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Ben Green and Terence Tao showed that for any positive integer k, there exist infinitely 
many arithmetic progressions of length k consisting only of prime numbers. [14] Four 

parallel proofs of Szemer´edi’s theorem have been achieved; one by direct combinatorics, 

one by ergodic theory, one by hypergraph theory, and one by Fourier analysis and additive 

combinatorics. Even with so many proofs, Professor T. Tao points out that with this 

problem, there remains a sense that our understanding of this result is incomplete; for 

instance, none of the approaches were powerful enough to detect progressions in the primes, 

mainly due to the sparsity of the prime sequence. [22] Oliver Lonsdale Atkin introduced a 

prime sieve using irreducible binary quadratic forms and modular arithmetic; the algorithm 

enumerates representations of integers by certain binary quadratic forms. A way that uses 

modular arithmetic is widely known: 6n  , 12n  , 30n  , 60n  .[31] In this 

paper, we assert that the composite number of the 12 1,5,7,11n 
 

series as selected by a 

Modular Arithmetic and Multiplication Table are not random but consist of very structural 

and regular arithmetic progression groups. 
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1. Introduction 
 

Look through a list of prime numbers and you’ll find that it’s impossible to predict when 

the next prime will appear. The list seems chaotic, random, and offers no clues as to how 

determine the next number. It is hard to guess at a formula that could generate this kind of 

pattern. In fact, this procession of primes resembles a random succession of numbers much 

more than it does a nice orderly pattern. [8] [21] 

 

This paper starts from the question of “Can we express prime numbers and recognize them 

spatially such as Prime Spiral?” The prime spiral, also known as Ulam's spiral, is a plot in 
which the positive integers are arranged in a spiral, with primes indicated in some way 

along the spiral. 

 

 
 

1)Figure   Prime numbers are aligned to X-

shape of 4 groups with a period of 12n .(except 

2, 3) 
 

 

 
 

 

2)Figure  A hexagonal prime spiral can 

also be constructed, as illustrated above 

(Abbott 2005, wolfram). 

 

1.1. Primes in Modular Arithmetic 
 

If a and d are integers, with d non-zero, then a remainder is an integer r such that 

a  qd  r   for some integer q, and with 0 ≤ |r| < |d|.[46] Putting prime numbers on the 

regular hexagon, every prime number except 2 and 3 is contained in the 12 1,5,7,11n 
 

series, is sorted into 4 kinds of remainder groups—1,5,7, and 11—and belongs to at least 

one of these 4 groups. 

 

1.2 Primes in Arithmetic Progression 
 

Dirichlet's theorem, states that for any two positive coprime integers a and d, there are 

infinitely many primes of the form a nd , where n ≥ 0. In other words: there are infinitely 

many primes which are congruent to a modulo d. The numbers of the form a nd  form 
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an arithmetic progression [37] 

 

, , 2 , 3 ,a a d a d a d a nd     

 

and Dirichlet's theorem states that this sequence contains infinitely many prime 
numbers.[33] Szemerédi's theorem generalizes the statement of van der Waerden's theorem. 

A theorem of Szemerédi asserts that all subsets of the integers with positive upper density 

will contain arbitrarily long arithmetic progressions. [22] Also any given arithmetic 

progression of primes has a finite length. Green-Tao settled an Szemerédi’ conjecture by 

proving the Green-Tao theorem (The primes contain arbitrarily long arithmetic 

progressions). It follows immediately that there are infinitely many AP-k for any k (integer 

k ≥ 3, an AP-k (also called PAP-k) is k primes in arithmetic progression) [23] 

 

 

2. The Specific Composite Numbers of the 12 1,5,7,11n  series 

 
Like prime numbers, composite numbers appear intuitively irregular and seem to be 

difficult to group into a pattern. But, the specific composite numbers are generated by a 

certain rule and that rule is that composite numbers consist of sixteen arithmetic 

progression groups of different lengths; each group and each arithmetic progression 

included in that group forms that rule. 

 

5 5, 5 7, 7 7, 5 11, 5 13, 7 1125 35 49 55 65 77

85 9

,

5 17, 7 13,1 95 5 19, 5 23, 7115 11 79 1

           

         
 

 

2.1 Generating the Composite Number of the 12 1,5,7,11n  series 

 

Let us denote the set nA is all elements of the 12 1,5,7,11n   series(n=0,1,2,…); the set 

nP  is all elements of prime numbers as comprised in nA ; the set nC  is all elements of 

composite numbers as comprised in nA  
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25 35

49 55

2 3 4 6 8 9 10 12

14 15 16 18 20 21 22 24

26 27 28 30 32 33 34 36

38 39 40 42 44 45 46 48

50 51 52 54 56 57 58 60

62 63 64 66 68 69 70 72

74 75 76 78 80 81 82

1 5 7 11

13 17 19 23

29 31

37 41 43 47

53 59

61 67 71

73 79 83 84

86 87 88 90 92 93 9489

65

77

85 91 95 96

12 1n  12 5 12 7 12 112 2 12 3 12 4 12 6 12 8 12 9 12 10 121 12n n n n nn n n nn n         

1)Table   All elements of the 12 1,5,7,11n   series are not multiples of 2 and 3. Therefore, all 

prime numbers except 2 
and 3 are contained in the 12 1,5,7,11n   series. The number in the box denotes the elements of 

nC . 

 

Theorem 1.1) All prime numbers but 2 and 3 exist in forms of 12 1,5,7,11n   with a 

period of 12n .  

Proof A)  

 

(i)
 
All natural numbers can be represented with a period of 12. 

 

(ii)
 
All even numbers but 2 are not prime numbers 

 

Elements of 12 2, 4,6,8,10,12n   are all even.
 

( 0,1,2.... )n n
 

Therefore, all 12 2, 4,6,8,10,12n  's but 2 are not prime numbers. 

 

(iii)
 
All 12 3n ’s but 3 are not prime numbers.

 
12 3 (3 4) 3n n     is a multiple of 3. 

 

(iv) 12 9n   is not a prime number. 

12 9 (3 4) 9n n   
 
is a multiple of 3. 

 

As in Theorem 1), every prime number but 2 and 3 is contained in the periodic nA . So, let 

us denote this series as follows: 
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1

5

7

11

, 1 (mod 12)

, 5 (mod 12)

, 7 (mod 12)

, 11 (mod 12)

n

A if remainder

A if remainder
A

A if remainder

A if remainder





 


 

  

 

In 2)Figure  3)Figure  , the nA  series are multiplied infinitely and we can find 10 

basics equations which falls into one of the 4 groups. 

1 5 7 11

1 1 5 1 7 1 11

5 5 1 5 7 5 11

7 7 1 7 5 7 1

1 1

5 5

7 7

11 1

1

11 11 1 11 5 11 7 1

A A A A

A A A A A A A

A A A A A A A

A A A A A A A

A A A

A A

A A

A A

A AA A A A



  

  

  

 









P

 
3)Figure   Multiplication Table 

 
4)Figure  Sign Assignments in the 

Multiplication Table 
 

If we assign signs, we can summarize them as follows: 

 

1 1 1

5 5 1

7 7 1

11 11 1

1 5 5

(12 1)(12 1)

(12 5)(12 5)

(12 7)(12 7)

(12 11)(12 11)

(12 1)(12 5)

Multiplication Sign Equation Remainder

( ) 1 (mod 12)

( ) 1 (mod 12)

( ) 1 (mod 12)

( ) 1 (mod 12)

( ) 5 (mo

x y

x y

x y

x y

x y

A A A

A A A

A A A

A A A

A A A

 

 

 

 

 

  

  

  

  

  

7 11 5

1 7 7

5 11 7

1 11 11

5 7 11

(12 7)(12 11)

(12 1)(12 7)

(12 5)(12 11)

(12 1)(12 11)

(12 5)(12 7)

d 12)

( ) 5 (mod 12)

( ) 7 (mod 12)

( ) 7 (mod 12)

( ) 11 (mod 12)

( ) 11 (mod 12)

x y

x y

x y

x y

x y

A A A

A A A

A A A

A A A

A A A

 

 

 

 

 

  

  

  

  

  
 

2)Table   The Result List of Multiplication Table 
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Theorem 1.2) All elements of the n nA A  table multiplication are contained in set
nA . 

 

Proof B) 
 

(12 )(12 ), ( , {1, 5, 7, 11})

{1, 25, 49, 121}, 1 (mod 12)

{5, 77}, 5 (mod 12)
144 12 12

{7, 55}, 7 (mod 12)

{11, 35}, 11 (mod 12)

x y

if remainder

if remainder
xy x y

if remainder

if remainder

   




  





   

 


 
    

 
  

 

 

Therefore, {1, 5, 7, 11, 25, 35, 49, 55, 77, 121}   

 

Theorem 1.3) All elements of the nA  table multiplication are contained in the set of the 

n nA A  table multiplication. 

 

Proof C) 

 

For any element k of the set nA : n nk P k Cor  , 

 

1, (12 ) 1 1 (12 )

(12 ) (12 )

(12 ) (12 )

(12 ) (12 )

  

,  

, 

, 

:

:

n n

n n

n n n

n n

k x or y

k x y

k x y

k x y

P P

P P

C C

C C

if k is
P

 

 

 

 

     

    

    

    





 


 

 

 

Therefore, nC   . Additionally, it is possible to find all values of nC of the 12 1, 5, 7,11n   

series in the results of a matrix-multiplication of n nA A
 
that are greater than 5. 
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5 7 11 13 17 19 23 25

5

7 35

11 55 77

13 65 91 143

17 85 119 187 221

19 95 133 209 247 223

23 115 161 253

25

49

121

169

289

361

52299 391 437

25 125 175 275 325 425 475 5

9

575 62


12 1,5,7,11( 1)x except

12 1,5,7,11( 1)y except

 

2)Figure   Multiplication Table of 12 1, 5, 7,11n   series 

 
 

2.2 Prime Sieve 
 

In the third century B.C., the scholar Eratosthenes came up with a simple algorithm for 

listing all the prime numbers up to a given N , referred to as the sieve of Eratosthenes. A 

standard improvement in the sieve of Eratosthenes is to enumerate values of xy not 

divisible by 2, 3, or 5. [30]  

 

Prime Number

Composite Number

Series

'12 1,5,7,11n s

 

2.2. )Figure a  Prime numbers and composite numbers have complementary relationship regarding 

12 1, 5, 7,11n   series. 

 

In the following [Attached document 1], the prime numbers under 1000 are being filtered 

using nC . More specifically, you can see that arithmetic progressions, ~n nGa Gp , are 

intertwined. Of course, since the number of arithmetic progressions of each group increases 

as N  increases, the complexity of intertwining of further arithmetic progressions 

increases. The composite numbers intuitively appear to be irregular and seem to be difficult 

to group into a pattern. However, the composite numbers are sorted into sixteen arithmetic 
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groups ( ~ )n nGa Gp and are generated regularly by arithmetic progressions of each group. 

 

2.3 The Structure of a matrix-multiplication of 
n nA A  

 

Unlike prime numbers, which are unpredictable, the composite numbers are formed by 

sixteen arithmetic progression groups. This means that composite numbers in principle are 

predictable because whole composite numbers follow this rule. However, the composite 

numbers are made up of sixteen arithmetic progressions and it is difficult to see the whole 

of the arithmetic progressions, whose number increases, without necessary computations 

and information media that can store the computed results. If you can find the computed 

results of various arithmetic progressions intuitively, you can predict the rule that governs 

the composite numbers. This immediately means that you will be able to find the rule that 
governs the prime numbers. It is not a problem of whether or not the composite numbers 

are predictable but a problem of human perception. 

 

(12 1,5,7,11) (12 1,5,7,11)x y  

(12 1) (12 1)x y  

(12 5) (12 5)x y  

(12 7) (12 7)x y  

(12 11) (12 11)x y  

(12 1) (12 5)x y   (12 5) (12 1)x y  

(12 7) (12 11)x y   (12 11) (12 7)n n  

(12 1) (12 7)x y   (12 7) (12 1)x y  

(12 5) (12 11)x y   (12 11) (12 5)x y  

(12 1) (12 11)x y   (12 11) (12 1)x y  

(12 5) (12 7)x y   (12 7) (12 5)x y  

 

 

 

 

symmetric table aymmetric table

 
2.3. )Figure a  Structure of Multiplication Table 

 

 G  is a temporary mark used in this paper. 

 ~a p
 
are marked in alphabetical order. 

 n  is marked to clarify that composite numbers are a set of arithmetic progressions. 
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1Group Name ( ) ( ) 1,2,3...,

(12 1)(12 1) 12 (12 1) ,1

(12 5)(12 5) 12 (12 5) 1, 12

(12 7)(12 7) 12 (12 7) 1, 13

(12 11)(4

5

6

7

8

9

10

11

12

13

14

15

16

n

n

n

n

a first term d common difference n nN

x y x x n y n

x y x x n y n

x y x x n y n

x



     

       

       



Ga

Gb

Gc

Gd 12 11) 12 (12 11) 1, 1

(12 5)(12 1) 12 (12 5) 1,

(12 1)(12 5) 12 (12 1) , 1

(12 11)(12 7) 12 (12 1) 1, 1

(12 7)(12 11) 12 (12 7) 1, 1

(12 7)(12 1) 12 (

n

n

n

n

n

y x x n y n

x y x x n y n

x y x x n y n

x y x x n y n

x y x x n y n

x y

      

      

      

       

       

  

Ge

Gf

Gg

Gh

Gi 12 7) 1,

(12 1)(12 7) 12 (12 1) , 1

(12 5)(12 11) 12 (12 5) 1, 1

(12 11)(12 5) 12 (12 11) 1, 1

(12 1)(12 11) 12 (12 1) , 1

(12 11)(12 1) 12 (12 11)

n

n

n

n

n

x x n y n

x y x x n y n

x y x x n y n

x y x x n y n

x y x x n y n

Gn x y x x n

   

      

       

       

      

     

Gj

Gk

Gl

Gm

1,

(12 5)(12 7) 12 (12 5) 1, 1

(12 7)(12 5) 12 (12 7) 1, 1

n

n

y n

Go x y x x n y n

Gp x y x x n y n



       

       

 

3)Table   The composite numbers of the 12 1, 5, 7,11n  series are sorted into a total of sixteen 

groups( ~n nGa Gp ). 

 
2.4 Symmetric table and Asymmetric table 
 

Analyzing the table of the 12 1,5,7,11n   series, by the values of horizontal axis( ) and 

vertical axis(  ), the table divides into a symmetric table if   , and into an 

asymmetric table if   . Therefore, we can find the following results. 

