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Abstract: In General Relativity, the change in energy of a freely
moving photon is given by the scalar equation of the isotropic geodesic
equations, which manifests the work produced on a photon being
moved along a path. I solved the equation in terms of physical observ-
ables (Zelmanov A. L., Soviet Physics Doklady, 1956, vol. 1, 227–230)
and in the large scale approximation, i.e. with gravitation and defor-
mation neglected, while supposing the isotropic space to be globally
non-holonomic (the time lines are non-orthogonal to the spatial sec-
tion, a condition manifested by the rotation of the space). The solu-
tion is E = E0 exp(−Ω2at/c), where Ω is the angular velocity of the
space (it meets the Hubble constant H0 = c/a =2.3×10−18 sec−1),
a is the radius of the Universe, t = r/c is the time of the photon’s
travel. Thus, a photon loses energy with distance due to the work
against the field of the space non-holonomity. According to the solu-
tion, the redshift should be z = exp(H0 r/c)− 1≈H0 r/c. This solu-
tion explains both the redshift z = H0 r/c observed at small distances
and the non-linearity of the empirical Hubble law due to the expo-
nent (at large r). The ultimate redshift in a non-expanding universe,
according to the theory, should be z =exp(π)− 1=22.14.
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§1. Hubble redshift in a static universe. In this short presen-
tation, I show how the Hubble law, including its non-linearity with
distance, can be deduced directly from the equations of the General
Theory of Relativity. The Hubble law I have deduced is present in a
non-expanding universe. It is also present, in a slightly different form,
in an expanding universe and a compressing universe.

In General Relativity, the change of energy of a freely moving pho-
ton should be the solution to the scalar equation of isotropic geodesics,
which is also known as the equation of energy and manifests the work
produced on the photon being moved along the path. In terms of physi-
cally observable quantities — chronometric invariants (Zelmanov, 1944),
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which are the respective projections of four-dimensional quantities onto
the time line and spatial section of a given observer — the isotropic
geodesic equations are presented with two projections onto the time
line and spatial section, respectively [1–3]

dω

dτ
− ω

c2
Fi c

i +
ω

c2
Dik cick = 0 , (1.1)

d(ωci)
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(
Di
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)
ck + ω4i
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where ω is the proper frequency of the photon, dτ is the interval of phys-
ically observable time, ci is the chr.inv.-vector of the observable velocity
of light (ckck = c2). The physically observable properties of space are
presented with the chr.inv.-vector Fi of the gravitational inertial force,
the chr.inv.-tensor Aik of the angular velocity of the rotation of space
due to its non-holonomity (the non-orthogonality of the time lines to
the spatial section, which is expressed as g0i 6=0, and is manifested as
the three-dimensional rotation of space), the chr.inv.-tensor Dik of the
deformation of space (shows how space deforms with time), and the
chr.inv.-Christoffel symbols 4i

nk (indicate the non-uniformity of space).
All these three-dimensional quantities bear the property of chronometric
invariance (i.e. they are invariant in the spatial section of the observer)
and are dependent on the gravitational potential w = c2 (1−√g00), on
the linear velocity vi =− cg0i√

g00
of the rotation of space due to its non-

holonomity, and also on the chr.inv.-metric tensor hik =−gik + 1

c2 vivk,
which characterize the time line and spatial section of the observer.

Integration of the scalar equation of isotropic geodesics (the equa-
tion of energy) should give a function E = E (t), where E = ~ω is the
proper energy of the photon. However, integration of time in a Rieman-
nian space is not a trivial task. This is because the observable interval
of time dτ =

√
g00 dt− 1

c2 vidxi depends on the gravitational potential w
along the path, on the linear velocity vi of the rotation of space (due to
the non-holonomity of it), and on the displacement dxi of the observer
with respect to his coordinate net during the measurement. The result
of integration depends on the integration path, so time is not integrable
in a general case. We therefore consider the “large scale approxima-
tion”, where distances are close to the curvature radius of the Universe;
so gravitation and deformation are neglected in the space (g00 =1 and
Dik =0, respectively), and the observer is resting with respect to his
coordinate net (dxi =0). In such a case, integration of time is allowed,
and is simply dτ = dt. We also suppose the isotropic space, the “home
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space” of isotropic (light-like) trajectories and massless light-like parti-
cles (e.g. photons), to be globally non-holonomic (vi 6= 0). With these
assumptions, the formula for the gravitational inertial force Fi [1–3],
losing the gravitational potential which becomes w = c2 (1−√g00)= 0,
consists of only the second term

Fi =
1√
g00

(
∂w
∂xi

− ∂vi

∂t

)
' − ∂vi

∂t
, (1.3)

which is due to the space non-holonomity. This negative (centrifugal)
acceleration, experienced by such a photon in the isotropic space, is
the solely factor which is still acting on the energy of the photon in
the scalar equation of isotropic geodesics in the framework of the “large
scale approximation” in a globally non-holonomic isotropic space. It
acts on a photon due to the motion (global rotation) of the isotropic
space itself.

