
 1

 
SMARANDACHE TYPE FUNCTION OBTAINED BY 

DUALITY 
 

C. Dumitrescu, N. Vîrlan, Şt. Zamfir, E. Rădescu, N. Rădescu, F.Smarandache 
Department of Mathematics, University of Craiova, Romania 

 
Abstract.  In this paper we extended the Smarandache function from the set N∗  of 
positive integers to the set Q  of rational numbers. 

Using the inversion formula, this function is also regarded as a generating 
function. We put in evidence a procedure to construct a (numerical) function starting 
from a given function in two particular cases. Also connections between the 
Smarandache function and Euler’s totient function as with Riemann’s zeta function are 
established. 
 

1. Introduction 
 

The Smarandache function [13] is a numerical function * *: N NS →  defined by 
 { }( ) min | ! is divisible by S n m m n= . 
 From the definition it results that if  

n = p1
α1 ⋅ p2

α2 ⋅ ⋅ ⋅ pt
αt      (1) 

is the decomposition of n  into primes, then 
    S(n) = maxS(pi

α i )      (2) 
and moreover, if  [n1,n2 ]  is the smallest common multiple of n1  and n2 , then  
    ( ) { }1 2 1 2[ , ] max ( ), ( )S n n S n S n=    (3) 

The Smarandache function characterizes the prime in the sense that a positive 
integer p ≥ 4  is prime if and only if it is a fixed point of S . 

From Legendre’s formula: 
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 and bn (b) = pn , then considering the standard 

numerical scale  
[ p] :b0 (p),b1(p),...,bn (p),... 

 
0 1[ ] : ( ),  ( ),...,  ( ),...np a p a p a p  

we have  
    S pk( )= p(α[ p] )( p)      (5) 
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that is S pk( ) is calculated multiplying by p  the number obtained writing the exponent 
α  in the generalized scale [ p]  and “reading” it in the standard scale (p)  . 
 Let us observe that the calculus in the generalized scale [ p]  is essentially 
different from the calculus in the usual scale (p) , because the usual relationship 
bn+1(p) = pbn (p)  is modified in an+1(p) = pan (p) +1  (for more details see [2]). 
 Let us note from now on Sp (α ) = S(pα ) . In [3] it is proved that  
   Sp (α ) = (p −1)α +σ [ p](α )      (6) 
where σ [ p](α )  is the sum of the digits of α written in the scale [ p] , and also that  

   ( )
2

( ) [ ]
( 1) 1( ) ( ) ( ) ( )p p p p
p pS E

p p
α α α σ α σ α− −

= + + +  (7) 

where σ ( p) (α )  is the sum of the digits of α  written in the standard scale (p)  and Ep (α )  
is the exponent of p  in the decomposition into primes of α ! . From (4) it results that 

Ep (α ) =
α
pi

⎡

⎣
⎢

⎤

⎦
⎥

i≥1
∑ , where [h]  is the integral part of h . It is also said [11] that  

   ( ) ( )
( )

1
p

pE
p

α σ α
α

−
=

−
      (8) 

 We can observe that this equality may be written as  

   Ep (α ) =
α
p

⎡

⎣
⎢

⎤

⎦
⎥

( p)

⎛

⎝
⎜

⎞

⎠
⎟

[ p]

  

that is, the exponent of p  in the decomposition into primes of α !  is obtained writing the 
integral part of α / p  in the base (p)  and reading in the scale [ p] . 
 Finally, we note that in [1] it is proved that  

   Sp (α ) = p α −
α
p

⎡

⎣
⎢

⎤

⎦
⎥ +

σ [ p](α )

p

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
    (9) 

 From the definition of S  it results that ( )( )p p pS E p
p
αα α α
⎡ ⎤

= = −⎢ ⎥
⎣ ⎦

 ( pα is the 

remainder of α  with respect to the modulus m ) and also that 
   ( )( )p pE S α α≥ ;  ( )( ) 1p pE S α α− <     (10) 
so  

  
( )( )( ) ( )

1
p p pS S

p
α σ α

α
−

≥
−

;     
( )( )( ) 1 ( ) 1

1
p p pS S

p
α σ α

α
− − −

<
−

. 

