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Abstract Modern systems for information retrieval, fusion and management need to deal more and more with information
coming from human experts usually expressed qualitatively in natural language with linguistic labels. In this paper, we
propose and use two new 2-Tuple linguistic representation models (i.e., a distribution function model (DFM) and an improved
Herrera-Mart́ınez’s model) jointly with the fusion rules developed in Dezert-Smarandache Theory (DSmT), in order to
combine efficiently qualitative information expressed in term of qualitative belief functions. The two models both preserve
the precision and improve the efficiency of the fusion of linguistic information expressing the global expert’s opinion. However,
DFM is more general and efficient than the latter, especially for unbalanced linguistic labels. Some simple examples are also
provided to show how the 2-Tuple qualitative fusion rules are performed and their advantages.
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1 Introduction

Qualitative methods for reasoning under uncertainty
have gained more and more attention because tradi-
tional methods based only on quantitative represen-
tation and analysis are not able to adequately sat-
isfy the need of the development of science and tech-
nology integrating at higher fusion level human be-
liefs and reports in complex systems. Therefore qual-
itative knowledge representation and analysis become
important and necessary in next generation decision-
making support systems. Most of the existing ap-
proaches use the 1-Tuple classical linguistic represen-
tation model consisting, in a given finite ordered set,
of pure linguistic labels, say L = {L0, L̃, Ln+1}, where
L̃ = {L1, . . . , Ln}. Smarandache and Dezert[1,2] give
a detailed introduction of the major work of 1-Tuple
qualitative reasoning under uncertainty. In 2007, Li et
al.[3] proposed in the DSmT framework the extension of
1-Tuple linguistic representation model to Qualitative
Enriched labels, denoted as Li(σe

i ), for taking into ac-
count a possible quantitative or qualitative confidence
factor σe

i . However, some available richer information

content is lost in the classical/1-Tuple qualitative infor-
mation processing. To overcome this limitation, Her-
rera and Mart́ınez[4,5] proposed a 2-Tuple fuzzy lin-
guistic representation model for computing with words
(CW). Their 2-Tuple labels could be used to solve the
problem of non-equidistant labels according to Multi-
Granular Hierarchical Linguistic Contexts[6,7] at the
cost of huge computation, but recently, Wang and Hao
proposed a more interesting 2-Tuple linguistic represen-
tation model, which consists of two proportional lin-
guistic terms, i.e., proportional 2-Tuples[8,9]. Propor-
tional 2-Tuples solve the problem of non-equidistant
labels more efficiently than Herrera-Mart́ınez’s model,
and this approach can be generalized as we propose.
Because the previous 2-Tuples cannot be directly used
for uncertain reasoning in DST or DSmT framework, we
present in this paper some improvements of Herrera-
Mart́ınez’s model[10] and Wang-Hao’s model and we
define a general model of proportional 2-Tuples called
the Distribution Function Model (DFM) to deal with
either equidistant or non-equidistant labels for quali-
tative information fusion. The 2-Tuple linguistic rep-
resentation model proposed is also extended directly
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to its enriched version which can be useful in prac-
tice in some particular situations. Some examples are
presented with qualitative DSm fusion rules (denoted
as q2DSmC, q2PCR5) for combining 2-Tuple qualita-
tive beliefs based on the direct extension of quantitative
DSm fusion rules. These qualitative fusion rules keep
the precision in the information processing. This work
extends the field of information fusion (usually too limi-
ted for quantitative information processing only) and
opens new tracks for human-originated information re-
trieval, combination and management.

This paper is organized as follows. After a short pre-
sentation of Dezert-Smarandache Theory (DSmT) in
Section 2, we recall the linguistic representation models,
i.e., 1-Tuple classical model, 1-Tuple enriched model,
Herrera-Mart́ınez model and Wang-Hao model in Sec-
tion 3. In Section 4, we present the extended/improved
Herrera-Mart́ınez model and also our new generalized
model with the basic operators. To overcome the limi-
tations of 1-Tuple enriched model, we directly and sim-
ply extend 2-Tuple linguistic enriched model for more
complex fusion of 1-Tuple enriched model. In Section
5, we present the extension of the 2-Tuple qualita-
tive DSm Classic (DSmC) fusion rule[1] and the Pro-
portional Conflict Redistribution rule No.5[1] (PCR5)
adapted for these new models. We provide some exam-
ples to show how to combine 2-Tuple qualitative beliefs
with these fusion rules. We also compare the results
with those obtained from other models. Concluding
remarks are given in Section 6.

2 DSmT for the Fusion of Beliefs

In the following, we assume the reader is famil-
iar with the theory of belief functions, which, also
called Dempster-Shafer Theory (DST), was introduced
in 1970s by Shafer[11] and is well-known in the informa-
tion fusion community.

2.1 Basic Belief Assignment

The main differences between Dempster-
Shafer Theory[11], and Dezert-Smarandache Theory
(DSmT)[1] are as follows.

1) The model with which one works. Typically, if
one considers a finite frame of possible exhaustive solu-
tions Θ = {θ1, . . . , θm}, Shafer assumes the exclusivity
of θi and defines belief masses on the classical power
set 2Θ , (Θ ,∪) while we do not need such assumption
in DSmT and the belief masses can be defined directly
on Dedekind’s lattice/hyper-power set DΘ , (Θ ,∪,∩)
and even on the super-power set SΘ , (Θ ,∪,∩, c(·))
if one really needs/wants to work on the refined frame

Θref of Θ . In the sequel, we use the generic notation GΘ

for denoting either 2Θ , DΘ or SΘ . A quantitative basic
belief assignment (bba) is a mapping m(·) : GΘ → [0, 1]
associated with a given body of evidence B which satis-
fies m(∅) = 0 and

∑
A∈GΘ m(A) = 1. The qualitative

basic belief assignment (qbba) is defined in Section 3.
2) The choice of the combination and conditioning

rules. Basically Dempster’s rule in DST is versus PCR5
rule in DSmT (see [1] for detail).

3) Aside from working only with numeri-
cal/quantitative beliefs as within DST, DSmT also
combines directly qualitative belief masses.

2.2 Fusion of Quantitative Belief Masses

In DSmT, we usually use the Proportional Conflict
Redistribution rule No.5 (PCR5)[1,12], which transfers
conflicting masses (total or partial) proportionally to
non-empty sets involved in the model according to all
integrity constraints. PCR5 works for any degree of
conflict in [0, 1], for any models (Shafer’s model, free
DSm model or any hybrid DSm model) and both in
DST and DSmT frameworks for static or dynamical fu-
sion problems.

