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Abstract: Understanding the origin of certain symmetry breaking scenarios in high-energy

physics remains an open challenge. Here we argue that, at least in some cases, symmetry

violation is an effect of non-equilibrium dynamics that is likely to develop somewhere above

the energy scale of electroweak interaction. We also find that, imposing Poincaré symmetry in

non-equilibrium field theory, leads to fractalization of space-time continuum via period-doubling

transition to chaos.
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“Nature is simple in essence”

Hideki Yukawa

1. Introduction and Motivation

Quantum Field Theory (QFT) is a well-tested body of ideas and methods with many

successful applications in elementary particle interactions, astrophysics, cosmology and

condensed matter phenomena. QFT supplies the foundation for the Standard Model of

high-energy physics (SM), a framework that describes all forces observed in Nature with

the exception of gravity.

A cornerstone of SM is the principle of local gauge symmetry which gives rise to the

electromagnetic force, the weak interaction of radioactivity and the strong nuclear force

that governs the structure of nuclei. These forces act on the primary constituents of

matter which have been identified as point-like fermions (quarks and leptons). In SM

two fundamental gauge models are brought together, the electroweak theory (EW) and
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quantum chromodynamics (QCD). Whereas EW deals with the electromagnetic and weak

interaction of leptons and quarks, QCD applies to the strong interaction of quarks.

In QFT and classical field theory alike, symmetry principles play a key role. They express

the invariance of physical phenomena under transformations of the way these phenom-

ena are described. Symmetry principles underlie the existence of conserved currents and

charges, the existence of antiparticles and the indistinguishable behavior of phenomena

to arbitrary transformations of space-time coordinates [1, 2].

Despite being highly predictive, SM leaves out many open questions. For instance, the

origin of approximate symmetries and broken symmetries is at best partially understood

in SM. A typical example is that both EW and massive QCD break the symmetry be-

tween left-handed and right handed fermions, a phenomenon known as violation of chiral

symmetry. Among other long-standing questions, we list the mechanism of mass gener-

ation through symmetry breaking in EW sector and the violation of parity (inversion of

spatial coordinates) and time reversal symmetry in reactions involving K and B-mesons

[3].

The basic premise of our work is that asymmetry in SM is a consequence of non-

equilibrium dynamics that is presumed to develop beyond EW energy scale of about

200 GeV. High energy behavior is prone to prevent full thermalization of high order

quantum corrections and to create conditions for an ever evolving dynamic regime in

which the principles of QFT are likely to break down [4, 5]. In particular, chiral sym-

metry, reversibility, isotropy of space-time and locality may very well fail to hold in this

high-energy environment.

The past two decades have convincingly shown that dynamical settings that are out of

equilibrium are much more prevalent in Nature than equilibrium conditions. It is for

this reason that non-equilibrium physics in QFT has recently attracted a great deal of

attention. Interest involving non-equilibrium dynamics of quantum fields include infla-

tionary stage of the early Universe, electroweak baryogenesis, chiral phase transitions

and quark-gluon plasma in heavy ion collisions, dynamics of phase transitions in Bose-

Einstein condensates, ultrafast spectroscopy of semiconductors, non-extensive statistics

and fractional dynamics, models of the dark sector, non-equilibrium phase transitions

in strongly correlated compounds, condensed matter phenomena with long range corre-

lations, spin glasses and so on [6]. This impressive diversity of applications reveals the

truly interdisciplinary character of non-equilibrium theory.

In the context of high-energy physics, non-equilibrium dynamics is attractive because it

brings to the table at least two important insights [7-8]:

A) It is a natural source for dissipative and anisotropic evolution.

B) It is also a natural source for multiplicity and the emergence of hierarchically orga-

nized structures.

By construction, QFT is a replica of equilibrium statistical mechanics built on Boltzmann-

Gibbs distributions [1, 2]. QFT describes local quantum phenomena that are fully re-

versible in time and space. In contrast, non-equilibrium dynamics has the potential of

violating time and space symmetries at the quantum level. It is apparent from these
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considerations that there is a fundamental tension between the non-local and irreversible

evolution of non-equilibrium phenomena and the local and conservative description of

dynamics postulated by QFT. Our view is that, to make progress, one need to show how

non-equilibrium physics can gracefully coexist with QFT inside the narrow transition

region from one regime to another. Investigating this transition is the main goal of this

work.