It should be noted that, despite the apparent similarity to the cen-
trifugal force of inertia, this factor is not related to the fictitious forces
of inertia. The forces of inertia are observed in a rotating coordinate
frame, and are due to the transformation of the coordinates and time
which include the angular velocity of the coordinate frame (these were
considered in 1909 by Max Born, and are known as the Born coordi-
nates). As a result, the space-time metric being written in the Born
coordinates gets additional terms in g00 and g0i. The additional terms
vanish, in common with the forces of inertia produced due to the terms,
by the transformation of the coordinates back to another, non-rotating
frame. In contrast, the factor we are considering is due to the basic
non-holonomity of space, which is only g0i 6=0, and is invariant in the
spatial section of the observer (i.e. this is a chronometrically invariant
effect), and cannot therefore be removed by the transformation from
one coordinate frame to another one in the spatial section.

Of course, one can derive the inertial force effects in General Relativ-
ity, when moving to a rotating coordinate frame (the Born coordinates).
These will, however, be only the removable (fictitious) effects, observed
on the background of the gravitational potential, the non-holonomity,
the deformation, the inhomogeneity, and the curvature of space, whose
effects cannot be removed by our choice of the coordinate frame in the
spatial section of the observer due to the invariance of the effects in the
spatial section.

We consider a single photon travelling in the x-direction. In this
case, c1= c, c2=0, c3=0. With the “large scale approximation” in
a globally non-holonomic isotropic space, and assuming the linear ve-
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locity of the space rotation to be v1 = v2 = v3 = v and stationary, i.e.
∂v

∂t
=B = const, the scalar equation of isotropic geodesics for such a pho-

ton takes the form
dE

dt
= − B

c
E . (1.4)

This is a simple uniform differential equation of the 1st order, like
ẏ =− ky, so that we have dy

y =−kdt or d(ln y)=−kdt. It solves as
ln y =−kt + ln C, where C is the integration constant which can be
evaluated when the initial conditions of integration (y = y0, t0 =0) are
substituted. Finally, we obtain y = y0 e−kt. As a result, the scalar equa-
tion of isotropic geodesics (the equation of energy), in the “large scale
approximation” in the globally non-holonomic space, gives the solution
for the photon’s energy (frequency) and the redshift z = ω0−ω

ω as de-
pending on the distance r = ct travelled from the observer

E = E0 e−kt, z = ekt − 1 , (1.5)

such that at small distances of the photon’s travel, i.e. with the exponent
ex =1 + x + 1

2
x2 + . . .' 1+ x, it takes the form

E ' E0 (1− kt) , z ' kt , (1.6)

where k = 1

c
B = 1

c

∂v

∂t
= const. Thus, according to our calculation, which

is based on the equations of the General Theory of Relativity, a pho-
ton being moved in a non-holonomic space loses its proper energy and
frequency due to the work produced by it against the field of the space
non-holonomity (or, in other words, the negative work produced by the
field on the photon).

We suppose the space (space-time) of our Metagalaxy to be a spher-
ical geometry space, which has a constant curvature and is globally
non-holonomic. A constant curvature spherical space, whose metric is
sign-definite, is a hypersphere of constant radius (the curvature radius
of the space). However, we are considering a four-dimensional spherical
space with a sign-alternating metric (+−−−) or (−+++), which indicates
the presence of the special coordinate axis known as time among the four
coordinate axes of the space. The sign-alternating metric indicates, in
particular, that such a space consists of two subspaces, which are known
as the non-isotropic space (the home of non-isotropic trajectories which
are the trajectories of mass-bearing particles) and the isotropic space
(the home of isotropic trajectories which are the trajectories of mass-
less light-like particles, e.g. photons). We know that, given a point,



— 5 —

only one geodesic line can be paved through it in a given direction,
and such a unique geodesic line can be either non-isotropic or isotropic
(see [4, §6] or [5, §101]). In other words, non-isotropic and isotropic
geodesics have no common points. Therefore, the spherical space with
the sign-alternating metric we are considering is presented with two
concentric hyperspheres — the home of non-isotropic trajectories and
that for isotropic ones — which have the same radius of curvature, but
are not coinciding with each other.

