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Abstract

A uni�ed description of a symmetrized and anti-symmetrized Moyal star product of the non-
commutative in�nitesimal gauge transformations is presented and the corresponding Seiberg-Witten
maps are derived. Moreover, the noncommutative covariant derivative, �eld strenght tensor as well
as gauge transformations are shown to be consistently constructed not on the enveloping but on the
Lie and/or Poisson algebra. As an application, a pure geometric extension of the standard model is
shown explicitly.
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1 Introduction

In the last few years, noncommutative geometry becomes the focus of interest in theoretical physics
and for models building[1]� [9]. There are several motivations to speculate that the space-time becomes
non commutative at very short distances when quantum gravity becomes relevant and even better, if
we believe that the extra dimension approach can push the non commutativity scale lower. Moreover,
in string theories, the noncommutative gauge theory appears as a certain limit in the presence of a
background �eld[11] :

One approach to the non commutative geometry, is the one based on the deformation of the space-
time. If �elds are assumed to be Lie algebra valued and allow for the closure of the Lie algebra valued
noncommutative transformation gauge parameters, it turns out only U(N) structure groups are con-
ceivable as well as the corresponding gauge transformations must be in the fundamental representation
of this group. This is unsuitable to build realistic models for the electroweak and strong interactions
and even the U(1) case, charges are quantized and it will be impossible to describe quarks (the choice
of charges introduced in the theory is very restricted to �1 or 0)[7] :The matching of the noncommu-
tative action to the ordinary one, requires �rst to map the noncommutative space-time coordinates to
the ordinary ones by introducing a star product[10], than the noncommutative �elds are mapped to
commutative ones by means of the Seiberg-Witten mapps[1] � [6] ; [11]. The latter has the remarkable
property that ordinary gauge transformations induce noncommutative ones. In this case, the low energy
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action is local in the sense that there is no UV/IR mixing. However, the basic assumption is that
the noncommutative �elds are not Lie algebra valued but are in the enveloping algebra and allows to
consider SU(N) groups.

In section2, we de�ne a new deformed Moyal-Weyl ordering product in the sense of a Weyl sym-
metrization using star product Lie or Poisson brackets with some golden rules to preserve the invariance
of the action and the closure of the algebra and construct noncommutative gauge transformations, covari-
ant derivative, �eld strength tensor and Seiberg-Witten maps �elds without recourse to the envelopping
algebra approach. As an application, we have constructed in section3 a pure geometric extension of the
standard model. Finally, in section4, we draw our conclusions.

2 The Formalism

In ordinary quantum mechanics (Q.M), to �nd out the quantum equivalent of a classical observable
F (x; p) depending on the canonical variables x and p , one has to go through the symmetrization
procedure using the so called Weyl-ordering. In this scheme, and as an example, the Weyl ordering
(x n p)w of any monomial of the form x n p is given by:

(x n p)w =
1

n+ 1

nX
l=0

x n�l p xl (1)

By analogy to Q.M, one can de�ne a Moyal-Weyl ordering (f � h)w of any two functions f and h on a

noncommutative space-time as follows:

(f � h)w �
z}|{
f � g (2)

where z}|{
f � g � 2 [f; g]�� (3)

with

[f; g]
�
� �

1

2
(f � g + �g � f) (4)

where � = �:It is worth to mention that sometimes we use notations like in eq.(2) (with curly bracket
on the top) like in the de�nition of the "w" (Moyal-Weyl) ordering etc...But if we want to get more

simpli�ed forms (compact) like in eq.(12) etc..., it is better to use notations of eq.(3)(with generalized
��commutators). Of course both notations are equivalent.

Now, let us consider the two matrices valued functions � = Ta�
a and V� = TaV

a
� as elements

of a Lie algebra G of a Lie group G (SU(N); U(N),etc..)and  a matter multiplet in a certain group
representation such that it transforms as:

�� = iTa�
a ; �� = �iTa�a (5)

Here �a is the group transformation parameter and Ta are the group generators.
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In the noncommutative space-time, one can generalize the ordinary gauge transformations
(eq.(5)) by respecting the Weyl ordering as:

�b�b = �iT a hb�a�;b i
�

�
w

=
1

2
iTa

z }| {b�a � b ;

�b�b = ��iT a hb �;b�ai
�

�
w

= �1
2
iTa

z }| {b � b�a (6)

The b�a and b are the gauge transformation parameter and matter �eld in the noncommutative space-
time respectively. Now, we impose the following golden rules:

(TaTbb�a � b�b)w = TaTb

z }| {b�a � b�b
(TaTbb�b � b�a)w = TaTb

z }| {b�b � b�a (7)

(TaTbb�a � b � b�b)w = TaTb

z }| {b�a � b � b�b
and

(TaTbb�b � b � b�a)w = TbTa

z }| {b�b � b � b�a
where z }| {

A �B � C � (A �B � C + �C �B �A) (8)