Using (6) we obtain that Sp (α )  is the unique solution of the system    
   σ ( p) (x) ≤ σ [ p](α ) ≤ σ ( p) (x −1) +1     (11) 
 

2. Connections with classical numerical functions 
 

It is known that Riemann’s zeta function is  
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ζ (s) =
1

ns
n≥1
∑ . 

 We may establish a connection between the function Sp  and Riemann’s function 
as follows: 

Proposition 2.1. If  
1

n
in

t

i
i

n pα

=

=∏  is the decomposition into primes of the positive 

integer n  then  
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Proof. We first establish a connection with Euler’s totient functionϕ . Let us observe 
that, forα ≥ 2 , 1

1( -1) ( ) 1p p a pα
α

−
−= + , so σ [ p](pα −1) = p . Then by using (6) it results 

(forα ≥ 2 ) that  
   Sp (pα −1) = (p −1)pα −1 + σ [ p](pα −1) = ϕ(pα ) + p  
Using the well known relation between ϕ  and ζ  given by  

   
ζ (s −1)

ζ (s)
=

ϕ(n)

nn
n≥1
∑  

and (12), it results the required relation. 
 Let us remark also that, if n is given by (1), then  

   ( )1

1 1

( ) ( ) ( )i i

i

t t

i p i i
i i

n p S p pα αϕ ϕ −

= =

= = −∏ ∏  

and 
   ( )1( ) max ( )i

i iS n p pαϕ += +  

Now it is known that  1+ϕ(pi ) + ...+ϕ(pi
αi ) = pi

αi  and then  

   Spi pi
k( )

k=1

αi −1

∑ − α i −1( )pi = pi
αi . 

Consequently we may write 

   ( ) ( )
1

0
( ) max 1

i
k

i i i i
k

S n S Sp p p
α

α
−

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ . 

To establish a connection with Mangolt’s function let us note ∧ = min , 

∨ = max , ∧
d
=  the greatest common divisor , and ∨

d

= the smallest common multiple . 

 We shall write also ( )1 2 1 2,
d

n n n n=∧  and [ ]1 2 1 2,
d

n n n n=∨ . 

 The Smarandache function S  may be regarded as function from the lattice 
*N , ,

d

d d

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∨∧L , into lattice *N , ,⎛ ⎞= ⎜ ⎟
⎝ ⎠

∨∧L such that 

   ( )1, 1,
( )i ii k i k

S n S n
= =

=∨ ∨       (12) 
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Of course S is also order preserving in the sense that n1 ≤d n2 → S(n1) < S(n2 ) . 
It is known from [10] that if ( ), ,V ∨∧  is a finite lattice, { }1 2, ,..., nV x x x=  with 

the induced order ≤ , then for every function : Nf V →  the associated generating 
function is defined by  

  F(x) = f (y)
y≤ x
∑       (13) 

Mangolt’s function Λ is  

  Λ(n) =
ln p if n = pi

0     otherwise

⎧
⎨
⎩

 

The generating function of Λ  in the lattice  Ld  is 
  ( ) ( ) ln

d

d

k n
F n k n

≤

= Λ =∑       (14) 

The last equality follows from the fact that  
  k ≤d n ⇔ k∧

d
n = k ⇔ k \ n (k  divides n)  

The generating function of Λ  in the lattice  L is the function Ψ  
  F(n) = Λ(k)

k≤n
∑ = Ψ(n) = ln[1,2,...,n]     (15) 

Then we have the diagram from below. 
We observe that the definition of  S  is in a closed connection with the equalities 

(1.1) and (2.2) in this diagram. If we note the Mangolt’s function by f  then the relations 
  [1,2,...,n] = eF (n) = e f (1)e f (2)... e f (n) = eΨ(n)  
    (1) (2) ( )! ... 

d d dF F F F nn e e e e= =%   
together with the definition of S , suggest us to consider numerical functions of the form: 

  { }( ) min / [1, 2,..., ]dn m n mν = ≤     (16) 
which will be detailed in section 5. 
 