 

)i Symmetric table,  
 

 

(12 1) (12 1), ( , 1)x y x y     

(12 5) (12 5)x y   , 

(12 7) (12 7)x y   , 

(12 11) (12 11)x y  
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Since   , the results are the same, reflecting along the diagonal elements independent 

of the orders of   and  . So, the symmetric table has four cases. 

 

)ii Asymmetric table,  
 

 

(12 1) (12 5), ( 1)x y x    , (12 7) (12 11)x y  
 

(12 1) (12 7), ( 1)x y x    , (12 5) (12 11)x y    

(12 1) (12 11), ( 1)x y x    , (12 5) (12 7)x y    

 

However, the commutative law does not hold if   . So, depending on the orders of 

  and  , the results are different for the diagonal elements. An asymmetric table has 

twelve cases. 

 

Sign Equation

1 5 (12 1) (12 5), ( 1)

5 1 (12 5) (12 1), ( 1)

7 11 (12 7) (12 11)

11 7 (12 11) (12 7)

1 7 (12 1) (12 7), ( 1)

7 1 (12 7) (12 1), ( 1)

5 11 (12 5) (12 11)

11 5 (12 11) (12 5)

1 1

x y x

x y x

x y

x y

x y x

x y x

x y

x y

 

     

     

    

    

     

     

    

    

1 (12 1) (12 11), ( 1)

11 1 (12 11) (12 1), ( 1)

5 7 (12 5) (12 7)

7 5 (12 7) (12 5)

x y x

x y x

x y

x y

     

     

    

    
 

4)Table   The Equation of Asymmetric Table  
 

The composite numbers of the 12 1,5,7,11n   series divide into a total of sixteen 

arithmetic progression groups in the matrix multiplication, 

(12 ) (12 ), ( , 1, 5, 7,11)x y       , depending on    and   . 
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3. Composites in Arithmetic Progression 
 

( )3.1 (12 1)(12 1),
n

Gax y   

 

13 25 37 49 61 73 85 97

13

25 325

37 481 925

49 637 1225 1813

61 793 1525 2257 2989

73 949 1825 2701 3577 4453

85 1105 2125 314

169

625

1369

2401

3721

5329

725 4165 5185 6205

97 1261 2425 3589 4753 5917 7081 8245

25

9409

 12 1x 

12 1y 
 

3.1. )Figure a  From the matrix multiplication, each of the diagonal elements becomes the initial 

terms of the arithmetic progressions. 
 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 325( ) 481( ) 637( ) 793( ) 949( ) 1105( ) 1261( ):

( ) 925( ) 1225( ) 1525( ) 1825( ) 2125( ) 2425( ):

( ) 1813

169

625

136 ( ) 2257( ) 2701( ) 3145( ) 3589( ):

( )

9

240:

:

:

1

:

:

a a a a a a a a

a a a a a a a

a a a a a a

a

Ga

Ga

Ga

Ga

Ga

Ga

Ga

Ga

2 3 4 5

1 2 3 4

1 2 3

1 2

1

2989( ) 3577( ) 4165( ) 4753( )

( ) 4453( ) 5185( ) 5917( )

( ) 6205( ) 701

3721

5329

722

8( )

( ) 8545( )

(

5

9409 )

a a a a

a a a a

a a a

a a

a

 

3.1. )Figure b  We have listed the symmetric matrix results for each arithmetic progression. (
1

a =first 

term, d =common difference) 
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1 1

2 1

3 1

4 1

: (12 1)(12 1) , 12 (12 1) 156, ( 1, 1)

: (12 1)(12 1) , 12 (12 1) 300, ( 2, 2)

: (12 1)(12 1) , 12 (12 1) 444, ( 3, 3)

: (12 1)(12 1) ,

1

12 (12 1) 588

69

625

1369

2401

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x

         

         

         

       

Ga

Ga

Ga

Ga

5 1

6 1

7 1

8 1

, ( 4, 4)

: (12 1)(12 1) , 12 (12 1) 732, ( 5, 5)

: (12 1)(12 1) , 12 (12 1) 876, ( 6, 6)

: (12 1)(

3721

5329

712 1) , 12 (12 1) 1020, ( 7, 7)

: (12 1)(12

225

1) , 19409

x y

a x y d x x y

a x y d x x y

a x y d x x y

a x y d

 

         

         

         

    

Ga

Ga

Ga

Ga

1

2 (12 1) 1164, ( 8, 8)

: (12 1)(12 1) 144 12 12 1, 12 (12 1), ( , )n

x x y

a x y xy x y d x x n y n

    

           Ga

 

3.1. )Figure c  Table multiplication results are arithmetic progressions that have initial terms and 

common differences and have a general formula. (
1

a =first term, d =common difference) 

 

1Ga

2Ga

A1

A5A7A11

A1

A5A7A11

A1

A5A7A11

A1

A5A7A11

A1

A5A7 A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

169

325

481

637

793

949

625

925

12 1x 

12 1y 
 

.1. )3Figure d  The contour of the arithmetic progression that belongs to Gan  
 

The 3.1. )Figure d  shows the contour of the arithmetic progression, cutting by 60 up to 

1000. If N  increases, more arithmetic progressions are generated. A point to note here is 

that they appear as different contours because they have different initial terms and common 

differences that belong to nGa . 
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100 200 300 400 500 600 700 800 900 1000

169 325 481 637 793 949
     1Ga

600 800 1000 1200 1400 1600 1800 2000 2200 2400

625 925 1225 1525 1825 2125
     2Ga 

2425

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

1369 1813 2257 2701
   3Ga

 

3.1. )Figure e In Gan ,there exist, under rules, a number of arithmetic progressions that have different 

initial terms and common differences. 

 

1 2 3, , ~ nGa GaGa Ga make up arithmetic progression groups that have initial terms, 

 (12 1)(12 1), ( , )x y x y n   and common differences, ( )12(12 1),x x n  . Of course, as 

n  increases, the values of the initial term and the common difference increase. 

1 1

1 2 2

1 2 3 3

1

1

2 3 4 4

1 2 3 4 5 5

1 2 3

1

2 1

3 1

4

1

5

4

5 1

1

: (169)

: (625)

: (1369)

: (2401)

: (3721

,

, ,

, , ,

, , , ,

, , , ,: ,

)

, n nn

N current value new value

Ga Ga

Ga Ga Ga

Ga Ga Ga Ga

Ga Ga Ga Ga Ga

Ga Ga Ga Ga Ga Ga

Ga G

Ga

a Ga G

a

Ga a

Ga a

Ga a

Ga a

Ga a a aa G Ga G

 

3.1. )Figure f  As the natural number N , increases, new arithmetic progressions accumulate 

and keep increasing. 

 

In 3.1. )Figure f , since new arithmetic progressions accumulate as the natural number N  

increases, the distribution density of the composite numbers in each region becomes high.  

For example, the number of composite numbers of the arithmetic progression, nGa , is 

higher in the 1,000-2,000 region than in the 11,000-12,000 region. Just like a timer that 

rings after a certain period of time, for a certain N , the corresponding arithmetic 

progression operates. 
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Theorem 2) As N  increases, the density of composite numbers becomes higher. In other 

words, it means that, as N  increases, prime number density becomes low. (of the sparsity 

of the prime sequence.) 

 

When writing the list of prime numbers, you will find that prime numbers become more 

and more sparse. 

 

2

3

4

5

6

7

8

9

10

( ) ( ) /

10 4 0.4

10 25 0.25

10 168 0.168

10 1,229 0.1229

10 9,592 0.09592

10 78,498 0.078498

10 664,579 0.066458

10 5,761,455 0.057615

10 50,847,534 0.050848

10 455,052,512 0.045505

n n n n 

 
5)Table   The Sparse of Prime Numbers 

 

The number of prime numbers between 1 and 100 is greater than that between 101 and 200. 
There are 4 prime numbers (40%) between 0 and 10, 25 prime numbers (25%) between 0 

and 100, 168(16.8%) between 0 and 1000, 1,229 (12.3%) between 0 and 10000, 9592 

(9.5%) between 0 and 100000, and 78,498 (7.8%) between 0 and 1000000. The percentage 

gradually decreases. [9][10] 
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2

2 2

2 2

2 2

2 2

2 2

21(0.21) 13(0.13)

16(0.16) 17(0.17)

16(0.16) 17(0.17)

17(0.17) 17(0.17)

14(0.14) 19(0.19)

Section The count of prime The count of composite

0 ~ 10 25(0.25) 9(0.09)

10 ~ 2 10

2 10 ~ 3 10

3 10 ~ 4 10

4 10 ~ 5 10

5 10 ~ 6 10



 

 

 

 
2 2

2 2

2 2

2 3

16(0.16) 17(0.17)

14(0.14) 20(0.20)

15(0.15) 18(0.18)

14(0.14) 19(0.19)

Total

34

34

33

33

34

33

6 10 ~ 7 10 33

7 10 ~ 8 10 34

8 10 ~ 9 10 33

9 10 ~ 10 33

 

 

 



 
6)Table   Densities of Prime and Composite Numbers in Each Region 

 

Therefore, if you know reason that the number of composite numbers increases, you will 

know why prime number density decreases. This is because, at least, we know the rules 

under which composite numbers are generated. This phenomenon is a natural result because 

new arithmetic progressions accumulate as a natural number, N , increases. As nGa , 

, ~n n nGb Gc Gp  make up groups that all have different initial terms and common 

differences. Therefore, they make up sixteen groups of arithmetic progressions. 
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3.2 (12 5)(12 5),( )nx y Gb 
 

 
5 17 29 41 53 65 77 89

5

17 85

29 145 493

41 205 697 1189

53 265 901 1537 2173

65 325 1105 1885 2665 3445

77 385 1309 2233 31

25

289

841

1681

2809

4225

592957 4081 5005

89 445 1513 2581 3649 4717 5785 685 13 792

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1 2

5

6

7

8

( ) 85( ) 145( ) 205( ) 265( ) 325( ) 385( ) 445( ):

( ) 493( ) 6

25

289

8

97( ) 901( ) 1105( ) 1903( ) 1513( ):

( ) 1189( ) 1537( ) 18841

16

5( ) 2233( ) 2581( ):

( ) 2173(:

:

:

:

:

81

a a a a a a a a

a a a a a a a

a a a a a a

a a

Gb

Gb

Gb

Gb

Gb

Gb

Gb

Gb

3 4 5

1 2 3 4

1 2 3

1 2

1

) 2665( ) 3157( ) 3649( )

( ) 3445( ) 4081( ) 4717( )

( ) 5005( ) 5785( )

(

2809

4225

5929 ) 6853(

( )7921

)

a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 5)(12 5) , 12 (12 5) 60, ( 0, 0)

: (12 5)(12 5) , 12 (12 5) 204, ( 1, 1)

: (12 5)(12 5) , 12 (12 5) 348, ( 2, 2)

: (12 5)(12 5) , 12 (12 5

25

289

841

168 921 ) 4 , (

a x y d y x y

a x y d y x y

a x y d y x y

a x y d y x

         

         

         

       

Gb

Gb

Gb

Gb

5 1

6 1

7 1

8 1

3, 3)

: (12 5)(12 5) , 12 (12 5) 636, ( 4, 4)

: (12 5)(12 5) , 12 (12 5) 780, ( 5, 5)

: (12 5)(12 5) , 12 (12 5) 924, ( 6, 6)

: (

2809

42

12 5)(12 5

25

59

) , 12 (

29

7 21 19

y

a x y d y x y

a x y d y x y

a x y d y x y

a x y d

 

         

         

         

     

Gb

Gb

Gb

Gb

1

2 5) 1068, ( 7, 7)

: (12 5)(12 5) 144 60 60 25, 12 (12 5), ( 1, 1)n

y x y

a x y xy x y d x x n y n

   

             Gb

 

 

85

25

145

205

265

325

385

445

505

565

625

685

745

805

865

925

985

1Gb

289

493

697

901
2Gb

A1

A5A7A11

A1

A5A7A11

A1

A5A7A11

A1

A5A7A11

A1

A5A7 A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

841
3Gb
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3.3 (12 7)(12 7),( )nx y Gc   

7 19 31 43 55 67 79 91

7

19 133

31 217 589

43 301 817 1333

55 385 1045 1705 2365

67 469 1273 2077 2881 3685

79 553 1501 2449 3

49

361

961

1849

3025

4489

624397 4345 5293

91 637 1729 2821 3913 5005 6097 71

1

189 828

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 133( ) 217( ) 301( ) 385( ) 469( ) 553( ) 637( ):

( ) 589( ) 817( ) 1045( ) 1273( ) 1501( ) 1729( )

49

361

9

:

(61

18

) 1333( ) 1705( ) 2077( ) 2449( ) 2821( ):

( ) 2365(:

:

:

:

:

49

a a a a a a a a

a a a a a a a

a a a a a a

a

Gc

Gc

Gc

Gc

Gc

Gc

Gc

Gc

2 3 4 5

1 2 3 4

1 2 3

1 2

1

) 2881( ) 3397( ) 3913( )

( ) 3685( ) 4345( ) 5005( )

( ) 5293( ) 6097

3025

4489

6241

( )

( ) 7189( )

( )8281

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 7)(12 7) , 12 (12 7) 84, ( 0, 0)

: (12 7)(12 7) , 12 (12 7) 228, ( 1, 1)

: (12 7)(12 7) , 12 (12 7) 372, ( 2, 2)

: (12 7)(12 7) , 12 (12 7

49

361

961

184 169 ) 5 , (

a x y d y x y

a x y d y x y

a x y d y x y

a x y d y x

         

         

         

       

Gc

Gc

Gc

Gc

5 1

6 1

7 1

8 1

3, 3)

: (12 7)(12 7) , 12 (12 7) 660, ( 4, 4)

: (12 7)(12 7) , 12 (12 7) 804, ( 5, 5)

: (12 7)(12 7) , 12 (12 7) 948, ( 6, 6)

: (

3025

44

12 7)(12 7

89

62

) , 12 (

41

8 81 12

y

a x y d y x y

a x y d y x y

a x y d y x y

a x y d

 

         

         

         

     

Gc

Gc

Gc

Gc

1

2 7) 1092, ( 7, 7)

: (12 7)(12 7) 144 84 84 49, 12 (12 7), ( 1, 1)n

y x y

a x y xy x y d x x n y n

   

             Gc

 

 

1Gc

2Gc

A1

A5A7A11

A1

A5A7A11

A1

A5A7A11

A1

A5A7A11

A1

A5A7 A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019
3Gc

133

217

301

385

469

553

637

721

805

889

973

361

589

817

961

49
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3.4 (12 11)(12 11),( )nx y Gd   