The paper is structured in a way that enables a progressive introduction of ideas. Section

2 explores how a minimal extension of action principle for systems near equilibrium can

be consistently formulated. Following the general framework of non-equilibrium phenom-

ena, in sections 3, 4 and 5 we expand on the idea that action functional emerges from

an underlying network of generic, short scale degrees of freedom. Next sections show

how non-equilibrium dynamics is able to qualitatively explain two symmetry breaking

scenarios of particle physics (chiral symmetry breaking and symmetry violation due to

mass terms). Emergence of fractal space-time as a result of enforcing Poincaré symmetry

in non-equilibrium dynamics is discussed in section 8. Last section includes a brief sum-

mary and concluding remarks. Three appendix sections are included to make the paper

self-contained.

We caution that the intent of this contribution is limited to a tentative and informal in-

troduction to the topic. Further developments are required to confirm, expand or discard

these preliminary conclusions.

2. Minimal Extension of the Action Principle

It is well known that evolution of physical systems in classical and quantum physics

follows from the action principle [1, 2]. Since non-equilibrium dynamics may be inconsis-

tent with the action principle [9], it makes sense to begin with a conservative approach

that connects non-equilibrium dynamics and field theory for systems that are in near

equilibrium conditions.

Let ψα(x); α = 1, 2, 3....., N represent a set of classical fields that may be scalar, vector,

spinor or tensor functions of the four-vector x = xμ, μ = 0, 1, 2, 3. Fields are assumed to

belong to a generic statistical ensemble q(x) = {ψα(x)} whose evolution is determined

by Liouville equation [10],

∂ρ

∂t
= {H, ρ} (1)

Here ρ = ρ(p, q, t) is the probability density measured in phase space, H is the Hamil-

ton function, p = {∂μψα(x)} =
{
∂ψα(x)
∂xμ

}
and {...} denotes the Poisson bracket. Non-

equilibrium evolution is described by a time-dependent probability density and a non-

vanishing bracket

∂ρ

∂t
= {H, ρ} �= 0 (2)
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A concept closely related to the probability density in equilibrium statistical physics is

the canonical partition function [1, 2, 11]

Z ∝
∫

exp[−βH(p, q)]dpdq (3)

in which β = 1/kT is the inverse temperature. The probability density that the system

settles in the stationary state ρe(p, q) is defined by

ρe(p, q) =
exp[−βH(p, q)]

Z
(4)

The inverse temperature can be understood as a fictitious time variable τ = (kT )−1. This
interpretation highlights the formal analogy between ρe(p, q) and the action functional of

classical field theory, that is,

ρe(p, q) ∝ exp[−S(p, q)] (5)

The Lagrangian of the system,

L = L(ψα(x), ∂μψα(x)) (6)

satisfies the action principle

δS = δ

∫

R

Ldx = 0, dx = d4x = dx0dx1dx2dx3 (7)

in which R denotes the four-dimensional region of integration. (2) and (7) suggest that

a minimal extension of (7) near equilibrium amounts to

δS = δS(t) �= 0 (8)

It is often convenient to specify R using two space-like surfaces σ1 and σ2 extending to

infinity [12]. Let us adopt this choice and perform an arbitrary transformation on fields

and coordinates in (7). Introducing the plausible assumption that all fields and their

derivatives vanish at spatial infinity leads to

δS = δ

∫

R

Ldx = G(σ2)−G(σ1) (9)

where G(σ) is called the generator of variation δ. Furthermore, choosing dσ = dσμ along

the time direction and carrying out the integration over the spatial region Ω yields

δS = δ

∫

Ω

Ld3x = G(t2)−G(t1) (10)

It is apparent that G(σ) represents an invariant if and only if (7) holds true. For time

dependent dynamical systems, such as the ones described by (2), G(σ) is no longer

invariant and δG(σ) �= 0. In this case condition (10) becomes

δG(t) �= 0 (11)

The weakest form of (11) is given by constraining the first order variation of the generator

to a non-vanishing constant, or

δG(t) = const �= 0 (12)
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3. Large Scale Physics as Emergent Behavior

To make progress from this point on, we assume the following:

1) As previously stated, the analysis is limited to classical fields. This ansatz is partly

motivated by simplicity and partly the fact that large statistical ensembles of quantum

particles behave like classical systems [13].