PCR5 for two sources is defined by

mPCR5(∅) = 0 and ∀X ∈ GΘ \ {∅},
mPCR5(X) = m12(X)

+
∑

Y∈GΘ\{X}
X∩Y =∅

[ m1(X)2m2(Y )
m1(X) + m2(Y )

+
m2(X)2m1(Y )

m2(X) + m1(Y )

]
,

(1)

where each element X, and Y , is in the disjunctive nor-
mal form. m12(X) =

∑
X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) cor-

responds to the conjunctive consensus on X between
the two sources. All denominators are different from
zero. If a denominator is zero, that fraction is dis-
carded.

No matter how big or small the conflicting mass is,
PCR5 mathematically does a better redistribution of
the conflicting mass than Dempster’s rule and other
rules since PCR5 goes backwards on the track of the
conjunctive rule and redistributes the partial conflict-
ing masses only to the sets involved in the conflict and
proportionally to their masses put in the conflict, con-
sidering the conjunctive normal form of the partial con-
flict. PCR5 is quasi-associative and preserves the neu-
tral impact of the vacuous belief assignment. General
PCR5 fusion formula and improvement for the combi-
nation of k > 2 sources of evidence with many detailed
examples can be found in [1].
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3 Linguistic Representation Models

3.1 1-Tuple Linguistic Models

3.1.1 1-Tuple Classical Model

To deal with a 1-Tuple qualitative belief over GΘ ,
one defined in [1, 2, 13] a qualitative basic belief as-
signment q1m(·) as a mapping function from GΘ into
a set of linguistic labels L = {L0, L̃, Ln+1}, where
L̃ = {L1, . . . , Ln} is a finite set of linguistic labels
and n > 2 is an integer. For example, L1 can take
the linguistic value “poor”, L2 the linguistic value
“good”, etc. L̃ is endowed with a total order rela-
tionship ≺, so that L1 ≺ L2 ≺ · · · ≺ Ln. To work
on a true closed linguistic set L under linguistic ad-
dition and multiplication operators, Smarandache and
Dezert extended naturally L̃ with two extreme values
L0 = Lmin and Ln+1 = Lmax, where L0 corresponds
to the minimal qualitative value and Ln+1 corresponds
to the maximal qualitative value, in such a way that
L0 ≺ L1 ≺ L2 ≺ · · · ≺ Ln ≺ Ln+1, where ≺ means in-
ferior to, or less (in quality) than, or smaller than, etc.
In the sequel Li ∈ L are assumed linguistically equidis-
tant labels as shown in Fig.1, where we can make an
isomorphism between L = {L0, L1, L2, . . . , Ln, Ln+1}
and {0, 1/(n + 1), 2/(n + 1), . . . , n/(n + 1), 1}, defined
as Li 7→ i/(n + 1) for all i = 0, 1, 2, . . . , n, n + 1.

Fig.1. Isomorphic relationship between numbers and 1-Tuple la-

bels.

From the extension of the isomorphism between the
set of linguistic equidistant labels and a set of numbers
in the interval [0, 1], one can build exact operators on
linguistic labels[3]. For simplicity, here we use only the
following approximate operators.
• q-addition:

Li + Lj =
{

Li+j , if i + j < n + 1;

Ln+1 = Lmax, if i + j > n + 1.
(2)

• q-subtraction:

Li − Lj =
{

Li−j , if i > j;

−Lj−i, if i < j;
(3)

where −L = {−L1,−L2, . . . ,−Ln,−Ln+1}.
• q-multiplication:

Li · Lj = L[(i·j)/(n+1)], (4)

where [x] means the closest integer to x (with [n+0.5] =
n+1, ∀n ∈ N). This operator is justified by the approxi-
mation of the product of equidistant labels given by
Li · Lj = i

n+1 · j
n+1 = (i·j)/(n+1)

n+1 . The q-multiplication
for n > 2 linguistic labels is possible, by example
Li · Lj · Lk = L[(i·j·k)/(n+1)(n+1)], etc. When work-
ing with the labels, no matter how many operations we
have, the best (most accurate) result is obtained if we
do only one approximation, and that one should be just
at the very end.
• Scalar multiplication of a linguistic label: let a be

a real number. The multiplication of a linguistic label
by a scalar is defined by:

a · Li =
a · i

n + 1
≈

{
L[a·i], if [a · i] > 0;

L−[a·i], otherwise.
(5)

• Division of linguistic labels:
a) q-division as an internal operator: let j 6= 0, then

if [(i/j) · (n + 1)] < n + 1 one defines

Li/Lj = L[(i/j)·(n+1)], (6)

otherwise Li/Lj = Ln+1.
b) Division as an external operator: ®. Let j 6= 0.

We define
Li ® Lj = i/j. (7)

From the q-operators we can directly extend all quan-
titative fusion rules into their qualitative counterparts
by replacing classical operators on numbers with those
on linguistic labels defined just above in the formulas.
Many useful examples can be found in [1–3].

3.1.2 1-Tuple Enriched Model

To take into account the confidence in a linguistic
assertions Li, we proposed[3] in 2007 a qualitative en-
riched 1-Tuple model, denoted as Li(σe

i ), where the
first component is a standard linguistic label Li and
the second component is a confidence factor σe

i (either
a numerical supporting degree in [0, 1] called Type 1,
or a qualitative supporting degree taking its value in a
given (ordered) set X of linguistic labels called Type 2).
In [3], we used σe

i ∈ [0,∞) to allow over (quantitative)
confidence but since the confidence factor usually comes
from statistics it is more natural to take it in [0, 1]. σe

i

represents the confidence one grants to the source when
it assigns its qualitative belief Li to a given proposition
A ∈ GΘ .

For example, the enriched Type 1 label L1 , L1(1)
represents the linguistic variable Good with 100% con-
fidence, whereas L1(σe

1 = 0.4) means that the linguistic
value L1 is discounted by 60%, i.e., we are under confi-
dent in L1 given by the source. It is important to recall
that σe

i is related with a confidence measure and does
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not reflect a positive or negative refinement of the lin-
guistic value itself, contrariwise to αh

i in Herrera’s et al.
approach (see Subsection 3.2.1). That is why σe

i and Li

are considered as two independent components of the
enriched label Li(σe

i ) in the derivations done in [3]. We
recall how to define new qe-operators and how to com-
bine qualitative beliefs based on this enriched linguistic
1-Tuple representation model.

