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Foreword to the 2nd Edition

This is the English translation of our Theory of Non-Geodesic Motion
of Particles, originally published in Russian in 1999, with some recent
amendments.

The cornerstone of this book is that when tackling the problems of
the General Theory of Relativity we had to amend the existing theory
with some new mathematical techniques. In their famous The Classi-
cal Theory of Fields, which has already become a de facto standard for
a university reference book on the General Theory of Relativity, Lev
Landau and Evgeny Lifshitz give an excellent account of the theory of
motion of particles in gravitational and electromagnetic fields. They
however, employed only the usual generally covariant method of anal-
ysis. The mathematical method of chronometric invariants (physically
observable quantities in the General Theory of Relativity) had not yet
been developed at that time (the middle of the 1930’s). We now feel
that this method should also be taken into account. Therefore, in the
process of writing this book, we have had to face the necessity to in-
troduce the mathematical method of chronometric invariants into the
existing theory of motion of particles in gravitational and electromag-
netic fields. Moreover, the motion of spin-particles was not covered by
Landau and Lifshitz. Therefore, in our book, a separate consideration
has been given to the motion of particles with inner rotational momen-
tum (spin). We have also added a chapter with an account of tensor
algebra and analysis in terms of chronometric invariants. All these make
our book a contemporary supplement to The Classical Theory of Fields.

In conclusion of this foreword, we would like to express our sin-
cere gratitude to our teachers, Dr. Abraham Zelmanov (1913–1987) and
Prof. Kyril Stanyukovich (1916–1989). Many years of acquaintance and
countless hours of friendly conversations with them have planted seeds
of fundamental ideas which by now have grown up in our minds to be re-
flected on these pages. We are also grateful to Kyril Dombrovski whose
talks and friendly discussions greatly influenced our outlooks. Special
thanks go to Chifu Ebenezer Ndikilar, for careful editing of the book
that has made the complicated subjects of the theory of relativity much
more accessible to the reader.

May 15, 2009 Larissa Borissova and Dmitri Rabounski



Chapter 1 Introduction

§1.1 Geodesic motion of particles

Numerous experiments aimed at proving theoretical conclusions of the
General Theory of Relativity have also proved that its basic space-time
(the four-dimensional pseudo-Riemannian space) is the basis of our real
world geometry. So, despite the progress in experimental physics and as-
tronomy, with the discovery of new effects, the four-dimensional pseudo-
Riemannian space will remain the corner-stone for further widening of
the basic geometry of the General Theory of Relativity and will become
one of its particular cases. Therefore, when building the mathematical
theory of motion of particles, we are considering their motion in the
four-dimensional pseudo-Riemannian space.

At this point, it is necessary to take note of the following terminol-
ogy. Generally, the basic space-time in the General Theory of Relativity
is a Riemannian space∗ with four dimensions with Minkowski’s sign-
alternating label (+−−−) or (−+++). The later implies a (3+1)-split of
coordinate axes in the Riemannian space into three spatial coordinate
axes and the time axis. For convenience of calculations, we consider a
Riemannian space of the signature (+−−−), where time is real while spa-
tial coordinates are imaginary. Also, some theories, largely the General
Theory of Relativity, employ the label (−+++), in which time is imag-
inary and spatial coordinates are real. In general, Riemannian spaces
may have non-alternating signatures, e. g. (++++). Therefore, a Rie-
mannian space with alternating signature label is commonly referred
to as a pseudo-Riemannian space, to emphasize the split of coordinate
axes into two different types, referred to as time and spatial coordi-
nates. Nonetheless, in this case, all its geometric properties are still
properties of Riemannian geometry and the prefix “pseudo” is not ab-
solutely proper from the mathematical point of view. Nevertheless, we
are going to use this notation as a long-established and traditionally
understood one.

∗A metric space whose geometry is defined by the metric ds2 = gαβ dxαdxβ is
known as Riemann’s metric. Bernhard Riemann (1826–1866), a German mathe-
matician, the founder of Riemannian geometry (1854).
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We consider motion of a particle in the four-dimensional pseudo-
Riemannian space. A particle affected by gravitation only falls freely
and it moves along the shortest (geodesic) line. Such motion is referred
to as free or geodesic motion. If the particle is also affected by additional
non-gravitational forces, they deviate the particle from its geodesic tra-
jectory and the motion becomes non-geodesic.

From the geometric viewpoint, motion of a particle in the four-
dimensional pseudo-Riemannian space is parallel transfer of its own
four-dimensional vector Qα, which is therefore tangential to the tra-
jectory in any of its points. Consequently, equations of motion of this
particle actually define parallel transfer of the vector Qα along its four-
dimensional trajectory and they are equations of the absolute derivative
of this vector with respect to a parameter ρ, which is non-zero all along

DQα

dρ
=
dQα

dρ
+ ΓαµνQ

µ dx
ν

dρ
, α, µ, ν = 0, 1, 2, 3. (1.1)

Here, DQα = dQα +ΓαµνQ
µdxν is the absolute differential (the abso-

lute increment in the pseudo-Riemannian space) of the vector Qα. The
absolute differential is different from a regular differential dQα by the
presence of Christoffel’s symbols of the 2nd kind Γαµν (the coherence co-
efficients of the given Riemannian space), which are calculated through
Christoffel’s symbols (the coherence coefficients) of the 1st kind Γµν,ρ
and they are functions of the first derivatives of the fundamental metric
tensor gαβ∗

Γαµν = gαρ Γµν,ρ , Γµν,ρ =
1
2

(
∂gµρ
∂xν

+
∂gνρ
∂xµ

− ∂gµν
∂xρ

)
. (1.2)

When moving along a geodesic trajectory (free motion) the paral-
lel transfer occurs in the meaning of Levi-Civita†. Here the absolute
derivative of any transferred vector equals zero, in particular it is true
for the four-dimensional vector of the particle

dQα

dρ
+ ΓαµνQ

µ dx
ν

dρ
= 0 , (1.3)

∗Coherence coefficients of a Riemannian space (the Christoffel symbols) are
named after German mathematician Elwin Bruno Christoffel (1829–1900), who ob-
tained them in 1869. In the space-time of the Special Theory of Relativity (Min-
kowski’s space) one can always set an inertial reference frame, where the matrix of
the fundamental metric tensor becomes a unit diagonal, so all the Christoffel symbols
become zeroes.

†Tullio Levi-Civita (1873–1941), an Italian mathematician, who was the first to
study such a parallel transfer [1].
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so the square of the transferred vector remains unchangedQαQα = const
along the trajectory. Such equations are referred to as equations of free
motion.

Kinematic motion of a free particle is characterized by the four-
dimensional vector of its acceleration, referred to as the kinematic vector

Qα =
dxα

dρ
, (1.4)

so the Levi-Civita parallel transfer of this vector gives equations of the
four-dimensional trajectory of the particle (equations of geodesic lines)

d2xα

dρ2
+ Γαµν

dxµ

dρ

dxν

dρ
= 0 . (1.5)

The necessary condition ρ 6=0 along the trajectory implies that the
derivation parameters ρ are not the same along trajectories of different
kinds. In the pseudo-Riemannian space, three kinds of trajectories are
principally possible, each kind corresponds to a specific kind of particles,
namely:

1) Non-isotropic real trajectories, which lay “within” the light hyper-
cone. Along such trajectories the square of the space-time interval
is ds2> 0, thus, the interval ds is real. These are trajectories
of regular sub-light particles with non-zero rest-masses and real
relativistic masses;

2) Non-isotropic imaginary trajectories, which lay “outside” the light
hyper-cone. Along such trajectories the square of the space-time
interval is ds2< 0, hence, ds is imaginary. These are trajectories
of super-light particles with imaginary relativistic masses, known
as tachyons∗;

3) Isotropic trajectories, which lay on the surface of the light hyper-
cone and are trajectories of particles with zero rest-mass (massless
light-like particles), which travel at the light velocity. Along the
isotropic trajectories the space-time interval is zero, ds2 =0, but
the three-dimensional interval is not zero.

∗Tachyons — faster-than-light particles. The possibility of tachyons and faster-
than-light signals was first considered in the framework of the Special Theory of
Relativity in 1958, by Tangherlini, in his dissertation [2]. As was pointed out by Ma-
lykins [3], most studies on the history of tachyons missed this fact. Meanwhile, the
most important surveys of this theme such as [4,5] referred to Tangherlini. Tachyons
were first illuminated in the journal publications on the theory of relativity in the
principal paper of 1960 [6], authored by Terletskii, and in the more detailed paper
of 1962 [7], authored by Bilaniuk, Deshpande, and Sudarshan. The term “tachyons”
was first used later, in 1967 by Feinberg [8]. See Malykins’ survey [3] for detail.
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The space-time interval, ds, is commonly used as a derivation param-
eter along non-isotropic trajectories. Nevertheless, it can not be used
as a derivation parameter for trajectories of massless particles, because,
in this case, ds=0. For this reason, Zelmanov [9] proposed another
variable, which does not turn into zero along isotropic trajectories, to
be used as the derivation parameter. It is a three-dimensional (spatial)
physical observable interval

dσ2 =
(
− gik +

g0ig0k
g00

)
dxidxk, (1.6)

which differs from a three-dimensional regular coordinate interval. Lan-
dau and Lifshitz also arrived at the same conclusion in §84 of their
The Classical Theory of Fields [10].

Substituting respective differentiation parameters into the general-
ized equations of geodesic lines (1.5), we arrive at equations of non-
isotropic geodesic lines (trajectories of mass-bearing particles)

d2xα

ds2
+ Γαµν

dxµ

ds

dxν

ds
= 0 , (1.7)

and equations of isotropic geodesic lines (light-like particles)

d2xα

dσ2
+ Γαµν

dxµ

dσ

dxν

dσ
= 0 . (1.8)

But, in order to make the whole picture of motion of a particle clear,
we have to build dynamic equations of motion, which contain physical
properties of this particle (namely — its mass, energy, etc.).

Motion of a free mass-bearing particle (a non-isotropic geodesic tra-
jectory) is characterized by its own four-dimensional momentum vector

Pα = m0
dxα

ds
, (1.9)

where m0 is the rest-mass of this particle. From geometric viewpoint,
parallel transfer in the meaning of Levi-Civita of the vector Pα gives
dynamic equations of motion of the mass-bearing particle

dPα

ds
+ ΓαµνP

µ dx
ν

ds
= 0 , PαP

α = m2
0 = const. (1.10)

Motion of a massless light-like particle (an isotropic geodesic line) is
characterized by its own four-dimensional wave vector

Kα =
ω

c

dxα

dσ
, (1.11)
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where ω is a cyclic frequency, specific for this massless particle. Respec-
tively, the Levi-Civita parallel transfer of the vector Kα gives dynamic
equations of motion of the massless particle

dKα

dσ
+ ΓαµνK

µ dx
ν

dσ
= 0 , KαK

α = 0 . (1.12)

So, we have got dynamic equations of motion for free particles. Here,
we present the equations in four-dimensional general covariant form.
This form has its own advantage as well as a substantial drawback. The
advantage is their invariance in all transitions from one reference frame
to another. The drawback is that, in general covariant form, terms of
the equations do not contain actual three-dimensional quantities, which
can be measured in experiments or observations (namely — physical
observable quantities). This implies that, in general covariant form,
equations of motion are merely an intermediate theoretical result, not
applicable in practice. Therefore, in order to make results of any phys-
ical mathematical theory applicable in practice, we need to formulate
its equations with physical observable quantities. Namely, to calculate
trajectories of a particle we have to formulate general covariant equa-
tions of its motion through physical observable properties of an actual
physical reference frame of the observer.

In the same time, to define physical observable quantities is not a
trivial problem. For instance, for a four-dimensional vector Qα (with
few components-four) we may heuristically assume that its three spa-
tial components form a three-dimensional observable vector, while the
temporal component is observable potential of the vector field (which
generally does not prove they can be actually observed, though). How-
ever, a contravariant tensor of the 2nd rank Qαβ (with as many as 16
components) makes the problem much more indefinite. For tensors of
higher rank the problem of heuristic definition of observable components
is more complicated. Besides, there is an obstacle related to the defini-
tion of observable components of covariant tensors (with lower indices)
and mixed kind tensors (with both lower and upper indices).

Therefore, the most reasonable way out of the labyrinth of heuristic
guesses is creating a strict mathematical theory to enable calculation
of observable components for any tensor quantity. Such a theory had
been built by Zelmanov in 1944 [9]. It should be noted that, many
researchers were working on the theory of observable quantities in the
1940’s. For example, Landau and Lifshitz in their famous The Classical
Theory of Fields [10] introduced observable time and observable three-
dimensional interval similar to those introduced by Zelmanov. But, they
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limited themselves only to this particular case and they did not arrive at
general mathematical methods to define physical observable quantities
in pseudo-Riemannian spaces.

Over the next decades, Zelmanov improved his mathematical ap-
paratus of physical observable quantities (the theory of chronometric
invariants), setting forth the results in the publications [11–13]. Similar
results had also been obtained by Cattaneo [14–17], an Italian mathe-
matician, independently from Zelmanov. However, Cattaneo published
his first study on the theme (the study was far from a complete theory)
only in 1958 [14].

In the next section, §1.2, we will give just a brief overview of the
Zelmanov theory of physical observable quantities, which is necessary
for understanding it and using the mathematical methods in practice.

In §1.3, we will present the results of studying geodesic motion of
particles using the mathematical methods. In §1.4, we will focus on
setting the problem of building equations of particles along non-geodesic
trajectories, i. e. under the action of non-gravitational external forces.

§1.2 Physical observable quantities

This section introduces the basics of Zelmanov’s mathematical appara-
tus of chronometric invariants.

To determine which components of any four-dimensional quantity
are physical observable quantities, we consider a real reference frame
of a real observer, which includes coordinate nets, spanned over his ref-
erence body (which is a real physical body), at each point of which a
real clock is installed. The reference body, being a real physical body
possesses a gravitational field, may be rotating and deforming, making
the reference space inhomogeneous and anisotropic. Actually, the refer-
ence body and its attributed reference space may be considered as a set
of real physical references, to which the observer compares all results
of his measurements. Therefore, physical observable quantities shall be
obtained as a result of projecting four-dimensional quantities on time
lines and the three-dimensional space of the observer’s reference body.

From geometric viewpoint, the observer’s three-dimensional space
is the spatial section x0 = ct= const. At any point of the space-time,
a local spatial section (a local space) can be placed orthogonal to the
time line. If there exists a space-time enveloping curve to such local
spaces, then it is a spatial section everywhere orthogonal to the time
lines. Such a space is known as holonomic space. If no enveloping curve
exists to such local spaces, only spatial sections locally orthogonal to
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the time lines exist, such a space is known as non-holonomic space.
We assume that the observer is at rest with respect to his physical

references (his reference body). The reference frame of such an observer
accompanies the reference body in any displacements, so such a system
is called the accompanying reference frame. Any coordinate net which
is at rest with respect to the same reference body is related to another
one through the transformation

x̃0 = x̃0
(
x0, x1, x2, x3

)

x̃i = x̃i
(
x1, x2, x3

)
,

∂x̃i

∂x0
= 0



 , (1.13)

where the later equation implies that spatial coordinates in the tilde-
marked net are independent of time in the non-tilded net, which is
equivalent to setting a coordinate net of fixed lines of time xi = const in
any point of the net. Transformation of spatial coordinates is nothing
but only transition from one coordinate net to another within the same
spatial section. Transformation of time implies changing the whole set of
clocks, so this is transition to another spatial section (to another three-
dimensional reference space). In practice, this means replacement of one
reference body with all of its physical references with another reference
body that has its own physical references. But when using different
references, the observer will obtain different results (other observable
quantities). Therefore, physical observable quantities must be invariant
with respect to transformations of time, so they become chronometri-
cally invariant quantities.

Because transformations (1.13) define a set of fixed lines of time,
chronometric invariants (physical observable quantities) are all those
quantities, which are invariant with respect to the transformations.

In practice, to obtain physical observable quantities in the accom-
panying reference frame of a real observer, we have to calculate chrono-
metrically invariant projections of four-dimensional quantities on time
lines and the spatial section of his physical reference body and formulate
them with chronometrically invariant (physical observable) properties
of his reference space.

We project four-dimensional quantities using operators, which char-
acterize properties of the observer’s reference space. The operator of
projection on the time line, bα, is a unit vector of the four-dimensional
velocity of the observer with respect to his reference body, namely —
the vector

bα =
dxα

ds
, (1.14)
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which is tangential to the observer’s world-trajectory at every point.
Because any reference frame is described by its own tangential unit vec-
tor bα, Zelmanov referred to the bα as the monad vector. The operator
of projection on the spatial section is defined as the four-dimensional
symmetric tensor

hαβ = − gαβ + bαbβ

hαβ = − gαβ + bαbβ

}
, (1.15)

whose mixed components are

hβα = − gβα + bαb
β . (1.16)

As it was shown [9], the vector bα and the tensor hαβ possess all
necessary properties of the projection operators, namely — the proper-
ties bαbα =1 and hβαbα = 0. Projection of a tensor quantity on the time
line is a result of its contraction with the monad vector bα. Projection
on the spatial section is contraction with the tensor hαβ .

The observer’s three-dimensional velocity with respect to his refer-
ence body, in the accompanying reference frame, is zero bi = 0. The re-
maining components of this monad vector are

b0 =
1√
g00

, b0 = g0αb
α =

√
g00 , bi = giαb

α =
gi0√
g00

. (1.17)

Respectively, in the accompanying reference frame (bi =0), compo-
nents of the tensor of projection on the spatial section are

h00 = 0 , h00 = −g00+
1
g00

, h0
0 = 0

h0i = 0 , h0i = −g0i, hi0 = δi0 = 0

hi0 = 0 , hi0 = −gi0, h0
i =

gi0
g00

hik = −gik+
g0ig0k
g00

, hik = −gik, hik = −gik = δik





. (1.18)

The tensor hαβ in the three-dimensional space of the accompanying
reference frame of the observer possesses all properties of the fundamen-
tal metric tensor

hiαh
α
k = δik − bkb

i = δik , δik =




1 0 0
0 1 0
0 0 1


 , (1.19)
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where δik is the unit three-dimensional tensor∗. For this reason, in the
accompanying reference frame the three-dimensional chr.inv.-tensor hik
can lift or lower indices in chr.inv.-quantities.

Projections on time lines and the spatial section of an arbitrary
vector Qα in the accompanying reference frame (bi = 0) are

T = bαQα = b0Q0 =
Q0√
g00

, (1.20)

L0 = h0
βQ

β = −g0k
g00

Qk, Li = hiβQ
β = δikQ

k = Qk. (1.21)

Projections of an arbitrary tensor of the 2nd rank Qαβ are

T = bαbβQαβ = b0b0Q00 =
Q00

g00
, (1.22)

L00 = h0
αh

0
βQ

αβ = −g0ig0k
g2
00

Qik, Lik = hiαh
k
βQ

αβ = Qik. (1.23)

After testing the obtained quantities by the transformations (1.13),
we see that chronometrically invariant (physical observable) quantities
are the projection on time lines and spatial components of the projection
on the spatial section. We will refer to the observable quantities as
chr.inv.-projections.

Hence, projecting four-dimensional coordinates xα in the accompa-
nying reference frame, we obtain the chr.inv.-invariant of physical ob-
servable time

τ =
√
g00 t+

g0i
c
√
g00

xi, (1.24)

and the chr.inv.-vector of physical observable coordinates, which coincide
the spatial coordinates xi. In the same way, projection of an elementary
interval of four-dimensional coordinates dxα gives an elementary interval
of physical observable time, which is the chr.inv.-invariant

dτ =
√
g00 dt+

g0i
c
√
g00

dxi, (1.25)

and also the chr.inv.-vector of an elementary interval of physical observ-
able coordinates dxi. Thus, the physical observable velocity of a particle
is the three-dimensional chr.inv.-vector

vi =
dxi

dτ
, (1.26)

∗This tensor δi
k is the three-dimensional part of the four-dimensional unit ten-

sor δα
β , which can be used to replace indices in four-dimensional quantities.



16 Chapter 1 Introduction

which is different from its coordinate velocity ui = dxi

dt
.

Projecting the fundamental metric tensor, we deduce that hik is the
metric chr.inv.-tensor, or, in other words, the observable metric tensor
in the accompanying reference frame

hiαh
k
β g

αβ = gik = −hik, hαi h
β
k gαβ = gik − bibk = −hik , (1.27a)

whose components are

hik = −gik + bibk , hik = −gik, hik = −gik = δik . (1.27b)

So, the square of an observable spatial interval dσ is

dσ2 = hik dx
idxk. (1.28)

Space-time interval formulated with physical observable quantities
can be obtained by substituting gαβ from (1.15), namely

ds2 = c2dτ2 − dσ2. (1.29)

Apart from their projections on time lines and the spatial section,
four-dimensional quantities of the 2nd rank and above also have mixed
components which have both upper and lower indices at the same time.
How do we find physical observable quantities among them, if any? The
best approach is to develop a generalized method to calculate physical
observable quantities, based solely on their property of chronometric
invariance. Such a method had been developed by Zelmanov, who set
forth the method in a theorem:

Zelmanov’s theorem

We assume that Qik...p00...0 are components of a four-dimensional tensor
Qµν...ρ00...0 of r-th rank, in which all upper indices are not zero, while all m
lower indices are zeroes. Then tensor quantities

T ik...p = (g00)
−m

2 Qik...p00...0 (1.30)

make up three-dimensional contravariant chr.inv.-tensor of (r−m)-th
rank. Hence, the tensor T ik...p is a result of m-fold projection on time
lines by indices α, β . . . σ and also, projection on the spatial section by
r−m indices µ, ν . . . ρ of the initial tensor Qµν...ραβ...σ.

An immediate result of this theorem is that, for any vector Qα two
quantities are physical observable, which were obtained earlier

bαQα =
Q0√
g00

, hiαQ
α = Qi. (1.31)
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For any symmetric tensor of the 2nd rank Qαβ , three quantities are
physical observable, namely

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi0√
g00

, hiαh
k
βQ

αβ = Qik, (1.32)

and in an antisymmetric tensor of the 2nd rank, the first quantity is
zero, because Q00 =Q00 =0.

The physical observable quantities (chr.inv.-projections) must be
compared to the observer’s references — observable properties of his
reference space, which are specific for any particular body of reference.
Therefore, we will now consider the basic properties of his accompany-
ing reference space, with which the final equations of theory must be
formulated.

Physical observable properties of the accompanying reference space
can be obtained with the help of chr.inv.-operators of derivation with
respect to time and the spatial coordinates. The mentioned operators
had been introduced by Zelmanov as follows [9]

∗∂
∂t

=
1√
g00

∂

∂t
,

∗∂
∂xi

=
∂

∂xi
− g0i
g00

∂

∂x0
, (1.33)

they are non-commutative, so the difference between the 2nd derivatives
is not zero

∗∂2

∂xi∂t
−

∗∂2

∂t ∂xi
=

1
c2
Fi

∗∂
∂t
, (1.34)

∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
=

2
c2
Aik

∗∂
∂t
. (1.35)

Here, Aik is the three-dimensional antisymmetric chr.inv.-invariant
tensor of angular velocities of the space rotation

Aik =
1
2

(
∂vk
∂xi

− ∂vi
∂xk

)
+

1
2c2

(Fivk − Fkvi) , (1.36)

where vi is the linear velocity of this rotation

vi = −c g0i√
g00

, vi = −c g0i√g00

vi = hikv
k, v2 = vkv

k = hik v
ivk




. (1.37)

The tensor Aik, equated to zero, is the necessary and sufficient con-
dition of holonomity of this space [9]. In this case, g0i =0 and vi = 0. In
a non-holonomic space Aik 6= 0. For this reason, the tensor Aik is also
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the tensor of the space non-holonomity∗.
Hence forth, Fi is the three-dimensional chr.inv.-vector of gravita-

tional inertial force

Fi =
1

1− w

c2

(
∂w
∂xi

− ∂vi
∂t

)
, (1.38)

where w is a gravitational potential

w = c2 (1−√g00 ) , (1.38a)

an origin of which is the gravitational field of the observer’s reference
body†. In quasi-Newtonian approximation, i. e. in a weak gravitational
field at velocities much lower than the light velocity and in the absence
of rotations of the space, the quantity Fi becomes a non-relativistic
gravitational force

Fi =
∂w
∂xi

. (1.39)

The observer’s reference body is a real physical body and so coor-
dinate nets spanned over it may be deformed. So, his real reference
space may be deformed as well. Therefore, real physical references
must take the space deformations into account. Namely, as a result
of the deformations, the observable metric hik of the reference space
must be non-stationary. This can be accounted for by introducing the
three-dimensional symmetric chr.inv.-tensor of the rate of the space de-
formations

Dik =
1
2

∗∂hik
∂t

, Dik = −1
2

∗∂hik

∂t

D = hikDik = Dn
n =

∗∂ ln
√
h

∂t
, h = det ‖hik‖




. (1.40)

With the given definitions, we can generally formulate any property
of geometric objects located in a space with observable parameters of the
space. For instance, the Christoffel symbols, which appear in equations
of motion, are not tensors [18]. Nevertheless, they can be formulated as
well with physical observable quantities. The formulae obtained by Zel-

∗The space-time of the Special Theory of Relativity (the Minkowski space) in a
Galilean reference frame and also numerous cases in the space-time of the General
Theory of Relativity are examples of holonomic spaces Aik =0.

†The quantities w and vi do not possess the property of chronometric invariance,
while the gravitational inertial force vector and the tensor of angular velocities of
the space rotation, built using them, are chr.inv.-quantities.
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manov [9] are

Γ0
00 = − 1

c3

[
1

1− w

c2

∂w
∂t

+
(
1− w

c2

)
vkF

k

]
, (1.41)

Γk00 = − 1
c2

(
1− w

c2

)2

F k, (1.42)

Γ0
0i =

1
c2

[
− 1

1− w

c2

∂w
∂xi

+ vk

(
Dk
i +A·ki· +

1
c2
viF

k

)]
, (1.43)

Γk0i =
1
c

(
1− w

c2

) (
Dk
i +A·ki· +

1
c2
viF

k

)
, (1.44)

Γ0
ij = − 1

c
(
1− w

c2

)
{
−Dij +

1
c2
vn×

×
[
vj (Dn

i +A·ni· ) + vi
(
Dn
j +A·nj·

)
+

1
c2
vivjF

n

]
+

+
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

2c2
(Fi vj + Fj vi)−∆n

ij vn

}
,

(1.45)

Γkij = ∆k
ij −

1
c2

[
vi

(
Dk
j +A·kj·

)
+ vj

(
Dk
i +A·ki·

)
+

1
c2
vivjF

k

]
, (1.46)

where ∆k
ij are the chr.inv.-Christoffel symbols, which are defined as well

as the regular Christoffel symbols (1.2) but through the metric chr.inv.-
tensor hik and chr.inv.-operators of derivation

∆i
jk = him∆jk,m =

1
2
him

(∗∂hjm
∂xk

+
∗∂hkm
∂xj

−
∗∂hjk
∂xm

)
. (1.47)

So, we have discussed the basics of the mathematical apparatus of
chronometric invariants. Now, having any equations obtained using gen-
eral covariant methods we can calculate their chr.inv.-projections onto
the time line and spatial section of any particular body of reference and
formulate them with its real physical observable properties. From here,
we arrive at equations containing only measurable quantities in practice.

Naturally, the first possible application of this mathematical appa-
ratus that comes to our mind is the deduction of chr.inv.-equations of
motion of free particles and studying the results. Particular solution
of this problem had been obtained by Zelmanov [9]. The next section,
§1.3, will focus on the general solution of the problem.
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§1.3 Dynamic equations of motion of free particles

The absolute derivative of the four-dimensional vector of a particle with
respect to a non-zero scalar parameter along its trajectory is actually a
four-dimensional vector

Nα =
dQα

dρ
+ ΓαµνQ

µ dx
ν

dρ
, (1.48)

whose chr.inv.-projections are defined in the same way as the projections
of any four-dimensional vector (1.31)

N0√
g00

=
g0αN

α

√
g00

=
1√
g00

(
g00N

0 + g0iN
i
)
, (1.49)

N i = hiβN
β = hi0N

0 + hikN
k. (1.50)

From the geometric viewpoint, these are the projection of the vector
Nα on the time line and spatial components of its projection on the
spatial section in the accompanying reference frame.

So, projecting general covariant equations of motion of a free mass-
bearing particle (1.10) and of a free massless particle (1.12), we obtain
chr.inv.-equations of their motion. For the mass-bearing particle the
equations are

dm

dτ
− m

c2
Fivi +

m

c2
Dikvivk = 0 , (1.51)

d
(
mvi

)

dτ
+ 2m

(
Di
k +A·ik·

)
vk −mF i +m∆i

nkv
nvk = 0 , (1.52)

while for the massless particle we have

dk

dτ
− k

c2
Fic

i +
k

c2
Dikc

ick = 0 , (1.53)

d
(
kci

)

dτ
+ 2k

(
Di
k +A·ik·

)
ck − kF i + k∆i

nkc
nck = 0 , (1.54)

where m is the relativistic mass of the mass-bearing particle, k= ω
c is

the wave number of the massless particle, and ci is the three-dimensional
chr.inv.-vector of the light velocity. As it is easy to see, in contrast to
general covariant dynamic equations of motion (1.10, 1.12), the chr.inv.-
equations have a single derivation parameter for both mass-bearing and
massless particles. This universal parameter is physical observable time
τ .
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These chr.inv.-equations were first obtained by Zelmanov [9]. As
we have shown in our study [19], the equations that include the time
function dt

dτ
are strictly positive, so physical time has strictly direct

flow dτ > 0 here. The flow of coordinate time dt shows change of time
coordinates of the particle x0 = ct with respect to the observer’s clock.
Hence, the sign of the time function shows where the particle travels to
in time with respect to the observer.

The time function dt
dτ

is derived from the condition that the square
of the four-dimensional velocity of the particle remains unchanged along
its world-trajectory uαu

α=gαβ uαuβ=const. Equations of dt
dτ

are the
same for sub-light mass-bearing particles, massless particles and super-
light mass-bearing particles. The equations have two solutions which
are given here by the common formula

(
dt

dτ

)

1,2

=
vivi ± c2

c2
(
1− w

c2

) . (1.55)

As it was shown in our study [19], time has direct flow if vivi± c2> 0,
time has reverse flow if vivi± c2< 0, and the flow of time stops if
vivi± c2 =0. Therefore, there exists a whole range of solutions for var-
ious kinds of particles and directions they travel in time with respect to
the observer. For instance, the relativistic mass of a mass-bearing par-
ticle∗ P0√

g00
=±m is positive if this particle travels into the future, and

it is negative if the particle travels into the past. The wave number of a
massless particle K0√

g00
=±k is also positive for motion into the future,

and negative for motion into the past.
As a result, for a free mass-bearing particle, which moves into the

past, we obtain chr.inv.-equations of motion

−dm
dτ

− m

c2
Fivi +

m

c2
Dikvivk = 0 , (1.56)

d
(
mvi

)

dτ
+mF i +m∆i

nkv
nvk = 0 , (1.57)

while for a free massless particle we have

−dk
dτ

− k

c2
Fic

i +
k

c2
Dikc

ick = 0 , (1.58)

d
(
kci

)

dτ
+ kF i + k∆i

nkc
nck = 0 . (1.59)

∗The relativistic mass is the projection of the particle’s four-dimensional vector
on the observer’s time line.
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For a super-light mass-bearing particle chr.inv.-equations of motion
are similar to those for sub-light velocities, except that the relativistic
mass
m is multiplied by imaginary unit i.

As it easy to see, chr.inv.-equations of motion into future and into
past are not symmetric due to different physical conditions in the cases
of the direct and reverse time flows, so some terms in equations will be
missing.

Besides, we have considered the motion of mass-bearing and mass-
less particles within the wave-particle concept, assuming their motion
propagates as waves in geometric optics approximation [19]. As it is
well-known, in the frames of the wave-particle concept, the dynamic
vector of a massless particle is [10]

Kα =
∂ψ

∂xα
, (1.60)

where ψ is the wave phase (eikonal). In the same way, we introduced
the dynamic vector for a mass-bearing particle

Pα =
~
c

∂ψ

∂xα
, (1.61)

where ~ is Planck’s constant. The wave phase equation (the eikonal
equation) in the geometric optics approximation is the condition
KαK

α =0. Hence the eikonal chr.inv.-equation for the massless par-
ticle is

1
c2

(∗∂ψ
∂t

)2

− hik
∗∂ψ
∂xi

∗∂ψ
∂xk

= 0 , (1.62)

and for the mass-bearing particle we have

1
c2

(∗∂ψ
∂t

)2

− hik
∗∂ψ
∂xi

∗∂ψ
∂xk

=
m2

0c
2

~2
. (1.63)

Substituting the wave form of the dynamic vector into general co-
variant equations of motion (1.10, 1.12), after their projection in the
accompanying reference frame we obtain chr.inv.-equations of motion
in their “wave form”. For the mass-bearing particle, the resulting equa-
tions are

± d

dτ

(∗∂ψ
∂t

)
+ F i

∗∂ψ
∂xi

−Di
kv

k
∗∂ψ
∂xi

= 0 , (1.64)

d

dτ

(
hik

∗∂ψ
∂xk

)
− (

Di
k +A·ik·

)(± 1
c2

∗∂ψ
∂t

vk − hkm
∗∂ψ
∂xm

)
±

± 1
c2

∗∂ψ
∂t

F i + hmn∆i
mkv

k
∗∂ψ
∂xn

= 0 ,

(1.65)
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where “plus” in alternating terms stands for motion of the particle from
the past into the future (the direct flow of time), while “minus” stands
for its motion into the past (the reverse flow of time). Noteworthy,
in contrast to the “corpuscular form” of chr.inv.-equations of motion
(1.51, 1.52) and (1.56, 1.57), the equations in “wave form” (1.64, 1.65)
are symmetric with respect to the direction of motion in time. For the
massless particle chr.inv.-equations of motion in “wave form” show the
only difference: instead of the particle’s chr.inv.-velocity vi the equa-
tions include the chr.inv.-vector of the light velocity ci.

The fact that corpuscular equations of motion into the past and into
the future are asymmetric leads to the evident conclusion that in the
four-dimensional inhomogeneous space-time of the General Theory of
Relativity there exists a fundamental asymmetry of directions in time.
To understand the physical sense of this fundamental asymmetry, we
had introduced the mirror principle or, in otherwords — the observable
effect of the mirror Universe [19].

Let us imagine a mirror in the four-dimensional space-time which
coincides the spatial section, so this mirror separates the past from the
future. Then, particles and waves travelling from the past into the fu-
ture (positive relativistic masses and frequencies) hit the mirror and
bounce back in time into the past. Hence, their properties take neg-
ative numerical values. Conversely, particles and waves travelling into
the past (negative relativistic masses and frequencies) bounce from the
mirror to give positive numerical values to their properties and begin
travelling into the future. When bouncing from the mirror, the quantity
∗∂ψ
dt

changes sign, and so equations of propagation of a wave into the
future become equations of propagation of this wave into the past (and
vice versa). Noteworthy, when reflecting from the mirror, chr.inv.-
equations of wave propagation transform into each other completely
without contracting or adding new terms. In other word, the wave form
of matter undergoes full reflection from the mirror. On the contrary,
corpuscular chr.inv.-equations of motion do not transform completely
in reflection from the mirror. Spatial components of the equations for
mass-bearing and massless particles, travelling from the past into the
future, have an additional term

2m
(
Di
k +A·ik·

)
vk, 2k

(
Di
k +A·ik·

)
ck, (1.66)

not found in the equations of motion from the future into the past. The
equations of motion into the past gain the additional term on reflection.
Conversely, the equations of motion into the future lose the term when
the particle hits the mirror. This implies that, either in the case of
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motion of a particle-ball (the corpuscular equations) as well as in the
case of propagation of a wave (the wave equations), we come across a
situation which is not a simple “bouncing” from the mirror, but rather
passing through the mirror itself into another world — into a world
beyond the mirror.

In this mirror world all particles have negative masses or frequen-
cies, so they travel (from our viewpoint) from the future into the past.
The wave form of matter in our world does not affect events in the
mirror world, while the mirror world’s matter in wave form does not
affect events in our world. To the contrary, the corpuscular form of
matter (particles) in our world may produce significant effect on events
in the mirror world, while the mirror world’s particles may affect events
in our world. Our world is fully isolated from the mirror world (no
mutual effect between particles from the two worlds) under the evident
condition Di

kv
k =−A·ik·vk, at which the additional term in corpuscular

chr.inv.-equations of motion becomes zero. This becomes true, in par-
ticular, when Di

k =0 and A·ik·=0, i. e. when there are no deformations
and rotation in the space.

So far, we have considered motion of particles along non-isotropic
trajectories, where ds2 = c2dτ2− dσ2> 0, and motion along isotropic
(light-like) trajectories, where ds2 =0 and c2dτ2 = dσ2 6= 0. Besides, we
considered trajectories of the third kind [19], which, apart from ds2 =0,
meet even more strict conditions c2dτ2 = dσ2 =0

dτ =
[
1− 1

c2
(
w + viu

i
)]

dt = 0 , (1.67)

dσ2 = hikdx
idxk = 0 . (1.68)

We called such fully degenerate trajectories zero-trajectories, be-
cause from the viewpoint of a regular sub-light observer, any interval
of observable time and any observable spatial interval are zeroes along
them. We can as well show that along zero-trajectories the determinant
of the fundamental metric tensor is zero g=0. In Riemannian spaces,
by their definition we have g < 0, so the Riemannian metric is strictly
non-degenerate. We called a space, a metric of which is fully degener-
ate, zero-space. For the same reason, we called particles, which move
along trajectories in such a space zero-particles.

Actually, formulae (1.67, 1.68) show physical conditions, under
which total degeneration of the four-dimensional space-time occurs. We
can re-write the physical conditions of the degeneration as follows

w + viu
i = c2, (1.69)
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giku
iuk = c2

(
1− w

c2

)2

. (1.70)

Respectively, formula for the mass of a zero-particle M , including
the degeneration conditions, is different from the relativistic mass m of
a regular particle in a non-degenerate area

M =
m

1− 1

c2
(w + viui)

, (1.71)

so that it is a ratio between two quantities, each one equals zero in the
case where the metric is degenerate, but the ratio is not zero∗.

The dynamic vector of a zero-particle, represented in its corpuscular
and wave forms, is

Pα =
M

c

dxα

dt
, Pα =

~
c

∂ψ

∂xα
. (1.72)

Then, dynamic chr.inv.-equations of motion in the zero-space, taken
in their corpuscular form, are

MDiku
iuk = 0 , (1.73)

d

dt

(
Mui

)
+M∆i

nku
nuk = 0 , (1.74)

while the wave form of the equations is

Dm
k u

k
∗∂ψ
∂xm

= 0 , (1.75)

d

dt

(
hik

∗∂ψ
∂xk

)
+ hmn∆i

mku
k
∗∂ψ
∂xn

= 0 . (1.76)

The eikonal chr.inv.-equation for the zero-particle is

hik
∗∂ψ
∂xi

∗∂ψ
∂xk

= 0 , (1.77)

so it is a standing wave equation, which describes the zero-particle to
be in the form of an information ring. Therefore, from the viewpoint of
a regular sub-light observer, the whole zero-space is filled with a system
of standing light-like waves (zero-particles) — a standing-light hologram.
Besides, in the zero-space, observable time has the same numerical value
for any two events (1.67). This implies that from the viewpoint of
a regular observer, the velocity of any zero-particle is infinite; so zero-
particles can instantly transfer information from one point of our regular
world to another, performing the long-range action [19].

∗This is similar to the case of massless particles, because given v2 = c2 we have
that m0 =0 and

p
1− v2/c2 =0 are zeroes, but their ratio is m = m0√

1− v2/c2
6=0.
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§1.4 Non-geodesic motion of particles. Problem statement

It is well-known that, free motion of a particle (along its own geodesic
line) leaves the absolute derivative of the dynamic world-vector of this
particle (its four-dimensional momentum) zero, so the square of the
vector remains unchanged along the trajectory of the motion. In other
words, the vector is parallel transferred in the meaning of Levi-Civita.