2) Action functional is an emergent property from an underlying large network of short

scale degrees of freedom X = {Xi}. Thus the action functional describes only the large

scale behavior of fields (Appendix A).

3) Transition from short scale to the large scale dynamics is driven by a set of control

parameters λ = {λi} , i = 1, 2, 3.... The precise nature of λ is irrelevant to our context1.

Evolution from the large scale to the short scale dynamics may be understood as a

continuous phase transition in which the two phases coexist only in narrow energy range

near equilibrium, that is, for Λ−ΔE ≤ E ≤ Λ +ΔE. Below this range (E < Λ−ΔE)

the action functional no longer depends explicitly on Xi.

We summarize these premises in the following table:

Large scale dynamics, E < Λ−ΔE Short scale dynamics, E ≥ Λ +ΔE

Equilibrium and unitary evolution
∂ρ
∂t = {H, ρ} = 0

Out of equilibrium and non-unitary evolution
∂ρ
∂t = {H, ρ} �= 0

Principle of least action

δS = 0

Evolution of short scale degrees of freedom
dX
dt = fi(X, {λ})

Control parameters reach critical values

δλ = λ− λc = 0

Control parameters deviate from criticality

δλ = λ− λc �= 0

Tab. 1: Comparison of large and short scale dynamics

4. Compensating Role of Non-Equilibrium Dynamics

One can reasonably argue that conditions (11) and (12) violate the principle of action

invariance of classical and quantum theory. According to this principle, physics laws are

independent of any particular reference frame chosen to describe space-time coordinates

and fields. With regard to systems that are in near equilibrium conditions, the object of

this section is to reformulate the dynamics of (6) in a way that restores full symmetry of

the action.

The generator of the change involving both space-time coordinates and fields is defined

1 Specific examples include, but are not limited to, the mass scale Λ of effective field theories [14],

the Wilson-Fisher parameter of the Renormalization Group program ε = 4 − d [1, 2], the occupation

probability p in percolation phenomena or self-organized criticality [15], the spatial correlation range in

spin networks [16] and so on.



224 Electronic Journal of Theoretical Physics 7, No. 24 (2010) 219–234

by [12]

G(σ) =

∫
σ

dσ[
∂L

∂(∂μψα)
δ0ψ

α − θμνδxν ] (13)

Here, δ0ψ
α represents an internal field transformation (Appendix B), θμν the energy-

momentum tensor,

θμν =
∂L

∂(∂μψα)
∂νψ

α − ημνL (14)

and δxν is the four-vector measuring the change in coordinates (ν = 0, 1, 2, 3).

Let Gλ(σ, δλ) denote the external contribution to the action due to a small deviation

from criticality δλ = λ − λc. Here Gλ(σ, δλ) embodies the contribution of short scale

physics which, by previous assumptions, is out of equilibrium. Invariance of the action

is recovered by demanding that the change in G(λ) be compensated by an equal and

opposite change in Gλ(σ, δλ) near the transition boundary between equilibrium and non-

equilibrium, that is,

δG(σ) = −Gλ(σ, δλ) if Λ−ΔE ≤ E ≤ Λ +ΔE (15)

As stated above, the two generators of (15) couple only within the coexisting range ΔE

and decouple outside it. In this region we set

Gλ(σ, δλ) = f [G(σ), δλ] (16)

such as, when the dynamics reaches full equilibrium,

lim
δλ→0

f [G(σ), δλ] = 0 if E < Λ−ΔE (17)

The challenge is to search for a function Gλ(σ, δλ) that fulfills two requirements:

a) as shown in (17), it decouples from Lagrangian (6) outside ΔE and,

b) it arises as an emergent property from the short scale dynamics of X = {Xi}.
Finding this function is the goal of next section.

