f =
⋂
{

↑RLD(Src f ;Dst g)(G ◦F ) | F ∈ up f ,G∈ up g
}

.

Composition of reloids is a reloid.

Theorem 155. (h ◦ g) ◦ f = h◦ (g ◦ f) for every composable reloids f , g, h.
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Proof. For two nonempty collections A and B of sets I will denote

A∼B⇔ (∀K ∈A∃L∈B:L⊆K)∧ (∀K ∈B∃L∈A:L⊆K).

It is easy to see that ∼ is a transitive relation.
I will denote B ◦A= {L ◦K |K ∈A,L∈B}.
Let first prove that for every nonempty collections of relations A, B, C

A∼B⇒A ◦C∼B ◦C.

Suppose A∼B and P ∈A ◦C that is K ∈A and M ∈C such that P =K ◦M . ∃K ′ ∈B:K ′⊆K

because A∼ B. We have P ′ =K ′ ◦M ∈ B ◦ C. Obviously P ′ ⊆ P . So for every P ∈ A ◦ C exist
P ′∈B ◦C such that P ′⊆P ; the vice versa is analogous. So A ◦C∼B ◦C.

up((h ◦ g) ◦ f)∼ up(h ◦ g) ◦ up f , up(h ◦ g)∼ (uph) ◦ (up g). By proven above up((h ◦ g) ◦ f)∼
(uph) ◦ (up g) ◦ (up f).

Analogously up(h◦ (g ◦ f))∼ (uph) ◦ (up g) ◦ (up f).
So up((h ◦ g) ◦ f)∼ up(h ◦ (g ◦ f)) what is possible only if up((h ◦ g) ◦ f)= up(h◦ (g ◦ f)). �

Theorem 156. For every reloid f :

1. f ◦ f =
⋂
{

↑RLD(Src f ;Dst f)(F ◦F ) | F ∈ up f
}

if Src f =Dst f ;

2. f−1 ◦ f =
⋂
{

↑RLD(Src f ;Src f)(F−1 ◦F ) | F ∈up f
}

;

3. f ◦ f−1=
⋂
{

↑RLD(Dst f ;Dst f)(F ◦F−1) | F ∈up f
}

.

Proof. I will prove only (1) and (2) because (3) is analogous to (2).

1. It’s enough to show that ∀F ,G∈up f∃H ∈up f :H ◦H ⊆G◦F . To prove it take H=F ∩G.

2. It’s enough to show that ∀F , G ∈ up f∃H ∈ up f : H−1 ◦ H ⊆ G−1 ◦ F . To prove it take
H =F ∩G. Then H−1 ◦H =(F ∩G)−1 ◦ (F ∩G)⊆G−1 ◦F . �

Theorem 157. For every small sets A, B, C if g, h∈RLD(A;B) then

1. f ◦ (g∪ h)= f ◦ g ∪ f ◦ h for every f ∈RLD(B;C);

2. (g∪ h) ◦ f = g ◦ f ∪h ◦ f for every f ∈RLD(C;A).

Proof. We’ll prove only the first as the second is dual.
By the infinite distributivity law for filters we have

f ◦ g ∪ f ◦h =
⋂
{

↑RLD(A;C)(F ◦G) | F ∈ up f , G ∈ up g
}

∪
⋂
{

↑RLD(A;C)(F ◦H) | F ∈ up f ,

H ∈uph
}

=
⋂
{

↑RLD(A;C)(F1 ◦G)∪↑RLD(A;C)(F2 ◦H) | F1, F2∈ up f ,G∈ up g,H ∈uph
}

=
⋂
{

↑RLD(A;C)((F1 ◦G)∪ (F2 ◦H)) | F1, F2∈ up f ,G∈ up g,H ∈up h
}

.

Obviously
⋂
{

↑RLD(A;C)((F1 ◦G)∪ (F2 ◦H)) | F1, F2∈ up f ,G∈ up g,H ∈up h
}

⊇
⋂
{

↑RLD(A;C)(((F1∩F2) ◦G)∪ ((F1∩F2) ◦H)) | F1, F2∈ up f ,G∈ up g,H ∈up h
}

=
⋂
{

↑RLD(A;C)((F ◦G)∪ (F ◦H)) | F ∈ up f ,G∈ up g,H ∈up h
}

=
⋂
{

↑RLD(A;C)(F ◦ (G∪H)) | F ∈ up f ,G∈ up g,H ∈uph
}

.

Because G∈up g ∧H ∈up h⇒G∪H ∈up(g ∪h) we have
⋂
{

↑RLD(A;C)(F ◦ (G∪H)) | F ∈up f ,G∈up g,H ∈uph
}

⊇
⋂
{

↑RLD(A;C)(F ◦K) | F ∈ up f ,K ∈ up(g ∪h)
}

=

f ◦ (g ∪ h).

Thus we proved f ◦ g ∪ f ◦ h⊇ f ◦ (g ∪ h). But obviously f ◦ (g ∪ h)⊇ f ◦ g and f ◦ (g ∪ h)⊇ f ◦ h
and so f ◦ (g ∪h)⊇ f ◦ g ∪ f ◦h. Thus f ◦ (g ∪h)= f ◦ g ∪ f ◦h. �
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Conjecture 158. If f and g are reloids, then

g ◦ f =
⋃

{G ◦F | F ∈ atoms f ,G∈ atoms g}.

4.2 Direct product of filter objects

Definition 159. Reloidal product of filter objects A and B is defined by the formula

A×RLDB=
def⋂ {

↑RLD(Base(A);Base(B))(A×B) | A∈upA, B ∈upB
}

.

Obvious 160. ↑UA×RLD ↑VB= ↑RLD(U ;V )(A×B) for every small sets A⊆U and B ⊆V .

Theorem 161. A×RLDB=
⋃

{a×RLD b | a∈ atomsA, b∈ atomsB} for every filter objects A, B.

Proof. Obviously

A×RLDB ⊇
⋃

{a×RLD b | a∈ atomsA, b∈ atomsB}

Reversely, let

K ∈up
⋃

{a×RLD b | a∈ atomsA, b∈ atomsB}.

Then K ∈up(a×RLDb) for every a∈atomsA, b∈atomsB; K ⊇Xa×Yb for some Xa∈upa, Yb∈up b;
K ⊇

⋃

{Xa × Yb | a ∈ atomsA, b ∈ atomsB}=
⋃

{Xa | a ∈ atomsA}×
⋃

{Yb | b ∈ atomsA}⊇

A×B where A∈ upA, B ∈upB; K ∈ up(A×RLDB). �

Theorem 162. If A0,A1∈F(A), B0,B1∈F(B) for some small sets A, B then

(A0×RLDB0)∩ (A1×RLDB1)= (A0∩A1)×RLD (B0∩B1).

Proof.

(A0×RLDB0)∩ (A1×RLDB1) =
⋂

{

↑RLD(A;B)(P ∩ Q) | P ∈ up(A0 ×RLD B0), Q ∈

up(A1×RLDB1)
}

=
⋂
{

↑RLD(A;B)((A0 × B0) ∩ (A1 × B1)) | A0 ∈ upA0, B0 ∈ up B0,

A1∈ upA1, B1∈ upB1

}

=
⋂
{

↑RLD(A;B)((A0 ∩ A1)× (B0 ∩ B1)) | A0 ∈ up A0, B0 ∈ up B0,

A1∈ upA1, B1∈ upB1

}

=
⋂
{

↑RLD(A;B)(K ×L) | K ∈up(A0∩A1), L∈up(B0∩B1)
}

= (A0∩A1)×RLD (B0∩B1).

�

Theorem 163. If S ∈P(F(A)×F(B)) for some small sets A, B then

⋂

{A×RLDB | (A;B)∈S}=
⋂

domS ×RLD
⋂

imS.

Proof. Let P =
⋂

domS, Q=
⋂

imS; l=
⋂

{A×RLDB | (A;B)∈S}.
P ×RLDQ⊆ l is obvious.

Let F ∈ up(P ×RLDQ). Then exist P ∈upP and Q∈upQ such that F ⊇P ×Q.

P =P1∩	 ∩Pn where Pi∈ 〈up〉domS and Q=Q1∩	 ∩Qm where Qi∈ 〈up〉imS.

P ×Q=
⋂

i,j
(Pi×Qi).

Pi×Qi∈up(A×RLDB) for some (A;B)∈S. P ×Q=
⋂

i,j
(Pi×Qi)∈up l. So F ∈up l. �

Conjecture 164. If A∈F then A×RLD is a complete homomorphism of every lattice F(B) to a
complete sublattice of the lattice RLD(Base(A);Base(B)), if also A� ∅ then it is an isomorphism.
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Definition 165. I will call a reloid convex iff it is a union of direct products.

Example 166. Non-convex reloids exist.

Proof. Let a is a non-trivial atomic f.o. Then ↑RLD(Base(a);Base(a))(=)|a is non-convex. This follows
from the fact that only direct products which are below (=) are direct products of atomic f.o. and

↑RLD(Base(a);Base(a))(=)|a is not their join. �

4.3 Restricting reloid to a filter object. Domain and image

Definition 167. Identity reloid for a small set A is defined by the formula IRLD(A)= ↑RLD(A;A)IA.

Definition 168. I call restricting a reloid f to a filter object A as f |A=f ∩
(

A×RLD 1F(Dst f)
)

.

Definition 169. Domain and image of a reloid f are defined as follows:

dom f =
⋂

〈↑Dst f 〉〈dom〉up f ; im f =
⋂

〈↑Src f 〉〈im〉up f.

Proposition 170. f ⊆ A ×RLD B⇔ dom f ⊆ A ∧ im f ⊆ B for every reloid f and filter objects
A∈F(Src f), B ∈F(Dst f).

Proof.

⇒. Follows from dom(A×RLDB)⊆A∧ im(A×RLDB)⊆B.

⇐. dom f ⊆A⇔∀A∈upA∃F ∈ up f : domF ⊆A. Analogously

im f ⊆B⇔∀B ∈upB ∃G∈ up f : imG⊆B.

Let dom f ⊆A ∧ im f ⊆ B, A ∈ upA, B ∈ up B. Then exist F ∈ up f , G ∈ up f such that
domF ⊆A∧ imG⊆B. Consequently F ∩G ∈ up f , dom(F ∩G)⊆A, im(F ∩G)⊆B that
is F ∩G⊆A×B. So exists H ∈up f such that H ⊆A×B for every A∈upA, B ∈upB. So
f ⊆A×RLDB. �

Definition 171. I call restricted identity reloid for a filter object A the reloid

IA
RLD=

def(
IRLD(A)

)

|A.

Theorem 172. IA
RLD=

⋂
{

↑RLD(Base(A);Base(A))IA | A ∈ upA
}

where IA is the identity relation
on a set A.

Proof. Let K ∈up
⋂
{

↑RLD(Base(A);Base(A))IA | A∈upA
}

, then exists A∈upA such that K ⊇ IA.
Then

IA
RLD ⊆ ↑RLD(Base(A);Base(A))(IBase(A)) ∩

(

A ×RLD 1F(Base(A))
)

⊆ ↑RLD(Base(A);Base(A))(IBase(A)) ∩
(

↑Base(A)A ×RLD 1F(Base(A))
)

= ↑RLD(Base(A);Base(A))(IBase(A)) ∩ ↑RLD(Base(A);Base(A))(A ×

Base(A)) = ↑RLD(Base(A);Base(A))(IBase(A) ∩ (A × Base(A))) = ↑RLD(Base(A);Base(A))IA ⊆

↑RLD(Base(A);Base(A))K,

Thus K ∈up IA
RLD.