Notice that, in eqs.(7) we have to respect the order of the indices a,b,...before the symmetrization
procedure take place.Moreover, the generators indices must be in the same order as those of b� and b�:Now
using eq.(6) and the golden rules of eqs.(7) , one can show easily that (see AppendixA):

�b�(�b�b ) =

�
�TaTb

hb�a; [b�b; b ]��i�
�

�
w

=
1

4

 
�TaTb

z }| {b�a � b�b �b � TbTa� z }| {
�b � b � b�a�TaTb� z }| {b�a � b � b�b�TaTb�2b � z }| {b�b � b�a!(9)

and

�b�(�b�b ) =

�
�TbTa

hb�b; [b�a; b ]��i�
�

�
w

=
1

4

 
�TbTa

z }| {b�b � b�a �b � TaTb� z }| {b�a � b � b�b�TbTa� z }| {b�b � b � b�a�TbTa�2b � z }| {b�a � b�b!(10)
Using eqs. (3) and (4) together with the relations:
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z }| {b�b � b�a �b = �

z }| {b�a � b�b �b 
b � z }| {b�a � b�b = �b � z }| {b�b � b�az }| {b�b � b � b�a = �

z }| {b�a � b � b�b (11)

and after straightforward simpli�cations, we obtain:

�
�b�; �b�� b = [Ta; Tb]�� �hb�a; b�bi�

�
; b ��

�

(12)

Thus, the algebra is closed and the gauge parameters b� and b� are not elements of the envelopping Lie
algebra G .

Concerning the covariant derivative bD�  of a matter �eld , its expression can be generalized
easily in the noncommutative case as follows:

bD� b = @�b � iTa hbV a� ; b i�
�

(13)

where, bV a� denotes the gauge �eld in the noncommutative space-time. It is worth to mention that the
covariant derivative of eq.(13) transforms as:

�b�( bD� b ) = iT a
hb�a; @�b i�

�
+

 
�iT aiT b

�b�a; hbV a� ; b i�
�

��
�

!
w

= iT a
hb�a; @�b i�

�
+
1

4

0B@ �iT aiT b
z }| {b�a � bV b� �b � �iT biT a z }| {bV b� � b � b�a

��iT aiT b
z }| {b�a � b � bV b� ��2iT aiT bb � z }| {bV b� � b�a

1CA (14)

On the other hand, a tedious but direct calculation gives (see Appendix B):

�b�
� bD�b � = @�

�
iT a

hb�a; b i�
�

�
w

+

�
�iT b

hbV b� ; ��b i�
�
� iT b

h
�� bV b� ; b i�

�

�
w

= iT a
hb�a; @�b i�

�
+ iT a

h
@�b�a; b i�

�
� iT b

h
�� bV b� ; b i�

�

+
1

4

0B@ �iT biT a
z }| {bV b� � b�a �b � �iT aiT b z }| {b�a � b � bV b�

��iT biT a
z }| {bV b� � b � b�a��2iT biT ab � z }| {b�a � bV b�

1CA (15)

Now, from eqs.(13) and (14), it follows the noncommutative gauge boson transformation law (see Ap-
pendix B):

�b� bV� = @�b� + i [Ta; Tb]�� hb�a; bV b�i�
�

(16)

(bV� = Ta bV a� ; b� = Tab�a):Now, within the in�nitesimal noncommutative gauge transformations of eqs.(6)
and (16), one can show the invariance of the action I1 representing the kinetic term of the noncommu-
tative matter �elds b and their interaction with the noncommutative vector gauge bosonbV b� :
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I1 = i

Z
d4x b � b/D � b (17)

where

b/D = � bD�
(� stands for Dirac matrices). In fact:

�b�I1 =
Z
d4x

�
�iT a

hb ; b�ai�
�
� i�(@�b � iT b hbV b� ; b i�

�
)

�
w

+

Z
d4x

(b � i�iT a hb�a; @�b i�
�
+

 
�iT aiT b

�b�a; hbV a� ; b i�
�

��
�

!!)
w

(18)

Direct simpli�cations give;

�b�I1 = ��
2

Z
d4x(iT ab�a � b � i�@�b � b � i�iT a@�b � b�a)w

+

Z
d4x((

�i
2
�T ab�a � b � i�(� i

2
T bV b� � b � � i2T bb � V b� )

+
1

4
b � i�(�iT aiT b(�bV b� � b � b�a + �2b � bV b� � b�a)))w (19)

Using the following proprety of the star product:

Z
d4x f � (g � h) =

Z
d4x f:(g � h) =

Z
d4x (g � h):f =

Z
d4x (g � h) � f (20)

one has: Z
d4x(iT ab�a � b � i�@�b ) = Z d4x(b � i�iT a@�b ) � b�a (21)

Z
d4x

i

2
T ab�a � b � i�(� i

2
T b bV b� � b ) = 1

4

Z
d4x(b � i�(�iT aiT b bV b� � b )) � b�a (22)

and Z
d4x((

i

2
T ab�a � b � i�( i

2
T bb � bV b� ) = �14

Z
d4x(b � i�(�iT aiT bb � bV b� )) � b�a (23)