5. Fixed Point Solution of the Normal Form Equation

With reference to center manifold theory introduced in Appendix A, it is natural to

identify δG with the order parameter z of (A3). In general, dynamics of (A3) is controlled

by two parameters λ1 and λ2 = u with critical values λ1c and λ2c = 0. It is often

convenient to study the dynamics of a nonlinear system in discrete time [17]. The discrete

analogue of (A3) is the iterated quadratic map

d(δG)

dt
= (λ1 − λ1c)− u(δG)2 ⇒ δGn+1 = δGn + τ(λ1 − λ1c)− τu(δGn)

2 (18)

where τ is the time step and n ∈ {N} the iteration index. Assuming u �= 0, the fixed

point analysis of (18) yields a pair of non-trivial solutions

δG = ±(λ1 − λ1c
u

)1/2 (19)



Electronic Journal of Theoretical Physics 7, No. 24 (2010) 219–234 225

When λ1 is tuned towards λ1c, the approach to chaos in (18) is driven by the by the

geometric progression

λ1,N − λ1,c ≈ λ0δ
−N (20)

where N = 2p is the index counting the number of periodic orbits and δ ≈ 4.669...

represents the Feigenbaum constant for the quadratic map [17]. Replacing (20) in (19)

yields an infinite series of fixed point solutions given by

δG2p ∝ δ−2
p−1

for p >> 1 (21)

Series (21) is limited by the upper bound N = 1 for which

δG0 = ±(λ0
δu

)1/2 (22)

Refer again to (13) and consider the case where there is only a transformation of fields

with no change of space-time location. The first term in (13) then corresponds to a

conserved current

Jμ =
∂L

∂(∂μψα)
δ0ψ

α ⇒ ∂μJ
μ = 0 (23)

It is apparent from (23) that any symmetry breaking transformation of fields can be

associated with a dissipative current Jμ whose divergence is non-vanishing (∂μJ
μ �= 0).

Combining (21), (22) and (23) yields two possibilities. In symbolic form we write

∂μJ
μ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δG0

or

δG2p

(24)

(24) is the main result of our work. It shows that the external source of non-conserving

currents in QFT is either a fixed deviation from equilibrium (δG0) or, more generally, a

tower of deviations from equilibrium ordered according to the Feigenbaum series (δG2p).

6. Chiral Symmetry Breaking

A field theory is said to obey chiral symmetry if no distinction is made between left-handed

(L) and right-handed components (R) of fermion fields, that is, if these are treated on

equal footing. It is known that free fermions are described in SM by the Dirac Lagrangian

[1, 2]

LD = iΨγμ∂μΨ−mΨΨ (25)

where

Ψ =

⎛
⎜⎝ψL

ψR

⎞
⎟⎠ (26)



226 Electronic Journal of Theoretical Physics 7, No. 24 (2010) 219–234

and “m” is the rest-frame mass of the fermion. In (25) γμ stands for the set of Dirac

matrices and

Ψ = Ψ+γ0 =
(
ψ+
R ψ+

L

)
(27)

denotes the doublet of antiparticles corresponding to (26). If we consider massless

fermions, the Lagrangian has a global symmetry for its both left-handed and right-handed

components. It is represented by (Appendix B)

ψL → exp(iθL)ψL , ψR → exp(iθR)ψR (28)

where ψL and ψR are rotated by two independent angles θL and θR. The transformation

with θL = θR ≡ ϕ can be written as

Ψ→ exp(iϕ)Ψ (29)

The transformation having θR = −θL ≡ η assumes a similar form, namely

Ψ→ exp(iηγ5)Ψ (30)

in which γ5 denotes the chiral Dirac matrix [1, 2]. Transformation (29) is called a vector

symmetry whose conserved current is

jμV = ΨγμΨ (31)

Likewise, transformation (30) is called an axial symmetry and its conserved current is

given by

jμA = Ψγμγ5Ψ (32)

It can be shown that, if fermions have non-vanishing masses (m �= 0), the vector symmetry

remains exact while axial symmetry is broken. In this case the divergence of axial current

(32) is non-vanishing and we have

∂μj
μ
A = 2imΨγ5Ψ (33)

This result indicates that massive fermions break chiral symmetry between L and R

components of the fermion field. Following (24), we interpret the emergence of massive

particles (and the consequent violation of chiral symmetry) as the effect produced by a

deviation from equilibrium. This argument will be developed in the next section.