Reversely let K ∈ up IA
RLD = up

(

IRLD(A) ∩
(

A ×RLD 1F(Base(A))
))

, then exists A ∈ up A

such that K ∈ up
(

IRLD(A) ∩
(

A ×RLD 1F(Base(A))
))

= up ↑RLD(Base(A);Base(A))IA ⊆ up
⋂

{

↑RLD(Base(A);Base(A))IA | A∈ upA
}

. �

Proposition 173. (IA
RLD)−1= IA

RLD.

Proof. It follows from the previous theorem. �

Theorem 174. f |A=f ◦ IA
RLD for every reloid f and A∈F(Src f).
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Proof. We need to prove that f ∩
(

A×RLD 1F(Dst f)
)

= f ◦
⋂
{

↑RLD(Src f ;Src f)IA | A∈upA
}

. We

have f ◦
⋂
{

↑RLD(Src f ;Src f)IA | A ∈ upA
}

=
⋂
{

↑RLD(Src f ;Dst f)(F ◦ IA) | F ∈ up f , A ∈ upA
}

=
⋂
{

↑RLD(Src f ;Dst f)(F |A) | F ∈up f ,A∈upA
}

=
⋂
{

↑RLD(Src f ;Dst f)(F ∩ (A×Dst f)) | F ∈up f ,

A ∈ upA
}

=
⋂
{

↑RLD(Src f ;Dst f)F | F ∈ up f
}

∩
⋂
{

↑RLD(Src f ;Dst f)(A × Dst f) | A ∈ up A
}

=

f ∩
(

A×RLD 1F(Dst f)
)

. �

Theorem 175. (g ◦ f)|A=g ◦ (f |A) for every composable reloids f and g and A∈F(Src f).

Proof. (g ◦ f)|A=(g ◦ f) ◦ IA
RLD= g ◦ (f ◦ IA

RLD)= g ◦ (f |A). �

Theorem 176. f ∩ (A×RLDB)= IB
RLD ◦ f ◦ IA

RLD for every reloid f and A∈F(Src f), B∈F(Dst f).

Proof. f ∩ (A ×RLD B) = f ∩ (A ×RLD 1F(Dst f)) ∩ (1F(Src f) ×RLD B) = f |A∩(1
F(Src f) ×RLD B) =

(f ◦ IA
RLD) ∩ (1F(Src f) ×RLD B) =

(

(f ◦ IA
RLD)−1 ∩ (1F(Src f) ×RLD B)−1

)

−1 =
(

(IA
RLD ◦ f−1) ∩

(B×RLD 1F(Src f))
)

−1=(IA
RLD ◦ f−1 ◦ IB

RLD)−1= IB
RLD ◦ f ◦ IA

RLD. �

Theorem 177. f |↑Src f{α}=↑Src f {α}×RLD im
(

f |↑Src f{α}

)

for every reloid f and α∈ Src f .

Proof. First,

im
(

f |↑Src f{α}

)

=
⋂

〈↑Dst f 〉〈im〉up
(

f |↑Src f{α}

)

=
⋂

〈↑Dst f 〉〈im〉up
(

f ∩
(

↑Src f {α}×RLD 1F(Dst f)
))

=
⋂

{↑Dst fim(F ∩ ({α}×Dst f)) | F ∈up f } =
⋂

{↑Dst fim(F |{α}) | F ∈up f }.

Taking this into account we have:

↑Src f {α}×RLD im
(

f |↑Src f{α}

)

=
⋂
{

↑RLD(Src f ;Dst f)({α}×K) | K ∈ up im
(

f |↑Src f{α}

)}

=
⋂
{

↑RLD(Src f ;Dst f)({α}× im(F |{α})) | F ∈up f
}

=
⋂
{

↑RLD(Src f ;Dst f)(F |{α}) | F ∈up f
}

=
⋂
{

↑RLD(Src f ;Dst f)(F ∩ ({α}×Dst f)) | F ∈up f
}

=
⋂
{

↑RLD(Src f ;Dst f)F | F ∈ up f
}

∩↑RLD(Src f ;Dst f)({α}×Dst f) =

f ∩↑RLD(Src f ;Dst f)({α}×Dst f) =

f |↑Src f{α}.

�

4.4 Categories of reloids

I will define two categories, the category of reloids and the category of reloid triples .
The category of reloids is defined as follows:

• Objects are small sets.

• The set of morphisms from a set A to a set B is RLD(A;B).

• The composition is the composition of reloids.

• Identity morphism for a set is the identity reloid for that set.

To show it is really a category is trivial.
The category of reloid triples is defined as follows:

• Objects are filter objects on small sets.

• The morphisms from a f.o. A to a f.o. B are triples (f ; A; B) where f ∈ RLD(Base(A);
Base(B)) and dom f ⊆A∧ im f ⊆B.
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• The composition is defined by the formula (g;B; C) ◦ (f ;A;B)= (g ◦ f ;A; C).

• Identity morphism for an f.o. A is IA
RLD.

To prove that it is really a category is trivial.

4.5 Monovalued and injective reloids

Following the idea of definition of monovalued morphism let’s call monovalued such a reloid f that

f ◦ f−1⊆ Iim f
RLD.

Similarly, I will call a reloid injective when f−1 ◦ f ⊆ Idom f
RLD .

Obvious 178. A reloid f is

• monovalued iff f ◦ f−1⊆ IRLD(Dst f);

• injective iff f−1 ◦ f ⊆ IRLD(Src f).

In other words, a funcoid is monovalued (injective) when it is a monovalued (injective) morphism
of the category of funcoids.

Monovaluedness is dual of injectivity.

Obvious 179.

1. A morphism (f ; A; B) of the category of reloid triples is monovalued iff the reloid f is
monovalued.

2. A morphism (f ;A;B) of the category of reloid triples is injective iff the reloid f is injective.

Theorem 180.

1. A reloid f is a monovalued iff it exists a function (monovalued binary relation) F ∈up f .

2. A reloid f is a injective iff it exists an injective binary relation F ∈ up f .

3. A reloid f is a both monovalued and injective iff exists an injection (a monovalued and
injective binary relation = injective function) F ∈up f .

Proof. The reverse implications are obvious. Let’s prove the direct implications:

1. Let f is a monovalued reloid. Then f ◦ f−1⊆ IRLD(Dst f). So exists

h∈ up(f ◦ f−1)= up
⋂
{

↑RLD(Dst f ;Dst f)(F ◦F−1) | F ∈ up f
}

such that h ⊆ IRLD(Dst f). It’s simple to show that {F ◦ F−1 | F ∈ up f } is a filter base.
Consequently it exists F ∈up f such that F ◦F−1⊆ IDst f that is F is a function.

2. Similar.

3. Let f is a both monovalued and injective reloid. Then by proved above there exist F ,

G∈up f such that F is monovalued andG is injective. Thus F ∩G∈up f is both monovalued
and injective. �

Conjecture 181. A reloid f is monovalued iff

∀g ∈RLD(Src f ;Dst f): (g ⊆ f⇒∃A∈F(Src f): g= f |A).

4.6 Complete reloids and completion of reloids

Definition 182. A complete reloid is a reloid representable as join of direct products ↑A{α}×RLDb

where α∈A and b is an atomic f.o. on B for some small sets A and B.

Definition 183. A co-complete reloid is a reloid representable as join of direct products
a×RLD ↑B{β} where β ∈B and a is an atomic f.o. on A for some small sets A and B.

32 Section 4



I will denote the sets of complete and co-complete reloids correspondingly as ComplRLD and
CoComplRLD.

Obvious 184. Complete and co-complete are dual.

Theorem 185.

1. A reloid f is complete iff there exists a function G: Src f→F(Dst f) such that

f =
⋃

{↑Src f{α}×RLDG(α) | α∈ Src f }. (12)

2. A reloid f is co-complete iff there exists a function G:Dst f→F(Src f) such that

f =
⋃

{G(α)×RLD ↑Dst f {α} | α∈Dst f }.

Proof. We will prove only the first as the second is symmetric.

⇒. Let f is complete. Then take

G(α)=
⋃
{

b∈ atoms 1F(Dst f) | ∃α∈ Src f : ↑Src f{α}×RLD b⊆ f
}

and we have (12) obviously.

⇐. Let (12) holds. Then G(α)=
⋃

atomsG(α) and thus

f =
⋃

{↑Src f{α}×RLD b | α∈Src f , b∈ atomsG(α)}

and so f is complete. �

Obvious 186. Complete and co-complete reloids are convex.

Obvious 187. Discrete reloids are complete and co-complete.

Obvious 188. Join (on the lattice of reloids) of complete reloids is complete.

Corollary 189. ComplRLD (with the induced order) is a complete lattice.

Theorem 190. A reloid which is both complete and co-complete is discrete.

Proof. Let f is a complete and co-complete reloid. We have

f =
⋃

{↑Src f{α}×RLDG(α) | α∈Src f } and f =
⋃

{H(β)×RLD ↑Dst f{β} | β ∈Dst f }

for some functions G: Src f→F(Dst f), H :Dst f→F(Src f). For every α∈Src f we have

G(α) =

im f |↑Src f{α} =

im
(

f ∩
(

↑Src f {α}×RLD 1F(Dst f)
))

= (*)

im
⋃
{

(H(β)×RLD ↑Dst f {β})∩
(

↑Src f {α}×RLD 1F(Dst f)
)

| β ∈Dst f
}

=

im
⋃

{(H(β)∩ ↑Src f{α})×RLD ↑Dst f {β} | β ∈Dst f } =

im
⋃

{({

↑Src f{α}× ↑Dst f{β} ifH(β)� ↑Src f{α}

0RLD(Src f ;Dst f) ifH(β)≍↑Src f{α}

)

| β ∈Dst f

}

=

im
⋃

{↑Src f{α}× ↑Dst f{β} | β ∈Dst f ,H(β)� ↑Src f{α}} =

im
⋃
{

↑RLD(Src f ;Dst f){(α; β)} | β ∈Dst f ,H(β)� ↑Src f{α}
}

=
⋃

{↑Dst f{β} | β ∈Dst f ,H(β)� ↑Src f {α}}.

* the theorem 40 from [15] was used.
Thus G(α) is a principal f.o. that is G(α) = ↑Dst fg(α) for some g: Src f → Dst f ;

↑Src f {α}×RLDG(α) = ↑RLD(Src f ;Dst f)({α}× g(α)); f is discrete as a join of discrete reloids. �
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Conjecture 191. Composition of complete reloids is complete.

Theorem 192.

1. For a complete reloid f there exist exactly one function F ∈F(Dst f)Src f such that

f =
⋃

{↑Src f{α}×RLDF (α) | α∈Src f }.

2. For a co-complete reloid f there exist exactly one function F ∈F(Src f)Dst f such that

f =
⋃

{F (α)×RLD ↑Dst f {α} | α∈Dst f }.

Proof. We will prove only the first as the second is similar. Let

f =
⋃

{↑Src f {α}×RLDF (α) | α∈Src f }=
⋃

{↑Src f{α}×RLDG(α) | α∈Src f }

for some F ,G∈F(Dst f)Src f. We need to prove F =G. Let β ∈Src f .

f ∩
(

↑Src f{β}×RLD 1F(Dst f)
)

= (theorem 40 in [15])
⋃

RLD
{

(↑Src f{α}×RLDF (α))∩RLD
(

↑Src f {β}× 1F(Dst f)
)

| α∈ Src f
}

=

↑Src f{β}×RLDF (β).

Similarly f ∩
(

↑Src f{β} × 1F(Dst f)
)

= ↑Src f{β} ×RLD G(β). Thus ↑Src f{β} ×RLD F (β) =

↑Src f {β}×RLDG(β) and so F (β)=G(β). �

Definition 193. Completion and co-completion of a reloid f ∈ RLD(A; B) are defined by the
formulas:

Compl f =Cor(RLD(A;B);ComplRLD(A;B))f and CoCompl f =Cor(RLD(A;B);CoComplRLD(A;B))f.