In non-free (non-geodesic) motion of a particle, the absolute deriva-
tive of its four-dimensional momentum is not zero. But, the absolute
derivative of the sum of its four-dimensional momentum Pα is equal to
zero. Also, the absolute derivative of an additional momentum vector
Lα gained by this particle from interaction with external fields, which
deviate its motion from geodesic line is zero. Superposition of any num-
ber of vectors can be subjected to parallel transfer [18]. Hence, building
equations of non-geodesic motion first of all requires the definition of
non-gravitational perturbation fields.

Naturally, an external field will only interact with the particle and
deviate it from geodesic line if the particle has a physical property of
the same kind as the external field does. As of today, we know of three
fundamental physical properties of particles, not related to each other.
These are mass, electric charge and spin. If fundamental character
of the former two was under no doubt, the spin of an electron over
a few years after experiments by Stern and Gerlach (1921) and their
interpretation by Gaudsmith and Ulenbek (1925), was considered as a
specific momentum of the electron caused by its rotation around its
own axis. But experiments done over the next decades, in particular,
discovery of spin in other elementary particles, proved that views of
spin-particles as rotating gyroscopes were wrong. Spin proved to be a
fundamental property of particles just like mass and charge, though it
has dimension of angular momentum and in interactions manifest as the
specific rotation momentum inside the particle.

Gravitational fields by now have received geometric interpretation
due to Einstein’s equations. In the theory of chronometric invariants,
gravitational force and the potential (1.38) are obtained as functions
of only geometric properties of the space itself. Therefore, considering
motion of a particle in a pseudo-Riemannian space, we actually consider
its motion in a gravitational field.

But we still do not know whether Lorentz’ electromagnetic force
and the electromagnetic field potential can be expressed through geo-
metric properties of the space. Therefore, electromagnetic fields at the
moment have no geometric interpretation. An electromagnetic field is
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introduced into a pseudo-Riemannian space as an external tensor field
(the field of Maxwell’s tensor). By now the main equations of the the-
ory of electromagnetic fields have been obtained in general covariant
form∗. In this theory, a charged particle gains a four-dimensional mo-
mentum e

c2
Aα from the acting electromagnetic fields, where Aα is the

four-dimensional potential of the field, and e is the electric charge of the
particle [10, 20]. Adding this extra-momentum to the specific momen-
tum vector of the particle and applying the Levi-Civita parallel transfer,
we can obtain general covariant equations of motion of the particle in
the space, filled with gravitational and electromagnetic fields.

The case of spin-particles is far more complicated. To deduce a
momentum a particle gains due to its spin, we need to define the ex-
ternal field that interacts with the spin as a fundamental property of
the particle. Initially, this problem was approached using methods of
Quantum Mechanics only (Dirac’s equations, 1928). Geometric meth-
ods of the General Theory of Relativity were first used by Papapetrou
and Corinaldesi [21,22] for studying the problem. Their approach relied
on general view of particles as mechanical monopoles and the dipoles.
From this viewpoint, a regular mass-bearing particle is a mechanical
monopole. If a particle can be represented as two masses co-rotating
around a common centre of gravity, then the particle is a mechani-
cal dipole. Therefore, proceeding from representation of a spin-particle
as a rotating gyroscope we can consider it as a mechanical dipole,
whose centre of gravity lays over the particle’s surface. Papapetrou and
Corinaldesi considered motion of such a mechanic dipole in a pseudo-
Riemannian space with Schwarzschild’s metric — a very particular case,
where rotation of the space is zero and the metric is stationary (the ten-
sor of the space deformations rate is zero).

There is no doubt that Papapetrou’s method is noteworthy, but it
has a significant drawback. Being developed in the 1940’s, it fully relied
on the view of spin-particles as swiftly rotating gyroscopes, which does
not match experimental data of the recent decades†.

There is another way to solve the problem of motion of spin-particles.

∗Despite this positive fact, due to complicated calculations of the energy-
momentum tensor for an electromagnetic field in the space-time of the General
Theory of Relativity, specific problems are commonly solved either for particular
cases of the General Theory of Relativity, or in a Galilean reference frame in the
Minkowski space (the space-time of the Special Theory of Relativity).

†As a matter of fact, considering an electron as a ball with radius of
re=2.8×10−13 cm implies that the linear velocity of its rotation on the surface is
u = ~

2m0re
=2×1011 cm/sec, which is ∼70 times as high as the light velocity. Exper-

iments show there are no such velocities in electrons.
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In Riemannian spaces, the fundamental metric tensor is symmetric,
gαβ = gβα. Nevertheless, we can build a space in which the metric tensor
will have arbitrary form gαβ 6= gβα (such a space will have non-Riemann-
ian geometry). Then, a non-zero antisymmetric part can be found in the
metric tensor∗. Appropriate additions will appear in Christoffel’s sym-
bols Γαµν and in Riemann-Christoffel’s curvature tensor Rαβµν . These
additions will be as a result of the fact that, a vector transferred along
a closed contour does not to return to its initial point, so the trajectory
becomes twisted like a spiral. Such a space is known as twisted space.
In such a space, the spin-rotation of a particle can be considered as
transfer of the rotation vector along its surface contour, that generates
a local field of the space twist.

Nonetheless, this method has got significant drawbacks as well.
Firstly, if we have gαβ 6= gβα, then functions of the components gαβ
with different order of indices may be varied. The functions have been
fixed somehow in to order to set a specific field of this twist, which
dramatically narrows the range of possible solutions, enabling only the
building of equations for a range of specific cases. Secondly, this method
fully relies on assumption of the spin-rotation of a particle as a local
field of a twist, produced by transfer of the vector of the particle’s ro-
tation along a contour. This again implies the view of spin-particles
as rotating gyroscopes with limited radii (like Papapetrou’s method),
which does not match experimental data.

Nevertheless, there is no doubt that, an additional momentum gain-
ed by a spin-particle can be represented with methods of the General
Theory of Relativity. Adding it to the specific dynamic vector of this
particle (the effect of gravitation) and undergoing parallel transfer, we
can obtain general covariant equations of motion of the particle†.

Once we have obtained general covariant equations of motion of a
spin-particle and an electric charged particle, we shall project them
on time lines and the spatial section in the accompanying reference

∗Generally, in any tensor of the 2nd rank and of high ranks symmetric and anti-
symmetric parts can be distinguished. For instance, in the fundamental metric tensor
gαβ = 1

2

`
gαβ + gβα

´
+ 1

2

`
gαβ − gβα

´
= Sαβ + Nαβ we have the symmetric part Sαβ

and the antisymmetric part Nαβ . Because the metric tensor of any Riemannian
space is symmetric gαβ = gβα, its antisymmetric part is zero.

†We wrote this in the mid-1990’s, in the 1st edition of this book. In 2007, a new
and highly original approach to spin-particle was developed by Suhendro [23, 24]
on the basis of the views onto spin as an elementary curl of the space itself. We
should agree that his approach, having a purely geometrical nature, is more close to
Einstein’s ideology (geometrization of matter and interactions) than our approach
realized in Chapter 4 of this book on the basis of the Lagrangian method.
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frame, then we shall express their chr.inv.-projections through physical
observable properties of the reference space. As a result, we shall arrive
at chr.inv.-equations of non geodesic motion.

Therefore, the problem we are going to solve in this book falls into
few stages. At first stage, we shall build the chr.inv.-theory of an electro-
magnetic field in the four-dimensional pseudo-Riemannian space. Also,
we shall arrive at chr.inv.-equations of motion of a charged particle in
the field. This problem will be solved in Chapter 3.

Then, we shall create the theory of motion of a spin-particle. We
will approach this problem in its most general form, assuming spin is
a fundamental property of matter (like mass or electric charge). In
Chapter 4, detailed study will show that the field of non-holonomity of
the space (the space rotations field) interacts with the spin of a particle,
giving the particle additional momentum.

In Chapter 5, we are going to discuss chr.inv.-projections of Ein-
stein’s equations. Proceeding from them we will study properties of
physical vacuum and how they are applied in cosmology.

In Chapter 6, we shall consider the theory of the mirror world and
also the physical conditions to move to it, through the membrane.

Before turning to these studies, in Chapter 2 we would like to have
a look at tensor algebra and analysis in terms of physical observable
quantities (chronometric invariants). Mainly, we recommend Chapter 2
to readers who are going to use the mathematical apparatus in their own
theoretical studies. For general understanding of our book, reading the
next Chapter may not be necessary.
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§2.1 Tensors and tensor algebra

We assume a space (not necessarily a metric one) with an arbitrary
reference frame xα located in it. In an area of this space, there exists an
object G defined by n functions fn of the coordinates xα. We know the
transformation rule to calculate these n functions in any other reference
frame x̃α in this space. If the n functions fn and also the transformation
rule have been given, then G is a geometric object, which in the system
xα has axial components fn (xα), while in any other system x̃α it has
components f̃n (x̃α).

We assume that a tensor object (tensor) of zero rank is any geometric
object ϕ, transformable according to the rule

ϕ̃ = ϕ
∂xα

∂x̃α
, (2.1)

where the index one-by-one takes numbers of all coordinate axes (this
notation is also known as by-component notation or tensor notation).
Any tensor of zero rank has a single component and is also known as
scalar. From the geometric viewpoint, any scalar is a point to which a
certain number is attributed.

Consequently, a scalar field∗ is a set of points of the space, which
have a common property. For instance, a point mass is a scalar, while
a distributed mass (a gas, for instance) makes up a scalar field.

Contravariant tensors of the 1st rank Aα are geometric objects with
components, transformable according to the rule

Ãα = Aµ
∂x̃α

∂xµ
. (2.2)

From the geometric viewpoint, such an object is an n-dimensional
vector. For instance, the vector of an elementary displacement dxα is a
contravariant tensor of the 1st rank.

∗Algebraic notations for a tensor and a tensor field are the same. The field of a
tensor is represented as the tensor in a given point of the space, but its presence in
other points in this area of the space is assumed.
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Contravariant tensors of the 2nd rank Aαβ are geometric objects
with components, transformable according to the rule

Ãαβ = Aµν
∂x̃α

∂xµ
∂x̃β

∂xν
. (2.3)

From the geometric viewpoint, such an object is an area (parallelo-
gram) constructed by two vectors. For this reason, contravariant tensors
of the 2nd rank are also known as bivectors.

Thus, contravariant tensors of higher ranks are

Ãα...σ = Aµ...τ
∂x̃α

∂xµ
· · · ∂x̃

σ

∂xτ
. (2.4)

A vector field or a higher rank tensor field are space distributions
of the tensor quantities. For instance, because a mechanical strength
characterizes both its own magnitude and the direction, its distribution
in a physical body can be presented by a vector field.

Covariant tensors of the 1st rank Aα are geometric objects, trans-
formable according to the rule

Ãα = Aµ
∂xµ

∂x̃α
. (2.5)

So, the gradient of a scalar field ϕ, i. e. the quantity Aα = ∂ϕ

∂xα , is a
covariant tensor of the 1st rank. That is, because for a regular invariant
we have ϕ̃=ϕ, then

∂ϕ̃

∂x̃α
=

∂ϕ̃

∂xµ
∂xµ

∂x̃α
=

∂ϕ

∂xµ
∂xµ

∂x̃α
. (2.6)

Covariant tensors of the 2nd rank Aαβ are geometric objects with
transformation rule

Ãαβ = Aµν
∂xµ

∂x̃α
∂xν

∂x̃β
. (2.7)

Hence, covariant tensors of higher ranks are

Ãα...σ = Aµ...τ
∂xµ

∂x̃α
· · · ∂x

τ

∂x̃σ
. (2.8)

Mixed tensors are tensors of the 2nd rank or of higher ranks with
both upper and lower indices. For instance, any mixed symmetric tensor
Aαβ is a geometric object, transformable according to the rule

Ãαβ = Aµν
∂x̃α

∂xµ
∂xν

∂x̃β
. (2.9)
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Tensor objects exist both in metric and non-metric spaces∗. Any
tensor has an components, where a is its dimension and n is the rank.
For instance, a four-dimensional tensor of zero rank has 1 component,
a tensor of the 1st rank has 4 components, a tensor of the 2nd rank has
16 components and so on.

Indices in a geometric object, marking its axial components, are
found not in tensors only, but in other geometric objects as well. For
this reason, if we come across a quantity in by-component notation, this
is not necessarily a tensor quantity.

In practice, to know whether a given object is a tensor or not, we
need to know a formula for this object in a reference frame and to
transform it to any other reference frame. For instance, we consider
this classic question: are Christoffel’s symbols (i. e. the space coherence
coefficients) tensors?

To answer this question, we need to calculate the quantities in a
tilde-marked reference frame

Γ̃αµν = g̃ασ Γ̃µν,σ , Γ̃µν,σ =
1
2

(
∂g̃µσ
∂x̃ν

+
∂g̃νσ
∂x̃µ

− ∂g̃µν
∂x̃σ

)
(2.10)

proceeding from the quantities in a non-marked reference frame.
We calculate the terms in the brackets (2.10). The fundamental

metric tensor like any other covariant tensor of the 2nd rank, is trans-
formable to the tilde-marked reference frame according to the rule

g̃µσ = gετ
∂xε

∂x̃µ
∂xτ

∂x̃σ
. (2.11)

Because the gετ depends on non-tilde-marked coordinates, its deriva-
tive with respect to tilde-marked coordinates (which are functions of
non-tilded ones) is calculated according to the rule

∂gετ
∂x̃ν

=
∂gετ
∂xρ

∂xρ

∂x̃ν
. (2.12)

Then the first term in the brackets (2.10), taking the rule of trans-
formation of the fundamental metric tensor into account, is

∂g̃µσ
∂x̃ν

=
∂gετ
∂xρ

∂xρ

∂x̃ν
∂xε

∂x̃µ
∂xτ

∂x̃σ
+gετ

(
∂xτ

∂x̃σ
∂2xε

∂x̃ν∂x̃µ
+
∂xε

∂x̃µ
∂2xτ

∂x̃ν∂x̃σ

)
. (2.13)

∗In non-metric spaces, as it is known, the distance between any two points can
not be measured. This is in contrast to metric spaces. In theories of space-time-
matter, such as the General Theory of Relativity and its extensions, metric spaces are
taken under consideration. This is because the core of the theories is measurement
for time durations and spatial lengths, that is nonsense in a non-metric space.
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Hence, calculating the remaining terms of the tilde-marked Christof-
fel symbols (2.10), after transposition of free indices we obtain

Γ̃µν,σ = Γερ,τ
∂xε

∂x̃µ
∂xρ

∂x̃ν
∂xτ

∂x̃σ
+ gετ

∂xτ

∂x̃σ
∂2xε

∂x̃µ∂x̃ν
, (2.14)

Γ̃αµν = Γγερ
∂x̃α

∂xγ
∂xε

∂x̃µ
∂xρ

∂x̃ν
+
∂x̃α

∂xγ
∂2xγ

∂x̃µ∂x̃ν
. (2.15)

So, we see that the Christoffel symbols are not transformed in the
same way as tensors, hence they are not tensors.

Tensors can be represented as matrices. But in practice, this form
may be possible for only tensors of the 1st or 2nd rank (single-row and
flat matrices, respectively). For instance, the tensor of an elementary
four-dimensional displacement is

dxα =
(
dx0, dx1, dx2, dx3

)
, (2.16)

while the four-dimensional fundamental metric tensor is

gαβ =




g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33


 . (2.17)

Tensors of the 3rd rank are three-dimensional matrices. Represent-
ing tensors of higher ranks as matrices is more problematic.

Now we turn to tensor algebra — a section of tensor calculus, which
focuses on algebraic operations over tensors.

Only same-type tensors of the same rank with indices in the same
position can be added or subtracted. Adding up two same-type tensors
of the n-rank gives a new tensor of the same type and rank with com-
ponents being sums of respective components of the tensors added up.
For instance

Aα +Bα = Dα, Aαβ +Bαβ = Dα
β . (2.18)

Multiplication is permitted not only for same-type, but for any ten-
sors of any ranks. External multiplication of tensors of n-rank and
m-rank gives a tensor of (n+m)-rank

AαβBγ = Dαβγ , AαB
βγ = Dβγ

α . (2.19)

Contraction is multiplication of the same-rank tensors, when indices
are the same. Contraction of tensors by all indices gives scalar

AαB
α = C , AγαβB

αβ
γ = D . (2.20)
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Often multiplication of tensors implies contraction of some indices.
Such multiplication is known as internal multiplication, which implies
contraction of some indices inside the multiplication. This is an example
of internal multiplication

AασB
σ = Dα , AγασB

βσ
γ = Dβ

α . (2.21)

Using internal multiplication of geometric objects we can determine
whether they are tensors or not. This is the so-called theorem of frac-
tions, which is given here according to [9]:

Theorem of fractions

If Bσβ is a tensor and its internal multiplication with a geometric object
A (α, σ) is a tensor D (α, β)

A (α, σ)Bσβ = D (α, β) , (2.22)

then this object A (α, σ) is also a tensor.

According to the theorem, if internal multiplication of an object Aασ
with a tensor Bσβ gives a tensor Dβ

α

AασB
σβ = Dβ

α , (2.23)

then this object Aασ is a tensor. Or, if internal multiplication of an
object Aασ and a tensor Bσβ gives a tensor Dαβ

Aα··σB
σβ = Dαβ , (2.24)

then the object Aα··σ is a tensor.
Geometric properties of any metric space are defined by its funda-

mental metric tensor gαβ , which can lower or lift indices in objects of
this metric space∗. For instance,

gαβA
β = Aα , gµνgσρAµνσ = Aρ. (2.25)

In Riemannian spaces, the mixed fundamental metric tensor gβα
equals the unit tensor gβα = gασg

σβ = δβα. Diagonal components of the
unit tensor are units, while the rest are zeroes. Using the unit tensor
we can replace indices in four-dimensional quantities, so that

δβαAβ = Aα , δνµδ
σ
ρA

µρ = Aνσ. (2.26)

∗In Riemannian spaces the metric has square form ds2 = gαβ dxαdxβ , known also
as the Riemannian metric form, so the fundamental metric tensor of a Riemannian
space is the tensor of the 2nd rank, gαβ .
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Contraction of any tensor of the 2nd rank with the fundamental
metric tensor gives a scalar quantity, known as the tensor spur or its
trace

gαβAαβ = Aσσ , (2.27)

For instance, the spur of the fundamental metric tensor in a four-
dimensional pseudo-Riemannian space of the signature (+−−−) is

gαβ g
αβ = gσσ = g0

0 + g1
1 + g2

2 + g3
3 = −2. (2.28)

The metric chr.inv.-tensor hik (1.27) possesses all properties of the
fundamental metric tensor gαβ in the observer’s three-dimensional spa-
ce. Therefore, hik can lower, lift or replace indices in chr.inv.-quantities.
Respectively, the spur of a three-dimensional chr.inv.-tensor is obtained
by means of its contraction with the metric chr.inv.-tensor hik.

For instance, the spur of the tensor of the rate of the space defor-
mations Dik (1.40) is

hikDik = Dm
m , (2.29)

stands for the rate of relative expansion of an elementary volume of the
space.

Of course, this brief account can not fully cover such a vast field
like tensor algebra. Moreover, there is even no need in doing that here.
Detailed accounts of tensor algebra can be found in numerous mathe-
matical books not related to the General Theory of Relativity. Besides,
many specific techniques of this science, which occupy substantial part
of mathematical textbooks, are not used in theoretical physics. There-
fore our goal was to give only a basic introduction into tensors and
tensor algebra, necessary for understanding this book. For the same
reasons we have not covered issues like weight of tensors or many others
not used in calculations in this book.

§2.2 Scalar product of vectors

Scalar product of two vectors Aα and Bα in a four-dimensional pseudo-
Riemannian space is

gαβ A
αBβ = AαB

α = A0B
0 +AiB

i. (2.30)

Scalar product is a contraction, because multiplication of vectors
contracts all indices at the same time. Therefore, scalar product of two
vectors (tensors of the 1st rank) is always scalar (tensor of zero rank).
If both vectors are the same, their scalar product

gαβ A
αAβ = AαA

α = A0A
0 +AiA

i (2.31)



36 Chapter 2 Tensor Algebra and Analysis

is the square of the given vector Aα. Consequently, the length of this
vector Aα is

A = |Aα| =
√
gαβAαAβ . (2.32)

Because the four-dimensional pseudo-Riemannian space by its def-
inition has the sign-alternating metric (the sign-alternating signature
(+−−−) or (−+++)), then lengths of four-dimensional vectors may be real,
imaginary or zero. Vectors with non-zero (real or imaginary) lengths
are known as non-isotropic. Vectors with zero length are known as
isotropic. Isotropic vectors are tangential to trajectories of light-like
particles (isotropic trajectories).

In three-dimensional Euclidean space, scalar product of two vectors
is a scalar quantity with magnitude equal to the product of their lengths,
multiplied by cosine of the angle between them

AiB
i = |Ai | |Bi | cos

(
Ai;Bi

)
. (2.33)

Theoretically, at every point of any Riemannian space a tangential
flat space can be set, whose basic vectors will be tangential to basic
vectors of the Riemannian space at this point. Then, the metric of the
tangential flat space will be the metric of the Riemannian space at this
point. Therefore, this statement is also true in the Riemannian space,
if we consider the angle between coordinate lines and replace Roman
(three-dimensional) indices with Greek (four-dimensional) ones.

From here, we can see that the scalar product of two vectors is
zero, if the vectors are orthogonal. In other words, scalar product from
geometric viewpoint is the projection of one vector on the other. If the
vectors are the same, then the vector is projected on itself, so the result
of this projection is the square of its length.

Denote chr.inv.-projections of arbitrary vectors Aα and Bα as follows

a =
A0√
g00

, ai = Ai, (2.34)

b =
B0√
g00

, bi = Bi, (2.35)

then their remaining components are

A0 =
a+ 1

c via
i

1− w

c2

, Ai = − ai − a

c
vi , (2.36)

B0 =
b+ 1

c vi b
i

1− w

c2

, Bi = − bi − b

c
vi . (2.37)



2.3 Vector product of vectors. Antisymmetric tensors. Pseudotensors 37

Substituting the chr.inv.-projections into the formulae for AαBα and
AαA

α, we obtain

AαB
α = ab− aib

i = ab− hik a
ibk, (2.38)

AαA
α = a2 − aia

i = a2 − hik a
iak. (2.39)

From here, we see that the square of any vector’s length is the differ-
ence between the squares of the lengths of its time and spatial chr.inv.-
projections. If both projections are equal, then the vector’s length is
zero, so the vector is isotropic. Hence, any isotropic vector equally be-
longs to the time line and the spatial section. Equality of the time and
spatial chr.inv.-projections also implies that the vector is orthogonal to
itself. If its time projection is “longer”, then the vector is real. If the
spatial projection is “longer”, then the vector is imaginary.

Scalar product of any four-dimensional vector with itself can be il-
lustrated by the square of the length of the space-time interval

ds2 = gαβ dx
αdxβ = dxαdx

α = dx0dx
0 + dxidx

i. (2.40)

In terms of physical observable quantities, it can be represented as
follows

ds2 = c2dτ2 − dxidx
i = c2dτ2 − hik dx

idxk = c2dτ2 − dσ2. (2.41)

Its length ds=
√
gαβ dxαdxβ may be real, imaginary or zero, depend-

ing on whether ds is time-like c2dτ2>dσ2 (sub-light real trajectories),
space-like c2dτ2<dσ2 (imaginary super-light trajectories), or isotropic
c2dτ2 = dσ2 (light-like trajectories).

§2.3 Vector product of vectors. Antisymmetric tensors.
Pseudotensors

Vector product of two vectors Aα andBα is a tensor of the 2nd rank V αβ ,
obtained from their external multiplication according to the specific rule

V αβ =
[
Aα;Bβ

]
=

1
2

(
AαBβ −AβBα

)
=

1
2

∣∣∣∣
Aα Aβ

Bα Bβ

∣∣∣∣ . (2.42)

As it is easy to see, the order in which vectors are multiplied matters,
i. e. the order in which we write down tensor indices is important.
Therefore, tensors obtained as vector products are antisymmetric. In
an antisymmetric tensor V αβ =−V βα; indices being moved “reserve”
their places as dots, gασV σβ =V ·βα· , thus showing from where the index
was moved. In symmetric tensors there is no need to “reserve” places for
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moved indices, because the order in which they appear does not matter.
In particular, the fundamental metric tensor is symmetric gαβ = gβα,
while the tensor of the space curvature Rα····βγδ is symmetric in respect
to transposition by pair of its indices and is antisymmetric inside each
pair of the indices. It is evident that, only tensors of the 2nd rank or of
higher ranks may be symmetric or antisymmetric.

All diagonal components of any antisymmetric tensor by its defini-
tion are zeroes. For instance, in an antisymmetric tensor of the 2nd
rank we have

V αα = [Aα;Bα] =
1
2

(AαBα −AαBα) = 0 . (2.43)

In a three-dimensional Euclidean space, the numerical value of the
vector product of two vectors is defined as the area of the parallelogram
they make and equals the product of their moduli, multiplied by sine of
the angle between them

V ik = |Ai | |Bk | sin (
Ai;Bk

)
. (2.44)

This implies that the vector product of two vectors (i. e. an antisym-
metric tensor of the 2nd rank) is a pad, oriented in the space according
to the directions of its forming vectors.

Contraction of an antisymmetric tensor Vαβ with any symmetric
tensor Aαβ =AαAβ is zero, because Vαα =0 and Vαβ =−Vβα so that
we have

VαβA
αAβ = V00A

0A0 + V0iA
0Ai + Vi0A

iA0 + VikA
iAk = 0 . (2.45)

According to the theory of chronometric invariants, chr.inv.-project-
ions of an antisymmetric tensor of the 2nd rank V αβ are

V ·i0·√
g00

= − V i··0√
g00

=
1
2

(
abi − bai

)
, (2.46)

V ik =
1
2

(
aibk − akbi

)
, (2.47)

where the third chr.inv.-projection V00
g00

(1.32) is zero, because in any
antisymmetric tensor all diagonal components are zeroes.

Physical observable components V ik (the projections of V αβ on the
observer’s spatial section) are analogous to a vector product in a three-
dimensional space, while the quantity V ·i0·√

g00
, which is the space-time

(mixed) projection of the tensor V αβ , has no equivalent among compo-
nents of a regular three-dimensional vector product.
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The square of an antisymmetric tensor of the 2nd rank, formulated
with chr.inv.-projections of its forming vectors, is

VαβV
αβ=

1
2
(
aia

ibkb
k−aibiakbk

)
+abaibi− 1

2
(
a2bib

i−b2aiai
)
. (2.48)

The last two terms in this formula contain quantities a (2.34) and b
(2.35), which are chr.inv.-projections of the multiplied vectors Aα and
Bα on the observer’s time line, so the terms have no equivalent in a
vector product in a three-dimensional Euclidean space.

Asymmetry of tensor fields is defined by reference antisymmetric
tensors. In a Galilean reference frame∗ such references are Levi-Civita’s
tensors. For four-dimensional quantities, this is the four-dimensional
completely antisymmetric unit tensor eαβµν , while for three-dimensional
quantities, this is the three-dimensional completely antisymmetric unit
tensor eikm. Components of the Levi-Civita tensors, which have all in-
dices different, are either +1 or −1 depending on the number of transpo-
sitions of their indices. All the remaining components, i. e. those having
at least two coinciding indices, are zeroes. Moreover, for the signature
(+−−−) we are using all non-zero components having a sign opposite to
their respective covariant components†. For instance, in the Minkowski
space we have

gασgβρgµτ gνγ e
σρτγ = g00g11g22g33 e

0123 = − e0123

giαgkβgmγ e
αβγ = g11g22g33 e

123 = − e123

}
, (2.49)

because of the signature conditions g00 =1 and g11 = g22 = g33 =−1 we
have accepted. Therefore, components of the tensor eαβµν are

e0123 = +1, e1023 = −1, e1203 = +1, e1230 = −1

e0123 = −1, e1023 = +1, e1203 = −1, e1230 = +1

}
(2.50)

and components of the tensor eikm are

e123 = +1, e213 = −1, e231 = +1

e123 = −1, e213 = +1, e231 = −1

}
. (2.51)

∗A Galilean frame of reference is the one that does not rotate, is not subject to
deformation and falls freely in the flat space-time of the Special Theory of Relativity
(the Minkowski space). The lines of time are linear and so are three-dimensional
coordinate axes.

†If the space-time signature is (−+++), this is true for only the four-dimensional
tensor eαβµν . Components of the three-dimensional tensor eikm will have the same
sign as well as the respective components of eikm.
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Because we have an arbitrary choice for the sign of the first compo-
nent, we assume e0123 =−1 and e123 =−1. Consequently, the remaining
components will change. In general, the tensor eαβµν is related to the
tensor eikm as follows e0ikm = eikm.

Multiplying the four-dimensional antisymmetric unit tensor eαβµν

by itself we obtain a regular tensor of the 8th rank with non-zero com-
ponents, which are given in the matrix

eαβµνeστργ = −




δασ δατ δαρ δαγ
δβσ δβτ δβρ δβγ
δµσ δµτ δµρ δµγ
δνσ δντ δνρ δνγ


 . (2.52)

The remaining properties of the tensor eαβµν are derived from the
previous by means of contraction of indices

eαβµνeστρν = −




δασ δατ δαρ
δβσ δβτ δβρ
δµσ δµτ δµρ


 , (2.53)

eαβµνeστµν = −2
(
δασ δατ
δβσ δβτ

)
= −2

(
δασ δ

β
τ − δβσδ

α
τ

)
, (2.54)

eαβµνeσβµν = −6δασ , eαβµνeαβµν = −6δαα = −24. (2.55)

Multiplying the three-dimensional antisymmetric unit tensor eikm

by itself we obtain a regular tensor of the 6th rank

eikmerst =




δir δis δit
δkr δks δkt
δmr δms δmt


 . (2.56)

The remaining properties of the tensor eikm are

eikmersm = −
(
δir δis
δkr δks

)
= δisδ

k
r − δirδ

k
s , (2.57)

eikmerkm = 2δir , eikmeikm = 2δii = 6. (2.58)

The completely antisymmetric unit tensor defines for a tensor object
its respective pseudotensor, marked with asterisk. For instance, any
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four-dimensional scalar, vector and tensors of the 2nd, 3rd, and 4th
ranks have respective four-dimensional pseudotensors of the following
ranks

V ∗αβµν=eαβµνV, V ∗αβµ=eαβµνVν , V ∗αβ=
1
2
eαβµνVµν

V ∗α=
1
6
eαβµνVβµν , V ∗=

1
24
eαβµνVαβµν




, (2.59)

where pseudotensors of the 1st rank V ∗α are called pseudovectors, while
pseudotensors of zero rank V ∗ are called pseudoscalars. Any tensor
and its respective pseudotensor are known as dual to each other to
emphasize their common genesis. So, three-dimensional tensors have
respective three-dimensional pseudotensors

V ∗ikm = eikmV, V ∗ik = eikmVm

V ∗i =
1
2
eikmVkm , V ∗ =

1
6
eikmVikm




. (2.60)

Pseudotensors are called such because, in contrast to regular tensors,
they do not change when reflected with respect to one of the axes. For
instance, when reflected with respect to the abscissa axis x1 =−x̃1,
x2 = x̃2, x3 = x̃3. The reflected component of an antisymmetric tensor
Vik, orthogonal to x1, is Ṽ23 =−V23, while its dual component of the
pseudovector V ∗i is

V ∗1 =
1
2
e1kmVkm=

1
2
(
e123V23 +e132V32

)
=V23

Ṽ ∗1=
1
2
ẽ1kmṼkm=

1
2
ek1mṼkm=

1
2
(
e213Ṽ23 +e312Ṽ32

)
=V23




. (2.61)

Because a four-dimensional antisymmetric tensor of the 2nd rank
and its dual pseudotensor are of the same rank, their contraction yields
a pseudoscalar, so that

VαβV
∗αβ = Vαβ e

αβµνVµν = eαβµνBαβµν = B∗. (2.62)

The square of a pseudotensor V ∗αβ and the square of a pseudovector
V ∗i, expressed through their dual tensors, are

V∗αβV ∗αβ = eαβµνV
µνeαβρσVρσ = −24VµνV µν , (2.63)

V∗iV ∗i = eikmV
kmeipqVpq = 6VkmV km. (2.64)
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In inhomogeneous anisotropic pseudo-Riemannian spaces, we can
not set a Galilean reference frame, so references of asymmetry of tensor
fields will depend on inhomogeneity and anisotropy of the space itself,
which are defined by the fundamental metric tensor. In this general case,
a reference antisymmetric tensor is the four-dimensional completely an-
tisymmetric discriminant tensor

Eαβµν =
eαβµν√−g , Eαβµν = eαβµν

√−g . (2.65)

Here is the proof. Transformation of the unit completely antisym-
metric tensor from a Galilean (non-tilde-marked) reference frame into
an arbitrary (tilde-marked) reference frame is

ẽαβµν =
∂xσ

∂x̃α
∂xγ

∂x̃β
∂xε

∂x̃µ
∂xτ

∂x̃ν
eσγετ = Jeαβµν , (2.66)

where J = det
∥∥∂xα

∂x̃σ

∥∥ is called the Jacobian of the transformation (the
determinant of Jacobi’s matrix)

J = det

∥∥∥∥∥∥∥∥∥∥∥∥∥

∂x0

∂x̃0
∂x0

∂x̃1
∂x0

∂x̃2
∂x0

∂x̃3

∂x1

∂x̃0
∂x1

∂x̃1
∂x1

∂x̃2
∂x1

∂x̃3

∂x2

∂x̃0
∂x2

∂x̃1
∂x2

∂x̃2
∂x2

∂x̃3

∂x3

∂x̃0
∂x3

∂x̃1
∂x3

∂x̃2
∂x3

∂x̃3

∥∥∥∥∥∥∥∥∥∥∥∥∥

. (2.67)

Because the fundamental metric tensor gαβ is transformable accord-
ing to the rule

g̃αβ =
∂xµ

∂x̃α
∂xν

∂x̃β
gµν , (2.68)

its determinant in the tilde-marked reference frame is

g̃ = det
∥∥∥∥
∂xµ

∂x̃α
∂xν

∂x̃β
gµν

∥∥∥∥ = J2g . (2.69)

Because in the Galilean (non-tilde-marked) reference frame

g = det ‖gαβ‖ = det

∥∥∥∥∥∥∥∥

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥∥∥∥∥∥∥∥
= −1, (2.70)

then J2 =−g̃2. Expressing ẽαβµν in an arbitrary reference frame as
Eαβµν and writing down the metric tensor in a regular non-tilde-marked
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form, we obtain Eαβµν = eαβµν
√−g (2.65). In the same way, we ob-

tain transformation rules for the components Eαβµν , because for them
g= g̃ J̃2, where J̃ = det

∥∥∂x̃α

∂xσ

∥∥.
The discriminant tensor Eαβµν is not a physical observable quantity.

A physical observable reference of asymmetry of tensor fields is the three-
dimensional discriminant chr.inv.-tensor

εαβγ = hαµh
β
νh

γ
ρbσE

σµνρ = bσE
σαβγ , (2.71)

εαβγ = hµαh
ν
βh

ρ
γb
σEσµνρ = bσEσαβγ , (2.72)

which in the accompanying reference frame (bi =0), taking into account
that

√
−g=

√
h

√
g00, takes the form

εikm = b0E
0ikm =

√
g00E

0ikm =
eikm√
h
, (2.73)

εikm = b0E0ikm =
E0ikm√
g00

= eikm
√
h . (2.74)

With its help, we can transform chr.inv.-tensors into chr.inv.-pseudo-
tensors. For instance, taking the antisymmetric chr.inv.-tensor of an-
gular velocities of the space rotation Aik (1.36), we obtain the chr.inv.-
pseudovector of this rotation Ω∗i = 1

2
εikmAkm.

§2.4 Differential and derivative to a direction

In geometry, a differential of a function is its variation between two
infinitely close points with coordinates xα and xα+ dxα. Respectively,
the absolute differential in an n-dimensional space is the variation of
an n-dimensional quantity between two infinitely close points of n-
dimensional coordinates in this space. For continuous functions, which
we commonly deal with in practice, their variations between infinitely
close points are infinitesimal. But in order to define infinitesimal varia-
tion of a tensor quantity, we can not use simple “difference” between its
numerical values in the points xα and xα+ dxα, because tensor algebra
does not define the ratio between the numerical values of a tensor in
different points in space. This ratio can be defined only using rules of
transformation of tensors from one reference frame into another. As a
consequence, differential operators and the results of their application
to tensors must be tensors.

For instance, the absolute differential of a tensor quantity is a tensor
of the same rank as the original tensor itself. For a scalar ϕ it is the
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scalar
Dϕ =

∂ϕ

∂xα
dxα, (2.75)

which in the accompanying reference frame (bi =0) is

Dϕ =
∗∂ϕ
∂t

dτ +
∗∂ϕ
∂xi

dxi. (2.76)

As it is easy to see, apart from three-dimensional observable differ-
ential there is an additional term which takes into account the depen-
dence of the absolute displacement Dϕ on the flow of physical observable
time dτ .

The absolute differential of a contravariant vector Aα, formulated
with the operator of absolute derivation ∇ (nabla), is

DAα = ∇σAαdxσ =
∂Aα

∂xσ
dxσ+ΓαµσA

µdxσ = dAα+ΓαµσA
µdxσ, (2.77)

where ∇σAα is the absolute derivative of Aα with respect to xσ, and d
stands for regular differentials

∇σAα =
∂Aα

∂xσ
+ ΓαµσA

µ, (2.78)

d =
∂

∂xα
dxα. (2.79)

Formulating the absolute differential with physical observable quan-
tities is equivalent to projecting its general covariant form on time lines
and the spatial section in the accompanying reference frame

T = bαDAα =
g0αDAα√

g00
, Bi = hiαDAα. (2.80)

Denoting chr.inv.-projections of the vector Aα as

ϕ =
A0√
g00

, qi = Ai, (2.81)

we have its remaining components

A0 = ϕ
(
1− w

c2

)
, A0 =

ϕ+ 1
c viq

i

1− w

c2

, Ai = −qi − ϕ

c
vi . (2.82)

Because a regular differential in chr.inv.-form is

d =
∗∂
∂t
dτ +

∗∂
∂xi

dxi , (2.83)



2.4 Differential and derivative to a direction 45

after substituting it and the Christoffel symbols, taken in the accompa-
nying reference frame (1.41–1.46), into T and Bi (2.80), we obtain the
chr.inv.-projections of the absolute differential of the vector Aα

T = bαDAα = dϕ+
1
c

(−Fiqidτ +Dikq
idxk

)
, (2.84)

Bi = hiσDAσ = dqi +
(ϕ
c
dxk + qkdτ

) (
Di
k +A·ik·

)−

− ϕ

c
F idτ + ∆i

mk q
mdxk.

(2.85)

To build chr.inv.-equations of motion, we will also need chr.inv.-
projections of the absolute derivative of a vector to the direction, tan-
gential to the trajectory. From geometric viewpoint a derivative to
a given direction of a function is its change with respect to elemen-
tary displacement along the given direction. The absolute derivative
to the given direction in an n-dimensional space is a change of an n-
dimensional quantity with respect to an elementary n-dimensional in-
terval along the given direction. For instance, the absolute derivative of
a scalar function ϕ to a direction, defined by a curve xα =xα (ρ), where
ρ is a non-zero monotone parameter along this curve, shows the “rate”
of change of this function

Dϕ
dρ

=
dϕ

dρ
. (2.86)

In the accompanying reference frame it is

Dϕ
dρ

=
∗∂ϕ
∂t

dτ

dρ
+
∗∂ϕ
∂xi

dxi

dρ
. (2.87)

The absolute derivative of a vector Aα to the given direction of a
curve xα =xα (ρ) is

DAα

dρ
= ∇σAα dx

σ

dρ
=
dAα

dρ
+ ΓαµσA

µ dx
σ

dρ
, (2.88)

its chr.inv.-projections are

bα
DAα

dρ
=
dϕ

dρ
+

1
c

(
−Fiqi dτ

dρ
+Dikq

i dx
k

dρ

)
, (2.89)

hiσ
DAσ

dρ
=
dqi

dρ
+

(
ϕ

c

dxk

dρ
+ qk

dτ

dρ

) (
Di
k +A·ik·

)−

− ϕ

c
F i

dτ

dρ
+ ∆i

mk q
m dx

k

dρ
.