11 23 35 47 59 71 83 95

11

23 253

35 385 805

47 517 1081 1645

59 649 1357 2065 2773

71 781 1633 2485 3337 4189

83 913 1909 2905

121

529

1225

2209

3481

5041

683901 4897 5893

95 1045 2185 3325 4465 5605 6745 7885

89

9025

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 253( ) 385( ) 517( ) 649( ) 781( ) 913( ) 1045( ):

( ) 805( ) 1081( ) 1357( ) 1633( ) 1909( ) 2185( ):

( ) 1645( ) 2065( ) 2485( ) 2905( ) 332

121

529

1225

2

5( ):

( ) 2:

:

0

:

:

:

2 9

a a a a a a a a

a a a a a a a

a a a a a a

a

Gd

Gd

Gd

Gd

Gd

Gd

Gd

Gd

2 3 4 5

1 2 3 4

1 2 3

1 2

1

773( ) 3337( ) 3901( ) 4465( )

( ) 4189( ) 4897( ) 5605( )

( ) 5893( ) 674

3481

5041

688

5( )

( ) 7885( )

(

9

9025 )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 11)(12 11) , 12 (12 11) 132, ( 0, 0)

: (12 11)(12 11) , 12 (12 11) 276, ( 1, 1)

: (12 11)(12 11) , 12 (12 11) 420, ( 2, 2)

: (12 11)(12

121

52

11) , 1

9

1225

2209 2

a x y d y x y

a x y d y x y

a x y d y x y

a x y d

         

         

         

     

Gd

Gd

Gd

Gd

5 1

6 1

7 1

8 1

(12 11) 564, ( 3, 3)

: (12 11)(12 11) , 12 (12 11) 708, ( 4, 4)

: (12 11)(12 11) , 12 (12 11) 852, ( 5, 5)

: (1

348

2 11)(12 11) , 12 (12 11) 996, ( 6, 6)

1

:

5041

(

8

1

68 9

2

y x y

a x y d y x y

a x y d y x y

a x y d y x y

a

   

         

         

         



Gd

Gd

Gd

Gd

1

11)(12 11) , 12 (12 11) 1140, ( 7, 7)

: (12 11)(12 11) 144 132 132 121, 12 (12 11), ( 1,

9 2

1)

0 5

n

x y d y x y

a x y xy x y d y x n y n

        

             Gd

 

 

1Gd
2Gd

A1

A5A7A11

A1

A5A7A11

A1

A5A7A11

A1

A5A7A11

A1

A5A7 A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

121

253

385

517

649

781

913

529

805
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3.5 (12 1)(12 5),( )nx y Ge   

 
13 25 37 49 61 73 85 97

5

17 221

29 377 725

41 533 1025 1517

53 689 1325 1961 2597

65 845 1625 2405 3185 3965

77 1001 1925 2849

65

425

1073

2009

3233

4745

6543773 4697 5621

89 1157 2225 3293 4361 5429 6497 75

5

365 863

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 221( ) 377( ) 533( ) 689( ) 845( ) 1001( ) 1157( ):

( ) 725( ) 1025( ) 1325( ) 1625( ) 1925( ) 2225( ):

( ) 1517( ) 1961( ) 2405( ) 2849( ) 3293( ):

( ) 2:

:

65

425

1073

20

:

:

:

09

a a a a a a a a

a a a a a a a

a a a a a a

a

Ge

Ge

Ge

Ge

Ge

Ge

Ge

Ge

2 3 4 5

1 2 3 4

1 2 3

1 2

1

597( ) 3185( ) 3773( ) 4361( )

( ) 3965( ) 4697( ) 5429( )

( ) 5621( ) 649

3233

4745

654

7( )

( ) 7565( )

(

5

8633 )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 1)(12 5) , 12 (12 1) 156( 1, 0)

: (12 1)(12 5) , 12 (12 1) 300( 2, 1)

: (12 1)(12 5) , 12 (12 1) 444( 3, 2)

: (12 1)(12 5) , 12 (12 1) 58

65

425

1073

200 8( 49

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x x

         

         

         

        

Ge

Ge

Ge

Ge

5 1

6 1

7 1

8 1

, 3)

: (12 1)(12 5) , 12 (12 1) 732( 5, 4)

: (12 1)(12 5) , 12 (12 1) 876( 6, 5)

: (12 1)(12 5) , 12 (12 1) 1020

3233

47

( 7, 6)

: (12 1)(12 5

45

6545

8633) , 12 (12 1

y

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x



         

         

         

      

Ge

Ge

Ge

Ge

1

) 1164( 8, 7)

: (12 1)(12 5) 144 60 12 5, 12 (12 1)( , 1)n

x y

a x y xy x y d x x n y n

  

            Ge

 

 

1Ge

2Ge

A1

A5

A7A11A1

A5

A7A11 A1

A5

A7A11A1

A5

A7A11A1

A5

A7 A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

65

221

377

533

689

845

425

725

1001
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3 (12 5)(12 1),( ).6 nx y Gf   

 
5 17 29 41 53 65 77 89

13

25 125

37 185 629

49 245 833 1421

61 305 1037 1769 2501

73 365 1241 2117 2993 3869

85 425 1445 2465

65

425

1073

2009

3233

4745

653485 4505 5525

97 485 1649 2813 3977 5141 6305 7469

45

8633

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 125( ) 185( ) 245( ) 305( ) 365( ) 425( ) 485( ):

( ) 629( ) 833( ) 1037( ) 1241( ) 1445

65

425

1073

2009

( ) 1649( ):

( ) 1421( ) 1769( ) 2117( ) 2465( ) 2813( ):

( ) 2501:

:

:

:

:

Gf a a a a a a a a

Gf a a a a a a a

Gf a a a a a a

Gf a

Gf

Gf

Gf

Gf

2 3 4 5

1 2 3 4

1 2 3

1 2

1

( ) 2993( ) 3485( ) 3977( )

( ) 3869( ) 4505( ) 5141( )

( ) 5525( ) 6305

3233

4745

6545

( )

( ) 7469(

8633

)

( )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

65

42

: (12 5)(12 1) , 12 (12 5) 60( 0, 1)

: (12 5)(12 1) , 12 (12 5) 204( 1, 2)

: (12 5)(12 1) , 12 (12 5) 348( 2, 3)

: (12 5)(1

5

10

2 1) , 12 (12 5) 492( 3,

73

2009

Gf a x y d x x y

Gf a x y d x x y

Gf a x y d x x y

Gf a x y d x x

         

         

         

        

5 1

6 1

7 1

8 1

4)

: (12 5)(12 1) , 12 (12 5) 636( 4, 5)

: (12 5)(12 1) , 12 (12 5) 780( 5, 6)

: (12 5)(12 1) , 12 (12 5) 924( 6, 7)

: (12

3233

4745

5)(12

6545

86331) , 12 (12 5)

y

Gf a x y d x x y

Gf a x y d x x y

Gf a x y d x x y

Gf a x y d x



         

         

         

       

1

1068( 7, 8)

: (12 5)(12 1) 144 12 60 5, 12 (12 5)( 1, )n

x y

Gf a x y xy x y d y x n y n

 

            

 

 

1Gf

2Gf

A1

A5

A7A11A1

A5

A7A11 A1

A5

A7A11A1

A5

A7A11A1

A5

A7 A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

65

125

185

245

305

365

425

485

545

605

665

725

785

845

905

965

629

833
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3.7 (12 7)(12 11),( )nx y Gg 
 

 
7 19 31 43 55 67 79 91

11

23 161

35 245 665

47 329 893 1457

59 413 1121 1829 2537

71 497 1349 2201 3053 3905

83 581 1577 2573

77

437

1085

2021

3245

4757

653569 4565 5561

95 665 1805 2945 4085 5225 6365 7505

57

8645

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 161( ) 245( ) 329( ) 413( ) 497( ) 581( ) 665( ):

( ) 665( ) 893( ) 1121( ) 1349( ) 1577( ) 1805( )

77

437

1085

:

(

2

) 1457( ) 1829( ) 2201( ) 2573( ) 2945( ):

( ) 2537:

:

:

:

0

:

21

a a a a a a a a

a a a a a a a

a a a a a a

a

Gg

Gg

Gg

Gg

Gg

Gg

Gg

Gg

2 3 4 5

1 2 3 4

1 2 3

1 2

1

( ) 3053( ) 3569( ) 4085( )

( ) 3905( ) 4565( ) 5225( )

( ) 5561( ) 6365

3245

4757

6557

( )

( ) 7505(

8645

)

( )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 7)(12 11) , 12 (12 7) 84( 0, 0)

: (12 7)(12 11) , 12 (12 7) 228( 1, 1)

: (12 7)(12 11) , 12 (12 7) 372( 2, 2)

: (12 7)(12 11) , 12 (12 7)

77

437

1085

2021 516(

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x

         

         

         

       

Gg

Gg

Gg

Gg

5 1

6 1

7 1

8 1

3, 3)

: (12 7)(12 11) , 12 (12 7) 660( 4, 4)

: (12 7)(12 11) , 12 (12 7) 804( 5, 5)

: (12 7)(12

3245

4757

6511) , 12 (12 7) 948( 6, 6)

: (12 7)(12 11) , 12

57

8645

x y

a x y d x x y

a x y d x x y

a x y d x x y

a x y d

 

         

         

         

     

Gg

Gg

Gg

Gg

1

(12 7) 1092( 7, 7)

: (12 7)(12 11) 144 132 84 77, 12 (12 7)( 1, 1)n

x x y

a x y xy x y d x x n y n

   

             Gg

 

 

A1

A5

A7A11A1

A5

A7A11 A1

A5

A7A11A1

A5

A7A11A1

A5

A7 A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

1Gg

2Gg

77

161

245

329

413

497

581

665

749

833

917

473

893
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3.8 (12 11)(12 7),( )nx y Gh 
 

 
11 23 35 47 59 71 83 95

7

19 209

31 341 713

43 473 989 1505

55 605 1265 1925 2585

67 737 1541 2345 3149 3953

79 869 1817 2765 3

77

437

1085

2021

3245

4757

655713 4661 5609

91 1001 2093 3185 4277 5369 6461 75

7

553 864

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 209( ) 341( ) 473( ) 605( ) 737( ) 869( ) 1001( ):

( ) 713( ) 989( ) 1265( ) 1541

77

437

1085

2021

( ) 1817( ) 2093( ):

( ) 1505( ) 1925( ) 2345( ) 2765( ) 3185( ):

( ) 258:

:

:

:

:

a a a a a a a a

a a a a a a a

a a a a a a

a

Gh

Gh

Gh

Gh

Gh

Gh

Gh

Gh

2 3 4 5

1 2 3 4

1 2 3

1 2

1

5( ) 3149( ) 3713( ) 4277( )

( ) 3965( ) 4661( ) 5369( )

( ) 5609( ) 6461

3245

4757

6557

( )

( ) 7553(

8645

)

( )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 11)(12 7) , 12 (12 11) 132( 0, 0)

: (12 11)(12 7) , 12 (12 11) 276( 1, 1)

: (12 11)(12 7) , 12 (12 11) 420( 2, 2)

: (12 11)(12 7) , 12

77

437

1085

2021 (12 11)

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x

         

         

         

      

Gh

Gh

Gh

Gh

5 1

6 1

7 1

8 1

564( 3, 3)

: (12 11)(12 7) , 12 (12 11) 708( 4, 4)

: (12 11)(12 7) , 12 (12 11) 852( 5, 5)

: (12 11)(12 7) , 12 (12 11) 996( 6, 6)

: (

3245

4757

65

1

5

2 11)(1

7

82 ) 67

x y

a x y d x x y

a x y d x x y

a x y d x x y

a x y

  

         

         

         

   

Gh

Gh

Gh

Gh

1

, 12 (12 11) 1140( 7, 7)

: (12 11)(12 7) 144 84 132 7

4

7, 12 (12 1) 1 )

5

( , 1n

d x x y

a x y xy x y d x x n y n

     

             Gh

 

 

A1

A5

A7A11A1

A5

A7A11 A1

A5

A7A11A1

A5

A7A11A1

A5

A7 A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

1Gh
2Gh

77

209

341

473

605

737

869

437

713

989
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3.9 (12 1)(12 7),( )nx y Gi 
 

 
13 25 37 49 61 73 85 97

7

19 247

31 403 775

43 559 1075 1591

55 715 1375 2035 2695

67 871 1675 2479 3283 4087

79 1027 1975 2923

91

475

1147

2107

3355

4891

6713871 4819 5767

91 1183 2275 3367 4459 5551 6643 77

5

735 882

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 247( ) 403( ) 559( ) 715( ) 871( ) 1027( ) 1183( ):

( ) 775( ) 1075( ) 1375( ) 1675( ) 1975( ) 2275( ):

( ) 1591( ) 2035( ) 2479( ) 2923( ) 3367( )

91

475

1147

210

:

( ) 27:

:

:

:

:

Gi a a a a a a a a

Gi a a a a a a a

Gi a a a a a a

Gi a

Gi

Gi

Gi

Gi

2 3 4 5

1 2 3 4

1 2 3

1 2

1

695( ) 3283( ) 3871( ) 4459( )

( ) 4087( ) 4819( ) 5551( )

( ) 5767( ) 664

3355

4891

671

3( )

( ) 7735( )

(

5

8827 )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 1)(12 7) , 12 (12 1) 156( 1, 0)

: (12 1)(12 7) , 12 (12 1) 300( 2, 1)

: (12 1)(12 7) , 12 (12 1

91

475

11 ) 444( 3, 2)

: (12 1)(12 7) , 12 (12 1)

47

21 588( 407

Gi a x y d x x y

Gi a x y d x x y

Gi a x y d x x y

Gi a x y d x x

         

         

         

        

5 1

6 1

7 1

8 1

, 3)

: (12 1)(12 7) , 12 (12 1) 732( 5, 4)

: (12 1)(12 7) , 12 (12 1) 876( 6, 5)

: (12 1)(12 7)

3355

4891

6 , 12 (12 1) 1020( 7, 6)

: (1

715

2 1)(12 7) , 12 (18 22 18 7

y

Gi a x y d x x y

Gi a x y d x x y

Gi a x y d x x y

Gi a x y d x



         

         

         

      

1

) 1164( 8, 7)

: (12 1)(12 7) 144 84 12 7, 12 (12 1)( , 1)n

x y

Gi a x y xy x y d x x n y n

  

            

 

 

A1A5
A7

A11A1A5

A7

A11 A1A5

A7

A11A1A5

A7

A11A1A5

A7

A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

1Gi
2Gi

91

247

403

559

715

871

475

775
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3.10 (12 7)(12 1),( )nx y Gj 
 