Therefore, we deduce that:

�b�I1 = 0 (24)

Similarly, one can show that the mass term I2 =
R
d4x b � b is gauge invariant. In fact, taking into

account the noncommutative gauge transformation laws of eq.( 6), one can write
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�b�I2 =
Z
d4x

�
�iT a

hb ; b�ai�
�
� b + b � iT a hb�a; b i�

�

�
=
�i�
2
T a
Z
d4x(b�a � b � b � b � b � b�a) (25)

Again, using the associativity of the star product and the relation in eq.(20 ) we obtain:

�b�I2 = 0 (26)

Regarding the noncommutative �eld strength bF a�� , one can generalize the de�nition of the curvature
tensor such that: h bD�; bD�i b = �iTa h bF a�� ; b i�

�
(27)

Using the expression of the noncommutative covariant derivative given by eq.(13), one can show that:

bD� bD�b = �@� bD�b � iT a hbV a� ; bD�b i�
�

�
w

(28)

With the help of eqs.(7) as well as eq.(13) , eq.(28) can be rewritten as:

bD� bD�b = @�@�b � iT a h@� bV a� ; b i�
�
� iT a

hbV a� ; @�b i�
�
� iT a

hbV a� ; @�b i�
�

1

4

0B@ �T aT b
z }| {bV a� � bV b� �b � �T aT b z }| {bV a� � b � bV b�

��T bT a
z }| {bV b� � b � bV a� ��2T aT bb � z }| {bV b� � bV a�

1CA (29)

Using the relations of eqs.(11), we deduce that:

h bD�; bD�i b � �iT a h bF a�� ; b i�
�

= �iT a
h
@� bV a� � @� bV a� ; b i�

�
� 1
4

�
T a; T b

�
��

z }| {bV a� � bV b� �b 
+
1

4

�
T a; T b

�
��
b � z }| {bV a� � bV b� (30)

Finally, h bF a�� ; b i�
�
=
h
@� bV� � @� bV�; b i�

�
� i
�
T a; T b

�
��

�hbV a� ; bV b� i�
�

�;b ��
�

(31)

or

bF�� = @� bV� � @� bV� � i �T a; T b��� hbV a� ; bV b� i�� (32)
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Notice that one can rewrite eq.(32 ) as:

bF�� = @� bV� � @� bV� � i

2

 
T aT b bV a� � bV b� + �T aT b bV a� �� bV b�

��T bT a bV b� �� bV a� � �2T bT a bV b� � bV a�
!

(33)

or in a more compact form as:

bF�� = @� bV� � @� bV� � i hbV�; bV�i�
�
� i�

hbV�; bV�i��
�

(34)

where

f � g = g
�� f (35)

with

f � g = G(f; g; ���) (36)

and

f
�� g = G(f; g;����) (37)

Here G(f; g; ���) is a function of f; g and ��� :Similarly one can show that:

�b� bV� = @�b� + i

2

�b� � bV� + �b� �� bV� � �bV� �� b�� �2 bV� � b�� (38)

Now, from eqs.(34) and (38), one has:

�b� bF�� = 
1 +
2 +
3 +
4 +
5 (39)

where


1 = i
hb�; @� bV� � @� bV�i�

�
+ i�

hb�; @� bV� � @� bV�i��
�

(40)


2 =

�b�; hbV�; bV�i�
�

��
�

(41)


3 = �

�b�; hbV�; bV�i�
�

���
�

(42)


4 = �

"b�; hbV�; bV�i��
�

#�
�

(43)

and


5 =

"b�; hbV�; bV�i��
�

#��
�

(44)

straightforward simpli�cations give:
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�b� bF�� == i
hb�; bF��i�

�
+ i�

hb�; bF��i��
�

(45)

since

hb�; bF��i�
�
+ �

hb�; bF��i��
�
= T aT bb�a � bF b�� � T bT a bF b�� � b�a + �T aT bb�a �� bF b�� � �T bT a bF b�� �� b�a

= T aT bb�a � bF b�� � T bT a bF b�� � b�a + �T aT b bF b�� � b�a � �T bT ab�a � bF b��
=
�
T a; T b

�
��

hb�a; bF b��i�
�

(46)

therefore

�b� bF�� = i
�
T a; T b

�
��

hb�a; bF b��i�
�

(47)

Regarding the gauge invariance of the noncommutative Yang-Mills action IYM de�ned as:

IYM =

Z
d4x Tr ( bF�� � bF��) (48)

and with the help of the transformation law of eq. ( 47), one has:

�b�IYM = iT r(
�
T a; T b

�
�� T

c)

Z
d4x

hb�a; bF b��i�
�
� bF c��

�iT r(T c
�
T a; T b

�
��)

Z
d4x bF c�� � hb�a; bF b��i�

�
(49)

Using the fact that:

Tr(ABC) = Tr(CBA) (50)

