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Abstract 
Recent observations confirm quantized galactic redshifts and hint a possible new form of 
quantum mechanics, which could probably explain these observed properties of the 
galaxies. This brief contribution investigates a possible relation between the new cosmic 
Planck constant gh and other fundamental constants of physics. 

 
Introduction 
Since it was found that the recession velocities for single and double galaxies appear to 
be quantized, [1] then a new quantum of action was also derived to yield [2], [3]: 
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where: V = 12 km/s, M = 1044 gm, and H = 1.7×10-18 s-1. If we now use Weinberg’s 
relation for the mass of an elementary particle [4] and changing ghh→  we have: 
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This value of mass can be considered as a lower bound for the mass of a galaxy now 
playing the role of a “particle” in this new scheme of cosmic quantum mechanics. Next, 
the upper particle mass can be obtained via the substitution ghh→  into the Planck mass 
formula namely: 
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Looking at the numbers just obtained in (1), and (2) we can easily see that they represent 
galactic masses of some kind. The first mass obtained for a typical elementary particle in 
the cosmic quantum mechanics hypothesis, where galaxies are treated like particles, 
simply represents a mass slightly greater by a factor of hundred than that of dwarf 
galaxies, since ⊗−= MM D )1010( 75  [5]. This could also suggest that the lower bound 
for a galactic particle might be higher than the dwarf but less than most galaxies in the 
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universe as a first choice, and as a second choice within the mass ranges of the elliptical 
galaxies since ⊗−= MM E )1010( 138 [4]. Looking now at the second mass representing, 
the upper bound for the mass of a particle, it is simply the upper limit of the mass for 
most of the galaxies in the universe ⊗−= MM G )1010( 1210  [5]. That could also suggest 
the possibility that an elliptical galaxy could represent the upper particle limit. 
 Next we look at the rest of the Planckian relations when again for ghh→ . This 
substitution makes the relation for the Planck length be: 
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Simply we just say that this is a new Planck length in the cosmic quantum mechanics 
scenario which, can also be written as: 
 Pg ll 5010218.8 ×=         (5) 
Similarly we can write down the cosmic quantum mechanics version of Planck time: 
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which, can also be written as: 
 Pg tt 5010116.8 ×=         (7) 
Now if cosmic quantum mechanics can be postulated with the galaxies playing the role of 
“particles”. In an analogous fashion with particle physics there must be a cosmic distance 
where these quantum phenomena become unavoidable [6]. This distance will be equal to 
the cosmic Compton wavelength, which can be calculated as follows, depending on the 
values of the masses found above: 
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From the numbers obtained in (8) and (9) we can speculate that quantum phenomena on 
this cosmic scale can occur for the above distances between the centers of these galaxies. 
Depending on the masses used, we can say that these quantum phenomena will occur at 
some distances from the galactic centers, distances that are fractions of the linear galactic 
size. 
 As a next step, we will use a quantitative relation that, predicts the lifetime of 
main sequence stars, employed by Tipler and Barrow in order to approximate the age of 
the universe, and therefore we [7]: 
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where: mN = the mass of the proton, c is the speed of light, G is the gravitational 
constant, and h is Planck’s constant. We expect that if the mass of the proton is replaced 
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by the mass of a galaxy as calculated above in (2) (3), and also if we replace gh h→ , 
(10), the age of the universe can be obtained in a similar way, therefore (10) becomes:  
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Upon substitution of the two possible masses found from (2) and (3) we obtain the 
following time scales: 
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A mass of mg = 7.466×1042 g gives us a time of 18.67 Gyr which is very close to the age 
of the universe obtained when Ho = 50 Km / sec Mpc or t = 1 / Ho = 18.65 Gyr, which is 
close to 20 Gyr, when Ho≈ 50 Km /sec Mpc.[8]  The second value of this excessively 
small number seems to be an equivalent of a “macrocosmic Planck time” when mg = mg 

(Planck) in the above relation (11). We can also see what is happening if we substitute mg 

(Planck) and obtain: 
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This particular result of a new “macrocosmic Planck time” was also found by direct 
substitution of gh h→  into Planck’s formula. 
 As a next step, Weinberg’s result, which we already used for the mass of an 
elementary particle, can be derived if in the relation used for the age of the universe Eq. 
(11) we take to be of the order 1/Ho and therefore we obtain: 
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finally we obtain the relation for the mass of the “elementary galactic particle”: 
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This result could probably be a kind of derivation for Weinberg’s relation, considered so 
far to be purely empirical. This could ensure some kind of further connection between 
microphysics and macrophysics, especially in the cosmic quantum mechanics scenario 
where galaxies are thought to be like particles. 
 Next, there will be is an upper bound for the density of the mass in the universe 
where quantum phenomena become important. In a similar way we can define this 
“galactic particle density” somewhat analogous to “quantum density” when gh h→  and 
therefore we have that: 
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The number above appears to be much larger than the critical density of the universe, as 
well as the mass density of the galaxies today. If cosmic quantum mechanics is possible 
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in the universe and between galaxies, it would suggest a moment in time which can be 
found from the relation below if we solve for Ho and for the density value found above: 
[9]  