A different signature for chiral symmetry breaking, unrelated to (24), occurs in the EW

model and it stems from the fact that right-handed fermions do not respond to the weak

interaction. With reference to Appendix B, consider the infinitesimal unitary transfor-

mation

δ0ψ = ψ′(x)− ψ(x) = exp(ig2
τ ·W
2

)ψ(x)− ψ(x) ≈ (1 + ig2
τ ·W
2

− 1)ψ(x) (34)

where g2 measures the coupling strength of weak interaction. In the case of massless

fermions, from (13) and (25) we obtain

∂LD
∂(∂μψ)

= iψγμ (35)
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and
∂LD
∂(∂μψ)

δ0ψ = −ψLγμg2
τ ·W
2

ψL (36)

(36) represents the term that does not have a counterpart built from right-handed fermions

and, as a result, breaks chiral symmetry of the EW model even when no massive particles

are present.This symmetry breaking mechanism may be linked to the onset of non-local

interactions in non-equilibrium field theory, as described in [5] and [25].

To summarize, this section points out that the intrinsic ability of non-equilibrium dy-

namics to break the symmetry between L and R objects provides a natural motivation

for the violation of chiral symmetry in SM. This occurs through two distinct channels:

a) by generation of massive fermions and b) by making right handed fermions insensitive

to the weak interaction.

7. Symmetry Breaking Due to Mass Terms

Symmetry considerations forbid the SM Lagrangian to contain massive fermion terms

such as [1-3]

Lm,f = −mΨΨ = −m(ψLψR + ψRψL) (37)

To streamline the ensuing derivation, it is convenient to work in the approximation of

homogeneous (space-independent) fields and assume that the factor quadratic in fermions

is an arbitrary function of time. Thus,

Lm,f = −mΦf (t) (38)

On account of (18) – (20) and using the identification δG = Lm,f leads to the continuous

time representation of the normal form equation

Φf (t)
dm

dt
+m

dΦf (t)

dt
= (λ1c − λ1) + um2Φ2

f (t) (39)

Furthermore, if for sufficiently small time intervals τ = O(ε) function Φf can be well

approximated by the series expansions

Φf (τ) = Φ0
f +

∑
n

τnΦ
(n)
f (τ) (40)

the leading order formulation of (39) in discrete time assumes the quadratic form

mn+1 = mn + a(λ1c − λ) + bm2
n (41)

in which a = τ(Φ0
f )
−1 and b = τuΦ0

f . The hierarchical pattern of fermion masses com-

puted from (21) and (41) is found to be in good agreement with experimental data for a

“δ” whose numerical value matches the average Feigenbaum constant for hydrodynamic

flows, namely δ = 3.9 (Appendix C).
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Symmetry under local gauge transformations also prohibits the Lagrangian to include

terms containing massive gauge fields (M �= 0) such as

Lm,b = 1

2
M2(W ·W ) (42)

There is, however, a fundamental difference between free fermions and free gauge bosons

with regard to the mechanism of mass generation. Gauge bosons are self-interacting

objects and the contribution of self-interacting energy needs to be factored in when com-

puting their masses [18]. Following the arguments of [18, 19], the mass of the gauge boson

is expected to scale as reciprocal of its coupling strength. For two consecutive flavors of

gauge bosons we obtain
Mr

Mr+1

= (
gr+1

gr
)2 (43)

with r = 1, 2, 3.... The case of EW corresponds to r = 1 and the ratio of W and Z masses

is given by (Appendix C)

(
MW

MZ

)2 =
1

1 + ( e
g2
)2
≈ 1− 1

δ
(44)

in which “e” denotes the electric charge.