Theorem 194. Atoms of the lattice ComplRLD(A; B) are exactly direct products of the form
↑A{α}×RLD b where α∈A and b is an atomic f.o. on B.

Proof. First, it’s easy to see that ↑A{α}×FCD b are elements of ComplRLD(A;B). Also 0RLD(A;B)

is an element of ComplRLD.
↑A{α}×RLD b are atoms of ComplFCD because these are atoms of RLD.
It remains to prove that if f is an atom of ComplRLD(A;B) then f = ↑A{α}×RLD b for some

α∈A and an atomic f.o. b on B.
Suppose f is a non-empty complete reloid. Then ↑A{α}×RLD b⊆ f for some α∈A and atomic

f.o. b on B. If f is an atom then f = ↑A{α}×FCD b. �

Obvious 195. ComplRLD is an atomistic lattice.

Proposition 196. Compl f =
⋃
{

f |↑Src f{α} | α∈ Src f
}

for every reloid f .

Proof. Let’s denote R the right part of the equality to be proven.
That R is a complete reloid follows from the equality

f |↑Src f{α}=↑Src f {α}×RLD im
(

f |↑Src f{α}

)

.

The only thing left to prove is that g ⊆R for every complete reloid g such that g ⊆ f .
Really let g is a complete reloid such that g ⊆ f . Then

g=
⋃

{↑Src f{α}×RLDG(α) | α∈ Src f }

for some function G: Src f→F(Dst f).
We have ↑Src f{α}×RLDG(α)= g |↑Src f{α}⊆f |↑Src f{α}. Thus g ⊆R. �

Conjecture 197. Compl f ∩Compl g=Compl(f ∩ g) for every reloids f and g.

Theorem 198. Compl(
⋃

R)=
⋃

〈Compl〉R for every set R∈RLD(A;B) for every small sets A, B.
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Proof.

Compl
(
⋃

R
)

=
⋃
{(
⋃

R
)

|↑A{α} | α∈A
}

= (theorem 40 in [15])
⋃
{
⋃

{f |↑A{α} | α∈A} | f ∈R
}

=
⋃

〈Compl〉R.

�

Lemma 199. Completion of a co-complete reloid is discrete.

Proof. Let f is a co-complete reloid. Then there is a function F :Dst f→F(Src f) such that

f =
⋃

{F (α)×RLD ↑Dst f {α} | α∈Dst f }.

So

Compl f =
⋃
{(
⋃

{F (α)×RLD ↑Dst f {α} | α∈Dst f }
)

|↑Src f{β} | β ∈Src f
}

=
⋃
{(
⋃

{F (α)×RLD ↑Dst f{α} | α∈Dst f }
)

∩
(

↑Src f{β}× 1F(Dst f)
)

| β ∈Src f
}

= (*)
⋃
{
⋃
{

(F (α)×RLD ↑Dst f{α})∩
(

↑Src f {β}× 1F(Dst f)
)

| α∈Dst f
}

| β ∈Src f
}

=
⋃
{
⋃

{↑Src f {β}×RLD ↑Dst f {α} | α∈Dst f } | β ∈Src f , {β}⊆F (α)
}

.

* theorem 40 in [15].
Thus Compl f is discrete. �

Theorem 200. ComplCoCompl f =CoComplCompl f =Cor f for every reloid f .

Proof. We will prove only ComplCoCompl f =Cor f . The rest follows from symmetry.
From the lemma ComplCoCompl f is discrete. It is obvious ComplCoCompl f ⊆ f . So to finish

the proof we need to show only that for every discrete reloid F ⊆ f we have F ⊆ComplCoCompl f .
Really, obviously F ⊆CoCompl f and thus F =ComplF ⊆ComplCoCompl f . �

Question 201. Is ComplRLD(A;B) a distributive lattice? Is ComplRLD(A; B) a co-brouwerian
lattice?

Conjecture 202. Let A, B, C are small sets. If f ∈ RLD(B; C) is a complete reloid and
R∈PRLD(A;B) then

f ◦
⋃

R=
⋃

〈f ◦ 〉R.

This conjecture can be weakened:

Conjecture 203. Let A, B, C are small sets. If f ∈ RLD(B; C) is a discrete reloid and R ∈
PRLD(A;B) then

f ◦
⋃

R=
⋃

〈f ◦ 〉R.

Conjecture 204. Compl f = f \∗ (ΩSrc f ×RLD 1F(Dst f)) for every reloid f .

5 Relationships between funcoids and reloids

5.1 Funcoid induced by a reloid

Every reloid f induces a funcoid (FCD)f ∈FCD(Src f ;Dst f) by the following formulas (for every
X ∈F(Src f), Y ∈F(Dst f)):

X [(FCD)f ]Y⇔∀F ∈up f :X
[

↑FCD(Src f ;Dst f)F
]

Y

〈(FCD)f 〉X =
⋂
{〈

↑FCD(Src f ;Dst f)F
〉

X | F ∈ up f
}

.
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We should prove that (FCD)f is really a funcoid.

Proof. We need to prove that

X [(FCD)f ]Y⇔Y ∩〈(FCD)f 〉X � 0F(Dst f)⇔X ∩〈(FCD)f−1〉Y � 0F(Dst f).

The above formula is equivalent to:

∀F ∈ up f :X
[

↑FCD(Src f ;Dst f)F
]

Y ⇔

Y ∩
⋂
{〈

↑FCD(Src f ;Dst f)F
〉

X | F ∈up f
}� 0F(Dst f) ⇔

X ∩
⋂
{〈

↑FCD(Src f ;Dst f)F−1
〉

Y | F ∈up f
}� 0F(Src f)

We have Y ∩
⋂
{〈

↑FCD(Src f ;Dst f)F
〉

X | F ∈up f
}

=
⋂
{

Y ∩
〈

↑FCD(Src f ;Dst f)F
〉

X | F ∈up f
}

.

Let’s denote W =
{

Y ∩
〈

↑FCD(Src f ;Dst f)F
〉

X | F ∈up f
}

.

∀F ∈ up f : X
[

↑FCD(Src f ;Dst f)F
]

Y ⇔ ∀F ∈ up f : Y ∩
〈

↑FCD(Src f ;Dst f)F
〉

X � 0F(Dst f) ⇔

0F(Dst f) � W .
We need to prove that 0F(Dst f) � W ⇔

⋂

W � 0F(Dst f). (The rest follows from symmetry.)
This follows from the fact that W is a generalized filter base.
Let’s prove that W is a generalized filter base. For this enough to prove that V =

{〈

↑FCD(Src f ;Dst f)F
〉

X | F ∈ up f
}

is a generalized filter base. Let A, B ∈ V that is

A =
〈

↑FCD(Src f ;Dst f)P
〉

X , B =
〈

↑FCD(Src f ;Dst f)Q
〉

X where P , Q ∈ up f . Then for C =
〈

↑FCD(Src f ;Dst f)(P ∩ Q)
〉

X is true both C ∈ V and C ⊆ A, B. So V is a generalized filter
base and thus W is a generalized filter base. �

Proposition 205. (FCD)↑RLD(A;B)f = ↑FCD(A;B)f for every small sets A, B and binary relation
f ⊆A×B.

Proof. X
[

(FCD)↑RLD(A;B)f
]

Y ⇔ ∀F ∈ up ↑RLD(A;B)f : X
[

↑FCD(A;B)F
]

Y ⇔ X
[

↑FCD(A;B)f
]

Y (for
every X ,Y ∈F). �

Theorem 206. X [(FCD)f ]Y⇔ (X ×RLDY)� f for every f ∈RLD and X ∈F(Src f), Y ∈F(Dst f).

Proof.

(X ×RLDY)� f ⇔ ∀F ∈up f , P ∈up(X ×RLDY):P � F

⇔ ∀F ∈up f , X ∈upX , Y ∈ upY : (X × Y )� F

⇔ ∀F ∈up f ,X ∈ upX , Y ∈ upY : ↑Src fX
[

↑FCD(Src f ;Dst f)F
]

↑Dst fY

⇔ ∀F ∈up f :X
[

↑FCD(Src f ;Dst f)F
]

Y

⇔ X [(FCD)f ]Y .

�

Theorem 207. (FCD)f =
⋂
〈

↑FCD(Src f ;Dst f)
〉

up f for every reloid f .

Proof. Let a is an atomic filter object.

〈(FCD)f 〉a=
⋂
{〈

↑FCD(Src f ;Dst f)F
〉

a | F ∈ up f
}

by the definition of (FCD).
〈
⋂
〈

↑FCD(Src f ;Dst f)
〉

up f
〉

a=
⋂
{〈

↑FCD(Src f ;Dst f)F
〉

a | F ∈up f
}

by the theorem 79.

So 〈(FCD)f 〉a=
〈
⋂
〈

↑FCD(Src f ;Dst f)
〉

up f
〉

a for every atomic filter object a. �

Lemma 208. For every two filter bases S and T of binary relations on U ×V for some small sets
U , V and every set A⊆U

⋂

↑RLD(U ;V )S=
⋂

↑RLD(U ;V )T ⇒
⋂

{↑V 〈F 〉A | F ∈S}=
⋂

{↑V 〈G〉A | G∈ T }

Proof. Let
⋂

↑RLD(U ;V )S=
⋂

↑RLD(U ;V )T .
First let prove that {〈F 〉A | F ∈S} is a filter base. LetX,Y ∈{〈F 〉A | F ∈S}. ThenX=〈FX 〉A

and Y = 〈FY 〉A for some FX , FY ∈ S. Because S is a filter base, we have S ∋ FZ ⊆ FX ∩ FY . So
〈FZ 〉A⊆X ∩Y and 〈FZ〉A∈{〈F 〉A | F ∈S}. So {〈F 〉A | F ∈S} is a filter base.
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Suppose X ∈up
⋂

{↑V 〈F 〉A | F ∈S}. Then exists X ′∈{〈F 〉A | F ∈S} where X ⊇X ′ because
{〈F 〉A | F ∈S} is a filter base. That is X ′= 〈F 〉A for some F ∈S. There exists G∈ T such that
G ⊆ F because T is a filter base. Let Y ′ = 〈G〉A. We have Y ′ ⊆ X ′ ⊆ X ; Y ′ ∈ {〈G〉A | G ∈ T };

Y ′∈ up
⋂

{↑V 〈G〉A | G∈ T }; X ∈ up
⋂

{↑V 〈G〉A | G∈ T }. The reverse is symmetric. �

Lemma 209. {G ◦F | F ∈up f ,G∈up g} is a filter base for every reloids f and g.

Proof. Let denote D = {G ◦ F | F ∈ up f , G ∈ up g}. Let A ∈D ∧B ∈D. Then A=GA ◦ FA ∧
B =GB ◦ FB for some FA, FB ∈ up f and GA, GB ∈ up g. So A ∩B ⊇ (GA∩GB) ◦ (FA ∩ FB) ∈D

because FA∩FB ∈up f and GA∩GB ∈up g. �

Theorem 210. (FCD)(g ◦ f)= ((FCD)g) ◦ ((FCD)f) for every composable reloids f and g.

Proof.

〈(FCD)(g ◦ f)〉∗X =
⋂

{↑Dst g〈H 〉X | H ∈up(g ◦ f)}

=
⋂
{

↑Dst g〈H 〉X | H ∈up
⋂
{

↑RLD(Src f ;Dst g)(G◦F ) | F ∈up f ,G∈up g
}}

.