(A, B and C are matrices) and the star product property in eq.(20), then

Tr(
�
T a; T b

�
�� T

c) = Tr(T c
�
T a; T b

�
��) (51)

and Z
d4x

hb�a; bF b��i�
�
� bF c�� = Z d4x bF c�� � hb�a; bF b��i�

�
(52)

Consequently

�b�IYM = 0 (53)

Regarding the Seiberg-Witten maps, if one sets:

bV� = bV� [V ] = V� + eV� (54)

b = b [V;  ] =  + e (55)

and
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b� = b� [V;�] = � + e� (56)

where

�V� = @�� + i [�; V�] (57)

and

�� = i�  (58)

and uses the transformation laws in eqs.(6) and (16), we obtain:

eV� = 1

4
���

�
��;�

�
[F��; V� ]� + [V� ; @�V�]�

�
+ 4��;+

�
[V� ; @�V�]� �

1

2
[V� ; @�V�]�

��
+O(�2) (59)

e = �i
8
���

n
��;� [V�; V� ]�  + 8i��;+ [V�@� + F�� ]

o
+O(�2) (60)

and

e� = 1

4
���

n
��;� [V� ; @��]� + 2��;+ [V� ; @��]�

o
+O(�2) (61)

To give further clari�cations, it is worth to mention that the paper may give the impression that
we have de�ned in our approach a new "Moyal-Weyl ordering" related to the noncommutative space-
time which makes a confusion. In reality, we have just de�ned new gauge transformations , covariant
derivatives, Seiberg-Witten maps through what we have called "Moyal-Weyl ordering". It is just a
breach of trust.We mean Weyl symmetrization through Poisson or Lie brackets in the expressions of
gauge transformations, de�nitions of covariant derivative etc..by respecting certain golden rules which
are necessary for the invariance of the action and the closure of the algebra and which involve Moyal
star product. So, in this paper we did not change the Moyal-Weyl product initially introduced in
the noncommutative space-time mathematical formalism and the isomorphism between the classical
functions and the corresponding operators still holds. In fact, we can always associate to any function
f(x) of the classical commutative space-time an operator denoted by a W (f) and de�ned by:

W (f) = (2�)
� 3
2

Z
d4k e�ikbx ef (k) (62)

where ef (k) is its Fourrier transform and bx� the noncommutative variable.
ef (k) = (2�)� 3

2

Z
d4x eikx f (x) (63)

These operators W (f);W (g); etc..can be multiplied to give other operators. The product operator
W (f):W (g) is itself associated to a classical function h(x) = (f � g)(x) such that:

W (f)W (g) =W (f � g) (64)

where (f � g) (x) is a function of the classical variable x�

(f � g) (x) =
h
e
1
2 i�

�� @
@x�

@
@y� (f (x) g (y))

i
x=y

(65)

Notice that at the level of the in�nitesimal gauge transformations introducing what we have called
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Moyal-Weyl ordering and meaning the symmetrization by using Poisson or Lie brackets, the operator
counterpart in the lagrangian does not change. However for the de�nition of the covariante derivative it
is exactly equivalent to have this symmetrization procedure at the level of the operators counterparts.
for example

b	(x) � � bD� b	(x) = b	(x) � �@� b	(x)� iTa b	(x) � � h bAa�(x); b	(x)i�
�

(66)

can be de�ned at the operator level as:

b	(bx)� bD� b	(bx) = b	(bx)�@� b	(bx)� iTa b	(bx)� h bAa�(bx); b	(bx)i
�

(67)

This is always possible because we are dealing with operators and thus, always the ordering ambiguities
arise. Now, the choice of a one symmetrization from another depends on what we want to achieve (of
course we have to respect certain golden rules if we are dealing also with the Lie generators algebra
T a). Essentially, which is important is the closure of the algebra.where the noncommutative gauge
transformations parameters b� are elements of the Lie or Poisson (not the envelopping)algebra of the
local gauge group G.

Moreover, one may ask about the necessity and a possible use of the antisymmetrization through
star product commutators. If we take for example aU(1)gauge theory, where a singlet matter �eld �
transforms trivially under the symmetry group as:

��� (x) = 0 (68)

The noncommutative equivalent of this transformation could be generalized to:

b�b�b� (x) = i
hb�; b�i�

�
: � i

hb��;b�i (69)

where of course in the limit � ! 0 we �nd the classical commutative case. Another important possible
application of the antisymmetrisation in de�ning Moyal-Weyl ordering is the creation of new interactions
invariant under new symmetries of a noncommutative gauge group of the O(�) or higher and such that
at the limit � ! 0, these interactions will be switched o¤ and disappear. For example, if we take in the
commutative space-time the kinetic term of the action I of a Dirac spinor �eld  such that:

I = i

Z
d4x �@� (70)

This action is invariant under in�nitesimal local gauge transformations of a certain Lie group G with
generators T a if and only if  transforms as a singlet. That is:

�� = �� = 0 (71)