8. Fractal Space-Time from Poincaré Symmetry

It is well known that space-time of both Relativity and QFT is considered a differentiable

continuum. This property underlies the use of conventional calculus, vector analysis and

ordinary symmetry operations. It seems natural to ask if this fundamental model of

space-time continues to stand in an environment that favors the onset of non-equilibrium

dynamics. This section explores the implications of demanding that four-momentum is

exactly preserved in near-equilibrium conditions. To this end, let us return to (13) and

consider the situation where no internal field transformations take place (δ0ψ
α = 0). The

generator of space-time transformations becomes, in this case,

G(σ) = −
∫
σ

dσμθ
μνδxν (45)

where the infinitesimal changes of coordinates are described by

δxν = ωνρx
ρ + aν (46)

Here, aν is a constant vector and ωνρ = −ωρν a constant anti-symmetric tensor. The

generator corresponding to translations is the four-momentum

P ν =

∫
σ

dσμθ
μν (47)
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Conveniently choosing a frame such that the “t = constant” is the space-like surface

yields

P μ =

∫

Ω

θ0μd3x (48)

(48) denotes a set of invariants, that is

∂

∂t
(

∫

Ω

θμ0d3x) = 0 (49)

In particular, total energy corresponds to μ = 0 and is a constant. From (45) we derive

G(t) = −
∫

Ω

d3xθ0ν(ωνρx
ρ + aν) (50)

whose differential can be presented as

δG(t) = −
∫

Ω

d3xθ0νωνρδx
ρ (51)

On account of (49), the normal form equation (18) corresponding to (51) reads

−
∫

Ω

d3xθ0νωνρ
∂(δxρ)

∂t
= (λ1 − λ1c)− u[

∫

Ω

d3xθ0νωνρδx
ρ]2 (52)

This equation can be further streamlined with help from additional assumptions. For

small enough volumes (Ω = O(ε)) and under some mild requirements concerning time

behavior of integrands, one ends up with a quadratic equation containing spatial averages

of δxρ. Passing to a map representation and invoking the universal transition to chaos in

unimodal maps leads to the conclusion that, near the Feigenbaum attractor N = 2p 
 1

of (20), underlying space-time is prone to acquire a fractal structure. Emergence of

fractal space-time in high-energy physics is a speculative conjecture that has been widely

explored during the last two decades [20]2. We close this section with the observation that

transition to chaos in (52) follows a more complicated route in case energy-momentum

tensor is not conserved but assumed to be time dependent (θμν = θμν(t)). This case is

not considered here.

Concluding Remarks

The likely onset of non-equilibrium dynamics near or beyond the EW scale may provide

a unified explanation for the origin of asymmetries in SM. In particular, chiral symmetry

2 It is important to emphasize that the onset of fractal space-time in the high-energy sector of field

theory and its lack of differentiability makes the concept of “speed of light in vacuum” ill-defined. As

a result, the notion of invariance under Poincaré symmetry in far-from equilibrium settings requires a

careful redefinition of concepts through use of fractal operators [4-5].
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breaking and the mechanism of mass generation appear to arise via a minimal extension

of the action principle. A surprising finding is that, enforcing the Poincaré symmetry

in near equilibrium conditions, leads to fractalization of the space-time background. A

follow-up analysis will examine if the same approach is able to resolve the puzzle of the

so-called strong CP problem in QCD [1-3]. We plan on reporting these results elsewhere.

Appendix A: The Center Manifold Theory

We assume below that short-scale degrees of freedom aggregate in a large ensemble of

classical fields whose dynamics may be modeled as an autonomous many-body system.

Often times, the evolution of autonomous dynamical systems can be cast in the form [24]

dX

dt
= fi(X, {λ}) (A1)

where X(t) = {Xi(t)}, i = 1, 2, ..., n with n >> 1 denotes the state vector of short-

scale fields, fi are the rate laws and {λ} = λj, j = 1, 2, ...,m represents a vector of

generic control parameters. Let Xs(t) stand for a stable reference state of (A1) and let

x(t) = X(t) − Xs(t) be the vector of linear perturbations from the stable state. Linear

stability analysis enables one to map (A1) onto the equivalent system of differential

equations
dxi
dt

=
∑
j

Lij(λ)xj + hi({xj} , λ) (A2)

Here, Lij are the coefficients of the linear part in perturbations and hi are nonlinear

corrections. Depending on the rate of growth of perturbations, a multivariable system

such as (A1) can display a rich spectrum of behaviors. It can be shown that, under

some well-defined conditions, when λ reaches a set of critical values (λc), a bifurcation

of solutions takes place. If perturbations are non-oscillatory at λ = λc, the bifurcating

branches correspond to steady-state solutions. A remarkable outcome of this stability

analysis is that an order parameter (z) emerges which obeys a universal quadratic equa-

tion referred to as normal form equation. The original multivariable dynamics (A2) is

effectively reduced to
dz

dt
= (λ− λc)− uz2 (A3)

where “u” stands for a non-vanishing coefficient.