Obviously
⋂
{

↑RLD(Src f ;Dst g)(G ◦F ) | F ∈up f ,G∈up g
}

=
⋂
〈

↑RLD(Src f ;Dst g)
〉

up
⋂
{

↑RLD(Src f ;Dst g)(G ◦F ) | F ∈up f ,G∈up g
}

;

from this by the lemma 208 (taking in account that {G ◦ F | F ∈ up f , G ∈ up g} and up
⋂

{

↑RLD(Src f ;Dst g)(G ◦F ) | F ∈up f ,G∈up g
}

are filter bases)
⋂
{

↑Dst g〈H 〉X | H ∈up
⋂
{

↑RLD(Src f ;Dst g)(G ◦F ) | F ∈up f ,G∈up g
}}

=
⋂

{↑Dst g〈G ◦F 〉X | F ∈ up f ,G∈ up g}.

On the other side

〈((FCD)g) ◦ ((FCD)f)〉∗X = 〈(FCD)g〉〈(FCD)f 〉∗X

= 〈(FCD)g〉
⋂

{↑Dst f 〈F 〉X | F ∈ up f }

=
⋂
{〈

↑FCD(Src g;Dst g)G
〉
⋂

{↑Dst f 〈F 〉X | F ∈up f } | G∈ up g
}

.

Let’s prove that {〈F 〉X | F ∈ up f } is a filter base. If A,B ∈ {〈F 〉X | F ∈ up f } then A= 〈F1〉X
and B= 〈F2〉X where F1,F2∈up f . A∩B⊇〈F1∩F2〉X ∈{〈F 〉X | F ∈up f }. So {〈F 〉X | F ∈up f }
is really a filter base.

By the theorem 52 we have
〈

↑FCD(Src g;Dst g)G
〉
⋂

{↑Dst f 〈F 〉X | F ∈up f }=
⋂

{↑Dst g〈G〉〈F 〉X | F ∈up f }.

So continuing the above equalities,

〈((FCD)g) ◦ ((FCD)f)〉∗X =
⋂
{
⋂

{↑Dst g〈G〉〈F 〉X | F ∈ up f } | G∈up g
}

=
⋂

{↑Dst g〈G〉〈F 〉X | F ∈ up f ,G∈ up g}

=
⋂

{↑Dst g〈G ◦F 〉X | F ∈ up f ,G∈ up g}.

Combining these equalities we get 〈(FCD)(g ◦ f)〉∗X= 〈((FCD)g)◦ ((FCD)f)〉∗X for every set X . �

Corollary 211.

1. (FCD)f is a monovalued funcoid if f is a monovalued reloid.

2. (FCD)f is an injective funcoid if f is an injective reloid.

Proof. We will prove only the first as the second is dual. Let f is a monovalued reloid. Then

f ◦ f−1 ⊆ IRLD(Dst f); (FCD)(f ◦ f−1) ⊆ IFCD(Dst f); (FCD)f ◦ ((FCD)f)−1 ⊆ IFCD(Dst f) that is
(FCD)f is amonovalued funcoid. �

Proposition 212. (FCD)IA
RLD= IA

FCD for every f.o. A.
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Proof. Recall that IA
RLD=

⋂
{

↑Base(A)IA | A∈ upA
}

. For every X ,Y ∈F(Base(A)) we have:

X [(FCD)IA
RLD]Y ⇔X ×RLD Y � IA

RLD⇔∀A ∈ upA: X ×RLD Y � ↑RLD(Base(A);Base(A))IA⇔∀A ∈

upA:X
[

↑RLD(Base(A);Base(A))IA
]

Y⇔∀A∈upA:X ∩Y � ↑Base(A)A⇔X ∩Y � A⇔X [(FCD)IA
FCD]Y

(used properties of generalized filter bases). �

Proposition 213. (FCD)(A×RLDB)=A×FCDB for every f.o. A and B.

Proof. X [(FCD)(A ×RLD B)]Y ⇔ ∀F ∈ up(A ×RLD B): X
[

↑FCD(Base(A);Base(B))F
]

Y (for every X ,

Y ∈F).
Evidently

∀F ∈up(A×RLDB):X
[

↑FCD(Base(A);Base(B))F
]

Y⇒∀A∈upA,B∈upB:X
[

↑FCD(Base(A);Base(B))(A×

B)
]

Y.

Let ∀A∈ upA, B ∈ upB:X
[

↑FCD(Base(A);Base(B))(A×B)
]

Y . Then if F ∈ up(A×RLDB) then there

are A∈ upA, B ∈upB such that F ⊇A×B. So X
[

↑FCD(Base(A);Base(B))F
]

Y .

We proved ∀F ∈ up(A ×RLD B): X
[

↑FCD(Base(A);Base(B))F
]

Y ⇔ ∀A ∈ up A, B ∈ up B:

X
[

↑FCD(Base(A);Base(B))(A×B)
]

Y .
Further ∀A ∈ up A, B ∈ up B: X

[

↑FCD(Base(A);Base(B))(A × B)
]

Y ⇔ ∀A ∈ up A, B ∈ up B:

X � ↑Base(A)A∧Y � ↑Base(B)B⇔X � A∧Y � B⇔X [A×FCDB]Y .

Thus X [(FCD)(A×RLDB)]Y⇔X [A×FCDB]Y . �

Proposition 214. dom (FCD)f = dom f and im (FCD)f = im f for every reloid f .

Proof. im (FCD)f = 〈(FCD)f 〉1F(Src f)=
⋂

{↑Dst f 〈F 〉(Src f) | F ∈ up f }=
⋂

{↑Dst fimF | F ∈

up f }=
⋂

〈↑Dst f 〉〈im〉up f = im f .
dom (FCD)f = dom f is similar. �

Proposition 215. (FCD)(f ∩ (A ×RLD B)) = (FCD)f ∩ (A ×FCD B) for every reloid f and
A∈F(Src f) and B ∈F(Dst f).

Proof. (FCD)(f ∩ (A ×RLD B)) = (FCD)(IB
RLD ◦ f ◦ IA

RLD) = (FCD)IB
RLD ◦ (FCD)f ◦ (FCD)IA

RLD =

IB
FCD ◦ (FCD)f ◦ IA

FCD=(FCD)f ∩ (A×FCDB). �

Corollary 216. (FCD)(f |A)= ((FCD)f)|A) for every reloid f and f.o. A.

Proposition 217. 〈(FCD)f 〉X = im(f |X) for every reloid f and f.o. X .

Proof. im(f |X) = im (FCD)(f |X)= im ((FCD)f)|X)= 〈(FCD)f 〉X . �

5.2 Reloids induced by funcoid

Every funcoid f ∈ FCD(A; B) induces a reloid from A to B in two ways, intersection of outward
relations and union of inward direct products of filter objects:

(RLD)outf =
def⋂ 〈

↑RLD(A;B)
〉

up f ;

(RLD)inf =
def⋃

{A×RLDB | A∈F(A),B ∈F(B),A×FCDB ⊆ f }

Theorem 218. (RLD)inf =
⋃

RLD
{

a×RLD b | a∈ atoms 1F(Src f), b∈ atoms 1F(Dst f), a×FCD b⊆ f
}

.

Proof. Follows from the theorem 161. �

Remark 219. In seems that (RLD)in has smoother properties and is more important than
(RLD)out. (However see also the exercize below for (RLD)in not preserving identities.)

Proposition 220. (RLD)out↑
FCD(A;B)f = ↑RLD(A;B)f for every small sets A, B and binary relation

f ⊆A×B.
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Proof. (RLD)out↑
FCD(A;B)f =

⋂
〈

↑RLD(A;B)
〉

up ↑FCD(A;B)f = ↑RLD(A;B)min up ↑FCD(A;B)f =

↑RLD(A;B)f . �

Lemma 221. F ∈ up (RLD)inf ⇔ ∀a ∈ atoms 1F(Src f), b ∈ atoms 1F(Dst f) : (a[f ]b ⇒

↑RLD(Src f ;Dst f)F ⊇ a×RLD b) for a funcoid f .

Proof.

F ∈up (RLD)inf ⇔ F ∈up
⋃
{

a×RLD b | a∈ atoms 1F(Src f), b∈ atoms 1F(Dst f), a×FCD b⊆ f
}

⇔ ∀a∈ atoms 1F(Src f), b∈ atoms 1F(Dst f): (a×FCD b⊆ f⇒F ∈up(a×RLD b))

⇔ ∀a ∈ atoms 1F(Src f), b∈ atoms 1F(Dst f): ((a×FCD b)� f ⇒↑RLD(Src f ;Dst f)F ⊇

a×RLD b)

⇔ ∀a∈ atoms 1F(Src f), b∈ atoms 1F(Dst f): (a[f ]b⇒↑RLD(Src f ;Dst f)F ⊇ a×RLD b).

�

Surprisingly a funcoid is greater inward than outward:

Theorem 222. (RLD)outf ⊆ (RLD)inf for every funcoid f .

Proof. We need to prove
⋂
〈

↑RLD(Src f ;Dst f)
〉

up f ⊆
⋃

{A×RLDB | A,B ∈F,A×FCDB ⊆ f }.

Let

K ∈up
⋃

{A×RLDB | A,B ∈F,A×FCDB ⊆ f }.

Then

K = ↑RLD(Src f ;Dst f)
⋃

{XA×YB | A,B ∈F,A×FCDB ⊆ f }

=
⋃
{

↑RLD(Src f ;Dst f)(XA× YB) | A,B ∈F,A×FCDB ⊆ f
}

⊇ f

where XA∈ upA, YB∈ upB. So K ∈up f ; K ∈up
⋂
〈

↑RLD(Src f ;Dst f)
〉

up f . �

Theorem 223. (FCD)(RLD)inf = f for every funcoid f .

Proof. For every sets X ∈P(Src f) and Y ∈P(Dst f)

X [(FCD)(RLD)inf ]
∗Y ⇔

(↑Src fX ×RLD ↑Dst fY )� (RLD)inf ⇔

↑RLD(Src f ;Dst f)(X × Y ) � ⋃
{

a ×RLD b | a ∈ atoms 1F(Src f), b ∈ atoms 1F(Dst f),

a×FCD b⊆ f
}

⇔ (*)

∃a∈atoms1F(Src f), b∈atoms1F(Dst f): (a×FCD b⊆ f ∧↑RLD(Src f ;Dst f)(X ×Y )� (a×RLD b)) ⇔

∃a∈ atoms 1F(Src f), b∈ atoms 1F(Dst f): (a[f ]b∧ a⊆↑Src fX ∧ b⊆↑Dst fY ) ⇔

X [f ]∗Y .

* theorem 53 in [15].
Thus (FCD)(RLD)inf = f . �

Remark 224. The above theorem allows to represent funcoids as reloids.

Obvious 225. (RLD)in(A×FCDB)=A×RLDB for every f.o. A, B.

Conjecture 226. (RLD)outIA
FCD= IA

RLD for every f.o. A.

Exercise 1. Prove that generally (RLD)inIA
FCD � IA

RLD.

Conjecture 227. dom (RLD)inf = dom f and im (RLD)inf = im f for every funcoid f .
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Proposition 228. dom(f |A) =A∩dom f for every reloid f and f.o. A∈F(Src f).

Proof. dom(f |A) =dom (FCD)f |A=dom ((FCD)f)|A=A∩dom (FCD)f =A∩ dom f . �

Theorem 229. For every reloids f , g:

1. If im f ⊇ dom g then im(g ◦ f)= im g.

2. If im f ⊆ dom g then dom(g ◦ f) =dom f .

Proof.

1. im(g ◦ f)= im (FCD)(g ◦ f)= im((FCD)g ◦ (FCD)f)= im (FCD)g= im g.

