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Abstract 
We study the effects of a non-singular gravitational potential on satellite orbits by calculating the 
corresponding changes of its orbital elements, using Gauss’ planetary equations. We derive two 
non-zero expressions for the changes of the argument of the perigee and the mean anomaly, and 
we compare them to those of the general relativity. Using the GRACE satellite system, we obtain 
numerical results from which we conclude that the effect of such a potential, on the perigee 
cannot be separated from that of general relativity. Furthermore, we conclude that the effect on 
the mean anomaly can probably be observed by today’s technology. 
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1 Introduction 
A new non-singular gravitational potential appears in the literature that has the following form 
[1]: 
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where the constant λ appearing in the potential above is defined as follows: 
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and G is the Newtonian gravitational constant, M is the mass  of the main body that produces the 
potential, and c is the speed of light. In this paper we wish to investigate the motion of a satellite 
in such a potential using Gauss’ planetary equations of celestial mechanics. 

The goal of this contribution is to examine the possibility of validating this non-singular 
potential by studying its effect on the changes of the orbital elements of a satellite. Various 
satellite effects can conveniently be expressed as orbital element time rates of change, which are 
observable by modern geodetic techniques. In general, the well-known Gauss-planetary 
equations, as they are presented for instance in Blanco and McCuskey [2], link the orbital element 
time derivatives to their cause, a disturbing (or perturbing) force per unit mass. Here, perturbing 
force per unit mass implies any deviation of the total acceleration of a central Newtonian field. 
Accepting that Eq. (1) holds true, we can write V(r) as a central Newtonian acceleration plus 
other terms that constitute the total disturbing acceleration. These disturbing acceleration 
components can then be entered separately into the Gauss’-planetary equations to study their 
effects on the satellite central field (Keplerian) orbit, with the hope that we can see some 
measurable orbital element time rates of change and thus observationally verify or disprove Eq. 
(1).  



In a treatment developed by Gauss, the perturbing forces acting on a satellite are resolved 
into a three mutually perpendicular components [2]: 
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where R is a perturbing function, and FX perpendicular to the orbital plane, positive towards the 
north pole, FY perpendicular to the radius vector in the orbital plane, positive in the direction of 
increasing longitude, and FZ is the direction of the radius vector, positive in the direction of 
increasing radial distance and therefore Gauss’ equations can be writes as: 
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where, a is the semi-major axis of the orbit, i, e are the inclination and eccentricity of the orbit Ω, 
the argument of the ascending node, and ω is the argument of the perigee, and M is the mean 
anomaly of the satellite defined as M=n(t-T) and n= 2π/P = √GM/a-3/2 and f is the true anomaly 
the angle between the perigee and the radial vector of the satellite. Equations (5)–(10) are 
convenient because they allow us for the influences of the three components FX, FY, FZ to be 
separately studied. We can see that the influence of FX consists in changing the orbital orientation 
or the elements i and Ω. Next FY changes the semi-major axis assuming e << 1, and it is important 
for the satellite’s maneuvers.  
 

2 The perturbing function 
Next, we obtain an expression the perturbing acceleration per unit mass due to the non-singular 
potential to be: 
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which becomes: 
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From Eq.(12) we see that the first term in the RHS is the Newtonian gravity multiplied by the 
factor e-λ/r(1-λ/r). This force per unit mass has only a radial component and FX = FY = 0 simplifies 
Gausses’ equations considerably. In orbital scenarios since λ << r the force function in Eq. (12) 
can be to first order approximated by: 
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substituting  λ with Eq. (2) we obtain 
2
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This is the radial perturbing potential component to be in Gausses’ orbital equations. Next, 
substituting Eq. (14) into Eqs. (5)-(10) we obtain the non zero time rates of change associated 
with this non-singular disturbing potential to be: 
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3 Solving the orbital equations 
To solve eqs. (15)-(18), we evaluate them on the unperturbed Keplerian ellipse, assuming that the 
orbit does not deviate to much from that of a Keplerian ellipse, and that a Keplerian ellipse 
constitutes a good approximation. Therefore, we use that: 
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we also use the transformation expressing time in terms of the true anomaly, and therefore we 
have [3] 
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Substituting Eqs. (19) and (20) we obtain that  
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Therefore Eq. (5) becomes: 
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To find the change in one revolution we integrate from 0 to 2π and therefore we have: 
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Similarly Eq. (6) over one revolution gives 
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similarly  
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and Eq. (25) becomes 
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which could also be written as follows: 
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Equation (27) can be also written as a function of the parameter λ of the non-singular potential in the 
following way: 
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To compare we say that general relativity predicts a perigee change that is given by [Taff, 1985]: 
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using Eq. (27) and (28) we obtain that  
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Finally Eq. (10) becomes 
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Integrating from 0 to 2π the integral above simplifies to: 
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which can be also written as a function of the non-singular potential parameter λ as follows: 
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The mean anomaly change that general relativity predicts in a year is given by [Schwarzschild, 1916] 
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Comparing to Eq. (34) for ∆t =1 year we can write that: 
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4 Numerical results 
To calculate the changes per revolution of the two non-zero orbital elements we use the orbital 
parameters of the Gravity Recovery and Climate Experiment – GRACE. GRACE-A satellite has 
a= 6876.4816 km, and e = 0.00040989, and therefore n = 0.001100118 rad/s = 15.113 rev/d, i = 
89.025446°, ω = 302.414244°, Ω = 354.447149°, M = 80.713591° 
[http://www.csr.utexas.edu/grace/newsletter/archive/august2002.html]. Substituting these values 
in Eqs. (27) and (31) we obtain the corresponding changes on ω and M due to the non-singular 
potential to be: 

0127762.0 ′′=ω∆  /d              (32) 

0389686.0 ′′−=M∆  /d.             (33) 

Therefore, for GRACE satellite using Eq. (32) and (33) we calculate an annual change of the 
perigee to be equal to 4″.66/a and similarly for the mean anomaly we obtain a negative -14″.22/a. 
Comparing with Eq. (29) we calculate the change of the perigee attributed to general relativity to 
be 14″.05/a. This is approximately three times larger, than the one predicted by the non-singular 



potential and most likely it would not be observed. For the mean anomaly, change general 
relativity predicts a positive change of approximately 14″.15/a. We conclude, that for the current 
state of technology such a decrease in mean anomaly of 14″.22/a could be easily detected. 

 

5 Conclusions 
We used Gauss’ planetary equations, in order to validate the non-singular potential given by Eq.(1) 
using satellite orbit perturbations. We have derived the non-zero orbital changes for the perigee and 
the mean anomaly, and we have compared them to the ones predicted by general relativity. We 
conclude that for such a potential the perigee effect will not be easily separated by that of general 
relativity, where the yearly effect of the mean anomaly could be probably observed with today’s 
technology.  
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