 5

Λ  
 

 

   Ld       L  
            
            
          
   (1.1)             (1.2)  
 

        
                                                                                                   

 
 
 

                           L   Ld                                  L  
 
 
(2.1)     (2.2)      (2.3)     (2.4) 
 
 
 
 
 
 

 
                                                                                 

    . . . . . . . . . . . . . .    . . . . . . . . . . . . .         . . . . . . . . . . . . .     . . . . . . . . . . .  
 

F(n) = Λ(k)
k≤n
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∑
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3. The Smarandache function as generating function 
 
Let V be a partial order set. A function : Nf V →  may be obtained from its 

generating function F , defined as in (15), by the inversion formula 
   f (x) = F(z)μ(z, x)

z≤x
∑       (17) 

where μ  is Moebius function on V , that is :   NV X Vμ →  satisfies: 
   (μ1)μ(x, y) = 0 ,  if  x ≤ y  
    (μ2 )μ(x, x) = 1  
   (μ3) μ(x, y)

x≤ y≤ z
∑ = 0 ,  if  x < z . 

It is known from [10] that if  { }1,2,...,V n=  then for  V ,≤d( ) we have μ(x, y) = μ
y

x
⎛
⎝⎜

⎞
⎠⎟

, 

where μ(k)  is the numerical Moebius function μ(1) = 1,  μ(k) = (−1)i  if k = p1 p2 ...pk  and 
μ(k) = 0  if  k  is divisible by the square of an integer d > 1 . 

If f  is the Smarandache function it results  
   FS (n) = S(n)

d /n
∑ . 

Until now it is not known a closed formula for FS , but in [8] it is proved that  
(i) FS (n) = n  if and only if n  is prime, n = 9, n = 16, or n = 24 . 
(ii) FS (n) > n  if and only if { }8,  12,  18,  20n∈  or n = 2 p  with p  a prime (hence it 

results FS (n) ≤ n + 4 for every positive integer n ) and in [2] it is shown that  

(iii) F(p1 p2 ...pt ) = 2i−1 pi
i=1

t

∑ . 

In this section we shall consider the Smarandache function as a generating function, 
that is using the inversion formula; we shall construct the function s  such that  

   s(n) = μ(d)S
n

d
⎛
⎝⎜

⎞
⎠⎟d /n

∑ .      (18) 

If n  is given by (1) it results that  

   s(n) = (−1)r S
n

pi1
pi2

...pir

⎛

⎝
⎜

⎞

⎠
⎟

pi1
pi2

...pir

∑ . 

Let us consider S(n) = maxS(pi
α i ) = S(pi0

αi0 ) . We distinguish the following cases: 

(a1) if  S(pi0

α i0 ) ≥ S(pi
αi )  for all i ≠ i0  then we observe that the divisors d  for 

which μ(d) ≠ 0  are of the form d = 1 or d = pi1
pi2

...pir
. A divisor of the last form may 

contain pi0
 or not, so using (2) it results 

( )( ) ( )( )0 0

0 0

1 1 1
1 1 1 1 1 1

11 2 1 2( ) 1 ... ( 1) 1 ... ( 1)i it t t t
i t t t i t t ts n S p C C C S p C C Cα α −− − −

− − − − − −= − + + + − + − + − + + −

that is s(n) = 0  if  2t ≥  or ( )0

0

1i
iS pα −  and s(n) = pi0

 otherwise. 
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(a2) if there exists j0  such that ( ) ( )0 0

0 0

1i j
i jS p S pα α− <  and   

( ) ( )0

0

1j i
j iS p S pα α− ≥  for i ≠ i0 , j0  

we also suppose that ( ) ( ) ( ) ( ){ }0 0

0 0

1max /j ij j
j j i jS p S p S p S pα αα α−= < . 

 Then  

( )( ) ( )( )0 0

0 0

1 1
1 1 1 2 2

1 2 1 2 1 2
2( ) 1 ... ( 1) 1 ... ( 1)i jt t t t

i t t t j t t ts n S p C C C S p C C Cα α− − − −
− − − − − −= − + − + − + − + − − + − +

 ( )( )0

0

1
2 2

1 2 2 2
21 ... ( 1)j t t

j t t tS p C C Cα − − −
− − −+ − + − + −   

so s(n) = 0  if  t ≥ 3  or  ( ) ( )0 0

0 0

1j j
j jS p S pα α− =  and s(n) = − pj0

 otherwise. 