(2.90)
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Actually, the projections are “generic” chr.inv.-equations of motion.
But once we define a particular vector for the motion of a particle,
we calculate its chr.inv.-projections and substitute them into the given
equations, we immediately obtain chr.inv.-equations of the motion.

§2.5 Divergence and curl

The divergence of a tensor field is its “change” along a coordinate axis.
Respectively, the absolute divergence of an n-dimensional tensor field is
its divergence in an n-dimensional space. The divergence of a tensor
field is a result of contraction of the field tensor with the operator of
absolute derivation ∇. The divergence of a vector field is the scalar

∇σAσ =
∂Aσ

∂xσ
+ ΓσσµA

µ, (2.91)

while the divergence of a field of the 2nd rank tensor is the vector

∇σ F σα =
∂F σα

∂xσ
+ ΓσσµF

αµ + ΓασµF
σµ, (2.92)

where, as it can be proved, Γσσµ is

Γσσµ =
∂ ln

√−g
∂xµ

. (2.93)

To prove this, we will use the definition of the Christoffel symbols.
Then we write down Γσσµ in details

Γσσµ = gσρΓµσ,ρ =
1
2
gσρ

(
∂gµρ
∂xσ

+
∂gσρ
∂xµ

− ∂gµσ
∂xρ

)
. (2.94)

Because σ and ρ are free indices here, they can change their sites.
As a result, after contraction with the tensor gρσ the first and the last
terms cancel each other, so Γσσµ takes the form

Γσσµ =
1
2
gρσ

∂gρσ
∂xµ

. (2.95)

The quantities gρσ are components of a tensor reciprocal to the ten-
sor gρσ. Therefore, each component of the matrix gρσ is

gρσ =
aρσ

g
, g = det ‖gρσ‖ , (2.96)

where aρσ is the algebraic co-factor of the matrix element with indices
ρσ, equal to (−1)ρ+σ, multiplied by the determinant of the matrix ob-
tained by crossing the row and the column with numbers σ and ρ out of
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the matrix gρσ. As a result, we obtain aρσ = ggρσ. Because the deter-
minant of the fundamental metric tensor g= det ‖gρσ‖ by definition is

g =
∑

α0...α3

(−1)N(α0...α3) g0(α0)g1(α1)g2(α2)g3(α3) , (2.97)

then the quantity dg will be dg= aρσdgρσ = ggρσdgρσ, or

dg

g
= gρσdgρσ . (2.98)

Integration of the left hand side gives ln (−g), because the g is neg-
ative while logarithm is defined for only positive functions. Then, we
have d ln (−g) = dg

g . Taking into account that (−g) 1
2 = 1

2
ln (−g), we

obtain
d ln

√−g =
1
2
gρσdgρσ , (2.99)

so Γσσµ (2.95) takes the form

Γσσµ =
1
2
gρσ

∂gρσ
∂xµ

=
∂ ln

√−g
∂xµ

, (2.100)

which has been proved (2.93).
Now, we are going to deduce chr.inv.-projections of the divergence

of a vector field (2.91) and of a tensor field of the 2nd rank (2.92). The
divergence of a vector field Aα is scalar, hence ∇σAσ can not be pro-
jected on time lines and the spatial section, but, this is enough to express
through chr.inv.-projections of Aα and through observable properties of
the reference space. Besides, regular operators of derivation shall be
replaced with the chr.inv.-operators.

Assuming notations ϕ and qi for chr.inv.-projections of the vector Aα

(2.81), we express the remaining components of the vector through them
(2.82). Then, substituting regular operators of derivations, expressed
through the chr.inv.-operators

1√
g00

∂

∂t
=

∗∂
∂t
,

√
g00 = 1− w

c2
, (2.101)

∗∂
∂xi

=
∂

∂xi
+

1
c2
vi
∗∂
∂t
, (2.102)

into (2.91), and taking into account that
√
−g=

√
h

√
g00 after some

algebra we obtain

∇σAσ =
1
c

(∗∂ϕ
∂t

+ ϕD

)
+
∗∂qi

∂xi
+ qi

∗∂ ln
√
h

∂xi
− 1
c2
Fi q

i. (2.103)
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In the third term the quantity
∗∂ ln

√
h

∂xi
= ∆j

ji (2.104)

stands for the Christoffel chr.inv.-symbols ∆k
ji (1.47), contracted by two

symbols. Hence, similarly, to the definition of the absolute divergence
of a vector field (2.91), the quantity

∗∂qi

∂xi
+ qi

∗∂ ln
√
h

∂xi
=

∗∂qi

∂xi
+ qi∆j

ji = ∗∇i qi (2.105)

is the chr.inv.-divergence of a three-dimensional vector field qi. Con-
sequently, we call the physical chr.inv.-divergence of the vector field qi

the chr.inv.-quantity
∗∇̃i qi = ∗∇i qi − 1

c2
Fi q

i, (2.106)

in which the 2nd term takes into account the fact that the pace of
time is different on the opposite walls of an elementary volume [9].
As a matter of fact, that in calculation of divergence we consider an
elementary volume of the space, so we calculate the difference between
the amounts of a “substance” which flows in and out of the volume over
an elementary time interval. But the presence of gravitational inertial
force F i (1.38) results in different pace of time at different points in
the space. Therefore, if we measure durations of time intervals at the
opposite walls of the volume, the beginnings and the ends of the interval
will not coincide making them invalid for comparison. Synchronization
of clocks at the opposite walls of the volume will give the true picture
— the measured durations of the intervals will be different.

The final equation for ∇σAσ will be

∇σAσ =
1
c

(∗∂ϕ
∂t

+ ϕD

)
+ ∗∇̃i qi. (2.107)

The second term in this formula is a physical observable analogous
to a regular divergence in the observer’s three-dimensional space. The
first term has no equivalent, it is made up of two parts:

∗∂ϕ
∂t

is the var-
iation in time of the time projection ϕ of the vector Aα, while Dϕ
is the variation in time of a volume of the three-dimensional vector
field qi, because the spur of the chr.inv.-tensor of the rate of the space
deformations D=hikDik =Dn

n is the rate of relative expansion of an
elementary volume of the space.

Applying ∇σAσ =0, to the four-dimensional vector potential Aα of
an electromagnetic field gives Lorentz’ condition for the field. The Lo-
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rentz condition in chr.inv.-form is

∗∇̃i qi = − 1
c

(∗∂ϕ
∂t

+ ϕD

)
. (2.108)

Now we are going to deduce chr.inv.-projections of the divergence
of an arbitrary antisymmetric tensor Fαβ =−F βα (later we will need
them to obtain Maxwell’s equations in chr.inv.-form)

∇σ F σα =
∂F σα

∂xσ
+ΓσσµF

αµ+ΓασµF
σµ =

∂Fσα

∂xσ
+
∂ ln

√−g
∂xµ

Fαµ, (2.109)

where the third term ΓασµF σµ is zero, because of contraction of the
Christoffel symbols Γασµ (which are symmetric by their lower indices)
and an antisymmetric tensor F σµ is zero as in the case of any symmetric
and antisymmetric tensor.

The term∇σ F σα is a four-dimensional vector, so its chr.inv.-project-
ions are

T = bα∇σ Fσα, Bi = hiα∇σ F σα = ∇σ F iα. (2.110)

We denote chr.inv.-projections of the tensor Fαβ as follows

Ei =
F ·i0·√
g00

, Hik = F ik, (2.111)

then the remaining non-zero components of the tensor are

F ·00· =
1
c
vkE

k, (2.112)

F ·0k· =
1√
g00

(
Ei − 1

c
vnH

·n
k· −

1
c2
vkvnE

n

)
, (2.113)

F 0i =
Ei − 1

c vkH
ik

√
g00

, F0i = −√g00Ei , (2.114)

F ·ki· = −H ·k
i· −

1
c
viE

k, Fik = Hik +
1
c

(viEk − vkEi) , (2.115)

and the square of this tensor Fαβ is

FαβF
αβ = HikH

ik − 2EiEi. (2.116)

Substituting the components into (2.110) and replacing regular op-
erators of derivation with the chr.inv.-operators, after some algebra we
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obtain

T =
∇σ F ·σ0·√
g00

=
∗∂Ei

∂xi
+ Ei

∗∂ ln
√
h

∂xi
− 1
c
HikAik , (2.117)

Bi = ∇σ Fσi =
∗∂Hik

∂xk
+Hik

∗∂ ln
√
h

∂xk
− 1
c2
FkH

ik −

− 1
c

(∗∂Ei

∂t
+DEi

)
,

(2.118)

where Aik is the antisymmetric chr.inv.-tensor of non-holonomity of the
space. Taking into account that

∗∂Ei

∂xi
+ Ei

∗∂ ln
√
h

∂xi
= ∗∇iEi (2.119)

is the chr.inv.-divergence of the vector Ei, and also that

∗∇kHik − 1
c2
FkH

ik = ∗∇̃kHik (2.120)

is the physical chr.inv.-divergence of the tensor Hik we arrive at the
final equations for chr.inv.-projections of the divergence of an arbitrary
antisymmetric tensor Fαβ

T = ∗∇iEi − 1
c
HikAik , (2.121)

Bi = ∗∇̃kHik − 1
c

(∗∂Ei

∂t
+DEi

)
. (2.122)

Hence, we calculate chr.inv.-projections of the divergence of the
pseudotensor F ∗αβ , which is dual to the given antisymmetric tensor
Fαβ , namely

F ∗αβ =
1
2
EαβµνFµν , F∗αβ =

1
2
EαβµνF

µν . (2.123)

We denote its chr.inv.-projections as follows

H∗i =
F ∗·i0·√
g00

, E∗ik = F ∗ik, (2.124)

so there are evident relations H∗i∼Hik and E∗ik ∼Ei between the
chr.inv.-quantities and chr.inv.-projections of the antisymmetric tensor
Fαβ (2.111), because of duality of the given quantities Fαβ and F ∗αβ .
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Therefore, given that

F ∗·i0·√
g00

=
1
2
εipqHpq , F ∗ik = − εikpEp , (2.125)

the remaining components of the pseudotensor F ∗αβ , formulated with
the chr.inv.-projections of its dual tensor Fαβ (2.111) are

F ∗·00· =
1
2c
vk ε

kpq

[
Hpq +

1
c

(vpEq − vqEp)
]
, (2.126)

F ∗·0i· =
1

2
√
g00

[
ε·pqi· Hpq +

1
c
ε·pqi· (vpEq − vqEp)−

− 1
c2
εkpqvivkHpq − 1

c3
εkpqvivk (vpEq − vqEp)

]
,

(2.127)

F ∗0i =
1

2
√
g00

εipq
[
Hpq +

1
c

(vpEq − vqEp)
]
, (2.128)

F∗0i =
1
2
√
g00 εipqH

pq, (2.129)

F ∗·ki· = ε·kpi· Ep −
1
2c
vi ε

kpqHpq − 1
c2
vivm ε

mkpEp , (2.130)

F∗ik = εikp

(
Ep − 1

c
vqH

pq

)
, (2.131)

while its square is

F∗αβF ∗αβ = εipq (EpHiq − EiHpq) , (2.132)

where εipq is the three-dimensional discriminant chr.inv.-tensor (2.73,
2.74). Then the chr.inv.-projections of the divergence of the pseudoten-
sor F ∗αβ are

∇σ F ∗·σ0·√
g00

=
∗∂H∗i

∂xi
+H∗i

∗∂ ln
√
h

∂xi
− 1
c
E∗ikAik , (2.133)

∇σ F ∗σi =
∗∂E∗ik

∂xi
+ E∗ik

∗∂ ln
√
h

∂xk
− 1
c2
FkE

∗ik −

− 1
c

(∗∂H∗i

∂t
+DH∗i

)
,

(2.134)

or, using respective formulae which determine the chr.inv.-divergence
∗∇iH∗i and also the physical chr.inv.-divergence ∗∇̃kE∗ik, as well as
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(2.119, 2.120), we obtain

∇σ F ∗·σ0·√
g00

= ∗∇iH∗i − 1
c
E∗ikAik , (2.135)

∇σ F ∗σi = ∗∇̃kE∗ik − 1
c

(∗∂H∗i

∂t
+DH∗i

)
. (2.136)

Apart from the divergence of vectors, antisymmetric tensors and
pseudotensors of the 2nd rank, we need to deduce chr.inv.-projections
of the divergence of a symmetric tensor of the 2nd rank (we will need
them to obtain the conservation laws in chr.inv.-form). We will uplift
them fully from Zelmanov [9]. Like Zelmanov did in his theory, we
denote chr.inv.-projections of a symmetric tensor Tαβ as follows

T00

g00
= ρ ,

T i0√
g00

= Ki, T ik = N ik, (2.137)

according to [9] we have

∇σ T σ0√
g00

=
∗∂ρ
∂t

+ ρD +DikN
ik + c ∗∇iKi − 2

c
FiK

i, (2.138)

∇σ Tσi = c
∗∂Ki

∂t
+ cDKi + 2c

(
Di
k +A·ik·

)
Kk +

+ c2 ∗∇kN ik − FkN
ik − ρF i.

(2.139)

Among the internal (scalar) product of a tensor with the operator
of absolute derivation ∇, which is the divergence of this tensor field, we
can consider a difference between the covariant derivatives of the field.
This quantity is known as a curl of the field, because from geometric
viewpoint, it is the vortex (rotation) of the field. The absolute curl
is the curl of a n-dimensional tensor field in a n-dimensional space.
The curl of an arbitrary four-dimensional vector field Aα is a covariant
antisymmetric 2nd rank tensor, defined as follows∗

Fµν = ∇µAν −∇ν Aµ =
∂Aν
∂xµ

− ∂Aµ
∂xν

, (2.140)

where ∇µAν is the absolute derivative of the Aα with respect to the
coordinate xµ

∇µAν =
∂Aν
∂xµ

− ΓσνµAσ . (2.141)

∗See §98 in the well-known book authored by Peter Raschewski [18]. Actually,
curl is not the tensor (2.140), but its dual pseudotensor (2.142), because the invari-
ance with respect to reflection is necessary for any rotations.
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The curl, contracted with the four-dimensional absolutely antisym-
metric discriminant tensor Eαβµν (2.65), is the pseudotensor

F ∗αβ = Eαβµν (∇µAν −∇ν Aµ) = Eαβµν
(
∂Aν
∂xµ

− ∂Aµ
∂xν

)
. (2.142)

In electrodynamics Fµν (2.140) is the tensor of an electromagnetic
field (Maxwell’s tensor), which is the curl of the four-dimensional po-
tential Aα of this electromagnetic field. Therefore, later, we will need
formulae for chr.inv.-projections of the four-dimensional curl Fµν and
its dual pseudotensor F ∗αβ , expressed through chr.inv.-projections of
the four-dimensional vector potential Aα (2.81), which forms them.

Let us calculate components of the curl Fµν , taking into account
that F00 =F 00 =0 just like for any other antisymmetric tensor. As a
result, after some algebra we obtain

F0i =
(
1− w

c2

) (
ϕ

c2
Fi −

∗∂ϕ
∂xi

− 1
c

∗∂qi
∂t

)
, (2.143)

Fik =
∗∂qi
∂xk

−
∗∂qk
∂xi

+
ϕ

c

(
∂vi
∂xk

− ∂vk
∂xi

)
+

+
1
c

(
vi
∗∂ϕ
∂xk

− vk
∗∂ϕ
∂xi

)
+

1
c2

(
vi
∗∂qk
∂t

− vk
∗∂qi
∂t

)
,

(2.144)

F ·00· = − ϕ

c3
vkF

k +
1
c
vk

( ∗∂ϕ
∂xk

+
1
c

∗∂qk
∂t

)
, (2.145)

F ·0k· = − 1√
g00

[
ϕ

c2
Fk −

∗∂ϕ
∂xk

− 1
c

∗∂qk
∂t

+

+
2ϕ
c2

vmAmk +
1
c2
vkv

m

( ∗∂ϕ
∂xm

+
1
c

∗∂qm
∂t

)
−

− 1
c
vm

(∗∂qm
∂xk

−
∗∂qk
∂xm

)
− ϕ

c4
vkvmF

m

]
,

(2.146)

F ·ik· = him
(∗∂qm
∂xk

−
∗∂qk
∂xm

)
− 1
c
himvk

∗∂ϕ
∂xm

−

− 1
c2
himvk

∗∂qm
∂t

+
ϕ

c3
vkF

i +
2ϕ
c
A·ik· ,

(2.147)

F 0k =
1√
g00

[
hkm

( ∗∂ϕ
∂xm

+
1
c

∗∂qm
∂t

)
− ϕ

c2
F k+

+
1
c
vnhmk

(∗∂qn
∂xm

−
∗∂qm
∂xn

)
− 2ϕ
c2

vmA
mk

]
,

(2.148)
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F ·i0·√
g00

=
giαF0α√
g00

= hik
( ∗∂ϕ
∂xk

+
1
c

∗∂qk
∂t

)
− ϕ

c2
F i, (2.149)

F ik = giαgkβFαβ = himhkn
(∗∂qm
∂xn

−
∗∂qn
∂xm

)
− 2ϕ

c
Aik, (2.150)

where (2.149, 2.150) are chr.inv.-projections of the curl Fµν . Respec-
tively, chr.inv.-projections of its dual pseudotensor F ∗αβ are

F ∗·i0·√
g00

=
g0αF

∗αi
√
g00

= εikm
[

1
2

(∗∂qk
∂xm

−
∗∂qm
∂xk

)
− ϕ

c
Akm

]
, (2.151)

F ∗ik = εikm
(
ϕ

c2
Fm −

∗∂ϕ
∂xm

− 1
c

∗∂qm
∂t

)
, (2.152)

where F ∗·i0· = g0αF
∗αi = g0αE

αiµνFµν can be calculated using already
mentioned components of the curl Fµν (2.143–2.148).

§2.6 Laplace’s operator and d’Alembert’s operator

Laplace’s operator is the three-dimensional operator of derivation

∆ = ∇∇ = ∇2 = −gik∇i∇k . (2.153)

Its four-dimensional generalization in a pseudo-Riemannian space is
d’Alembert’s general covariant operator

¤ = gαβ ∇α∇β . (2.154)

In the Minkowski space, the operators take the form

∆ =
∂2

∂x1∂x1
+

∂2

∂x2∂x2
+

∂2

∂x3∂x3
, (2.155)

¤ =
1
c2
∂2

∂t2
− ∂2

∂x1∂x1
− ∂2

∂x2∂x2
− ∂2

∂x3∂x3
=

1
c2

∂2

∂t2
−∆ . (2.156)

Our goal is to apply d’Alembert operator to scalar and vector fields,
located in a pseudo-Riemannian space, and also to present the results
in chr.inv.-form. At first, we apply d’Alembert operator to a four-
dimensional scalar field ϕ, because in this case the calculations will
be much simpler (the absolute derivative of a scalar field ∇αϕ does not
contain the Christoffel symbols, so it becomes regular derivative)

¤ϕ = gαβ ∇α∇β ϕ = gαβ
∂ϕ

∂xα

(
∂ϕ

∂xβ

)
= gαβ

∂2ϕ

∂xα∂xβ
. (2.157)
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Henceforth, we formulate components of the fundamental metric
tensor in terms of chronometric invariants. For gik from (1.18) we obtain
gik =−hik. Components g0i are obtained from the linear velocity of the
space rotation vi =− c g0i√g00

g0i = − 1
c
√
g00

vi. (2.158)

Component g00 can be obtained from the main property of the fun-
damental metric tensor gασgβσ = gβα. Setting α=β=0, gives

g0σg
0σ = g00g

00 + g0ig
0i = δ00 = 1, (2.159)

then, taking into account that

g00 =
(
1− w

c2

)2

, g0i = −1
c
vi

(
1− w

c2

)
, (2.160)

we obtain the formula

g00 =
1

(
1− w

c2

)2

(
1− 1

c2
viv

i
)
, viv

i = hik v
ivk = v2. (2.161)

Substituting the obtained formulae into ¤ϕ (2.157) and replacing
regular operators of derivation with the chr.inv.-operators, we obtain
d’Alembertian of the scalar field in chr.inv.-form

¤ϕ =
1
c2

∗∂2ϕ

∂t2
− hik

∗∂2ϕ

∂xi∂xk
= ∗¤ϕ , (2.162)

where, in contrast to the regular operators, ∗¤ is the d’Alembert chr.
inv.-operator, and ∗∆ is the Laplace chr.inv.-operator

∗¤ =
1
c2

∗∂2

∂t2
− hik

∗∂2

∂xi∂xk
, (2.163)

∗∆ = −gik ∗∇i ∗∇k = hik
∗∂2

∂xi∂xk
. (2.164)

Now, we apply d’Alembert operator to an arbitrary four-dimensional
vector field Aα

¤Aα = gµν ∇µ∇ν Aα. (2.165)

Since ¤Aα is a four-dimensional vector, chr.inv.-projections of this
quantity are

T = bσ ¤Aσ = bσ g
µν ∇µ∇ν Aσ, (2.166)

Bi = hiσ ¤Aσ = hiσ g
µν ∇µ∇ν Aσ. (2.167)
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In general, to obtain d’Alembertian in chr.inv.-form for a vector
field in a pseudo-Riemannian space is not a trivial task, because the
Christoffel symbols are not zeroes, so formulae for projections of the
second derivatives take dozens of pages∗.

After some difficult algebra, we obtain required formulae for the
chr.inv.-projections of the d’Alembertian of the vector field Aα in a
pseudo-Riemannian space

T = ∗¤ϕ− 1
c3

∗∂
∂t

(
Fkq

k
)− 1

c3
Fi

∗∂qi

∂t
+

1
c2
F i

∗∂ϕ
∂xi

+

+hik∆m
ik

∗∂ϕ
∂xm

− hik
1
c

∗∂
∂xi

[
(Dkn +Akn) qn

]
+
D

c2

∗∂ϕ
∂t

−

− 1
c
Dk
m

∗∂qm

∂xk
+

2
c3
AikF

iqk +
ϕ

c4
FiF

i − ϕ

c2
DmkD

mk −

− D

c3
Fmq

m − 1
c

∆m
knD

k
mq

n +
1
c
hik∆m

ik (Dmn +Amn) qn,

(2.168)

Bi = ∗¤Ai +
1
c2

∗∂
∂t

[(
Di
k +A·ik·

)
qk

]
+
D

c2

∗∂qi

∂t
+

+
1
c2

(
Di
k +A·ik·

) ∗∂qk
∂t

− 1
c3

∗∂
∂t

(
ϕF i

)− 1
c3
F i

∗∂ϕ
∂t

+

+
1
c2
F k

∗∂qi

∂xk
− 1
c

(
Dmi+Ami

) ∗∂ϕ
∂xm

+
1
c4
qkFkF

i+

+
1
c2

∆i
kmq

mF k − ϕ

c3
DF i +

D

c2
(
Di
n +A·in·

)
qn −

−hkm
{ ∗∂
∂xk

(
∆i
mnq

n
)

+
1
c

∗∂
∂xk

[
ϕ

(
Di
m +A·im·

)]
+

+
(
∆i
kn∆

n
mp −∆n

km∆i
np

)
qp +

ϕ

c

[
∆i
kn (Dn

m +A·nm·)−

−∆n
km

(
Di
n +A·in·

)]
+ ∆i

kn

∗∂qn

∂xm
−∆n

km

∗∂qi

∂xn

}
,

(2.169)

where ∗¤ϕ and ∗¤qi are results from application of d’Alembert chr.inv.-
operator (2.163) to the quantities ϕ= A0√

g00
and qi =Ai, which are chr.

∗This is one of the reasons why practical applications of the theory of electro-
magnetic field are mainly calculated in a Galilean reference frame in the Minkowski
space (the space-time of the Special Theory of Relativity), where the Christoffel
symbols are zeroes. As a matter of fact, general covariant notation hardly permits
unambiguous interpretation of calculation results, unless they are formulated with
physical observable quantities (chronometric invariants) or demoted to a simple spe-
cific case, like that in the Minkowski space, for instance.
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inv.-projections (physical observable components) of the vector Aα,

∗¤ϕ=
1
c2

∗∂2ϕ

∂t2
−hik

∗∂2ϕ

∂xi∂xk
, (2.170)

∗¤qi= 1
c2

∗∂2qi

∂t2
−hkm

∗∂2qi

∂xk∂xm
. (2.171)

The main criterion for correct calculations in such a complicate
case as here (the chr.inv.-projections of the d’Alembertian of a vec-
tor field, which resulted formulae 2.168 and 2.169) is Zelmanov’s rule
of chronometric invariance: “Correct calculations make all terms in the
final equations chronometrically invariant quantities. That is, they con-
sist of chr.inv.-quantities themselves, their chr.inv.-derivatives and also
chr.inv.-properties of the reference space. If any single mistake is made
during calculations, the terms of the final equations will not be chrono-
metric invariants”.

D’Alembert operator from a tensor field, equated to zero or not zero,
gives d’Alembert equations for this field. From the physical viewpoint,
these are equations of propagation of waves of the field. If d’Alembertian
is not zero, these are equations of propagation of waves enforced by
the field-inducing sources (d’Alembert equations with sources). For in-
stance, the sources in electromagnetic fields are electric charges and
currents. If d’Alembert operator for a field is zero, then these are equa-
tions of propagation of waves of the field not related to any sources. If
the space-time area under consideration, aside from the tensor field in
this question, is filled with another medium, then d’Alembert equations
will gain an additional term to characterize the media, which can be
obtained from the equations which define it.

§2.7 Conclusions

We are now ready to outline the results of this Chapter. Apart from
general knowledge of tensors and tensor algebra, we have obtained some
tools to facilitate our calculations in the next Chapters. Equality to zero
of the absolute derivative of the dynamic vector of a particle to its di-
rection of motion sets the equations of motion of this particle. Equality
to zero of the divergence of a vector field sets the Lorentz condition
and the continuity equation for this field. Equality to zero of the di-
vergence of a symmetric tensor of the 2nd rank sets the conservation
law, while equality to zero of an antisymmetric tensor of the 2nd rank
(and of its dual pseudotensor) set the Maxwell equations. The curl of
a vector field, applied to an electromagnetic field, is the field tensor
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(the Maxwell tensor). The d’Alembert equations for a given field are
equations of propagation of the field waves.

So, we have a brief list of possible applications of the mathematical
apparatus in our possession. Hence, if we now come across an antisym-
metric tensor or a differential operator, we may simply use templates
already obtained in this Chapter.



Chapter 3 Motion of Charged Particles

§3.1 Problem statement

In this Chapter, we will set forth the theory of electromagnetic field
and moving charged particles in a four-dimensional pseudo-Riemannian
space. The peculiarity, which makes this theory different from regular
relativistic electrodynamics, is that all equations here will be given in
chr.inv.-form (in other words, expressed through physical observable
quantities).

An electromagnetic field is commonly studied as a vector field of
the electromagnetic four-dimensional potential Aα, located in the four-
dimensional pseudo-Riemannian space. Its time component is known as
the scalar potential ϕ of the field, while its spatial components make up
the so-called vector-potential Ai. The four-dimensional electromagnetic
potential Aα in CGSE and Gaussian systems of units has the dimensions

Aα [ gram1/2 cm1/2 sec−1 ]. (3.1)

As it is evident, its components ϕ and Ai have the same dimensions.
Therefore, studying electromagnetic fields is substantially different from
studying gravitational fields: according to the theory of chronometric
invariants, gravitational inertial force F i and gravitational potential w
(1.38) are functions of geometric properties of the space only, while elec-
tromagnetic fields (the fields of the electromagnetic potential Aα) has
not been “geometrically interpreted” yet, so we have to study electro-
magnetic fields just as external vector fields introduced into the space.

Equations of Classical Electrodynamics — Maxwell’s equations,
which define the relationship between the electric and magnetic com-
ponents of the given field, — had been obtained long before theo-
retical physics accepted the terms of Riemannian geometry and even
Minkowski’s space of the Special Theory of Relativity. Later, when
electrodynamics was set forth in the Minkowski space under the name
of relativistic electrodynamics, the Maxwell equations had been obtained
in four-dimensional form. Then, the Maxwell equations in general co-
variant form, acceptable for any pseudo-Riemannian space had been ob-
tained. But having accepted general covariant form, the Maxwell equa-
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equations became less illustrative, which used to be an advantage of
Classical Electrodynamics. On the other hand, four-dimensional equa-
tions in the Minkowski space can be simply presented as their scalar
(time) and vector (spatial) components, because in a Galilean refer-
ence frame they are observable quantities by definition. But when we
turn to an inhomogeneous, anisotropic, curved, and deforming pseudo-
Riemannian space, the problem of comparing the vector and scalar com-
ponents in general covariant equations with equations of Classical Elec-
trodynamics becomes non-trivial. In other words, a question arises on
which quantities in relativistic electrodynamics can be assumed as phys-
ical observables.

Thus, the equations of relativistic electrodynamics in a pseudo-
Riemannian space shall be formulated with physical observable com-
ponents (chr.inv.-projections) of the electromagnetic field potential and
also observable properties of the space. We are going to tackle the
problem using the mathematical apparatus of chronometric invariants,
namely — projecting general covariant quantities on time lines and the
spatial section of a real observer. The results we are going to obtain
using this method will help us to arrive at observable generalization of
the basic quantities and the laws of relativistic electrodynamics. Also,
Classical Electrodynamics, which will take into account the effects of
physical and geometric properties of the observer’s reference space will
be obtained.

§3.2 Observable components of the electromagnetic field
tensor. The field invariants

By definition, the tensor of an electromagnetic field is the curl of its
four-dimensional potential Aα. This field tensor is also referred to as
Maxwell’s tensor

Fµν = ∇µAν −∇ν Aµ =
∂Aν
∂xµ

− ∂Aµ
∂xν

. (3.2)

As it is easy to see, this formula is a general covariant generalization
of three-dimensional quantities in Classical Electrodynamics

~E = −−→∇ϕ− 1
c

∂ ~A

∂t
, ~H = curl ~A , (3.3)

where ~E and ~H are the strength vectors of the electric and magnetic
components of the field, respectively. Here ϕ is the scalar potential and
~A is the spatial vector-potential of the field, and

−→∇ =~ı
∂

∂x
+ ~

∂

∂y
+ ~k

∂

∂z
(3.4)
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is the gradient operator in three-dimensional Euclidean space.
At first, in this section, we are going to determine the components of

the electromagnetic field tensor Fαβ that are physical observable quan-
tities in a given pseudo-Riemannian space. Then, we are going to find a
relationship between the observable quantities and the electric strength
~E and the magnetic strength ~H of the field in Classical Electrodynamics.
The strength vectors will also be obtained in the pseudo-Riemannian
space, which in general is inhomogeneous, anisotropic, curved, and de-
formed.

It is important to take note of this. Since in the Minkowski space (the
space-time of the Special Theory of Relativity) in an inertial reference
frame (the one, which moves linearly at a constant velocity) the metric is

ds2 = c2dt2 − dx2 − dy2 − dz2, (3.5)

and components of the fundamental metric tensor are

g00 = 1 , g0i = 0 , g11 = g22 = g33 = −1 , (3.6)

no difference exists between covariant and contravariant components of
Aα (in particular, this is why all calculations in the Minkowski space
are much simpler)

ϕ = A0 = A0, Ai = −Ai. (3.7)

In the pseudo-Riemannian space (and in Riemannian spaces in gen-
eral) there is a difference, because the metric has more general form.
Therefore, the scalar potential and the vector-potential of the electro-
magnetic field we are considering shall be defined as chr.inv.-projections
(physical observable components) of the four-dimensional potential Aα

ϕ = bαAα =
A0√
g00

, qi = hiσA
σ = Ai. (3.8)

The remaining components of Aα, are not chr.inv.-quantities. They
are formulated with ϕ and qi as follows

A0 =
1

1− w

c2

(
ϕ+

1
c
viq

i
)
, Ai = −qi − ϕ

c
vi . (3.9)

Note, in accordance with the theory of chronometric invariants, the
covariant chr.inv.-vector qi is obtained from the contravariant chr.inv.-
vector qi as a result of lowering the index using the metric chr.inv.-tensor
hik as follows; qi =hikq

k. On the contrary, the regular covariant vector
Ai, which is not a chr.inv.-quantity, is obtained as a result of lowering
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the index using the fundamental metric tensor, so that Ai = giαA
α.

According to the general formula for the square of a vector (2.39),
the square of the potential Aα in the accompanying reference frame is

AαA
α = gαβA

αAβ = ϕ2 − hikq
iqk = ϕ2 − q2, (3.10)

and the quantity is real, if ϕ2>q2; imaginary, if ϕ2<q2; zero (isotropic),
if ϕ2 = q2.

Now, using components of the potential Aα (3.8, 3.9) in the defini-
tion of the electromagnetic field tensor Fαβ (3.2), formulating regular
derivatives with chr.inv.-derivatives (1.33), and using formulae for com-
ponents of the curl of an arbitrary vector field (2.143–2.150), we obtain
chr.inv.-projections of the tensor Fαβ

F ·i0·√
g00

=
giαF0α√
g00

= hik
( ∗∂ϕ
∂xk

+
1
c

∗∂qk
∂t

)
− ϕ

c2
F i, (3.11)

F ik = giαgkβFαβ = himhkn
(∗∂qm
∂xn

−
∗∂qn
∂xm

)
− 2ϕ

c
Aik. (3.12)

We denote the chr.inv.-projections of the electromagnetic field tensor
in a classic way as follows

Ei =
F ·i0·√
g00

, Hik = F ik, (3.13)

so the covariant (lower-index) chr.inv.-quantities are

Ei = hikE
k =

∗∂ϕ
∂xi

+
1
c

∗∂qi
∂t

− ϕ

c2
Fi , (3.14)

Hik = himhknH
mn =

∗∂qi
∂xk

−
∗∂qk
∂xi

− 2ϕ
c
Aik , (3.15)

while the mixed components H ·m
k· =−Hm·

·k are obtained from Hik us-
ing the metric chr.inv.-tensor hik, so that H ·m

k· =hkiH
im. In this case,

the space deformation tensor Dik = 1
2

∗∂hik

∂t
(1.40) is also present in the

formulae, but in an implicit way and appears when we substitute the
components qk =hkmq

m into the time derivatives.
Besides, we may as well formulate other components of the elec-

tromagnetic field tensor Fαβ with its chr.inv.-projections Ei and Hik

(3.11) using formulae for components of an arbitrary antisymmetric
tensor (2.112–2.115). This is possible because the generalized formu-
lae (2.112–2.115) contain Ei and Hik in “implicit” form, irrespective of
whether they are components of a curl or of an antisymmetric tensor of
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any other kind.
In the Minkowski space, with no acceleration F i, rotation Aik and

deformations Dik, the formula for Ei becomes

Ei =
∂ϕ

∂xi
+

1
c

∂Ai
∂t

, (3.16)

or in three-dimensional vector form

~E = −→∇ϕ+
1
c

∂ ~A

∂t
, (3.17)

which, apart from the sign, matches the formula for ~E in Classical
Electrodynamics.

Now, we formulate the electric and magnetic strengths through com-
ponents of the field pseudotensor F ∗αβ , which is dual to the Maxwell
tensor of this field F ∗αβ = 1

2
EαβµνFµν (2.123). So, in accordance with

(2.124), chr.inv.-projections of this pseudotensor are

H∗i =
F ∗·i0·√
g00

, E∗ik = F ∗ik. (3.18)

Using formulae for components of an arbitrary pseudotensor F ∗αβ ,
obtained in Chapter 2 (2.125–2.131), and also formulae for Ei and Hik

(3.14, 3.15), we obtain expanded formulae for H∗i and E∗ik, namely

H∗i =
1
2
εimn

(∗∂qm
∂xn

−
∗∂qn
∂xm

− 2ϕ
c
Amn

)
=

1
2
εimnHmn , (3.19)

E∗ik = εikn
(
ϕ

c2
Fn −

∗∂ϕ
∂xn

− 1
c

∗∂qn
∂t

)
= − εiknEk . (3.20)

It is easy to see that, the following pairs of tensors are dual con-
jugates: H∗i and Hmn, E∗ik and Em. The chr.inv.-pseudovector H∗i

(3.19) includes the term

1
2
εimn

(∗∂qm
∂xn

−
∗∂qn
∂xm

)
=

1
2
εimn (∗∇n qm − ∗∇m qn) , (3.21)

which is the chr.inv.-curl of the three-dimensional vector field qm. Here
is also the term

1
2
εimn

2ϕ
c
Amn =

2ϕ
c

Ω∗i, (3.22)

where Ω∗i = 1
2
εimnAmn is the chr.inv.-pseudovector of angular velocities

of the space rotation. In a Galilean reference frame in the Minkowski
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space (because there is no acceleration, rotations, and deformations in
that space), the obtained formula for the magnetic strength chr.inv.-
pseudovector H∗i (3.19) takes the form

H∗i =
1
2
εimn

(
∂qm
∂xn

− ∂qn
∂xm

)
, (3.23)

or in three-dimensional vector form, is

~H = curl ~A. (3.24)

Therefore, the structure of a pseudo-Riemannian space affects elec-
tromagnetic fields, located in it, due to the fact that chr.inv.-vectors
of the electric strength Ei (3.14) and the magnetic strength H∗i (3.19)
depend on gravitational potential and rotation of this space.

The same will be true as well in the Minkowski space, if a non-
inertial reference frame, which rotates and moves with acceleration,
is assumed as the observer’s reference frame. But in the Minkowski
space, we can always find a Galilean reference frame (that is not true in
a pseudo-Riemannian space), because the Minkowski space itself does
not accelerate the reference frame and neither rotates nor deforms it.
Therefore, such effects in the Minkowski space are strictly relative.

In relativistic electrodynamics we introduce invariants, which char-
acterize the electromagnetic field we are considering — in other words,
the field invariants

J1 = FµνF
µν = 2F0iF

0i + FikF
ik, (3.25)

J2 = FµνF
∗µν = 2F0iF

∗0i + FikF
∗ik. (3.26)

The first invariant is scalar, while the second is pseudoscalar. For-
mulating them with components of the field tensor, we obtain

J1 = HikH
ik − 2EiEi, J2 = εimn (EmHin −EiHnm) , (3.27)

and using formulae for components of the field pseudotensor F ∗µν ob-
tained in Chapter 2 we write down the field invariants as follows

J1 = −2
(
EiE

i −H∗iH∗i) , J2 = −4EiH∗i. (3.28)

Because the quantities J1 and J2 are invariants, we conclude:
a) If in a reference frame, the squares of the electric and magnetic

strengths are equal E2 =H∗2, then this equality remains unchang-
ed in any other reference frame;
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b) If in a reference frame, the electric and magnetic strengths are
orthogonal EiH∗i = 0, then this orthogonality remains unchanged
in any other reference frame.

An electromagnetic field, where the conditions E2 =H∗2 and
EiH

∗i =0 are true, that is one or both of the field invariants (3.28) are
zeroes, is known as isotropic. Here the term “isotropic” does not stand
for location of this field in light-like area of the space (as it is assumed
in geometry), but rather for the field’s property of equal emissions at
any direction in the three-dimensional space (the spatial section).

The electromagnetic field invariants can be also formulated with
chr.inv.-derivatives of the scalar chr.inv.-potential ϕ and the vector
chr.inv.-potential qi (3.8) as well as with chr.inv.-properties of the ob-
server’s reference space. So, we have

J1 = 2
[
himhkn

(∗∂qi
∂xk

−
∗∂qk
∂xi

) ∗∂qm
∂xn

− hik
∗∂ϕ
∂xi

∗∂ϕ
∂xk

−

− 2
c
hik

∗∂ϕ
∂xi

∗∂qk
∂t

− 1
c2
hik

∗∂qi
∂t

∗∂qk
∂t

+
8ϕ
c2

ΩiΩi−

− 2ϕ
c
εimnΩm

∗∂qi
∂xn

+
2ϕ
c2

∗∂ϕ
∂xi

F i +
2ϕ
c3

∗∂qi
∂t

F i − ϕ

c4
FiF

i

]
,

(3.29)

J2 =
1
2

[
εimn

(∗∂qm
∂xn

−
∗∂qn
∂xm

)
− 4ϕ

c
Ω∗i

](∗∂ϕ
∂xi

+
1
c

∗∂qi
∂t

− ϕ

c2
Fi

)
. (3.30)

We can know physical conditions in isotropic electromagnetic fields,
by setting the formulae (3.29, 3.30) to zero. Doing this, we can see
that the conditions of equality of the lengths of the electric and mag-
netic strengths E2 =H∗2 and their orthogonality EiH∗i =0 in a pseudo-
Riemannian space depend on not only properties of the field itself (the
scalar potential ϕ and the vector-potential qi) but also on acceleration
F i, rotation Aik and deformations Dik of the space itself. In partic-
ular, the vectors Ei and H∗i are orthogonal if the space is holonomic
Ω∗i =0, while the spatial field of the vector-potential qi is rotation-free
εimn

( ∗∂qm

∂xm − ∗∂qn

∂xn

)
=0.

