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INTRODUCTION 

A large number of recent observational data strongly suggest that we live in a flat, accelerating universe which 
consists of approximatively one third of baryonic and dark matter (baryonic and dark) and two third of an exotic 
component with a large negative pressure called dark energy.  The basic set of confirmation experiments includes: 
observations from SNeIa [1] , CMB anisotropies[2], large scale structure[3], X-ray data from galaxy clusters[4] 
etc…Ignoring the exact nature of this new kind of energy, there are many proposed forms namely the cosmological 
constant[5] (equivalent to the vacuum energy), scalar fields such as quintessence[6] or moduli which are dynamical 
quantities whose energy density can vary in time and space, Modified theories of gravity ( f(R) models etc…)[7], non 
commutative geometry[8],[9], topological defects[10], Chaplygin gas (or its generalization) [11 ]etc…The main 
feature of most of these models is that the dark energy must have a negative pressure.  Moreover, during the last few 
years, considerable studies concerning observable anisotropies of the universe have been investigated.  These are 
connected to the very early state of the universe and related to the estimations of WMAP of CMB[12]-[16] , the 
anisotropic pressure or the incorporation of a primordial vector field (e. g.  magnetic field) to the metrical spatial 
structure of the universe.  The main motivations are based on the fact that the observed  anisotropy of the microwave 
cosmic radiation  is of  a dipole  type[17]- [22].  It is known that although this anisotropy can be explained using the 
Robertson-walker  metric and taking  into account the  motion  of our galaxy with respect to distant galaxies of the 
universe, still a small contribution is expected, due  to  the anisotropic  distribution  of  galaxies  in  our space.  
Moreover, in the framework of Finsler geometry and as in modified theories of gravity (MOND etc…), the flat 
rotation curves of spiral galaxies can be deduced naturally without involving dark matter. This has led to  a 
theoretical  interest a specially in the so called a Randers-Finsler space of approximate Bewald type where a modified 
Friedmann model is proposed [23]-[26].  It is shown that the accelerated expanding universe is guaranteed by a 
constrained Randers-Finsler structure without invoking dark energy and the additional term in the geodesic equation 
acts as a repulsive force against the gravity.  The goal of this paper is to study the effect of the geometry  by 
considering some generalized FRW anisotropic cosmological models with a generalized Chaplygin gas in Finsler 
geometry and determine some cosmological parameters.  Moreover, the viability and the stability criteria of the 
general solutions are also discussed.   

MATHEMATICAL FORMALISM  

A Finsler geometry may be considered as a generalization of the Riemanian geometry.  It is a physical   geometry 
on which the matter dynamic  takes  place  while  Riemannian  geometry is the gravitational  geometry connecting 
the metric structure of the space-time to a physical vector field.  The latter is of  a cosmological origin  (which 
dependents on the position and direction (velocity)), emerging out by a physical source of the universe and becoming 



incorporated into the geometry causing an anisotropic structure.  The latter is expressed in terms of the Cartan torsion 
tensor of the Finslerian manifold affecting the solutions of  Friedmann  equations,  CMB  temperature  estimation  
etc. . .  Mathematically, a Finsler space is a metric space where the metric function is defined by a norm ),( YxF  (on 
a TM tangent bundle of a manifold M ) which is a real function of a space-time point and a tangent  vector  Y   
belonging to the tangent space MTx at Mx ,  playing the role of an internal variable and characterizing the 
Finslerian field (combined with the concept of anisotropy causes a deviation from the Riemannian geometry).  
Moreover, a Finsler structure of  M  is a function: [,0[: TMF  which has the following properties: 

1) Regularity: F  is an infinite differentiable function of C  
2) Positive   homogeneity: 0  ),(),( YxFYxF     

3) Strong convexity: the  Hersian )
2
1( 2FH   ( 

 Y / ) is positive definite 

      To describe the dynamics and produce the geodesics of the 4-dimensional   space-time, one has to introduce a 
Lagrangian ),( YxFL  of Randers-type where the function ),( YxF can be written as:                                                           
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Here 1,0 K  and s , )(taa  , )(x , 