 Consequently, to obtain s(n)  we construct as above a maximal 

sequence i1, i2 ,...,ik , such that ( ) ( ) ( ) ( ) ( )11 1 2

1 1 2 1

11( ) ,  ,..., k k

k k

i ii i i
i i i i iS n S p S p S p S p S pα αα α α

−

−

−−= < <  

and it results that s(n) = 0  if t ≥ k +1  or ( ) ( )1
k k

k k

i i
i iS p S pα α −=  and s(n) = (−1)k+1  

otherwise. 
 Let us observe that  
S pα( )= S pα −1( )⇔ (p −1)α + σ [ p](α ) = (p −1)(α −1) + σ [ p](α −1) ⇔σ [ p](α −1) − σ [ p](α ) = p −1

Otherwise we have σ [ p](α −1) − σ [ p](α ) = −1. So we may write  

s(n) =
0  if  t ≥ k +1 or  σ [ p](α k −1) − σ [ p](α k ) = p −1

                      (−1)k+1 pk   otherwise 

⎧
⎨
⎪

⎩⎪
 

  
Application. It is known from [10] that V ,∧,∨( ) is a finite lattice, with the 

induced order ≤  and for the function : Nf V →  we consider the generating function F  
defined as in (15) then if gij = F xi ∧ xj( ) it results det gij = f (x1) ⋅ f (x2 ) ⋅ ... ⋅ f (xn ) . In 
[10] it is shown also that this assertion may be generalized for partial ordered set by 
defining  

  gij = f (x)
x≤xi
x≤x j

∑ . 

Using these results, if we denote by (i, j)  the greatest common divisor of i  and 

j , and ( )( )( )( ) det ,r S i jΔ =  for i, j = 1,r  then Δ(r) = s(1) ⋅ s(2) ⋅ ... ⋅ s(r) . That is for a 

sufficient large r  we have Δ(r) = 0  (in fact for r ≥ 8 ). Moreover, for every n  there 
exists a sufficient large r  such that ( )( )( , ) det , 0,  for , 1,n r S n i n j i j rΔ = + + = =  

because Δ(n,r) = S n +1( )
i=1

n

∏ . 
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4. The extension of S to the rational numbers 

 
To obtain this extension we shall define first a dual function of the Smarandache 

function. 
In [4] and [6] a duality principle is used to obtain, starting from a given lattice on the 

unit interval, other lattices on the same set. The results are used to propose a definition of 
bi-topological spaces and to introduce a new point of view for studying the fuzzy sets. In 
[5] the method to obtain new lattices on the unit interval is generalized for an arbitrary 
lattice. 

Here we adopt a method from [5] to construct all the functions tied in a certain sense 
by duality to the Smarandache function. 

Le us observe that if we note { }( ) / !d dn m n m= ≤R , { }( ) / !d dn m m n= ≤L , 

{ }( ) / !n m n m= ≤R , { }( ) / !n m m n= ≤L  then we may say that the function S  is defined 

by the triplet ( ), , d∧ ∈ R , because { }( ) / ( )dS n m m n= ∈∧ R . Now we may investigate 
all the functions defined by means of a triplet a,b,c( ), where a  is one of the symbols 

,, ,
d

d
∨ ∨∧ ∧ , b  is one of the symbols ∈ and ∉, and c  is one of the sets 

  Rd (n),Ld (n),R(n),L(n)  defined above. 
Not all of these functions are non-trivial. As we have already seen the triplet 

 ∧,∈,Rd( ) defined the function S1(n) = S(n) , but the triplet ( ), , d∧ ∈ L  defines the 

function { }2 ( ) / ! dS n m m n= ≤∧ , which is identically one. 
Many of the functions obtained by this method are step functions. For instance let S3  

be the function defined by  ∧,∈,R( ). We have { }3 ( ) / !S n m n m= ≤∧ , so S3(n) = m  if 

and only if ( )1 ! 1, !n m m∈ − +⎡ ⎤⎣ ⎦ . Let us focus the attention on the function defined by 

( ), , d∧ ∈ L  

   { }4 (4) / ! dS m m n= ≤∨      (19) 
where there is, in a certain sense, the dual of Smarandache function. 
 