§3.3 Maxwell’s equations, their observable components.
Conservation of electric charge. Lorentz’ condition

In Classical Electrodynamics, correlations of the electric strength of an
electromagnetic field ~E [ gram1/2 cm−1/2 sec−1 ] to its magnetic strength
~H [ gram1/2 cm−1/2 sec−1 ] are set forth in Maxwell’s equations, which
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had originally been derived from generalization of experimental data.
In the middle of the 19th century, Maxwell showed that if an electro-
magnetic field is induced in vacuum by given charges and currents, then
the resulting field is defined by two groups of equations [20]

curl ~H − 1
c

∂ ~E

∂t
=

4π
c
~j

div ~E = 4πρ





I , (3.31a)

curl ~E +
1
c

∂ ~H

∂t
= 0

div ~H = 0





II , (3.31b)

where ρ [ gram1/2 cm−3/2 sec−1 ] is the electric charge density (namely
— the amount e [ gram1/2 cm3/2 sec−1 ] of the charge within 1 cm3)
and ~j [ gram1/2 cm−1/2 sec−2 ] is the current density vector. Equations
containing the field-inducing sources ρ and ~j are known as the 1st group
of the Maxwell equations, while equations, which do not contain the
sources are known as the 2nd group of the Maxwell equations.

The first equation in the 1st group is Biot-Savart’s law, the second is
Gauss’ theorem, both in differential notation. The first and the second
equations in the 2nd group are differential notation of Faraday’s law of
electromagnetic induction and the condition that no magnetic charges
exist, respectively. In total, there are 8 equations (four vector and four
scalar) in 10 unknowns: three components of ~E, three components of
~H, three components of ~j, and one component of ρ.

A correlation between the field sources ρ and ~j is set by the law of
conservation of electric charge

∂ρ

∂t
+ div~j = 0 , (3.32)

which is a mathematical notation of the experimental fact that an elec-
tric charge can not be destroyed, but is merely re-distributed between
charged bodies in contact.

Now we have a system of 9 equations in 10 unknowns, so the system
defining the field and its sources is still indefinite. The 10th equation,
which makes the system definite (the number of equations should be the
same as that of the unknowns), is Lorentz’ condition, which constructs
the scalar and vector potentials of the field as follows

1
c

∂ϕ

∂t
+ div ~A = 0 . (3.33)
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The Lorentz condition is derived from the fact that the scalar po-
tential ϕ and the vector potential ~A of any given electromagnetic field,
related to the strength vectors ~E and ~H with (3.3), are defined ambig-
uously from them: ~E and ~H in (3.3) remain unchanged if we replace

~A = ~A′ +−→∇Ψ , ϕ = ϕ′ − 1
c

∂Ψ
∂t

, (3.34)

where Ψ is an arbitrary scalar. Evidently, ambiguous definitions of
ϕ and ~A permit other correlations between the quantities except for
the Lorentz condition. Nevertheless, it is the Lorentz condition, which
enables transformation of the Maxwell equations into wave equations.

This is how the Lorentz condition does the transformation.
The equation div ~H =0 (3.31) is satisfied completely, if we assume

~H =curl ~A. In this case, the first equation in the 1st group (3.31) takes
the form

curl
(
~E +

1
c

∂ ~A

∂t

)
= 0 , (3.35)

which has the solution

~E = −−→∇ϕ− 1
c

∂ ~A

∂t
. (3.36)

Substituting ~H = curl ~A and ~E (3.36) into the 1st group of the Max-
well equations, we obtain

∆ ~A− 1
c2
∂2 ~A

∂t2
−−→∇

(
div ~A+

1
c

∂ϕ

∂t

)
= −4π

c
~j , (3.37)

∆ϕ+
1
c

∂

∂t

(
div ~A

)
= −4πρ , (3.38)

where ∆= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
is Laplace’s regular operator.

Constructing the potentials ϕ and ~A with the Lorentz condition
(3.33), we bring equations in the 1st group to the form

¤ϕ = −4πρ , (3.39)

¤ ~A = −4π
c
~j , (3.40)

where ¤= 1
c2

∂2

∂t2
−∆ is d’Alembert regular operator.

Applying d’Alembert operator to a field yields equations of propa-
gation of waves of this field (see §2.6). For this reason, the obtained
result implies that if the Lorentz condition is true, then the 1st group
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of the Maxwell equations (3.31) is a system of equations of propaga-
tion of waves of the scalar and vector electromagnetic potentials (in
the presence of the field-inducing sources — charges and currents). The
equations will be obtained in the next section, §3.4.

Henceforth, we are going to consider the Maxwell equations in a
pseudo-Riemannian space to obtain them in chr.inv.-form, i. e. formu-
lated with physical observable quantities.

In a four-dimensional pseudo-Riemannian space, the Lorentz condi-
tion has general covariant form

∇σAσ =
∂Aσ

∂xσ
+ ΓσσµA

µ = 0 , (3.41)

so it is a condition of conservation of the four-dimensional potential of a
given electromagnetic field under consideration. The law of conservation
of electric charge (the continuity equation) is

∇σ jσ = 0 , (3.42)

where jα is the four-dimensional current vector , also known as the shift
current. Chr.inv.-projections of the current vector jα are the electric
charge density

ρ =
1
c

j0√
g00

, (3.43)

and the spatial current density ji. Using the chr.inv.-formula for the
divergence of an arbitrary vector field (2.107), we obtain the Lorentz
condition (3.41) in chr.inv.-form

1
c

∗∂ϕ
∂t

+
ϕ

c
D + ∗∇i qi − 1

c2
Fi q

i = 0 , (3.44)

and also the continuity equation in chr.inv.-form
∗∂ρ
∂t

+ ρD + ∗∇i ji − 1
c2
Fi j

i = 0 . (3.45)

Here, D=hikDik =Dn
n =

∗∂ ln
√
h

∂t
is the spur of the tensor of the

space deformations rate (1.40). Actually, the spur is the rate of rel-
ative expansion of an elementary volume, while ∗∇i is the operator of
chr.inv.-divergence (2.105).

Because Fi (1.38) contains the first derivative of gravitational poten-
tial w = c2(1−√g00), the term 1

c2
Fiq

i takes into account that the pace
of time is different at the opposite walls of the elementary volume. The
mentioned formula for gravitational inertial force Fi (1.38) also takes



3.3 Maxwell’s equations, their observable components 69

into account the non-stationary nature of the space rotation. Besides,
because the operators of chr.inv.-derivation (1.33) are

∗∂
∂t

=
1

1− w

c2

∂

∂t
,

∗∂
∂xi

=
∂

∂xi
− 1
c2
vi
∗∂
∂t
, (3.46)

the condition of conservation of the vector field Aα, namely — the
equations (3.44, 3.45), directly depend on gravitational potential and
the velocity of the space rotation.

Chr.inv.-quantities
∗∂ϕ
∂t

and
∗∂ρ
∂t

are observable changes in time of
the chr.inv.-quantities ϕ and ρ. Chr.inv.-quantities ϕD and ρD are
observable changes in time of spatial volumes, filled with the quantities
ϕ and ρ.

If there are no gravitational inertial forces, rotation and deforma-
tions in the space, then the obtained chr.inv.-formulae for the Lorentz
condition (3.44) and the charge conservation law (3.45) become

1
c

∂ϕ

∂t
+
∂qi

∂xi
− ∂ ln

√
h

∂xi
qi = 0 , (3.47)

∂ρ

∂t
+
∂ji

∂xi
− ∂ ln

√
h

∂xi
ji = 0 , (3.48)

which in a Galilean reference frame in the Minkowski space are

1
c

∂ϕ

∂t
+
∂qi

∂xi
= 0 ,

∂ρ

∂t
+
∂ji

∂xi
= 0 , (3.49)

or, in a regular vector notation

1
c

∂ϕ

∂t
+ div ~A = 0 ,

∂ρ

∂t
+ div~j = 0 , (3.50)

which fully matches notations of the Lorentz condition (3.33) and the
charge conservation law (3.32) in Classical Electrodynamics.

Let us turn to the Maxwell equations. In a pseudo-Riemannian space
each pair of the equations merge into a single general covariant equation

∇σ Fµσ =
4π
c
jµ, ∇σ F ∗µσ = 0 , (3.51)

where Fµσ is contravariant (upper-index) form of the electromagnetic
field tensor, F ∗µσ is its dual pseudotensor. Using chr.inv.-formulae for
the divergence of an arbitrary antisymmetric tensor of the 2nd rank
(2.121, 2.122) and for its dual pseudotensor (2.135, 2.136), we arrive at
the Maxwell equations in chr.inv.-form
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∗∇iEi − 1
c
HikAik = 4πρ

∗∇kHik − 1
c2
FkH

ik − 1
c

(∗∂Ei

∂t
+DEi

)
=

4π
c
ji





I , (3.52)

∗∇iH∗i − 1
c
E∗ikAik = 0

∗∇kE∗ik − 1
c2
FkE

∗ik − 1
c

(∗∂H∗i

∂t
+DH∗i

)
= 0





II . (3.53)

The Maxwell equations in this chr.inv.-notation were first obtained
by Jose del Prado and Nikolai Pavlov [25] independently (Zelmanov
asked these students to do this, and explained how to do).

Now, let us transform the Maxwell chr.inv.-equations in a way that
they include Ei and H∗i as unknowns. Obtaining the quantities from
their definitions (2.125, 2.124, 2.111)

H∗i =
1
2
εimnH

mn, (3.54)

E∗ik = εikm
(
ϕ

c2
Fm −

∗∂ϕ
∂xm

− 1
c

∗∂qm
∂t

)
= − εikmEm , (3.55)

and multiplying the first equation by εipq, we obtain

εipqH∗i =
1
2
εipqεimnH

mn =
1
2

(δpmδ
q
n − δqmδ

p
n)H

mn = Hpq. (3.56)

Substituting the result as Hik = εmikH∗m into the first equation in
the 1st group (3.52) we bring it to the form

∗∇iEi − 2
c

Ω∗mH∗m = 4πρ , (3.57)

where Ω∗i = 1
2
εimnAmn is the chr.inv.-pseudovector of angular velocities

of the space rotation. Substituting E∗ik =−εikmEm (3.55) into the first
equation of the 2nd group (3.53), we obtain

∗∇iH∗i +
2
c

Ω∗mEm = 0 . (3.58)

Then, substituting Hik = εmikH∗m into the second equation in the
2nd group (3.52) we obtain

∗∇k
(
εmikH∗m

)− 1
c2
Fkε

mikH∗m−1
c

(∗∂Ei
∂t

+
∗∂ ln

√
h

∂t
Ei

)
=

4π
c
ji (3.59)
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and, after multiplying both sides by
√
h and taking ∗∇k εmik =0 into

account, we bring this formula (3.59) to the form

εikm ∗∇k
(
H∗m

√
h

)− 1
c2
εikmFkH∗m

√
h−1

c

∗∂
∂t

(
Ei
√
h

)
=

4π
c
ji
√
h (3.60)

or, in the other notation

εikm ∗∇̃k
(
H∗m

√
h

)− 1
c

∗∂
∂t

(
Ei
√
h

)
=

4π
c
ji
√
h , (3.61)

where ji
√
h is the current’s volume density and ∗∇̃k = ∗∇k − 1

c2
Fk is

physical chr.inv.-divergence (2.106), which takes into account the fact
that the pace of time accounts is different at the opposite walls of the
elementary volume.

The obtained equation (3.60) is chr.inv.-notation for the Biot-Savart
law in the pseudo-Riemannian space.

Substituting E∗ik =−εikmEm (3.55) into the second equation in the
2nd group (3.53), after similar transformations we obtain

εikm ∗∇̃k
(
Em

√
h

)
+

1
c

∗∂
∂t

(
H∗i√h)

= 0 , (3.62)

which is chr.inv.-notation for the Faraday law of electromagnetic induc-
tion in the pseudo-Riemannian space.

So, the final system of 10 chr.inv.-equations in 10 unknowns (two
groups of the Maxwell equations, the Lorentz condition, and the con-
tinuity equation), which define an electromagnetic field and its sources
in the pseudo-Riemannian space, is

∗∇iEi − 2
c

Ω∗mH∗m = 4πρ

εikm ∗∇̃k
(
H∗m

√
h

)− 1
c

∗∂
∂t

(
Ei
√
h

)
=

4π
c
ji
√
h





I , (3.63)

∗∇iH∗i +
2
c

Ω∗mEm = 0

εikm ∗∇̃k
(
Em

√
h

)
+

1
c

∗∂
∂t

(
H∗i√h)

= 0





II , (3.64)

1
c

∗∂ϕ
∂t

+
ϕ

c
D + ∗∇̃i qi = 0 the Lorentz condition, (3.65)

∗∂ρ
∂t

+ ρD + ∗∇̃i ji = 0 the continuity equation. (3.66)
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In a Galilean reference frame in the Minkowski space, the determi-
nant of the metric chr.inv.-tensor

√
h=1, so it is not subject to defor-

mations Dik = 0, rotation Ω∗m = 0 or acceleration Fi =0 in the space.
Then the Maxwell chr.inv.-equations (3.63, 3.64), we have obtained in
the pseudo-Riemannian space of the General Theory of Relativity, bring
us directly to the Maxwell equations of Classical Electrodynamics writ-
ten in tensor form

∂Ei

∂xi
= 4πρ

eikm
(
∂H∗m
∂xk

− ∂H∗k
∂xm

)
− 1
c

∂Ei

∂t
=

4π
c
ji





I , (3.67)

∂H∗i

∂xi
= 0

eikm
(
∂Em
∂xk

− ∂Ek
∂xm

)
− 1
c

∂H∗i

∂t
= 0





II . (3.68)

The same equations, put in vector notation, will be similar to Max-
well’s classic equations in three-dimensional Euclidean space (3.31). Be-
sides, the obtained Maxwell chr.inv.-equations in the four-dimensional
pseudo-Riemannian space (3.64) show that in the absence of the space
rotation the chr.inv.-divergence of the magnetic strength is zero
∗∇iH∗i =0. In other word, the field magnetic component remains un-
changed, if the space is holonomic. In the same time, the divergence of
the electric strength in this case is not zero ∗∇iEi =4πρ (3.63), so the
electric component is linked directly to the charge density ρ. Hence a
conclusion on “magnetic charge”, if it actually exists, should be linked
directly to the field of rotation of the space itself.

§3.4 D’Alembert’s equations for the electromagnetic po-
tential, and their observable components

As we have already mentioned, d’Alembert’s operator, applied to a field,
gives equations of propagation of waves of this field. For this reason,
d’Alembert’s equations for the scalar electromagnetic potential ϕ are
equations of propagation of waves of this scalar field, while for the spatial
vector-potential ~A these are equations of propagation of waves of this
vector field ~A.

General covariant form of d’Alembert equations for the electromag-
netic field potential Aα were obtained by Stanyukovich [26], using the
1st group of the Maxwell general covariant equations ∇σ Fµσ = 4π

c j
µ
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(3.51) and the Lorentz condition ∇σAσ =0 (3.41). His equations are

¤Aα −RαβA
β = −4π

c
jα, (3.69)

where Rαβ = gαµRσ·µβσ is Ricci’s tensor, while Rα·µβσ is Riemann-Christ-
offel’s tensor of the space curvature. The term RαβA

β is absent in the left
part, if the Ricci tensor is zero, so the space metric satisfies Einstein’s
equations away from gravitating masses. This term can be neglected
in that case, where the space curvature is not significant. But, even in
the Minkowski space, this problem can be considered in the presence
of acceleration and rotation. Even this approximation may reveal, for
instance, effects of acceleration and rotation of the observer’s reference
body on the observable velocity of propagation of electromagnetic waves.

The reason for the above discussion is that obtaining chr.inv.-
projections of d’Alembert equations in full is a very difficult task. The
resulting equations will be so bulky to make any unambiguous conclu-
sions. Therefore, we will limit the scope of our work to transforming
d’Alembert equations into chr.inv.-tensor form for an electromagnetic
field in a non-inertial reference frame in the Minkowski space. But this
does not affect other sections in this Chapter, where we will go back to
the pseudo-Riemannian space of the General Theory of Relativity.

So forth, calculating chr.inv.-projections of d’Alembert equations

¤Aα = −4π
c
jα (3.70)

using general formulae (2.168, 2.169), we obtain

∗¤ϕ− 1
c3

∗∂
∂t

(
Fkq

k
) − 1

c3
Fi

∗∂qi

∂t
+

1
c2
F i

∗∂ϕ
∂xi

+hik∆m
ik

∗∂ϕ
∂xm

−

−hik 1
c

∗∂
∂xi

(Aknqn) +
1
c
hik∆m

ikAmnq
n = 4πρ ,

(3.71)

∗¤Ai +
1
c2

∗∂
∂t

(
A·ik·q

k
)

+
1
c2
A·ik·

∗∂qk

∂t
− 1
c3

∗∂
(
ϕF i

)

∂t
−

− 1
c3
F i

∗∂ϕ
∂t

+
1
c2
F k

∗∂qi

∂xk
− 1
c
Ami

∗∂ϕ
∂xm

+
1
c2

∆i
kmq

mF k−

−hkm
{ ∗∂
∂xk

(
∆i
mnq

n
)

+
1
c

∗∂
∂xk

(
ϕA·im·

)
+

+
(
∆i
kn∆

n
mp −∆n

km∆i
np

)
qp +

ϕ

c

(
∆i
knA

·n
m· −∆n

kmA
·i
n·

)
+

+∆i
kn

∗∂qn

∂xm
−∆n

km

∗∂qi

∂xn

}
=

4π
c
ji.

(3.72)
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where we take into account the observable charge density ρ= 1
c
√
g00

g0αj
α

in the space out of dynamic deformations, and in the linear approxi-
mation (with higher order terms ignored — we assume that fields of
gravitation and the space rotation are weak).

We see that physical observable properties of the reference space,
namely — the quantities F i, Aik, Dik, and ∆i

km constitute some addi-
tional “sources” that together with the sources ϕ and ji induce waves
travelling through the given electromagnetic field.

Let us now analyze the results. At first, we consider the obtained
equations (3.71, 3.72) in a Galilean reference frame in the Minkowski
space. Here the metric takes the form as in formula (3.5) and therefore
d’Alembert chr.inv.-operator ∗¤ (2.163) transforms into d’Alembert reg-
ular operator ∗¤= 1

c2
∂2

∂t2
−∆= ¤. Then the obtained equations (3.71,

3.72) will be

¤ϕ = 4πρ , ¤qi = −4π
c
ji, (3.73)

which fully matches the respective equations of Classical Electrodynam-
ics (3.39, 3.40).

Now we return to the obtained d’Alembert chr.inv.-equations (3.39,
3.40). To make their analysis easier we denote all terms in the left hand
sides of the scalar equation (3.39) as T and of the vector equation (3.40)
as Bi. Transpositioning the variables into their rightful positions and
expanding the formulae for ∗¤ (2.173) we obtain

1
c2

∗∂2ϕ

∂t2
− hik ∗∇i ∗∇k ϕ = T + 4πρ , (3.74)

1
c2

∗∂2qi

∂t2
− hmk ∗∇m∗∇k qi = Bi +

4π
c
ji, (3.75)

where hik ∗∇i ∗∇k = ∗∆ is Laplace chr.inv.-operator. As it is easy to see,
if the potentials ϕ and qi are stationary (they don’t depend on time),
the d’Alembert wave equations become the Laplace equations

∗∆ϕ = T + 4πρ , (3.76)

∗∆qi = Bi +
4π
c
ji, (3.77)

which characterize static states of this field.
A field is homogeneous along a direction, if its regular derivative

with respect to this direction is zero. In Riemannian spaces, a field is
homogeneous if its general covariant derivative is zero. If a tensor field
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located in a Riemannian space is considered in the accompanying refer-
ence frame, then observable inhomogeneity of this field is characterized
by the difference of chr.inv.-operator ∗∇i taken from the field poten-
tial from zero [9, 11–13]. In other words, if for a scalar quantity A the
condition ∗∇iA=0 is true, then the field A is observed as homogeneous.

Therefore, the d’Alembert chr.inv.-operator ∗¤ is the difference be-
tween the 2nd derivatives of the operator 1

c

∗∂
∂t

, which characterizes ob-
servable non-stationarity of the field, and the operator ∗∇i, which char-
acterizes its observable spatial inhomogeneity. If the field is stationary
and homogeneous, then the left hand sides of the d’Alembert equations
(3.74, 3.75) are zeroes, so this field does not generate waves — it is not
a wave field.

In an inhomogeneous stationary field (∗∇i 6= 0, 1
c

∗∂
∂t

=0) the d’Alem-
bert equations (3.74, 3.75) characterize a standing wave

−hik ∗∇i ∗∇k ϕ = T + 4πρ , (3.78)

−hmk ∗∇m∗∇k qi = Bi +
4π
c
ji. (3.79)

In a homogeneous non-stationary field (∗∇i=0, 1
c

∗∂
∂t
6=0) the d’Alem-

bert equations describe changes of the field with time depending on the
field-inducing sources (charges and currents)

1
c2

∗∂2ϕ

∂t2
= T + 4πρ , (3.80)

1
c2

∗∂2qi

∂t2
= Bi +

4π
c
ji. (3.81)

In an inertial reference frame (the Christoffel symbols are zero) gen-
eral covariant derivative equals to the regular one ∗∇iϕ=

∗∂ϕ
∂xi , so the

d’Alembert scalar chr.inv.-equation (3.74) is

1
c2

∗∂2ϕ

∂t2
− hik

∗∂2ϕ

∂xi∂xk
= T + 4πρ . (3.82)

Here, the left hand side takes the most simple form, which facilitates
more detailed study of it. As it is known from the theory of oscillations
in mathematical physics, in the d’Alembert equations in their regular
form

¤ϕ =
1
a2

∂2ϕ

∂t2
+ gik

∂2ϕ

∂xi∂xk
(3.83)

the term a is the absolute value of the three-dimensional velocity of
elastic oscillations which spread across the field ϕ.
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Expanding chr.inv.-derivatives by spatial coordinates (3.46) we bring
the d’Alembert scalar equation (3.82) to the form

1
c2

(
1− v2

c2

) ∗∂2ϕ

∂t2
− hik

∂2ϕ

∂xi∂xk
+

2vk

c2 − w
∂2ϕ

∂xk ∂t
+

+
1

c2 − w
hik

∂vk
∂xi

∂ϕ

∂t
+

1
c2
vkFk

∂ϕ

∂t
= T + 4πρ ,

(3.84)

where v2 =hikv
ivk and the second chr.inv.-derivative with respect to

time formulates with regular derivatives as follows
∗∂2ϕ

∂t2
=

1
(
1− w

c2

)2
∂2ϕ

∂t2
+

1

c2
(
1− w

c2

)3
∂w
∂t

∂ϕ

∂t
. (3.85)

We can now see that, the square of the linear velocity of the space
rotation v2 has a greater effect, while the observable non-stationarity
of the field (the term

∗∂ϕ
∂t

) has a lesser effect on propagation of the
waves. In the ultimate case, where v→ c, the d’Alembert operator be-
comes the Laplace operator, so the d’Alembert wave equations becomes
the Laplace stationary equations. At low velocities of the space rota-
tion, v¿ c, one assumes that observable waves of electromagnetic waves
propagate at the light velocity.

Generally, the absolute value of the observable velocity of waves of
the scalar electromagnetic potential v(ϕ) becomes

v(ϕ) =
c√

1− v2

c2

. (3.86)

It is evident that the chr.inv.-quantity (3.85), which is the observable
acceleration of the scalar potential ϕ, is quite different from the analo-
gous “coordinate” quantity; the higher the gravitational potential, the
higher the rate of change of the gravitational potential with time

∂2ϕ

∂t2
=

(
1− w

c2

)2 ∗∂2ϕ

∂t2
+

1
c2 − w

∂w
∂t

∂ϕ

∂t
. (3.87)

In the ultimate case, where w→ c2 (approaching gravitational col-
lapse as on the surface of a gravitational collapsar), observable acceler-
ations of the scalar potential become infinitesimal, while the coordinate
rate of growth of the potential ∂ϕ

∂t
, to the contrary, becomes infinitely

large. But under regular conditions, gravitational potential w needs
only smaller corrections into the acceleration and the velocity of growth
of the potential ϕ.
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All what has been said above about the chr.inv.-scalar quantity
∗∂2ϕ

∂t2

is also true for the chr.inv.-vector
∗∂2qi

∂t2
, because the d’Alembert chr.inv.-

operator ∗¤ = 1
c2

∗∂2

∂t2
−hik ∗∂2

∂xi∂xk
is different from the scalar and vector

functions in only the second term — the Laplace operator, in which
chr.inv.-derivatives of the scalar and vector quantities are different from
each other, i. e.

∗∇iϕ =
∗∂ϕ
∂xi

, ∗∇i qk =
∗∂qk

∂xi
+ ∆k

imq
m. (3.88)

If the space rotation and gravitational potential are infinitesimal,
the d’Alembert chr.inv.-operator for the scalar potential becomes the
d’Alembert regular operator

∗¤ϕ =
1
c2
∂2ϕ

∂t2
− hik

∂2ϕ

∂xi∂xk
, (3.89)

so in this case electromagnetic waves, produced by the scalar potential
ϕ, propagate at the light velocity.

§3.5 Lorentz’ force. The energy-momentum tensor of an
electromagnetic field

In this section, we are going to deduce chr.inv.-projections (physical ob-
servable components) of the four-dimensional force, which results from
the fact that electromagnetic fields affect an electric charge in a pseudo-
Riemannian space. This problem will be solved for two following cases:
a) a point charge; b) a charge distributed in the space. In addition, we
are going to deduce chr.inv.-projections of the energy-momentum tensor
for an electromagnetic field.

In a three-dimensional Euclidean space of Classical Electrodynamics,
motion of a charged particle is characterized by the vector equation

d~p

dt
= e ~E +

e

c

[
~u ; ~H

]
, (3.90)

where ~p=m~u is the particle’s three-dimensional momentum vector and
m is its relativistic mass. The right hand side of this equation is referred
to as Lorentz’ force.

The equation, characterizing the change of the kinetic (relativistic)
energy of the particle

E = mc2 =
m0c

2

√
1− u2

c2

(3.91)
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due to work accomplished by the field’s electric strength to displace it
within unit time, takes the vector form

dE

dt
= e ~E ~u, (3.92)

and is also known as the live forces theorem.
In four-dimensional form, thanks to unification of energy and mo-

mentum, in a Galilean reference frame in the Minkowski space, both
equations (3.90, 3.92) take the form

m0c
dUα

ds
=
e

c
Fα··σ U

σ, Uα =
dxα

ds
, (3.93)

and are known as the Minkowski equations (Fα··σ is the electromagnetic
field tensor). Because the metric here is diagonal (3.5), hence

ds = cdt

√
1− u2

c2
, u2 =

(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

, (3.94)

and components of the particle’s four-dimensional velocity Uα are

U0 =
1√

1− u2

c2

, U i =
ui

c

√
1− u2

c2

, (3.95)

where ui = dxi

dt
is its three-dimensional coordinate velocity. Once com-

ponents of e
c F

α·
·σ U

σ in the Galilean reference frame are

e

c
F 0·
·σU

σ = − e

c2
Eiu

i

√
1− u2

c2

, (3.96)

e

c
F i··σU

σ = − 1

c

√
1− u2

c2

(
eEi +

e

c
eikmukH∗m

)
, (3.97)

then, in the Galilean reference frame as well, the time and spatial com-
ponents of the Minkowski equations (3.93) are

dE

dt
= −eEiui, (3.98)

dpi

dt
= −

(
eEi +

e

c
eikmukH∗m

)
, pi = mui. (3.99)

The above relativistic equations, except for the sign at the right
positions, match the live forces theorem and the equations of motion of
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a charged particle in Classical Electrodynamics (3.90, 3.91). Note that
difference in signs in the right positions is determined only by choice of
the space signature. We use the signature (+−−−), but if we accept the
signature (−+++), then the sign in the right positions of the equations
will be the opposite.

We now turn to this problem not in the Minkowski space, but
in the pseudo-Riemannian space of the General Theory of Relativ-
ity. So forth, chr.inv.-projections of the four-dimensional momentum
vector Φα = e

c F
α·
·σ U

σ, which the charged particle gains in the pseudo-
Riemannian space from interaction of its charge e with the electromag-
netic field, are

T =
e

c

F0σU
σ

√
g00

, (3.100)

Bi =
e

c
F i··σU

σ =
e

c

(
F i··0U

0 + F i··kU
k
)
. (3.101)

Given that components of Uα are

U0 =
1
c2
vivi ± 1√

1− v2

c2

(
1− w

c2

) , U i =
vi

c

√
1− v2

c2

, (3.102)

then, taking into account formulae for components of an arbitrary curl
(2.143–2.159), we arrive at
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c2
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1− v2

c2
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+
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c
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vi, (3.103)
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c
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}
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(3.104)

Chr.inv.-scalar quantity T , to within the multiplier − 1
c2

, is the work
done by the field to displace this charge e. Chr.inv.-vector quantity Bi,
to within the multiplier 1

c , in a non-relativistic case is a force which acts
on the particle due to the electromagnetic field

Φi = cBi = −e
(
Ei +

1
c
εikmH∗mvk

)
, (3.105)

and it is the Lorentz observable force. Note that alternating sign is
derived here from the fact that in pseudo-Riemannian spaces the square
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equation with respect to dt
dτ

has two roots (1.55). Respectively, “plus” in
the Lorentz force stands for the particle’s motion into future (in respect
of the observer), while “minus” denotes the motion into past. In a
Galilean reference frame in the Minkowski space there is no difference
between physical observable time τ and coordinate time t. So, the
Lorentz force (3.99) obtained from the Minkowski equations will have
no alternating signs.

If the charge is not a point charge but is spatially distributed matter,
then the Lorentz force Φα = e

cF
α·
·σ U

σ in the Minkowski equations (3.93)
will be replaced by the four-dimensional vector of the Lorentz force
density

fα =
1
c
Fα··σ j

σ, (3.106)

where the four-dimensional current density jσ =
{
cρ; ji

}
is defined by

the 1st group of the Maxwell equations (3.51)

jσ =
c

4π
∇µFσµ. (3.107)

Chr.inv.-projections of the Lorentz force density fα

f0√
g00

= −1
c
Ei j

i, (3.108)

f i = −
(
ρEi +

1
c
Hi·
·k j

k

)
= −

(
ρEi +

1
c
εikmH∗m jk

)
. (3.109)

in three-dimensional Euclidean space the projections are

f0√
g00

=
q

c
=

1
c
~E~j , (3.110)

~f = ρ ~E +
1
c

[
~j; ~H

]
, (3.111)

where q is the density of a heat power released into a current conductor.
Now, we transform the Lorentz force density (3.106), using the

Maxwell equations. Substituting jσ (3.107) we arrive at

fν=
1
c
Fνσ j

σ=
1
4π
Fνσ∇µFσµ=

1
4π

[
∇µ (FνσFσµ)−F σµ∇µFνσ

]
. (3.112)

Transpositioning the mute indices µ and σ, by which we add-up, and
taking into account that the Maxwell tensor Fαβ is antisymmetric, we
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transform the second term to the form

F σµ∇µFνσ =
1
2
F σµ (∇µFνσ +∇σ Fµν) =

= −1
2
F σµ∇ν Fµσ =

1
2
Fσµ∇ν Fσµ .

(3.113)

As a result, for fν (3.112) and its contravariant form we obtain

fν =
1
4π
∇µ

(
−FµσFνσ +

1
4
δµν F

αβFαβ

)
, (3.114)

fν = ∇µ
[

1
4π

(
−FµσF ν··σ +

1
4
gµνFαβFαβ

)]
. (3.115)

Denoting the term

1
4π

(
−FµσF ν··σ +

1
4
gµνFαβFαβ

)
= Tµν , (3.116)

we obtain the expression

fν = ∇µ Tµν , (3.117)

so the four-dimensional vector of the Lorentz force density fν equals
the absolute divergence of a quantity Tµν , referred to as the energy-
momentum tensor of the electromagnetic field. Its structure shows that
it is symmetric Tµν =T νµ, while its spur (given that the spur of the
fundamental metric tensor is gµνgµν= δνν =4) is zero

T νν = gµν T
µν =

1
4π

(
−FµσFµσ +

1
4
gµν g

µνFαβFαβ

)
=

=
1
4π

(−FµσFµσ + FαβFαβ
)

= 0 .
(3.118)

Chr.inv.-projections of the energy-momentum tensor are

q =
T00

g00
, J i =

c T i0√
g00

, U ik = c2T ik, (3.119)

where the chr.inv.-scalar q is of the observable density of the field, the
chr.inv.-vector J i is the observable density of the field’s momentum, and
the chr.inv.-tensor U ik is the observable density of the field’s momen-
tum flux. For the energy-momentum tensor of the electromagnetic field
(3.116) we obtain the expressions

q =
E2 +H∗2

8π
, (3.120)
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J i =
c

4π
εikmEkH∗m , (3.121)

U ik = qc2hik − c2

4π
(
EiEk +H∗iH∗k) , (3.122)

where E2 =hikE
iEk and H∗2 =hikH

∗iH∗k. Comparing the obtained
formula for q (3.120) with that for the energy density of the electromag-
netic field from Classical Electrodynamics we have

W =
E2 +H2

8π
, (3.123)

where E2 =( ~E; ~E) and H2 =( ~H; ~H); we can see that q, the chr.inv.-
quantity, is the observable energy density of the electromagnetic field in
the pseudo-Riemannian space. Comparing the obtained formula for the
chr.inv.-vector J i (3.121) with that for Poynting’s vector in Classical
Electrodynamics we have

~S =
c

4π
(
~E ; ~H

)
, (3.124)

we can see that the J i is the Poynting observable vector in the pseudo-
Riemannian space. Correspondence of the third observable component
U ik (3.122) to quantities in Classical Electrodynamics can be estab-
lished using similarities with mechanics of continuous medias, where
the three-dimensional tensor of similar structure is the stress tensor for
an elementary volume of a media. Therefore, U ik is the observable stress
tensor of the electromagnetic field in the pseudo-Riemannian space.

Now, we can obtain identities for the chr.inv.-projections of the
Lorentz force density (3.108, 3.109), formulating them with chr.inv.-
components of the energy-momentum tensor of this field (3.120–3.122).
Taking the equation fν =∇µ Tµν and using ready formulae for chr.inv.-
components of the absolute divergence of an arbitrary symmetric tensor
of the 2nd rank (2.138, 2.139), we obtain

∗∂q
∂t

+ qD +
1
c2
DijU

ij + ∗∇̃i J i − 1
c2
FiJ

i = −1
c
Ei j

i, (3.125)

∗∂Jk

∂t
+DJk + 2

(
Dk
i +Ak··i

)
J i + ∗∇̃iU ik − qF k =

= −
(
ρEk +

1
c
εkimH∗i jm

)
.

(3.126)

The first chr.inv.-identity (3.125) shows that if the observable vector
of the current density ji is orthogonal to the observable electric strength
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of the field Ei, the right hand side turns to zero. Generally, i. e. in the
case of an arbitrary orientation of the vectors ji and Ei, observable
change of the electromagnetic field density with time (the quantity

∗∂q
∂t

)
depends on the following factors:

a) The rate of changes of the observable volume of the space, filled
with the electromagnetic field (the term qD);

b) Effect of forces of the space deformations (the term DijU
ij);

c) Effect of gravitational inertial force on the electromagnetic field
momentum density (the term FiJ

i);
d) The observable “spatial variation” (physical divergence) of the

electromagnetic field momentum density (the term ∗∇̃i J i);
e) Magnitudes and mutual orientation of the current density vector

ji and the electric strength vector Ei (the right hand side).
The second chr.inv.-identity (3.126) shows that observable change of

the electromagnetic field momentum density with time (i. e. the quantity
∗∂Jk

∂t
) depends on the following factors:

a) The rate of changes of the observable volume of the space, filled
with the electromagnetic field (the term DJk);

b) Forces of the space deformation and Coriolis’ forces, which are
designated by the term 2

(
Dk
i +Ak··i

)
J i;

c) Effect of gravitational inertial force on the observable density of
the electromagnetic field (the term qF k);

d) The observable “spatial variation” of the field stress ∗∇̃iU ik;
e) Effect of the Lorentz force observable density — the right hand

side, defined by the quantity fk =−(
ρEk + 1

c ε
kimH∗i jm

)
.

In conclusion, we consider a particular case, where the electromag-
netic field is isotropic. A formal definition of isotropic fields made with
the Maxwell tensor [20] is a set of two conditions

FµνF
µν = 0 , FµνF

∗µν = 0 , (3.127)

which implies that both field invariants J1 =FµνF
µν and J2 =FµνF

∗µν

(3.25, 3.26) are zeroes. In chr.inv.-notation, taking (3.28) into account,
the conditions take the form

E2 = H∗2, EiH
∗i = 0 . (3.128)

We see that an electromagnetic field in a pseudo-Riemannian space
is observed as isotropic, if the observable lengths of its electric and mag-
netic strength vectors are equal, while the Poynting vector J i expressed
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with (3.121) is
J i =

c

4π
εikmEkH∗m . (3.129)

In the terms of chr.inv.-components of the energy-momentum tensor
(3.120, 3.121) the obtained conditions (3.128) also imply that

J = cq , (3.130)

where J =
√
J2 and J2 =hikJ

iJk. In other words, the length J of the
momentum density chr.inv.-vector of any isotropic electromagnetic field
depends only on the field density q.

§3.6 Equations of motion of a charged particle, obtained
using the parallel transfer method

In this section, we will obtain chr.inv.-equations of motion of a charged
mass-bearing test-particle in an electromagnetic field, located in a four-
dimensional pseudo-Riemannian space∗.

The equations are chr.inv.-projections of parallel transfer equations
of the four-dimensional summary vector

Qα = Pα +
e

c2
Aα, (3.131)

where Pα =m0
dxα

ds
is the four-dimensional momentum vector of the

particle, and e

c2
Aα is a part of the previous — an additional four-

dimensional momentum which the particle gains from interaction of
its charge e with the electromagnetic field potential Aα deviating its
trajectory from a geodesic line. Given this problem statement, parallel
transfer of superposition on the non-geodesic momentum of the particle
and the deviating vector is also geodesic, so that

d

ds

(
Pα +

e

c2
Aα

)
+ Γαµν

(
Pµ +

e

c2
Aµ

) dxν
ds

= 0 . (3.132)

By definition, a geodesic line is a line of constant direction, so the
one for which any vector tangential to it in a given point will remain
tangential along the line being subjected to parallel transfer [9].

Equations of motion may be obtained in another way, namely — by
considering motion along a line of the least (extremum) length using the
least action principle. Extremum length lines are also lines of constant

∗Generally, using the method described herein we can also obtain equations of
motion for a particle, which is not a test one. A test particle is one with charge
and mass so small that they do not affect electromagnetic and gravitational fields in
which it moves.
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direction. But, for instance, in spaces with non-metric geometry, length
is not defined as category. Therefore, lines of extremum lengths are
neither defined and we can not use the least action method to obtain the
equations. Nevertheless, even in non-metric spaces we can define lines
of constant direction and non-zero derivation parameter along them.
Hence, one can assume that in metric spaces, to which Riemannian
spaces belong, lines of extremum length are merely a particular case of
constant direction lines.