K̂ and g are the proper time, the scale factor, a scalar function, an 

anisotropy vector and FRW metric respectively.  It is to be noted that all the information about the anisotropy is 
encoded into the 0U  component.  It is worth to mention that under   a weak   field assumption, we can approximate a 
Finslerian metric as a perturbation of the FRW metric.  This metric is referred as an osculating Riemannian metric 

),(ˆ Yxg  given by the following expression: 
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where 

 YxUYx )(),(  .  It is to be noted also that a Finsler geometry is characterized by a Cartan torsion tensor 
))(,( xYxC  such that:  
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Here )(S  stands for the symmetrization with  respect to the indices  , , .  In the commoving coordinates where 

U and Y take the form )0,0,0,( tU   and )0,0,0,1(Y , one can show that the parameter   is related to the 
Cartan torsion tensor C through the relation 00002 C and its lower limit is H  ( H is the Hubble 
constant)[26].  This result is in agreement with the fixing of a similar parameter for a self accelerated brane-world 
cosmology [27]- [29].  Since the parameter   is related to the variation of anisotropy, we expect it to have a negative 
sign (self accelerating universe) as it may control a transition of the universe from a state of anisotropy to a smoother 
isotropic phase.  
 



QUALITATIVE STUDY WITH A CHAPLYGIN GAS IN FINSLER GEOMETRY 

    In Finsler geometry and considering a weak linearized anisotropy, the vacuum generalized FRW field equations 
are given by [26]: 
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Where   and P  are the energy density and the pressure respectively.  In what follows we set 18 G  ( G  is the 
Newton constant) and consider a   pure generalized Chaplygin gas where its equation of state has the form: 
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 The energy-momentum conservation equation reads: 
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One can show easily that the solution of eq. (9) is: 
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where 
                                                                                       3/~ taea                                                                             (11) 
 
 
and C  is an integration function.  Therefore, in a flat space, the Hubble constant expression  as a function of the red 
shift like parameter z~  reads: 
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Here ),;,(12 wfdbF  is the hypergeometric function, 0

~2/ H  , 00
~3/ Hchap  and zaa ~1~/~

0  ( 0 and 0
~H  are 

the present time energy density and Hubble constant respectively ).   
 

 
TABLE.  Validity regions of the W. C.  and S. C.  conditions in Finsler geometry with a generalized Chaplygin gas. 

 
  W.C. W.C. S.C. S.C. 

 )1/(1,0 A  yes if 0H  no if 0H  yes if 0 H  no if 0 H  
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yes if 0H   no if 0H  no if 0 H or 0H  yes if   H0 or 0H  

  ,)3( )1/(1 A  yes if 0H   no if 0H  no if 0 H or 0H  yes if   H0 or 0H  

 
Moreover, we have displayed in the table (where )(6/)23(   PP ) the various validity regions of the 

strong and weak conditions in Finsler geometry with a generalized Chaplygin gas denoted by W. C and S. C 
respectively.  Furthermore, the regions where we have open or closed as well as accelerated or decelerated universe 
are presented in figs. 1(a),(b).  

 

 
 

 
 

 

 
 
 

 
FIGURE 1.  (a) regions of open and closed universes, (b) regions of accelerated and decelerated universes 

     
  In the qualitative theory of dynamical systems, the evolution of a system is represented by trajectories in the 

),( H space and it is uniquely determined by the initial conditions.  Instead  of finding and analyzing an individual 
solution of a model, a space of all possible solutions is investigated.  Thus, the phase plane analysis is an important 
tool in studying the qualitative behavior of nonlinear two dimensional systems where there is often no analytical 
solution.  Furthermore, knowing the stabilities and instabilities of the system provides additional informations about 
the solutions and improve our understanding of the model.  Now, if we take ),( H as phase variables and apply the 
dynamical system approach to study the phase portrait and critical points, one has to consider for the congruence of 
the world lines of matter in Finsler geometry, the Rychaudhuri eq. (7) written as:  
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and  the energy-momentum  tensor conservation condition: 
 

0 10 20 30 40 50 60 70 80

-4

-2

0

2

4
Closed
(a)

Open

Closed

H
/H

0

/


2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

accelerated universe

(b)

decelerated universe

H
/H

0





                                                    )32(
2
1)(3 PPH                                                (18) 