The constant radius of such a hypersphere manifests that the curva-
ture radius of the space of our Metagalaxy remains unchanged, so the
Metagalaxy as a whole does not expand or compress in the framework
of this model. Meanwhile, a local volume (a local element of the hy-
persphere’s surface) may experience any stages of the evolution, which
could be conceivable in the framework of Zelmanov’s theory of a locally
inhomogeneous anisotropic universe [2, 3], including the special states
of infinite density and infinite rarefraction, if it doesn’t change the sta-
tionary state of the space (the hypersphere’s surface) as a whole.

The non-holonomity of the four-dimensional (non-isotropic or iso-
tropic) space is the basic non-orthogonality of the time lines to the
spatial axes on the (non-isotropic or isotropic) hypersphere’s surface,
and is manifested by its three-dimensional rotation.∗

According to the concepts of topology [6, vol. 1], the surface of
an (n +1)-dimensional sphere is equivalent to the volume of an n-
dimensional torus. Thus, the globally non-holonomic spherical space
we are considering is representable also with a torus, the home of non-
isotropic trajectories and mass-bearing particles, which is coaxial to
another torus, the home of isotropic trajectories and massless light-like
particles, but is not coinciding with the first.

It is obvious that since the non-holonomity of such a space must
be stationary, we can express the acceleration experienced by a photon
in the isotropic space due to its non-holonomity, through the angular
velocity Ω of the rotation of the isotropic hypersphere and its curvature
radius, a= c

H0
, which is the same that the curvature radius of our

Metagalaxy (H0 is the Hubble constant). We obtain ∂v

∂t
= Ω2a= const.

In such a space, the coefficient k = 1

c

∂v

∂t
in the solution (1.5) we have

∗The non-orthogonality of the time lines to the spatial section is impossible to be
in a sign-definite metric space due to the absence of the special coordinate axis known
as time. Therefore, all that has been said about holonomic and non-holonomic spaces
is valid only for sign-alternating metric spaces such as pseudo-Riemannian spaces (for
instance, the four-dimensional pseudo-Riemannian space with the signature (+−−−)

or (−+++), which is the basic space-time of the General Theory of Relativity).
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obtained to the scalar equation of isotropic geodesics is

k =
1
c

Ω2a = const. (1.7)

Then, according to the redshift formula z' kt obtained in the frame-
work of our theory, for the galaxies located at a “small” distance of
r' 630 Mpc∗ (the redshift observed on them is z' 0.16) we obtain

Ω =
√

z c

at
=

√
z c2

ar
' 2.4×10−18 sec−1, (1.8)

that meets the Hubble constant, which is H0 =72±8×105 cm/sec×Mpc=
=2.3±0.3×10−18 sec−1 (this is according to the Hubble Space Telescope
data, 2001 [7]).

With these we arrive at the following law

E = E0 e
−H0r

c , z = e
H0r

c − 1 , (1.9)

as a purely theoretical result obtained from our solution to the scalar
equation of isotropic geodesics. At small distances of the photon’s travel,
this law becomes

E ' E0

(
1− H0 r

c

)
, z ' H0 r

c
. (1.10)

As seen, this result provides a complete theoretical ground to the
linear Hubble law, empirically obtained by Edwin Hubble for small dis-
tances, and also to the non-linearity of the Hubble law observed at
large distances close to the size of the Metagalaxy (the non-linearity
is explained due to the exponent in our exact solution (1.9), which is
becoming a sufficient factor at large r).

Then, proceeding from our solution, we are able to calculate the
ultimate redshift, which is allowed in our Universe. It is, according to
the exponential law (1.9),

zmax = eπ − 1 = 22.14 . (1.11)

Proceeding from the theoretical considerations presented here, we
calculate the linear velocity of the rotation of the isotropic space, which
is due to the global non-holonomity of it. It is v̆ =Ωa =H0a = c, i.e. is
equal to the velocity of light. I should note, to avoid misunderstand-
ing, that this linear velocity of rotation is attributed to the isotropic

∗1 parsec = 3.0857×1018 cm ' 3.1×1018 cm.
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space, which is the home of isotropic (light-like) trajectories specific
to massless light-like particles (e.g. photons). It isn’t related to the
non-isotropic space of sub-light-speed trajectories, which is the home
of mass-bearing particles (e.g. galaxies, stars, planets). In other words,
our result doesn’t mean that the visible three-dimensional space of cos-
mic bodies rotates at the velocity of light. The space of galaxies, stars,
and planets may be non-holonomic or not, depending on the physical
conditions in it.

