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Abstract 

A long-standing puzzle of the current Standard Model for particle physics is that both leptons and quarks 

arise in replicated patterns. Our work suggests that the number of fermion flavors may be directly derived 

from the dynamics of Renormalization Group (RG) equations. Specifically, we argue that the number of 

flavors results from demanding stability of the RG flow about its fixed-point solution. 
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1. Introduction and motivation 

The Standard Model for particle physics (SM) represents a highly successful framework 

for the description of sub-nuclear particles and their interactions in an energy range 

bounded by an upper limit of about 200 GeV ([10] and Appendix A).  The backbone of 

SM is relativistic quantum field theory (QFT) whose predictive power rests primarily on 

the techniques of perturbation theory [1-7, 19]. A key premise of QFT is that the 

cumulative contribution of arbitrary-order quantum corrections above any energy 

threshold can be conveniently suppressed. Carrying out this program means that all 

quantum processes above the threshold can be absorbed into a redefinition of parameters 

that make up the theory (masses, couplings, fields). It is customary to call this 

prescription the “renormalization group” approach (RG) and its outcome an “effective 

field theory”. The main outcome of RG is that the parameters of the theory depend on the 
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energy scale at which the physics is probed ([8] and Appendix B). In particular, an 

important concept in RG is the evolution of coupling with the energy scale, referred to as 

the coupling flow equation. Since SM is an effective framework for the description of 

particle physics below 100 GeV  [1-7], it is typically assumed that the coupling flow is 

stable and its approach towards equilibrium develops adiabatically. 

Despite its remarkable predictive power, SM cannot explain why both leptons and quarks 

arise in replicated patterns. This puzzle is referred to as the fermion “flavor problem” [11, 

19] and it continues to challenge to the day our understanding of particle physics. 

Motivated by the relevance of nonlinear dynamics in field theory, this work suggests that 

the number of fermion flavors may be directly derived from the dynamics of RG flow 

equations. Specifically, we find that the number of flavors results from demanding 

stability of the RG flow about its fixed-point solution. 

The paper is organized as follows: the next section covers the basics of RG flow theory 

and section 3 retrieves the number of fermion flavors from a standard stability analysis. 

Results and concluding remarks are detailed in the last two sections. Three Appendix 

sections are included for convenience. The deal, respectively, with a brief overview of 

SM, an introduction to the RG theory of coupling flow equations and a brief presentation 

of the Routh-Hurwitz criterion. 

2. RG flow equations  

We start from the set of beta-functions describing the RG flow in the gauge sector of SM 

[1-7, Appendix B] 

                                         3 5( ) ( , ) ( )i
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in which (1,2,3)i = , N  is the dimension of the gauge group and n  the number of 

fermion flavors. In particular, the beta-functions for quantum electrodynamics (QED) and 

non-abelian gauge theories (the weak interaction model and QCD) are respectively 

supplied by [7]                                         
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= +                                                  (2) 
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Accounting for the underlying (3) (2) (1)SU SU U× ×  gauge structure of SM, the explicit 

form of the coefficient vector is 
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with entries 
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                                            2 2
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= −   , for 2N =                                           (5)  
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33 2(3, )
48

nb n
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Let us assume in what follows that typical coupling strengths of SM represent fixed-point 

solutions of (2) and (3). For reference, we also assume that these are computed at the 

high-energy limit set by the mass of the Z  boson [Appendix B, 19] 

1( ) 0.00782127.9QED ZMα = ≈  

                                                   2( ) 0.0338ZMα =                                                      (6a)  
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3( ) 0.123ZMα =  

or, in set form 

                                       { }( ) 0.00782 0.0338 0.123ZMα =                                    (6b)  

Using (6b) the set of coupling parameters is given by                                        

                               { }2
0 ( ) 4 ( ) 0.098 0.425 1.546Z Zg M Mπα= =                                (7)   

3. Stability analysis 

The set of three nonlinear differential equations (2) and (3) based on (5) and (7) depends 

on the number of flavors n , which plays the role of an independent control parameter. 

Qualitative changes in the behavior of coupling trajectories are to be expected when n  is 

finely tuned. As pointed out in Section 1, a typical assumption made in QFT is that the 

coupling flow evolves towards a finite set of attractors consisting of isolated fixed points 

[17]. On this basis we require that (2) and (3) yield a coupling flow that is unique and 

stable. These constraints amount to demanding that all Lyapunov exponents are real and 

vanishing with the exception of a single one, which is either vanishing or negative.  