 Proposition 4.1.  The function S4 satisfies 

   ( )4 1 2 4 1 4 2( ) ( )
d

S n n S n S n= =∨ ∨     (20) 

so it is a morphism from ( )*N ,
d
∨  to ( )*N ,∨ . 

Proof. Let us denote by p1, p2 ,..., pi ,...the sequence of the prime numbers and let 
 n1 = pi

αi∏ , n2 = pi
βi∏ . 

 The n1∧
d

n2 = pi
min(α i ,βi )∏ . If ( )4 1 2d

S n n m=∨ , S4 (ni ) = mi , for i = 1,2  and we 

suppose m1 ≤ m2  then the right hand in (22) is m1 ∧ m2 = m . By the definition S4  we 
have ( )( ) min ,

ip i iE m α β≤  for i ≥ 1  and there exists j  such that 
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Epi
(m +1) > min α i ,βi( ). Then ( )

ii pE mα >  and βi ≥ Epi
(m)  for all i ≥ 1 . We also have 

Epi
(mr ) ≤α i  for r = 1,2 . In addition there exist h  and k  such that Eph

(m +1) > αh , 
epj

(m +1) > α k . 

 Then ( ) ( )1 2 1min , min ( ), ( ) ( )
i i ii i p p pm m E mα β ε ε≥ = , because m1 ≤ m2 , so 

m −1 ≤ m . If we assume m1 < m  it results that m!≤ n1 , therefore it exists h  for which 
Eph

(m) > αh  and we have the contradiction { }( ) min ,
hp h hE m α β> . Of course 

( )4 2 1 1S n + =  and  
S4 (n) > 1 if and only if n is even.    (21) 

 Proposition 4.2. Let p1, p2 ,..., pi ,... be the sequence of all consecutive primes and  
   n = p1

α1 ⋅ p2
α2 ⋅ ... ⋅ pk

αk ⋅q1
β1 ⋅q2

β2 ⋅ ... ⋅ ⋅qr
βr  

the decomposition of *Nn∈  into primes such that the first part of the decomposition 
contains the (eventually) consecutive primes, and let  

   
( ) ( )( )
( ) ( )( )

1         if   

1  if  

i i

i

i i

i

i p i i

i

i i p i i

S p E S p
t

S p p E S p

α α

α α

α

α

⎧ − >⎪= ⎨
+ − =⎪⎩

   (22) 

then { }1 2 1( ) min , ,..., , 1k kS n t t t p += − . 

 Proof. If ( )( ) i

ip i iE S pα α> , then from the definition of the function S  results that 

( ) 1i
iS pα −  is the greatest positive integer m  such that Epi

(m) ≤ α i . Also if 

( )( )i

ip i iE S pα α=  then ( ) 1i
i iS p pα + −  is the greatest integer m  with the property that 

Epi
(m) = α i . 

 It results that { }1 2 1min , ,..., , 1k kt t t p + −  is the greatest integer m  such that 
Ep− i (m!) ≤ α i , for i = 1,2,...,k . 
 
 Proposition 4.3. The function S4 satisfies 
   ( )( ) [ ]( ) ( ) ( )4 1 2 4 1 2 4 1 4 2,S n n S n n S n S n+ =∧ ∧  
for all positive integers n1  and n2 . 
 Proof. The equality results using (22) from the fact that  

[ ]( ) ( )( )1 2 1 2 1 2, , ,n n n n n n+ = . 
 We point out now some morphism properties of the functions defined by a triplet 
a,b,c( ) as above. 

  
 Proposition 4.4.  