It is possible to show, by the mathematical methods of orthometric
invariants [8] which allow calculation for physically observable quantities
in any reference frame of the four-dimensional pseudo-Riemannian space
(the basic space-time of the General Theory of Relativity), that the
basic non-holonomity of the isotropic space is such that it rotates as
a whole with the linear velocity equal to the velocity of light. So, our
result concerning the linear velocity of the rotation of the isotropic space
meets the basics of geometry of pseudo-Riemannian spaces.

In addition, it should be noted that, according to the theory of chro-
nometric invariants, given the isotropic space rotating at the velocity of
light, the observable three-dimensional metric hik of the space is non-
degenerate (h =det ‖hik‖6= 0). Thus, the four-dimensional metric gαβ is
non-degenerate as well (g =−hg00 6= 0, where g =det ‖gαβ‖6=0). This
means that the rotation of the isotropic space at the velocity of light
does not lead to a singulary break in it.

§2. The rôle of deformation. The exponential redshift law (1.9)
and its linear approximation (1.10) were deduced for a static universe,
which does not experience expansion or compression, so its space re-
mains non-deforming. Now, we study how the redshift law does change
its formulation in a universe which expands or compresses.

The redshift law (1.9) was obtained as a result of integrating the
scalar geodesic equation (1.1). According to the equation, the deforma-
tion of space is the second factor which, in addition to the gravitational
inertial force, changes energy of a freely moving photon. No other fac-
tors are manifested. Space deforms while the universe expands or com-
presses. Thus, integrating the scalar geodesic equation in a non-static
universe, we should take the factor of deformation into account.

The chr.inv.-tensor Dik of the deformation of space is formulated
[1–3] as the derivative of the chr.inv.-metric tensor hik by time

Dik =
1
2

∗∂hik

∂t
, Dik = − 1

2

∗∂hik

∂t
, (2.1)
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where the tensor’s trace (its physical meaning is the volume deformation
of space) is

D = hikDik =
∗∂ ln

√
h

∂t
=

1
V

∗∂V

∂t
, (2.2)

where
∗∂
∂t

= 1√
g00

∂

∂t
, h =det ‖hik‖, dV =

√
h dx1dx2dx3 is a differential in-

crement of the volume V of space, while the components of the chr.inv.-
metric tensor by definition [1–3] are

hik = − gik +
1
c2

vivk , hik = − gik, hi
k = − gi

k = δi
k . (2.3)

We will consider the redshift law in universes of two kinds, according
to two simplest types of deformation∗.

First, we will consider the redshift law in a constant deformation
universe. This means that the volume of space undergoes equal relative
changes with time†, so the deformation of space remains constant‡

D =
1
V

∗∂V

∂t
= const =⇒ Dik =

1
2

∗∂hik

∂t
= const. (2.4)

Deformation of this kind means increase of the linear velocity of the
expansion of space in an expanding universe, and decrease of the linear
velocity of the compression in a compressing universe. This can be illus-
trated by calculation of a volume. In the three-dimensional Euclidean
space, the volume of a parallelepiped built on the vectors ri

(1), ri
(2), ri

(3)

is calculated as V =± det ‖ri
(n)‖=±|ri

(n)|. We obtain the invariant V 2 =
= |ri

(n)||r(m)i|= |ri
(n)||hik rk

(m)|= |hik ri
(n)r

k
(m)|. (It should be noted that

∗The chr.inv.-quantity Dik takes all changes of the space volume into account.
For instance, in a static non-holonomic universe (vi 6=0), space deforms by its rota-
tion. This is manifested by the derivative from the second term of the chr.inv.-metric
tensor hik (2.3). Meanwhile the coordinate three-dimensional metric gik changes due
to the rotation so that the resulting deformation of space is zero

Dik =
1

2

∗∂hik

∂t
= 0 ⇐⇒ c2

∂gik

∂t
= vi

∂vk

∂t
+ vk

∂vi

∂t
.

In a static holonomic universe (vi =0), the condition Dik =0 is realized by the
conditions gik = const and vi = 0.

†I refer to this kind of universes as homotachydioncotic (oµoταχυδιoγκωτικó).
This terms originates in homotachydioncosis — oµoταχυδιóγκωσης — volume ex-
pansion with a constant speed, from óµo which is the first part of óµoιoς (omeos) —
the same, ταχύτητα — speed, διóγκωση — volume expansion, while compression
can be considered as negative expansion.