2. Similar. �

Corollary 230. (RLD)in(f |A)= ((RLD)inf)|A) for every funcoid f and f.o. A.

5.3 Galois connections of funcoids and reloids

Theorem 231. (FCD): RLD(A; B) → FCD(A; B) is the lower adjoint of (RLD)in: FCD(A; B) →
RLD(A;B) for every small sets A, B.

Proof. Because (FCD) and (RLD)in are trivially monotone, it’s enough to prove (for every f ∈
RLD(A;B), g ∈ FCD(A;B))

f ⊆ (RLD)in(FCD)f and (FCD)(RLD)ing ⊆ g.

The second formula follows from the fact that (FCD)(RLD)ing= g.

(RLD)in(FCD)f =
⋃
{

a×RLD b | a∈ atoms 1F(A), b∈ atoms 1F(B), a×FCD b⊆ (FCD)f
}

=
⋃
{

a×RLD b | a∈ atoms 1F(A), b∈ atoms 1F(B), a[(FCD)f ]b
}

=
⋃
{

a×RLD b | a∈ atoms 1F(A), b∈ atoms 1F(B), (a×RLD b)� f
}

⊇
⋃
{

p∈ atoms(a×RLD b) | a∈ atoms 1F(A), b∈ atoms 1F(B), p� f
}

=
⋃
{

p∈ atoms 1F(A×B) | p� f
}

=
⋃

{p | p∈ atoms f }= f.

�

Corollary 232.

1. (FCD)
⋃

S=
⋃

〈(FCD)〉S if S ∈PRLD(A;B).

2. (RLD)in
⋂

S=
⋂

〈(RLD)in〉S if S ∈PFCD(A;B).

Proposition 233. (RLD)in(f ∩ (A ×FCD B)) = ((RLD)inf) ∩ (A ×RLD B) for every funcoid f and
f.o. A∈F(Src f) and B ∈F(Dst f).

Proof. (RLD)in(f ∩ (A×FCDB))= ((RLD)inf)∩ (RLD)in(A×FCDB))=((RLD)inf)∩ (A×RLDB). �

Conjecture 234. (RLD)in is not a lower adjoint (in general).

Conjecture 235. (RLD)out is neither a lower adjoint nor an upper adjoint (in general).

See also the corollary 297 below.

6 Continuous morphisms

This section uses the apparatus from the section “Partially ordered dagger categories”.
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6.1 Traditional definitions of continuity

In this section we will show that having a funcoid or reloid ↑f corresponding to a function f we
can express continuity of it by the formula ↑f ◦ µ⊆ ν ◦ ↑f (or similar formulas) where µ and ν are
some spaces.

6.1.1 Pre-topology

Let µ and ν are funcoids representing some pre-topologies. By definition a function f is continuous
map from µ to ν in point a iff

∀ǫ∈up〈ν 〉fa∃δ ∈ up〈µ〉∗{a}: 〈f 〉δ ⊆ ǫ.

Equivalently transforming this formula we get:

∀ǫ∈up〈ν 〉fa :
〈

↑FCD(Src µ;Dst ν)f
〉

〈µ〉↑Src µ{a}⊆ ǫ;
〈

↑FCD(Src µ;Dst ν)f
〉

〈µ〉↑Src µ{a}⊆ 〈ν 〉fa;
〈

↑FCD(Src µ;Dst ν)f
〉

〈µ〉↑Src µ{a}⊆ 〈ν 〉
〈

↑FCD(Src µ;Dst ν)f
〉

↑Src µ{a};
〈

↑FCD(Src µ;Dst ν)f ◦ µ
〉

↑Src µ{a}⊆
〈

ν ◦ ↑FCD(Src µ;Dst ν)f
〉

↑Src µ{a}.

So f is a continuous map from µ to ν in every point of its domain iff

↑FCD(Src µ;Dst ν)f ◦ µ⊆ ν ◦ ↑FCD(Src µ;Dst ν)f.

6.1.2 Proximity spaces

Let µ and ν are proximity (nearness) spaces (which I consider a special case of funcoids). By
definition a function f is a proximity-continuous map (also called equivicontinuous) from µ to ν iff

∀X ∈P(Src µ), Y ∈P(Dst µ): (X[µ]∗Y ⇒ fX [ν]∗fY ).

Equivalently transforming this formula we get:

∀X,Y ∈P℧: (X [µ]∗Y ⇒
〈

↑FCD(Src µ;Dst ν)f
〉

Y ∩ 〈ν 〉
〈

↑FCD(Src µ;Dst ν)f
〉

X � 0F(Dst ν));

∀X,Y ∈P℧: (X [µ]∗Y ⇒
〈

↑FCD(Src µ;Dst ν)f
〉

Y ∩
〈

ν ◦ ↑FCD(Src µ;Dst ν)f
〉

X � 0F(Dst ν));

∀X,Y ∈P℧: (X[µ]∗Y ⇒X
[

ν ◦ ↑FCD(Src µ;Dst ν)f
]∗
〈f 〉Y );

∀X,Y ∈P℧: (X [µ]∗Y ⇒〈f 〉Y
[(

ν ◦ ↑FCD(Src µ;Dst ν)f
)

−1
]∗
X);

∀X,Y ∈P℧: (X [µ]∗Y ⇒〈f 〉Y
[(

↑FCD(Src µ;Dst ν)f
)

−1 ◦ ν−1
]∗
X);

∀X,Y ∈P℧:
(

X[µ]∗Y ⇒↑F(Src µ)X ∩
〈(

↑FCD(Src µ;Dst ν)f
)

−1 ◦ ν−1
〉〈

↑FCD(Src µ;Dst ν)f
〉

Y � 0F(Src µ)
)

;

∀X, Y ∈P℧:
(

X[µ]∗Y ⇒↑F(Src µ)X ∩
〈(

↑FCD(Src µ;Dst ν)f
)

−1 ◦ ν−1 ◦ ↑FCD(Src µ;Dst ν)f
〉

Y � 0F(Src µ)
)

;

∀X,Y ∈P℧:
(

X [µ]∗Y ⇒Y
[(

↑FCD(Src µ;Dst ν)f
)

−1 ◦ ν−1 ◦ ↑FCD(Src µ;Dst ν)f
]∗
X
)

;

∀X,Y ∈P℧:
(

X [µ]∗Y ⇒X
[(

↑FCD(Src µ;Dst ν)f
)

−1 ◦ ν ◦ ↑FCD(Src µ;Dst ν)f
]∗
Y
)

;

µ⊆
(

↑FCD(Src µ;Dst ν)f
)

−1 ◦ ν ◦ ↑FCD(Src µ;Dst ν)f.

So a function f is proximity-continuous iff µ⊆
(

↑FCD(Src µ;Dst ν)f
)

−1 ◦ ν ◦ ↑FCD(Src µ;Dst ν)f .

6.1.3 Uniform spaces

Uniform spaces are a special case of reloids.
Let µ and ν are uniform spaces. By definition a function f is a uniformly continuous map from

µ to ν iff

∀ǫ∈ up ν∃δ ∈up µ∀(x; y)∈ δ: (fx; fy)∈ ǫ.

Equivalently transforming this formula we get:

∀ǫ∈up ν∃δ ∈up µ∀(x; y)∈ δ: {(fx; fy)}⊆ ǫ

∀ǫ∈ up ν∃δ ∈up µ∀(x; y)∈ δ: f ◦ {(x; y)} ◦ f−1⊆ ǫ

∀ǫ∈ up ν∃δ ∈up µ : f ◦ δ ◦ f−1⊆ ǫ

∀ǫ∈up ν: ↑RLD(Dst µ;Dst ν)f ◦ µ ◦
(

↑RLD(Dst µ;Dst ν)f
)

−1⊆ ǫ

↑RLD(Dst µ;Dst ν)f ◦ µ ◦
(

↑RLD(Dst µ;Dst ν)f
)

−1⊆ ν.
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So a function f is uniformly continuous iff ↑RLD(Dst µ;Dst ν)f ◦ µ ◦
(

↑RLD(Dst µ;Dst ν)f
)

−1⊆ ν.

6.2 Our three definitions of continuity

I have expressed different kinds of continuity with simple algebraic formulas hiding the complexity
of traditional epsilon-delta notation behind a smart algebra. Let’s summarize these three algebraic
formulas:

Let µ and ν are endomorphisms of some partially ordered precategory. Continuous functions
can be defined as these morphisms f of this precategory which conform to the following formula:

f ∈C(µ; ν)⇔ f ∈Mor(Ob µ;Ob ν)∧ f ◦ µ⊆ ν ◦ f.

If the precategory is a partially ordered dagger precategory then continuity also can be defined in
two other ways:

f ∈C′(µ; ν) ⇔ f∈Mor(Ob µ;Ob ν)∧ µ⊆ f † ◦ ν ◦ f ;

f ∈C′′(µ; ν) ⇔ f∈Mor(Ob µ;Ob ν)∧ f ◦ µ◦ f †⊆ ν.

Remark 236. In the examples (above) about funcoids and reloids the “dagger functor” is the

inverse of a funcoid or reloid, that is f †= f−1.

Proposition 237. Every of these three definitions of continuity forms a sub-precategory (subcat-
egory if the original precategory is a category).

Proof.

C. Let f ∈C(µ; ν), g ∈C(ν;π). Then f ◦ µ⊆ ν ◦ f , g ◦ ν ⊆π ◦ g; g ◦ f ◦ µ⊆ g ◦ ν ◦ f ⊆π ◦ g ◦ f .
So g ◦ f ∈C(µ;π). 1Ob µ∈C(µ; µ) is obvious.

C
′. Let f ∈C′(µ; ν), g ∈C′(ν;π). Then µ⊆ f † ◦ ν ◦ f , ν ⊆ g† ◦π ◦ g;

µ⊆ f † ◦ g† ◦ π ◦ g ◦ f ; µ⊆ (g ◦ f)† ◦π ◦ (g ◦ f).

So g ◦ f ∈C′(µ;π). 1Ob µ∈C′(µ; µ) is obvious.

C′′. Let f ∈C′′(µ; ν), g ∈C′′(ν;π). Then f ◦ µ ◦ f †⊆ ν, g ◦ ν ◦ g†⊆ π;

g ◦ f ◦ µ ◦ f † ◦ g†⊆π; (g ◦ f) ◦ µ ◦ (g ◦ f)†⊆ π.

So g ◦ f ∈C′′(µ;π). 1Ob µ∈C′′(µ; µ) is obvious. �

Proposition 238. For a monovalued morphism f of a partially ordered dagger category and its
endomorphisms µ and ν

f ∈C′(µ; ν)⇒ f ∈C(µ; ν)⇒ f ∈C′′(µ; ν).

Proof. Let f ∈C′(µ;ν). Then µ⊆ f †◦ν ◦ f ; f ◦ µ⊆ f ◦ f †◦ν ◦ f ⊆1Dst f ◦ν ◦ f =ν ◦ f ; f ∈C(µ;ν).
Let f ∈C(µ; ν). Then f ◦ µ⊆ ν ◦ f ; f ◦ µ ◦ f †⊆ ν ◦ f ◦ f †⊆ ν ◦ 1Dst f = ν; f ∈C′′(µ; ν). �

Proposition 239. For an entirely defined morphism f of a partially ordered dagger category and
its endomorphisms µ and ν

f ∈C′′(µ; ν)⇒ f ∈C(µ; ν)⇒ f ∈C′(µ; ν).

Proof. Let f ∈C′′(µ;ν). Then f ◦ µ◦ f †⊆ν; f ◦ µ◦ f †◦ f ⊆ν ◦ f ; f ◦ µ◦1Src f ⊆ν ◦ f ; f ◦ µ⊆ν ◦ f ;
f ∈C(µ; ν).