First, we use the q-operators as presented in Sub-
section 3.1.1 for manipulating Li, Lj labels, but for
confidences we propose three possible versions. If the
confidence in Li is σe

i and the confidence in Lj is σe
j ,

then the confidence in combining Li with Lj can be:
(a) either the average, i.e., (σe

i + σe
j )/2;

(b) or min{σe
i , σ

e
j};

(c) or we may consider a confidence interval as
in statistics, so we get [σe

min, σe
max], where σe

min ,
min{σe

i , σ
e
j} and σe

max , max{σe
i , σ

e
j}; if σe

i = σe
j then

the confidence interval is reduced to a single point, σe
i .

In the sequel, we denote by “c” any of the above
resulting confidence of combined enriched labels. All
these versions coincide when εi = εj = 1 (for Type 1)
or when εi = εj = O (for Type 2), i.e., there is no
reinforcement or no discounting of the linguistic label.
However the confidence degree average operator (case
(a)) is not associative, so in many cases it is inconve-
nient to use it. The best among these three, which is
the most prudent and easier to use, is the min operator.
The confidence interval operator provides both a lower
and an upper confidence level, so in an optimistic way,
we may at the end take the midpoint of this confidence
interval as a confidence level.

The qualitative enriched qe operators working with
enriched labels of Type 1 or Type 2 are then defined
by:
• qe-addition of enriched labels:

Li(σe
i ) + Lj(σe

j ) =
{

Ln+1(c), if i + j > n + 1;

Li+j(c), otherwise.
(8)

• qe-multiplication of linguistic labels:
(a) As direct extension of (4), the multiplication of

enriched labels is defined by

Li(σe
i )× Lj(σe

j ) = L[(i·j)/(n+1)](c); (9)

(b) As another multiplication of labels, easier, but
less exact:

Li(σe
i )× Lj(σe

j ) = Lmin{i,j}(c). (10)

• Scalar multiplication of an enriched label:
Let a be a real number. We define the multiplication

of an enriched linguistic label by a scalar as follows:

a · Li(σe
i ) ≈

{
L[a·i](σe

i ), if [a · i] > 0;

L−[a·i](σe
i ), otherwise.

(11)

• qe-division of enriched labels:
(a) Division as an internal operator:
Let j 6= 0, then

Li(σe
i )

Lj(σe
j )

=
{

Ln+1(c), if [(i/j) · (n + 1)] > n + 1;

L[(i/j)·(n+1)](c), otherwise.
(12)

(b) Division as an external operator:
Let j 6= 0, then we can also consider the division of

enriched labels as an external operator as follows.

Li(σe
i )® Lj(σe

j ) = (i/j)supp(c). (13)

The notation (i/j)supp(c) means that the numerical
value (i/j) is supported with the degree c.
• qe-subtraction of enriched labels:

Li(σe
i )− Lj(σe

j ) =
{

Li−j(c), if i > j;

−Lj−i(c), if i < j.
(14)

These enriched qe operators, although appealing
with respect to classical operators of Subsection 3.1.1,
suffer from the fact that a part of precision is lost be-
cause of the approximations done in derivation of the
integer index, that is why we propose to use the en-
riched model together with the 2-Tuples for reasoning
under uncertainty in DST or DSmT framework. Before
going further on this, we firstly recall in the next sub-
section Herrera-Mart́ınez[5] linguistic model and Wang-
Hao’s linguistic model[8,9], which was historically pro-
posed for manipulating refined labels and kept the pre-
cision in the process of operation.

3.2 2-Tuple Linguistic Models

3.2.1 Herrera-Mart́ınez’s 2-Tuples

In order to keep working with a coarse/reduced set
of linguistic labels for maintaining a low computational
complexity but for working with a richer/refined in-
formation, Herrera and Mart́ınez proposed in 2000 a
2-Tuple model in [4, 5] denoted as (Li, α

h
i ) different

from our previous 1-Tuple (enriched) representation,
where αh

i expressed a kind of refinement of the lin-
guistic label Li. Clearly σe

i and αh
i corresponded to

two kinds of distinct notions. σe
i was related with

the reliability/confidence of the qualitative informa-
tion, whereas αh

i was related with the refinement of
the qualitative information, i.e., αh

i ∈ [−0.5, 0.5), with
i ∈ {0, · · · , n}. The value used to aggregate linguis-
tic information is γ ∈ [0, n]. The 2-Tuple (Li, α

h
i )
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that expressed the equivalent information to γ was
obtained through Herrera-Mart́ınez’s transformation
function N(·) : [0, n] → L × [−0.5, 0.5) defined in [4, 5]
by

N(γ) = (Li, α
h) ,

{
Li, i = round(γ);

αh = γ − i, αh ∈ [−0.5, 0.5).
(15)

Herrera and Mart́ınez also defined in [4, 5] the
dual/inverse function of N(·) as

N−1(Li, α
h
i ) = i + αh = γ. (16)

In addition, a 2-Tuple negation operator was also de-
fined in [4, 5] as follows:

Neg((Li, α
h
i )) = N(n− (N−1(Li, α

h
i ))). (17)

In order to solve unbalanced labels, Herrera and
Mart́ınez introduced a hierarchical linguistic structure
to deal with multigranular linguistic contexts[6,7].

3.2.2 Wang and Hao’s 2-Tuples

Recently, Wang and Hao proposed a kind of 2-
Tuple ordinal information representation model based
on a symbolic proportionalization. In [8, 9], they con-
sidered L as the ordered set of n + 1 ordinal terms
L = {l0, l1, · · · , ln}, and L only makes no difference
with Herrera-Mart́ınez’s 2-Tuples model. But actu-
ally they considered L = l0, l1, · · · , ln and the inter-
val I = [0, 1], and they proposed working with IL ≡
I × L = {(α, li) : a ∈ [0, 1] for i = 0, 1, · · · , n}. The
authors then considered a pair (li, li+1) of two succes-
sive ordinal terms of L associated with two parameters
α, β ∈ [0, 1] such that α + β = 1. (α, li), (β, li+1) of IL
is called symbolic proportion pair and could be equiv-
alently denoted as (αli, (1 − α)li+1). Wang and Hao
also defined the corresponding transformation function
π and its dual/inverse one π−1, i.e.,

π((ali, (1− α)li+1)) = i + (1− α) = χ, (18)

where χ ∈ [0, n].