 
Then, one can show easily that the equilibrium points ),( cc H verify the following nonlinear equation: 
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We have used the Pplane Java applet to plot the trajectories of the two dimensional system of autonomous differential 
equations in eqs. (17)-(18).  If we set 0/ x  and 0/ HHy   and take as a normalization 1// 1

0
2
00   AH , 

we have found for 4.0  , 01.0/ 0 H  and the range of our interest the following equilibrium (critical) points:  
i) A nodal sink point  57.0,99.0A  where the linear stability matrix AM is given by: 
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with real  eigenvalues 16.1

1
A and 43.2

2
A of the same negative sign.  The corresponding eingenvectors 
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respectively.  

ii) A nodal source  57.0,002.1 B  with a linear stability matrix BM is given by: 
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The eingenvalues 42.2

1
B and 15.1

2
B   are real and have the same positive sign.  The eigenvectors are 
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iii) A saddle point  002.0,19.2C  where the linear stability matrix CM  is given by: 
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The corresponding eingenvalues and eigenvectors are 014.1
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 It is worth to mention that in the phase space region under consideration we do not have a static critical point.  
By analyzing the phase plane trajectories we have identified the following regions: 
1- Trajectories starting from the line 0  with a negative infinite pressure P  correspond to an open decelerated 
expanding universe.  After that P  decreases and  increases to reach c (global attractor stable nodal sink) where 
near this critical point, the deceleration parameter q and the geometry type index K  decrease and change sign to end 
up with a closed accelerated expanding universe.  
2- Trajectories beginning first from a singularity at   and a vanishing pressure P  than   decreases to the 
equilibrium value c  ( global attractor stable nodal sink ).  The deceleration parameter q  increases without changing 
sign.  These models correspond to an open accelerated expanding universe.   
3- Trajectories starting from the critical point c ( global repulsor unstable nodal source ) and evolve to 0  with a 
negative infinite pressure P  where the deceleration parameter q and geometry type index K  do not change sign to 



obtain at the end an accelerated collapsing universe.  
4- Trajectories which begin from c ( global repulsor unstable nodal source ) and evolve to a singularity at   
where the deceleration parameter q decreases without changing sign to end up with an accelerated collapsing 
universe.  
5- Trajectories starting from c ( global repulsor unstable nodal source ) and reach  c ( global attractor stable nodal 
sink ) after a bounce ( a decrease than an increase in the value of   ) where K  changes sign.  They correspond to an 
accelerated collapsing universe.  
6- Trajectories which start from c ( global repulsor unstable nodal source ) corresponding to an accelerated 
collapsing universe reach c ( global attractor stable nodal sink ) after a bounce ( an increase than a decrease in the 
value of  ) where K  and the Hubble constant H change sign.  They correspond to an accelerated universe.  
7- Trajectories which begin from c ( global repulsor unstable nodal source ) and evolve to c ( unstable saddle 
point ) where q  increases and changes sign correspond to a collapsing universe.  After that  ( Chaplygin 
pressure vanishes ) and again the deceleration parameter q changes sign getting at the end a closed accelerated 
collapsing universe.  
8- Trajectories starting from a singularity at   correspond to an accelerated expanding universe 
than  decreases to a minimum value min in an accelerated expansion.  After that   increases again to reach a 
singularity at   corresponding to an accelerated collapsing universe.   

 
 

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2.  Phase portrait with: (left) ),( H , (right) ),~( vr near infinity as dynamical variables.  

 
The model under consideration is structurally stable in its physical domain because there are no separatrices 

connecting saddle points, all critical points are hyperbolic, non degenerate and their number is finite .  In our case 
we have obtained the following separatrices of  equations 0y , 1x and 297343114 2  xxy  in the finite 
region.  We have made similar study near infinity (asymptotic limit) and check the existence of fixed points. 
Physically such points  represent regimes in which one or more of the terms in generalized Friedman equations 
become dominant.  The asymptotic analysis can be performed by compactifying the phase space portrait to 

),~( vr using Poincaré method.  If we set  cos  and )1/(~ rrr   where   and r  are the polar coordinates (  
and r~ are denoted in fig. 2 (right) by x  and y respectively), the generalized FWR equations lead to the following 
non linear differential equations: 
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and 
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We have obtained the following separatrices of equations 5.0x  and 1y .  For the critical points we have got 

unstable saddle point at 5.0x and asymptotically stable node at 5.0x and 1y .  Figure 2 (left) displays all 

trajectories or orbits in phase space portraits ( where ),( H  are taken as dynamical variables ) converging or diverging to nodal 

sink or nodal source points. Similarly, for fig.(2) (right) but with  ),~( vr as dynamical variables near infinity (asymptotic limit). 
 