Let f ∈C(µ; ν). Then f ◦ µ⊆ ν ◦ f ; f † ◦ f ◦ µ⊆ f † ◦ ν ◦ f ; 1Src f ◦ µ⊆ f † ◦ ν ◦ f ; µ⊆ f † ◦ ν ◦ f ;
f ∈C′(µ; ν). �

For entirely defined monovalued morphisms our three definitions of continuity coincide:

Theorem 240. If f is a monovalued and entirely defined morphism then

f ∈C′(µ; ν)⇔ f ∈C(µ; ν)⇔ f ∈C′′(µ; ν).
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Proof. From two previous propositions. �

The classical general topology theorem that uniformly continuous function from a uniform
space to an other uniform space is near-continuous regarding the proximities generated by the
uniformities, generalized for reloids and funcoids takes the following form:

Theorem 241. If an entirely defined morphism of the category of reloids f ∈C′′(µ; ν) for some
endomorphisms µ and ν of the category of reloids, then (FCD)f ∈C′((FCD)µ; (FCD)ν).

Exercise 2. I leave a simple exercise for the reader to prove the last theorem.

6.3 Continuousness of a restricted morphism

Consider some partially ordered semigroup. (For example it can be the semigroup of funcoids or
semigroup of reloids regarding the composition.) Consider also some lattice (lattice of objects).
(For example take the lattice of set theoretic filters.)

We will map every object A to identity element IA of the semigroup (for example identity
funcoid or identity reloid). For identity elements we will require

1. IA ◦ IB= IA∩B;

2. f ◦ IA⊆ f ; IA ◦ f ⊆ f .

In the case when our semigroup is “dagger” (that is is a dagger precategory) we will require also
(IA)

†= IA.
We can define restricting an element f of our semigroup to an object A by the formula f |A=

f ◦ IA.
We can define rectangular restricting an element µ of our semigroup to objects A and B as

IB ◦ µ◦ IA. Optionally we can define direct product A×B of two objects by the formula (true for
funcoids and for reloids):

µ∩ (A×B)= IB ◦ µ ◦ IA.

Square restricting of an element µ to an object A is a special case of rectangular restricting and
is defined by the formula IA ◦ µ ◦ IA (or by the formula µ∩ (A×A)).

Theorem 242. For every elements f , µ, ν of our semigroup and an object A

1. f ∈C(µ; ν)⇒ f |A∈C(IA ◦ µ ◦ IA; ν);

2. f ∈C′(µ; ν)⇒ f |A∈C′(IA◦ µ ◦ IA; ν);

3. f ∈C′′(µ; ν)⇒ f |A∈C′′(IA ◦ µ ◦ IA; ν).

(Two last items are true for the case when our semigroup is dagger.)

Proof.

1. f |A∈C(IA ◦ µ ◦ IA; ν) ⇔ f |A◦IA ◦ µ ◦ IA ⊆ ν ◦ f |A⇔f ◦ IA ◦ IA ◦ µ ◦ IA ⊆ ν ◦ f |A⇔
f ◦ IA ◦ µ ◦ IA⊆ ν ◦ f ◦ IA⇐ f ◦ IA◦ µ⊆ ν ◦ f⇐ f ◦ µ⊆ ν ◦ f⇔ f ∈C(µ; ν).

2. f |A∈C′(IA ◦ µ ◦ IA; ν)⇔ IA ◦ µ ◦ IA ⊆ (f |A)† ◦ ν ◦ f |A⇐IA ◦ µ ◦ IA ⊆ (f ◦ IA)† ◦ ν ◦ f ◦ IA⇔

IA ◦ µ ◦ IA⊆ IA ◦ f † ◦ ν ◦ f ◦ IA⇐ µ⊆ f † ◦ ν ◦ f⇔ f ∈C′(µ; ν).

3. f |A∈C′′(IA ◦ µ ◦ IA; ν)⇔ f |A◦IA ◦ µ ◦ IA ◦ (f |A)†⊆ ν⇔ f ◦ IA ◦ IA ◦ µ ◦ IA ◦ IA ◦ f †⊆ ν⇔

f ◦ IA ◦ µ ◦ IA ◦ f †⊆ ν⇐ f ◦ µ ◦ f †⊆ ν⇔ f ∈C′′(µ; ν). �

7 Connectedness regarding funcoids and reloids

Definition 243. I will call endo-reloids and endo-funcoids reloids and funcoids with the same
source and destination.
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7.1 Some lemmas

Lemma 244. If ¬(A[f ]∗B) ∧ A ∪ B ∈ up(dom f ∪ im f) then f is closed on ↑UA for a funcoid
f ∈FCD(U ;U) and sets A,B ∈PU (for every small set U).

Proof. ¬(A[f ]∗B) ⇔ ↑UB ∩ 〈f 〉↑UA = 0F(U) ⇒ (dom f ∪ im f) ∩ ↑UB ∩ 〈f 〉∗A = 0F(U) ⇒

((dom f ∪ im f) \ ↑UA)∩ 〈f 〉∗A=0F(U)⇔〈f 〉∗A⊆↑UA. �

Corollary 245. If ¬(A[f ]∗B) ∧ A ∪ B ∈ up(dom f ∪ im f) then f is closed on ↑U(A \ B) for a
funcoid f and sets A,B ∈PU (for every small set U).

Proof. Let ¬(A[f ]∗B) ∧ A ∪B ∈ up(dom f ∪ im f). Then ¬((A \B)[f ]∗B) ∧ ↑U((A \ B) ∪B) ∈
up(dom f ∪ im f). �

Lemma 246. If ¬(A[f ]∗B)∧A∪B∈up(dom f ∪ im f) then ¬(A[fn]∗B) for every whole positive n.

Proof. Let ¬(A[f ]∗B) ∧ A ∪ B ∈ up(dom f ∪ im f). From the above proposition 〈f 〉∗A ⊆ ↑UA.

↑UB ∩ 〈f 〉↑UA = 0F(U), consequently 〈f 〉∗A ⊆ ↑U(A \ B). Because (by the above corollary)

f is closed on ↑U(A \ B), then 〈f 〉〈f 〉↑UA ⊆ ↑U(A \ B), 〈f 〉〈f 〉〈f 〉↑UA ⊆ ↑U(A \ B), etc. So

〈fn〉↑UA⊆↑U(A \B), ↑UB≍〈fn〉↑UA, ¬(A[fn]∗B). �

7.2 Endomorphism series

Definition 247. S1(µ)=
def

µ∪ µ2∪ µ3∪	 for an endomorphism µ of a precategory with countable
union of morphisms.

Definition 248. S(µ)=
def

µ0 ∪ S1(µ) = µ0 ∪ µ ∪ µ2 ∪ µ3 ∪ 	 where µ0=
def

IOb µ (identity morphism
for the object Ob µ) where Ob µ is the object of endomorphism µ for an endomorphism µ of a
category with countable union of morphisms.

I call S1 and S endomorphism series .
We will consider the collection of all binary relations (on a set ℧), as well as the collection of

all funcoids and the collection of all reloids on a fixed set, as categories with single object ℧ and
the identity morphisms I℧, I

FCD(Ω), IRLD(Ω).

Proposition 249. The relation S(µ) is transitive for the category of binary relations.

Proof.

S(µ) ◦S(µ) = µ0 ◦S(µ)∪ µ ◦S(µ)∪ µ2 ◦S(µ)∪	
= (µ0∪ µ1∪ µ2∪	 )∪ (µ1∪ µ2∪ µ3∪	 )∪ (µ2∪ µ3∪ µ4∪	 )

= µ0∪ µ1∪ µ2∪	
= S(µ).

�

7.3 Connectedness regarding binary relations

Before going to research connectedness for funcoids and reloids we will excurse into the basic special
case of connectedness regarding binary relations on a set ℧.

Definition 250. A set A is called (strongly) connected regarding a binary relation µ when

∀X ∈P(dom µ) \ {∅}, Y ∈P(im µ) \ {∅}: (X ∪Y =A⇒X [µ]Y ).

Let ℧ is a set.
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Definition 251. Path between two elements a, b∈℧ in a set A⊆℧ through binary relation µ is
the finite sequence x0	xn where x0= a, xn= b for n∈N and xi(µ∩A×A)xi+1 for every i=0,	 ,

n− 1. n is called path length.

Proposition 252. There exists path between every element a∈℧ and that element itself.

Proof. It is the path consisting of one vertex (of length 0). �

Proposition 253. There is a path from element a to element b in a set A through a binary relation
µ iff a(S(µ∩A×A))b (that is (a, b)∈S(µ∩A×A)).

Proof.

⇒. If exists a path from a to b, then {b} ⊆ 〈(µ ∩ A × A)n〉{a} where n is the path length.
Consequently {b}⊆ 〈S(µ∩A×A)〉{a}; a(S(µ∩A×A))b.

⇐. If a(S(µ∩A×A))b then exists n∈N such that a (µ∩A×A)n b. By definition of composi-
tion of binary relations this means that there exist finite sequence x0	xn where x0=a, xn=b

for n∈N and xi (µ∩A×A)xi+1 for every i=0,	 ,n−1. That is there is path from a to b. �

Theorem 254. The following statements are equivalent for a relation µ and a set A:

1. For every a, b∈A there is a path between a and b in A through µ.

2. S(µ∩A×A)⊇A×A.

3. S(µ∩A×A) =A×A.

4. A is connected regarding µ.

Proof.

(1)⇒(2). Let for every a, b ∈ A there is a path between a and b in A through µ. Then
a(S(µ∩A×A))b for every a, b∈A. It is possible only when S(µ∩A×A)⊇A×A.

(3)⇒(1). For every two vertices a and b we have a (S(µ∩A×A)) b. So (by the previous
theorem) for every two vertices a and b exist path from a to b.

(3)⇒(4). Suppose that ¬(X[µ ∩A×A]Y ) for some X, Y ∈ P℧ \ {∅} such that X ∪ Y =A.
Then by a lemma ¬(X[(µ∩A×A)n]Y ) for every n∈N. Consequently ¬(X[S(µ∩A×A)]Y ).
So S(µ∩A×A)� A×A.

(4)⇒(3). If 〈S(µ∩A×A)〉{v}=A for every vertex v then S(µ ∩A×A) =A×A. Consider

the remaining case when V =
def

〈S(µ ∩ A × A)〉{v} ⊂ A for some vertex v. Let W = A \ V .
If card A = 1 then S(µ ∩ A × A) ⊇ (=) = A × A; otherwise W � ∅. Then V ∪W = A and
so V [µ]W what is equivalent to V [µ ∩ A × A]W that is 〈µ ∩ A × A〉V ∩ W � ∅. This is
impossible because 〈µ ∩ A × A〉V = 〈µ ∩ A × A〉〈S(µ ∩ A × A)〉V = 〈S1(µ ∩ A × A)〉V ⊆
〈S(µ∩A×A)〉V =V .

(2)⇒(3). Because S(µ∩A×A)⊆A×A. �

Corollary 255. A set A is connected regarding a binary relation µ iff it is connected regarding
µ∩A×A.

Definition 256. A connected component of a set A regarding a binary relation F is a maximal
connected subset of A.

Theorem 257. The set A is partitioned into connected components (regarding every binary
relation F ).

Proof. Consider the binary relation a∼b⇔a (S(F )) b∧ b (S(F ))a. ∼ is a symmetric, reflexive, and
transitive relation. So all points of A are partitioned into a collection of sets Q. Obviously each
component is (strongly) connected. If a set R⊆A is greater than one of that connected components
A then it contains a point b∈B where B is some other connected component. Consequently R is
disconnected. �
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Proposition 258. A set is connected (regarding a binary relation) iff it has one connected com-
ponent.