 
7 19 31 43 55 67 79 91

13

25 175

37 259 703

49 343 931 1519

61 427 1159 1891 2623

73 511 1387 2263 3139 4015

85 595 1615 2635

91

475

1147

2107

3355

4891

673655 4675 5695

97 679 1843 3007 4171 5335 6499 7663

15

8827

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 175( ) 259( ) 343( ) 427( ) 511( ) 595( ) 679( ):

( ) 703( ) 931( ) 1159( ) 1387( ) 1615( ) 1843( )

91

475

1147

:

(

2

) 1519( ) 1891( ) 2263( ) 2635( ) 3007( ):

( ) 2623:

:

:

:

1

:

07

a a a a a a a a

a a a a a a a

a a a a a a

a

Gj

Gj

Gj

Gj

Gj

Gj

Gj

Gj

2 3 4 5

1 2 3 4

1 2 3

1 2

1

( ) 3139( ) 3655( ) 4171( )

( ) 4015( ) 4675( ) 5335( )

( ) 5695( ) 6499

3355

4891

6715

( )

( ) 7663(

8827

)

( )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 7)(12 1) , 12 (12 7) 84( 0, 1)

: (12 7)(12 1) , 12 (12 7) 228( 1, 2)

: (12 7)(12 1) , 12 (12 7) 372( 2, 3)

: (12 7)(12 1) , 12 (12 7) 516( 3,

91

475

1147

2107

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x x

         

         

         

        

Gj

Gj

Gj

Gj

5 1

6 1

7 1

8 1

4)

: (12 7)(12 1) , 12 (12 7) 660( 4, 5)

: (12 7)(12 1) , 12 (12 7) 804

3

( 5, 6)

: (12 7)(12 1) , 12 (12 7) 948( 6, 7)

: (12 7)(12

355

4891

6715

81) , 12 (128 7)27

y

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x



         

         

         

       

Gj

Gj

Gj

Gj

1

1092( 7, 8)

: (12 7)(12 1) 144 12 84 7, 12 (12 7)( 1, )n

x y

a x y xy x y d x x n y n

 

            Gj

 

 

A1A5
A7

A11A1A5

A7

A11 A1A5

A7

A11A1A5

A7

A11A1A5

A7

A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

1Gj
2Gj

91

175

259

343

427

511

595

679

763

847

931

475

703
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3.11 (12 5)(12 11),( )nx y Gk 
 

 
5 17 29 41 53 65 77 89

11

23 115

35 175 595

47 235 799 1363

59 295 1003 1711 2419

71 355 1207 2059 2911 3763

83 415 1411 2407

55

391

1015

1927

3127

4615

633403 4399 5395

95 475 1615 2755 3895 5035 6175 7315

91

8455

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 115( ) 175( ) 235( ) 295( ) 355( ) 415( ) 475( ):

( ) 595( ) 799( ) 1003( ) 1207( ) 1411( ) 1615( )

55

391

1015

:

(

1

) 1363( ) 1711( ) 2059( ) 2407( ) 2755( ):

( ) 2419:

:

:

:

9

:

27

a a a a a a a a

a a a a a a a

a a a a a a

a

Gk

Gk

Gk

Gk

Gk

Gk

Gk

Gk

2 3 4 5

1 2 3 4

1 2 3

1 2

1

( ) 2911( ) 3403( ) 3895( )

( ) 3763( ) 4399( ) 5035( )

( ) 5395( ) 6175

3127

4615

6391

( )

( ) 7315(

8455

)

( )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 5)(12 11) , 12 (12 5) 60( 0, 0)

: (12 5)(12 11) , 12 (12 5) 204( 1, 1)

: (12 5)(12 11) , 12 (12 5) 348( 2, 2)

: (12 5)(12 11) , 12 (12 5)

55

391

1015

1927 492(

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x

         

         

         

       

Gk

Gk

Gk

Gk

5 1

6 1

7 1

8 1

3, 3)

: (12 5)(12 11) , 12 (12 5) 636( 4, 4)

: (12 5)(12 11) , 12 (12 5) 780( 5, 5)

: (12 5)(12

3127

4615

6311) , 12 (12 5) 924( 6, 6)

: (12 5)(12 11) , 12

91

8455

x y

a x y d x x y

a x y d x x y

a x y d x x y

a x y d

 

         

         

         

     

Gk

Gk

Gk

Gk

1

(12 5) 1068( 7, 7)

: (12 5)(12 11) 144 132 60 55, 12 (12 5)( 1, 1)n

x x y

a x y xy x y d x x n y n

   

             Gk

 

 

A1A5
A7

A11A1A5

A7

A11 A1A5

A7

A11A1A5

A7

A11A1A5

A7

A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

1Gk

2Gk

55

115

175

235

295

355

415

475

535

595

655

715

775

835

895

955

391

799

1003
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3.12 (12 11)(12 5),( )nx y Gl 
 

 
11 23 35 47 59 71 83 95

5

17 187

29 319 667

41 451 943 1435

53 583 1219 1855 2491

65 715 1495 2275 3055 3835

77 847 1771 2695

55

391

1015

1927

3127

4615

633619 4543 5467

89 979 2047 3115 4183 5251 6319 7387

91

8455

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 187( ) 319( ) 451( ) 583( ) 715( ) 847( ) 979( ):

( ) 667( ) 943( ) 1219( ) 1495( ) 1771( ) 2047( )

55

391

1015

:

(

1

) 1435( ) 1855( ) 2275( ) 2695( ) 3115( ):

( ) 2491:

:

:

:

9

:

27

a a a a a a a a

a a a a a a a

a a a a a a

a

Gl

Gl

Gl

Gl

Gl

Gl

Gl

Gl

2 3 4 5

1 2 3 4

1 2 3

1 2

1

( ) 3055( ) 3619( ) 4183( )

( ) 3835( ) 4543( ) 5251( )

( ) 5467( ) 6319

3127

4615

6391

( )

( ) 7387(

8455

)

( )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 11)(12 5) , 12 (12 11) 132( 0, 0)

: (12 11)(12 5) , 12 (12 11) 276( 1, 1)

: (12 11)(12 5) , 12 (12 11) 420( 2, 2)

: (12 11)(12 5) , 12

55

391

1015

1927 (12 11)

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x

         

         

         

      

Gl

Gl

Gl

Gl

5 1

6 1

7 1

8 1

564( 3, 3)

: (12 11)(12 5) , 12 (12 11) 708( 4, 4)

: (12 11)(12 5) , 12 (12 11) 852( 5, 5)

: (12 11)(12 5) , 12 (12 11) 996( 6, 6)

: (

3127

4615

63

1

9

2 11)(1

1

82 ) 45

x y

a x y d x x y

a x y d x x y

a x y d x x y

a x y

  

         

         

         

   

Gl

Gl

Gl

Gl

1

, 12 (12 11) 1140( 7, 7)

: (12 11)(12 5) 144 60 132 55, 12 (12 11)( 1,

5

1

5

)n

d x x y

a x y xy x y d x x n y n

     

             Gl

 

 

A1A5
A7

A11A1A5

A7

A11 A1A5

A7

A11A1A5

A7

A11A1A5

A7

A11

1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

55

1Gl
2Gl

187

319

451

583

715

847

979

391

667

943
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3.13 (12 1)(12 11),( )nx y Gm 
 

 
13 25 37 49 61 73 85 97

11

23 299

35 455 875

47 611 1175 1739

59 767 1475 2183 2891

71 923 1775 2627 3479 4331

83 1079 2075 307

143

575

1295

2303

3599

5183

701 4067 5063 6059

95 1235 2375 3515 4655 5795 6935 8075

55

9215

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 299( ) 455( ) 611( ) 767( ) 923( ) 1079( ) 1235( ):

( ) 875( ) 1175( ) 1475( ) 1775( ) 2075( ) 2375( ):

( ) 1739( ) 2183( ) 26

143

575

1295

23

27( ) 3071( ) 3515( ):

( )

:

3:

:

0

:

:

Gm a a a a a a a a

Gm a a a a a a a

Gm a a a a a a

Gm a

Gm

Gm

Gm

Gm

2 3 4 5

1 2 3 4

1 2 3

1 2

1

2891( ) 3479( ) 4067( ) 4655( )

( ) 4331( ) 5063( ) 5795( )

( ) 6059( ) 693

3599

5183

705

5( )

( ) 8075( )

(

5

9215 )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 1)(12 11) , 12 (12 1) 156( 1, 0)

: (12 1)(12 11) , 12 (12 1) 300( 2, 1)

: (12 1)(12 11) , 12 (12 1) 444( 3, 2)

: (12 1)(12 11) , 12 (12 1

143

575

1295

2 03 53 ) 8

Gm a x y d x x y

Gm a x y d x x y

Gm a x y d x x y

Gm a x y d x

         

         

         

       

5 1

6 1

7 1

8 1

8( 4, 3)

: (12 1)(12 11) , 12 (12 1) 732( 5, 4)

: (12 1)(12 11) , 12 (12 1) 876( 6, 5)

: (12 1)(12 11) , 12 (12 1) 1020( 7, 6)

: (12 1)(12 11) ,

3599

5183

7055

9215

x y

Gm a x y d x x y

Gm a x y d x x y

Gm a x y d x x y

Gm a x y d

 

         

         

         

    

1

12 (12 1) 1164( 8, 7)

: (12 1)(12 11) 144 132 12 11, 12 (12 1)( , 1)n

x x y

Gm a x y xy x y d x x n y n

    

            

 

 

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11
1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

1Gm
2Gm

143

299

455

611

767

923

575

875
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3.14 (12 11)(12 1),( )nx y Gn 
 

 
11 23 35 47 59 71 83 95

13

25 275

37 407 851

49 539 1127 1715

61 671 1403 2135 2867

73 803 1679 2555 3431 4307

85 935 1955 2975

143

575

1295

2303

3599

5183

703995 5015 6035

97 1067 2231 3395 4559 5723 6887 8051

55

9215

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 275( ) 407( ) 539( ) 671( ) 803( ) 935( ) 1067( ):

( ) 851( ) 1127( ) 1403( ) 1679( ) 1955( ) 2231( ):

( ) 1715( ) 2135( ) 2555( ) 2975( ) 3395( ):

( ) 2:

:

:

:

143

575

1295

2 0

:

3 3

Gn a a a a a a a a

Gn a a a a a a a

Gn a a a a a a

Gn a

Gn

Gn

Gn

Gn

2 3 4 5

1 2 3 4

1 2 3

1 2

1

867( ) 3431( ) 3995( ) 4559( )

( ) 4307( ) 5015( ) 5723( )

( ) 6035( ) 688

3599

5183

705

7( )

( ) 8051( )

(

5

9215 )

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 11)(12 1) , 12 (12 11) 132( 0, 1)

: (12 11)(12 1) , 12 (12 11) 276( 1

143

575

129

, 2)

: (12 11)(12 1) , 12 (12 11) 420( 2, 3)

: (12 11)(12 1) , 12 (12 1

5

2303 1

Gn a x y d x x y

Gn a x y d x x y

Gn a x y d x x y

Gn a x y d x

         

         

         

      

5 1

6 1

7 1

8 1

) 564( 3, 4)

: (12 11)(12 1) , 12 (12 11) 708( 4, 5)

: (12 11)(12 1) , 12 (12 11) 852( 5, 6)

: (12 11)(12 1) , 12 (12 11) 996( 6, 7)

: (12 11)(

3599

5183

70

1 1)

55

92

x y

Gn a x y d x x y

Gn a x y d x x y

Gn a x y d x x y

Gn a x y

  

         

         

         

   

1

, 12 (12 11) 1140( 7, 8)

: (12 11)(12 1) 144 12 132 11, 12 (12 11)

215

( 1, )n

d x x y

Gn a x y xy x y d x x n y n

     

            

 

 

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11
1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

143

275

407

539

671

803

935

575

851
1Gn

2Gn
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3.15 (12 5)(12 7),( )nx y Go 
 

 
5 17 29 41 53 65 77 89

7

19 95

31 155 527

43 215 731 1247

55 275 935 1595 2255

67 335 1139 1943 2747 3551

79 395 1343 2291 32

35

323

899

1763

2915

4355

608339 4187 5135

91 455 1547 2639 3731 4823 5915 700 97 809



 

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1 2

5

6

7

8

( ) 95( ) 155( ) 215( ) 275( ) 335( ) 395( ) 455( ):

( ) 527( ) 7

35

323

8

31( ) 935( ) 1139( ) 1343( ) 1547( ):

( ) 1247( ) 1595( ) 19499

176

3( ) 2291( ) 2639( ):

( ) 2255(:

:

:

:

3

:

Go a a a a a a a a

Go a a a a a a a

Go a a a a a a

Go a a

Go

Go

Go

Go

3 4 5

1 2 3 4

1 2 3

1 2

1

) 2747( ) 3239( ) 3731( )

( ) 3551( ) 4187( ) 4823( )

( ) 5135( ) 5915( )

(

2915

4355

6083 ) 7007(

( )8099

)

a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

35

3

: (12 5)(12 7) , 12 (12 5) 60( 0, 0)

: (12 5)(12 7) , 12 (12 5) 204( 1, 1)

: (12 5)(12 7) , 12 (12 5) 348( 2, 2)

: (12 5)(12 7) , 12 (12 5) 492( 3,

23

899

1763

Go a x y d x x y

Go a x y d x x y

Go a x y d x x y

Go a x y d x x y

         

         

         

        

5 1

6 1

7 1

8 1

3)

: (12 5)(12 7) , 12 (12 5) 636( 4, 4)

: (12 5)(12 7) , 12 (12 5) 780( 5, 5)

: (12 5)(12 7) , 12 (12 5) 924( 6, 6

2915

4355

6083

8

)

: (12 5)(12 7) , 12 (12 5) 1099

Go a x y d x x y

Go a x y d x x y

Go a x y d x x y

Go a x y d x



         

         

         

       

1

068( 7, 7)

: (12 5)(12 7) 144 84 60 35, 12 (12 5)( 1, 1)n

x y

Go a x y xy x y d x x n y n

 

             

 

 

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11
1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

1Go
2Go

35

95

155

215

275

335

395

455

515

575

635

695

755

815

875

935

995

323

527

731

899
3Go
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3.16 (12 7)(12 5),( )nx y Gp 
 

 
7 19 31 43 55 67 79 91

5

17 119

29 203 551

41 287 779 1271

53 371 1007 1643 2279

65 455 1235 2015 2795 3575

77 539 1463 2387 3

35

323

899

1763

2915

4355

608311 4235 5159

89 623 1691 2759 3827 4895 5963 70

3

931 809

  

 

1 1 2 3 4 5 6 7 8

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6

4 1

5

6

7

8

( ) 119( ) 203( ) 287( ) 371( ) 455( ) 539( ) 623( ):

( ) 551( ) 779( ) 1007( ) 1235( ) 1463( ) 1691( )