Appendix B: Unitary Field Transformations

Unitary transformations of fields (UT) are fundamental symmetry operators in QFT. For

example, chiral symmetry relates L and R components of fields and represents an UT.

An infinitesimal UT of angle θa << 1 can be presented as

ψα → ψα − iθaT
a
αβψ

β (B1)
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where the matrix T aαβ is the generator of UT and the index “a” indicates that there might

be several generators associated with the corresponding symmetry. Equation (B1) is the

expansion for small angles of the general UT

ψα → exp(−iθaT aαβ)ψβ (B2)

From (23) and (B1) we find the following expression for conserved currents

Jμ =
∂L

∂(∂μψα)
θaT

a
αβψ

β (B3)

The exponential operator in (B2) may be understood as generating rotations in internal

field space ψ(x) → ψ′(x). These are performed with no change of space-time location

and preserve the modulus of the rotating field. Using for simplicity the label β = α′, the
field differential is given by

δ0ψ
α = ψ′α − ψα = ψα[exp(−iθaT aαβ)− 1] (B4)

Local gauge symmetry in EW model is described by a UT belonging to the SU(2) group.

Field transformation of fermions in this model takes the form

ψ′(x) = exp[ig2τ ·W (x)]ψ(x) (B5)

in which τ denotes the triplet of 2 x 2 Pauli matrices, [·] stands for matrix multiplication

andW (x) for the triplet of gauge fields carrying the SU(2) charge (known as weak isospin).

Likewise, QCD exhibits local gauge invariance described by the SU(3) group and internal

field transformation of fermions is given by

ψ′(x) = exp[igsλ ·G(x)]ψ(x) (B6)

Here, λ is the octet of 3 x 3 matrices, gs the coupling describing strong interactions and

G(x) the octet of gauge fields that carry the SU(3) charge (known as color).

Appendix C: Feigenbaum Attractor in Particle Physics

The table shown below is a summary of results published in [21-22]. It contains a side-by-

side comparison of estimated versus actual mass ratios for charged leptons and quarks,

massive gauge bosons and ratios of interaction strengths. All masses are reported inMeV

and evaluated at the energy scale set by the top quark mass (mt). Using recent results

issued by the Particle Data Group [23], we take

mu = 2.12, md = 4.22, ms = 80.9

mc = 630, mb = 2847, mt = 170, 800

Coupling strengths are evaluated at the scale set by the mass of the “Z” boson, namely

αEM = 1/128 , αW = 0.0338 , αs = 0.123

Here, “u”, “d”, “s”, “c”, “b” and “t” stand for the six quark flavors, “e”, “μ” and ”τ”

represent the three flavors of charged leptons, ”W” and “Z” the two flavors of mas-

sive gauge bosons and “αEM”, “αW”, “αs” the coupling strengths associated with the

electromagnetic, weak and strong interactions.
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Parameter ratio Behavior Actual Predicted

mu/mc
δ
−4

3.365× 10−3 4.323× 10−3

mc/mt
δ
−4

3.689× 10−3 4.323× 10−3

md/ms
δ
−2

0.052 0.066

ms/mb
δ
−2

0.028 0.066

me/mμ
δ
−4

4.745× 10−3 4.323× 10−3

mμ/mτ
δ
−2

0.061 0.066

MW/MZ
(1− 1

δ
)
1/2 0.8823 0.8623

(αEM/αW )2 δ
−2

0.053 0.066

(αEM/αs)
2 δ

−4
4.034× 10−3 4.323× 10−3

Tab 2: Actual versus predicted ratios of SM parameters
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