Proof. Direct implication is obvious. Reverse is proved by contradiction. �

7.4 Connectedness regarding funcoids and reloids

Definition 259. S1
∗(µ)=

⋂
{

↑RLD(Ob µ;Ob µ)S1(M) | M ∈up µ
}

for an endo-reloid µ.

Definition 260. Connectivity reloid S∗(µ) for an endo-reloid µ is defined as follows:

S∗(µ)=
⋂
{

↑RLD(Ob µ;Ob µ)S(M) | M ∈up µ
}

.

Remark 261. Do not mess the word connectivity with the word connectedness which means being
connected.1

Proposition 262. S∗(µ) = IRLD(Ob µ)∪S1
∗(µ) for every endo-reloid µ.

Proof. Follows from the theorem about distributivity of ∪ regarding
⋂

(see [15]). �

Proposition 263. S∗(µ) =S(µ) if µ is a discrete reloid.

Proof. S∗(µ) =
⋂

{S(µ)}=S(µ). �

Definition 264. A filter object A∈F(Ob µ) is called connected regarding an endo-reloid µ when
S∗(µ∩ (A×RLDA))⊇A×RLDA.

Obvious 265. A filter object A∈Ob µ is connected regarding a reloid µ iff S∗(µ∩ (A×RLDA))=
A×RLDA.

Definition 266. A filter object A is called connected regarding an endo-funcoid µ when

∀X ,Y ∈F(Ob µ) \
{

0F(Ob µ)
}

: (X ∪Y =A⇒X [µ]Y).

Proposition 267. Let A be a set. The f.o. ↑Ob µA is connected regarding an endo-funcoid µ iff

∀X ,Y ∈P(Ob µ) \ {∅}: (X ∪Y =A⇒X[µ]∗Y ).

Proof.

⇒. Obvious.

⇐. Follows from co-separability of filter objects. �

Theorem 268. The following are equivalent for every set A and binary relation µ:

1. A is connected regarding binary relation µ.

2. ↑Ob µA is connected regarding ↑RLD(Ob µ;Ob µ)µ.

3. ↑Ob µA is connected regarding ↑FCD(Ob µ;Ob µ)µ.

Proof.

(1)⇔(2). S∗
(

↑RLD(Ob µ;Ob µ)µ ∩ (↑Ob µA ×RLD ↑Ob µA)
)

= S∗
(

↑RLD(Ob µ;Ob µ)(µ ∩ A ×

A)
)

= ↑RLD(Ob µ;Ob µ)S(µ ∩ A × A). So S∗
(

↑RLD(Ob µ;Ob µ)µ ∩ (↑Ob µA ×RLD ↑Ob µA)
)

⊇

↑Ob µA ×RLD ↑Ob µA ⇔ ↑RLD(Ob µ;Ob µ)S(µ ∩ A × A) ⊇ ↑RLD(Ob µ;Ob µ)(A × A) =
↑Ob µA×RLD ↑Ob µA.

(1)⇔(3). Follows from the previous proposition. �

1. In some math literature these two words are used interchangeably.
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Next is conjectured a statement more strong than the above theorem:

Conjecture 269. Let A is an f.o. and F is a binary relation on A×B for some sets A, B.
A is connected regarding ↑FCD(A;B)F iff A is connected regarding ↑RLD(A;B)F .

Obvious 270. A filter object A is connected regarding a reloid µ iff it is connected regarding the
reloid µ∩ (A×RLDA).

Obvious 271. A filter object A is connected regarding a funcoid µ iff it is connected regarding
the funcoid µ∩ (A×FCDA).

Theorem 272. A filter object A is connected regarding a reloid f iff ↑Ob fA is connected regarding

every F ∈
〈

↑RLD(Ob f ;Ob f)
〉

up f .

Proof.

⇒. Obvious.

⇐. ↑Ob fA is connected regarding ↑RLD(Ob f ;Ob f)F iff S(F )=F 0∪F 1∪F 2∪	 ∈up(A×RLDA).

S∗(f)=
⋂
{

↑RLD(Ob µ;Ob µ)S(F ) | F ∈up f
}

⊇
⋂

{A×RLDA | F ∈up f }=A×RLDA. �

Conjecture 273. A filter object A is connected regarding a funcoid µ iff A is connected for every

F ∈
〈

↑FCD(Ob µ;Ob µ)
〉

up µ.

The above conjecture is open even for the case when A is a principal f.o.

Conjecture 274. A filter object A is connected regarding a reloid f iff it is connected regarding
the funcoid (FCD)f .

The above conjecture is true in the special case of principal filters:

Proposition 275. A f.o. ↑Ob µA (for a set A) is connected regarding an endo-reloid f iff it is
connected regarding the endo-funcoid (FCD)f .

Proof. ↑Ob fA is connected regarding a reloid f iff A is connected regarding every F ∈up f that

is when (taken in account that connectedness for ↑RLD(Ob f ;Ob f)F is the same as connectedness of

↑FCD(Ob f ;Ob f)F )

∀F ∈ up f∀X ,Y ∈F(Ob f) \
{

0F(Ob f)
}

: (X ∪Y = ↑Ob fA⇒X
[

↑FCD(Ob f ;Ob f)F
]

Y) ⇔

∀X ,Y ∈F(Ob f) \
{

0F(Ob f)
}

∀F ∈up f : (X ∪Y = ↑Ob fA⇒X
[

↑FCD(Ob f ;Ob f)F
]

Y) ⇔

∀X ,Y ∈F(Ob f) \
{

0F(Ob f)
}

: (X ∪Y = ↑Ob fA⇒∀F ∈up f :X
[

↑FCD(Ob f ;Ob f)F
]

Y) ⇔

∀X ,Y ∈F(Ob f) \
{

0F(Ob f)
}

: (X ∪Y = ↑Ob fA⇒X [(FCD)f ]Y)

that is when the set ↑Ob fA is connected regarding the funcoid (FCD)f . �

7.5 Algebraic properties of S and S
∗

Theorem 276. S∗(S∗(f))=S∗(f) for every endo-reloid f .

Proof. S∗(S∗(f)) =
⋂
{

↑RLD(Ob f ;Ob f)S(R) | R ∈ up S∗(f)
}

⊆
⋂
{

↑RLD(Ob f ;Ob f)S(R) | R ∈

{S(F ) | F ∈ up f }
}

=
⋂
{

↑RLD(Ob f ;Ob f)S(S(F )) | F ∈ up f
}

=
⋂
{

↑RLD(Ob f ;Ob f)S(F ) | F ∈

up f
}

=S∗(f).

So S∗(S∗(f))⊆S∗(f). That S∗(S∗(f))⊇S∗(f) is obvious. �

Corollary 277. S∗(S(f))=S(S∗(f))=S∗(f) for any endo-reloid f .

Proof. Obviously S∗(S(f))⊇S∗(f) and S(S∗(f))⊇S∗(f).
But S∗(S(f))⊆S∗(S∗(f))=S∗(f) and S(S∗(f))⊆S∗(S∗(f))=S∗(f). �
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Conjecture 278. S(S(f))=S(f) for

1. every endo-reloid f ;

2. every endo-funcoid f .

Conjecture 279. For every endo-reloid f

1. S(f) ◦S(f) =S(f);

2. S∗(f) ◦S∗(f)=S∗(f);

3. S(f) ◦S∗(f)=S∗(f) ◦S(f)=S∗(f).

Conjecture 280. S(f) ◦S(f)=S(f) for every endo-funcoid f .

8 Postface

8.1 Misc

See this Web page for my research plans: http://www.mathematics21.org/agt-plans.html
I deem that now the most important research topics in Algebraic General Topology are:

• to solve the open problems mentioned in this work;

• define and research compactness of funcoids.

• research are n-ary (where n is an ordinal, or more generally an index set) funcoids and
reloids (plain funcoids and reloids are binary by analogy with binary relations).

We should also research relationships between complete funcoids and complete reloids.
All my research of funcoids and reloids is presented at
http://www.mathematics21.org/algebraic-general-topology.html

Appendix A Some counter-examples

For further examples we will use the filter object ∆ defined by the formula

∆=
⋂
{

↑F(R)(−ε; ε) | ε∈R, ε > 0
}

.

I also will denote Ω(A) the Fréchet f.o. on the set A.

Example 281. There exist a funcoid f and a set S of funcoids such that f ∩
⋃

S � ⋃ 〈f ∩ 〉S.

Proof. Let f =∆×FCD ↑F(R){0} and S =
{

↑FCD(R;R)((ε; +∞)× {0}) | ε > 0
}

. Then f ∩
⋃

S =

↑FCD(R;R)(∆ × ↑F(R){0}) ∩ ↑FCD(R;R)((0; +∞) × {0}) = (∆ ∩ ↑F(R)(0; +∞)) ×FCD ↑F(R){0} �
0FCD(R;R) while

⋃

〈f ∩ 〉S=
⋃
{

0FCD(R;R)
}

=0FCD(R;R). �

Conjecture 282. There exist a set R of funcoids and a funcoid f such that f ◦
⋃

R� ⋃ 〈f ◦ 〉R.

Example 283. There exist a set R of funcoids and f.o. X and Y such that

1. X [
⋃

R]Y ∧ ∄f ∈R:X [f ]Y;

2. 〈
⋃

R〉X ⊃
⋃

{〈f 〉X | f ∈R}.

Proof.

1. Let X = ∆ and Y = 1F(R). Let R =
{

↑FCD(R;R)((ε; +∞) × R) | ε ∈ R, ε > 0
}

. Then
⋃

R= ↑FCD(R;R)((0;+∞)×R). So X [
⋃

R]Y and ∀f ∈R:¬(X [f ]Y).

2. With the same X and R we have 〈
⋃

R〉X = R and 〈f 〉X = 0F(R) for every f ∈ R, thus
⋃

{〈f 〉X | f ∈R}=0F(R). �
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Theorem 284. For a f.o. a we have a×RLD a⊆ IRLD(Base(a)) only in the case if a=0F(Base(a)) or
a is a trivial atomic f.o. (that is corresponds to an one-element set).

Proof. If a×RLDa⊆IRLD(Base(a)) then existsm∈up(a×RLDa) such thatm⊆IBase(a). Consequently
exist A,B ∈upa such that A×B ⊆ IBase(a) what is possible only in the case when A=B=a is an
one-element set or empty set. �

Corollary 285. Reloidal product of a non-trivial atomic filter object with itself is non-atomic.

Proof. Obviously (a ×RLD a) ∩ IRLD(Base(a)) � 0F(Base(a)) and (a ×RLD a) ∩ IRLD(Base(a)) ⊂
a×RLD a. �

Example 286. (RLD)inf � (RLD)outf for a funcoid f .

Proof. Let f = IFCD(N). Then (RLD)inf =
⋃
{

a ×RLD a | a ∈ atoms 1F(N)
}

and (RLD)outf =

IRLD(N). But as we shown above a ×RLD a * IRLD(N) for non-trivial f.o. a, and so (RLD)inf *
(RLD)outf . �

Proposition 287. IFCD(N)∩ ↑FCD(N;N)((N×N) \ IN)= IΩ(N)
FCD � 0FCD(N;N).

Proof. Note that
〈

IΩ(N)
FCD

〉

X =X ∩Ω(N).

Let f = IFCD(N), g= ↑FCD(N;N)((N×N) \ IN).
Let x is a non-trivial atomic f.o. If X ∈upx then cardX> 2 (In fact, X is infinite but we don’t

need this.) and consequently 〈g〉∗X =1F(N). Thus 〈g〉x=1F(N). Consequently

〈f ∩ g〉x= 〈f 〉x∩ 〈g〉x= x∩ 1F(℧)=x.