Now, in the noncommutative space-time, the action I becomes I� such that:

I� = i

Z
d4xb � �@�b (72)
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and the transformation laws of eq.( 6) (within the antisymmetrization idea and generalization of a singlet
state) becomes:

�b�b = i
hb�; b i�

�
=
i

2

�b� � b � b � b��
= �1

2
���@�b�@�b +O(�2) (73)

Now, the action I� is no more invariant under these noncommutative transformations of the matter
�eld. To do so, we transform the ordinary derivative @� into a covariant one bD� such that:

bD�b � (@�b � iT a hbV a� �;b i)w = @�b � iT a hbV a� �;b i (74)

and

�b� bV� = @�b� + i�T a; T b	 hb�a�; bV b�i (75)

where bV� is the noncommutative gauge boson.Then, the action I� becomes I�0such that:
I�

0
= i

Z
d4xb � � bD�b (76)

Notice that at the limit � ! 0, and since
hbV a� �;b i! 0, one has bD�b ! @� and we get back the action

I: This means that although the interaction (force) between the matter and gauge �eld is absent in the
commutative space-time, It is not (thanks to the antisymmetric transformations and the noncommuta-
tive generalization of the singlet state) in the noncommutative space-time. This is the way to generate
new interactions within this approach. The most important point is that the order noncommutative
parameter � becomes like a scale for which new physics (interactions) becomes relevant. As a conclusion,
if we want to extend any gauge theory and generate models beyond with a pure geometric noncommu-
tative scale �, we need to consider the antisymmetric noncommutative gauge transformations with the
corresponding Seiberg-Witten maps.

3 Applications

Using the previous formalism, we construct a non abelian non commutative gauge theory invariant under
the in�nitesimal transformations of the gauge Lie group SU (2)L�SU (2)R�U (1)Y (left-right model).
To keep our idea transparent, we will not consider the higgs and Yukawa sectors. The matter physical
states are the doublets:

L =

�
�L
eL

�
and R =

�
�R
eR

�
(77)

The isospin generators of the tensor group SU (2)L � SU (2)R , are given by T
(L)
a = T

(R)
a = �a

2 (�a are
the Pauli matrices) and Y is the U (1) hypercharge generator such that:

11



Y L = �1
2

�
�L
eL

�
;

Y R = �1
2

�
0 0
0 2

��
�R
eR

�
(78)

and

Y (L) � Y (R) = �1
2
�3

If we de note byWa
�; Ba� andA� the gauge potentials of the groups SU (2)L ; SU (2)R, and U (1)Y :respectively,

and using the previous formalism of section2 the noncommutative matter �elds covariant derivatives
takes the following forms:

bD�bL = @�bL� igLT (L)a

ncWa
�
�;bLo� ig0Y (L) n bA��;bLo (79)

and

bD� bR = @� bR� igRT (R)a

h bBa��; bRi� ig0Y (R) n bA��; bRo (80)

(here g0; gL and gR denote the U (1)Y , SU (2)L andSU (2)R coupling constants respectively). The left
and right symmetrized noncommutative states bL and bR transform as follows:

�b�L bL = igLT
(L)
a

nb�aL�;bLo+ ig0Y (L) nb��;bLo (81)

and

�b�R bR = igRT
(R)
a

hb�aR�; bRi+ ig0Y (R) nb��; bRo (82)

(b�aL; b�aR and b� are in�nitesimal noncommutative gauge parameters). Thus, the noncommutative La-
grangian density LNC is given by:

LNC = bL � ib/DbL+ bR � ib/D bR� 1

2g2L
Tr1 bF ��

� bF �� �
1

2g2R
Tr2 bG��

� bG�� �
1

4g02
bf�� � bf�� (83)

(Tr1 and Tr2 represent the trace over the vector space of the �elds) where

bF �� = @�cW� � @�cW� � igL
h
T (L)a ; T

(L)
b

incWa
�
�;cWb

�

o
bG�� = @� bB� � @� bB� � igR nT (R)a ; T

(R)
b

oh bBa��; bBb�i (84)

and

bf�� = @� bA� � @� bA� (85)

The noncommutative �elds bL (x) , bR (x) , cWa
� , bBa� , bA�;are the Seiberg-Witten maps of the classical

�elds L (x), R (x), Wa
�, Ba�, A�;such that:
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bL = L� i

8
��� [W� ;W� ]L+O

�
�2
�

bR = R� ���B�@�R+ ���G��R+O
�
�2
�

cW� = W� +
1

4
��� [W�; @�W� � F ��] +O

�
�2
�

(86)

bB� = B� � ��� fB�; @�B�g+
1

2
��� fB�; @�B�g+O

�
�2
�

bA� = A� +O
�
�2
�

Straightforward simpli�cations give:

LNC = L+ L
(1)
L + L

(1)
R +L(1)g (87)

where L is the classical Lagrangian given by:

L = Li /DL+Ri /DR� 1

2g2L
Tr1F��F�� �

1

2g2R
Tr2G

��G�� �
1

4g02
f��f�� (88)

and L(1)L ;L
(1)
R ;L(1)g , represent the contribution of the space-time noncommutativity and have the follow-

ing expressions:

L
(1)
L =

1

4
���LW�W� /DL+

1

4
���L /DW�W�L +L�W(1)

� L (89)

and

L
(1)
R = �i���@�

�
R
�
B� /DR� i���R /DB�@�R +gR�

��Ri@� /B@�R

+���RiG�� /DR+ �
��Ri /DG��R (90)

where

D�L =
�
@� � igLWa

�

�a
2
+
i

2
g0A�

�
L (91)

D�R =
�
@� � ig0A�Y (R)

�
R (92)

and

W(1)
� =

1

4
��� [F�� ;W� ] +

1

4
��� [W� ; @�W�] (93)

Notice here that the right currents are of the order �; thus, they vanish in the classical limits when
� ! 0:Finally, L(1)g has the form:

L(1)g = � 1

g2L
Tr1F��F (1)�� �

1

g2R
Tr2G

��G(1)
�� �

1

2g02
f��f (1)�� (94)

with

F (1)�� = �
i

8
��� [F�� ; [W� ,W�]] +�

i

8
��� (@� [W� ; [W� ,W�]]� @� [W�; [W� ,W�]]) (95)
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G(1)
�� = @�B(1)� � @�B(1)� � i

h
B(1)� ;B�

i
� i
h
B�;B(1)�

i
(96)

and

f (1)�� = 0 (97)

with

B(1)� = ���� fB�; @�B�g+
1

2
��� fB�; @�B�g (98)

The electroweak currents LNC(currents) can be deduced directly from the previous Lagrangian to get:

LNC(currents) = L
NC(L)
(currents) + L

NC(R)
(currents) (99)

where

L
NC(L)
(currents) = Li�

�
�igLW� +

i

2
g0A�

�
L+ L�W(1)

� L+

1

4
���LW�W�

�

�
@� � igLW� +

i

2
g0A�

�
L+

1

4
���L�

�
@� � igLW� +

i

2
g0A�

�
W�W�L (100)

and

L
NC(R)
(currents) = Ri�

�
�ig0A�Y (R)

�
R� i���R�

�
@� � ig0A�Y (R)

�
B�@�R

+gR�
��Ri@� /B@�R� i�

��@�
�
R
�
B��

�
@� � ig0A�Y (R)

�
R: (101)

(L and R stand for left and right). From the above expressions, one can deduce the neutral and charged
currents. Regarding the neutral electroweak currents, the Lagrangian LNC(n:c) has as expression:

LNC(n:c) = L(n:c) + L
(1)
(n:c) (102)

where L(n:c) is the classical electroweak neutral current given by

L(n:c) = gLJ
3
�W3� +

1

2
g0JY� A� = eJe:m� A� +

gL
cos �W

J0�Z� (103)

with

JY� = � (�L��L + eL�eL + 2eR�eR)
Je:m� = eL

�eL + eR
�eR = e�e

J3� =
1

2
(�L

��L � eL�eL) (104)

JL� = � (�L��L + eL�eL)

and

J0� = J3� � sin2 �wJe:m�
The �elds Z�, A�, are de�ned through the Weiberg angle �w rotation as follows:
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B� = cos �wZ� + sin �wA� (105)

and

A� = � sin �wZ� + cos �wA�

The term L
(1)
(n:c) is the pure noncommutative neutral electroweak current and has the form:

L
(1)
(n:c) = L

(1)L
(n:c) + L

(1)R
(n:c) (106)

with

L
(1)L
(n:c) =

i

8
(gL)

3
���JL�W3

�

�
W+
�W

�
� �W�

� W
+
�

�
(107)

and

L
(1)R
(n:c) =

i

2
gR�

��

�
(�R

�@��R � eR�@�eR)G3
�� �

1

2
(�R /@�R � eR /@eR)G3

��

�
(108)

Notice here that the right neutral currents are of the order �, and vanish in the commutative classical
limit when � ! 0:

Regarding the left charged electroweak currents, the Lagrangian LNCL(c:c) takes the form:

LNCL(c:c) = L
L
(c:c) + L

(1)L
(c:c) (109)

where LL(c:c) is the classical charged electroweak current which has the following expression:

LL(c:c) =
gLp
2

�
�L

�eLW+
� � eL��LW�

�

�
=

gLp
2

�
J+�W+� � J��W��� (110)

with
J+� =

�
J��
�+
= �L

�eL (111)

and L(1)L(c:c) is the left charged electroweak current given by:

L
(1)L
(c:c) =

i

4

(gL)
2

p
2
g0���A�W3

�

�
J+�W+

� � J
�
�W�

�

�
+
1

2

(gL)
2

p
2
���

h eJ+W+
� � eJ�W�

�

i
W3
� (112)

with eJ+ = � eJ��+ = �L /@eL (113)

and

W�
� =

1p
2

�
W1
� � iW2

�

�
(114)