In accordance with general formulae we have obtained in Chapter 2,
chr.inv.-projections of the parallel transfer equations (3.132) are defined
as follows

dϕ̃

ds
+

1
c

(
−Fi q̃i dτ

ds
+Dik q̃

i dx
k

ds

)
= 0 , (3.133)

dq̃i

ds
+

(
ϕ̃

c

dxk

ds
+q̃k

dτ

ds

)(
Di
k+A

·i
k·

)− ϕ̃
c
F i
dτ

ds
+∆i

mk q̃
m dx

k

ds
=0 , (3.134)

where the space-time interval s is assumed as the derivation parameter
along the trajectory, ϕ̃ and q̃i are chr.inv.-projections of the dynamic
vector Qα (3.131) of this particle

ϕ̃ = bαQ
α =

Q0√
g00

=
1√
g00

(
P0 +

e

c2
A0

)
, (3.135)

q̃i = hiαQ
α = Qi = P i +

e

c2
Ai. (3.136)

Chr.inv.-projections of the momentum vector are

P0√
g00

= ±m, P i =
1
c
mvi =

1
c
pi, (3.137)

where “plus” stands for motions into the future (with respect to the
observer), while “minus” appears if the particle moves into the past,
and pi =mdxi

dτ
is the three-dimensional momentum chr.inv.-vector of

the particle. Chr.inv.-projections of the additional momentum vector
e

c2
Aα are as follows

e

c2
A0√
g00

=
e

c2
ϕ ,

e

c2
Ai =

e

c2
qi, (3.138)

where ϕ is the scalar potential and qi is the vector-potential of the
acting electromagnetic field — these are chr.inv.-components of the four-
dimensional field potential Aα (3.8). Then the quantities ϕ̃ (3.135) and
q̃i (3.136), which actually are chr.inv.-projections of the summary vector
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Qα, take the form
ϕ̃ = ±m+

e

c2
ϕ , (3.139)

q̃i =
1
c

(
pi +

e

c2
qi

)
. (3.140)

We now substitute the quantities ϕ̃ and q̃i into general formulae for
chr.inv.-equations of motion (3.133, 3.134). Moving the terms, which
characterize electromagnetic interaction, into the right positions we ar-
rive at the chr.inv.-equations of motion for the our-world charged parti-
cle (the particle moves into the future with respect to a regular observer)

dm

dτ
− m

c2
Fivi +

m

c2
Dik vivk = − e

c2
dϕ

dτ
+

e

c3
(
Fiq

i −Dikq
ivk

)
, (3.141)

d
(
mvi

)

dτ
−mF i + 2m

(
Di
k +A·ik·

)
vk +m∆i

nkv
nvk =

= −e
c

dqi

dτ
− e
c

(ϕ
c

vk+ qk
)(
Di
k+A·ik·

)
+
eϕ

c2
F i− e

c
∆i
nk q

nvk,

(3.142)

while for the analogous particle located in the mirror-world (it moves
into the past with respect to the observer) the equations are

−dm
dτ

−m

c2
Fivi+

m

c2
Dikvivk = − e

c2
dϕ

dτ
+
e

c3
(
Fi q

i −Dikq
ivk

)
, (3.143)

d
(
mvi

)

dτ
+mF i +m∆i

nkv
nvk =

= −e
c

dqi

dτ
− e
c

(ϕ
c

vk+ qk
)(
Di
k+A·ik·

)
+
eϕ

c2
F i− e

c
∆i
nk q

nvk.
(3.144)

As it is easy to see, the left hand side of the equations fully match
those of the chr.inv.-equations of motion of this particle, provided the
particle is free. The only difference is that the equations include terms,
which characterize its non-geodesic motion. Therefore, the right hand
sides here are not zeroes. The right hand sides account for the effect
that the electromagnetic field produces on the particle, as well as the
effect from physical and geometric properties of the space (F i, Aik, Dik,
∆i
nk). It is evident that, if the particle becomes charge-free, e=0, the

right hand sides turn to zero and the resulting equations fully match the
chr.inv.-equations of motion of a free mass-bearing particle (see formulae
1.51, 1.52 and also 1.56, 1.57).

Let us consider the right hand sides in details. The obtained equa-
tions are absolutely symmetric for motions either into the future or the
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past and they change their sign once the sign of the charge changes. We
denote the right hand sides of the scalar chr.inv.-equations of motion
(3.141, 3.143) as T . Given that

dϕ

dτ
=

∗∂ϕ
∂t

+ vi
∗∂ϕ
∂xi

, (3.145)

then using the formula for the electric strength in covariant form Ei
(3.14), we can represent T as follows

T = − e

c2
Eivi − e

c2

∗∂ϕ
∂t

+

+
e

c3

(∗∂qi
∂t

−Dikq
k

)
vi +

e

c3

(
qi − ϕ

c
vi

)
Fi .

(3.146)

Substituting this formula into (3.141, 3.143) and multiplying the re-
sults by c2, we obtain the equation for the relativistic energy E=±mc2
of the charged particle, which moves into the future and into the past,
respectively

dE

dτ
−mFivi +mDikvivk = −eEivi − e

∗∂ϕ
∂t

+

+
e

c

(∗∂qi
∂t

−Dikq
k

)
vi +

e

c

(
qi − ϕ

c
vi

)
Fi ,

(3.147)

−dE
dτ

−mFivi +mDikvivk = −eEivi − e
∗∂ϕ
∂t

+

+
e

c

(∗∂qi
∂t

−Dikq
k

)
vi +

e

c

(
qi − ϕ

c
vi

)
Fi ,

(3.148)

where eEivi is the work done by the electric component of the field to
displace the particle in unit time.

The scalar chr.inv.-equations of motion of a charged particle (3.147,
3.148) make the theorem of live forces in the pseudo-Riemannian space,
represented in chr.inv.-form. As it is easy to see, in a Galilean reference
frame the scalar equation for the particle which moves into the future
(3.147) matches the time component of the Minkowski equations (3.98).
In three-dimensional Euclidean space, the equation (3.147) transforms
into the theorem of live forces from Classical Electrodynamics which is
dE
dt

= e ~E~u (3.92).
Let us turn to the right hand sides of the vector chr.inv.-equations

of motion (3.142, 3.144). We denote them as M i. Because of

dqi

dτ
=

∗∂qi

∂t
+ vk

∗∂qi

∂xk
, (3.149)
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and in it, taking into account, that
∗∂hik

∂t
=−2Dik (1.40)

∗∂qi

∂t
=

∗∂
∂t

(
hikqk

)
= −2Di

kq
k + hik

∗∂qk
∂t

, (3.150)

then M i takes the form

M i = −e
c
hik

∗∂qk
∂t

+
eϕ

c2
(
F i +Aikvk

)
+
e

c
Aikqk +

+
e

c

(
qk − ϕ

c
vk

)
Di
k −

e

c
vk

∗∂qi

∂xk
− e

c
∆i
nkq

nvk.
(3.151)

Using formulae for chr.inv.-components Ei (3.11) and Hik (3.12) of
the Maxwell tensor Fαβ , we write down the first two terms from M i

(3.151) and the third term as follows

−e
c
hik

∗∂qk
∂t

+
eϕ

c2
F i = − eEi + ehik

∗∂ϕ
∂xk

, (3.152)

eϕ

c2
Aikvk =

e

2c
himvn

(∗∂qm
∂xn

−
∗∂qn
∂xm

)
− e

2c
Hikvk . (3.153)

We write down the quantity Hik as Hik = εmikH∗m (3.56). Then we
have the following

eϕ

c2
Aikvk =

e

2c
himvn

(∗∂qm
∂xn

−
∗∂qn
∂xm

)
− e

2c
εikmH∗mvk , (3.154)

M i = −e
(
Ei +

1
2c
εikmvkH∗m

)
+
e

c

(
qk − ϕ

c
vk

)
Di
k +

+ ehik
∗∂ϕ
∂xk

+
e

c
Aikqk +

e

2c
himvk

(∗∂qm
∂xk

−
∗∂qk
∂xm

)
−

− e

c
vk

∗∂qi

∂xk
− e

c
∆i
nkq

nvk,

(3.155)

and the sum of the latter three terms in M i equals

e

2c
himvk

(∗∂qm
∂xk

−
∗∂qk
∂xm

)
− e

c
vk

∗∂qi

∂xk
− e

c
∆i
nkq

nvk =

= − e

2c
himvk

∗∂qk

∂xm
− e

2c
vk

∗∂qi

∂xk
− e

2c
himqnvk

∗∂hkm
∂xn

.

(3.156)

At last, the vector chr.inv.-equations of motion of the charged par-
ticle (3.142, 3.144) which moves into the future and into the past take
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the form, respectively

d
(
mvi

)

dτ
−mF i + 2m

(
Di
k +A·ik·

)
vk +m∆i

nkv
nvk =

= − e
(
Ei +

1
2c

εikmvkH∗m

)
+

+
e

c

(
qk − ϕ

c
vk

)
Di
k + ehik

∗∂ϕ
∂xk

+
e

c
Aikqk −

− e

2c
himvk

∗∂qk

∂xm
− e

2c
vk

∗∂qi

∂xk
− e

2c
himqnvk

∗∂hkm
∂xn

,

(3.157a)

d
(
mvi

)

dτ
+mF i +m∆i

nkv
nvk =

= − e
(
Ei +

1
2c

εikmvkH∗m

)
+

+
e

c

(
qk − ϕ

c
vk

)
Di
k + ehik

∗∂ϕ
∂xk

+
e

c
Aikqk −

− e

2c
himvk

∗∂qk

∂xm
− e

2c
vk

∗∂qi

∂xk
− e

2c
himqnvk

∗∂hkm
∂xn

.

(3.157b)

From here we see that the first term −e(Ei + 1
2c
εikmvkH∗m

)
in

their right hand sides is different from the Lorentz chr.inv.-force, which
is Φi =−e(Ei + 1

c ε
ikmvkH∗m

)
, by the coefficient 1

2
on the term that

stands for the magnetic component of the force. This fact is very sur-
prising, because regular equations of motion of a charged particle, being
three-dimensional components of the general covariant equations, con-
tain the Lorentz force in full form. In §3.9 we are going to show the
structure of the electromagnetic field potential Aα at which the other
terms in the M i fully compensate this coefficient 1

2
so that only the

Lorentz force is left.

§3.7 Equations of motion, obtained using the least action
principle as a particular case of the previous equa-
tions

In this section, we are going to deduce chr.inv.-equations of motion of
a mass-bearing charged particle, using the least action principle. The
principle says that an action S to displace a particle along the shortest
trajectory is the least, so the variation of the action is zero

δ

∫ b

a

dS = 0 . (3.158)
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Therefore, equations of motion, obtained from the least action prin-
ciple are equations of the shortest lines.

The elementary action of gravitational and electromagnetic fields
to displace a charged particle at an elementary space-time interval ds
is [10]

dS = −m0c ds− e

c
Aαdx

α. (3.159)

We see that this quantity is only applicable to characterize par-
ticles which move along non-isotropic trajectories (ds 6=0). On the
other hand, obtaining equations of motion through the parallel transfer
method (constant direction lines) is equally applicable to both non-
isotropic (ds 6=0) and isotropic trajectories (ds= 0). Moreover, parallel
transfer is as well applicable to non-metric geometries, in particular, to
obtain equations of motion of particles in a fully degenerate space-time
(zero-space). Therefore, equations of the shortest length lines, because
they are obtained through the least action method, are merely a narrow
particular case of constant direction lines, which result from parallel
transfer.

But we are returning to the least action principle (3.158). For the
charged particle we are considering the condition takes the form

δ

∫ b

a

dS = − δ
∫ b

a

m0c ds− δ

∫ b

a

e

c
Aαdx

α = 0 , (3.160)

where the first term can be denoted as follows

− δ
∫ b

a

m0c ds = −
∫ b

a

m0cDUαδxα =

=
∫ b

a

m0c (dUαds− Γα,µνUµdxν) δxα.
(3.161)

We represent the variation of the second integral from the initial
formula (3.160) as the sum

−e
c
δ

∫ b

a

Aαdx
α = − e

c

( ∫ b

a

δAαdx
α +

∫ b

a

Aαdδx
α

)
. (3.162)

Integrating the second term, we obtain
∫ b

a

Aαdδx
α = Aα δx

α
∣∣∣
b

a
−

∫ b

a

dAαδx
α. (3.163)

Here, the first term is zero, as the integral is varied with the given
numerical values of coordinates of the integration limits. Taking into
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account that the variation of any covariant vector is

δAα =
∂Aα
∂xβ

δxβ , dAα =
∂Aα
∂xβ

dxβ , (3.164)

we obtain the variation of the electromagnetic part of the action

− e

c
δ

∫ b

a

Aαdx
α = − e

c

∫ b

a

(
∂Aα
∂xβ

dxαδxβ − ∂Aα
∂xβ

δxαdxβ
)
. (3.165)

Transpositioning free indices α and β in the first term of this formula
and accounting for the variation of the gravitational part of the action
(3.161) we arrive at the variation of the total action (3.160) as follows

δ

∫ b

a

dS =
∫ b

a

[
m0c (dUα − Γα,µνUµdxν)− e

c
Fαβ dx

β
]
δxα, (3.166)

where Fαβ = Aβ

∂xα − ∂Aα

∂xβ is the Maxwell tensor, and Uµ = dxµ

ds
is the four-

dimensional velocity of the particle. Because the quantity δxα is arbi-
trary, the formula under the integral is always zero. Hence, we arrive
at general covariant equations of motion of the charged particle in their
covariant (lower-index) form

m0c

(
dUα
ds

− Γα,µνUµUν
)

=
e

c
FαβU

β , (3.167)

or, lifting the index α, we arrive at the contravariant form of the equa-
tions

m0c

(
dUα

ds
+ ΓαµνU

µUν
)

=
e

c
Fα··β U

β . (3.168)

The equations (3.168) actually are the Minkowski equations in the
pseudo-Riemannian space. In a Galilean reference frame in the Min-
kowski space (the Special Theory of Relativity), the obtained equations
transform into regular relativistic equations (3.93).

Therefore, chr.inv.-projections of the obtained equations (3.168) may
be called the Minkowski chr.inv.-equations in the pseudo-Riemannian
space. For an our-world charged particle (it moves into the future w ith
respect to a regular observer) the Minkowski chr.inv.-equations are

dE

dτ
−mFivi +mDikvivk = −eEivi, (3.169)

d
(
mvi

)

dτ
−mF i + 2m

(
Di
k +A·ik·

)
vk +m∆i

nk vnvk =

= − e
(
Ei +

1
c
εikmvkH∗m

)
,

(3.170)
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and for the analogous particle in the mirror world (it moves into the
past) the equations are

−dE
dτ

−mFivi +mDikvivk = − eEivi, (3.171)

d
(
mvi

)

dτ
+mF i +m∆i

nkv
nvk = − e

(
Ei +

1
c
εikmvkH∗m

)
. (3.172)

The scalar chr.inv.-equations of motion, both in our world and the
mirror world, represent the live forces theorem. The right hand sides of
the vector chr.inv.-equations represent the Lorentz chr.inv.-force in the
pseudo-Riemannian space. As it is easy to see, in a Galilean reference
frame in the Minkowski space the obtained equations become the regular
theorem of live forces (3.92) and the regular three-dimensional equations
of motion (3.90) accepted in Classical Electrodynamics.

It is evident that, the right hand sides of the equations of motion
(3.169–3.172), obtained through the least action method, are different
from the right hand sides of the equations (3.146, 3.157), obtained by
the parallel transfer method. The difference here, is in the absence in
(3.169–3.172) of numerous terms, which characterize the structure of the
acting electromagnetic field and the space itself. But as we have already
mentioned, shortest length lines are only a particular case of constant
direction lines, defined by parallel transfer. Therefore, there is little
surprise in that the equations of parallel transfer, as more general ones,
have additional terms, which account for the structure of the acting
electromagnetic field and of the space.

§3.8 The geometric structure of the four-dimensional el-
ectromagnetic potential

In this section, we are going to find the structure of the acting elec-
tromagnetic field potential Aα, under which the length of any charged
particle’s summary vector Qα =Pα + e

c2
Aα remains unchanged in its

parallel transfer in the Levi-Civita meaning (so, a pseudo-Riemannian
space is assumed).

As it is known, the Levi-Civita parallel transfer conserves the length
of any transferred vector Qα, so the condition QαQ

α = const is true.
Given that the square of the length of any n-dimensional vector is in-
variant in the n-dimensional pseudo-Riemannian space where the vector
is located, this condition must be true in any reference frame, including
the case of any observer who accompanies his reference body. Hence, we
can analyze the condition QαQ

α = const, formulating it with physical
observable quantities in the accompanying reference frame, in chr.inv.-
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form in other words.
Components of the vector Qα in the accompanying reference frame

are
Q0 =

(
1− w

c2

) (
±m+

eϕ

c2

)
, (3.173)

Q0 =
1

1− w

c2

[(
±m+

eϕ

c2

)
+

1
c2
vi

(
mvi +

e

c
qi

)]
, (3.174)

Qi = −1
c

(
mvi +

e

c
qi

)
− 1
c

(
±m+

eϕ

c2

)
vi , (3.175)

Qi =
1
c

(
mvi +

e

c
qi

)
, (3.176)

and its square is

QαQ
α = m2

0 +
e2

c4
(
ϕ2 − qiq

i
)

+
2me
c2

(
±ϕ− 1

c
vi qi

)
. (3.177)

From here, we can see that the square of the charged particle’s sum-
mary vector can be split into the following quantities:

a) The square of the four-dimensional momentum of the particle
PαP

α =m2
0;

b) The square of the four-dimensional additional momentum e

c2
Aα

which the particle gains from the acting electromagnetic field (the
second term);

c) The term 2me
c2

(±ϕ− 1
c vi qi), which describes interaction between

the mass of this particle m and its electric charge e.
In the formula for QαQα (3.177), the first term m2

0 remains un-
changed. In other words, it is an invariant and does not depend on the
reference frame. Our goal is to deduce the conditions, under which the
whole formula (3.177) remains unchanged.

Hence, let us propose that the field vector-potential has the structure

qi =
ϕ

c
vi. (3.178)

In this case∗ the second term of (3.177) is

e2

c4
AαA

α =
e2ϕ2

c4

(
1− v2

c2

)
. (3.179)

∗A similar problem could be solved, assuming that qi =±ϕ
c

vi. But in com-
parative analysis of two groups of the equations only positive numerical values of
qi = ϕ

c
vi will be important, because the observer’s physical time τ , by definition,

flows from the past into the future only, so the interval of physical observable time
dτ is always positive.
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Transforming the third term in the same way, we obtain the square
of the vector Qα (3.177) in the form

QαQ
α = m2

0 +
e2ϕ2

c4

(
1− v2

c2

)
+

2m0 e

c2
ϕ

√
1− v2

c2
. (3.180)

Then introducing notation for the field scalar potential

ϕ =
ϕ0√

1− v2

c2

, (3.181)

we can represent the obtained formula (3.180) as follows

QαQ
α = m2

0 +
e2ϕ2

0

c4
+

2m0 eϕ0

c2
= const. (3.182)

So, the length of the summary vector Qα remains unchanged in its
parallel transfer, if the observable potentials ϕ and qi of the field are
related to its four-dimensional potential Aα as follows

A0√
g00

= ϕ =
ϕ0√

1− v2

c2

, Ai = qi =
ϕ

c
vi. (3.183)

Then for the vector e

c2
Aα, which characterizes interaction of the

particle’s charge with the electromagnetic field we have

e

c2
A0√
g00

=
eϕ0

c2
√

1− v2

c2

,
e

c2
Ai =

eϕ0

c3
vi√

1− v2

c2

. (3.184)

Dimensions of the vectors e

c2
Aα and Pα =m0

dxα

ds
in CGSE and

Gaussian systems of units are the same and equal to mass m [ gram ].
Comparing chr.inv.-projections of both vectors, we can see that a

similar quantity for the relativistic mass m in interactions between the
particle’s charge and the acting electromagnetic field is the quantity

eϕ

c2
=

eϕ0

c2
√

1− v2

c2

, (3.185)

where eϕ is the potential energy of the particle moving at the observable
velocity vi = dxi

dτ
with respect to the acting electromagnetic field (this

particle is at rest with respect to the observer and his reference body).
In general, the scalar potential ϕ is the potential energy of the field
itself, divided by unit charge. Then, eϕ is the potential relativistic-
energy of the particle with charge e in this electromagnetic field, while
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eϕ0 is the particle’s rest-energy in the field. When the particle is at rest
with respect to the field, its potential rest-energy equals the potential
relativistic-energy.

Comparing E=mc2 and W = eϕ, we arrive at the same conclusion.
Respectively, W0

c2
= eϕ0

c2
is an electromagnetic quantity analogous to the

rest-mass m0. Then, the chr.inv.-quantity e

c2
Ai = eϕ

c2
vi is similar to

the observable momentum chr.inv.-vector pi =mvi. Therefore, when
the particle is at rest with respect to the field, its “electromagnetic
projection” on the observer’s spatial section (the chr.inv.-vector) is zero,
while only the time projection (the potential rest-energy eϕ0 = const)
is observable. But if the particle moves in the field at the velocity
vi, its observable “electromagnetic projections” will be the potential
relativistic-energy eϕ and the three-dimensional momentum eϕ

c2
vi.

Having obtained chr.inv.-projections of the vector e

c2
Aα calculated

for the given structure (3.183), we can restore the vector Aα in general
covariant form. Taking into account that its spatial component Ai is

Ai = qi =
ϕ

c
vi =

ϕ

c

√
1− v2

c2

dxi

dτ
= ϕ0

dxi

ds
, (3.186)

we obtain the desired general covariant notation for Aα

Aα = ϕ0
dxα

ds
,

e

c2
Aα =

eϕ0

c2
dxα

ds
. (3.187)

In the same time, taking chr.inv.-projections the final formula for
the Aα (3.187)

A0√
g00

= ±ϕ = ± ϕ0√
1− v2

c2

, Ai = qi =
ϕ

c
vi, (3.188)

we obtain alternating signs in the time chr.inv.-projection, which was
not the case in the initial formula (3.183). Naturally, a question arises:
how did the scalar observable component of the vector Aα, initially
defined as ϕ, at the given structure of the Aα (3.187) accept the al-
ternating sign? The answer is that in the first case ϕ and qi were
defined proceeding from the general rule of building chr.inv.-quantities.
But without knowing the structure of the projected vector Aα itself,
we can not calculate them. Therefore, in the formulae for the time
and spatial projections (3.183) the symbols ϕ and qi merely denote the
quantities without revealing their structure. On the contrary, in the
formulae (3.188) the quantities ϕ and qi were calculated using formulae
ϕ=

√
g00A

0 + g0i√
g00

Ai and qi =Ai, where detailed formulae for the com-
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ponents A0 and Ai were given. Hence, in the second case, the quantity
±ϕ results from calculation and sets forth the specific formula

ϕ = ± ϕ0√
1− v2

c2

. (3.189)

Therefore, the calculated chr.inv.-projections of the vector e

c2
Aα

have the form

e

c2
A0√
g00

= ±eϕ
c2

= ± eϕ0

c2
√

1− v2

c2

,
e

c2
Ai =

eϕ

c3
vi, (3.190)

where “plus” stands if the particle is located in our world, so it travels
from the past into the future, while “minus” stands if the particle is
located in the mirror world, travelling into the past with respect to us.
The square of the vector’s length is

e2

c4
AαA

α =
e2ϕ2

c4

(
1− v2

c2

)
=
e2ϕ2

0

c4
= const . (3.191)

This vector, e

c2
Aα, has real length at v2<c2, zero length at v2 = c2

and imaginary length at v2>c2. However, we limit our study to real
form of the vector (sub-light velocities), because light-like or super-light
charged particles are unknown.

Comparing formulae for Pα =m0
dxα

ds
and e

c2
Aα = eϕ0

c2
dxα

ds
we can see

that both vectors are collinear, so they are tangential to the same non-
isotropic trajectory, to which the derivation parameter s is assumed.
Hence, in this case, the momentum vector of the particle Pα is co-
directed with the acting electromagnetic field, so the particle moves
“along” the field.

We are going to consider the general case, where the vectors are
not co-directed. From the square of the summary vector QαQα (3.177)
we see that the third term there is the doubled scalar product of the
vectors Pα and e

c2
Aα. Parallel transfer of the vectors leaves their scalar

product unchanged

D (PαAα) = AαDPα + PαDAα = 0 , (3.192)

because the absolute increment of each vector is zero. Hence, we obtain

2e
c2
PαA

α =
2me
c2

(
±ϕ− 1

c
vi qi

)
= const, (3.193)

that is, the scalar product of Pα and e

c2
Aα remains unchanged. Conse-

quently, the lengths of both vectors remain unchanged as well. In part-
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icular, we have
AαA

α = ϕ2 − qiq
i = const. (3.194)

As it is known, the scalar product of two vectors is the product
of their lengths multiplied by the cosine of the angle between them.
Therefore, parallel transfer also leaves the angle between the transferred
vectors unchanged

cos
(
Pα;Aα

)
=

PαA
α

m0

√
ϕ2 − qiqi

= const. (3.195)

Taking into account the formula for relativistic mass m, we can re-
write the condition (3.193) as follows

2e
c2
PαA

α = ±2m0e

c2
ϕ√

1− v2

c2

− 2m0e

c2
vi qi

c

√
1− v2

c2

= const, (3.196)

or as the relationship between the scalar and vector potentials

± ϕ√
1− v2

c2

− vi qi

c

√
1− v2

c2

= const. (3.197)

For instance, we can find the relationship between the potentials
ϕ and qi for that case, where the momentum vector of the particle
Pα is orthogonal to the additional momentum e

c2
Aα, away from the

electromagnetic field.
Because parallel transfer leaves the angle between transferred vec-

tors unchanged (3.195), then cosine of the angle between transferred
orthogonal vectors is zero. So, we have

PαA
α = ±ϕ− 1

c
vi qi = 0 . (3.198)

Consequently, if the particle travels in the electromagnetic field so
that the vectors Pα and Aα are orthogonal, then the scalar potential of
the field is

ϕ = ± 1
c

vi qi, (3.199)

so it is the scalar product of the particle’s observable velocity vi and
the spatial observable vector-potential of the field qi.

Now, we are going to obtain the formula for the square of the sum-
mary vector Qα, assuming that the structure of the electromagnetic
field potential is Aα =ϕ0

dxα

ds
(3.187), so the field vector Aα is collinear
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to the particle’s momentum vector Pα. Then

QαQ
α = m2 − m2

c2
vivi +

e2

c4
(
ϕ2 − qiq

i
)

= m2
0 +

e2

c4
ϕ2

0 . (3.200)

Multiplying both sides of the equation by c4 and denoting the rela-
tivistic energy of the particle as E=mc2, we obtain

E2 − c2p2 + e2ϕ2 − e2qiq
i = E2

0 + e2ϕ2
0 . (3.201)

§3.9 Minkowski’s equations as a particular case of the ob-
tained equations of motion

In §3.6 we considered a charged particle of non-zero mass in a pseudo-
Riemannian space. There, general covariant equations of its motion
were obtained by applying the parallel transfer method. So, we have
obtained chr.inv.-projections of the general covariant equations.

We showed that their time chr.inv.-projection (3.147) in a Galilean
reference frame takes the form of the time component of the Minkowski
equations (3.98), becoming the live forces theorem of Classical Elec-
trodynamics (3.92) in three-dimensional Euclidean space. However,
the right hand sides of the spatial chr.inv.-projections have the term
−e(Ei + 1

2c
εikmvkH∗m

)
, instead of the Lorentz chr.inv.-force, which

is Φi =−e(Ei + 1
c ε

ikmvkH∗m
)
, and numerous other additional terms

which depend on observable characteristics of the acting electromagnetic
field and the space itself. Therefore, for the spatial chr.inv.-projections,
the principle of correspondence with three-dimensional components of
the Minkowski equations is set non-trivially.

On the other hand, equations of constant direction lines, obtained
through parallel transfer in a pseudo-Riemannian space, are a more
general case of the shortest length lines, obtained with the least action
method. Equations of motion, obtained from the least action principle
in §3.7, have the structure matching that of the Minkowski equations.
Hence, we can suppose that chr.inv.-projections of the equations of mo-
tion in §3.6, are more general ones; in a particular case, they can be
transformed into chr.inv.-projections of the equations of motion, ob-
tained from the least action principle in §3.7.

To find out exactly under what conditions this can be true, we are
going to consider the spatial chr.inv.-projections of the equations of
motion (3.157), which contain the mismatch with the Lorentz force.
For the convenience of analysis, we considered the right hand side of
(3.157) as a separate formula denoted as M i. Substituting the magnetic
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strength Hik (3.12) into the term eϕ

c2
Aikvk from M i, we write down the

term as follows

eϕ

c2
Aikvk =

e

2c
himvn

(∗∂qm
∂xn

−
∗∂qn
∂xm

)
− e

2c
εikmH∗mvk , (3.202)

where εikmH∗m =Hik. Now, we substitute chr.inv.-components of the
electromagnetic field potential Aα as in (3.188) into (3.157). With this
potential, the momentum vector e

c2
Aα which the electrically charged

particle gains from this electromagnetic field is tangential to the parti-
cle’s trajectory.

Using the first formula, qm = ϕ
c vm, we arrive at the dependence of

the right hand side under consideration on only the scalar potential of
the field

M i = − e
(
Ei +

1
c
εikmvkH∗m

)
+

+ ehik
(

1− v2

c2

) ∗∂ϕ
∂xk

+
eϕ

2
hik

∗∂
∂xk

(
1− v2

c2

)
.

(3.203)

Substituting the relativistic formula of the scalar potential ϕ (3.181)
into this formula we see that the sum of the last two terms becomes zero

− eϕ

2
hik

∗∂
∂xk

(
1− v2

c2

)
+
eϕ

2
hik

∗∂
∂xk

(
1− v2

c2

)
= 0 . (3.204)

Then M i takes the form of the Lorentz chr.inv.-force

M i = − e
(
Ei +

1
c
εikmvkH∗m

)
, (3.205)

which is exactly what we had to prove.
Now, we are going to consider the right hand side c2T of the scalar

chr.inv.-equation of motion (3.147) under the condition that the vector
Aα has the structure as mentioned in the above and the vector is tan-
gential to the particle’s trajectory. Substituting chr.inv.-projections ϕ
and qi of the vector Aα of the given structure into (3.146), we transform
the quantity T to the form

c2T = − eEivi−e
∗∂ϕ
∂t

+
e

c2

[ ∗∂
∂t

(
ϕhik vk

) −ϕDikq
k

]
vi =

= − eEivi − e
∗∂ϕ
∂t

(
1− v2

c2

)
+
eϕ

c2
Dikvivk +

eϕ

c2
vk

∗∂vk

∂t
.

(3.206)
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Substituting the relativistic definition of ϕ (3.181) into the first
derivative and after derivation returning to ϕ again, we obtain

c2T = − eEivi − eϕ

2c2
∗∂
∂t

(
hikvivk

)
+
eϕ

c2
Dikvivk +

+
eϕ

c2
vk

∗∂vk

∂t
=− eEivi− eϕ

2c2

(∗∂hik
∂t

vivk+2vk
∗∂vk

∂t

)
+

+
eϕ

c2
Dikvivk +

eϕ

c2
vk

∗∂vk

∂t
= − eEivi,

(3.207)

because we took into account that
∗∂hik

∂t
=2Dik by definition of the

tensor of the space deformations rate Dik (1.40).
So, chr.inv.-equations of motion of a charged particle, obtained using

the parallel transfer method in a pseudo-Riemannian space, match the
equations, obtained using the least action principle in a particular case,
where:

a) The electromagnetic field potential Aα has the following structure
Aα =ϕ0

dxα

ds
(3.187);

b) The field potential Aα is tangential to the four-dimensional tra-
jectory of the moved particle.

Consequently, given such an electromagnetic potential in a Galilean
reference frame in the Minkowski space, the obtained chr.inv.-equations
of motion fully match the live force theorem (which is the scalar chr.inv.-
equation of motion) and the Minkowski equations (the vector chr.inv.-
equations) in three-dimensional Euclidean space, taking the well-known
form in Classical Electrodynamics.

Noteworthy, this is another illustration of the geometric fact that
the shortest length lines, obtained from the least action principle, are
merely a particular case of constant direction lines, which result from
the parallel transfer method.

§3.10 Structure of a space filled with a stationary elec-
tromagnetic field

It is evident that, setting a particular structure of electromagnetic fields
imposes certain limits on motion of charges, which, in their turn, im-
poses limitations on the structure of a pseudo-Riemannian space where
the motions take place. We are going to find out what kind of the
structure the pseudo-Riemannian space should have so that a charged
particle can move in a stationary electromagnetic field.



3.10 Structure of a space, filled with a stationary electromagnetic field 101

Chr.inv.-equations of motion of a charged particle of non-zero mass
in our world have the form

dE

dτ
−mFivi +mDikvivk = −e dϕ

dτ
+
e

c

(
Fi q

i −Dikq
ivk

)
, (3.208)

d
(
mvi

)

dτ
−mF i + 2m

(
Di
k +A·ik·

)
vk +m∆i

nkv
nvk =

= −e
c

dqi

dτ
− e

c

(ϕ
c

vk+ qk
)(
Di
k+A

·i
k·

)
+
eϕ

c2
F i− e

c
∆i
nkq

nvk.
(3.209)

Because we assume the electromagnetic field to be stationary, the
field potentials ϕ and qi depend on spatial coordinates, but not time.
In this case chr.inv.-components of the electromagnetic field tensor are

Ei =
∗∂ϕ
∂xi

− ϕ

c2
Fi =

∂ϕ

∂xi
− ϕ

∂

∂xi
ln

(
1− w

c2

)
, (3.210)

H∗i =
1
2
εimnHmn =

1
2
εimn

(
∂qm
∂xn

− ∂qn
∂xm

− 2ϕ
c
Amn

)
. (3.211)

From here, we can arrive at limitations on the space metric, imposed
by the stationary state of the acting electromagnetic field.

The formulae for Ei and H∗i, together with chr.inv.-derivatives of
the scalar and vector electromagnetic potentials, also include properties
of the space, namely — the chr.inv.-vector of gravitational inertial force
Fi and the chr.inv.-tensor of the space non-holonomity Aik. It is evident
that, in stationary electromagnetic fields the mentioned properties of the
space should be stationary as well

∗∂Fi
∂t

= 0 ,
∗∂F i

∂t
= 0 ,

∗∂Aik
∂t

= 0 ,
∗∂Aik

∂t
= 0 . (3.212)

From these definitions, we see that the quantities Fi and Aik are
stationary (do not depend on time), if the linear velocity of the space
rotation is as well stationary, ∂vi

∂t
=0. So, the condition ∂vi

∂t
=0, namely

— stationary rotation of the space, turns chr.inv.-derivative with respect
to spatial coordinates into the regular derivative

∗∂
∂xi

=
∂

∂xi
− 1
c2

∗∂
∂t

=
∂

∂xi
. (3.213)

Because chr.inv.-derivative with respect to time is differs from the
regular derivative only by the multiplier ∂

∂t
=

(
1− w

c2

) ∗∂
∂t

, the regular
derivative of stationary quantity is zero as well.
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For the tensor of the space deformations rate Dik under a stationary
rotation of the space we have

∗∂Dik

∂t
=

1
2

∗∂hik
∂t

=
1
2

∗∂
∂t

(
− gik +

1
c2
vivk

)
= −1

2

∗∂gik
∂t

. (3.214)

Because in the case under consideration the right hand sides of equa-
tions of motion are stationary, the left hand sides should be the same
as well. This implies, that the space does not deform. Then according
to (3.124), the three-dimensional coordinate metric gik does not depend
on time, so the Christoffel chr.inv.-symbols ∆i

jk (1.47) are stationary as
well.

Using chr.inv.-components of the Maxwell tensor (3.210, 3.211), we
transform the Maxwell equations (3.63, 3.64) for the stationary electro-
magnetic field. As a result we have

∂Ei

∂xi
+
∂ ln

√
h

∂xi
Ei − 2

c
Ω∗mH∗m = 4πρ

εikm ∗∇̃k
(
H∗m

√
h

)
=

4π
c
ji
√
h





I , (3.215)

∂H∗i

∂xi
+
∂ ln

√
h

∂xi
H∗i +

2
c

Ω∗mEm = 0

εikm ∗∇̃k
(
Em

√
h

)
= 0





II . (3.216)

Then the Lorentz condition (3.65) and the continuity equation (3.66)
respectively take the form

∗∇̃i qi = 0 , ∗∇̃i ji = 0 . (3.217)

So, we have found the way in which any stationary state of an electro-
magnetic field, located in a pseudo-Riemannian space, affects physical
observable properties of the space itself and hence the main equations
of electrodynamics.

In the next sections, §3.11–§3.13, we will use the results for solving
equations of motion of a charged particle (3.208, 3.209) in stationary
electromagnetic fields of three kinds:

1) A stationary electric field (the magnetic strength is zero);
2) A stationary magnetic field (the electric strength is zero);
3) A stationary electromagnetic field (both components are non-

zeroes).
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§3.11 Motion in a stationary electric field

We are going to consider motion of a charged mass-bearing particle in a
pseudo-Riemannian space, filled with a stationary electromagnetic field
of strictly electric kind. The magnetic component of the field does not
reveal itself for the observer, so the component is absent, in other words.

What conditions should the space satisfy to allow existence of a sta-
tionary electromagnetic field of strictly electric kind? From the formula
for a stationary state of the magnetic strength

Hik =
∂qi
∂xk

− ∂qk
∂xi

− 2ϕ
c
Aik (3.218)

we see that Hik =0 in this case provided the following two conditions
are satisfied:

a) The vector-potential qi is irrotational ∂qi

∂xk = ∂qk

∂xi ;
b) The space is holonomic Aik =0.
The stationary electric strength Ei (3.210) is the sum of the spatial

derivative of the scalar potential ϕ and the term ϕ

c2
Fi. But on the Earth

surface, the ratio of the gravitational potential and the square of the
light velocity is nothing but only

w
c2

=
GM⊕

c2R⊕
≈ 10−10. (3.219)

Therefore, in a real Earth laboratory, the second term in (3.210) may
be neglected so that the Ei will only depend on spatial distribution of
the scalar potential

Ei =
∂ϕ

∂xi
. (3.220)

Because the right hand sides of the equations of motion that stand for
the Lorentz force are stationary, the left hand sides should be stationary
too. Under the conditions we are considering, this is true if the tensor
of the space deformation rate is zero (the space does not deform). So, if
a stationary electromagnetic field has non-zero electric component and
zero magnetic component, then the pseudo-Riemannian space where the
field is located should satisfy the following conditions:

a) Potential w of the acting gravitational field is negligible w≈ 0;
b) The space does not rotate Aik =0;
c) The space does not deform Dik =0.
To make further calculations easier, we assume that our three-

dimensional space is close to Euclidean one, so we assume ∆i
nk ≈ 0.
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Then chr.inv.-equations of motion of a particle of electric charge e
(3.208, 3.209) take the form

dm

dτ
= − e

c2
dϕ

dτ
, (3.221)

d

dτ

(
mvi

)
= −e

c

dqi

dτ
. (3.222)

From the scalar chr.inv.-equation of motion (the live forces theorem),
we can see that change of the particle’s relativistic energy E=mc2 is
due to work done by the field electric component Ei.

From the vector chr.inv.-equations of motion, we can see that the
particle’s observable momentum has changed under change of the field
vector-potential qi. Assuming that the field four-dimensional potential
is tangential to the four-dimensional trajectory of the particle, we (as it
was shown in §3.9) get the Lorentz three-dimensional force

Φi =− eEi (3.223)

on the right hand side. That is, in this case, the particle’s observable
momentum has changed under the action of the electric strength of the
field.

Both groups of the Maxwell chr.inv.-equations for a stationary field
(3.215, 3.216) in this case become very simple

∂Ei

∂xi
= 4πρ

ji = 0





I , (3.224)

εikm
∂Em
∂xk

= 0
}

II . (3.224)

Integrating the scalar chr.inv.-equation of motion (the live forces
theorem) we arrive at the so-called live forces integral

m+
eϕ

c2
= B = const, (3.225)

where B is the integration constant.
Another consequence from the Maxwell chr.inv.-equations is that in

this case, the scalar potential of the field satisfies either 1) or 2) below:

1) Poisson’s equation ∂2ϕ

∂x2 + ∂2ϕ

∂y2 + ∂2ϕ

∂z2
=4πρ, if ρ 6= 0;

2) Laplace’s equation ∂2ϕ

∂x2 + ∂2ϕ

∂y2 + ∂2ϕ

∂z2
=0, if ρ=0.
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So, we have found out the properties of the pseudo-Riemannian space
that allows motion of charged particles in a stationary electric field. It
would be natural now to obtain exact solutions of chr.inv.-equations of
motion for such a particle, namely — the equations (3.221, 3.222). But,
unless a particular structure of the field itself is set by the Maxwell equa-
tions this can not be done. For this reason, to simplify the calculations,
we assume that the electric field is homogeneous.