π−1(χ) = ((1− β)li, βli+1), (19)

where i = E(χ) and E is the integral part function,
β = χ− i. The negation operator is then defined as

Neg((ali, (1−α)li+1)) = π−1(n−(π((ali, (1−α)li+1)))).
(20)

This proportional 2-Tuple can deal with equidistant
labels and also more efficiently (i.e., with a less compu-
tation amount) with unbalanced labels than Herrera-
Mart́ınez’s model.

4 Extended 2-Tuples

Although previous 2-Tuples have many advantages,
they cannot be directly used for combination reason-
ing in DST or DSmT framework. In this section, we
improve the previous linguistic models in order to deal
more precisely and more efficiently with the qualitative
information through the combination process.

4.1 Extended Herrera-Mart́ınez’s Model

Here we extend Herrera-Mart́ınez’s 2-Tuple label
model (Li, α

h
i ) to (Li, σ

h
i ). σh

i is distinct from αh
i ,

which is chosen in Σ , [−0.5/(n + 1), 0.5/(n + 1)),
not [−0.5, 0.5) with i ∈ {1, · · · ,∞}. It is a numerical
value of the symbolic translation of our quantitative
two-order support.

Fig.2. Isomorphism between numbers and 2-Tuples.

The 2-Tuple model is justified since each distance be-
tween two equidistant labels is 1/(n+1) because of the
isomorphism between L and {0, 1/(n + 1), . . . , n/(n +
1), 1}, so that Li = i/(n+1) for all i = 0, 1, 2, . . . , n, n+
1. Therefore, we take half to the left and half to the
right of each label, so σh

i ∈ Σ. This 2-Tuple equidis-
tant linguistic representation model is used to represent
the linguistic information by means of 2-Tuple item set
Π(L, σh) with L = {L0, L1, L2, . . . , Ln, Ln+1} isomor-
phic to {0, 1/(n + 1), 2/(n + 1), . . . , n/(n + 1), 1} and
the set of qualitative assessments isomorphic to Σ.

This 2-Tuple approach is an intricate/hybrid mecha-
nism of derivation using jointly Li and σh

i where σh
i is a

positive or negative numerical remainder with respect
to the labels as shown in Fig.2.

? Symbolic Translation: we define the normalized
index i = round((n + 1) × λ) = [(n + 1) × λ], with
i ∈ [0, (n + 1)] and λ ∈ [0, 1], which is distinct from
Herrera and Mart́ınez’s definition. And the Symbolic
Translation σh , λ−i/(n+1) ∈ [−0.5/(n+1), 0.5/(n+
1)); where round(·) is the rounding operation previ-
ously denoted [.] as in [3]. Roughly speaking, the
symbolic translation of an assessment linguistic value
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(n + 1)× σh
i is a numerical value that supports the dif-

ference of information between the (normalized) index
obtained from the fusion rule and its closest value in
{0, 1, . . . , n + 1}.

? Useful Transformations on 2-Tuples
• 4(·): conversion of a numerical value into a 2-

Tuple.
4(·): [0, 1] → L × Σ is followed by Herrera and

Mart́ınez’s definition[4,5]

4(λ) = (Li, σ
h) ,

{
Li, i = round ((n + 1) · λ);

σh = λ− i/(n + 1), σh ∈ Σ.
(21)

Thus Li has the closest index label to λ and σh is the
value of its symbolic translation.
• ∇(·): conversion of a 2-Tuple into a numerical

value.
The inverse/dual function of 4(·) is denoted as ∇(·)

and ∇(·) : L×Σ → [0, 1] is defined by

∇((Li, σ
h
i )) = i/(n + 1) + σh

i = λi. (22)

It has been proved in [4, 5] that any arithmetic ope-
ration commutes with 4(·) and/or with ∇(·).

? Useful Operators on 2-Tuples
Let us consider two 2-Tuples (Li, σ

h
i ) and (Lj , σ

h
j ),

then the following operators are defined:
• qh

2 -Addition

(Li, σ
h
i ) + (Lj , σ

h
j ) ≡ ∇((Li, σ

h
i ) + (Lj , σ

h
j ))

=∇((Li, σ
h
i )) +∇((Lj , σ

h
j )) = λi + λj = λz

=
{ 4(λz), if λz ∈ [0, 1];

Ln+1, otherwise.
(23)

• qh
2 -Subtraction

Before giving the subtraction of 2-Tuples in extended
Herrera and Mart́ınez’s model, it is necessary to im-
prove Herrera and Mart́ınez’s negation operator, i.e.,
Neg((Li, σ

h)) = 4(0− (∇(Li, σ
h))) for some combina-

tion operations. According to it, we define the subtrac-
tion operator as follows:

(Li, σ
h
i )− (Lj , σ

h
j ) ≡ ∇((Li, σ

h
i )− (Lj , σ

h
j ))

=∇((Li, σ
h
i ))−∇((Lj , σ

h
j )) = λi − λj = λz

=





4(λz), if λz ∈ [0, 1];

Neg(4(−λz)), if λz ∈ [−1, 0];

±Ln+1, otherwise.
(24)

• qh
2 -product

(Li, σ
h
i )× (Lj , σ

h
j ) ≡ ∇((Li, σ

h
i )× (Lj , σ

h
j ))

=∇((Li, σ
h
i ))×∇((Lj , σ

h
j ))

=λi × λj = λp ≡ 4(λp) (25)

with λp ∈ [0, 1]. It can be proved that 2-Tuple addition
and product operators are commutative and associa-
tive.
• qh

2 -scalar multiplication

α · (Li, σ
h
i ) ≡∇(α · (Li, σ

h
i )) = α · ∇((Li, σ

h
i ))

=α · λi = λη ≡
{ 4(λη), λη ∈ [0, 1];

Ln+1, otherwise.
(26)

• qh
2 -division

Let us consider two 2-Tuples (Li, σ
h
i ) and (Lj , σ

h
j ),

with (Li, σ
h
i ) < (Lj , σ

h
j ), where the comparison opera-

tor is defined in [4], then the division is defined as

(Li, σ
h
i )

(Lj , σh
j )
≡ ∇

( (Li, σ
h
i )

(Lj , σh
j )

)
=
∇((Li, σ

h
i ))

∇((Lj , σh
j ))

=
λi

λj
= λd ≡ 4(λd) with λd ∈ [0, 1].