  
Mpc  /secKm 75

101.3 31








×= − o

g

Hρ g cm-3    (18) 

Therefore we have: 
 617
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The time found in (19) belongs to the radiation era in the history of the universe which 
appears to be within the time frame of t = 10-1012 s.[10]  It is only after a time t >1012 s 
and around t >1016 s where galaxies stared forming by some condensation process [10]. 
Based on this approximate number found for the time, we can say that this quantum 
density analog for the particle galaxies in the cosmic quantum mechanics scheme would 
occur long before the final galactic formation. This would also imply the following 
relation in densities between cosmic and ordinary quantum mechanics: 
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 Next, we are going to look if there is a possible upper bound for the macroscopic 
Planck’s constant. Our assumption will be that in the relation already used in (1) the mass 
of the galaxy particle will be the mass of the universe. Therefore, using mg = Mun = 
7.5×1055 g [5] we obtain: 
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Next, making use of the formula for the maximum possible curvature in the universe 
which also signifies the presence of quantum gravity effects and calculating it at the new 
cosmic Planck constant ghh→ as well as at the maximum estimated cosmic Planck 
constant (max)ghh→ , we have [11]: 
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It is rather curious that for the maximum value of the cosmic Planck’s constant the 
curvature value obtained is a value very close to that of the cosmological constant, which 
is given approximately as Λ = 10-48 cm-2 [12]. There also seems to be an upper value for 
the cosmological constant Λ = 10-37 cm-2 which corresponds to cosmic Planck constant 
value as calculated by (1). Because we find a value close to the value of the cosmological 
constant given in [12] may be an indication of some kind of a relation between the 
cosmological constant Λ and the value of the cosmic Planck constant. 
 If now the universe was thought to be a huge particle of mass Mun, composed of 
“cosmic elementary galaxy particles” we could probably approximate its mass, by 
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applying Weinberg’s relation and making use of this maximum value of the cosmic 
Planck constant (max)ghh→  and substituting we obtain: 
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This mass found in (24) is quite close to the mass of the universe by a factor of 1.04×105. 
It could be possible that for such a representation, an even higher value for 

9410228.2)( ×=ung Mh erg⋅s maybe required, unless one of the other parameters has to 
change in (24). For example, the speed of light could be varying, or perhaps also G, thus 
compensating for the exact result of the mass of the universe. From (2) and (24) we also 
obtain: 

 

3/2
(max)











=

g

g
gun mM

h

h
g       (25) 

The above relation shows a connection between ordinary quantum mechanics and cosmic 
quantum mechanics, or a connection between the masses of galaxies and that of the 
universe. It is worth mentioning that another familiar number, which can be obtained for 
the cosmological constant Λ=1.816×10-56 cm-2, when the value of 

9410228.2(max) ×=gh  erg⋅s is substituted in the Weinberg relation which now can 
identically give the mass of the universe. We should mention that there is a limit on the 
cosmological constant of Λ = 10-54 cm-2 which is mentioned by Hawking [13] 
 Next, if we use the maximum value for the cosmic Planck constant, and 
specifically that ensures the mass of the universe in (25) in the formula, which gives the 
quantum density limit, we obtain: 
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Looking at the number obtained above, we can see that this it is just the critical density in 
the universe within a factor of a factor of 10-1. The critical density of the universe is given 
by: 
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We could also see that the critical density of the universe can be now written as: 
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This way we can say that the critical density of the universe is quantized in units of 
(max)gh . 

 
Conclusions 
Some relations of quantum mechanics have been investigated in the grand scheme of a 
possible cosmic quantum mechanics, which has been postulated by observing the 
recession velocities of the galaxies, and for which a cosmic quantum of action has long 
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been calculated. Numerical results analogous to those of quantum mechanics is 
investigated, and thus new macroscopic limits for mass, time, and length, in this cosmic 
quantum mechanical scenario have been obtained. For a possible maximum value of the 
new cosmic Planck constant, the mass of the universe and its cosmological constant, as 
well as the critical density can be obtained to closely agree with today’s standard results.  
Because some of the known parameters of the universe can be retrieved for a greater 
value of (max)ghh =  could suggest that a better estimate of the quantities on which gh  
depends might be necessary. Finally, the age of the universe can be retrieved from a 
relation, which actually gives the age of a star, via a substitution of the proton mass with 
the mass of the elementary galactic particle, having changed h = gh . After all, there 
might be a relation between ordinary and cosmic quantum mechanics based on the results 
found, a relation between microcosm and macrocosm, an idea, which for long has been 
long suspected. 
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