We assume that the covariant chr.inv.-vector of the electric strength
Ei is directed along the x axis. Following Landau and Lifshitz (see §20
of The Classical Theory of Fields [10]) we are going to consider the
case of a charged particle repelled by the field — the case of a negative
numerical value of the electric strength and increasing coordinate x of
the particle∗. Then components of the vector Ei are

E1 = Ex = −E = const, E2 = E3 = 0 . (3.226)

Because the field homogeneity implies Ei = ∂ϕ

∂xi = const, the scalar
potential ϕ is a function of x that satisfies the Laplace equation

∂2ϕ

∂x2
=
∂E

∂x
= 0 . (3.227)

This implies that, the homogeneous stationary electric field satisfies
the condition of the absence of charges ρ=0.

We assume that the particle moves along the electric strength Ei,
so it is directed along x. Then chr.inv.-equations of its motion are

dm

dτ
= − e

c2
dϕ

dτ
= − e

c2
dϕ

dxi
vi =

e

c2
E
dx

dτ
, (3.228)

d

dτ

(
m
dx

dτ

)
= eE ,

d

dτ

(
m
dy

dτ

)
= 0 ,

d

dτ

(
m
dz

dτ

)
= 0 . (3.229)

Integrating the scalar chr.inv.-equation of motion (the live forces
theorem), we arrive at the live forces integral

m =
eE

c2
x+B , B = const. (3.230)

This constant B can be obtained from the initial conditions of inte-
gration m|τ=0 =m(0) and x|τ=0 =x(0)

B = m(0) −
eE

c2
x(0) , (3.231)

∗Naturally, in the case of the particle attracted by the field the electric strength
is positive while the coordinate of the particle decreases.
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so the solution (3.230) takes the form

m =
eE

c2
(
x− x(0)

)
+m(0) . (3.232)

Substituting the obtained integral of live forces into the vector chr.
inv.-equations of motion (3.229), we bring them to the form∗

eE

c2
ẋ2 +

(
B +

eE

c2
x

)
ẍ = eE

eE

c2
ẋẏ +

(
B +

eE

c2
x

)
ÿ = 0

eE

c2
ẋż +

(
B +

eE

c2
x

)
z̈ = 0





. (3.233)

From here, we realize that the last two equations in (3.233) are
equations with separable variables

ÿ

y
=

− eE
c2
ẋ

B + eE
c2
x
,

z̈

z
=

− eE
c2
ẋ

B + eE
c2
x
, (3.234)

which can be integrated. Their solutions are

ẏ =
C1

B + eE
c2
x
, ż =

C2

B + eE
c2
x
, (3.235)

where C1 and C2 are integration constants which can be found by setting
the initial conditions ẏ|τ=0 = ẏ(0) and ẋ|τ=0 = ẋ(0) and using the formula
for B (3.121). As a result, we obtain

C1 = m(0) ẏ(0) , C2 = m(0) ż(0) . (3.236)

Let us solve the equation of motion along x — the first equation
from (3.233). So, we set ẋ= dx

dτ
= p. Then

ẍ =
d2x

dt2
=
dp

dt
=
dp

dx

dx

dt
= pp′, (3.237)

and the above equation of motion along x transforms into an equation
with separable variables

p dp

1− p2

c2

=
eE dx

B + eE
c2
x
, (3.238)

∗Dot stands for derivation with respect to physical observable time τ .
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which is a standard integral. After integration, we arrive at the solution
√

1− p2

c2
=

C3

B + eE
c2
x
, C3 = const. (3.239)

Assuming p= ẋ|τ=0 = ẋ(0) and substituting B from (3.231) we find
the integration constant

C3 = m(0)

√
1−

ẋ2
(0)

c2
. (3.240)

In the case under consideration, we can replace the interval of phys-
ical observable time dτ with the interval of coordinate time dt. We
explain why in the next section.

In The Classical Theory of Fields Landau and Lifshitz solved equa-
tions of motion of a charged particle in a Galilean reference frame in
the Minkowski space of the Special Theory of Relativity [10]. Naturally,
to be able to compare our solutions with theirs we consider the same
particular case — motion in a homogeneous stationary electric field (see
§20 in The Classical Theory of Fields). But in this case, as we showed
earlier in section, using the methods of chronometric invariants, we have
Fi =0 and Aik =0, hence we obtain that in this case

dτ =
(
1− w

c2

)
dt− 1

c2
vidx

i = dt . (3.241)

In other words, in the four-dimensional area in this study where the
particle travels, the metric is Galilean.

Substituting the variable p= dx
dt

into the formula (3.239) we arrive
at the last equation with separable variables

dx

dt
= c

√(
B + eE

c2
x
)2− C2

3

B + eE
c2
x

, (3.242)

whose solution is the function

ct =
c2

eE

√(
B +

eE

c2
x

)2

− C2
3 + C4 , C4 = const, (3.243)

where the integration constant C4, taking into account the initial con-
ditions at the moment t=0, is

C4 = −m(0)c

eE
ẋ(0) . (3.244)

Now formulating coordinate x explicitly from (3.243) with t we ob-
tain the final solution of the spatial chr.inv.-equations of motion of the
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charged particle along x

x =
c2

eE

[√
e2E2

c4
(ct− C4)

2 + C2
3 −B

]
, (3.245)

or, after substituting integration constants

x=

√(
ct+

m(0)cẋ(0)

eE

)2

+
(
m(0)c2

eE

)2(
1−

ẋ2
(0)

c2

)
−m(0)c

2

eE
+x(0) . (3.246)

If the field attracts the particle (the electric strength is positive
E1 =Ex =E= const), we will obtain the same solution for x but having
the opposite sign

x =
c2

eE

[
B −

√
e2E2

c4
(ct− C4)

2 + C2
3

]
. (3.247)

In The Classical Theory of Fields [10] a similar problem is consid-
ered, but Landau and Lifshitz solved it through integration of three-
dimensional components of general covariant equations of motion (the
Minkowski three-dimensional equations) without accounting for the live
forces theorem. Their formula for x is

x =
1
eE

√
(m0c2)

2 + (ceEt)2 . (3.248)

This formula matches our solution (3.245) if x(0)− m(0)c
2

eE
=0 and

the initial velocity of the particle is zero ẋ(0) =0. The latter stands for
significant simplifications accepted in The Classical Theory of Fields,
according to which some integration constants are assumed zeroes.

As it is easy to see, even when solving equations of motion in a
Galilean reference frame in the Minkowski space, the mathematical
methods of chronometric invariants give certain advantages revealing
hidden factors which are left unnoticed when solving regular three-
dimensional components of general covariant equations of motion. This
means that, even when physical observable quantities coincide coordi-
nate quantities, it is geometrically correct to solve a system of chr.inv.-
equations of motion, because the live forces theorem, being their scalar
part, inevitably affects the solution of the vector equations.

Of course, in the case of an inhomogeneous non-stationary electric
field some additional terms will appear in our solution to reflect the
more complicated and time varying field structure.
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Now, let us calculate three-dimensional trajectory of the particle in
the homogeneous stationary electric field we are considering. To obtain
it, we integrate the equations of motion along the axes y and z (3.235),
formulate time from there and substitute it into the solution for x we
have obtained.

First, substituting the obtained solution for x (3.245) into the equa-
tion for ẏ, we obtain the equation with separable variables

dy

dt
=

C1√
e2E2

c4
(ct− C4)

2 + C2
3

, (3.249)

integrating we have

y =
m(0) ẏ(0)c

eE
arc sinh

eEt+m(0) ẋ(0)

m(0)c

√
1− ẋ2

(0)

c2

+ C5 , (3.250)

where C5 is integration constant. From y= y(0) at t=0 we find

C5 = y(0) −
m(0) ẏ(0)c

eE
arc sinh

ẋ(0)

c

√
1− ẋ2

(0)

c2

. (3.251)

Substituting the constant into y (3.250) we finally have

y = y(0) +
m(0) ẏ(0)c

eE
×

×





arc sinh
eEt+m(0) ẋ(0)

m(0)c

√
1− ẋ2

(0)

c2

− arc sinh
ẋ(0)

c

√
1− ẋ2

(0)

c2




.

(3.252)

Formulating from here t with y and y(0) and taking into account that
a=arc sinh b if b= sinh a, after substituting formula arc sinh b= ln (b+
+
√
b2 +1) into the second term we have

t =
1
eE




m(0)c

√
1−

ẋ2
(0)

c2
×

× sinh



y − y(0)

m(0) ẏ(0)c
eE + ln

ẋ(0) + c

c

√
1− ẋ2

(0)

c2


−m(0) ẋ(0)




.

(3.253)
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Now, we substitute it into our solution for x (3.246). As a result we
obtain the desired equation for the three-dimensional trajectory of the
particle

x = x(0) +
m(0)c

2

eE

√
1−

ẋ2
(0)

c2
×

× cosh





y − y(0)

m(0) ẏ(0)c
eE + ln

ẋ(0) + c

c

√
1− ẋ2

(0)

c2




− m(0)c

2

eE
.

(3.254)

The obtained formula implies that a charged particle in a homo-
geneous stationary electric field, located in our world, travels along a
curve based on chain line, while factors which deviate it from “pure”
chain line are functions of the initial conditions.

Our formula (3.254) fully matches the result from The Classical The-
ory of Fields

x =
m(0)c

2

eE
cosh

eEy

m(0) ẏ(0)c
(3.255)

(which is formula 20.5 in [10]) once we assume that x(0)− m(0)c
2

eE
=0, and

the initial velocity of the particle ẋ(0) =0 as well. The latter condition
suggests that the integration constant in the scalar chr.inv.-equation of
motion (the live forces theorem) is zero, which is not always true but
may be assumed only in a particular case.

At low velocities after equalling relativistic terms to zero and ex-
panding hyperbolic cosine into series cosh b=1 + b2

2!
+ b4

4!
+ b6

6!
+ . . . our

formula for the three-dimensional trajectory of the particle (3.254), hav-
ing higher order terms ignored, takes the form

x = x(0) +
eE

(
y − y(0)

)2

2m(0) ẏ
2
(0)

, (3.256)

so the particle travels along parabola. Thus, once the initial coordinates
of the particle are assumed zeroes, (3.256) matches the result from The
Classical Theory of Fields

x =
eEy2

2m(0) ẏ
2
(0)

. (3.257)

Integration of the equation of motion along the axis z gives the
same results. This is because the only difference between the equations
with respect to ẏ and ż (3.235) is a fixed coefficient — the integration
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constant (3.236), which equals to the initial momentum of the particle
along y (in the equation for ẏ) and along z (in the equation for ż).

Let us find properties of the particle (its energy and momentum)
affected by the acting homogeneous stationary electric field. Calculating
the relativistic square root (accounting for the assumptions we made)

√
1−v2

c2
=

√
1− ẋ

2+ẏ2+ż2

c2
=
m(0)

√
1− ẋ2

(0)+ẏ
2
(0)+ż

2
(0)

c2

m(0)+ eE
c2

(
x−x(0)

) , (3.258)

we obtain the energy of the particle

E =
m(0)c

2

√
1− v2

c2

=
m(0)c

2 + eE
(
x− x(0)

)
√

1− ẋ2
(0)+ẏ

2
(0)+ż

2
(0)

c2

, (3.259)

which at the velocity much lower than the light velocity is

E = m(0)c
2 + eE

(
x− x(0)

)
. (3.260)

The relativistic momentum of the particle is obtained in the same
way, but since the formula is bulky we would not include it here.

So, we have studied motion of a charged particle in a homogeneous
stationary electric field, located in our world. Now we consider motion
of an analogous particle of the mirror world under the same conditions.

Chr.inv.-equations of motion of the mirror-world particle, taking into
account the constraints imposed here on the geometric structure of the
space, are

dm

dτ
=

e

c2
dϕ

dτ
, (3.261)

d

dτ

(
mvi

)
= −e

c

dqi

dτ
. (3.262)

In other words, the only difference from the equations in our world
(3.221, 3.222) is the sign in the live forces theorem.

We assume that the electric strength is negative (i. e. the field re-
pulses the particle) and that the particle moves along the field strength,
so it is co-directed with the axis x.

Then integrating the live forces theorem for the mirror-world particle
(3.261) we obtain the live forces integral

m = −eE
c2

x+B , (3.263)
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where the integration constant, calculated from the initial conditions, is

B = m(0) +
eE

c2
x(0) . (3.264)

Substituting the results into the vector chr.inv.-equations of motion
(3.262), we have (compare them with 3.233)

−eE
c2

ẋ2 +
(
B − eE

c2
x

)
ẍ = eE

−eE
c2

ẋẏ +
(
B − eE

c2
x

)
ÿ = 0

−eE
c2

ẋż +
(
B − eE

c2
x

)
z̈ = 0





. (3.265)

After some algebra similar to that done to obtain the trajectory of
the our-world charged particle, we arrive at

x =
c2

eE

[
B −

√
C2

3 −
e2E2

c4
(ct− C4)

2

]
, (3.266)

where C3 = m(0)

√
1 +

ẋ2
(0)

c2
and C4 = − cm(0) ẋ(0)

eE
. Or,

x = −
√(

m(0)c2

eE

)2 (
1 +

ẋ2
(0)

c2

)
−

(
ct+

m(0)cẋ(0)

eE

)2

+

+
m(0)c

2

eE
+ x(0) .

(3.267)

The obtained coordinate x of the mirror-world charged particle, re-
pelled by the field, is similar to that for the our-world particle attracted
by the field (3.247) when the electric strength is positive E1 =Ex =E=
= const. Hence an interesting conclusion: transition of a charged par-
ticle from our world into the mirror world (where there is the reverse
flow of time) is the same as changing the sign of its charge.

Noteworthy, the similar conclusion can be drawn in respect of par-
ticles’ masses: purported transition of a particle from our world into
the mirror world is the same as changing the sign of its mass. Hence,
our-world particles and mirror-world particles are mass and charge com-
plementary.

Let us find the three-dimensional trajectory of the charged particle
in the homogeneous stationary electric field, located in the mirror world.
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Calculating y in the same manner as for the our-world particle, we have

y = y(0) +
m(0) ẏ(0)c

eE
×

×





arcsin
eEt+m(0) ẋ(0)

m(0)c

√
1 +

ẋ2
(0)

c2

− arcsin
ẋ(0)

c

√
1 +

ẋ2
(0)

c2




.

(3.268)

In contrast to the formula for the our-world particle (3.252), this
formula has a regular arcsine and “plus” sign under the square root.

Formulating time t from here with the coordinates y and y(0)

t =
1
eE




m(0)c

√
1 +

ẋ2
(0)

c2
×

× sin



y − y(0)

m(0) ẏ(0)c
eE + ln

ẋ(0) + c

c

√
1 +

ẋ2
(0)

c2


−m(0) ẋ(0)




,

(3.269)

and substituting it into our formula for x (3.267), we obtain the final
formula for the trajectory

x = x(0) −
m(0)c

2

eE

√
1 +

ẋ2
(0)

c2
×

× cos





y − y(0)

m(0) ẏ(0)c
eE + arcsin

ẋ(0)

c

√
1 +

ẋ2
(0)

c2




− m(0)c

2

eE
.

(3.270)

In other words, motion of the particle is harmonic oscillation. Once
we assume the initial coordinates of the particle equal to zero, as well
as its initial velocity ẋ(0) =0 and the integration constant B=0, the
obtained equation of the trajectory takes a simpler form

x = −m(0)c
2

eE
cos

eEy

m(0) ẏ(0)c
. (3.271)

At low velocities, after equating relativistic terms to zero and ex-
panding into the cosine series cos b=1− b2

2!
+ b4

4!
− b6

6!
+ . . . ≈ 1− b2

2!
(this
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is always possible within a smaller part of the trajectory), our formula
(3.270) becomes

x = x(0) +
eE

(
y − y(0)

)2

2m(0) ẏ
2
(0)

, (3.272)

which is the equation of a parabola. So, the charged particle in the
mirror world at low velocity travels along a parabola, as does the our-
world particle in the same conditions in the field.

Therefore, a charged particle of our world travels in homogeneous
stationary electric fields along a chain line, which at low velocities be-
comes a parabola. An analogous mirror-world particle travels along a
harmonic trajectory, smaller parts of which at low velocities becomes a
parabola (as is the case for the our-world particle).

§3.12 Motion in a stationary magnetic field

Let us consider motion of a charged particle when the electric component
of the electromagnetic field is absent, while the magnetic component is
present and it is stationary. In this case chr.inv.-vectors of the electric
and magnetic strengths are

Ei =
∗∂ϕ
∂xi

− ϕ

c2
Fi =

∂ϕ

∂xi
− ϕ

c2
1

1− w

c2

∂w
∂xi

= 0 , (3.273)

H∗i =
1
2
εimnHmn =

1
2
εimn

(
∂qm
∂xn

− ∂qn
∂xm

− 2ϕ
c
Amn

)
6= 0 (3.274)

because if the field is strictly magnetic ϕ= const (Ei =0), then gravi-
tational effect can be neglected. From (3.274) we can see that the mag-
netic strength H∗i is not zero, if at least one of the following conditions
is true:

a) The potential qi is rotational;
b) The space is non-holonomic Aik 6=0.
We are going to consider motion of the particle in a general case,

when both conditions are true ( we will use the non-holonomic space
later as the basic space for spin-particles). As we did in the previ-
ous section,§3.11, we assume deformations of the space to be zero and
the three-dimensional metric to be Euclidean gik = δik. The observ-
able metric hik =−gik + 1

c2
vivk in this case is not Galilean, because in

non-holonomic spaces we have hik 6=−gik.
We assume that the space rotates about the z axis at the constant an-

gular velocity Ω12 =−Ω21 =Ω. Then the linear velocity of this rotation
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vi =Ωikxk has two non-zero components v1 =Ωy and v2 =−Ωx, while
the non-holonomity tensor has the only non-zero component A12 =
=−A21 =−Ω. In this case, the metric takes the form

ds2 = c2dt2 − 2Ωydtdx+ 2Ωxdtdy − dx2 − dy2 − dz2. (3.275)

In this space we have Fi =0 and Dik =0. In the previous section
§3.11, which focused on a charged particle in a stationary electric field,
we assumed that the Christoffel symbols are zeroes. In other words, we
considered its motion in a Galilean reference frame in the Minkowski
space. But in this section, the three-dimensional observable metric hik
is not Euclidean, because the space rotation and the Christoffel symbols
∆i
jk (1.47) are not zeroes.

If the linear velocity of the space rotation is not infinitesimal com-
pared to the light velocity, components of the metric chr.inv.-tensor
hik are

h11 = 1 +
Ω2y2

c2
, h22 = 1 +

Ω2x2

c2
, h12 = −Ω2xy

c2
, h33 = 1 , (3.276)

so its determinant and components of hik are

h = det ‖hik‖ = h11h22 − h2
12 = 1 +

Ω2
(
x2 + y2

)

c2
, (3.277)

h11 =
1
h

(
1 +

Ω2x2

c2

)
, h22 =

1
h

(
1 +

Ω2y2

c2

)

h12 =
Ω2xy

hc2
, h33 = 1




. (3.278)

Respectively, from here we obtain non-zero components of the
Christoffel chr.inv.-symbols ∆i

jk (1.47), namely

∆1
11 = − 2Ω4xy2

c4
[
1 + Ω2(x2+y2)

c2

] , (3.279)

∆1
12 =

Ω2y
(
1 + 2Ω2x2

c2

)

c2
[
1 + Ω2(x2+y2)

c2

] , (3.280)

∆1
22 = −2Ω2x

c2
1 + Ω2x2

c2

1 + Ω2(x2+y2)

c2

, (3.281)
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∆2
11 = −2Ω2y

c2
1 + Ω2y2

c2

1 + Ω2(x2+y2)

c2

, (3.282)

∆2
12 =

Ω2x
(
1 + Ω2y2

c2

)

c2
[
1 + Ω2(x2+y2)

c2

] , (3.283)

∆2
22 = − 2Ω4x2y

c4
[
1 + Ω2(x2+y2)

c2

] . (3.284)

We are going to solve chr.inv.-equations of motion of a charged par-
ticle in the stationary magnetic field, located in the pseudo-Riemannian
space. To make the calculations easier, we assume that the field four-
dimensional potential Aα is tangential to the four-dimensional trajec-
tory of the particle. Because the field electric component is zero Ei =0,
the component does not perform any work, so the right hand sides of the
scalar chr.inv.-equation of motion turn into zeroes. Applying chr.inv.-
equations of motion of a charged particle (3.208, 3.209) to the particle
in the stationary magnetic field located in our world, we obtain

dm

dτ
= 0 , (3.285)

d

dτ

(
mvi

)
+ 2mA·ik·v

k +m∆i
nkv

nvk = −e
c
εikmvkH∗m , (3.286)

while for the analogous charged particle which moves in the same sta-
tionary magnetic field located in the mirror world, we have

−dm
dτ

= 0 , (3.287)

d

dτ

(
mvi

)
+m∆i

nkv
nvk = −e

c
εikmvkH∗m . (3.288)

Integrating the live forces theorem for the our-world particle and the
mirror-world particle we obtain, respectively

m=
m0√
1− v2

c2

= const=B , −m=
m0√
1− v2

c2

= const= B̃ , (3.289)

where B and B̃ are integration constants. This implies that, v2 = const,
so the modulus of the particle’s observable velocity remains unchanged
in the absence of the electric component of the electromagnetic field.
Then the vector chr.inv.-equations of motion for the our-world particle
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(3.286) are

dvi

dτ
+ 2A·ik·v

k + ∆i
nkv

nvk = − e

mc
εikmvkH∗m , (3.290)

while for the mirror-world particle (3.288) we have the same equation
but without the term 2A·ik·v

k, namely

dvi

dτ
+ ∆i

nkv
nvk = − e

mc
εikmvkH∗m . (3.291)

The magnetic strength here is defined by the Maxwell equations
for stationary fields (3.215, 3.216), which in the absence of the electric
strength and under the constraints we assumed in this section are

Ω∗mH∗m = −2πcρ

εikm ∗∇k
(
H∗m

√
h

)
=

4π
c
ji
√
h



 I , (3.292)

∗∇iH∗i =
∂H∗i

∂xi
+
∂ ln

√
h

∂xi
H∗i = 0

}
II . (3.293)

From the first equation of the 1st group, we see that the scalar
product of the space non-holonomity pseudovector and the magnetic
strength pseudovector is a function of the charge density. Hence, if the
charge density is ρ=0, then the pseudovectors Ω∗i and H∗i are ortho-
gonal.

Henceforth, we consider two possible orientations of the magnetic
strength with respect to the space non-holonomity pseudovector.

a) Magnetic field is co-directed with non-holonomity field

We assume that the magnetic strength pseudovector H∗i is directed
along the z axis, i. e. in the same direction with the pseudovector of an-
gular velocities of the space rotation Ω∗i = 1

2
εikmAkm. Then the space

rotation pseudovector has one non-zero component Ω∗3 =Ω, while the
magnetic strength pseudovector has

H∗3 =
1
2
ε3mnHmn =

1
2

(
ε312H12 + ε321H21

)
= H12 =

=
ϕ

c

(
∂v1

∂x
− ∂v2

∂y

)
+

2ϕ
c

Ω .
(3.294)

The condition ϕ= const is derived from the absence of the field elec-
tric component. Hence the 1st group of the Maxwell equations (2.392)
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in this case are

Ω∗3H∗3 =
Ωϕ
c

(
∂v1

∂x
− ∂v2

∂y

)
+

2ϕΩ2

c
= −2πcρ

∂

∂y

(
H∗3

√
h

)
=

4π
c
j1
√
h

− ∂

∂x

(
H∗3

√
h

)
=

4π
c
j2
√
h

j3 = 0





. (3.295)

The 2nd group of the equations (3.293) will be trivial turning into
simple relationship ∂H∗3

∂z
=0, so that H∗3 = const. Actually this implies

that the stationary magnetic field we are considering is homogeneous
along z. Next, we assume that the stationary magnetic field is strictly
homogeneous H∗i = const. Then from the first equation of the 1st group
(3.295) we see that the field is homogeneous provided that two condi-
tions (

∂v1

∂x
− ∂v2

∂y

)
= const, (3.296a)

ρ = −ϕΩ2

πc2
= const. (3.296b)

Hence, the charge density ρ> 0, if the field scalar potential ϕ< 0.
Then the other equations from the 1st group (3.295) are

j1 =
c

4π
∂ ln

√
h

∂y

j2 =
c

4π
∂ ln

√
h

∂x

j3 = 0





. (3.297)

Because of h=1 + Ω2 (x2+y2)

c2
(3.277), this implies: the current vector

in the homogeneous stationary magnetic field is non-zero in only the
strong field of the space non-holonomity, i. e. where the space rotation
velocity is comparable to the light velocity. In a weak field of the space
non-holonomity we have h=1, hence j1 = j2 =0.

Now, expressing the magnetic strength from the Maxwell equations
(3.295) we write down the vector chr.inv.-equations of motion for the
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our-world particle (3.290, 3.291) in the form

ẍ+
2Ω
h

[
Ω2xyẋ

c2
+

(
1 +

Ω2x2

c2

)
ẏ

]
+ ∆1

11 ẋ
2 + 2∆1

12 ẋẏ +

+ ∆1
22 ẏ

2 = −eH
mc

[
−Ω2xyẋ

c2
+

(
1 +

Ω2x2

c2

)
ẏ

]

ÿ − 2Ω
h

[
Ω2xyẏ

c2
+

(
1 +

Ω2y2

c2

)
ẋ

]
+ ∆2

11 ẋ
2 + 2∆2

12 ẋẏ +

+ ∆2
22 ẏ

2 =
eH

mc

[
−Ω2xyẏ

c2
+

(
1 +

Ω2y2

c2

)
ẋ

]

z̈ = 0





, (3.298)

while those for the mirror-world particle they are

ẍ+ ∆1
11ẋ

2 + 2∆1
12 ẋẏ + ∆1

22 ẏ
2 =

= −eH
mc

[
−Ω2xyẋ

c2
+

(
1 +

Ω2x2

c2

)
ẏ

]

ÿ + ∆2
11 ẋ

2 + 2∆2
12 ẋẏ + ∆2

22 ẏ
2 =

=
eH

mc

[
−Ω2xyẏ

c2
+

(
1 +

Ω2y2

c2

)
ẋ

]

z̈ = 0.





. (3.299)

The terms in the right hand sides which contain Ω2

c2
appear, because

in the space rotation the observable chr.inv.-metric hik is not Euclidean.
Hence, in the case under consideration there is a difference between the
contravariant form of the observable velocity and its covariant form.
The right hand sides include the covariant components

v2 = h21v1 + h22 v2 = −Ω2xy

c2
ẋ+

(
1 +

Ω2x2

c2

)
ẏ , (3.300)

v1 = h11v1 + h12v2 = −Ω2xy

c2
ẏ +

(
1 +

Ω2y2

c2

)
ẋ . (3.301)

If there is no space rotation, Ω =0, then the chr.inv.-equations of
motion of the our-world particle (3.298) to within their sign match the
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equations of motion in a homogeneous stationary magnetic field given by
Landau and Lifshitz (see form. 21.2 in The Classical Theory of Fields)

ẍ =
eH

mc
ẏ , ÿ = −eH

mc
ẋ , z̈ = 0 , (3.302)

while our equations (3.298) imply that

ẍ = −eH
mc

ẏ , ÿ =
eH

mc
ẋ , z̈ = 0 . (3.303)

The difference is derived from the fact that Landau and Lifshitz as-
sumed the magnetic strength in the Lorentz force to have a “plus” sign,
while in our equations it has “minus” sign, which is not that important
though, because it only depends on the choice of the space signature.

If the space rotates (it is non-holonomic), the equations of motion
will include the terms that contain Ω, Ω2

c2
, and Ω4

c4
.

In a strong field of the space non-holonomity, solving the equations
we have obtained is a non-trivial task, which is likely to be tackled in
future with computer-aided numerical methods. Hopefully, the results
will be quite interesting.

Let us find their exact solutions in a weak field of the space non-
holonomity, namely — neglecting terms of the second order. In this
case, the equations of motion we have obtained (3.298, 3.299) for the
our-world particle are

ẍ+ 2Ω ẏ = −eH
mc

ẏ , ÿ − 2Ωẋ =
eH

mc
ẋ , z̈ = 0 , (3.304)

and for the mirror-world particle they are

ẍ = −eH
mc

ẏ , ÿ =
eH

mc
ẋ , z̈ = 0 . (3.305)

First we approach the equations for the our-world particle. The
equation along z can be integrated straightaway. The solution is

z = ż(0) τ + z(0) . (3.306)

From here we see that if at the initial moment of time the particle’s
velocity along z is zero, so the particle moves within x y plane only. We
re-write the remaining two equations of (3.304) as follows

dẋ

dτ
= − (2Ω + ω) ẏ ,

dẏ

dτ
= (2Ω + ω) ẋ , (3.307)

where we denote ω= eH
mc for convenience. The same notation was used

in §21 of The Classical Theory of Fields. Then, formulating ẋ from the
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second equation, we derive it to the observable time ẋ and substitute
the result into the first equation. So, we obtain

d2ẏ

dτ2
+ (2Ω + ω)2 ẏ = 0 , (3.308)

which is the equation of oscillations; with solution

ẏ = C1 cos (2Ω + ω) τ + C2 sin (2Ω + ω) τ , (3.309)

where C1 = ẏ(0) and C2 = ÿ(0)

2Ω +ω
are integration constants. Substituting

ẏ (3.309) into the first equation (3.307) we obtain

dẋ

dτ
= − (2Ω + ω) ẏ(0) cos (2Ω + ω) τ − ÿ(0) sin (2Ω + ω) τ , (3.310)

or, after integration,

ẋ = ẏ(0) sin (2Ω + ω) τ − ÿ(0)

2Ω + ω
cos (2Ω + ω) τ + C3 , (3.311)

where the integration constant is C3 = ẋ(0) + ÿ(0)

2Ω +ω
.

Having all the constants substituted, the obtained formulae for ẋ
(3.311) and ẏ (3.309) finally transform into

ẋ = ẏ(0) sin (2Ω+ω) τ− ÿ(0)

2Ω+ω
cos (2Ω+ω) τ+ẋ(0)+

ÿ(0)

2Ω+ω
, (3.312)

ẏ = ẏ(0) cos (2Ω + ω) τ +
ÿ(0)

2Ω + ω
sin (2Ω + ω) τ . (3.313)

Hence, the formulae for components of the particle’s velocity ẋ and
ẏ in the homogeneous stationary magnetic field are the equations of
harmonic oscillations. The frequency in a weak field of the space non-
holonomity is 2Ω +ω=2Ω + eH

mc .
From the live forces integral in the stationary magnetic field (3.289)

we see that the square of the particle’s velocity is a constant quantity.
Calculating v2 = ẋ2 + ẏ2 + ż2 for the our-world particle we obtain that
this quantity

v2 = ẋ2
(0) + ẏ2

(0) + ż2
(0) + 2

(
ẋ(0) +

ÿ(0)

2Ω + ω

)
×

×
[
ÿ(0)

2Ω+ω
+ẏ(0) sin (2Ω+ω) τ− ÿ(0)

2Ω+ω
cos (2Ω+ω) τ

] (3.314)
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is constant v2 = const, provided that C3 = ẋ(0) + ÿ(0)

2Ω +ω
=0.

Integrating ẋ and ẏ to τ (namely — integrating the equations 3.312,
3.313), we obtain coordinates of the our-world particle which moves in
the homogeneous stationary magnetic field

x =
[

ÿ(0)

2Ω + ω
sin (2Ω + ω) τ − ẏ(0) cos (2Ω + ω) τ

]
1

2Ω + ω
+

+
(
ẋ(0) +

ÿ(0)

2Ω + ω

)
τ + C4 ,

(3.315)

y =
[
ẏ(0) sin (2Ω+ω) τ+

ÿ(0)

2Ω+ω
cos (2Ω+ω) τ

]
1

2Ω+ω
+C5 , (3.316)

where the integration constants are

C4 = x(0) +
ẏ(0)

2Ω + ω
, C5 = y(0) +

ÿ(0)

(2Ω + ω)2
. (3.317)

From (3.315) we see that the particle performs harmonic oscillations
along x provided that the equation ẋ(0) + ÿ(0)

2Ω +ω
=0 is true. This is also

the condition for the constant square of the particle’s velocity (3.314),
i. e. it satisfies the live forces integral. Taking this result into account
we arrive at the equation of the particle’s trajectory within x y plane

x2 + y2 =
1

(2Ω + ω)2

[
ẏ2
(0) +

ÿ2
(0)

(2Ω + ω)2

]
− 2C4

2Ω + ω
×

×
[
ẏ(0) cos (2Ω + ω) τ +

ÿ(0)

2Ω + ω
sin (2Ω + ω) τ

]
+

+
[
ẏ(0) sin (2Ω + ω) τ +

ÿ(0)

2Ω + ω
cos (2Ω + ω) τ

]
×

× 2C5

2Ω + ω
+ C2

4 + C2
5 .

(3.318)

Assuming that for the initial moment of time, ÿ(0) =0 and the inte-
gration constants C4 and C5 to be zeroes, we can simplify the obtained
formulae (3.315, 3.316), namely

x = − 1
2Ω + ω

ẏ(0) cos (2Ω + ω) τ , (3.319)

y =
1

2Ω + ω
ẏ(0) sin (2Ω + ω) τ . (3.320)
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Given the formulae, our equation of the trajectory (3.318) transforms
into a simple equation of the circle

x2 + y2 =
ẏ2
(0)

(2Ω + ω)2
. (3.321)

Hence, if the initial velocity of the our-world charged particle with
respect to the direction of the homogeneous magnetic field (the axis z)
is zero, then the particle moves within x y plane along a circle of radius

r =
ẏ(0)

2Ω + ω
=

ẏ(0)

2Ω + eH
mc

, (3.322)

which depends on the field strength and the angular velocity of the
space rotation.

If the initial velocity of the particle along the magnetic field direction
is not zero, then it moves along a spiral line of the radius r along the
field. In a general case, the particle moves along an ellipse within x y
plane (3.318), whose shape deviates from that of a circle depending on
the initial conditions of this motion.

As it is easy to see, our results match those in §21 of The Classical
Theory of Fields

x = − 1
ω
ẏ(0) cosωτ , y =

1
ω
ẏ(0) sinωτ , (3.323)

once we assume Ω = 0, i. e. in the absence of the space rotation. In this
particular case, the radius r= ẏ(0)

ω
= mc

eH
ẏ(0) of the particle’s trajectory

does not depend on the velocity of the space rotation. If Ω 6=0, then the
non-holonomity field disturbs the particle from moving in the magnetic
field adding up with the magnetic strength, due to which the correc-
tion quantity 2Ω to the term ω= eH

mc appears in the equations. In a
strong field of the space non-holonomity, where Ω can not be neglected
compared to the light velocity, the disturbance is even stronger.

On the other hand, in a non-holonomic space the argument of trigo-
nometric functions in our equations contains a sum of two terms, one of
which is derived from interaction of the particle’s charge with the mag-
netic strength, while the other is a result of the space rotation, which
depends neither on the electric charge of this particle, nor on the pres-
ence of the magnetic field. This allows us to consider two special cases
of motion of a charged particle in a homogeneous stationary magnetic
field, located in a non-holonomic space.

In the first case, where the particle is electrically neutral or the mag-
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netic field is absent, its motion will be the same as that under action of
the magnetic component of the Lorentz force, except for the fact that
this motion will be caused by the space rotation 2Ω, comparable to
ω= eH

mc .
How real is this case? To answer this question, we need at least an

approximate assessment of the ratio between the angular velocity of the
space rotation Ω and the magnetic strength H in a special case. The
best example may be an atom, because on the scales of electronic orbits
electromagnetic interactions are a few orders of magnitude stronger than
the others and besides, orbital velocities of electrons are relatively high.

Such assessment can be made proceeding from the second case of
the special motions, where

eH

mc
= −2Ω , (3.324)

is true and hence the argument of trigonometric functions in the equa-
tions of motion becomes zero.

We consider the observer’s reference frame, whose reference space is
attributed to the nucleus in an atom. Then the ratio in the question (in
CGSE and Gaussian systems of units) for an electron in this atom is

Ω
H

= − e

2mec
= − 4.8×10−10

18.2×10−28 3.0×1010
=

= − 8.8×106 cm1/2 gram−1/2,

(3.325)

where their “minus” sign is derived from the fact that Ω and H in
(3.324) are oppositely directed.

Now, let us solve the equations of motion of the mirror-world particle
in the homogeneous stationary magnetic field (3.305), which match the
equations in the absence of the space non-holonomity

ẍ = −ωẏ , ÿ = ωẋ , z̈ = 0 . (3.326)

The solution of the third equation of motion (along z) is a simpler
integral z= ż(0)τ + z(0).

The equations of motion along x and y are similar to those for the
our-world particle, save for the fact that the argument of trigonometric
functions has ω instead of ω+2Ω:

ẋ = ẏ(0) sinωτ − ÿ(0)

ω
cosωτ + ẋ(0) +

ÿ(0)

ω
, (3.327)

ẏ = ẏ(0) cosωτ +
ÿ(0)

ω
sinωτ . (3.328)
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Hence the formulae for components of the velocity of the mirror-
world particle ẋ and ẏ are the equations of harmonic oscillations at the
frequency ω= eH

mc .
Consequently, their solutions, namely — formulae for coordinates of

the mirror-world particle moving in the homogeneous stationary mag-
netic field are

x =
1
ω

(
ÿ(0)

ω
sinωτ − ẏ(0) cosωτ

)
+

(
ẋ(0) +

ÿ(0)

ω

)
τ + C4 , (3.329)

y =
1
ω

(
ẏ(0) sinωτ +

ÿ(0)

ω
cosωτ

)
+ C5 , (3.330)

where the integration constants are

C4 = x(0) +
ẏ(0)

ω
, C5 = y(0) +

ÿ(0)

ω2
. (3.331)

As we have already mentioned, the live forces integral in stationary
magnetic fields (3.289) implies the constant relativistic mass of a particle
moved in the fields and hence the constant square of its observable
velocity. Then putting the solutions for the velocities of the mirror-
world particle, namely — squaring the quantities ẋ, ẏ, ż, and adding
them up we obtain that

v2 = ẋ2
(0) + ẏ2

(0) + ż2
(0) +

+ 2
(
ẋ(0) +

ÿ(0)

ω

)(
ÿ(0)

ω
+ ẏ(0) sinωτ − ÿ(0)

ω
cosωτ

) (3.332)

is constant v2 = const provided that

ẋ(0) +
ÿ(0)

ω
= 0 . (3.333)

From the formula for x (3.329), we see that the particle performs
strictly harmonic oscillations along x provided that the same condition
(3.333) is true. Taking this fact into account, squaring and adding up x
(3.329) and y (3.330) for the mirror-world particle in the homogeneous
stationary magnetic field, we obtain its trajectory within x y plane

x2+y2 =
1
ω2

(
ẏ2
(0) +

ÿ2
(0)

ω2

)
− 2C4

ω

(
ẏ(0) cosωτ+

ÿ(0)

ω
sinωτ

)
+

+
(
ẏ(0) sinωτ +

ÿ(0)

ω
cosωτ

)
2C5

ω
+ C2

4 + C2
5 ,

(3.334)
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which only differs from the our-world particle trajectory (3.318) by
ω+2Ω replaced with ω and by numerical values of integration con-
stants (3.331). Therefore a mirror-world charged particle of zero initial
velocity along z (the direction of the magnetic strength), moves along
an ellipse within x y plane.