(27)

If (Li, σ
h
i ) > (Lj , σ

h
j ), then

(Li, σ
h
i )

(Lj , σh
j )
≡ ∇

( (Li, σ
h
i )

(Lj , σh
j )

)
=
∇((Li, σ

h
i ))

∇((Lj , σh
j ))

=
λi

λj
> 1.

In such a case, (Li,σ
h
i )

(Lj ,σh
j )

is set to the maximum label, i.e.,
(Li,σ

h
i )

(Lj ,σh
j )

= (Ln+1, 0) ∼ Ln+1.

In this extended Herrera and Mart́ınez’s model, all 1-
Tuple classical label indexes together with their 2-order
components generate the field of real numbers R. All
labels can be seen as continuous quantities, so that no
information loss happens in the information processing.
For unbalanced labels, Herrera and Mart́ınez proposed
a hierarchical representation model to deal with differ-
ent granularity of uncertainty and/or semantics. Al-
though there is no information loss in this process, this
model is quite complex which makes its practical inter-
est limited because of the huge amount of computation
required. As already stated, Wang and Hao’s propor-
tional 2-Tuple offers advantages with respect to Herrera
and Mart́ınez’s model in terms of complexity reduction.
However, Wang and Hao’s model reflects only a special
case of unbalanced labels. So as an alternative, we pro-
pose in the next subsection a general linguistic model in
DSmT framework called Distribution Function Model
(DFM).

4.2 Distribution Function Model (DFM)

Dealing with equidistant labels is quite easy, but
dealing with a given unbalanced label model (as shown
in Fig.3) is more difficult. In the sequel, we propose a
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new general representation model called the Distribu-
tion Function Model (DFM) for solving this problem.

Fig.3. 2-Tuple label representation with unbalanced, or non-

uniform distribution.

We assume that there exists a set of even distribu-
tion functions ~(x) = −(|x| − i + 1)k + 1 (k ∈ R+)
between any two labels Li−1 and Li, i ∈ [−n, n + 1].
The inverse function of ~(·) always exists and is given
by ~−1(·) ∈ [i− 1, i]. This 2-Tuple label model is then
denoted as 〈Li, ~(·)〉 and for convenience we also de-
note it as qp

2 (standing for qualitative precise 2-Tuple
representation model for short). i − ~−1(·) represents
the remainder done in the standard label Li approx-
imation. Let us consider a simple linear distribution
function (when k = 1) ~(x) = σp = −|x|+i, x ∈ [i−1, i]
as shown in Fig.4.

Fig.4. 2-Tuple label representation model within the proportional

assessment.

~−1(·) = i − σp is continuous with the interval
[i−1, i], i ∈ [1, n+1], where σp is a proportional factor
used as the 2-order component modifier between two
neighboring labels, i.e., i−x

i−(i−1) = σp

1 , x = i − σp. We
denote this kind of 2-Tuple label model as 〈Li, σ

p〉 =
Lx = Li−σp , which is a bit similar to the proportional
2-Tuple[8,9], but distinct from it.

Example. Let us consider two labels Li−1, Li, i ∈
[1, n + 1] and we assume that there is a 2-Tuple la-
bel 〈Li, 0.6〉, then, 〈Li, 0.6〉 = L(i−0.6). Of course, if
(Li, σ

h) = 〈Li, σ
p〉, there is a relation between them:

i = j, σp = −(n + 1)σh, when σh 6 0, and j = i + 1,
σp = 1 − (n + 1)σh, when σh > 0, where, if σp = 1,
then 〈Li, 1〉 = Li−1. If σp = 0, then 〈Li, 0〉 = Li.

? Some Useful qp
2 Operators

• Comparison Operator
The comparison operator for any two labels

〈Li, ~(i)〉, 〈Lj , ~(j)〉 under DFM is defined as
1) 〈Li, ~(i)〉 > 〈Lj , ~(j)〉, if i > j, i, j ∈ [−(n+1), n+

1];

2) 〈Li, ~(i)〉 > 〈Lj , ~(j)〉 if i = j, i, j ∈ [−(n+1), n+
1] and if ~(i) 6 ~(j). Otherwise, 〈Li, ~(i)〉 < 〈Lj , ~(j)〉;

3) 〈Li, ~(i)〉 6 〈Lj , ~(j)〉 if i < j, i, j ∈ [−(n+1), n+
1].
• Negation Operator
The negation operator is defined as

Neg(〈Li, ~(i)〉) = 〈L−i,−~(−i)〉 (28)

where, ~(−i) = ~(i). For example, for 〈Li, σ
p〉 we ob-

tain Neg〈Li, σ
p〉 = L−i+σp .

• qp
2-Addition: for any two labels 〈Li, ~(i)〉,

〈Lj , ~(j)〉, we define

〈Li, ~(i)〉+ 〈Lj , ~(j)〉 = L~−1(i)+~−1(j). (29)

Special case,

〈Li, σ
p
i 〉+ 〈Lj , σ

p
j 〉 = Li+j−σp

i−σp
j
. (30)

• qp
2-Subtraction: for any two labels 〈Li, ~(i)〉,

〈Lj , ~(j)〉, we define

〈Li, ~(i)〉 − 〈Lj , ~(j)〉 = L~−1(i)−~−1(j). (31)

Special case,

〈Li, σ
p
i 〉 − 〈Lj , σ

p
j 〉 = Li−j+σp

j−σp
i
. (32)

• qp
2-Product : for any two labels 〈Li, ~(i)〉, 〈Lj , ~(j)〉,

we define

〈Li, ~(i)〉 × 〈Lj , ~(j)〉 = L (~−1(i))×(~−1(j))
n+1

. (33)

Special case,

〈Li, σ
p
i 〉 × 〈Lj , σ

p
j 〉 = L (i−σp

i )×(j−σp
j )

n+1

(34)

where, the product operators in (33) and (34) can be
easily justified according to the product operator in ex-
tended Herrera and Mart́ınez’s model because of their
consistency.
• qp

2-Scalar Multiplication: for any label 〈Li, ~(i)〉,
i ∈ n + 1, and a real number α, we define

