Experiment to test the quantum effect of ^a waveguide (I)

Z.Y. Wang

Research Center, SBSC No. 580, Songhuang Road Shanghai 200435, China E-mail: zhongyuewang(at)yahoo(dot)com(dot)cn

Abstract: The waveguide can be regarded as a potential barrier to microwaves and we apply quantum mechanics to study the coefficient of reflection R and transmission T . An initial experimental result is also presented in this paper that the transverse momentum of the electromagnetic field in ^a waveguide is zero which is no longer in proportion to the transverse wave vector. We're preparing to detect under other conditions and will report as soon as possible.

Key words: quantum theory; waveguide; microwave; tunneling effect

PACS numbers: 03.65.Ta; 03.50.De; 84.40.Az; 42.50.Lc;

The coefficient of reflection \overline{R} and transmission \overline{T} of energy flow depends on the momentum as

$$
R = \frac{(p_{z1} - p_{z2})^2}{(p_{z1} + p_{z2})^2}
$$
 (1)

$$
T = \frac{4p_{21} p_{22}}{\left(p_{21} + p_{22}\right)^2} \tag{2}
$$

$$
R + T = 1 \tag{3}
$$

For example, p_{z1} is $\sqrt{2m_0E}$ to a free and non-relativistic particle moving along the z axis and then $p_{z2} = \sqrt{2m_0(E-\varphi)}$ in a step barrier where the potential energy is φ , [1]

$$
R = \frac{(\sqrt{E} - \sqrt{E - \varphi})^2}{(\sqrt{E} + \sqrt{E - \varphi})^2}
$$
(1')

$$
T = \frac{4\sqrt{E(E - \varphi)}}{(\sqrt{E} + \sqrt{E - \varphi})^2}
$$
 (2)

The form is still tenable to relativistic particles. In optics, the momentum of ^a photon is indirect proportion to the refractive index *ⁿ* of the medium (Minkowski formulation) . Therefore [2],

$$
R = \frac{(n_1 - n_2)^2}{(n_1 + n_2)^2}
$$
 (1")

$$
T = \frac{4n_1 n_2}{\left(n_1 + n_2\right)^2} \tag{2"}
$$

We use a rectangular waveguide that the cross section is $a = 16$ mm, $b = 8$ mm and the length is $d = 153$ mm whose cut-off frequency is $f_c = \frac{c}{2 \times 16} = 9.37$ *GHz*. The terminal is connected to a *c* **is** $f_c = \frac{c}{2 \times 16mm} = 9.37$ μy is $\mu_z =$ microwave generator and power meter respectively through two commutators. The input momentum of ^a quantum in the coaxial cable is $p_{z1} = \hbar \omega \sqrt{\epsilon \mu} = \frac{\hbar \omega}{c}$ ($\epsilon_r \approx 1, \mu_r \approx 1$). As to the rectangular waveguide, able is $p_{z1} = \hbar \omega \sqrt{\varepsilon \mu} = \frac{\hbar \omega}{\omega}$ ($\varepsilon_r \approx 1, \mu_r \approx 1$ $1 - 21$ \ldots no \cdot \cdot \hbar

$$
p_{z2} = \hbar k_z = \frac{h\omega}{c} \sqrt{1 - \omega_c^2 / \omega^2}
$$
 when the mentioned state (i) is true [3] and hence

$$
R_{\rm i} = \frac{(1 - \sqrt{1 - \omega_c^2 / \omega^2})^2}{(1 + \sqrt{1 - \omega_c^2 / \omega^2})^2}
$$
(1")

$$
T_{i} = \frac{4\sqrt{1 - \omega_c^2/\omega^2}}{(1 + \sqrt{1 - \omega_c^2/\omega^2})^2}
$$
 (2")

By contrast, if the state (ii) is correct that is $p_{z2} = \hbar k_z \sqrt{1 - \omega_c^2 / \omega^2} = \frac{h \omega}{c} (1 - \omega_c^2 / \omega^2)$, at is $p_{0} = \hbar k_{0} \sqrt{1 - \omega_{0}^{2}/\omega^{2}} = \frac{\hbar}{2}$

$$
R_{\rm ii} = \frac{\omega_c^4 / \omega^4}{\left(2 - \omega_c^2 / \omega^2\right)^2} \tag{1'''}
$$

$$
T_{ii} = \frac{4(1 - \omega_c^2 / \omega^2)}{(2 - \omega_c^2 / \omega^2)^2}
$$
 (2''")

The initial data are as bellows,

They satisfy (2''') in the region of high frequencies approaching to full transmission. Since the waveguide is in ^a circuit and affected by other factors, we will measure the open-ended waveguide according to the following diagram,

power meter

Figure.1

The waveguide can be regarded as an finite square well and the solution is [4]

$$
R = \frac{(p_{21}^2 - p_{22}^2)^2 \sin^2(p_{21} d/\hbar)}{(p_{21}^2 - p_{21}^2)^2 \sin^2(p_{22} d/\hbar) + 4p_{21}^2 p_{22}^2}
$$
(4)

$$
T = \frac{4p_{21}^2 p_{22}^2}{\left(p_{21}^2 - p_{22}^2\right)^2 \sin^2(p_{22} d/\hbar) + 4p_{21}^2 p_{22}^2}
$$
 (5)