Once we assume ÿ(0), as well as the constants C4 and C5 to be zeroes,
the solutions become simpler

x = − 1
ω
ẏ(0) cosωτ , y =

1
ω
ẏ(0) sinωτ . (3.335)

In such a simplified case, the mirror-world particle which is at rest
with respect to the field direction makes a circle within x y plane

x2 + y2 =
ẏ2
(0)

ω2
(3.336)

with radius r= ẏ(0)

ω
= mc

eH
ẏ(0). Consequently, if the initial velocity of the

particle along the magnetic field direction (the axis z) is not zero, then
the particle moves along a spiral line around the magnetic field direc-
tion. Hence, motion of mirror-world charged particles in homogeneous
stationary magnetic fields is the same as that of our-world charged par-
ticles in the absence of the space non-holonomity.

b) Magnetic field is orthogonal to non-holonomity field

We are going to consider the case, where the magnetic strength pseu-
dovector H∗i is orthogonal to the pseudovector Ω∗i = 1

2
εikmAkm of the

space non-holonomity field. Then the first equation from the 1st group
of the Maxwell equations we have obtained for stationary magnetic fields
(3.292) implies that the charge density is zero ρ= 0.

We assume that the magnetic strength is directed along y (only
the component H∗2 =H is not zero), while the non-holonomity field is
directed along z (only the component Ω∗3 =Ω is not zero). We also
assume that the magnetic field is stationary and homogeneous. Hence,
the non-zero component of the magnetic strength is

H∗2 = H31 =
ϕ

c

(
∂v3

∂x
− ∂v1

∂z

)
= const . (3.337)

Then, if the non-holonomity field is weak, the equations of motion
of the our-world particle are

ẍ+ 2Ωẏ =
eH

mc
ż , ÿ − 2Ωẋ = 0 , z̈ = −eH

mc
ẋ , (3.338)
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or, denoting ω = eH
mc ,

ẍ+ 2Ωẏ = ωż , ÿ − 2Ωẋ = 0 , z̈ = −ωẋ . (3.339)

Differentiating the first equation with respect to τ and substituting
ÿ and z̈ into it from the second and the third equations we have

...
x +

(
4Ω2 + ω2

)
ẋ = 0 . (3.340)

Setting ẋ= p, we arrive at the equation of oscillations

p̈+ ω̃2p = 0 , ω̃ =
√

4Ω2 + ω2 =

√
4Ω2 +

(
eH

mc

)2

, (3.341)

which solves as follows

p = C1 cos ω̃τ + C2 sin ω̃τ , (3.342)

where C1 = ẋ(0) and C2 = ẍ(0)

eω2 are integration constants. Integrating
ẋ= p with respect to τ we obtain the expression for x as follows

x =
ẋ(0)

ω̃
sin ω̃τ − ẍ(0)

ω̃2
cos ω̃τ + x(0) +

ẍ(0)

ω̃2
, (3.343)

where x(0) + ẍ(0)

eω2 =C3 is integration constant.
Substituting ẋ= p (3.342) into the equations of motion in terms of

y and z (3.339) and integrating we obtain

ẏ =
2Ω
ω̃
ẋ(0) sin ω̃τ − 2Ω

ω̃2
ẍ(0) cos ω̃τ + ẏ(0) +

2Ω
ω̃2

ẍ(0) , (3.344)

ż =
ω

ω̃2
ẍ(0) cos ω̃τ − ω

ω̃
ẋ(0) sin ω̃τ + ż(0) −

ω

ω̃2
ẍ(0) , (3.345)

where ẏ(0) + 2Ωẍ(0)

eω2 =C4 and ż(0)− ωẍ(0)

eω2 =C5 are new integration con-
stants. Then integrating these equations (3.344, 3.345) with respect to
τ we obtain final formulae for y and z

y = −2Ω
ω̃2

(
ẋ(0) cos ω̃τ +

ẍ(0)

ω̃
sin ω̃τ

)
+ ẏ(0)τ+

+
2Ω
ω̃2

ẍ(0)τ + y(0) +
2Ω
ω̃2

ẋ(0) ,

(3.346)

z =
ω

ω̃2

(
ẋ(0) cos ω̃τ +

ẍ(0)

ω̃
sin ω̃τ

)
+ ż(0)τ−

− ω

ω̃2
ẍ(0)τ + z(0) −

ω

ω̃2
ẋ(0) ,

(3.347)
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where y(0) + 2Ωẋ(0)

eω2 =C6 and z(0)− ωẋ(0)

eω2 =C7.
Provided that Ω = 0 (the space rotation is absent), and that some

integration constants are zeroes, the above equations fully match well-
known formulae of relativistic electrodynamics for the case, where a
stationary magnetic field is directed along the axis z

x =
ẋ(0)

ω
sin ω̃τ , y = y(0) + ẏ(0)τ , z =

ẋ(0)

ω
cos ω̃τ . (3.348)

Because the live forces integral implies that the square of the ob-
servable velocity of a charged particle in stationary magnetic fields is
constant, we have a possibility to calculate v2 = ẋ2 + ẏ2 + ż2. We obtain

v2 = ẋ2
(0) + ẏ2

(0) + ż2
(0) +

2
ω̃

(
ẍ(0) + 2Ω ẏ(0) − ωż(0)

)×

×
(
ẍ(0)

ω̃
+ ẋ(0) sin ω̃τ − ẍ(0)

ω̃
cos ω̃τ

)
,

(3.349)

so v2 = const, provided that

ẍ(0) + 2Ω ẏ(0) − ωż(0) = 0 . (3.350)

The spatial trajectory of the particle can be found, calculating x2 +
+ y2 + z2, so that we obtain the equation

x2 + y2 + z2 =
1
ω̃2

(
ẋ2

(0) +
ẍ2

(0)

ω̃2

)
+ C2

3 + C2
6 + C2

7 +

+
(
C2

4 + C2
5

)
τ2 + 2 (C4C6 + C5C7) τ +

[
(ωC7 − 2ΩC6) +

+ 2 (ωC5 − 2ΩC6) τ
](
ẋ(0) cos ω̃τ +

ẍ(0)

ω̃
sin ω̃τ

)
1
ω̃2

+

+
2C3

ω̃2

(
ẋ(0) cos ω̃τ − ẍ(0)

ω̃
sin ω̃τ

)
,

(3.351)

which includes a linear (with respect to time) term and a square term, as
well as a parametric term and two harmonic terms. In a particular case,
if we assume integration constants to be zeroes, the obtained formula
(3.351) takes the form of a regular equation of a sphere

x2 + y2 + z2 =
1
ω̃2

(
ẋ2

(0) +
ẍ2

(0)

ω̃2

)
, (3.352)

whose radius is

r =
1
ω̃

√
ẋ2

(0) +
ẍ2

(0)

ω̃2
, (3.353)
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where ω̃=
√

4Ω2 +ω2 =
√

4Ω2 +
(
eH
mc

)2
.

So, an our-world charged particle in a homogeneous stationary mag-
netic field, orthogonal to the space non-holonomity field, moves on a
surface of a sphere whose radius depends on the magnetic strength and
the angular velocity of the space rotation.

In a particular case, where the non-holonomity field is absent and
the initial acceleration is zero, our equation of the trajectory simplifies
significantly to an equation of the sphere

x2 + y2 + z2 =
1
ω2

ẋ2
(0) , r =

1
ω
ẋ(0) =

mc

eH
ẋ(0) (3.354)

with radius depending only on interaction of the particle’s charge with
the magnetic field — the result, well-known in electrodynamics (see §21
in The Classical Theory of Fields).

For a mirror-world charged particle which moves in a homogeneous
stationary magnetic field, orthogonal to the non-holonomity field, the
equations of motion are

ẍ =
eH

mc
ż, ÿ = 0, z̈ = −eH

mc
ẋ . (3.355)

These are only different from the equations for the our-world particle
(3.338) by the absence of the terms which include the angular velocity
Ω of the space rotation.

§3.13 Motion in a stationary electromagnetic field

In this section, we are going to focus on motion of a charged particle
under action of both magnetic and electric components of a stationary
electromagnetic field.

As a “background” we will consider a non-holonomic space which
rotates about the z axis at a constant angular velocity Ω12 =−Ω21 =Ω,
so the space is of the metric (3.275). In such a space, Fi =0 and Dik =0.

We will solve the problem assuming that the non-holonomity field is
weak and hence the three-dimensional space has the Euclidean metric.
Here the Maxwell equations for stationary fields (3.215, 3.216) are

Ω∗mH∗m = −2πcρ

εikm∇k
(
H∗m

√
h

)
=

4π
c
ji
√
h = 0



 I , (3.356)

Ω∗mEm = 0

εikm∇k
(
Em

√
h

)
= 0

}
II , (3.357)
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because the condition of observable homogeneity of the field is the equal-
ity to zero of its chr.inv.-derivative [9,11–13], while in the particular case
under consideration the Christoffel chr.inv.-symbols equal zero (the met-
ric is Galilean) so the chr.inv.-derivative is the same as that in a regular
case. Hence, the Maxwell equations imply that the following conditions
will be true here:

a) The space non-holonomity pseudovector and the electric strength
are orthogonal to each other Ω∗mEm =0;

b) The space non-holonomity pseudovector and the magnetic
strength are orthogonal to each other. Here, the charge density is
zero, i.e ρ=0 ;

c) The electromagnetic field current is absent, ji = 0.
The last condition implies that the presence of the electromagnetic

field currents ji 6= 0 is derived from inhomogeneity of the acting mag-
netic strength.

Given that the non-holonomity pseudovector is orthogonal to the
electric strength, we can consider motion of the particle in two cases of
mutual orientation of the fields:

1) ~H⊥ ~E and ~H ‖ ~Ω;

2) ~H ‖ ~E and ~H⊥~Ω.
In either case, we assume that the electric strength is co-directed

with the x axis . In the background metric (3.275) the space rotation
pseudovector is co-directed with z. Hence in the first case, the magnetic
strength is co-directed with z, while in the second case it is co-directed
with x.

Chr.inv.-equations of motion of a charged particle in the stationary
electromagnetic field, where the electric strength is co-directed with x
are as follows. For the our-world particle

dm

dτ
= −eE1

c2
dx

dτ
, (3.358)

d

dτ

(
mvi

)
+ 2mA·ik·v

k = − e
(
Ei +

1
c
εikmvkH∗m

)
, (3.359)

and for the mirror-world particle

dm

dτ
=
eE1

c2
dx

dτ
, (3.360)

d

dτ

(
mvi

)
= − e

(
Ei +

1
c
εikmvkH∗m

)
. (3.361)
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As was done before, we consider the case of a particle repelled by
the field. Then components of the electric strength Ei, co-directed with
x, are (in a Galilean reference frame covariant and contravariant indices
of tensor quantities are the same)

E1 = Ex =
∂ϕ

∂x
= const = −E , E2 = E3 = 0 . (3.362)

Integration of the live forces theorem gives the live forces integral
for our world and the mirror world, respectively as

m =
eE

c2
x+B , m = −eE

c2
x+ B̃ . (3.363)

Here B is our-world integration constant and B̃ is the mirror-world
integration constant. Calculating these constants from the initial con-
ditions at the moment τ = 0, yields

B = m(0) −
eE

c2
x(0) , B̃ = m(0) +

eE

c2
x(0) , (3.364)

where m(0) is the relativistic mass of the particle and x(0) is its displace-
ment at the initial moment of time.

From the obtained integrals of live forces (3.363), we see that the
differences between the three cases under this study, due to different ori-
entations of the magnetic strength ~H to the electric strength ~E and to
the angular velocity ~Ω of the space rotation (the space non-holonomity
field), will only reveal themselves in the vector chr.inv.-equations of
motion, while the scalar chr.inv.-equations (3.358, 3.360) and their so-
lutions (3.363) will be the same.

Note that the vector ~E can also be directed along y, but can not be
directed along z. This is true, because in the space with such a metric
co-directed with z is the non-holonomity pseudovector ~Ω, while the 2nd
group of the Maxwell equations require ~E to be orthogonal to ~Ω.

Now, taking into account the integration results from the live forces
theorem (3.363), we will write down the vector chr.inv.-equations for all
cases under this study.

Case 1. We assume that ~H⊥ ~E and ~H ‖ ~Ω, so the magnetic strength ~H
is directed along z (parallel to the non-holonomity field).

Then out of all components of the magnetic strength the only non-zero
component is

H∗3 = H12 =
ϕ

c

(
∂v1

∂y
− ∂v2

∂x

)
+

2ϕ
c
A12 = const = H . (3.365)
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Consequently, the vector chr.inv.-equations of motion for the our-
world particle are

eE

c2
ẋ2 +

(
B +

eE

c2
x

)
(ẍ+ 2Ωẏ) = eE − eH

c
ẏ

eE

c2
ẋẏ +

(
B +

eE

c2
x

)
(ÿ − 2Ωẋ) =

eH

c
ẋ

eE

c2
ẋż +

(
B +

eE

c2
x

)
z̈ = 0





, (3.366)

while for the mirror-world particle we have

eE

c2
ẋ2 +

(
B̃ − eE

c2
x

)
ẍ = eE − eH

c
ẏ

eE

c2
ẋẏ +

(
B̃ − eE

c2
x

)
ÿ =

eH

c
ẋ

eE

c2
ẋż +

(
B̃ − eE

c2
x

)
z̈ = 0





. (3.367)

Besides, the 1st group of the Maxwell equations require that in the
case under study, the next condition must be true

Ω∗3H∗3 = −2πcρ , (3.368)

where Ω∗3 =Ω = const and H∗3 =H = const. From this formula we ar-
rive at the obvious conclusion: this mutual orientation of the space
non-holonomity pseudovector and the magnetic strength is only possi-
ble in the case, where electric charges are present in the space so the
charge density is ρ 6=0.

Case 2. ~H ‖ ~E, ~H⊥~Ω, and ~E⊥~Ω, so the magnetic and electric strengths
are co-directed with x, while the non-holonomity field is still di-
rected along z.

Here, out of all components of the magnetic strength only the first
component is non-zero

H∗1 = H23 =
ϕ

c

(
∂v2

∂z
− ∂v3

∂y

)
= const = H , (3.369)

With this formula, we obtain the vector chr.inv.-equations of motion
for the our-world particle and those for the mirror-world prticle. For
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the our-world particle the equaions are

eE

c2
ẋ2 +

(
B +

eE

c2
x

)
(ẍ+ 2Ωẏ) = eE

eE

c2
ẋẏ +

(
B +

eE

c2
x

)
(ÿ − 2Ωẋ) = −eH

c
ż

eE

c2
ẋż +

(
B +

eE

c2
x

)
z̈ =

eH

c
ẏ





, (3.370)

while the equations for the mirror-world particle are

eE

c2
ẋ2 +

(
B̃ − eE

c2
x

)
ẍ = eE

eE

c2
ẋẏ +

(
B̃ − eE

c2
x

)
ÿ = −eH

c
ż

eE

c2
ẋż +

(
B̃ − eE

c2
x

)
z̈ =

eH

c
ẏ





. (3.371)

Now that we have equations of motion of the charged particle for
all three cases of mutual orientation of the acting stationary fields (the
electromagnetic field and the space non-holonomity field) we can turn
to solving them.

a) Magnetic field is orthogonal to electric field and is par-
allel to non-holonomity field

Let us solve the vector chr.inv.-equations of motion of the charged par-
ticle (3.366, 3.367) in non-relativistic approximation, i. e. assuming the
absolute value of its observable velocity is negligible compared to the
light velocity. Hence, we can also assume that the particle’s mass at the
initial moment of time is equal to its rest-mass

m(0) =
m0√
1− v2

c2

∼= m0 . (3.372)

We further assume that the electric strength E is negligible as well,
thus the term eEx

c2
can be truncated. Under these conditions, the vector

chr.inv.-equations of motion will be transformed as follows: For the
our-world particle they become

m0 (ẍ+2Ωẏ) = eE− eH
c
ẏ , m0 (ÿ−2Ωẋ) =

eH

c
ẋ , m0z̈ = 0 , (3.373)
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while for the mirror-world particle we have

m0ẍ = eE − eH

c
ẏ , m0 ÿ =

eH

c
ẋ , m0 z̈ = 0 . (3.374)

These equations match those obtained in §22 in The Classical Theory
of Fields [10] in the case, where the space non-holonomity is absent Ω= 0
and the electric strength is co-directed with x.

The obtained equations for the mirror-world particle are a partic-
ular case of the our-world equations at Ω = 0. Therefore, we can only
integrate the our-world equations, while the mirror-world solutions are
obtained automatically by assuming Ω = 0. Integrating the equation of
motion along z we arrive at

z = ż(0) τ + z(0) . (3.375)

Integrating the equation along y) we arrive at

ẏ =
(

2Ω +
eH

m0c

)
x+ C1 , (3.376)

where the integration constant is C1 = ẏ(0)−
(
2Ω + eH

m0c

)
x(0).

Substituting ẏ into the first equation (3.373) we obtain second-order
differential equation with respect to x

ẍ+ ω2x =
eE

m0
+ ω2x(0) − ωẏ(0) , (3.377)

where ω=2Ω+ eH
m0c

. Introducing a new variable

u = x− A

ω2
, A =

eE

m0
+ ω2x(0) − ωẏ(0) , (3.378)

we obtain the equation of harmonic oscillations

ü+ ω2u = 0 , (3.379)

with solution
u = C2 cosωτ + C3 sinωτ , (3.380)

where the integration constants are C2 =u(0), C3 = u̇(0)

ω . Returning to
the variable x by reverse substitution of variables we finally obtain a
formula for x

x =
1
ω

(
ẏ(0)−

eE

m0ω

)
cosωτ+

ẋ(0)

ω
sinωτ+

eE

m0ω2
+x(0)−

ẏ(0)

ω
. (3.381)



3.13 Motion in a stationary electromagnetic field 135

Substituting the formula into the obtained equation for ẏ (3.376),
and integrating gives a formula for y as

y =
1
ω

(
ẏ(0)−

eE

m0ω

)
sinωτ− ẋ(0)

ω
cosωτ+

eE

m0ω2
+y(0)+

ẋ(0)

ω
. (3.382)

The vector chr.inv.-equations in the mirror world have the same
solutions, but because for them Ω= 0, the frequency is ω= eH

m0c
.

Energies of our-world and mirror-world particles are E=mc2 and
E=−mc2, respectively.

Finally, we obtain the three-dimensional momentum of the our-world
particle

p1 = m0 ẋ =
(
eE

ω
−m0 ẏ(0)

)
sinωτ +m0 ẋ(0) cosωτ

p2 = m0 ẏ =
(

2Ωm0

ω
+
eH

ωc

)(
eE

m0ω
− ẏ(0)

)
+m0 ẏ(0) +

+
(

2Ωm0

ω
+
eH

ωc

)[(
ẏ(0) −

eE

m0ω

)
cosωτ + ẋ(0) sinωτ

]

p3 = m0 ż = m0 ż(0)





, (3.383)

while in the mirror world we have

p1 =
(
eE

ω
−m0 ẏ(0)

)
sinωτ +m0 ẋ(0) cosωτ

p2 =
eE

ω
+m0

[(
ẏ(0) −

eE

m0ω

)
cosωτ + ẋ(0) sinωτ

]

p3 = m0 ż(0)





, (3.384)

so in contrast to our world, the frequency is ω= eH
m0c

.
From here we see that the momentum of an our-world charged par-

ticle in the given configuration of the acting fields performs harmonic
oscillations along x and y, while along z it is a linear function of the
observable time τ (if the initial velocity ż 6=0). Within x y plane the
oscillation frequency is ω=2Ω + eH

m0c
.

It should be noted that obtaining exact solutions of the equations
of motion in the presence of both electric and magnetic components is
problematic, because we need to solve elliptic integrals in the process.
It may be possible to solve them in future, when the solutions will be
obtained on computers, but this problem evidently stays beyond the goal



136 Chapter 3 Motion of Charged Particles

of this book. Presumably, Landau and Lifshitz faced a similar problem,
because in §22 of The Classical Theory of Fields where considering a
similar problem∗ they obtained equations of motion and solved them
assuming the velocity to be non-relativistic and the electric strength to
be weak eEx

c2
≈ 0.

b) Magnetic field is parallel to electric field and is ortho-
gonal to non-holonomity field

Let us solve the vector chr.inv.-equations of motion of the charged par-
ticle (3.370, 3.371) in the same approximation as we did in the first
case. Then for our world and for the mirror world the equation are,
respectively

ẍ+ 2Ωẏ =
eE

m0
, ÿ − 2Ωẋ = − eH

m0c
ż , z̈ =

eH

m0c
ẏ , (3.385)

ẍ =
eE

m0
, ÿ = − eH

m0c
ż , z̈ =

eH

m0c
ẏ . (3.386)

Integrating the first equation of motion in our world (3.385), which
is along x, we obtain

ẋ =
eE

m0
τ − 2Ωy + C1 , C1 = const = ẋ(0) + 2Ωy(0) . (3.387)

Integrating the third equation (along z) we have

ż =
eH

m0c
y + C2 , C2 = const = ż(0) −

eH

m0c
y(0) . (3.388)

Substituting the obtained formulae for ẋ and ż into the second equa-
tion of motion (3.385) we obtain the linear differential equation of the
2nd order with respect to y

ÿ +
(

4Ω2 +
e2H2

m2
0c

2

)
y =

2ΩeE
m0

τ + 2ΩC1 − eH

m0c
C2 . (3.389)

We are going to solve it, using the method of change of variables.
Introducing a new variable u

u = y +
1
ω2

(
eH

m0c
C2 − 2ΩC1

)
, ω2 = 4Ω2 +

e2H2

m2
0c

2
, (3.390)

∗But in contrast to this book, they used general covariant methods and did not
account for the space non-holonomity.
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we obtain an equation of forced oscillations

ü+ ω2u =
2ΩeE
m0

τ , (3.391)

whose solution is the sum of the general solution of the equation of free
oscillations

ü+ ω2u = 0 , (3.392)

and of a particular solution of the inhomogeneous equation

ũ = Mτ +N , (3.393)

where M = const and N = const. Differentiating ũ twice with respect to
τ and substituting the results into the inhomogeneous equation (3.391)
and then equating the obtained coefficients for τ we obtain the linear
coefficients

M =
2ΩeE
m0ω2

, N = 0 . (3.394)

Then the general solution of the initial inhomogeneous equation
(3.391) becomes

u = C3 cosωτ + C4 sinωτ +
2ΩeE
m0ω2

τ , (3.395)

where the integration constants can be obtained by substituting the
initial conditions at τ =0 into the obtained formula. As a result, we
have C3 =u(0) and C4 = u̇(0)

ω .
Returning to the old variable y (3.390) we find the final solution for

this coordinate

y =
[
y(0) +

1
ω2

(
eH

m0c
C2 + 2ΩC1

)]
cosωτ +

+
ẏ(0)

ω
sinωτ − 1

ω2

(
eH

m0c
C2 + 2ΩC1

)
+

2ΩeE
m0ω2

τ .

(3.396)

Then substituting this formula into equations for ẋ and ż after in-
tegration we arrive at the solutions for x and z

x =
eE

2m0

(
1− 4Ω2

ω2

)
τ2 − 2Ω

ω

(
y(0) +A

)
sinωτ +

+
2Ω ẏ(0)
ω

cosωτ + (C1 + 2ΩA) τ + C5 ,

(3.397)
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z =
eH

m0c ω

[(
y(0) +A

)
sinωτ − ẏ(0)

ω
cosωτ

]
−

−
(
eH

m0c
A− C2

)
τ + C6 ,

(3.398)

where (for convenient notation),

A =
1
ω2

(
eH

m0c
C2 − 2ΩC1

)
, (3.399)

while the new integration constants are

C5 = x0 −
2Ω ẏ(0)
ω

, C6 = z(0) +
eHẏ(0)

m0c ω2
. (3.400)

If we assume Ω = 0, then from coordinates of the our-world charged
particle (3.396–3.398) we immediately obtain the solutions for the anal-
ogous charged particle in the mirror world

x =
eE

2m0
τ2 + ẋ(0)τ + x(0) , (3.401)

y =
ż(0)

ω
cosωτ +

ẏ(0)

ω
sinωτ − ż(0)

ω
+ y(0) , (3.402)

z =
ż(0)

ω
sinωτ − ẏ(0)

ω
cosωτ +

ẏ(0)

ω
+ z(0) . (3.403)

Consequently, components of the three-dimensional momentum of
the our-world particle under the considered configuration of the acting
fields take the form

p1 = m0 ẋ(0) + eE

(
1− 4Ω2

ω2

)
τ −

− 2m0Ω
[
ẏ(0)

ω
sinωτ +

(
y(0) +A

)
cosωτ − ẏ(0)

ω
−A

]

p2 = m0

[
ẏ(0) cosωτ − ω

(
y(0) +A

)
sinωτ

]
+

2ΩeE
ω2

p3 = m0 ż(0) +

+
eH

c

[(
y(0)+A

)
cosωτ+

ẏ(0)

ω
sinωτ−A+

2ΩeE
m0ω2

τ−y(0)
]





, (3.404)

where the frequency is ω=
√

4Ω2 + e2H2

m2
0c

. In the mirror world, given this
configuration of the acting fields, components of the three-dimensional
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momentum of the analogous charged particle are

p1 = m0 ẋ(0) + 2eE τ

p2 = m0

(
ẏ(0) cosωτ − ż(0) sinωτ

)

p3 = m0

(
ż(0) cosωτ − ẏ(0) sinωτ

)




, (3.405)

where in contrast to our world the frequency is ω= eH
m(0)c

.

§3.14 Conclusions

In fact the theory we have built in this Chapter can be more precisely
referred to as the chronometrically invariant representation of electro-
dynamics in a pseudo-Riemannian space. In other words, because the
mathematical apparatus of physical observable quantities initially as-
sumes the four-dimensional space-time of the General Theory of Rela-
tivity, we can simply refer to it as the chronometrically invariant electro-
dynamics (CED). Here we have obtained only the basics of this theory:

◦ The chr.inv.-components of the electromagnetic field tensor (the
Maxwell tensor);

◦ Maxwell’s equations in chr.inv.-form;
◦ The law of conservation of electric charge in chr.inv.-form;
◦ Lorentz’ condition in chr.inv.-form;
◦ D’Alembert’s equations in chr.inv.-form (the wave propagation

equations) for the scalar potential and the vector-potential of the
electromagnetic field;

◦ Lorentz’ force in chr.inv.-form;
◦ The energy-momentum tensor of an electromagnetic field, and its

chr.inv.-components;
◦ The chr.inv.-equations of motion of a charged test-particle;
◦ The geometric structure of the four-dimensional potential of an

electromagnetic field.
It is evident that, the whole scope of the chr.inv.-electrodynamics is

much wider. In addition to what has been said we could obtain chr.inv.-
equations of motion of a spatially distributed charge or study motion of
a particle which bears its own electromagnetic emission, interacting the
field or, at last, deduce equations of motion for a particle which travels at
an arbitrary angle to the field strength (either for an individual particle
or a distributed charge), or tackle scores of other interesting problems.



Chapter 4 Motion of Spin-Particles

§4.1 Problem statement

In this Chapter we are going to obtain equation of motion of a particle
with an inner rotational momentum (spin). As we mentioned in Chap-
ter 1, these are equations of parallel transfer of the four-dimensional
dynamic vector of the particle Qα, which is the sum of vectors

Qα = Pα + Sα, (4.1)

where Pα =m0
dxα

ds
is the four-dimensional momentum vector of this

particle. The four-dimensional vector Sα is an additional momentum
which this particle gains from its inner momentum (spin), so this mo-
mentum makes motion of the particle non-geodesic. Therefore, we will
refer to Sα as the spin-momentum. Because we know components of
the momentum vector Pα, to define summary dynamic vector Qα we
only need to obtain components of the spin-momentum vector Sα.

Hence our first step will be defining a particle’s spin as geometric
quantity in the four-dimensional pseudo-Riemannian space of the Gen-
eral Theory of Relativity. Then in §4.2, we are going to deduce the
spin-momentum vector Sα itself. In §4.3 our goal will be to obtain
equations of motion of a spin-particle in the pseudo-Riemannian space
and their chr.inv.-projections. Other sections of this Chapter will focus
on motion of elementary particles.

The numerical value of spin is ±n~, measured in fractions of Planck’s
constant, where n is the so-called spin quantum number. As of today,
it is known that for various kinds of elementary particles this num-
ber may be n = 0, 1

2
, 1, 3

2
, 2. Alternating sign ± stands for possible

right-wise or left-wise inner rotation of the particle under consideration.
Besides, the Planck constant ~ has dimension of angular momentum
[ gram cm2/sec ]. This alone hints that spin’s tensor by its geometric
structure should be similar to the tensor of angular momentum, i. e.
should be an antisymmetric tensor of the 2nd rank. We are going to
check if another source can prove this.

Bohr’s second postulate says that the length of the orbit of an elec-
tron should comprise the integer number of de Broglie wavelengths
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λ= h
p , which stands for the electron according to the wave-particle con-

cept. In other words, the length of the electron orbit 2πr comprises k
de Broglie wavelengths

2πr = kλ = k
h

p
, (4.2)

where p is the orbital momentum of the electron. Taking into account
that Planck’s constant is ~= h

2π
, this equation (4.2) should be

rp = k~ . (4.3)

Because the radius-vector of the electron orbit ri is orthogonal to
the vector of its orbital momentum pk, this formula in tensor notation
is a vector product, namely

[
ri; pk

]
= k~ik . (4.4)

From here we see that the Planck constant deduced from Bohr’s
second postulate in tensor notation is present with an antisymmetric
2nd rank tensor.

But this representation of the Planck constant is linked to orbital
model of an atom — of the system more complicated than electron
or any other elementary particle. Nevertheless, spin also defined by
this constant, is an inner property of elementary particles themselves.
Therefore, according to Bohr’s second postulate we have to consider
the geometric structure of the Planck constant proceeding from another
experimental relationship which is related to inner structure of elec-
tron only.

We have such an opportunity thanks to classical experiments per-
formed by Stern and Gerlach in 1921. One of their results is that any
electron bears inner magnetic momentum Lm, which is proportional to
its inner rotational momentum (spin)

me

e
Lm = n~ , (4.5)

where e is the charge of the electron, me is its mass and n is the spin
quantum number (for electron n= 1

2
). The magnetic momentum of a

contour with an area S=πr2, which conducts a current I, is Lm = IS.
The current equals to the charge e divided by its period of circulation
T = 2πr

u along this contour

I =
eu

2πr
, (4.6)
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where u is the linear velocity of the charge circulation. Hence, the inner
magnetic momentum of the electron is

Lm =
1
2
eur , (4.7)

or in tensor notation∗

Likm =
1
2
e
[
ri;uk

]
=

1
2

[
ri; pkm

]
, (4.8)

where ri is the radius-vector of the inner current circulation provided
by the electron, and uk is the vector of the circulation velocity.

From here we see that the Planck constant, being calculated from
the inner magnetic momentum of an electron (4.5), is also the vector
product of two vectors. So it is an antisymmetric tensor of the 2nd
rank, namely

me

2e
[
ri; pkm

]
= n~ik, (4.9)

which proves similar conclusion based on the Bohr second postulate.
Subsequently, considering inter-electronic quantum relationships in

the four-dimensional pseudo-Riemannian space, we arrive at the Planck
four-dimensional antisymmetric tensor ~αβ , whose spatial components
are three-dimensional quantities ~ik

~αβ =




~00 ~01 ~02 ~03

~10 ~11 ~12 ~13

~20 ~21 ~22 ~23

~30 ~31 ~32 ~33


 . (4.10)

This antisymmetric tensor ~αβ corresponds to dual the Planck pseu-
dotensor ~∗αβ = 1

2
Eαβµν~µν . Subsequently, spin of a particle in the

four-dimensional pseudo-Riemannian space is characterized by the an-
tisymmetric tensor n~αβ , or by its dual pseudotensor n~∗αβ . Note that
physical nature of spin does not matter here, it is sufficient that this
fundamental property of particles is characterized by a tensor (or a pseu-
dotensor) of a certain kind. Thanks to this approach, we can solve the
problem of motion of spin-particles without any preliminary assumption
on their inner structure, i. e. using strictly formal mathematical method.

∗Equations (4.8) and (4.9) are given for the Minkowski space, which is quite
acceptable for the above experiments. In Riemannian spaces the result of integration
depends on the integration path. Therefore the radius-vector of a finite length is not
defined in Riemannian spaces, because its length depends on constantly varying
direction.
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Hence from the geometric point of view, the Planck constant is an
antisymmetric tensor of the 2nd rank, whose dimension is angular mo-
mentum irrespective of the quantities from which it was obtained: me-
chanical or electromagnetic. The latter also implies that the Planck
tensor does not characterize rotation of masses inside atoms or any
masses inside elementary particles, but it is derived from some funda-
mental quantum rotation of the space itself and sets all “elementary”
rotations in the space irrespective of their nature.

The rotation of the space is characterized by the chr.inv.-tensor Aik
(1.36), which results from lowering indices Aik =himhknA

mn in the com-
ponents Amn of the contravariant four-dimensional tensor

Aαβ = chαµhβνaµν , aµν =
1
2

(
∂bν
∂xµ

− ∂bµ
∂xν

)
. (4.11)

In the accompanying reference frame (bi =0) the auxiliary quantity
aµν has the components

a00 = 0 , a0i =
1

2c2

(
∂w
∂xi

−∂vi
∂t

)
, aik =

1
2c

(
∂vi
∂xk

− ∂vk
∂xi

)
, (4.12)

so we have

A00 = 0 , A0i = −Ai0 = 0 ,

Aik =
1
2

(
∂vk
∂xi

− ∂vi
∂xk

)
+

1
2c2

(Fivk − Fkvi) .
(4.13)

In the absence of gravitational fields, the tensor of angular velocities
of the space rotation depends only on the linear velocity of this rotation
vi, hence we denote it as Aαβ =Ωαβ

Ω00 = 0 , Ω0i = −Ωi0 = 0 , Ωik =
1
2

(
∂vk
∂xi

− ∂vi
∂xk

)
. (4.14)

On the other hand, according to the wave-particle concept, any par-
ticle corresponds to a wave with the energy E=mc2 = ~ω, where m
is the relativistic mass of the particle and ω is its specific frequency.
In other words, from geometric viewpoint any particle can be consid-
ered as a wave defined within infinite proximity of geometric location
of the particle, whose specific frequency depends on certain distribution
of the angular velocities ωαβ , also defined within this proximity. As
a result, the above quantum relationship in tensor notation becomes
mc2 = ~αβωαβ .
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Because the Planck tensor is antisymmetric, all of its diagonal ele-
ments are zeroes. Its space-time (mixed) components in the accompany-
ing reference frame also should be zero similar to respective components
of the four-dimensional tensor of the space rotation (4.14). Numerical
values of spatial (three-dimensional) components of the Planck tensor,
observable in experiments, are ±~ depending on the rotational direction
and make the Planck three-dimensional chr.inv.-tensor ~ik. In the case
of left-wise rotations the components ~12, ~23, ~31 are positive, while
the components ~13, ~32, ~21 are negative.

Then the geometric structure of the Planck four-dimensional tensor,
represented as matrix, becomes

~αβ =




0 0 0 0
0 0 ~ −~
0 −~ 0 ~
0 ~ −~ 0


 . (4.15)

In the case of right-wise rotations the components ~12, ~23, ~31

change their sign to become negative, while the components ~13, ~32,
~21 become positive

~αβ =




0 0 0 0
0 0 −~ ~
0 ~ 0 −~
0 −~ ~ 0


 . (4.16)

The square of the Planck four-dimensional tensor can be deduced as
follows

~αβ ~αβ = 2~2
[(
g11g22−g2

12

)
+

(
g11g33−g2

13

)
+

(
g22g33−g2

23

)
+

+ 2 (g12g23−g22g13−g12g33+g13g23−g11g23+g12g13)
]
,

(4.17)

and in the Minkowski space, where the reference frame is Galilean and
the metric is diagonal (2.70), it equals ~αβ~αβ =6~2. In the pseudo-
Riemannian space the quantity ~αβ~αβ can be deduced by substitution
of dependency of spatial components of the fundamental metric ten-
sor from the metric chr.inv.-tensor hik =−gik + 1

c2
vivk and the space

rotation velocity into (4.17). Hence, though the physical observable
components ~ik of the Planck tensor are constant (have opposite signs
for left and right-wise rotations), its square in a general case depends
on the angular velocity of the space rotation.

Now having components of the Planck tensor defined, we can ap-
proach deduction of a momentum that a particle gains from its spin as
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well as equations of motion of the spin-particle travelling in the pseudo-
Riemannian space. This will be the focus of the next section, §4.2.

§4.2 A particle’s spin-momentum in equations of motion

The additional momentum Sα that a particle gains from its spin can be
obtained from considering action for this spin-particle.

Action S for a particle that possesses an inner scalar field k, with
which an external scalar field A interacts and thus displaces the particle
at an elementary interval ds, is

S = α(kA)

∫ b

a

kAds , (4.18)

where α(kA) is a scalar constant, which characterizes properties of the
particle in a given interaction and equates dimensions [10, 20]. If the
inner scalar field of the particle k corresponds to an external field of
the tensor of the 1st rank Aα, then the action required to displace the
particle by the field is

S = α(kAα)

∫ b

a

kAαdx
α. (4.19)

In interaction of the particle’s inner scalar field k with an external
field of the tensor of the 2nd rank Aαβ , action to displace the particle
by that field is

S = α(kAαβ)

∫ b

a

kAαβ dx
αdxβ . (4.20)

And so forth. For instance, if the specific vector potential of the
particle kα corresponds to an external vector field Aα, then action of
this interaction to displace the particle is

S = α(kαAα)

∫ b

a

kαAαds . (4.21)

Besides, the action can be represented as follows irrespective of the
nature of inner properties of particles and external fields

S =
∫ t2

t1

Ldt , (4.22)

where L is the so-called Lagrange’s function. Because the dimension
of action S is [ erg sec = gram cm2/sec ], then the Lagrange function



146 Chapter 4 Motion of Spin-Particles

has dimension of energy [ erg = gram cm2/sec2 ]. And the derivative of
the Lagrange function with respect to the three-dimensional coordinate
velocity ui = dxi

dt
of the particle

∂L

∂ui
= pi (4.23)

is the covariant notation of its three-dimensional momentum pi = cP i

which can be used to restore full notation for the four-dimensional mo-
mentum vector of the particle Pα.

Hence having action for the particle, having the Lagrange function
outlined and differentiated with respect to the coordinate velocity of
particle, we can calculate the additional momentum which the particle
gains from its spin.

As it is known, action to displace a free particle in the pseudo-
Riemannian space is∗

S =
∫ b

a

m0c ds . (4.24)

In a Galilean reference frame in the Minkowski space, because non-
diagonal terms of the fundamental metric tensor are zeroes, the space-
time interval is

ds =
√
gαβ dxαdxβ = cdt

√
1− u2

c2
, (4.25)

and hence the action (4.24) becomes

S =
∫ b

a

m0c ds =
∫ t2

t1

m0c
2

√
1− u2

c2
dt . (4.26)

Therefore the Lagrange function of the free particle in a Galilean
reference frame in the Minkowski space is

L = m0c
2

√
1− u2

c2
. (4.27)

∗In The Classical Theory of Fields [10] Landau and Lifshitz put “minus” before
the action, while we always have “plus” before the integral of the action and also
before the Lagrange function. This is because the sign of action depends on the
signature of the pseudo-Riemannian space. Landau and Lifshitz use the signature
(−+++), where time is imaginary, spatial coordinates are real and three-dimensional
coordinate momentum is positive (see in the below). To the contrary, we stick to the
signature (+−−−) as used by Zelmanov [9, 11–13], because in this case time is real
and spatial coordinates are imaginary, so three-dimensional observable momentum
is positive in this case.
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Differentiating it with respect to the particle’s coordinate velocity
we arrive at the covariant form of its three-dimensional momentum

pi =
∂L

∂ui
= m0c

2
∂

√
1− u2

c2

∂ui
= − m0ui√

1− u2

c2

, (4.28)

from which, after lifting indices, we arrive at the four-dimensional mo-
mentum vector of the free particle as follows

Pα =
m0

c

√
1− v2

c2

dxα

dt
= m0

dxα

ds
. (4.29)

In the final formula both multipliers, m0 and dxα

ds
, are general covari-

ant quantities, so they do not depend on choice of a particular reference
frame. For this reason, this formula obtained in a Galilean reference
frame in the Minkowski space is also true in any other arbitrary refer-
ence frame in any pseudo-Riemannian space.