(i) The function * *
5 : N NS → , { }5 ( ) / !

d

dS n m m n= ≤∨  satisfies 

( )5 1 2 5 1 5 2 5 1 5 2( ) ( ) ( ) ( )
d d

S n n S n S n S n S n= =∧ ∧ ∧   (23) 



 10

(ii) The function * *
6 : N NS → , { }6 ( ) / !

d

dS n m n m= ≤∨  satisfies 

S6 n1∨
d

n2
⎛
⎝

⎞
⎠ = S6 (n1)∨

d

S6 (n2 )      (24) 

(iii) The function * *
7 : N NS → , { }7 ( ) / !

d
S n m m n= ≤∨ satisfies 

( )7 1 2 7 1 7 2( ) ( )S n n S n S n=∧ ∧ , ( )7 1 2 7 1 7 2( ) ( )S n n S n S n=∨ ∨ . (25) 
Proof. 
(i) Let { }1/ !i i dA a a n= ≤ , { }2/ !j j dB b b n= ≤ , and { }1 2/ !k k d d

C c c n n= ≤ ∨ . 

Then we have  A ⊂ B  or  B ⊂ A . Indeed, let { }1 2, ,..., hA a a a= , { }1 2, ,..., rB b b b= such 

that ai < ai+1  and bj < bj+1 . Then if ah < br  it results that ai ≤ br  for i = 1,h  so 
ai !≤d br !≤d n2 . That means A ⊂ B . Analogously, if  r hb a≤  it results B ⊂ A . Of course 
we have C = A∪ B  so if A ⊂ B  it results 

 ( ) { }5 1 2 5 1 5 1 5 2 5 1 5 2( ) min ( ), ( ) ( ) ( )
d d

k id d
S n n c a S n S n S n S n S n= = = = =∨ ∨∧ ∧ . 

From (25) it results that S5  is order preserving in  Ld  (but not in  L , because m!< m!+1  
but S5 (m!) = 1,2,...,m[ ] and S5 (m!+1) = 1 , because m!+1  is odd). 

(ii) Let us observe that { }6 ( ) / 1,  such that ( )
i

d

p iS n m i t E m α= ∃ ∈ <∨ . If  

{ }/ !da m n m= ≤∨  then n ≤d (a +1)!  and { }1 / ! ( )da m n m S n+ = ≤ =∧ , so 

[ ]6 ( ) 1, 2,..., ( ) 1S n S n= − . 

 Then we have [ ]6 1 2 1 2 1 21, 2,..., 1 1,2,..., ( ) ( ) 1
d d

S n n S n n S n S n⎡ ⎤⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∨ ∨ ∨  

and [ ] [ ] [ ]6 1 6 2 6 1 6 2 6 1 6 2( ) ( ) 1, 2,..., ( ) 1 , 1,2,..., ( ) 1 1,2,..., ( ) ( ) 1
d

S n S n S n S n S n S n⎡ ⎤= − − = −⎣ ⎦∨ ∨ . 

(iii) The relations (27) result from the fact that [ ]7 ( ) 1, 2,...,S n m=  if and only if  

[ ]!, ( 1)! 1n m m∈ + − . 
 Now we may extend the Smarandache function to the rational numbers. Every 
positive rational number a  possesses a unique prime decomposition of the form  
   a = pα p

p
∏        (26) 

with integer exponents α p , of which only a finite number are nonzero. Multiplication of 
rational numbers is reduced to addition of their integer exponent system. As a 
consequence of this reduction questions concerning divisibility of rational numbers are 
reduced to questions concerning ordering of the corresponding exponent system. That is 
if  b = pβp

p
∏  then b  divides a  if and only if β p ≤ α p  for all p . The greatest common 

divisor d  and the least common multiple e  are given by 
  d = a,b,...( )= pmin(α p ,βp ,...)

p
∏ , e = a,b,...[ ]= pmax(α p ,βp ,...)

p
∏   (27) 
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Furthermore, the least common multiple of nonzero numbers (multiplicatively bounded 
above) is reduced by the rule     

    a,b,...[ ]= 1
1
a

,
1
b

,...⎛
⎝⎜

⎞
⎠⎟

     (28) 

to the greatest common divisor of their reciprocal (multiplicatively bounded below). 
 Of course we may write every positive rational a  under the form a = n / n1 , with 
n  and n1  positive integers. 
 Definition 4.5.  The extension * *

+ +: Q QS →  of the Smarandache function is 
defined by  

    S
n

n1

⎛

⎝⎜
⎞

⎠⎟
=

S1(n)

S4 (n1)
     (29) 

A consequence of this definition is that if n1  and n2  are positive integers then  