The momentum of an incident photon moving along the z axis from the unbounded space is $p_{z1} = \frac{c}{c}$ $h\omega$ space is $p_{z1} =$ and $p_{z2} = \hbar k_z = \frac{h\omega}{\sqrt{1 - \omega_c^2/\omega^2}}$ corresponding to the state (i), and $p_{z2} = nK_z = -\frac{C}{c} \sqrt{1 - \omega_c^2}$ nd $p_{-2} = \hbar k_0 = \frac{\hbar}{2}$

$$
R = \frac{\frac{\omega_c^4}{\omega^4} \sin^2 \left\{\omega \sqrt{1 - \omega_c^2 / \omega^2} \ d/c\right\}}{\frac{\omega_c^4}{\omega^4} \sin^2 \left\{\omega \sqrt{1 - \omega_c^2 / \omega^2} \ d/c\right\} + 4(1 - \omega_c^2 / \omega^2)}
$$
(4')

$$
T = \frac{4(1 - \omega_c^2 / \omega^2)}{\frac{\omega_c^4}{\omega^4} \sin^2 \left{\omega \sqrt{1 - \omega_c^2 / \omega^2} \, d/c\right} + 4(1 - \omega_c^2 / \omega^2)}
$$
(5')

Especially, the transmission is still non-zero even in the classical forbidden zone $\omega < \omega_c$,

$$
R = \frac{\frac{\omega_c^4}{\omega^4} s h^2 \left\{\omega \sqrt{\omega_c^2 / \omega^2 - 1} \ d / c\right\}}{\frac{\omega_c^4}{\omega^4} s h^2 \left\{\omega \sqrt{\omega_c^2 / \omega^2 - 1} \ d / c\right\} + 4(\omega_c^2 / \omega^2 - 1)}
$$
(6)

$$
T = \frac{4(\omega_c^2/\omega^2 - 1)}{\frac{\omega_c^4}{\omega^4} s h^2 \left\{\omega \sqrt{\omega_c^2/\omega^2 - 1} \frac{d}{c}\right\} + 4(\omega_c^2/\omega^2 - 1)}
$$
(7)

$Conclusion$

The initial result implies the longitudinal momentum p_{\parallel} of a quantum in the waveguide is $\hbar k_{\parallel}$ which equals the total momentum $p = \hbar k_{\parallel}$ proposed in [3]. Whereby the transverse momentum

$$
p_{\perp} = \sqrt{p^2 - p_{\parallel}^2} = 0
$$
 is not in direct proportion to $k_{\perp} = \frac{2\pi}{32mm} \neq 0$.

$Acknowledgement:$

I wish to thank Ms. Yong-Fang Wang of Shanghai Institute of Radio Equipmentsfor her help in this experiment.

Postscript:

The equation (6) is deduced from the postulate that the momentum of $\omega < \omega_c$ in the waveguide is imaginary on the basis of the relativistic mechanical theory [3]

 $\omega > \omega_c$

rest mass $m_0 = \hbar \omega_c / c^2$

velocity $V = c\sqrt{1 - \omega_c^2/\omega^2} < c$

energy
$$
E = \frac{m_0 c^2}{\sqrt{1 - V^2/c^2}} = \hbar \omega
$$

momentum
$$
p = \frac{m_0 V}{\sqrt{1 - V^2/c^2}} = \frac{\hbar \omega}{c} \sqrt{1 - \omega_c^2/\omega^2}
$$

Actually, ^a superluminal theory can be applied[4] if the quanta passing through the waveguide in the above tunnel effect are faster than light. In this case,

$$
\omega < \omega_c
$$

rest mass $m_0 = \hbar \omega_c / c^2$

velocity $V = c\sqrt{1 + \omega_c^2/\omega^2}$

energy $E = \frac{mgc}{\sqrt{mgc}} = \hbar \omega$ energy $E = \frac{m_0 c}{\sqrt{m_0^2}}$

$$
\sqrt{V^2/c^2-1}
$$

2

momentum $p = \frac{m_0 r}{\sqrt{R_0^2 + r^2} \cdot 1} = \frac{n \omega}{c} \sqrt{1 + \omega_c^2 / \omega^2}$ $\sqrt{V^2/c^2-1}$ $\frac{m_0 V}{\sqrt{1+\omega^2/\omega^2}} = \frac{h \omega}{1+\omega^2/\omega^2}$ V^2/c^2-1 *c* V^{-1} *c* $m_{\rm o}V$ $p = \frac{v}{\sqrt{V^2/c^2 - 1}} = \frac{1}{c} \sqrt{1 +$ n entum $p =$ $m_{\circ}V$ \qquad \hbar

> where the momentum is still ^a real quantity in the classical forbidden zone and the coefficient of transmission should be

$$
T = \frac{4(1 + \omega_c^2 / \omega^2)}{\frac{\omega_c^4}{\omega^4} \sin^2 \left{\omega \sqrt{1 + \omega_c^2 / \omega^2} \frac{d}{c} + 4(1 + \omega_c^2 / \omega^2)}\right)}
$$
(8)