‡The stationarity of an invariant metric, such as gαβ or hik, leads to the station-
arity of its determinant, and vice versa. For instance, in the case under consideration,
hik = const ⇐⇒ h =det ‖hik‖= const.
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hik ≡−gik in an Euclidean space.) Concerning a differentially small
volume, the invariant is (dV )2 = |hik dxi

(n)dxk
(m)|= |hik||dxi

(n)||dxk
(m)|=

= h |dxi
(n)||dxk

(m)|. Thus, dV =
√

h |dxi
(n)|. Expanding this method onto

an n-dimensional pseudo-Riemannian space, we obtain dV =
√−g |dxα

(ν)|.
In particular, a three-dimensional differentially small volume in the four-
dimensional space-time of General Relativity is dV =

√
h |dxi

(n)|, or, if
the basic vectors of the parallelepiped meet the spatial coordinate axes,
dV =

√
h dx1dx2dx3.

The volume of a finite space comes with the integration of dV ,
wherein the differential lengths dxi, and also the scale of xi we inte-
grate, do not depend on time (integration with respect to the spatial
coordinates is instant). Thus, we obtain

D =
∗∂ ln

√
h

∂t
=

1√
h

∗∂
√

h

∂t
=

1
V

∗∂V

∂t
= γ

1
a

∗∂a

∂t
= γ

v
a

, (2.5)

where V∼ a3 as for any three-dimensional volume, a is the radius of the
universe (equal to the curvature radius in a constant curvature space),
v =±|v| is the linear velocity of the expansion or compression of space
(positive in an expanding universe and negative in a compressing uni-
verse), and γ-factor is a constant numerical coefficient which is specific
to the shape of space (γ =3 in the homogeneous isotropic models [2,3]).
As seen from this formula under D = const, in a constant deformation
expanding universe, the linear velocity of its expansion increases with
the growing radius of space (this means accelerated expansion of the
universe). In contrast, in a constant deformation compressing universe,
the linear velocity of its compression decreases with the shrinking radius
of space (decelerated compression).

Second, we will consider the redshift law in a constant speed deform-
ing universe∗, i.e. in a universe which expands or compresses with a con-
stant linear velocity v=

∗∂a

∂t
=const. In a universe of this kind, the radius

of space changes linearly with time a = a0±v t (here the upper sign is
attributed to the expansion of space, while the lower sign characterizes
the compression), while the deformation of space (2.5) is

D = γ
1

a0 ± v t

∗∂a

∂t
' γ

1
a0

(
1∓ v t

a0

)∗∂a

∂t
' γ

v
a0
∓ γ

v2 t

a2
0

, (2.6)

∗I refer to this kind of universes as homotachydiastolic (oµoταχυδιαστoλικóς).
It’s origin is homotachydiastoli — oµoταχυδιαστoλή — linear expansion with a con-
stant speed, from óµo which is the first part of óµoιoς — the same, ταχύτητα —
speed, and διαστoλή — linear expansion (compression can be considered as negative
expansion).
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and is a linear function of time: D =D0∓µt, µ = const. Thus, in
a constant speed expanding universe, the deformation decreases with
time, while it grows with time in a constant speed compressing universe

D ' D0 − γ
v2 t

a2
0

in the case of expansion, (2.7)

D ' D0 + γ
v2 t

a2
0

in the case of compression, (2.8)

where D0' γ v
a0

is the deformation of space and a0 is the radius of
the universe at the start of measurement.

It should be noted that all that has been said here about the defor-
mation of space is valid to both a finite and an infinite universe. This is
because, according to the theory of an inhomogeneous anisotropic uni-
verse (Zelmanov, 1944 [2,3]), not only a whole universe can be a subject
of evolution, but also any volume element of it, including even differ-
entially small volume elements.

§3. Redshift in a constant deformation universe. In a universe
of this kind, D = const and Dik= const. We neglect gravitation (g00=1),
i.e. the gravitational potential is w = c2 (1−√g00)= 0 as in the “large
scale approximation”. As in our consideration of a static non-holonomic
universe, we consider a single photon travelling in the x-direction (in
this case, c1= c, c2=0, c3=0) and the linear velocity of the space ro-
tation to be v1= v2= v3 = v. However, v is not stationary in this case.
(It is stationary only in a static universe, because it does not change its
volume during the rotation.)

We consider the function v = v (t). The relation ∂v

∂t
= Ω2a is obvi-

ous in a spherical space. The conservation of angular momentum of
the universe therefore means that Ωa2= const. These relations lead to
∂v

∂t
= Ω2a4

a3 = χ

V
, where χ= σ Ω2a4= const. Here σ is a constant struc-

tural coefficient specific to the shape of space so that the volume of
space is expressed as V =σa3 at any stage of the evolution of the uni-
verse (we assume that space does not change its shape being homo-
geneous expanding or compressing). The constant deformation con-
dition D = 1

V
∂V
∂t

= ∂ lnV
∂t

=A = const (here
∗∂
∂t

= ∂
∂t

because no gravita-

tion) gives lnV =At+ ln C. Thus, V =V0 eAt, where A = γ v
a according

to (2.5). Thus we obtain
∂v

∂t
=

χ

V0
e−At. (3.1)
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With these, we adopt the scalar equation of isotropic geodesics (1.1)
to a photon travelling in a constant deformation universe. We obtain

dE

dt
= −

(
χ

cV0
e−At + D11

)
E , (3.2)

or ẏ =− ky, where k = χ

cV0
e−At+D11.