Also
〈

IΩ(N)
FCD

〉

x= x∩Ω(N)= x.

Let now x is a trivial f.o. Then 〈f 〉x= x and 〈g〉x=1F(N) \x. So

〈f ∩ g〉x= 〈f 〉x∩ 〈g〉x=x∩
(

1F(N) \x
)

=0F(N).

Also
〈

IΩ(N)
FCD

〉

x= x∩Ω(N)= 0F(N).

So 〈f ∩ g〉x=
〈

IΩ(N)
FCD

〉

x for every atomic f.o. x. Thus f ∩ g= IΩ(N)
FCD . �

Example 288. There exist binary relations f and g such that ↑FCD(A;B)f ∩↑FCD(A;B)g� f ∩ g for
some sets A, B such that f , g ⊆A×B.

Proof. From the proposition above. �

Example 289. There exists a discrete funcoid which is not a complemented element of the lattice
of funcoids.

Proof. I will prove that quasi-complement (see [15] for the definition of quasi-complement) of the

funcoid IFCD(N) is not its complement. We have:
(

IFCD(N)
)∗

=
⋃
{

c∈FCD | c≍ IFCD(N)
}

⊇
⋃
{

↑N{α}×FCD ↑N{β} | α, β ∈N, {α}×FCD {β}≍ IFCD(N)
}

=
⋃

{↑N{α}×FCD ↑N{β} | α, β ∈N, α� β}

= ↑FCD(N;N)
⋃

{{α}× {β} | α, β ∈N, α� β}

= ↑FCD(N;N)(N×N \ IN)

(used the corollary 111). But by proved above

(

IFCD(N)
)∗

∩ IFCD(N)� 0F(N). �

Example 290. There exists funcoid h such that uph is not a filter.

Some counter-examples 49



Proof. Consider the funcoid h= IΩ(N)
FCD . We have (from the proposition) that f ∈uph and g∈up f ,

but f ∩ g= ∅ � uph. �

Example 291. There exists a funcoid h� 0FCD(A;B) such that (RLD)outh=0RLD(A;B).

Proof. Consider h= IΩ(N)
FCD . By proved above h= f ∩ g where f = IFCD(N), g=↑FCD(N;N)((N×N)\

IN).
We have f , g ∈ uph.
So (RLD)outh =

⋂
〈

↑RLD(N;N)
〉

up h ⊆ ↑RLD(N;N)(f ∩ g) = 0RLD(N;N); and thus (RLD)outh =

0RLD(N;N). �

Example 292. There exists a funcoid h such that (FCD)(RLD)outh� h.

Proof. Follows from the previous example. �

Example 293. (RLD)in(FCD)f � f for some convex reloid f .

Proof. Let f = IRLD(N). Then (FCD)f = IFCD(N). Let a is some nontrivial atomic f.o. Then

(RLD)in(FCD)f ⊇ a×RLD a * IRLD(N) and thus (RLD)in(FCD)f * f . �

Remark 294. Before I found the last counter-example, I thought that (RLD)in is an isomorphism
from the set of of funcoids to the set of convex reloids. As this conjecture failed, we need an other
way to characterize the set of reloids isomorphic to funcoids.

Example 295. There exist funcoids f and g such that

(RLD)out(g ◦ f)� (RLD)outg ◦ (RLD)outf.

Proof. Take f = IΩ(N)
FCD and g = 1F(N) ×FCD ↑N{α} for some α ∈N. Then (RLD)outf = 0RLD(N;N)

and thus (RLD)outg ◦ (RLD)outf =0RLD(N;N).

We have g ◦ f =Ω(N)×FCD ↑N{α}.

Let’s prove (RLD)out(Ω(N)×FCD ↑N{α}) =Ω(N)×RLD ↑N{α}.

Really: (RLD)out(Ω(N)×FCD ↑N{α}) =
⋂

↑RLD(N;N)up(Ω(N)×FCD {α}) =
⋂
{

↑RLD(N;N)(K ×

{α}) | K ∈upΩ(N)
}

.

F ∈ up
⋂
{

↑RLD(N;N)(K × {α}) | K ∈ up Ω(N)
}

⇔ F ∈ up(
⋂

{↑NK | K ∈

upΩ(N)}×RLD ↑N{α}) for every F ∈P(N×N). Thus
⋂

{

↑RLD(N;N)(K × {α}) | K ∈ up Ω(N)
}

=
⋂

{↑NK | K ∈ up Ω(N)} ×RLD ↑N{α} =

Ω(N)×RLD ↑N{α}.

So (RLD)out(Ω(N)×FCD ↑N{α})=Ω(N)×RLD ↑N{α}.

Thus (RLD)out(g ◦ f) =Ω(N)×RLD {α}� 0RLD(N;N). �

Example 296. (FCD) does not preserve finite meets.

Proof. (FCD)(IRLD(N)∩ (1RLD(N;N) \ IRLD(N)))= (FCD)0RLD(N;N)=0FCD(N;N).
On the other hand

(FCD)IRLD(N)∩ (FCD)(1RLD(N;N) \ IRLD(N)))= IFCD(N)∩ (1FCD(N;N) \ IFCD(N))= IΩ(N)
FCD � 0FCD(N;N)

(used the proposition 205). �

Corollary 297. (FCD) is not an upper adjoint (in general).

Considering restricting polynomials (considered as reloids) to atomic filter objects, it is simple
to prove that each that restriction is injective if not restricting a constant polynomial. Does this
hold in general? No, see the following example:
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Example 298. There exists a monovalued reloid with atomic domain which is neither injective
nor constant (that is not a restriction of a constant function).

Proof. (based on [16]) Consider the function F ∈N
N×N defined by the formula (x; y)� x.

Let ωx is a non-principal atomic filter object on the vertical line {x}×N for every x∈N.
Let T is the collection of such sets Y that Y ∩ ({x}×N)∈upωx for all but finitely many vertical

lines. Obviously T is a filter.
Let ω ∈ atomsup−1T .
For every x∈N we have some Y ∈T for which ({x}×N)∩Y =∅ and thus ({x}×N)∩upω= ∅.

Let g=
(

↑RLD(N;N)F
)

|ω. If g is constant, then there exist a constant function G∈up g and F ∩G

is also constant. Obviously dom ↑RLD(N;N)(F ∩ G) ⊇ ω. The function F ∩ G cannot be constant

because otherwise ω ⊆ dom ↑RLD(N;N)(F ∩G)⊆ ↑N{x} ×N for some x ∈N what is impossible by
proved above. So g is not constant.

Suppose there g is injective. Then there exists an injection G∈up g. So domG intersects each
vertical line by atmost one element that is domG intersects every vertical line by the whole line
or the line without one element. Thus domG ∈ T ⊆ up ω and consequently domG � up ω what is
impossible.

Thus g is neither injective nor constant. �

9 Second product. Oblique product

Definition 299. A×F
RLDB=

def
(RLD)out(A×FCDB) for every f.o. A and B. I will call it second direct

product of filter objects A and B.

Remark 300. The letter F is the above definition is from the word “funcoid”. It signifies that it
seems to be impossible to define A×F

RLDB directly without refering to the direct product A×FCDB
of funcoids.

Definition 301. Oblique products of f.o. A and B are defined as

A ⋉ B =
⋂
{

↑RLD(Base(A);Base(B))f | f ∈ P(Base(A) × Base(B)), ∀B ∈ up B:

↑FCD(Base(A);Base(B))f ⊇A×FCD ↑Base(B)B
}

;

A ⋊ B =
⋂
{

↑RLD(Base(A);Base(B))f | f ∈ P(Base(A) × Base(B)), ∀A ∈ up A:

↑FCD(Base(A);Base(B))f ⊇↑Base(A)A×FCDB
}

.

Proposition 302. A×F
RLDB ⊆A⋉B ⊆A×RLDB for every f.o. A, B.

Proof. A ⋉ B ⊆
⋂
{

↑RLD(Base(A);Base(B))f | f ∈ P(Base(A) × Base(B)), ∀A ∈ up A, ∀B ∈ up B:

↑FCD(Base(A);Base(B))f ⊇ ↑Base(A)A ×FCD ↑Base(B)B
}

⊆
⋂
{

↑Base(A)A ×FCD ↑Base(B)B | A ∈ up A,

B ∈ upB
}

=A×RLDB.
A ⋉ B ⊇

⋂
{

↑RLD(Base(A);Base(B))f | f ∈ P(Base(A) × Base(B)), ↑FCD(Base(A);Base(B))f ⊇

A×FCDB
}

=
⋂
{

↑RLD(Base(A);Base(B))f | f ∈up(A×FCDB)
}

=(RLD)out(A×FCDB)=A×F
RLDB. �

Conjecture 303. A×F
RLDB⊂A⋉B for some f.o. A, B.

A stronger conjecture:

Conjecture 304. A×F
RLDB⊂A⋉B⊂A×RLDB for some f.o. A, B. Particularly, is this formula

true for A=B=∆∩↑R(0;+∞)?

The above conjecture is similar to Fermat Last Theorem as having no value by itself but being
somehow challenging to prove it.

Example 305. A⋉B⊂A×RLDB for some f.o. A, B.
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Proof. It’s enough to prove A⋉B � A×RLDB.
Let ∆+=∆∩ (0;+∞). Let A=B=∆+.
Let K =(>)|R×R.
Obviously K � up(A×RLDB).

A ⋉ B ⊆ ↑RLD(Base(A);Base(B))K and thus K ∈ up(A ⋉ B) because ↑FCD(Base(A);Base(B))K ⊇

∆+×FCD ↑Base(B)B=A×FCD ↑Base(B)B for B=(0;+∞).
Thus A⋉B � A×RLDB. �

Example 306. A×F
RLDB⊂A×RLDB for some f.o. A, B.

Proof. This follows from the above example. �

Proposition 307. (A⋉B)∩ (A⋊B)=A×F
RLDB for every f.o. A, B.

Proof. (A ⋉ B) ∩ (A ⋊ B) ⊆
⋂
{

↑RLD(Base(A);Base(B))f | f ∈ P(Base(A) × Base(B)),

↑FCD(Base(A);Base(B))f ⊇ A ×FCD B
}

=
⋂
{

↑RLD(Base(A);Base(B))f | f ∈ up(A ×FCD B)
}

=
(RLD)out(A×FCDB)=A×F

RLDB.
To finish the proof we need to show A⋉ B ⊇A×F

RLDB and A⋊B ⊇A×F
RLD B. By symmetry

it’s enough to show A⋉B ⊇A×F
RLDB what is proved above. �

Example 308. (A⋉B)∪ (A⋊B)⊂A×RLDB for some f.o. A, B.

Proof. (based on [3]) Let A=B=Ω(N). It’s enough to prove (A⋉B)∪ (A⋊B)� A×RLDB.
Let X ∈upA, Y ∈upB that is X ∈Ω(N), Y ∈Ω(N).
Removing one element x from X produces a set P . Removing one element y from Y produces

a set Q. Obviously P ∈Ω(N), Q∈Ω(N).
Obviously (P ×N)∪ (N×Q)∈up((A⋉B)∪ (A⋊B)).
(P ×N)∪ (N×Q)+X × Y because (x; y)∈X × Y but (x; y) � (P ×N)∪ (N×Q).

Thus (P ×N)∪ (N×Q) � up(A×RLDB) by properties of filter bases. �

Example 309. (RLD)out(FCD)f � f for some convex reloid f .

Proof. Let f =A×RLDB where A and B are from the previous example.
(FCD)(A×RLDB)=A×FCDB by the proposition 213.
So (RLD)out(FCD)(A×RLDB) = (RLD)out(A×FCDB)=A×F

RLDB � A×RLDB. �
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