35

323

8

:

(99

17

) 1271( ) 1643( ) 2015( ) 2387( ) 2759( ):

( ) 2279(:

:

:

:

:

63

a a a a a a a a

a a a a a a a

a a a a a a

a

Gp

Gp

Gp

Gp

Gp

Gp

Gp

Gp

2 3 4 5

1 2 3 4

1 2 3

1 2

1

) 2795( ) 3311( ) 3827( )

( ) 3575( ) 4235( ) 4895( )

( ) 5159( ) 5963

2915

4355

6083

( )

( ) 7031( )

( )8099

a a a a

a a a a

a a a

a a

a

 

 
1 1

2 1

3 1

4 1

: (12 7)(12 5) , 12 (12 7) 84( 0, 0)

: (12 7)(12 5) , 12 (12 7) 228( 1, 1)

: (12 7)(12 5) , 12 (12 7) 372( 2, 2)

: (12 7)(12 5) , 12 (12 7) 51

35

323

899

176 6( 3,3

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x x y

         

         

         

        

Gp

Gp

Gp

Gp

5 1

6 1

7 1

8 1

3)

: (12 7)(12 5) , 12 (12 7) 660( 4, 4)

: (12 7)(12 5) , 12 (12 7) 804( 5, 5)

: (12 7)(12 5) , 12 (12 7) 948( 6, 6)

: (12 7)(12 5) , 12 (

2915

4355

6083

8099 12 7) 1

a x y d x x y

a x y d x x y

a x y d x x y

a x y d x



         

         

         

       

Gp

Gp

Gp

Gp

1

092( 7, 7)

: (12 7)(12 5) 144 60 84 35, 12 (12 7)( 1, 1)n

x y

a x y xy x y d x x n y n

 

             Gp

 

 

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11

A1A5A7

A11
1~59

61~119

121~179

181~239

241~299

301~359

421~479

361~419

481~539

541~599

601~659

661~719

721~779

781~839

841~899

901~959

961~1019

1Gp

2Gp

899

35

119

203

287

371

455

539

623

707

791

875

959

551

779

1007

323

3Gp
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4. Primality Test 
 

We have seen that all the composite numbers but 2 and 3 can be represented in a form of 

(12 ) (12 )x y    . Then, how can we determine if a given positive integer, G , is 

prime or composite? 

Let G  be an arbitrary positive integer. 

i) Check if G  is a multiple of 2 or 3. If G  is a multiple of one of these, it is 

a composite number. 

ii) If G  is not a multiple of 2 or 3, 'G s  remainder R  when divided by 12 

is {1, 5, 7, 11}R  and R  is the a number in the table multiplication 

elements, then G  is a composite number. If R  is not the same as any of 

the multiplication elements, then G  is a prime number. 

 

4.1 Substitution. 
 

If a given number, G , is not a multiple of 2 or 3, we can express it as follows. 

 

(12 ) (12 )

144 12 12 ( , {1,5,7,11})

G x y

xy x y

 

    

   

    
 

 

If we substitute  ,xy x y   with X  and Y , respectively, 

 

,x y Y xy X     

 

The result is the following. 

 

(12 ) (12 )

144 12 ( )

12 ( )
12

x y

X Y G G is given number

G
X Y C C

 





  

   


   

 

 



33 

 

min max

C

12

C0 X

Y

 
 

4.2 Determination of a valid domain. 
 

Let us apply the arithmetic mean and geometric mean to xy  and x y  . 

From x y Y    and xy X , 
x Y

y




 
 . 
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( )

1 1

2 2
2 2

3 3
3 3

4 4
4 4

5 5
5 5

x y X xy

Y Y

Y Y

Y Y

Y Y

Y Y

k Y k Y
k k

 

 

 

 

 

 

 

 

 

 

 

 

   


     


     


     


     


     


 
When 1x  , ( )X xy is the minimum. Therefore, the minimum of ( )X xy  is 

( )
Y

X xy




 
 . 

 

12

12 ( :substi )

(12 )

1

tution

2

X Y C

X X C Y X

X C

C
X

   

 





 

       

    


 



 

 

The maximum of ( )X xy  is 

( )i
 

If x y  is even, then the maximum is achieved when x y . 
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2

2

2
2

2
2

12

12 ( ) 0

( ) ( ) 4 12

24

( ) ( ) 4 12
( , )

24

( ) ( ) 4 12
( )

24

X Y C

x x C

C
x

C
X xy x y

C
X positive

 

   

   

   

 

     

      
 

       
   
 
 

       
  
 
 

 

 

( )ii If x y  is odd, then the maximum is achieved when 1x y  . 

 

2

2

2
2

12

12 ( 1) ( 1) 0

12 ( 12) 0

( 12) ( 12) 4 12 ( )

24

( 12) ( 12) 4 12 ( )
( )

24

X Y C

x x x x C

x x C

C
x

C
X positive

 

  

    

    

 

       

      

         
 

          
  
 
 

 

 

- If the maximum and minimum of ( )X xy  is not an integer, then we can make it an 

integer by rounding it up. 
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C

12

C
12

C 







2

2

( ) ( ) 4 12

24

C          
 
 

0 X

Y

 
 

4.3 Finding integer values of x  and y . 

 

If we can determine the valid domain, we can make the following table list of ( , )X Y . 

 

1 2 3 4 5 6

1 2 3 4 5 6

n

n

X a a a a a a a

Y b b b b b b b
 

 

In 12X Y C  , X  increases by 1 and Y  decreases by 12. So, X  and Y  have 

properties of an arithmetic progression. Let two arithmetic progressions, X  and Y , be 

X n a   and 12Y n b   , respectively. 

 

( , )X Y  Tables pairs 

Is there an efficient method to find a valid set of ( , )X Y  , which has an integer root,  

from 1 1 2 2 3 3 4 4 5 5 6 6( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )n na b a b a b a b a b a b a b . 
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4.3.1 First Method- Pell’s equation 
 

, , int ( , )x n r is positive eger x r contatins zero  

 

Since 

2x Y x
X





   
  

2 ( 12 )
, (substitution : , 12 )

x n b x
n a X n a Y n b





     
        

 
2

2

2

( 12 )

( ) ( 12 )

( 1

4

2 ) ( ) 0

( 1 )

2

)2 (

n a x n b x

x b n x n a

b n
x

b n n a

 

 







         

      

    

 

 
 



 

Since x  is zero or a positive integer 

We can find integer roots ( , )n r  from 
22

( 12 ) 4 ( )b nr n a      

2 2

2 2 2

2 2 2

2 2 2 2

2 2 2 2

36 36 {(12 ) 4 ( )}

36 36 (144 24 4 4 )

36 36 (144 24 4 4 )

36 (72 (6 )) (6 ) 36 4 36

(72 (6 )) 36 (6 ) 36 4 36

(72

r n b n a

r n b n b n a

r n b n n b a

r n b b b a

n b r b b a



 

 

  

  

       

           

           

          

          

 2(6 ) 6 ) (72 (6 ) 6 ) 12(12 ) ( )n b r n b r a b             

 

 

If an integer root, ( , )n r , exists, then we can find integer ( , )x y . 

 

Example) 

 

Let the given number 32,185G  . 

From 2,682 12 1G    , 1R  . Since it is included in 
1

A , we can perform the 

following table multiplications. 
1 1 5 5 7 7 11 11

, , ,A A A A A A A A     

When 1   , (12 1) (12 1)G x y     (This paper will deal with only one example.) 
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207 221

2,682

223
0 X

Y

 
 

 

207 208 209 210 211 212 221

198 186 174 162 150 138 30

X

Y
 

 

207 1 206X n n     , 198 12( 1) 12 210Y n n       

206, 210, 1a b      

 
2 2(12 ) 4 ( )r n b n a       

2 2

1
2 2

1

(12 210) 4 ( 206)

144 5,044 43,276 38,376 (4,612 288( 1))
n

k

r n n

r n n k




    

       
 

2 2

2 2

2 2

36(144 5,044 43,276) 36

(72 1261) 32,185 36

(72 1261) 36 32,185

(72 1,261 6 ) (72 1,261 6 ) ( 1, 32,185), ( 5, 6,437), ( 41, 785), ( 157, 205)

n n r

n r

n r

n r n r

   

   

   

              

 

The pair that has an integer value is ( 157, 205)   

(72 1,261 6 ) (72 1,261 6 ) ( 157, 205)n r n r          
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The integer roots are ( , ) (15, 4)n r  . 

 

 

4.3.2 Second Method 

 

In order to find ( , )x n  pairs that have integer roots, let us do the substitutions

,x y Y xy X   
 

 

2

2

2

2

,

,

( 12 )
, (substitution : , 12 )

(12 ) ,

12

Y x
x y

x Y x
X

x n b x
n a X n a Y n b

x n x b x a

x b x a
n

x













  

 



 


   
 

     
       

        

     
 



 

 

 
 

n x Curve  has the shape of a long sickle. 

0

50000

100000

150000

200000

250000

300000

0 1000 2000 3000 4000

x-n curve

x-n curve



40 

 

In order to find an integer root pair, ( , )x n , 270 thousand iteration is required. But, this 

method is inefficient because all ( , )X Y  tables need to be iterated. However, from the 

graph of the function, we can discover the following properties. When the value of x  is 

small, n  increases faster. However, for a certain domain, the rate at which n  increases 

is greatly reduced as x  increases, and when n  approaches its limit, n  does not either 

increase or decrease as x  increases. Therefore, we can confirm that the values of n  

congregate at certain domains. 

So, we have come up with the following idea to find integer root pair ( , )x n . 

 

If we do the iteration in the domain 
1

0 ~ x , on the x-axis (up to the point where 1k kn n   

is greater than 1) and in the range 1 2~n n , on the n-axis at the points where 1k kn n   

becomes less than 1, then we have the same effect as that of inspecting all the whole 

numbers. 

 

Therefore, the number of iterations becomes 
1 1 2

(0 ~ ) ( ~ )H x n n  . 

But, we have to multiply by 4 because it is hard to find the value of G from the 16 

subgroups (the greater the value of G , the more the computational complexity increases) 

(Each of A1, A5, A7, and A11 has 4 subgroups.) 

Total number of iterations 4totalH H   

 

Example) 

Let the given number be 32,185G  . (the same as in the previous example) 

 

207 208 209 210 211 212 221

198 186 174 162 150 138 30

X

Y
 

 

207 1 206X n n     , 198 12( 1) 12 210Y n n       

 

When 206, 210, 1a b     , 

 

from

2

12

x b x a
n

x

 



     


 ,n becomes

 

2 210 206

12 1

x x
n

x

   



. 
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1 2 3 4 5 6 13

0.23 8.4 11. 12.61 1321 13.9.42 4 15

x

n

A

B
 

 

In the A domain, the values of x are such that 1n nx x  ≥ 1. So, we count by x. 

In the B domain, the values of x are such that 1n nx x   1. So, we count by n. 

 

In the A  domain, the number of x count is, 5 (1, 2, 3, 4, 5) and, in the B  domain, that of 

n  count is 2 (14, 15). So, 5 2 7H     

 

When 505, 488,001G  , 800H   approximately. When 5,391,508,801G  , 

2,700H 
 

 approximately. 

So, ( )
20

x
H O , approximately. 

 

5. Uncertainty Principle 
 

Given a number G , how can we be sure that it is prime or composite? If it is a composite 

number, it must, of course, exist on the multiplication table. If it is a prime number, it must 

not exist on the multiplication table. 

 

From (12 ) (12 )G x y     , it is thought to be very easy to find positive integers, x

and y , given a composite number, G . However, the coordinates of the matrix can go to 

infinity. When G  is a very large number, it is not easy to find positive integers for x and y. 

In the worst case, we have to inspect the whole matrix. We can recognize that it is 

impossible to assign arbitrary integers to get positive integers for x  and y . In other 

words, if we can determine the value of the positive integer x , we cannot find the value of 

y (which turns out to be a real or complex number). On the other hand, if we can 

determine the value of positive integer y , we cannot find the value of x (which turns out 

to be real or complex number). 

 

If G  is a composite number, the positive integer values x  and y, are determined 

independent of ourselves and we, as observers, are unable to find the values until we do the 

necessary calculation. 
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6. Impossibility Principle 
 

From (12 ) (12 )G x y     , can we find the values of x  and y , 

simultaneously? It was once thought that there was a method to find them intuitively, but 

this was a fantasy or phantom. It is impossible. The principle is very simple. 

 

If a given number, G , exists on the matrix, then it is a composite number. If not, then it is 

a prime number. If G  exists on the matrix (a composite number), then it is represented as 

(12 ) (12 )G x y     . Also, the matrix is structured in arithmetic progression 

groups. So, the composite number G , an element of matrix, is an element of an arithmetic 

progression. Therefore, we can express it as follows. 

 

1 ( 1)G a n d    

 

G

x

y



'x

' 'y


'y

' '( , )x y

' 'x

' ''( , )x y

I

 
 

Since IG  is an arithmetic progression, element G  can be expressed as 

( 1)G I n d   . 

' '(12 ) (12 ), ( )I x y first term      

'12 (12 ), ( )d x common difference    

''' 1,( 1,2,3,4, )n y y n     
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So, after some manipulation, 

' ' ' '

' ' ' ' ' '' '' ' ' '

' '' ' ''

' ''

( 1)

(12 ) (12 ) ( '' ) (12 (12 ))

(144 12 12 ) (144 12 144 12 )

144 12 12

(12 )(12 )

G I n d

x y y y x

x y x y x y y x y y

x y x y

x y

  

    

  

 

  

        

               

       

  

 

 

When G  is given, we can see that it is equivalent to the problem of finding positive 

integers x  and y . Given I , n , and d , it is easy to find the value of G . However, is 

it easy to find the value of I , n , and d  once we are given the value of G ? It is not 

easy. Determining if a given number is a prime or a composite is the same as finding the 

initial term, difference, and general term of G , an element of arithmetic progression. Is it 

possible? No, it isn’t. 