This is a simple uniform differential equation of the same kind as
the equation of isotropic geodesics (1.4) we deduced for a static (non-
deforming) non-holonomic universe with the only difference that being
k = χ

cV0
e−At+D11. Expanding the contants A and χ, and taking into

account that Ω =H0, a = c

H0
, t = r

c (H0 is the Hubble constant, r is the
distance of the photon’s travel), and that D11 =D =A in the case under
consideration, we obtain

k = H0

(
e
−γ H0rv

c2 + γ
v
c

)
, (3.3)

where the linear velocity of the expansion or compression of space is
v =±|v|, becoming positive in an expanding universe and negative in a
compressing universe.

The equation (3.2) can be solved in the same way as (1.4). The
solution will have only k according to the formula (3.3) instead of k = H0

from the solution (1.9) we have obtained in a static (non-deforming)
universe.

Thus (3.2) solves as

E = E0 e
−H0r

c

(
e
−γ H0r |v|

c2 +γ |v|
c

)
in an expanding universe, (3.4)

E = E0 e
−H0r

c

(
e
γ H0r |v|

c2 −γ |v|
c

)
in a compressing universe. (3.5)

The redshift in a deforming non-holonomic universe (in the “large
scale approximation”, where gravitation is neglected) arrives with the
sum of two terms. First, the redshift due to the non-holonomity of
space, which is resulted from the solution to a photon’s scalar equation
of motion. Second, the relativistic Doppler redshift, which is an effect
of the photon’s motion with respect to the observer. Thus, with the ob-
tained solutions (3.4) and (3.5), we obtain the redshift law in a constant
deformation non-holonomic universe in the cases of the expansion and
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compression, respectively

z =


 e

H0r
c

(
e
−γ H0r |v|

c2 +γ |v|
c

)
− 1


 +


 1 + |v|

c√
1− v2

c2

− 1


, (3.6)

z =


 e

H0r
c

(
e
γ H0r |v|

c2 −γ |v|
c

)
− 1


 +


 1− |v|

c√
1− v2

c2

− 1


, (3.7)

where the main goal at sub-relativistic velocities∗ is due to the first term
(a result of the non-holonomity of space), while the numerical value of
the second (Doppler-effect) term is much less and consequently plays an
auxiliary rôle in the redshift law.

At small distances of the photon’s travel and sub-relativistic veloc-
ities of the expansion or compression, the redshift law (3.6) and (3.7)
takes the linear approximation form

z ' H0 r

c

[
1− γ

|v|
c

(
H0 r

c
− 1

)]
+
|v|
c

in an expanding
universe,

(3.8)

z ' H0 r

c

[
1 + γ

|v|
c

(
H0 r

c
− 1

)]
− |v|

c
in a compressing
universe.

(3.9)

What is curious in the obtained law is that it will be blueshifted
(z < 0) at only small distances r¿ a in a compressing universe. This is
because the first (exponential) term will be positive in any case due to
the exponent. At large distances, the first (always positive) term in the
law (3.7) is much bigger than the second (Doppler-effect) negative term.
For instance, let a photon travel at a distance r equal to the curvature
radius of space a= c

H0
' 1.3×1028 cm≈4×109 parsec, while the universe

compresses with a linear velocity of 100,000 km/sec. We assume also the
shape-factor of space γ = 3 as for the inhomogeneous isotropic models
[2,3], but this is not principal in the calculation (the numerical value of
γ depends weakly from the space of space). In this case, the first term in
the redshift law (3.7) is z1 =+4.6, while the second term (the relativistic
Doppler blueshift) is z2 =−0.29. If the universe compresses with a
velocity of 10,000 km/sec, for a photon at the same distance r = a, we

∗It is unbelievable that a universe expands or compresses with a velocity close
to the velocity of light. On the other hard, such “ultimate cases” of ultra-relativistic
expansion or compression would be interested from purely theoretical viewpoint.
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obtain z1 =+1.7 and z2 =−0.033. In contrast, at small distances r¿ a,
the first term approaches to zero, while the second (Doppler-effect blue-
shift) term becomes valuable. For instance, if the universe compresses
at 300 km/sec, at a short distance of 106 parsec (the Andromeda Galaxy
is located at a distance of ∼ 780,000 parsec) we obtain z1 =+0.00023
and z2 =−0.001, so the resulting shift of a photon’s frequency at this
distance is negative (the photon is definitely blueshifted).