    S
1

n1

∨
d 1

n2

⎛

⎝⎜
⎞

⎠⎟
= S

1

n1

⎛

⎝⎜
⎞

⎠⎟
∨ S

1

n2

⎛

⎝⎜
⎞

⎠⎟
   (30) 

Indeed 

( )1 2 1 2 4 1 4 2 4 1 4 2 1 24 1 2

1 1 1 1 1 1 1 1 1
( ) ( ) ( ) ( )

d

d d

S S S S
n n n n S n S n S n S n n nS n n

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∨ ∨ ∨∧ ∧∧

and we can immediately deduce that  

  ( )
1 1 1 1

1 1( ) ( )
dn mS S n S m S S

n m n m
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∨ ∨ ∨    (31) 

It results that function S  defined by  1( )
1

S a
S

a

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 satisfies  

   ( )1 2 1 2( ) ( )
d

S n n S n S n=∧ ∧  and  

   
1 2 1 2

1 1 1 1
d

S S S
n n n n

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∧ ∧     (32) 

for every positive integers n1  and n2 . Moreover, it results that  

  ( )1 2
1 2

1 2 1 2

1 1( ) ( )
d

n nS S n S n S S
m m m m

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∧ ∧ ∧  

and of course the restriction of S  to the positive integers is  S4 . The extension of  S  to all 
the rationales is given by S(−a) = S(a) . 
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5. Numerical functions inspired from the definition of the Smarandache 

function 
 

We shall use now the equality (21) and the relation (18) to consider numerical 
functions as the Smarandache function. 

We may say that m!  is the product of all positive “smaller” than m  in the lattice  L . 
Analogously the product pm  of all the divisors of m  is the product of all the elements 
“smaller” than m  in the lattice  L . So we may consider functions of the form 

    { }( ) / ( )dn m n p mΘ = ≥∧ .    (33) 

It is known that if  m = p1
x1 ⋅ p2

x2 ⋅ ... ⋅ pt
xt  then the product of all the divisors of  m  is 

p(m) = mτ (m )  where τ (m) = (x1 +1)(x2 +1)...(xt +1)  is the number of all the divisors of 
m . 
If n  is given as in (1) then n ≥d p(m)  if and only if 
  g1 = x1(x1 +1)(x2 +1)...(xt +1)− 2α1 ≥ 0  
  g2 = x2 (x1 +1)(x2 +1)...(xt +1)− 2α2 ≥ 0     (34) 
  gt = xt (x1 +1)(x2 +1)...(xt +1) − 2α t ≥ 0  
so Θ(n)  may be obtained solving the problem of non linear programming 
   (min) f = p1

x1 ⋅ p2
x2 ⋅ ... ⋅ pt

xt      (35) 
under the restrictions (37). 
 The solution of this problem may be obtained applying the algorithm SUMT 
(Sequential Unconstrained Minimization Techniques) due to Fiacco and Mc Cormick [7]. 
  
 Examples 

1. For n = 34 ⋅512 , (37) and (38) become (min) f (x) = 3x1 5x2  with  
x1(x1 +1)(x2 +1) ≥ 8 ,  x2 (x1 +1)(x2 +1) ≥ 24 . Considering the function 

U(x,n) = f (x) − r ln g1(x)
i=1

k

∑ , and the system  

σU /σ x1 = 0 ,   σU /σ x2 = 0      (36) 
in [7] it is shown that if the solution x1(r),   x2 (r)  cannot be explained from the system 
we can make r → 0 . Then the system becomes x1(x1 +1)(x2 +1) = 8 , 
x2 (x1 +1)(x2 +1) = 24  with the (real) solution x1 = 1, x2 = 3 . 

 So we have { }4 12 3
0min / 3 5 ( ) 3 5m m mρ⋅ ≤ = ⋅ . 

 Indeed ρ(m0 ) = m0
τ (m0 )/2 = m0

4 = 34 ⋅512 = n . 
 

2. For n = 32 ⋅567 , from the system (39) it results for x2  the equation 

2x2
3 + 9x2

2 + 7x2 − 98 = 0 , with the real solution x2 ∈(2,3) . It results ( )1 4 / 6,  5 / 7x ∈ . 