α · 〈Li, ~(i)〉 = 〈Li, ~(i)〉 × α = Lα·(~−1(i)). (35)

Special case,

α · 〈Li, σ
p
i 〉 = 〈Li, σ

p
i 〉 × α = Lα(i−σp

i ). (36)

• qp
2-Division: for any two labels 〈Li, ~(i)〉,

〈Lj , ~(j)〉, if 〈Li, ~(i)〉 < 〈Lj , ~(j)〉, then we define

〈Li, ~(i)〉/〈Lj , ~(j)〉 = L (~−1(i))
(~−1(j))×(n+1)

. (37)
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Special case,

〈Li, σ
p
i 〉/〈Lj , σ

p
j 〉 = L (i−σp

i )

(j−σp
j )
×(n+1)

. (38)

All these operators can be also easily justified ac-
cording to DSm Field and Linear Algebra of Refined
Labels (FLARL)[14]. We can also easily transform all
the operators in (29)∼(38) to their standard forms ac-
cording to 2-Tuple definition in DFM.

4.3 Enriched 2-Tuple Linguistic Model

Similarly to the extension/enrichment of the 1-Tuple
model, it is possible to extend the 2-Tuple model into a
2-Tuple enriched model as well, i.e., (Li, σ

h)(σe) in ex-
tended Herrera and Mart́ınez’s model or 〈Li, σ

p〉(σe) in
DFM. Actually, the operations on (Li, σ

h) or 〈Li, σ
p〉

like those in the 1-Tuple classical label Li are indepen-
dent of σe. That is why we do not reintroduce them
here for the sake of space limitation. Let us just intro-
duce a simple example to show how it works using ex-
tended Herrera and Mart́ınez’s enriched model. Let us
consider n = 9 linguistic labels in L and the two specific
enriched 2-Tuple labels (L3, 0.03)(0.4), (L4, 0.02)(0.5),
then

(L3, 0.03)(0.4) + (L4, 0.02)(0.5)

= ((L3, 0.03) + (L4, 0.02))(min(0.4, 0.5))

= (L8,−0.05)(0.4).

Similarly, for DFM with linear distribution function,
one will get two labels 〈L3, 0.3〉(0.4), 〈L4, 0.2〉(0.5), then

〈L3, 0.3〉(0.4) + 〈L4, 0.2〉(0.5)

= (〈L3, 0.3〉+ 〈L4, 0.2〉)(min(0.4, 0.5))

= 〈L7, 0.5〉(0.4).

The other operations can be done easily and similarly
for dealing with enriched 2-Tuples.

4.4 Remarks on Linguistic Models

The use of 1-Tuple representation model involving
approximate operators on the labels provides only ap-
proximate results because of the rounding approxima-
tion function [x] required to round the indexes of la-
bels to integers in {0, . . . , n}. Therefore, the number
and order of operations do count in the final result.
When working with the labels, no matter how many
operations we have, the best (most accurate) result is
obtained if we do only one approximation on the final
label index at the very end. A better solution is then
to use non-approximate operators and/or switch to 2-
Tuple representation models.

Herrera-Mart́ınez and Wang-Hao models both keep
the precision in the representation of the qualitative
information. However, these models cannot be used
directly for fusing qualitative information in DST or
in DSmT frameworks because the set of 2-Tuple la-
bels is mapped into the interval [0, n] according to the
transformation function N. For working within DST
or DSmT frameworks, the masses of belief must take
their values in [0, 1] and that is why we need to extend
Herrera-Mart́ınez and Wang-Hao models to DFM.

The DFM model follows Wang-Hao’s idea since it
uses also proportional 2-Tuples to represent qualita-
tive information. However, DFM is more general than
Wang-Hao’s model since DFM allows any kind of dis-
tribution function, contrariwise to Wang-Hao’s model
which represents qualitative information only with a
simple linear distribution functions. Moreover, the rep-
resentation (and computation requirement) of DFM is
simpler than that of Wang-Hao’s model according to
FLARL because DFM avoids the complex and repeated
transformation operations between two 2-Tuple labels.
When working with equidistant labels, there is not a
big difference between the extended Herrera-Mart́ınez
model and DFM. The difference increases when one
wants to deal with unbalanced labels because the ex-
tended Herrera-Mart́ınez model must adopt Herrera-
Mart́ınez’s hierarchal linguistic structure to deal with
multigranular linguistic contexts which requires a great
amount of computation with respect to DFM. That is
why DFM is more interesting in this case.

5 Fusion of 2-Tuple Qualitative Beliefs

Since the 2-Tuple DFM representation denoted as qp
2

(or extended Herrera-Mart́ınez denoted as qh
2 ) is able

to deal precisely with qualitative information for both
equidistant labels or unbalanced labels and since it fits
well with DST and DSmT frameworks, we present in
the next subsections some combination rules for fusing
qualitative information based on DFM (and, for com-
parison, also on extended Herrera-Mart́ınez model).

5.1 Fusion Rules of 2-Tuples

From the previous 2-Tuple models of qualitative be-
liefs and the previous operators, we are able to ex-
tend the PCR5 and Demspter-Shafer’s (DS) fusion rules
in the qualitative domain in a more precise way than
done before. The qualitative belief mass/assignment
(qba) q2m(·) based on 2-Tuple representation is de-
fined as q2m(·): GΘ → L × σh (for extended Herrera-
Mart́ınez based approach) or GΘ → L × σp (for DFM
based approach) such that qh

2 m(∅) = (L0, 0) = L0

or qp
2m(∅) = 〈L0, 0〉 = L0 and

∑
A∈GΘ qh

2 m(A) =
(Ln+1, 0) = Ln+1 or

∑
A∈GΘ qp

2m(A) = 〈Ln+1, 0〉 =
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Ln+1. The q2-extensions of DSmC, PCR5 (1) and
Demspter-Shafer’s fusion rules[11] for two sources on a
frame Θ based on the 2-Tuple operators are then given
by (the direct extension for N > 2 sources is possible
but will not be detailed in this paper):
• q2-extension of DSmC fusion rule: q2mDSmC(∅) =

L0 and ∀X ∈ GΘ \ {∅},

q2mDSmC(X) =
∑

X1,X2,...,Xk∈DΘ

X1∩X2∩···∩Xk=X

k∏

i=1

q2mi(Xi). (39)