 
 

 

 

7. Conclusion 
 

This paper asserts that the composite numbers of the 12 1,5,7,11n   series make up 

sixteen arithmetic progression groups. We were able indirectly to deduce the uncertainty of 

prime numbers through the composite numbers. It is true that, unlike the prime numbers, 

the composite numbers are governed by a rule that is structural and regular. Using the 

matrix, we have shown it possible to significantly reduce perceptive complexity of 

Pseudoprimes (composite numbers of the 12 1,5,7,11n   and, at the same time, to express 

them in quadratic algebra. Applying arithmetic and geometric means, we reduced some of 

the computational complexity by converting the matrix into a quadratic equation and 

computing the valid domains. But, the uncertainty of the matrix directly reflects the 
irregularity of prime numbers (whether a given number is a prime number or a composite 

number and what the next prime number is). We can see that, since the complexity of a 

matrix as a given number, G , becomes larger and larger, it becomes harder to predict the 

next prime number. Then, is there a method to reduce the complexity of the matrix? It is 

impossible. To find the given number, we need to solve (12 ) (12 )G x y     . Since 

G  is an element of the arithmetic progression, 1 ( 1)G a n d   

1
( ), ,a first term d common difference  , it is the same problem as finding the initial 

term, common difference from a given number, G . Is this possible? It is not possible. 
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<Appendix 1> Certainty of Mathematics 

 

(a) Platonism and Mathematical Reality 

 

According to Platonism, mathematical objects are real. Their existence is an 

objective fact, quite independent of our knowledge of them. These objects are, 

of course, not physical or material. They exist outside the space and time of 

physical existence. They are immutable they were not created, and they will not 

change or disappear. Any meaningful question about a mathematical object has 

a definite answer, whether we are able to determine it or not. According to 

Platonism, a mathematician is an empirical scientist like a geologist; he cannot 

invent anything, because it is all there already. All he can do is discover. (The 

Mathematical Experience, 318) 

 

Since mathematical objects are what they are, in defiance of our ignorance or 

preferences, they must be real in a sense independent of human minds. (The 

Mathematical Experience, 408) 

 

The Later Pythagoreans and the Platonists distinguished sharply between the 

world of things and the world of ideas. Objects and relationships in the material 

world were subject to imperfections, change, and decay and hence did not 

represent the ultimate truth, but there was an ideal world in which there were 

absolute and unchanging truths. (The Loss of Certainty, 16) 

 

The roots of the philosophy of mathematics, as of mathematics itself, are in 

classical Greece. For the Greeks, mathematics meant geometry, and the 

philosophy of mathematics in Plato and Aristotle is the philosophy of geometry. 

For Plato, the mission of philosophy was to discover true knowledge behind the 

veil of opinion and appearance, the change and illusion of the temporal world. 

(The Mathematical Experience, 325) 
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(b) Debacle of Certainty 

 

A classic statement to this effect was made by Pascal(1623~1662) in his Pensees 

long before the modern controversies arose. “Truth is so subtle a point that our 

instruments are too blunt to touch it exactly. When they do reach it, they crush 

the point and bear down around it , more on the false than on the true.” (The 

Loss of Certainty, 324) 

 

Certainly experience did not vouch for the behavior of infinite straight lines, 

whereas axioms were supposed to be self-evident truths about the physical 

world. The parallel axiom in the form stated by Euclid(BC 330?~BC 275?) was 

thought to be somewhat too complicated. It lacked the simplicity of the other 

axioms. Apparently even Euclid did not like his version of the parallel axiom 

because he did not call upon it until he had proved all the theorems he could 

without it. 

A related problem, which did not bother many people but ultimately came to 

the fore as a vital concern, is whether one can be sure of the existence of 

infinite straight lines in physical space. Euclid was careful to postulate only that 

one can extend a finite line segment as far as necessary, so that even the 

extended segment was still finite. Nevertheless Euclid did imply the existence of 

infinite straight lines for, were they finite, they could not be extended as far as 

necessary in any given context. (The Loss of Certainty P 78-79) 

 

The historical development of non-Euclidean geometry was a result of attempts 

to deal with this axiom (Euclid‟s Fifth). (The Mathematical Experience, 218) 

 

However, the material in Gauss‟s notes became available after his death in 1855 

when his reputation was unexcelled and the publication in 1868 of Riemann‟s 

1854 paper convinced many mathematicians that a non-Euclidean geometry 
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could be the geometry of physical space and that we could no longer be sure 

which geometry was true. The mere fact that there can be alternative 

geometries was in itself a shock. But the greater shock was that one could no 

longer be sure which geometry was true or whether any one of them was true. 

(The Loss of Certainty, 88) 

 

The loss of certainty in geometry was philosophically intolerable, because it 

implied the loss of all certainty in human knowledge. Geometry had served, 

from the time of Plato, as the supreme exemplar of the possibility of certainty in 

human knowledge. (The Mathematical Experience, 331) 

 

But by 1900 Euclidean geometry was recognized to be just a logical structure 

erected on a set of twenty or so man-made axioms, and it was indeed possible 

that contradictory theorems could turn up. (The Loss of Certainty, 198) 

 

This confidence that truths would be discovered in all fields was shattered by 

the recognition that there is no truth in mathematics. The hope and perhaps 

even the belief that truths can be obtained in politics, ethics, religion, 

economics, and many other fields may still persist in human minds, but the best 

support for the hope has been lost. Mathematics offered to the world proof 

that man can acquire truths and then destroyed the proof. It was non-Euclidean 

geometry and quarternions, both triumphs of reason, that proved the way for 

this intellectual disaster. With the loss of truth, man lost his intellectual center, 

his frame of reference, the established authority for all thought. The “pride of 

human reason” suffered a fall which brought down with it the house of truth. 

(The Loss of Certainty, 99) 

 

At first Gauss(1777~1855) who has discovered non-Euclid geometry seems to 

have concluded that there is no truth in all of mathematics. In a letter to Bassel 

of November 21, 1811, he said, 
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“One should never forget that the functions [of a complex variable], like all 

mathematical constructions, are only our own creations, and that when the 

definition with which one begins ceases to make sense, one should not ask, 

What is, but what is it convenient to assume in order that it remain significant.” 

 

“According to my most sincere conviction the theory of space has an entirely 

different place in knowledge from that occupied by pure mathematics [the 

mathematics built on number]. There is lacking throughout our knowledge of it 

the complete persuasion of necessity(also of absolute truth) which is common 

to the latter; we must add in humility, that if number is exclusively the product 

of our mind, space has a reality outside our mind and we cannot completely 

prescribe its laws.” (The Loss of Certainty, 87) 

 

Gauss' thoughts about the number and space become a decisive motive to give 

a birth of non-Euclid geometry and Georg Friedrich Bernhard Riemann(1826-

1866), who are very familiar with his study, gives birth to Riemann geometry. 

One of Riemann‟s objectives was to show that Euclid‟s axioms were indeed 

empirical rather than self-evident truths. (The Loss of Certainty, 86) 

 

Albert Einstein(1879~1955) adopted Riemann‟s mathematical discoveries by 

giving them a precise physical interpretation. (The Elegant Universe, 233) 

 

It is not obvious whether an infinite straight line, which exists in the human 

imagination, is applicable to the real physical world. Einstein rather adopts 

Riemannian geometry in his General Theory of Relativity and, on this basis, he 

successfully explained the relationship between light and gravity. However, there 

is no heuristic evidence that reality in the physical world agrees with reality in 

the mathematical world. 
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(c) Withering of Mathematical Truth 

 

Due to the loss of certainty in geometry, mathematicians tend to discover the 

truth from the arithmetic. 

 

The immediate forerunner of modern intuitionism is Leopold 

Kronecker(1823~1891). His epigram (delivered in an after-dinner speech), “God 

made the integers; all the rest is the work of man,” is well known. The 

complicated logical derivation of the ordinary whole numbers such as Cantor 

and Dedekind presented through a general theory of sets seemed less reliable 

than direct acceptance of the integers. (The Loss of Certainty, 232) 

 

As for the consistency of arithmetic, no one doubted it. (The Loss of Certainty, 

196) 

 

David Hilbert(1862~1943)showed through the medium of analytic geometry 

that Euclidean geometry is consistent if the science of arithmetic is consistent. 

Hence, in his second problem he asked for a proof that the science of 

arithmetic is consistent. (The Loss of Certainty, 196) 

 

However, Kurt Gödel(1906-1978) tells that it is impossible to prove the non-

contradiction of arithmetic in his first incompleteness theorem (Any effectively 

generated theory capable of expressing elementary arithmetic cannot be both 

consistent and complete. In particular, for any consistent, effectively generated 

formal theory that proves certain basic arithmetic truths, there is an arithmetical 

statement that is true, but no provable in the theory (Kleene 1967, p.250)) and 

second incompleteness theorem (For any formal effectively generated theory T 

including basic arithmetical truth and also certain truths about formal provability, 

T includes a statement of its own consistency if and only if T is inconsistent.) 

Both of Gödel‟s results were shattering. The inability to prove consistency dealt 
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a death blow most directly to Hibert‟s formalist philosophy because he had 

planned such a proof in his meta-mathematics and was confident it would 

succeed. Hence mathematicians were working under a threat of doom. (The 

Loss of Certainty, 263) 

 

There are mathematicians who are more seriously skeptical about the self-

evident truth. 

 

Arend Heyting, leading intuitions, affirmed that no one today can speak of the 

true mathematics, that is, true in the sense of a correct, unique body of 

knowledge. Hermann Hankel(1839~1873), Richard Dedekind(1831~1916), and 

Karl Weierstrass(1815~1897) all believed that mathematics is a human creation. 

And Ludwig Wittgenstein (1889-1951), a student of Russell and an authority in 

his own right, believed that the mathematician is an inventor not a discoverer. 

Hermann Weyl(1885~1955), too, was rather ironic about eternal truths. The 

Nobel prize-winning physicist Percy W. Bridgman(1882~1961), in The Logic of 

Modern Physics (1946), rejected flatly any objective world of mathematics. “It is 

the merest truism, evident at once to unsophisticated observation, that 

mathematics is a human invention.” Theoretical science is a game of 

mathematical make-believe. All these men contend that mathematics is not only 

man-made but very much influenced by the cultures in which it was developed. 

(The Loss of Certainty, 324-325) 

 

Plato did believe that mathematics exists in some ideal world independent of 

human beings, his doctrines included much that does not apply to the current 

views, and the use of the appellation Platonist is more unsuitable than helpful. 

These assertions about the existence of an objective, unique body of 

mathematics do not explain where mathematics resides. They say merely that 

mathematics exists in some extra-human world, a castle in the air, and is merely 

detected by man. (The Loss of Certainty, 323) 
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The typical mathematician is both a Platonist and a formalist-a secret Platonist 

with a formalist mask that he puts on when the occasion calls for it. (The 

Mathematical Experience, 322) 

 

Today many, perhaps most, mathematicians have no such conviction of the 

objective existence of the objects they study. (The Mathematical Experience, 252) 

 

<Appendix 2> Discovery of Number 

 

Aside from philosophers‟, physicists‟, and mathematicians‟ efforts to investigate 

truth, human being have made mathematical meanings and used them as 

means to distinguish and conceive objects and all the academic systems 

nowadays are being helped from its departmentalized and instrumental 

properties. Rapid scientific achievements further diminished scientists‟ motives 

to search for the truth. Seeing the nature as an object to take advantage of, 

human have created mathematics as necessary, altered, and applied. Despite of 

brilliant achievements, they have lost the spirits to correctly understand the 

nature. (The Loss of Certainty, 279~354) 

 

We have seen that in number theory, there may be heuristic evidence so strong 

that it carries conviction even without rigorous proof. (The Mathematical 

Experience, 369) 

 

(a) Natural Numbers 

 

The idea that the whole numbers derive from the intuition of time had been 

maintained by Immanuel Kant(1724~1804), William R. Hamilton(1805~1865) in 

his article “Algebra as a Science of Time,” and the philosopher Arthur 
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Schopenhauer(1788~1860).” 

(The Loss of Certainty, 234 Morris Kline) 

 

From the concept of time, Hamilton derived properties of the positive whole 

numbers and then extended this development to rational numbers (positive and 

negative whole numbers and fractions) and irrational numbers. (The Loss of 

Certainty, 178 Morris Kline) 

 

However, there are opinions that oppose the statement. 

 

The Platonist does not attempt to describe it, let alone analyze its nature. How 

does one acquire mathematical intuition? Evidently it varies from one person to 

another, even from one mathematical genius to another; and it has to be 

developed mathematical genius to another; and it has to be developed and 

refined, since it seems to be inadequate at present. But then by whom, 

according to what criteria, does one train or develop it? (The Mathematical 

Experience, 394) 

 

The natural number system seems an innate intuition only to mathematicians so 

sophisticated they cannot remember or conceive of the tie before they acquired 

it; and so isolated that they never have to communicate seriously with people 

(still no doubt the majority of the human race) who have not internalized this 

set of ideas and made it intuitive. 

(The Mathematical Experience, 395) 

 

The concept of natural numbers which we can naturally derive from intuitions 

about time immediately leads us to intuitively accept that natural numbers exist 

sequentially on a straight line. However, this problem leads us to Euclid‟s Axiom 

5 of the parallel postulate and we have gained only certainty without real 

evidence that natural numbers exist on an infinite straight line. 
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(b) Prime Numbers 

 

The ancient Greeks also liked to attribute sexual qualities to numbers, but it was 

they who first discovered, in the 4th century BC, the primes‟ true potency as the 

building blocks for all numbers. 

They saw that every number could be constructed by multiplying prime 

numbers together. 

(The Music of the Primes, 26) 

 

In mathematics, a prime number (or a prime) is a natural number which has 

exactly two distinct natural number divisors: 1 and itself. The first twenty-five 

prime numbers are: 

 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 

89, 97. 

The property of being prime is called primality. Verifying the primality of a given 

number n  can be done by trial divisions, that is to say dividing n  by all 

smaller numbers m, thereby checking whether n  is a multiple of m , and 

therefore not prime, or composite. For big primes, increasingly sophisticated 

algorithms which are faster than that technique have been devised. 

 

There is no known formula yielding all primes and no composites. However, the 

distribution of primes, that is to say, the statistical behavior of primes in the 

large can be modeled. The first result in that direction is the prime number 

theorem which says that the probability that a given, randomly chosen number 

N  is prime is inversely proportional to its number of digits, or the logarithm of 

N . This statement has been proved at the end of the 19th century. The 

unproven Riemann hypothesis dating from 1859 implies a refined statement 

concerning the distribution of primes. 
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Despite being intensely studied, many fundamental questions around prime 

numbers remain open. For example, Goldbach's conjecture which asserts that 

any even natural number bigger than two is the sum of two primes, or the twin 

prime conjecture which says that there are infinitely many twin primes (pairs of 

primes whose difference is two), have been unresolved for more than a century, 

notwithstanding the simplicity of their statements. Prime numbers give rise to 

various generalizations in other mathematical domains, mainly algebra, notably 

the notion of prime ideals. 