On the other hand, if the following tachyonic equations are tenable to the quanta $\omega < \omega_c$,

rest mass rest mass $m_0 = \hbar \omega_c / c^2$ velocity $V = c \sqrt{\omega_c^2/\omega^2 - 1}$ energy $E = \frac{mgc}{\sqrt{mgc}} = \hbar \omega$ $\sqrt{1+}$ $=\frac{1}{\sqrt{1+U^2+2}}$ 2 \mathbf{u}_0 $\sqrt{1 + V^2/c}$ energy $E = \frac{m_0 c}{\sqrt{m_0^2}}$

momentum $p = \frac{m_0}{\sqrt{m_0^2 + m_0^2}} = \frac{m_0^2}{\sqrt{m_0^2 + m_0^2}} = \frac{m_0^2}{\sqrt$ $\sqrt{1 + V^2}$ \sim 1212 1.7212 $\frac{m_0 r}{\sqrt{m_0^2 + m_0^2}} = \frac{n \omega}{\omega} \sqrt{g^2 + g^2}$ $\sqrt{1+}$ omentum $p = \frac{m_0 V}{\sqrt{m_0^2 + \omega^2}} = \frac{h \omega}{\sqrt{m^2 + \omega^2}}$ $\sqrt{1 + V^2/c^2}$ *c* $V^{\alpha}c$ $m_{\rm o}V$ nomentum $p = \frac{m_0 V}{\sqrt{m_0^2 + \omega^2 - 1}} = \frac{\hbar \omega}{\sqrt{\omega_c^2 + \omega^2 - 1}}$ (energy-momentum relation $E = \sqrt{-p^2 c^2 + m_0^2 c^4}$ ntum relation $E = \sqrt{-p^2c^2 + m_0^2c^2}$

The coefficient is

$$
T = \frac{4(\omega_c^2/\omega^2 - 1)}{(2 - \omega_c^2/\omega^2)^2 \sin^2{\left(\omega \sqrt{\omega_c^2/\omega^2 - 1} \frac{d}{c}\right)} + 4(\omega_c^2/\omega^2 - 1)}
$$
(9)

In addition,

rest mass $m_0 = \hbar \omega_c / c^2$

energy
$$
E = \frac{m_0 c^2}{\sqrt{-1 - V^2/c^2}} = \hbar \omega
$$

velocity $V = ic\sqrt{1 + \omega_c^2/\omega^2}$

momentum $p = \frac{m_0 r}{\sqrt{1 + \omega_c^2}} = i \frac{m \omega}{\sqrt{1 + \omega_c^2}} = i \frac{m_0^2}{\omega_c^2}$ (energy-momentum relation $E = \sqrt{-p^2 c^2 - m_0^2 c^4}$) $\frac{m_0 r}{\sqrt{1 - \frac{v^2}{c^2} + \frac{v^2}{c^2}}} = i \frac{n \omega}{c} \sqrt{1 + \omega_c^2}$ $\sqrt{-1 - V^2}$ $\frac{m_0 V}{m_0} = i \frac{h \omega}{\sqrt{1 + \omega^2/\omega^2}}$ $\frac{c}{c}$ $\int c^2$ $\frac{c}{c}$ \int \equiv $=$ *i* $\sqrt{-1} - V^2/c$ $m_{\rm o}V$ momentum $p = \frac{v}{\sqrt{-1 - V^2/c^2}} = i - \frac{1}{c} \sqrt{1 + \frac{v^2}{c^2}}$ nomentum $p = \frac{m_0 V}{\sqrt{1 + \omega_0^2/\omega^2}} = i \frac{\hbar \omega}{\sqrt{1 + \omega_0^2/\omega^2}}$ (energy-momentum relation $E = \sqrt{-p^2 c^2 - m_0^2 c^4}$ ntum relation $E = \sqrt{-p^2c^2 - m_0^2c}$

$$
T = \frac{4(1 + \omega_c^2/\omega^2)}{(2 + \omega_c^2/\omega^2)sh^2 \left{\omega \sqrt{1 + \omega_c^2/\omega^2} \frac{d}{c}\right} + 4(1 + \omega_c^2/\omega^2)}
$$
(10)

To make a comparison with the experimental result and (7) \sim (10) is helpful to judge whether speeds of electromagnetic quanta in the tunneling effect are faster than $c = 1/\sqrt{\varepsilon_0 \mu_0}$ or not.

Ref erences:

- [1]. Griffiths, D.J., *Introduction to Quantum Mechanics*, 2nd edition, Prentice-Hall, problem 2.34
- [2]. Jackson,J.D., *Classical ClassicalElectrodynamics,* 3rd edition*,* John Wiely & Sons, (7.42)
- [3]. Wang, Z.Y., viXra:0912.0029
- [4]. Griffiths, D.J., *Introduction to Quantum Mechanics*, 2nd edition, Prentice-Hall, 2.6
- [5]. Wang, Z.Y., Tachyonic equationsto reduce the divergent integral of QED, arXiv:0911.2359