Expanding (2) and (3) about (7) yields the new coefficient vector  

                            2 3
0

2.482
( , ) 3 ( ) ( , ) 10 5.382 (11 )

9.790(33 2 )
Z

n
N n g M N n n

n

−= = − −
− −

a b                             (8) 

Following the Routh-Hurwitz criterion, the set of stability parameters assumes the form 

(see Appendix C)  

11 22 33( ) [ ( ) ( ) ( )]p n a n a n a n= − + +  

                             11 22 11 33 22 33( ) [ ( ) ( ) ( ) ( ) ( ) ( )]q n a n a n a n a n a n a n= + +                              (9) 

11 22 33( ) ( ) ( ) ( )r n a n a n a n= −  
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where ( )kka n , 1, 2,3k =  are supplied by the components of (8). The characteristic 

equation is represented by the cubic polynomial 

                                    3 2( ) ( ) ( ) ( ) 0n p n q n r nλ λ λΔ = + + + =                                      (10)  

The constraint of a unique and stable trajectory implies 

                                                        1 2 0λ λ= =                                                          (11a)                                 

                                                            3 0λ ≤                                                            (11b)   

which yields 

( ) 0p n ≥  
                                                                                                                                   (12) 

( ) ( ) 0q n r n= =  

We obtain the least squares solution 

                                                               7.3n ≅                                                         (13)      
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                   Fig. 1: Variation of the stability parameters with the number of fermion flavors     

4. Discussion of results 
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Fig. 1 graphs the variation of the stability parameters with the flavor number. As 

expected, the least squares solution lies at the intersection point of ( )q n  and ( )r n .  There 

are two distinct interpretations of this result, namely:   

1) the actual number of flavors in SM is indeed seven and so we should anticipate an 

extra fermion flavor to be discovered in future accelerator experiments (such as, but not 

limited to, the fourth family neutrino [9]). 

2) the stability analysis we have developed is only an approximation that needs further 

revision. One can invoke here, for example, including higher-order corrections to (2) and 

(3), accounting for the Yukawa sector of the coupling flow [19] or starting from the 

framework of non-perturbative RG flow equations [20]. The expectation is that, by using 

one or more of these scenarios, the actual number of SM flavors 6n =  may be recovered 

at the end of calculations.  

It is also instructive to note that the condition ( ) 0p n ≥  determines the largest number of 

flavors that preserves the flow stability. From the graph we see that this number is 

14MAXn ≈ , consistent with the maximum number of quark flavors that maintains 

asymptotic freedom in QCD. 

5. Conclusions 

The origin of the six known generations of active fermions continues to be an unresolved 

issue of SM. We have examined in this work the possibility that the number of fermion 

generations is rooted in the stability of the RG flow. Constraining the coupling 

trajectories to settle on a set of isolated stationary points brings the number of flavors to 

seven. This result either makes room for an additional fermion generation in future tests 

of SM or suggests that our stability analysis is valid only up to a first-order 
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approximation. The largest number of flavors for which the coupling trajectory remains 

stable was found to be fourteen. Future works on the topic may be devoted to the analysis 

of the gauge coupling flow in the presence of higher-order diagrams and/or random 

perturbations. A number of excellent studies exist on the subject of stochastic stability for 

multidimensional nonlinear systems. Although a complete listing is impractical, we 

believe that the methodology discussed in [22-25] may provide a suitable starting 

baseline. 

Appendix A:  on the Standard Model for particle physics [1-8, 10, 19] 

SM combines relativity and quantum mechanics in a unified conceptual framework 

known as relativistic quantum field theory (QFT). Electromagnetic, weak and strong 

interactions are all included in SM and are described by abelian and non-abelian gauge 

theories. The structure of SM is a generalization of that of QED – the quantum theory of 

electromagnetic phenomena – to a larger set of conserved currents and charges. In SM 

the matter fields have spin 1
2  and are divided into two groups: quarks (the constituents 

of protons, neutrons and all hadrons) and leptons. There are six known generations 

(flavors) of quarks and six generations of leptons. There are eight color charges, which 

couple quarks in QCD and four electroweak charges, which couple leptons and quarks. 