• q2-extension of PCR5 fusion rule: q2mPCR5(∅) =
L0 and ∀X ∈ GΘ \ {∅},

q2mPCR5(X) = q2m12(X)

+
∑

Y∈GΘ\{X}
X∩Y =∅

[ q2m1(X)2q2m2(Y )
q2m1(X) + q2m2(Y )

+
q2m2(X)2q2m1(Y )

q2m2(X) + q2m1(Y )

]
, (40)

where q2m12(X) corresponds to the qualitative q2-
extension of the conjunctive consensus.
• q2-extension of Dempster-Shafer fusion rule:

q2mDS(∅) = L0 and ∀X ∈ 2Θ \ {∅},

q2mDS(X) =

∑

X1,X2∈2Θ

X1∩X2=X

q2m1(X1)q2m2(X2)

Ln+1 −K12
, (41)

where the total degree of qualitative conflict is given by
K12 ,

∑
X1,X2∈2Θ

X1∩X2=∅
q2m1(X1)q2m2(X2).

It is important to note that the addition, the sub-
traction, the product and the division operators in-
volved in the previous formulas are the 2-Tuple ope-
rators defined in the previous section. The extensions
(39), (40) and (41) are well justified since every 2-Tuple
(Li, σ

h
i ) or 〈Li, σ

p
i 〉 can be mapped into a unique nume-

rical value, which makes q2DSmC, q2PCR5 and q2DS
equivalent to DSmC, PCR5 and DS.

5.2 Examples of Fusion

Let us consider an investment corporation which
must choose one of three projects in Θ = {θ1, θ2, θ3}
(assume here that Shafer’s model holds, for simplic-
ity) to invest through two consulting departments. A
set of qualitative values are used to describe the opin-
ions of two consulting companies, i.e., I 7→ Impossible,
EU 7→ Extremely-Unlikely, VLC 7→ Very-Low-Chance,
LLC 7→ Little-Low-Chance, SC 7→ Small-Chance, IM
7→ IT-May, MC 7→ Meanful-Chance, LBC 7→ Little-
Big-Chance, BC 7→ Big-Chance, ML 7→ Most-Likely, C

7→ Certain. So, we consider the set of ordered linguistic
labels L = {L0 ≡ I, L1 ≡ EU , L2 ≡ VLC , L3 ≡ LLC ,
L4 ≡ SC , L5 ≡ IM , L6 ≡ MC , L7 ≡ LBC , L8 ≡ BC ,
L9 ≡ ML, L10 ≡ C} and in this example n = 9.

Case 1. The opinions of the two consulting com-
panies/sources are given in Table 1 according to the
extended Herrera and Mart́ınez’s model.

Table 1. 2-Tuple Belief Masses in Extended

Herrera and Mart́ınez’s Model

m(·) θ1 θ2 θ3

Source No. 1 (L4, 0.03) (L3,−0.03) (L3, 0)

Source No. 2 (L5, 0) (L2, 0.01) (L3,−0.01)

Following PCR5, the masses of the partial conflicts
θ1∩θ2, θ1∩θ3 and θ2∩θ3 are redistributed to those be-
lief masses involved in these conflicts according to (40).
We obtain

qh
2 mxA1(θ1) =

(L4, 0.03)× (L1,−0.0097)
(L6, 0.04)

≈ (L1,−0.0393),

qh
2 myA1(θ2) =

(L2, 0.01)× (L1,−0.0097)
(L6, 0.04)

≈ (L0, 0.0296),

qh
2 mxB1(θ1) =

(L5, 0)× (L1, 0.035)
(L8,−0.03)

≈ (L1,−0.0123),

qh
2 myB1(θ2) =

(L3,−0.03)× (L1, 0.035)
(L8,−0.03)

≈ (L0, 0.0473),

qh
2 mxA2(θ1) =

(L4, 0.03)× (L1, 0.0247)
(L7, 0.02)

≈ (L1,−0.0255),

q2mxA2(θ1) =
(L4, 0.03)× (L1, 0.0247)

(L7, 0.02)
≈ (L1,−0.0255),

qh
2 myA2(θ3) =

(L3,−0.01)× (L1, 0.0247)
(L7, 0.02)

≈ (L1,−0.0498),

and similarly, we have qh
2 mxB2(θ1) ≈ (L1,−0.0062),

qh
2 myB2(θ3) ≈ (L1,−0.0437), qh

2 mxA3(θ2) ≈
(L0, 0.0377), qh

2 myA3(θ3) ≈ (L0, 0.0405), qh
2 mxB3(θ2) ≈

(L0, 0.0259) and qh
2 myB3(θ3) ≈ (L0, 0.0370). Thus, we

finally obtain

qh
2 mPCR5(θ1) = qh

2 m12(θ1) + qh
2 mxA1(θ1)

+ qh
2 mxB1(θ1) + qh

2 mxA2(θ1) + qh
2 mxB2(θ1)

≈ (L5, 0.0315),
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qh
2 mPCR5(θ2) = qh

2 m12(θ2) + qh
2 myA1(θ2)

+ qh
2 myB1(θ2) + qh

2 mxA3(θ2) + qh
2 mxB3(θ2)

≈ (L2,−0.0026),

qh
2 mPCR5(θ3) = qh

2 mDSmC(θ3) + qh
2 myA2(θ3)

+ qh
2 myB2(θ3) + qh

2 myA3(θ3) + qh
2 myB3(θ3)

≈ (L3,−0.0289).

Since qh
2 mPCR5(θ1) > qh

2 mPCR5(θ2) and
qh
2 mPCR5(θ1) > qh

2 mPCR5(θ3), the investment corpo-
ration must invest in the project θ1. Using DS fusion
(41), the total conflict is qK12 = qh

2 m12(θ1 ∩ θ2) +
qh
2 m12(θ1 ∩ θ3) + qh

2 m12(θ3 ∩ θ2) = (L6, 0.0413). Thus
qh
2 mDS(∅) , (L0, 0) and

qh
2 mDS(θ1) =

qh
2 m12(θ1)

L10 − qK12
=

(L2, 0.015)
L10 − (L6, 0.0413)

≈ (L6,−0.0006),

qh
2 mDS(θ2) =

qh
2 m12(θ2)

L10 − qK12
=

(L1,−0.0413)
L10 − (L6, 0.0413)

≈ (L2,−0.0419),

qh
2 mDS(θ3) =

qh
2 m12(θ3)

L10 − qKt12
=

(L1,−0.013)
L10 − (L6, 0.0413)

≈ (L2, 0.0425).

qh
2 mDS(θ1) is still larger than qh

2 mDS(θ2), and
qh
2 mDS(θ3), and the first project is also chosen to in-

vest based on q2DS rule. The final decision is the same
as the previous one based on qh

2 mPCR5. However, when
the total conflict increases up to L10, then qh

2 mDS re-
sults for decision-making can become counter-intuitive
and it can yield to wrong decision (see [1] for counter
examples of DS rule).