For the right charged currents, the lagrangian LNCR(c:c) is given by:

LNCR(c:c) = L
R
(c:c) + L

(1)R
(c:c) (115)

with

LR(c:c) = 0::::: (116)
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and

L
(1)R
(c:c) =

gRp
2
ig0����R

�
�
@�W+

� A� +W+
� @�A� + @�W

�
� A� +W

�
� @�A�

�
eR

+
gRp
2
g0���

�
�R

�@�eRW+
� A� + @� (eR) 

��RW�
� A�

�
(117)

+
gRp
2
i���

�
eR

�@��RW�
�� + �R

�@�eRW+
��

�
� gRp

2

i

2
���

�
eR /@�RW�

�� + �R /@eRW
+
��

�
where

W�
�� = @�W�

� � @�W
�
� : (118)

Again, notice that the charged right currents are of the order �, and vanish in the classical limit when

� ! 0:

3.1 Conclusions

Throught this work, in a uni�ed description and in order to avoid gauge �elds transformations that
are not Lie or Poisson algebra valued, we have de�ned a new Weyl ordering using Moyal star product
(symmetrization through star Poisson or Lie brackets) together with some golden rules. Based on this
new approach, the noncommutative covariant derivative, curvature tensor, Seiberg-Witten maps �elds
and the corresponding gauge transformations as well as an invariant action are constructed.

The most important idea of this approach is the generalization of the singlet notion under non-
commutative gauge transformations and the introduction of a geometric way to create new interactions,
extend and enlarge a gauge theory namely the standard model. The physical application was done for
the left-right extension of the standard model and the corresponding charged and neutral currents were
derived. The right sector is shown to have a pure noncommutative space-time origin.

Appendix A

The matter �eld noncommutative gauge transformation is given by:

�b�b = �iT a hb�a�;b i
�

�
w

= iT a
hb�a�;b i

�
(A1)

thus

�b�
�
�b�b � = �iT a hb�a�;�b�b i

�

�
w

=

 
iT a

�b�a�;iT b hb�b�;b i
�

�
�

!
w

(A2)

=

 
iT aiT b

�b�a�; hb�b�;b i
�

�
�

!
w

=
1

2

�
iT aiT b

�hb�a�;b�b � b + �b � b�bi
�

��
w

=
1

4

�
iT aiT b

�b�a � b�b � b + �b�b � b � b�a + �b�a � b � b�b + �2b � b�b � b�a��
w

In what follows, we denote by:
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z }| {
A �B � 2 [A;B]�� = A �B + �B �A (A3)

Using the following golden rules:

iTaiTbb�a � b � b�b !
�
iTaiTbb�a � b � b�b�

w
� iTaiTb

z }| {b�a � b � b�b (A4)

= iTaiTb

�b�a � b � b�b + �b�b � b � b�a�

iTaiTbb�b � b � b�a !
�
iTaiTbb�b � b � b�a�

w
� iTbiTa

 z }| {b�b � b � b�a!
= iTbiTa

�b�b � b � b�a + �b�a � b � b�b� (A5)

iTaiTbb�a � b�b � b !
�
iTaiTbb�a � b�b � b �

w
� iTaiTb

 z }| {b�a � b�b �b !
= iTaiTb

�b�a � b�b � b + �b�b � b�a � b � (A6)

iTaiTbb�b � b�a � b !
�
iTaiTbb�b � b�a � b �

w
� iTaiTb

 z }| {b�b � b�a �b !
= iTbiTa

�b�b � b�a � b + �b�a � b�b � b � (A7)

iTaiTbb � b�a � b�b !
�
iTaiTbb � b�a � b�b�

w
� iTaiTb

 b � z }| {b�a � b�b!
= iTaiTb

�b � b�a � b�b + �b � b�b � b�a� (A8)

iTaiTbb � b�b � b�a !
�
iTaiTbb � b�b � b�a�

w
� iTaiTb

 b � z }| {b�b � b�a!
= iTbiTa

�b � b�b � b�a + �b � b�a � b�b� (A9)

we obtain:
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�b�
�
�b�b � = 1

4

0B@ iT aiT b
z }| {b�a � b�b �b + �iT biT a z }| {b�b � b � b�a

+�iT aiT b
z }| {b�a � b � b�b+�2iT aiT bb � z }| {b�b � b�a

1CA (A10)

Similarly:

�b�
�
�b�b � = 1

4

0B@ iT biT a
z }| {b�b � b�a �b + �iT aiT b z }| {b�a � b � b�b

+�iT biT a
z }| {b�b � b � b�a+�2iT biT ab � z }| {�a � b�b

1CA (A11)

we deduce that:

�b�
�
�b�b �� �b� ��b�b � = ��b�; �b�� b 

=
1

4

0B@ iT biT a
z }| {b�b � b�a �b � iT aiT b z }| {b�a � b�b �b 

+�2iT biT ab � z }| {b�a � b�b��2iT aiT bb � z }| {b�b � b�a
1CA (A12)

using the relations

z }| {b�b � b�a �b = �

z }| {b�a � b�b �b 
b � z }| {b�a � b�b = �b � z }| {b�b � b�az }| {b�b � b � b�a = �

z }| {b�a � b � b�b (A13)

and �2 = 1, we obtain:

�
�b�; �b�� b = 1

4

0B@ �iT biT a
z }| {b�a � b�b �b � iT aiT b z }| {b�a � b�b �b 

+iT biT ab � z }| {b�a � b�b��iT aiT bb � z }| {b�a � b�b
1CA

=
1

4

 �
T a; T b

�
��

z }| {b�a � b�b �b + �(T aT b � �T bT a)b � z }| {b�a � b�b!

=
1

4

�
T a; T b

�
��

 z }| {b�a � b�b �b + �b � z }| {b�a � b�b!

=
1

2

�
T a; T b

�
��

"z }| {b�a � b�b; b #�
�

=
�
T a; T b

�
��

�hb�a; b�bi�
�
; b ��

�

(A14)

Appendix B
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We de�ne the noncommutative covariant derivative as

bD�b � �@�b � iT a hbV a� ; b i�
�

�
w

= @�b � iT a hbV a� ; b i�
�

(B1)

It is a covariant derivative in the sense:

�b�
� bD�b � = �iT a hb�a; @�b i�

�

�
w

+

 
iT a

�b�a;�iT b hbV a� ; b i�
�

��
�

!
w

= iT a
hb�a; @�b i�

�
+

 
�iT aiT b

�b�a; hbV a� ; b i�
�

��
�

!
w

= iT a
hb�a; @�b i�

�
+
1

2

�
�iT aiT b

hb�a; bV b� � b + �b � bV b�i�
�

�
w

= iT a
hb�a; @�b i�

�
+
1

4

 
�iT aiT b

 b�a � bV b� � b + �bV b� � b � b�a
+�b�a � b � bV b� + �2b � bV b� � b�a

!!
w

(B2)

Using the golden rules eqs.(A4)-(A9) we get:

�b�
� bD�b � = iT a

hb�a; @�b i�
�
+
1

4

0B@ �iT aiT b
z }| {b�a � bV b� �b � �iT biT a z }| {bV b� � b � b�a

��iT aiT b
z }| {b�a � b � bV b� ��2iT aiT bb � z }| {bV b� � b�a

1CA (B3)

Moreover, a direct calculation and using the fact that:�
�b�; @�� = 0 (B4)

gives:

�b�
� bD�b � = @�

�
iT a

hb�a; b i�
�

�
w

+

�
�iT b

hbV b� ; ��b i�
�
� iT b

h
�� bV b� ; b i�

�

�
w

= iT a
hb�a; @�b i�

�
+ iT a

h
@�b�a; b i�

�
+

0BB@ �iT b
�bV b� ; iT a hb�a; b i�

�

��
�

�iT b
h
�� bV b� ; b i�

�

1CCA
w

= iT a
hb�a; @�b i�

�
+ iT a

h
@�b�a; b i�

�
+
1

2

�
�iT biT a

hbV b� ; b�a � b + �b � b�ai�
�

�
w

�iT b
h
�� bV b� ; b i�

�

= iT a
hb�a; @�b i�

�
+ iT a

h
@�b�a; b i�

�
� iT b

h
�� bV b� ; b i�

�

+
1

4

�
�iT biT a

�bV b� � b�a � b + �b�a � b � bV b� + �bV b� � b � b�a + �2b � b�a � bV b���
w

(B5)

again, with the help of the golden rules of eqs.(A4)-(A9) we deduce that:
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�b�
� bD�b � = iT a

hb�a; @�b i�
�
+ iT a

h
@�b�a; b i�

�
� iT b

h
�� bV b� ; b i�

�

+
1

4

0B@ �iT biT a
z }| {bV b� � b�a �b � �iT aiT b z }| {b�a � b � bV b�

��iT biT a
z }| {bV b� � b � b�a��2iT biT ab � z }| {b�a � bV b�

1CA (B6)

using relations (A13) we obtain:

�iT b
h
�b� bV b� ; b i�

�
= �iT a

h
@�b�a; b i�

�
+
1

4

 �
T a; T b

�
��

z }| {b�a � bV b� �b + � �T a; T b��� b � z }| {b�a � bV b�
!

= �iT a
h
@�b�a; b i�

�
+
1

2

0@�T a; T b���
"z }| {b�a � bV b� ; b 

#�
�

1A (B7)

thus

�iT b�b� bV b� = �iT a@�b�a + 12 �T a; T b���
z }| {b�a � bV b� (B8)

or

�b� bV� = @�b� + i

2

�
T a; T b

�
��

z }| {b�a � bV b� = @�� + i
�
T a; T b

�
��

hb�a; bV b�i�
�

(B9)
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