All interactions are carried through gauge particles of spin 1. They are, respectively, the 

photon γ , the three vector bosons of the weak interaction 0, ,W W Z+ −  and the eight 

gluons of the strong interaction. The set of three interactions can be formulated in terms 

of unitary groups of different dimensions. It is customary to denote the gauge structure of 

SM as a product expressed as (3) (2) (1)SU SU U× × . This notation has the following 
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meaning:  a gauge theory described by the group ( )SU N  is defined in terms of 2 1N −  

underlying gauge bosons. The group (3)SU  is the gauge group of QCD, which carries 

the 23 1 8− =  gluons of the strong interaction.   The (2) (1)SU U×  group represents the 

structure of the electro-weak model with 22 1 3− =  corresponding gauge bosons, namely 

(γ , 0, ,W W Z+ − ). 

The interaction amplitude is determined by the magnitude of a coupling constant, 

generically denoted by g  or by the magnitude of the coupling strength
2

4
gα π= . A 

QFT characterized by a dimensionless coupling constant 1g �  is said to be weakly 

coupled and it is well defined by an expansion in powers of g , called perturbation 

theory. Otherwise, the theory is said to be strongly coupled. Perturbation techniques have 

limited applicability in strongly coupled theories and various non-perturbative methods 

have to be implemented in order to derive meaningful results. 

Appendix B: the Renormalization Group flow  

The underlying idea of renormalization is to avoid divergences that show up in physical 

predictions of QFT by using systematic rules for performing calculations [1-2, 7-8, 19]. 

In general, a QFT is called renormalizable if all infinities can be absorbed into a 

redefinition of a finite number of parameters. There are several technical procedures to 

renormalize a field theory. One standard way is to cut off the integrals in the calculations 

at a large but finite value of momentum (Λ ). The renormalization is successful if, after 

taking the limit Λ→∞ , the resulting quantities are finite and independent of Λ . 

An important consequence of the renormalization program is that all parameters of the 

theory depend on the energy scale at which the phenomena are recorded (μ ). The so-
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called beta function encodes the evolution of a given parameter with the energy scale. 

For instance, the coupling flow equation is defined by the relation 

                                                      ( )g gμ β
μ
∂

=
∂

                                                        (B1) 

If the beta-functions of a QFT vanish, then the theory approaches a so-called fixed point 

where it becomes scale-invariant. The coupling parameters of a quantum field theory can 

flow even if the corresponding classical field theory is scale-invariant. In this case, the 

non-vanishing beta function indicates that the classical scale-invariance is anomalous. If 

a beta-function is positive, the corresponding coupling increases with increasing energy. 

An example is QED, where one finds by using perturbation theory that the beta-function 

is positive. In particular, at low energies, the fine-structure constant measures αEM ≈ 

1/137, whereas at the scale of the Z boson, about 90 GeV, the same constant becomes 

αEM ≈ 1/127.9. In non-abelian gauge theories, the beta function can be negative. An 

example is the beta-function for QCD, and as a result the QCD coupling decreases at 

high energies. Furthermore, the coupling decreases logarithmically, a phenomenon 

known as asymptotic freedom. This means that the coupling becomes large at low 

energies, and predictions can no longer rely on perturbation theory. 

Appendix C: the Routh-Hurwitz criterion  

We review here implementation of the Routh-Hurwitz criterion in the case of a three-

dimensional system of nonlinear differential equations. For additional details, the reader 

is referred to [18].  Consider the three-dimensional system 

1 11 1 12 2 13 3 1 1 2 3( , , )x a x a x a x P x x x= + + +&  

                                   2 12 1 22 2 23 3 2 1 2 3( , , )x a x a x a x P x x x= + + +&                                     (C1)                                



 10

3 13 1 23 2 33 3 3 1 2 3( , , )x a x a x a x P x x x= + + +&  

in which the functions iP  contain no linear terms. The characteristic equation of (C1) 

takes the form of the cubic polynomial 

                                                 3 2 0p q rλ λ λ+ + + =                                                 (C2) 

where the three stability parameters are given by 

11 22 33( )p a a a= − + +  

                                        11 31 22 3211 21

13 33 23 3312 22

a a a aa a
q

a a a aa a
= + +                                     (C3)   

11 21 31

12 22 32

13 23 33

a a a
r a a a

a a a
= −  

The Routh-Hurwitz stability condition amounts to the following condition 

                                     0, 0, 0p q r> > >   and 0R pq r≡ − >                                   (C4) 

Boundaries of the stability region are defined by two surfaces ( 0, 0, 0)r p q= > >  and 

( 0, 0, 0)R p q= > > . Equation (C2) has at least one vanishing root on the surface 0r = , 

and a pair of imaginary roots on the surface ( 0, 0 )R q= > . 
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