SOME SIMPLE MODELS WITH EXACT SOLUTIONS 

In order to understand the anisotropic cosmological models in Finsler geometry, we consider two simple cases 
showing the pure effect of the geometry and leading to dark energy scenarios.  

Model 1 

Let us consider a model where the relation 03  tottot P  holds.  Here chapmtot   and chapmtot PPP    

( m and mP are the matter density and pressure respectively).  If we use the generalized Friedman equations of eqs. 
(6) and (7), one can show that the Hubble constant, scale factor and deceleration parameter have the following exact 
expressions: 
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FIGURE 3.  Time evolution of: (a) scale parameter (b) deceleration parameter in model 1. 
 
where 4/3 t  .  Notice that  q (resp. H )  is negative (resp. positive).  This will account for an expanding 
accelerated universe (dark energy).  If take the matter pressure 0mP  (matter dominated universe) the Chaplygin 
gas pressure chapP  gets the form: 
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This is a pure Finsler geometry result. Infact,  in the Riemanian geometry and with the same kind of fluid one 

gets a static universe instead of an accelerating one.  Moreover, If we consider a Finsler space-time without  a 
Chaplygin gas, one can get an induced time dependent cosmological constant given by the expression 

3/)()( gt  .  Figure 3 (resp. 4) displays for 01.0/ 0 H and Chaplygin gas parameter 6.0 ., the scale 
factor )(ta  (fig.3(a)) and the deceleration parameter )(tq  (fig.3(b)) (resp.  induced cosmological constant) as 
functions of the time in arbitrary units. Notice the Finsler space cosmological  parameters )(ta and )(tq are 
increasing functions of time, however the induced cosmological constant )(t is a decreasing function and vanishes 
for large values of t . 
 
 
 
 
 
 
 

 

 

 

FIGURE. 4.  Induced cosmological constant as a function of time in model 1. 

Model 2 

As a second model, we consider a Finsler space-time with a Chaplygin gas and a non vanishing cosmological 
constant.  Then, one can show that the energy-momentum stress tensor conservation equation compatible with the 
Bianchi identities, has the form: 

 

                                                                ]
)(

[
3
2

1
2

1 


 


A
                                            (30) 

where 
                                                        H31 ,  ))1(3(2   HA                             (31) 

 
Now, if  we assume that the fluid under consideration verifies the property 0~3~  P  where the redefined energy 

density ~ and pressure P~  such that  ~ and  PP~  respectively, then one can show easily that the 
deceleration parameter q has the following expression: 
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It is clear from eq. (32) that q is negative (acceleration) and proportional to the anisotropy parameter  .  This is 
again a pure Finsler geometry result where in the Riemannian space-time we obtain a static universe.  Figure 5 
presents the variation of the cosmological constant  as a function of  the time.  Notice that it is an increasing 
function  accounting for a dark energy.  
  
 

 
 
 
 
 

 
 
 
 
 

FIGURE. 5.  Time evolution of the cosmological constant in model 2 

CONCLUSION 

  From our a qualitative study, we conclude that as a first step towards an understanding of the geometry effect 
on the cosmology dynamics and testing the possibility to get more realistic and viable models, we have discused 
general behaviors (stabilities, unstabilities, critical points etc…) of a Chaplygin gas in a Finsler geometry.   An exact 
expression of the Hubble constant is obtained explicitly as a function of the redshift-like parameter z~  ( comparaison 
with the present data and observational tests are under investigations ).  Moreover, two simple pure Finsler space-
time models with exact solutions accounting for expanding accelerated universe are considered and some of the 
cosmological parameters expressions are obtained.  The most interesting in this theoretical models is that the 
geometry affects the dynamics of the cosmology. In fact a static or decelerating  universe in Riemannian geometry  
may correspond to an accelerating expanded universe in Finsler space-time. Moreover, an induced time dependent 
cosmological constant can also be a result of the non Riemannian geometry.  
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