Considering x1 = 1, we observe that for x2 = 2  the pair x1, x2( ) is not an admissible 

solution of the problem, but x2 = 3  gives ( )2 7 4 123 5 3 5Θ ⋅ = ⋅ . 
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3. Generally, for n = p1
α1 ⋅ p2

α2 , from the system (39) it results the equation 

α1x2
3 + (α1 +α2 ) ⋅ x2

2 +α2x2 − 2α2
2 = 0  

with solutions given by Cartan’s formula. 
 Of course, using “the method of the triplets”, as for the Smarandache function, 
many other functions may be associated to Θ . 
 For the function ν  given by (18) it is also possible to generate a class of function 
by means of such triplets. 
 In the sequel we’ll focus the attention on the analogous of the Smarandache 
function and on its dual in this case. 
 
 Proposition 5.1. If n  has the decomposition into primes given by (1) then  
 (i) ν(n) = max

i=1,t
pi
αi  

 (ii) ν n1∨
d

n2
⎛
⎝

⎞
⎠ = ν(n1)∨ν(n2 )  

  
Proof. 
(i) Let max pi

α i = pu
αu . Then pi

α i ≤ pu
αu  for all 1, t , so pi

α i ≤d 1,2,..., pu
αu⎡⎣ ⎤⎦ . 

But ( ), 1ji
i jp pαα =  for i ≠ j  and then n ≤d 1,2,..., pu

αu⎡⎣ ⎤⎦ . 

 Now if for some m < pu
αu  we have [ ]1, 2,...,dn m≤ , it results the contradiction 

[ ]1, 2,...,u
u dp mα ≤ .  

 

(ii) If n1 = pα p∏ ,  n2 = pβp∏  then max( )
1 2

p p
d

n n p α β=∨ ∏  so 

( )max( )
1 2 max max max ,maxp p p p

d
n n p p pα β α βν ⎛ ⎞ = =⎜ ⎟
⎝ ⎠

∨ . 

The function ν1 = ν  is defined by means of the triplet [ ]( ), , d∨ ∈ R , where 

[ ] [ ]{ }/ 1, 2,...,dd m n m= ≤R . Its dual, in the sense of the above section, is the function 

defined by the triplet [ ]( ), , d∨ ∈ L . Let us note ν4  this function 

   [ ]{ }4 ( ) | 1, 2,..., dn m m nν = ≤∨ . 

 That is ν4 (n)  is the greatest natural number with the property that all 
m ≤ ν4 (n) divide n.  
 Let us observe that a necessary and sufficient condition to have ν4 (n) > 1 is to 
exist m > 1 such that every prime p ≤ m  divides n . From the definition of ν4  it also 
results that ν4 (n) = m  if and only if n  is divisible by every i ≤ n  and not by m +1 . 

 
Proposition 5.2. The function ν4  satisfies 

   ν4 n1∨
d

n2
⎛
⎝

⎞
⎠ = ν4 (n1)∧ν4 (n2 )  
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 Proof. Let us note n = n1∧
d

n2 ,ν4 (n) = m , ν4 (ni ) = mi  for i = 1,2 . If 
m1 = m1 ∧ m2  then we prove that m = m1 . From the definition of ν4  it results 

  [ ]4 ( )  is divisible by  but not by 1i i in m i m n i mν = ↔ ∀ ≤ → +  

If m < m1  then m +1 ≤ m1 ≤ m  so m +1  divides n1  and n2 . That is m +1  divides n . 
If m > m1  then m1 +1 ≤ n , so m1 +1 divides n . But n divides n1 , so m1 +1 divides n1 . 

If { }0 max |  divides t i j i n n= ≤ ⇒  then ν4 (n)  may be obtained solving the integer 

programming problem 

   max( ) f = xi
i=1

t0

∑ ln p        

   xi ≤ α i  for i = 1,t0       (37) 

   xi
i=1

t0

∑ ln pi ≤ ln pt0 +1 . 

If f0  is the maximal value of f  for above problem, then ν4 (n) = e f0 . 

For instance ν4 (23 ⋅ 32 ⋅5 ⋅11) = 6 . 
Of course, the function ν  may be extended to the rational numbers in the same way as 
Smarandache function. 
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