Case 2. The opinions of the two consulting compa-
nies/sources are given in Table 2 according to DFM.

Table 2. 2-Tuple Belief Masses in DFM

m(·) θ1 θ2 θ3

Source No. 1 〈L5, 0.7〉 〈L3, 0.3〉 〈L3, 0〉
Source No. 2 〈L5, 0〉 〈L3, 0.9〉 〈L3, 0.1〉

Thus, we finally obtain

qp
2mPCR5(θ1) ≈ 〈L6, 0.685〉 = (L5, 0.0315),

qp
2mPCR5(θ2) ≈ 〈L2, 0.026〉 = (L2,−0.0026),

qp
2mPCR5(θ3) ≈ 〈L3, 0.289〉 = (L3,−0.0289).

From the previous two examples, we see that the fi-
nal results in DSmT framework are the same. The same
conclusion holds in DST framework.

Case 3. The opinions of the two consulting compa-
nies/sources are given in Table 3 according to 1-Tuples,
which are crude approximations of Tables 1 and 2.

Table 3. 1-Tuple Belief Masses

m(·) θ1 θ2 θ3

Source No. 1 L4 L3 L3

Source No. 2 L5 L2 L3

After applying qualitative fusion rules, one finally
gets

qp
1mPCR5(θ1) = L6,

qp
1mPCR5(θ2) = L1,

qp
1mPCR5(θ3) = L3.

Case 4. From the point of view of quantitative fu-
sion, let us consider two (quantitative) sources provid-
ing the numerical masses in Table 4, which are equiv-
alent in some sense with 2-Tuples given to Tables 1
and 2.

Table 4. Quantitative Belief Masses

m(·) θ1 θ2 θ3

Source No. 1 0.43 0.27 0.30

Source No. 2 0.50 0.21 0.29

According to DSmC and PCR5 combination rules,
we get as final result qmPCR5(θ1) = 0.5315 ≈ 0.5,
qmPCR5(θ2) = 0.1974 ≈ 0.2, qmPCR5(θ3) = 0.2711 ≈
0.3. Recall that from our previous results, we had
qp
2mPCR5(θ1) = (L5, 0.0315) ≈ L5, qp

2mPCR5(θ2) =
(L2,−0.0026) ≈ L2, qp

2mPCR5(θ3) = (L3,−0.0289) ≈
L3, however, qp

1mPCR5(θ1) = L6, qp
1mPCR5(θ2) = L1,

qp
1mPCR5(θ3) = L3. Therefore, the 2-Tuples result is

more consistent with the quantitative fusion when us-
ing 2-Tuple than when using 1-Tuple.

The advantages of the two kinds of 2-Tuples quali-
tative representation models in DSmT framework are
listed as follows.

(a) High precision: based on 2-Tuple qualitative en-
riched representation, q2 operators on 2-Tuples provide
a higher precision than q1 operators on 1-Tuples be-
cause for every q2 label, i.e., (L, σh), or 〈L, σp〉, we al-
ways find a unique real number corresponding to it and
thus one does not lose precision in the computations.
This has been shown in our previous examples.

(b) Wide adaptive capacity: since q2 labels express
a continuous qualitative belief through a standard la-
bel and the remainder/proportional factor, which is
equivalent to real number. Consequently, all quanti-
tative fusion rules and belief conditioning rules[11] can
be used directly in this framework. Since it is already
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proved that the quantitative PCR5 fusion rule pro-
posed in DSmT outperforms Dempster-Shafer’s rule,
specially in all high conflicting situations[1], the quali-
tative q2DSmT will naturally also outperform q2DST.
Moreover, since DFM is more general and simpler than
Wang-Hao’s model for dealing with unbalanced labels,
qp
2DSmT is theoretically expected to work better (al-

though we have not yet conducted experiments to prove
this conjecture).

(c) Low complexity: since the q2 operators are com-
mutative and associative, while classical q1 models de-
pend on the order/approximation of the operations car-
ried out, the fusion based on q2 labels works better
than the one based on classical q1 models. In ad-
dition, qp

2DSmT will be more efficient than qh
2 DSmT

in dealing with unbalanced labels, because there is no
need of a hierarchal linguistic structure to deal with the
multigranular linguistic contexts. There is also no need
for repeated transformation computations according to
FLARL[14].

6 Conclusion

In this paper, we have presented two kinds of 2-Tuple
linguistic representation models, i.e., the extended Her-
rera and Mart́ınez’s model and the DFM. Their corre-
sponding operators have been also presented in order
to efficiently combine qualitative information in DSmT
framework. DFM is more general and simpler than
Wang-Hao’s model, and DFM deals directly and easi-
ly with unbalanced labels contrariwise to the extended
Herrera-Mart́ınez model. We have also proposed a di-
rect/natural extension of these 2-Tuple models to 2-
Tuple enriched models for dealing with a possible con-
fidence factor related to each label (when available and
if necessary). The q2DSmC and q2PCR5 fusion rules
have been introduced as direct extensions of their quan-
titative counterparts already available in DSmT frame-
work. Some simple examples on how to apply these
fusion rules have been provided for equidistant labels.
For unbalanced labels, although currently we cannot
give an appropriate application example to testify our
models. With our recognition of uncertain informa-
tion, especially for a more complex case[15], their im-
portance will be found gradually. This work enlarges
the scope of the linguistic representation and preserves
all the precision in the qualitative information process-
ing. Our approach can be useful for the development
of future information retrieval, fusion and management
systems. Since DSmT with its fusion rules has been ap-
plied successfully in robotics[16], the new qp

2DSmT and
qh
2 DSmT fusion rules are now under evaluation in our

current research work related with environment per-
ception in hybrid systems (robot with human feedback

interaction[17]). We hope that this work will be also us-
ful for other applications in cognitive sciences and for
human-computer interface development.
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