 

[http://en.wikipedia.org/wiki/Prime_number#cite_note-1] 

The logical argument (actually, the dilemma, which forces one to the same 

conclusion whichever path one is compelled to take) tells us that the list of 

primes never ends. The second feature of the list of primes that strikes one is 

the absence of any noticeable pattern or regularity. Of course all the prime 

numbers except 2 are odd, so the gap between any two successive primes has 

to be an even number. (The Mathematical Experience, 212) 

 

Yet despite their apparent simplicity and fundamental character, prime numbers 

remain the most mysterious objects studied by mathematicians. Look through a 

list of prime numbers and you‟ll find that it‟s impossible to predict when the 

next prime will appear. The list seems chaotic, random, and offers no clues as to 

how determine the next number. It is hard to guess at a formula that could 

generate this kind of pattern. In fact, this procession of primes resembles a 

random succession of numbers much more than it does a nice orderly pattern. 

(The Music of The Primes, 5-6) 

 

Like the value of  (The Mathematical Experience, 369), the properties of prime 

numbers are already determined regardless of human will, knowledge, reason, 

experience and, even though they follow no pattern and seem to be random, 
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their properties do not change or perish. 

 

The following are reasons why we conceive prime numbers as uncertain: 

 

It is not possible to know if a number is a prime number without calculation. 

Ex) It is hard to tell which of the numbers 7866041, 7866047, and 7866051 is a 

prime number. 

Once we find a prime number, we are not able to predict the values (cycle, 

clock) of the prime number which comes after. 

Ex) It is hard to guess what the next prime number is after 19,999,909. 

Since we are not able to find the factor which determines the value of a 

prime number, We can‟t find a rule that applies to all prime numbers. 

 

The study of prime numbers goes back to the ancient Greeks but recent 

discoveries have been very limited. There has been no clear significant progress 

on the most famous unsolved problems in mathematics such as Goldbach‟s 

conjecture, the Riemann hypothesis, twin prime conjectures, etc. Problems 

related to prime numbers remain a great challenge for the human spirit to 

conquer. The great physicist and mathematician, Johann Carl Friedrich Gauss 

(1777-1855), recognized the value of this problem. This is why he turned the 

focus of his research from light and space to prime numbers, strongly confident 

that mathematical objects and physical objects coincide. 

 

 

 

<Appendix 3> Duality(Prime Number Theorem) 

 

The German mathematician Gauss speculated that )(N , which represents a 

smaller number of prime numbers than natural number N , gradually 

approaches / logeN N as the natural number N  becomes bigger. This was 

termed the Prime Number Theorem. (The Music of Primes P19~58)(Prime 
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Obsession, 32-47) 

 

N  ( )N  ( )
log

N
N

N
  

810  5,761,455 -332,774 

910  50,847,534 -2,592,592 

1010  455,052,511 -20,758,030 

1110  4,118,054,813 -169,923,160 

1210  37,607,912,018 -1,416,706,193 

1310  346,065,536,839 -11,992,858,452 

1410  3,204,941,750,802 -102,838,308,636 

3)Table   Prime Number Theorem 

 

 
6)Figure   The PNT(Improved Version) 

 

3)Table shows that ( )Li x  is central to our whole inquiry. In fact, the PNT is 

most often stated as ( ) ~ ( )N Li N , rather than as ( ) ~ / logN N N . Because the 
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twiddle sign is transitive, the two things are equivalent, as can be seen in 

6)Figure . Out of Riemann‟s 1859 paper came a precise, though unproven, 

expression for ( )N , and , ( )Li x  
leads off that expression. Note just one 

more thing about Table 3)Table . For all the values N  shown in the table, 

/ logN N  gives a low estimate for ( )N , while )(NLi  gives a high one. I am 

just going to leave that lying there as a comment, for future reference. This is 

merely true; it is, in a manner of speaking, truer, I mean, )(NLi  is actually a 

better estimate of ( )N  than / logN N  is. A much better estimate. (Prime 

Obsession, 116-117) 

6)Figure shows that )(N  is smaller than )(NLi  and greater than 

/ logeN N .  However, similar to 6)Figure , mathematicians have only been able 

to speculate regarding )(N 's transitional path and have not been able to 

define its meaning or significance. 

 

This thesis considers that N and )(N  of the prime number theorem are 

already determined regardless of human‟s reason, knowledge, experience and 

apperception. Even if we cannot reveal the factor which determines the 

relationship between )(N and N , we should pay attention to the fact that 

the base of the log function, ( ) ~ / logN N N , changes dynamically with N . 

4)Table  shows the dynamic value of  . 
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( )

( )

(1) ( ) / log

(2) log / ( )

(3) 

(4) 

N N

N N

N N N

N N N

N

N

























 

 
 

N  )(N  ( ) /N N    

10  ５(１) 0.5 3.16227766 

210  26(1) 0.26 3.31131121 

310  169(1) 0.169 3.21366053 

410  1,229 0.1229 3.10170149 

510  9,592 0.09592 3.01717152 

610  78,498 0.078498 2.95793073 

710  664,579 0.066458 2.91880646 

810  5,761,455 0.057615 2.89012349 

910  50,847,534 0.050848 2.86832135 

1010  455,052,511 0.045505 2.85136300 

1110  4,118,054,813 0.041181 2.83782773 

1210  37,607,912,018 0.037608 2.82679909 

1310  346,065,536,839 0.034607 2.81763801 

1410  3,204,941,750,802 0.032049 2.80990634 

1510  29,844,570,422,669 0.029845 2.80329341 
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1610  279,238,341,033,925 0.027924 2.79757247 

1710  2,623,557,157,654,233 0.026236 2.79257417 

1810  24,739,954,287,740,860 0.02474 2.78816953. 

1910  234,057,667,276,344,607 0.023406 2.78425858. 

2010  2,220,819,602,560,918,840 0.022208 2.78076264 

2110  21,127,269,486,018,731,928 0.021127 2.77761890 

2210  201,467,286,689,315,906,290 0.020147 2.77477664 

2310  1,925,320,391,606,803,968,923 0.019253 2.77219445 

4)Table   )(N and   Distribution(Prime Number Theorem, wikipedia) 

 

 

 

 

7)Figure   Dynamic model 

of prime number distribution 
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 8)Figure   Dynamic curve of prime number 

distribution 
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From the data shown in 4)Table , we have discovered that the overall prime 

number distribution is surprisingly very similar to the spectrum curve of light as 

shown in 8)Figure . What does this curve mean? Based on the curve in 

8)Figure , I have applied a model of radius 1 and found, in spite of small 

differences, that it approaches the model of the contraction of the space after 

an expansion. 

 

(1) ( ) logN N N  ,  

( )(2)   N NN   ,  

lim 3 2(3)  
N

 


  . 

 )(N  ( ) / logeN N N   3 2
( ) / logN N N


   

 10  5(１) 0.657 0.653 

210  25 3.285 3.2659 

310  168 23.235 23.106 

410  1,229 143 142 

510  9,592 906 898 

610  78,498 6,115 6,051 

710  664,579 44,158 43,606 

810  5,761,455 332,773 327,948 

910  50,847,534 2,592,592 2,549,701 

1010  455,052,511 20,758,029 20,372,006 

1110  4,118,054,813 169,923,159 166,413,864 

1210  37,607,912,018 1,416,705,192 1,384,536,652 

1310  346,065,536,839 11,992,858,451 11,695,918,077 
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1410  3,204,941,750,802 102,838,308,635 100,081,005,159 

1510  29,844,570,422,669 891,604,962,453 865,870,130,004 

1610  279,238,341,033,925 7,804,289,844,393 7,563,025,790,186 

1710  2,623,557,157,654,233 68,883,734,693,929 66,613,014,183,740 

1810  24,739,954,287,740,860 612,483,070,893,537 591,037,377,186,201 

1910  234,057,667,276,344,607 5,481,624,169,369,961 5,278,454,439,510,988 

2010  2,220,819,602,560,918,840 49,347,193,044,659,702 47,417,080,610,999,452 

2110  21,127,269,486,018,731,928 446,579,871,578,168,707 428,197,848,400,452,034 

2210  201,467,286,689,315,906,290 4,060,704,006,019,620,995 3,885,239,239,323,234,570 

2310  1,925,320,391,606,803,968,923 37,083,513,766,578,631,310 35,405,155,128,613,195,945 

5)Table   The limiting value of   

 

5)Table  shows that the limit of   is not the value e (2.71828)  defined in 

the Prime Number Theorem but it approaches 3 /2 (2.720699). Based on this 

fact, the limiting value of the expansion and contraction of   is determined 

with certainty.  

 

How certain on the limiting value? We have no alternative but to confirm. 

 

But for conjectures such as those about the distribution of primes, no one 

believes that the behavior we observe in our sample will suddenly change to 

something radically different in another sample, taken farther out toward infinity. 

(The Mathematical Experience, 367) 
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9)Figure  Local (Partial) Properties of Prime Number Distribution 

 

In 8)Figure , the distribution of prime numbers appears to take the shape of a 

smooth curve, but 9)Figure  shows that they fluctuate with their distribution 

being locally unpredictable. 

In 9)Figure , the spacing between natural numbers is set to 10. By measuring 

the number of prime numbers in intervals of 10, we find the value of  . 

In 1010 ~1500 , 10010 ~10500 , 10000010 ~10000500 ,we applied 3 different numerical 

models as a sample. 
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In this thesis, I have found the dual properties that the distribution of prime 

numbers is locally fluctuating but wholly approaches a single point 

asymptotically in a smooth curve. This duality exists because a prime number 

is determined uncertainly by the properties of the matrix.  

 

<Appendix 4> Addition of Primes(Goldbach's conjecture) 

 

The problem of prime number addition has a deep relationship with Goldbach‟s 

famous conjecture.  

 

“Every even integer greater than 2 can be written as the sum of two primes” 

 

In this section, we will examine how even numbers are combined using the 

addition of odd numbers, the addition of the 12 1,5,7,11n
 
sequence, and the 

addition of prime numbers. 

 

Odd

O
d

d

2

6

10

14

18

1 3 5 7 9 11 13 15 17 19

1 4 6 8 10 12 14 16 18 20

3 4 8 10 12 14 16 18 20 22

5 6 8 12 14 16 18 20 22 24

7 8 10 12 16 18 20 22 24 26

9 10 12 20 22 24 26 28

11 12 20 24 26 28 30

13 20 22 24 28 30 32

15 20 22 24 26 28 3

1

2

22

26

34

17

14

14

1

2

1

0

8

1

22

8

1

24

30

26

6

16

16

28 30 3

1

2 36

1

1

4

8 34

86



9 20 22 24 26 28 30 32 34 36 38

10)Figure   Addition of odd numbers 

Odd

O
d
d

O

P

Equilibrium_Area

11)Figure   Model of odd numbers 

 

In 10)Figure and 11)Figure , the additions of odd numbers from the 

sequence yield a non-changing pattern in the equilibrium area independent of 

the magnitude of the vector in the multiplication table. 
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12 1,5,7,11n

1
2

1,
5
,7

,1
1

n


1 5 7 11 13 17 19 23 25 29

1 6 8 12 14 18 20 24 26 30

5 6 12 16 18 22 24 28 30 34

7 8 12 18 20 24 26 30 32 36

11 12 16 18 24 28 30 34 36 40

13 1 24

24

2

28

26

4 18 30 32 36 38 42

17 18 30 36 40 42 46

19 304

24 2

2

10

14

2

32 36 42 44 48

23 30 34 36 40 42 48

2

26

34

52

25

8

26

38

30

20

22

32 36

46

20

38 42



44 48 54

29 30 34 36 40 42 46 48 52

50

54 58

12)Figure  Addition of 12 1,5,7,11n

Sequences 

12 1, 5, 7,11n 

1
2

1
,5

,7
,1

1
n


O

P

Equilibrium_Area

13)Figure   Model of 12 1,5,7,11n  

sequence 

 

In 12)Figure and 13)Figure , the additions of the 12 1,5,7,11n  sequence yield 

a repetition with an oscillating pattern in the equilibrium area independent of 

the magnitude of the vector in the multiplication table. 

 

1

57

11

14)Figure   

2

4

6

12

8

10

15)Figure   

1 5 7 11

1 1 5 1 7 1 11

5 5 1 5 7 5 11

7 7 1 7 5 7 1

1 1

5 5

7 7

11 1

1

11 11 1 11 5 11 7 1

A A A A

A A A A A A A

A A A A A A A

A A A A A A A

A A A

A A

A A

A A

A AA A A A



  

  

  

 









16)Figure   

 

In 14)Figure , we have modeled 4 groups of the 12 1,5,7,11n sequence. Based 

on 14)Figure ,  

we have added the tables in 16)Figure . 15)Figure is a modeling of the 
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results from  

16)Figure . 

 

2  4
 
 6  8  10  12  

1 1
A A

 

7 7
A A

 

5 11
A A

 1 5
A A

 

7 11
A A

 

1 7
A A

 5 5
A A

 

11 11
A A

 

1 11
A A

 

5 7
A A

 
(12 1) (12 1)x y  

(12 7) (12 7)x y  

 

(12 5) (12 11)x y  

 

(12 1) (12 5)x y  

(12 7) (12 11)x y  

 

(12 1) (12 7)x y  

 

(12 5) (12 5)x y  

(12 11) (12 11)x y  

 

(12 1) (12 11)x y  

(12 5) (12 7)x y  

 
12 12 2x y 

12 12 14x y 
 

12 12 16xy y 
 

12 12 6x y 

12 12 18x y 
 

12 12 8x y 
 

12 12 10x y 
 

12 12 22x y 
 

12 12 12x y 
 

12 12 12x y 
 

2 1 2 1 2 2 

6)Table   12 1,5,7,11n  Addition of Prime Numbers in the Table 

Addition of the 12 1,5,7,11n  sequence has the property that when it is combined 

into any of the even numbers, the ratios of the combined even numbers are 

uniform.  

2( ) : 4( ) : 6( ) :8( ) :10( ) :12( 2 :1: : :) 2 1: 2 2clock clock clock clock clock clock  . 

Since the distribution of the 12 1,5,7,11n sequence in 6)Table  is uniform, the 

ratios of the combined even numbers are also uniform. 

 

18

2

6

10

14

2
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1 4 6 8 12 14 18 20 24 30

3 4 8 10 14 16 20 22 26 32

5 6 8 12 16 18 22 24 28 34

7 8 10 12 18 20 24 26 30 36

11 12 14 242

26

34

28 30 34 40
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17 24 28 30 36 40 46
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2 26

18

20

28 30

16

1

34 34 6

38

4

6

0

2

8

5

0

1

42 46


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17)Figure   Addition of Prime Numbers 18)Figure   Model of Prime number 

 

17)Figure and 18)Figure ; With the additions of prime numbers, as the 

magnitude of vectors in the multiplication table increases, the intertwined 

phenomena become more complicated in the equilibrium area. In recent times, 

Goldbach‟s conjecture has been proven to be true up to 
1712 10  using 

computer calculations. In 17)Figure , as the vector in the multiplication table 

increases, the number of even numbers is increasing. This finding agrees with 

existing statistical data. Oliveira e Silva (Jul. 14, 2008). 