Therefore, I suggest the same name “redshift law” for the obtained
law in both expanding universe and compressing universe.

The redshift law (3.6, 3.7) and its linear approximation (3.8, 3.9)
were obtained in a constant deformation non-holonomic universe. It
is obvious that, in the absence of expansion or compression of space
(v = 0), these formulae transform into the redshift law (1.9) and its
linear approximation (1.10) as deduced in a static (non-deforming) non-
holonomic universe.

§4. Redshift in a constant speed deforming universe. A uni-
verse of this kind expands or compresses with a constant linear velocity
v = const.

In this case, neglecting gravitation as in the “large scale approxima-
tion” (g00 =1), and taking the conservation of the angular momentum
of the universe (Ωa2= const) into account, we obtain

∂v

∂t
= Ω2a =

Ω2a4

(a0 + vt)3
' Ω2a4

a3
0

(
1− γ

vt

a0

)
, (4.1)

where v =±|v| (the positive velocity characterizes the expansion of
space, while the sign minus characterizes the compression).

With (4.1) and the formula of deformation with v = const (2.6), we
apply the scalar equation of isotropic geodesics (1.1) to a photon travel-
ling in a constant speed deforming non-holonomic universe. As a result
we obtain

dE

dt
= −

(
Ω2a4

ca3
0

+ γ
v
a0

)
E + γ

v
a0

(
Ω2 a4

ca3
0

+
v
a0

)
Et , (4.2)

i.e. a separable first order ordinary differential equation ẏ =− ay− by t,
which solves by separation of variables (moving the y terms to one side
and the t terms to the other side). Thus, we transform this equation
into dy

y =− (a+ bt) dt, then obtain d ln y =−(
at + 1

2
bt2

)
+ ln C. Finally,

we have the solution y = y0 e−(at+ 1
2 bt2). As a result, the scalar equation
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of isotropic geodesics (4.2) solves as

E = E0 e
−H0r

c

{
1+γ

|v|
c
−γ

H0r |v|
2c2

(
1+

|v|
c

)}
in an expanding
universe,

(4.3)

E = E0 e
−H0r

c

{
1−γ

|v|
c

+γ
H0r |v|

2c2

(
1−|v|

c

)}
in a compressing
universe.

(4.4)

Accordingly, the redshift law in a constant speed deforming non-
holonomic universe is the sum of the redshift proceeded from the solu-
tions to a photon’s scalar equation of motion and the relativistic Doppler
redshift. With these solutions (4.3) and (4.4) we obtain the redshift law
in a constant speed deforming non-holonomic universe, the the cases of
expansion and compression, respectively

z =


 e

H0r
c

{
1+γ

|v|
c
−γ

H0r |v|
2c2

(
1+

|v|
c

)}
− 1


+


 1 + |v|

c√
1− v2

c2

− 1


, (4.5)

z =


 e

H0r
c

{
1−γ

|v|
c

+γ
H0r |v|

2c2

(
1−|v|

c

)}
− 1


+


 1− |v|

c√
1− v2

c2

− 1


. (4.6)

In the case, where the photon travels at a small distance, while space
expands or compresses with a sub-relativistic velocity, the redshift law
(4.5, 4.6) takes the linear approximation form

z ' H0 r

c

[
1− γ

|v|
c

(
H0 r

2c
− 1

)]
+
|v|
c

in an expanding
universe,

(4.7)

z ' H0 r

c

[
1 + γ

|v|
c

(
H0 r

2c
− 1

)]
− |v|

c
in a compressing
universe.

(4.8)

As seen, the formulae (4.7, 4.8) differ from the linear form redshift
law in a constant deformation universe (3.8, 3.9) by only the numerical
multiplier 1

2
in the brackets of the second term, which is due to the

hon-holonomity of space, while the second term (due to the Doppler-
effect) remains the same. This means that the redshift in a universe
which expands with a constant linear velocity is less that the redshift
in a universe whose space expands so that its deformation remains un-
changed.

In a constant speed compressing universe, this difference leads to a
blueshift (due to the Doppler-effect, manifested by the second term of
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the redshift law) which is observed at a distance larger than in a con-
stant deformation compressing universe. Then the first term (due to the
non-holonomity of space), which is always positive due to the exponent,
increases with the distance, so that it exceeds the second (Doppler-effect
blueshift) term and the summary shift in a photon’s frequency becomes
positive: the photon becomes definitely redshifted in a compressing
universe.