 

In 3(c), due to the uncertainty of the prime number distribution, it is impossible 

to express a generalized equation regarding the addition of prime numbers. 

However, we can apply it infinitely if we are certain of the heuristic evidence 

that ① the prime numbers can be sorted into 4 groups in 3(a); ②there is a 

factor which determines even numbers in 3(e); ③ the prime numbers follow the 

rules of the multiplication table; and ④ the distribution of prime numbers 

approaches a certain point. 

 

 

 

 

<Appendix 5> Seeking Truth 

 

The concept of symmetry is exciting and mysterious in many ways, and it is a 

very natural phenomenon for us to understand. It has become an object of 

physics and sometimes of mathematics but the concept itself is not easy to 

understand. The reason it is both easy and difficult is that it is metaphysically 

and physically too broad and that each person has a different conception of 

what it means. There is also a big reason why today‟s physicists have a deep 

interest in symmetry. This concept is being applied to many natural phenomena 

examined today. But the most important point is that it is recognized deeply by 

physicists as a physical law which never varies. 
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(a) Meaning of Symmetry 

 

Professor Hermann Weyl has given this definition of symmetry: a thing is 

symmetrical if one can subject it to a certain operation and it appears exactly 

the same after the operation. For instance, if we look at a vase that is left-and-

right symmetrical, then turn it 180  around the vertical axis, it looks the same. 

We shall adopt the definition of symmetry in Weyl‟s more general form, and in 

that form we shall discuss symmetry of physical laws. (Six Not So Easy Pieces , 1) 

 

In fact, we will see that the history of the universe is, to a large extent, the 

history of symmetry. 

This symmetry is known as translational symmetry or translational invariance. It 

applies not only to Newton‟s laws but also to Maxwell‟s laws of 

electromagnetism, to Einstein‟s special and general relativities, to quantum 

mechanics, and to just about any proposal in modern physics that anyone has 

taken seriously. Considerations of symmetry have clearly been indispensable in 

the development of modern cosmological theory. (THE FABRIC OF THE 

COSMOS, 219~250) 

 

A fact that most physicists still find somewhat staggering, a most profound and 

beautiful thing, is that, in quantum mechanics, for each of the rules of 

symmetry there is a corresponding conservation law; there is a definite 

connection between the laws of conservation and the symmetries of physical 

laws. (Six Not So Easy Pieces, 29) 

 

The marvelous thing about it all is that for such a wide range of important, 

strong phenomena-nuclear forces, electrical phenomena, and even weak ones 

like gravitation-over a tremendous range of physics, all the laws for these seem 

to be symmetrical. (Six Not So Easy Pieces, 46) 
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Now our problem is to explain why they are nearly symmetrical by looking at 

tidal forces and so 

on. Richard Phillips Feynman(1918~1988) (Six Not So Easy Pieces, 47) 

 

Heigenberg(1971) states in his book, 'Physics And Beyond', that it is natural to 

say that the symmetry is the fundamental element which the nature have plan 

to create. „In the beginning was symmetry‟ is certainly a better expression than 

Democritus 'In the beginning was the particle.‟  

Elementary particles embody symmetries; they are their simplest representations, 

and yet they are merely their consequence. (Physics And Beyond, 240) 

  

What are the differences between mathematical symmetry and physical 

symmetry? What are the differences between reality in mathematics and that in 

physics? What are the differences between the determined properties of  (The 

Mathematical Experience, 369-374), those of prime number distribution, and 

those of spaces? What we are certain of is that reality in both mathematics and 

physics are already determined and invariant regardless of human experience 

and reason. 

 

(b) Search for the Truth 

 

Today mathematical description and not physical explanation is the goal in 

science.  

At best mathematics describes some processes of nature, but its symbols do 

not contain all of it. Even in the physical realm, mathematics deals with 

simplifications which merely touch reality as a tangent touches a curve at one 

point. (The Loss of Certainty, 25) 

 

In his Philosophy of Mathematics and Natural Science(1949), Weyl conceded: 
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How much more convincing and closer to facts are the heuristic arguments and 

the subsequent systematic constructions in Einstein‟s general relativity theory, or 

the Heisenberg-Schrödinger quantum mechanics. A truly realistic mathematics 

should be conceived, in line with physics, as a branch of the theoretical 

construction of the one real world, and should adopt the same sober and 

cautious attitude toward hypothetic extensions of its foundation as is exhibited 

by physics. (The Loss of Certainty, 330) 

 

Godfrey H. Hardy(1877~1947) expressed the same view in his book A 

Mathematician‟s Apology: 

I believe that mathematical reality lies outside us, that our function is to 

discover or observe it , and that the theorems which we prove, and which we 

describe grandiloquently as our “creations.” are simply our notes of our 

observations. (The Loss of Certainty, 322) 

 

Hermite offered this explanation of the accord between mathematics and 

science: There exists, if I am not deceived, a world which is the collection of 

mathematical truths, to which we have access only through our intellects, just as 

there is the world of physical reality; the one and the other independent of us, 

both of divine creation, which appear distinct because of the weakness of our 

minds, but for a more powerful mode of thinking are one and the same thing. 

The synthesis of the two is revealed partially in the marvelous correspondence 

between abstract mathematics on the one hand and all the branches of physics 

on the other. (The Loss of Certainty, 345) 

 

Later in life Eddington(1882~1944) too became convinced that nature is 

mathematically designed and he affirmed categorically in Fundamental 

Theory(1946) that our minds can build up a pure science of nature from a priori 

knowledge. This science is the only one possible; any other one would contain 

logical inconsistencies. (The Loss of Certainty, 346) 
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In another passage Einstein reaffirmed his belief through the now famous 

phrase about God: “I, at any rate, am convinced that He does not throw dice.” 

And if He does, then, as Ralph Waldo Emerson once suggested, “The dice of 

God are always loaded.” Einstein is not affirming here that the mathematical 

laws we now have are the correct ones but that there are such, and we can 

hope to come closer and closer to them. As he put it, “God is subtle; He is not 

malicious.” 

(The Loss of Certainty, 347) 

 

More recently (1945) Erwin Schrödinger(1887~1961) in What Is Life said that the 

miracle of man‟s discovering laws of nature may well be beyond human 

understanding. Another physicist, the highly distinguished Freeman Dyson 

agrees: “We are probably not close yet to understanding the relation between 

the physical and the mathematical worlds.” (The Loss of Certainty, 349) 

 

What is surprising is that even some of the leaders in the work on foundations-

Hilbert, Alnozo Church, and the members of the Bourbaki school-affirm that the 

mathematical concepts and properties exist in some objective sense and that 

they can be apprehended by human minds. Thus mathematical truth is 

discovered not invented. What evolves is not mathematics but man‟s knowledge 

of mathematics. (The Loss of Certainty, 323) 

 

As Erwin Schrödinger has pointed out, it may be beyond the scope of the 

human understanding to discover the laws of nature. But, we need to remind of 

what Rene Descartes(1596~1650) says on the other hand. “I shall preserver until 

I find something that is certain or, at least, until I find for certain that nothing is 

certain”. (The Loss of Certainty, 327) 

 

If we accept the indications of leading scholars, our objective becomes obvious. 
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Self-evident truth is not an invention but a discovery. This thesis has found that 

symmetry, a physical attribute, and prime numbers, a mathematical object, 

coexist. Also, from the fact that the distribution of prime numbers exists in 

spatial, symmetric, and periodic dimensions, we have found that the set of all 

natural numbers, which also includes the set of all prime numbers, is not 

separated from space and in fact coexists with space, as opposed to the claims 

of Immanuel Kant and Hamilton that we accept the concept of natural numbers 

from intuitions about time. It is hard to say here how to interpret this finding 

and what implications it has. However, as a result of this discovery, there 

absolutely exists an object of self-evident truth and it is very different from the 

mathematical and physical conception of it we have known until now. Human 

beings are incomplete existences who can easily believe in the existence of a 

thing which does not exist. It is impossible to know which objects are out there 

and which objects are not, and which is possible and which is impossible. 

Perhaps here we should recall the words of Francis Bacon (1561~1626), who 

said that our conception receives information with endless distortion and that 

as a result we lose certainty. The reason human beings search for truth is closer 

to instinct than any other and the goal is to obtain a higher dimensional 

certainty through discoveries of truth. 

 

 

 

<Appendix 6> Attached document 
 

1 1 1 1 1 1
( ) ( ) ( ) ( )

5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55

25

5 7 11 13 17 19 23 29 31 37 41

35 49 5

43 47 53 59

5

5

9

Gb Go Gp Gk GlGc

 

1 1 1 1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

61 67 71 73 79 83 89 97 101 1

65 77 85 91 9

61 65

5 11

67 71 73 7

03 1

7 79 83 85 89 91 95 97 101 103 107 109 1

07 109 1

5 119

13 1 1

3

5 9

1

1 1

Ge Gf Gg Gb Gi Gj Go Gk GpGh
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1 1 1 1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1121 125 133 143 145 155

121 125 127 131 133 137 139 143 145 149 151 155 157 161 163 167 169 173 175 17

161 169 17

127 131 137 139 149 151 157 163 167 173 17

9

9

5Gd Gf Gm Gn Gb Go Gg Ga Gj GkGc

 

 

1 1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1185 187 203 205 209 21

181 185 187 191 193 19

5 21

7 199 203 205 209 211 2

7 221

181 191 193 197 199 211 223 227 229 2

15 217 221 223 227 229 233 2

33 239

2

3

35

5 239

Gf Gl Gp Gb Go Ge GkGh Gc

 

1 1 1 1 1 1 1 1 1 2 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )245 247 253 25

241 245 247 251 253 257 259 263 265 269 271 275 277 281 283 287 289 293 29

241 251 257 263 269 271 277 281 2

9 265 275 287 289 295 29

83 293

99

9

5 2

Gf Gg Gi Gd Gj Gb Gn Go Gp Gb Gk Gm

 

1 1 2 2 1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1301 305 319

301 305 307 311 313 317 31

323 325 329

9 323 325 329 331 335 337 341 343 347 349 353 3

335 341 3

307 311 313 317 331 337 347 349 353 359

43 355

55 359

Gf Gl Go Gp Ga Gb Gg Go Gj GkGc Gh

 

2 1 1 1 1 1 1 2 2 1 1 1 1 1
( ) ( ) ( ) ( ) ( , , ) ( ) ( ) ( ) ( ) ( ) ( )361 365 371 377 385 391 395

361 365 367 371 373 377 379 383 385 389 391 395 397 401 4

403 407 41

03

367 373 379 383 389 397 40

3

1 409 4

407 409 413

415

415 19

19

4

Gc Gf Gp Ge Gb Gc Gd Gk Gl Go Gi Gn Gg Gk

 

 

1 2 2 1 2 2 1 1 1 1 1 1 1 1 2 2
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

421 425 427 431 433 437 439 443 445

421 431 433 439 443 449 457 461 463 467 4

449 451 455 4

425 427 437 445 451 455 469 473 475

57 461 463 467 469 473 475 47

7

9

9

Gf Ge Gf Gj Gg Gh Gb Gl Gm Go Gp Gc Gk Gi GjGh

 

 

1 1 2 1 1 1 1 1 2 2 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )481 485 493 497 505

481 485 487 491 493 497 499

511 515 517 52

503 505 509 511 515 517 521 523 527

487 491 499 503 509 521 523

529 533 5

7 529 533 535 539

35 539

Ga Gf Gb Gg Gb Gj Go Gd Go Gd Ge Gk Gn Gp
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1 2 1 1 1 2 2 1 1 1 2 1 1 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )545 551 553 559 565 575

541 545 547 551 553 557 559 563 565 569 5

581 583 589

71 575 577 581 583 587 589 593 595 59

541 547 557 563 569 571 577 587 593

595

599

9

Gf Gp Gc Gi Gb Gm Gn Go Gg Gl Gc Gj Gk Gk

 

1 1 1 1 2 1 2 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )605 611 623 625 629 63

601 605 607 611 613 617 619 623 625 629 631 635 637 641 643 647 649 653 655 659

5 637 649 65

601 607 613 617 619 631 641 643 647 653 659

5Gf Gm Gp Ga Gb Gf Go Ga Gc Gd GkGh

 

1 1 2 2 1 1 1 1 1 2 2 1 2 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )665 667 671 679 685 689 695 69

661 665 667 671 673 677 679 683 685 689 691 695 697 701 703

661 673 677 683 691 701 709

7 703 707 713 7

707 709 713 715 719

15

719

Gf Gg Gg Gl Gn Gj Gb Ge Go Gb Gj Gp Gh Gi Gk Gl

 

1 1 2 2 1 1 1 1 1 1 2 1 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

727 733 739 743 751 757 761 769 77

721 725 731 737 745 749 75

721 725 727 731 733 737 739 743 745 749 751 755 757 761 763 767 7

5 763 767 775 77

69 773 775 7 9

9

7

3

Gc Gf Ge Go Gb Gg Go Gj Gm Gi Gk GpGh

 

1 1 1 1 2 1 1 1 2 1 2 1 2 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )781 785 791 793 799 803 805

781 785 787 791 793 797

815

799 803 805 809 811 815 817 821 82

81

787 797 809 811 82

7 833

3 827 829 833 8

1 823 827 829 8

835

35 83

39

9

Gd Gf Gp Ga Gk Gn Gb Gc Gd Go Gc Gg Gf Gk

 

3 1 1 1 1 2 1 1 1 1 1 2 1 2 1 3 3
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )841 845 847 851 865 869 871 875

841 845 847 851 853 857 859 863 865 869 871 875 877 881 883 887 889 893 8

889 89

853 857 859 863 877 881

95 89

883

3

9

895 899

887

Gb Ge Gf Gj Gl Gn Gb Gi Go Gp Gm Gc Gg Gk Go GpGh

 

2 1 1 1 1 1 2 1 2 1 1 2 2 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )901 905 913 9

901 905 907 911 913 917 919 923 925 929 931 935 937 941 94

907 911 919 929 937 941 94

17 923 925 931 935 943 949

3 947 949 953 955 959

955 95

7 953

9Gb Gf Gd Gg Gm Gb Ga Gj Gj Gn Go Go Gl Ga Gk Gp

 

3 1 1 1 1 2 1
( ) ( ) ( ) ( ) ( ) ( )961 965 973 979 985

961 965 967 9

98

71 973 977 979 983

9 995

985 989 991 995

9

99

67 971 977 983

7

991 997

Gc Gf Gc Gl Gb Gh Go

 

)Figure  If you knew the composite numbers less than 1000, you can filter out the prime numbers. 
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