This tendency is still valid in the exponential redshift law (4.5, 4.6),
which takes an account of the large distances and the ultra-relativistic
velocity of the expansion or compression.

If no expansion or compression of space (v =0), these formulae trans-
form into the redshift law (1.9) and its linear approximation (1.10) we
have deduced in a static (non-deforming) non-holonomic universe.

§5. Conclusions. To better view of the results obtained in this pa-
per, they have been collected into a Table shown on Page 16. Actually,
this is the redshift law and its linear approximation. These have been
theoretically deduced in the framework of a globally non-holonomic uni-
verse, where the isotropic space (the “home space” of isotropic trajec-
tories and massless light-like particles, e.g. photons) rotates with the
velocity of light and at an angular velocity equal to the Hubble con-
stant. In summary, the following results are emphasized:

1. The empirical Hubble law, including its non-linearity at large dis-
tances, is completely explained in a static (non-deforming) uni-
verse due to the redshift produced by the global non-holonomity
of the isotropic space (a photon being moved in a non-holonomic
space loses its proper energy/frequency due to the work produced
by it against the field of the space non-holonomity).

2. The non-linearity of the Hubble law, observed at large distances
close to the curvature radius of space, is explained due to the ex-
ponent in the redshift law deduced for a static universe.

3. The ultimate redshift in a static spherical universe, according to
the theory, should be z =exp(π)− 1= 22.14.

4. Deformation (expansion or compression) of space results changes
in the redshift law. In a deforming universe, it consists of two
terms: the first term is due to the non-holonomity of space, while
the second term manifests the relativistic Doppler effect observed
on a photon due to the rapid expansion or compression of space.

5. In an expanding universe, according to the redshift law, the near
objects must be redshifted (on the average) due to the Doppler-
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effect, while the redshift in the spectra of far galaxies must be
much larger than the Doppler redshift, and approaching expo-
nential growth at large distances. We however do not observe
any systematic redshift on the stars of our Galaxy and the near
galaxies (moreover the Andromeda Galaxy is blueshifted). Edwin
Hubble had discovered a systematic redshift on only far galaxies.
Meanwhile, a systematic Doppler redshift must be observed on the
near objects, if our Universe expands. Therefore, the expanding
scenario does not seem to properly characterize our Universe.

6. In a compressing universe, according to the redshift law, the near
objects must be blueshifted (on the average) due to the Doppler-
effect, while far galaxies must be redshifted due to the always
positive exponential (growing up with distance) term in the red-
shift law. Meanwhile, we do not observe any average blueshift on
the objects both within our Galaxy or near it (the blueshift of the
Andromeda Galaxy can be explained by the relative motion of
it toward our Galaxy). Therefore, the compressing scenario also
does not seem to properly characterize our Universe.

Consequently, the empirical Hubble law, which is a result of astro-
nomical observations, is completely explained by the theoretical redshift
law we have deduced in a static spherical universe, while the expansion
or compression of space would lead to the unbelievable changes of the
redshift law, never registered in astronomical observations. Therefore, I
conclude that we have enough reasons to mean the space of our Universe
static as a whole.

On the other hand, this conclusion does not exclude expansion or
compression of local volumes of space. According to Zelmanov’s theory
of an inhomogeneous anisotropic universe [2,3], a local volume element
of a universe can evolve in another way than the universe as a whole.
Thus, the local redshift or blueshift anomalies, which differ from the
redshift law (1.9, 1.10) we have deduced for a static universe, manifest
the fact that the space of our universe, static as a whole, is evolving
(expanding or compressing) in its local volume elements.

For instance, supernova explosions lead to the rapid expansion of
the surrounding (local) volume of space. An observer near a supernova
should register the redshift effect according to the expansion. In con-
trast, the process of collapse leads to compression of the local space
surrounding a collapsing object. Therefore, an observer near a collaps-
ing object should register the blueshift effect which manifests the fact
that the surrounding space compresses. Thus, collapsing bodies in the
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Universe can be indicated by not only accretion of the near matter onto
such a body, but also by the blueshift in the compressing local space
of it. Note that, according to the redshift law we have deduced, the
blueshift effect of a compressing space is valid at only small distances
where the redshift due to the global non-holonomity of the Universe is
small. Therefore, in searching for a blueshift effect in a compressing
volume (actually, in look for the collapsing bodies in the Universe), we
should limit the area of our search by the distance to the Andromeda
Galaxy or by a distance which is not much larger.

In this row, bizarre should seem the result of observation produced
near a Cepheid, because its local space experiences periodical expansions
and compressions, i.e. oscillates, with a short period equal to the period
of pulsation of the star itself (days).

October 31, 2008
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