Now let us consider motion of a particle that possesses inner struc-
ture, which in experiments reveals itself like its spin. Inner rotation
(spin) of the particle n~αβ in the four-dimensional pseudo-Riemannian
space corresponds to the external field Aαβ of the space rotation. There-
fore summary action to displace this spin-particle is

S =
∫ b

a

(
m0c ds+ α(s)~αβAαβ ds

)
, (4.30)

where α(s) [ sec/cm] is a scalar constant, which characterizes the particle
in spin-interaction. Because action constants may include only this
particle’s properties or fundamental physical constants, α(s) is evidently
the spin quantum number n, which is the function of inner properties of
the particle, divided by the light velocity α(s) = n

c . Then the action to
displace the particle, produced by interaction of its spin with the space
non-holonomity field Aαβ is

S = α(s)

∫ b

a

~αβAαβ ds =
n

c

∫ b

a

~αβAαβ ds . (4.31)

A note should be taken that building the four-dimensional momen-
tum vector for a spin-particle using the same method as for a free par-
ticle is impossible. As it is known, we first obtained the momentum
of a free particle in a Galilean reference frame in the Minkowski space,
where a formula for ds expressed through dt and substituted into the
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action had simple form (4.25). It was shown that the obtained for-
mula (4.29) due to its property of general covariance was true in any
reference frame in the pseudo-Riemannian space. But as we can see
from the formula of the action for a spin-particle, spin affects motion of
the particle in the non-holonomic space Aαβ 6= 0 only, i. e. where non-
diagonal terms g0i of the fundamental metric tensor are not zeroes. In
a Galilean reference frame, by definition, all non-diagonal terms in the
metric tensor are zeroes, hence zeroes are components of the linear ve-
locity of the space rotation vi =−c g0i√

g00
and also components of the

non-holonomity tensor Aαβ . Therefore this is worthless and cannot be
used to deduce the desired formula for the spin-particle momentum in
a Galilean reference frame in the Minkowski space (where it obviously
is zero), instead we should deduce it directly in the pseudo-Riemannian
space.

The space-time interval ds, in an arbitrary accompanying reference
frame in the pseudo-Riemannian space, is

ds = cdτ

√
1− v2

c2
= cdt

(
1−w + viu

i

c2

)√√√√1− u2

c2
(
1− w+viui

c2

)2
, (4.32)

where the coordinate velocity of the particle ui = dxi

dt
can be expressed

with its observable velocity vi = dxi

dτ
as follows

vi =
ui

1− w+viui

c2

, v2 =
hiku

iuk

(
1− w+viui

c2

)2
. (4.33)

Then the additional action (4.31), produced by interaction of spin
with the space non-holonomity field, becomes

S = n

∫ t2

t1

~αβAαβ

√(
1− w + viui

c2

)2

− u2

c2
dt . (4.34)

Therefore, the Lagrange function for this action is

L = n~αβAαβ

√(
1− w + viui

c2

)2

− u2

c2
. (4.35)

Now to deduce the spin-momentum we only have to differentiate the
Lagrange function (4.35) with respect to the coordinate velocity of the
particle. Taking into account that ~αβ , the tensor of inner rotations of
the particle, and Aαβ (4.13), the tensor of the space rotation, are not
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functions of the particle’s velocity, after differentiating we obtain

pi =
∂L

∂ui
= n~mnAmn

∂

∂ui

√(
1− w + viui

c2

)2

− u2

c2
=

= − n~mnAmn

c2
√

1− v2

c2

(vi + vi) ,
(4.36)

where vi =hikvk. We compare (4.36) with the spatial covariant compo-
nent pi = cPi of the four-dimensional momentum vector Pα =m0

dxα

ds
of

the particle in pseudo-Riemannian space∗. If the particle is located in
our world, so it travels from the past into the future with respect to us,
its three-dimensional covariant momentum is

pi = cPi = cgiαP
α = −m (vi + vi) = − m0√

1− v2

c2

(vi + vi) . (4.37)

From here we see that the four-dimensional momentum Sα, which
the particle gains from its spin (the spin-momentum) is

Sα =
1
c2
n~µνAµν

dxα

ds
, (4.38)

or, introducing notation η0 =n~µνAµν =n~mnAmn to make the formula
simpler, we obtain

Sα =
1
c2
η0
dxα

ds
. (4.39)

Then the summary vector Qα (4.1), which characterizes motion of
the spin-particle is

Qα = Pα + Sα = m0
dxα

ds
+

1
c2
n~µνAµν

dxα

ds
. (4.40)

So, any spin-particle in a non-holonomic space (Aµν 6=0) actually
gains an additional momentum, which deviates its motion from geodesic
line and makes it non-geodesic. In the absence of the space rotation, i. e.
where the space is holonomic, we have Aµν =0, so the particle’s spin
does not affect its motion. But there is hardly an area in the space where
rotation is fully absent. Therefore, spin most often, affects motion of
particles in the subject domain of atomic physics, where rotations are
especially strong.

∗In this comparism we mean a non-zero mass particle.
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§4.3 Equations of motion of a spin-particle

Equations of motion of a spin-particle are equations of parallel transfer
of the summary vector Qα =Pα +Sα (4.40) along the trajectory of the
particle (its parallel transfer in the four-dimensional pseudo-Riemannian
space), namely

d

ds
(Pα + Sα) + Γαµν (Pµ + Sµ)

dxν

ds
= 0 , (4.41)

where the square of the vector remains unchanged QαQα = const in its
parallel transfer along the trajectory.

Our goal is to deduce chr.inv.-projections of the equations. The
projections in general notation, as obtained in Chapter 2, should be

dϕ

ds
− 1
c
Fiq

i dτ

ds
+

1
c
Dik q

i dx
k

ds
= 0 , (4.42)

dqi

ds
+

(
ϕ

c

dxk

ds
+qk

dτ

ds

)(
Di
k+A·ik·

)− ϕ

c
F i
dτ

ds
+∆i

mkq
m dx

k

ds
=0 , (4.43)

where ϕ is the projection of the summary vector Qα on the observer’s
time line and qi is its projection on the spatial section

ϕ = bαQ
α =

Q0√
g00

=
P0√
g00

+
S0√
g00

, (4.44)

qi = hiαQ
α = Qi = P i + Si. (4.45)

Therefore attaining the goal requires deducing ϕ and qi, substituting
them into (4.42, 4.43) and cancelling similar terms. Chr.inv.-projections
of the momentum vector Pα =m0

dxα

ds
are

P0√
g00

= ±m, P i =
1
c
mvi, (4.46)

and now we have to deduce chr.inv.-projections of the spin-momentum
vector Sα. Taking into account in the formula for Sα (4.39) that the
space-time interval, formulated with physical observable quantities, is
ds= cdτ

√
1− v2/c2, we obtain components of the Sα, which are

S0 =
1
c2
n~mnAmn√

1− v2

c2

(
vivi ± c2

)

c2
(
1− w

c2

) , (4.47)

Si =
1
c3
n~mnAmn√

1− v2

c2

vi, (4.48)



4.3 Equations of motion of a spin-particle 151

S0 = ± 1
c2

(
1− w

c2

) n~mnAmn√
1− v2

c2

, (4.49)

Si = − 1
c3
n~mnAmn√

1− v2

c2

(vi ± vi) , (4.50)

also formulated with physical observable quantities. Respectively, chr.
inv.-projections of the particle’s spin-momentum vector are

S0√
g00

= ± 1
c2
η , Si =

1
c3
ηvi, (4.51)

where the quantity η is

η =
n~mnAmn√

1− v2

c2

, (4.52)

while alternating signs, which results from substituting the time func-
tion dt

dτ
(1.55) indicate motion of the particle into the future (the upper

sign) or into the past (the lower sign). Then the square of the spin-
momentum vector is

SαS
α = gαβ S

αSβ =
1
c4
η2
0 gαβ

dxαdxβ

ds2
=

1
c4
η2
0 , (4.53)

and the square of the summary vector Qα is

QαQ
α = gαβ Q

αQβ = m2
0 +

2
c2
m0η0 +

1
c4
η2
0 . (4.54)

Therefore the square of the summary vector of any spin-particle falls
apart into three parts, namely:

a) The square of the momentum vector of the particle PαPα =m2
0;

b) The square of its spin-momentum vector SαSα = 1
c4
η2
0 ;

c) The term 2
c2
m0η0, describing spin-gravitational interactions.

To effect parallel transfer (4.41), it is necessary that the square of the
transferred summary vector remains unchanged along the entire path.
But the obtained formula (4.54) implies that (because m0 = const) the
square of the spin-particle’s summary vector Qα remains unchanged if
only η0 = const, i. e.

dη0 =
∂η0
∂xα

dxα = 0 . (4.55)
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Dividing both sides of the equation by dτ , which is always possible
because an elementary interval of the observer’s physical time is greater
than zero∗, we obtain the chr.inv.-condition of conservation of the square
of the spin-particle’s summary vector

dη0
dτ

=
∗∂η0
∂t

+ vk
∗∂η0
∂xk

= 0 . (4.56)

Substituting η0 = n~mnAmn we have

n~mn
(∗∂Amn

∂t
+ vk

∗∂Amn
∂xk

)
= 0 . (4.57)

To illustrate the results, we formulate the space non-holonomity ten-
sor Aik, which is actually the tensor of angular velocities of the space
rotation, with the pseudovector of angular velocities of this rotation

Ω∗i =
1
2
εimnAmn , (4.58)

which is also chr.inv.-quantity. Multiplying Ω∗i by εipq

Ω∗i εipq =
1
2
εimnεipqAmn =

1
2

(
δmp δ

n
q − δnp δ

m
q

)
Amn = Apq , (4.59)

we obtain (4.57) as follows

n~mn
[ ∗∂
∂t

(
εimnΩ∗i

)
+ vk

∗∂
∂xk

(
εimnΩ∗i

)]
=

= n~mnεimn
[

1√
h

∗∂
∂t

(√
hΩ∗i

)
+vk

1√
h

∗∂
∂xk

(√
hΩ∗i

)]
=0 .

(4.60)

The vector of gravitational inertial force and the space non-holono-
mity tensor are related through Zelmanov’s identities, one of which (see
formula 13.20 in [9]) is

2√
h

∗∂
∂t

(√
hΩ∗i

)
+ εijk ∗∇j Fk = 0 , (4.61)

or, in the other notation
∗∂Aik
∂t

+
1
2
(∗∇k Fi− ∗∇iFk

)
=

∗∂Aik
∂t

+
1
2

(∗∂Fk
∂xi

−
∗∂Fi
∂xk

)
= 0 , (4.62)

∗The condition dτ =0 only has sense in a generalized space-time, where degen-
eration of the fundamental metric tensor gαβ is possible. In this case the above con-
dition defines fully degenerate domain (zero-space) that hosts zero-particles, which
are capable of instant displacement, so they are carriers of long-range action.
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where εijk ∗∇j Fk is the chr.inv.-curl of the gravitational inertial force
field Fk. From here we see that non-stationarity of the space rotation
Aik is due to curl character of the acting field of gravitational inertial
force Fik. Hence taking into account equation (4.61), our formula (4.60)
becomes

−n~mn ∗∇mFn + n~mnεimnvk
1√
h

∗∂
∂xk

(√
hΩ∗i

)
= 0 , (4.63)

or in the other notation

n~mn ∗∇mFn = n~mnεimnvk
(

Ω∗i
∗∂ ln

√
h

∂xk
+
∗∂Ω∗i

∂xk

)
. (4.64)

Now lets recall that this formula is nothing but the expanded chr.
inv.-notation of the conservation condition of the summary vector
(4.57). The left hand side of (4.64) equals

± 2n~
(∗∇1F2 − ∗∇2F1 + ∗∇1F3 − ∗∇3F1 + ∗∇2F3 − ∗∇3F2

)
, (4.65)

where “plus” and “minus” stand for right-rotating and left-rotating ref-
erence frames, respectively. Therefore, the left hand side of equation
(4.64) is the chr.inv.-curl of gravitational inertial force. The right hand
side of (4.64) depends on the spatial orientation of the space rotation
pseudovector Ω∗i.

Hence to conserve the square of the spin-particle’s transferred vector,
it is necessary that the right and the left hand sides of (4.64) are equal
to each other along the trajectory. In a general case, with no additional
assumptions on the geometric structure of the space, this requires that
there should be a balance between the vortical field of the acting gravi-
tational inertial force and the spatial distribution of the space rotation
pseudovector.

If the field of gravitational inertial force is vortexless, then the left
hand side of the conservation condition (4.64) is zero and this condition
becomes

n~mnεimnvk
1√
h

∗∂
∂xk

(√
hΩ∗i

)
= 0 . (4.66)

Introducing chr.inv.-derivative
∗∂
∂xk = ∂

∂xk + 1
c2
vk

∗∂
∂t

, we have

n~mnεimnvk
1√
h

[
∂

∂xk
(√
hΩ∗i

)− 1
c2
vk

∗∂
∂t

(√
hΩ∗i

)]
= 0 . (4.67)

Since the force field Fi is vortexless, then because of (4.66) the second
term in this formula is zero. Therefore the square of the summary
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vector of the spin-particle remains unchanged in the vortexless force
field Fi, provided that chr.inv.-formula (4.66) and the formula with
regular derivatives are zeroes

n~mnεimnvk
1√
h

∂

∂xk
(√
hΩ∗i

)
= 0 . (4.68)

For non-zero mass particles this is the case, for instance, where
vk = 0, so this is when they are at rest with respect to the observer
and his reference body. In this case equality to zero of derivatives in
(4.68) is not essential. But massless particles travel at the light veloc-
ity, hence for them in the vortexless field of force Fi the derivatives
∂
∂xk

(
√
hΩ∗i) must be zeroes.

Let us obtain chr.inv.-equations of motion of a spin-particle in the
pseudo-Riemannian space. Substituting (4.46) and (4.51) into (4.44)
and (4.45) we arrive at chr.inv.-projections of the summary vector of
the spin-particle

ϕ = ±
(
m+

1
c2
η
)
, qi =

1
c
m vi +

1
c3
ηvi. (4.69)

Having the quantities substituted for ϕ> 0 into (4.42, 4.43) we ob-
tain chr.inv.-equations of motion for a non-zero mass spin-particle lo-
cated in our world (the particle travels from the past into the future)

dm

dτ
− m

c2
Fivi +

m

c2
Dikvivk = − 1

c2
dη

dτ
+
η

c4
Fivi − η

c4
Dikvivk, (4.70)

d

dτ

(
mvi

)
+ 2m

(
Di
k +A·ik·

)
vk −mF i +m∆i

nkv
nvk =

= − 1
c2

d

dτ

(
ηvi

)− 2η
c2

(
Di
k +A·ik·

)
vk +

η

c2
F i − η

c2
∆i
nkv

nvk,
(4.71)

while for the mirror-world particle (which moves into the past), having
the quantities (4.69) substituted for ϕ< 0, we have

−dm
dτ

− m

c2
Fivi +

m

c2
Dikvivk =

1
c2
dη

dτ
+
η

c4
Fivi − η

c4
Dikvivk, (4.72)

d

dτ

(
mvi

)
+mF i +m∆i

nkv
nvk =

= − 1
c2

d

dτ

(
ηvi

)− η

c2
F i − η

c2
∆i
nkv

nvk,
(4.73)

We write down the obtained equations in a way that their left hand
sides have the geodesic part, which describes free (geodesic) motion of
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this particle, while the right hand sides have the terms produced by the
particle’s spin, which makes the motion non-geodesic (the non-geodesic
part). Hence for a spin-free particle the right hand sides become ze-
roes and we obtain chr.inv.-equations of free motion. This form of the
equations will facilitate their analysis.

Within the wave-particle concept, a massless particle is described
by the four-dimensional wave vector Kα = ω

c
dxα

dσ
, where the quantity

dσ2 =hik dx
idxk is the square of the spatial physical observable interval,

not equal to zero along isotropic trajectories. Because massless particles
travel along isotropic trajectories (the light propagation trajectories),
the vector Kα is also isotropic: its square is zero. But because the
vector’s dimensionKα is [ cm−1 ], the equations have dimension different
from that of equations of motion of non-zero mass particles. Besides,
this fact does not permit us to build a uniform formula of action for
both massless and non-zero mass particles [9].

On the other hand, spin is a physical property, possessed by both
non-zero mass and massless particles. Therefore, deduction of equations
of motion for spin-particles require using a uniform vector for both kinds
of particles. Such a vector can be obtained by applying physical condi-
tions which are true along isotropic trajectories,

ds2 = c2dτ2 − dσ2 = 0 , cdτ = dσ 6= 0 , (4.74)

to the four-dimensional momentum vector of a mass-bearing particle

Pα = m0
dxα

ds
=
m

c

dxα

dτ
= m

dxα

dσ
. (4.75)

As a result the observable spatial interval, not equal to zero along
isotropic trajectories, becomes the derivation parameter, while the di-
mension of the formula, in contrast to the four-dimensional wave vector
Kα [ cm−1 ], coincides that of the four-dimensional momentum vector
Pα [ gram]. Relativistic mass m, not equal to zero for massless parti-
cles, can be obtained from the energy equivalent using E=mc2 formula.
For instance, a photon energy of E=1MeV = 1.6×10−6 erg corresponds
to its relativistic mass of m=1.8×10−28 gram.

Therefore the four-dimensional momentum vector (4.75), depending
on its form, may describe motion of either non-zero mass particles (non-
isotropic trajectories) or massless particles (isotropic trajectories). As a
matter of fact, for massless particles m0 =0 and ds=0, therefore their
ratio in (4.75) is a 0

0
indeterminacy. However the transition (4.75) m0

ds
to m

dσ
solves the indeterminacy, because the relativistic mass of any

massless particle is m 6=0, so along their trajectory we have dσ 6=0.
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It is evident that, in the form applicable to massless particles (i. e.
along isotropic trajectories) the square of Pα (4.75) is zero

PαP
α = gαβP

αP β = m2gαβ
dxα

dσ

dxβ

dσ
= m2 ds

2

dσ2
= 0 . (4.76)

Chr.inv.-projections of the four-dimensional momentum vector of a
massless particle Pα =m dxα

dσ
are

P0√
g00

= ±m, P i =
1
c
mci, (4.77)

where ci is the chr.inv.-vector of the light velocity. In this case, the
spin-momentum vector of this particle (4.39) is as well isotropic

Sα =
1
c2
η0
dxα

ds
=

1
c2
η
dxα

cdτ
=

1
c2
η
dxα

dσ
, (4.78)

because its square is zero

SαS
α = gαβ S

αSβ =
1
c4
η2gαβ

dxαdxβ

dσ2
=

1
c4
η2 ds

2

dσ2
= 0 , (4.79)

so the square of the particle’s summary vector Qα =Pα +Sα is also
zero. Chr.inv.-projections of the isotropic spin-momentum are

S0√
g00

= ± 1
c2
η , Si =

1
c3
ηci, (4.80)

so its spatial observable projection coincides that for a mass-bearing
particle (4.51), which instead of the particle’s observable velocity vi

(4.51) has the light velocity chr.inv.-vector ci. Subsequently, cr.inv.-
projections of the summary vector of the massless spin-particle are

ϕ = ±
(
m+

1
c2
η
)
, qi =

1
c
mci +

1
c3
ηci. (4.81)

Having these quantities substituted for the positive ϕ into the initial
formulae (4.42, 4.43), we arrive at chr.inv.-equations of motion of the
massless spin-particle located in our world (the particle travels from the
past into the future), namely

dm

dτ
− m

c2
Fic

i +
m

c2
Dikc

ick = − 1
c2
dη

dτ
+
η

c4
Fic

i − η

c4
Dikc

ick, (4.82)

d

dτ

(
mci

)
+ 2m

(
Di
k +A·ik·

)
ck −mF i +m∆i

nkc
nck =

= − 1
c2

d

dτ

(
ηci

)− 2η
c2

(
Di
k +A·ik·

)
ck +

η

c2
F i − η

c2
∆i
nkc

nck,
(4.83)
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while for the analogous particle in the mirror world (the particle travels
from the future into the past), having the quantities (4.81) substituted
for ϕ< 0, the chr.inv.-equations of motion are

−dm
dτ

− m

c2
Fic

i +
m

c2
Dikc

ick =
1
c2
dη

dτ
+
η

c4
Fic

i − η

c4
Dikc

ick, (4.84)

d

dτ

(
mci

)
+mF i +m∆i

nkc
nck =

= − 1
c2

d

dτ

(
ηci

)− η

c2
F i − η

c2
∆i
nkc

nck.
(4.85)

§4.4 The physical conditions of spin-interaction

As we have shown, spin of a particle (its inner rotational momentum)
interacts with an external field of the space rotation, described by the
space non-holonomity tensor Aαβ = 1

2
chαµhβν

(
∂bν

∂xµ − ∂bµ

∂xν

)
, depending

on the curl of the four-dimensional velocity vector bα of the observer
with respect to his reference body. In electromagnetic phenomena a
particle’s charge interacts with an external electromagnetic field — the
field of Maxwell’s tensor Fαβ = ∂Aβ

∂xα − ∂Aα

∂xβ . Therefore, it seems natural
to compare chr.inv.-projections of the Maxwell tensor Fαβ to chr.inv.-
projections of the space non-holonomity tensor Aαβ .

In Chapter 3, we showed that the electromagnetic field tensor Fαβ
(Maxwell’s tensor), yields two groups of chr.inv.-projections, produced
by the tensor itself and by its dual pseudotensor∗ F ∗αβ = 1

2
EαβµνFµν :

F ·i0·√
g00

= Ei, F ik = Hik

F ∗·i0·√
g00

= H∗i, F ∗ik = E∗ik




. (4.86)

On the other hand, chr.inv.-projections of the non-holonomity tensor
Aαβ (4.11) and of its dual pseudotensor A∗αβ = 1

2
EαβµνAµν are

A·i0·√
g00

= 0 , Aik = himhknAmn

A∗·i0·√
g00

= 0 , A∗ik = 0




. (4.87)

∗Here Eαβµν is the four-dimensional completely antisymmetric discriminant ten-
sor, which produce pseudotensors in the four-dimensional pseudo-Riemannian space,
see §2.3 in Chapter 2 for details.
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Comparing the formulae we see that spin-interaction gives an anal-
ogy for only the “magnetic” component Hik =Aik =himhknAmn of the
space non-holonomity field. The “electric” component of the field in
spin-interaction turns to be zero E i = A·i0·√

g00
=0. This is no surprise, be-

cause the inner rotational field of a particle (its spin, in other words)
interacts with the space non-holonomity field in the same way like an
external field, and both fields are produced by motion.

Besides, for the “magnetic” component of the non-holonomity field
Hik =Aik 6=0 can not be dual to zero value H∗i = A∗·i0·√

g00
=0. So, simi-

larity with electromagnetic fields turns out to be incomplete. But full
matching could not even be expected, because the space non-holonomity
tensor and the electromagnetic field tensor have somewhat different
structures: the Maxwell tensor is a “pure” curl Fαβ = ∂Aβ

∂xα − ∂Aα

∂xβ , while

the non-holonomity tensor Aαβ = 1
2
chαµhβν

(
∂bν

∂xµ − ∂bµ

∂xν

)
is an “add-on”

curl. On the other hand, we have no doubts that in the future compar-
ative analysis of these fields will produce a theory of spin-interactions,
similar to electrodynamics.

Incomplete similarity of the space non-holonomity field and elec-
tromagnetic fields also leads to another result. If we define the force
in spin-interaction in the same way that we define the Lorentz force
Φα = e

c F
α·
·σ U

σ, the obtained formula Φα = η0
c2
Aα··σU

σ will not include all
the terms from the right hand sides of equations of motion of a spin-
particle. But an external force acting on the particle, by definition, must
include all those factors which deviate the particle from geodesic line,
i. e. all terms in the right hand sides of the equations of motion. In other
words, the four-dimensional force of spin-interaction Φα [ gram/sec ] is
defined by the formula

Φα =
DSα

ds
=
dSα

ds
+ ΓαµνS

µ dx
ν

ds
, (4.88)

whose chr.inv.-projection on the spatial section, after being divided by
c, gives the three-dimensional observable force of the interaction Φi

[ gram cm/sec2 ]. For instance, for a mass-bearing particle located in
our world, having (4.71) as a base, we have

Φi = − 1
c2

d

dτ

(
ηvi

)− 2η
c2

(
Di
k +A·ik·

)
vk +

η

c2
F i − η

c2
∆i
nkv

nvk. (4.89)

From further comparison between electromagnetic interaction and
spin-interaction, using similarity with the electromagnetic field invari-
ants (3.25, 3.26) we deduce the invariants of the space non-holonomity
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field as

J1 = AαβA
αβ = AikA

ik = εikm ε
iknΩ∗mΩ∗n = 2Ω∗iΩ∗i, (4.90)

J2 = AαβA
∗αβ = 0 . (4.91)

Hence the scalar invariant J1 =2Ω∗iΩ∗i is always non-zero, other-
wise the space would be holonomic (not rotating) and spin-interaction
would be absent.

Now we are approaching physical conditions of motion of elementary
spin-particles. Using the definition of the chr.inv.-vector of gravitational
inertial force

Fi =
1

1− w

c2

(
∂w
∂xi

− ∂vi
∂t

)
= − c2 ∂ ln

(
1− w

c2

)

∂xi
−
∗∂vi
∂t

(4.92)

we formulate the non-holonomity tensor Aik as

Aik =
1
2

(∗∂vk
∂xi

−
∗∂vi
∂xk

)
+ vi

∂ ln
√

1− w

c2

∂xk
− vk

∂ ln
√

1− w

c2

∂xi
. (4.93)

From here we see that the non-holonomity tensor Aik is the three-
dimensional observable curl of the linear velocity of the space rotation
with two additional terms, produced by both the gravitational potential
w and the space rotation.

On the other hand, because of the small numerical value of the
Planck constant, spin-interaction only affects elementary particles. And
as it is known, in the scales of such small masses and distances gravita-
tional interaction is a few orders of magnitude weaker than electromag-
netic interactions, weak (spin) interactions, or strong interactions. We
therefore can assume that w→ 0 for spin-interaction in the formula for
Aik (4.93). Then in the microscopic scales of elementary particles the
tensor Aik is the physical observable curl in “strict” notation

Aik =
1
2

(∗∂vk
∂xi

−
∗∂vi
∂xk

)
, (4.94)

while the acting gravitational inertial force (4.92) has only its inertial
part

Fi = −
∗∂vi
∂t

= − 1

1− w

c2

∂vi
∂t

= −∂vi
∂t

. (4.95)

Zelmanov’s identities

2√
h

∗∂
∂t

(√
hΩ∗i

)
+ εijk ∗∇j Fk = 0 , ∗∇kΩ∗k +

1
c2
FkΩ∗k = 0 , (4.96)
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which link the space rotation to the gravitational inertial force, acting
on it, for elementary particles (w→ 0) become

1√
h

∂

∂t

(√
hΩ∗i

)
+

1
2
εijk

( ∗∂2vk
∂xj∂t

−
∗∂2vj
∂xk∂t

)
= 0

∗∇kΩ∗k − 1
c2

∗∂vk
∂t

Ω∗k = 0




. (4.97)

If we substitute
∗∂vk

∂t
= 0 here, so we are assuming that the observ-

able rotation of the space is stationary, we obtain ∗∇kΩ∗k =0, so the
space rotation pseudovector remains unchanged. Then the Zelmanov
1st identity becomes

Ω∗iD +
∗∂Ω∗i

∂t
= 0 , (4.98)

from which we see that D= det‖Dn
n‖ =

∗∂ ln
√
h

∂t
, so the rate of relative

expansion of the space elementary volume is zero D=0.
Therefore, the equations suggest that for elementary particles (i. e.

with w→ 0) at stationary rotations of the space
∗∂vk

∂t
=0 the tensor of

angular velocities of this rotation remains unchanged ∗∇kΩ∗k =0 and
the space relative expansions (deformations) are absent D=0.

It is possible, that stationarity of the space non-holonomity field
(the external field in spin-interaction) is the necessary condition of sta-
bility of the elementary particle under this action. Out of this we may
conclude that long-living spin-particles should possess stable inner ro-
tations, while short-living particles must be unstable spatial vortexes.

To study motion of short-living particles is pretty problematic as we
do not have experimental data on the structure of unstable vortexes,
which may produce them. In the same time, the study for long-living
particles, i. e. in the stationary field of the space rotation, can give exact
solutions of their equations of motion. We will focus on these issues in
the next section, §4.5.

§4.5 Motion of elementary spin-particles

As we have mentioned, the Planck constant, being a small absolute
value, only “works” for elementary particles, where gravitational in-
teractions is a few orders of magnitude weaker than electromagnetic,
weak and strong ones. Hence assuming w→ 0 in chr.inv.-equations of
motion of spin-particles (4.70–4.73) and (4.82–4.85), we will arrive at
chr.inv.-equations of motion of elementary particles.
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Besides, as we have obtained in the previous section, §4.4, under
stationary rotations of the space

∗∂vk

∂t
=0, in the scale of elementary

particles the spur of the space deformations tensor is zero D=0. Of
course, zero spur of a tensor does not necessarily imply the tensor itself is
zero. On the other hand, the space deformation is a rare phenomenon, so
for our study of motion of elementary particles we will assume Dik =0.

In §4.3 we have showed that under stationary rotations of the space,
the conservation condition for the spin-momentum vector of an arbitrary
spin-particle Sα becomes (4.68) so that

n~mnεimnvk
1√
h

∂

∂xk
(√
hΩ∗i

)
= 0 . (4.99)

On the other hand, under
∗∂vk

∂t
=0 the Zelmanov identities we ap-

plied for elementary particles (4.97) imply that

∗∇kΩ∗k =
∂Ω∗k

∂xk
+
∂
√
h

∂xk
Ω∗k =

1√
h

∂

∂xk
(√
hΩ∗k

)
= 0 . (4.100)

The first condition is true provided that ∂
∂xk (

√
hΩ∗k)= 0. This is

true if the space rotation pseudovector is

Ω∗i =
Ω∗i(0)√
h
, Ω∗i(0) = const , (4.101)

in this case the second condition (4.100) is also true.
Taking what has been said above into account, from (4.70, 4.71)

after some algebra we obtain chr.inv.-equations of motion of a non-zero
mass elementary particle. For the our-world particle (it travels into the
future with respect to a regular observer), the equations are

dm

dτ
= − 1

c2
dη

dτ
, (4.102)

d

dτ

(
mvi

)
+ 2mA·ik·v

k +m∆i
nkv

nvk =

= − 1
c2

d

dτ

(
ηvi

)− 2η
c2
A·ik·v

k − η

c2
∆i
nkv

nvk,
(4.103)

while for the particle, which is located in the mirror world so it travels
into past, from (4.72, 4.73) we obtain

−dm
dτ

=
1
c2
dη

dτ
, (4.104)

d

dτ

(
mvi

)
+m∆i

nkv
nvk = − 1

c2
d

dτ

(
ηvi

)− η

c2
∆i
nkv

nvk. (4.105)
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As it is easy to see, the scalar chr.inv.-equations of motion are the
same for both our-world particles and mirror-world particles. Integrat-
ing the scalar equation for an our-world particle (the direct flow of time),
namely — taking the integral

∫ τ2

τ1=0

d

dτ

(
m+

η

c2

)
dτ = 0 , (4.106)

we obtain
m+

η

c2
= const = B , (4.107)

where B is the constant of integration which can be defined from the
initial conditions.

To illustrate the physical sense of the obtained live forces integral,
we use the analogy between chr.inv.-projections

P0√
g00

= ±m, P i =
1
c
mvi =

1
c
pi

S0√
g00

= ± 1
c2
η , Si =

1
c3
ηvi





(4.108)

of the particle’s four-dimensional momentum vector and those of its
spin-momentum vector, i. e. of Pα =m0

dxα

ds
and Sα = η0

c2
dxα

ds
. Using

analogy with relativistic mass ±m we will refer to the quantity ± 1
c2
η as

relativistic spin-mass, so the quantity 1
c2
η0 is rest spin-mass. Further,

live forces theorem for the elementary spin-particle (4.107) implies that
with the assumptions we made, the sum of the particle’s relativistic
mass and of its spin-mass remains unchanged along the trajectory.

Now using the live forces integral∗, we approach the vector chr.inv.-
equations of motion of the mass-bearing elementary particle, located in
our world, namely — the equations (4.103). Substituting the live force
integral (4.107) into (4.103), having the constant cancelled, we obtain
pure kinematic equations of motion

dvi

dτ
+ 2A·ik·v

k + ∆i
nkv

nvk = 0 , (4.109)

which in this case, are non-geodesic. The term ∆i
nkv

nvk, which is con-
traction of the Christoffel chr.inv.-symbols with the particle’s observ-
able velocity, is relativistic in the sense that it is a square function of
the velocity. Therefore it can be neglected, provided that the observable

∗The solution of the scalar chr.inv.-equation of motion.
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metric hik =−gik + 1
c2
vivk along the trajectory is close to that in the

Euclidean space. Such a case is possible, if the linear velocity of the
space rotation is much lower than the light velocity, while the three-
dimensional coordinate metric gik is Euclidean as well. Then diagonal
components of the metric chr.inv.-tensor are

h11 = h22 = h33 = +1 , (4.110)

while the others are hik =0 if i 6= k. Noteworthy, the four-dimensional
metric can not be Galilean here, because the spatial section rotates
with respect to time. In other words, though the observable three-
dimensional space (the spatial section) in this case is a flat Euclidean
space, the four-dimensional space-time is not the Minkowski space but
it is a pseudo-Riemannian space whose metric is

ds2 = g00 dx
0dx0 + 2g0i dx0dxi + gik dx

idxk =

= c2dt2 + 2g0i cdtdxi −
(
dx1

)2 − (
dx2

)2 − (
dx3

)2
.

(4.111)

We assume that the space rotates at a constant angular velocity
Ω= const around the x3 axis, for instance. Then the linear velocity of
the space rotation vi =Ωikxk becomes

v1 = Ω12x
2 = Ω y , v2 = Ω21x

1 = −Ωx , (4.112)

where Aik =Ωik. Then the space non-holonomity tensor Aik has only
two non-zero components

A12 = −A21 = −Ω . (4.113)

Thus the vector chr.inv.-equations of motion (4.109) become

dv1

dτ
+ 2Ωv2 = 0 ,

dv2

dτ
− 2Ωv1 = 0 ,

dv3

dτ
= 0 , (4.114)

where the third equation can be solved immediately and solution is

v3 = v3
(0) = const. (4.115)

Taking into account that v3 = dx3

dτ
, we represent x3 as follows

x3 = v3
(0)τ + x3

(0) , (4.116)

where x3
(0) is the numerical value of the x3 coordinate at the initial

moment τ =0. We formulate v2 from the first equation (4.114)

v2 = − 1
2Ω

dv1

dτ
, (4.117)
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differentiating (4.117) with respect to dτ yields

dv2

dτ
= − 1

2Ω
d2v1

dτ2
, (4.118)

and substituting (4.118) into the second equation (4.114) we obtain

d2v1

dτ2
+ 4Ω2v1 = 0 , (4.119)

i. e. the equation of free oscillations. Its solution is

v1 = C1 cos (2Ωτ) + C2 sin (2Ωτ) , (4.120)

where C1 and C2 are integration constants (4.119), which can be defined
from the conditions at the moment τ =0

v1
(0) = C1

dv1

dτ

∣∣∣∣
τ=0

= − 2ΩC1 sin (2Ωτ)|τ=0 + 2ΩC2 cos (2Ωτ)|τ=0




. (4.121)

Thus C1 =v1
(0), C2 =

v̇1
(0)

2Ω
, where v̇1

(0) = dv1

dτ

∣∣
τ=0

. Then, we finally
obtain the equation for v1 as

v1 = v1
(0) cos (2Ωτ) +

v̇1
(0)

2Ω
sin (2Ωτ) , (4.122)

so the velocity of the mass-bearing elementary spin-particle along x1

performs sinusoidal oscillations at the frequency equal to the double
angular velocity of the space rotation.

Taking into account that v1 = dx1

dτ
, we integrate the obtained formula

(4.122) with respect to dτ . We obtain

x1 =
v1
(0)

2Ω
sin (2Ωτ)−

v̇1
(0)

4Ω2
cos (2Ωτ) + C3 . (4.123)

Assuming that at the initial moment τ =0 we have x1 =x1
(0), we ob-

tain the integration constant C3 =x1
(0) +

v̇1
(0)

4Ω2 . Then we have

x1 =
v1
(0)

2Ω
sin (2Ωτ)−

v̇1
(0)

4Ω2
cos (2Ωτ) + x1

0 +
v̇1
(0)

4Ω2
, (4.124)

so the x1 coordinate of the elementary particle also performs free oscil-
lations at the frequency 2Ω.
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Now having the obtained v1 (4.122) substituted into the second
equation (4.114), we arrive at

dv2

dτ
= 2Ωv1

(0) cos (2Ωτ) + v̇1
(0) sin (2Ωτ) , (4.125)

which after integration gives v2

v2 = v1
(0) sin (2Ωτ)−

v̇1
(0)

2Ω
cos (2Ωτ) + C4 . (4.126)

Assuming for the moment τ = 0 the value v2 =v2
(0), we obtain the

constant C3 =v2
(0) +

v̇1
(0)

2Ω
. Then

v2 = v1
(0) sin (2Ωτ)−

v̇1
(0)

2Ω
cos (2Ωτ) + v2

(0) +
v̇1
(0)

2Ω
. (4.127)

Taking into account that v2 = dx2

dτ
, we integrate the formula with

respect to dτ . Then we obtain the formula for the coordinate x2 of this
particle, namely

x2 = −
v̇1
(0)

4Ω2
sin (2Ωτ)−

v1
(0)

2Ω
cos (2Ωτ) + v2

(0)τ +
v̇1
(0)τ

2Ω
+ C5 . (4.128)

Integration constant can be found from the conditions x2 =x2
(0) at

τ =0 as C5 =x2
(0) +

v1
(0)

2Ω
. Then, finally, the x2 coordinate is

x2 = v2
(0)τ +

v̇1
(0)τ

2Ω
−

v̇1
(0)

4Ω2
sin (2Ωτ) −

−
v1
(0)

2Ω
cos (2Ωτ) + x2

(0) +
v1
(0)

2Ω
.

(4.129)

From this formula we see: if at the initial moment of observable time
τ =0 the mass-bearing elementary spin-particle had the velocity v2

(0)

along x2 and the acceleration v̇1
(0) along x1, then this particle, together

with free oscillations of the x2 coordinate at the frequency, equal to the
double angular velocity of the space rotation Ω, is subjected to a linear

displacement at ∆x2 =v2
(0)τ +

v̇1
(0)τ

2Ω
.

Looking back at the live forces integral (the solution of the scalar
chr.inv.-equation of motion) for this particle m+ η

c2
=B=const (4.107),

we find the integration constant B. Writing (4.107) in the form

m0 +
η0
c2

= B

√
1− v2

c2
, (4.130)



166 Chapter 4 Motion of Spin-Particles

so the square of the particle’s observable velocity is v2 = const. Because
components of the velocity have already been defined, we can present
the formula for its square as follows

[
v1

]2+
[
v2

]2+
[
v3

]2 =
[
v1
(0)

]2+
[
v2
(0)

]2+
[
v3
(0)

]2+

[
v̇1
(0)

]2

2Ω2
+

+
v̇1
(0)v̇

2
(0)

Ω
+ 2

[
v2
(0)+

v̇1
(0)

2Ω

][
v1
(0) sin (2Ωτ)−

v̇1
(0)

2Ω
cos (2Ωτ)

] (4.131)

(this is with takinf into account that the three-dimensional metric in
question is Euclidean).

We see that the square of the velocity remains unchanged, if v̇2
(0) =0

and v̇1
(0) = 0. The constant B from the live forces integral is

B =
m0 + η0

c2√
1− v2

(0)

c2

,
[
v2
(0)

]2 =
[
v1
(0)

]2 +
[
v3
(0)

]2 = const , (4.132)

while the live forces integral itself (4.170) becomes

m+
η

c2
=

m0 + η0
c2√

1− v2
(0)

c2

, (4.133)

so it is the conservation condition for the sum of the relativistic mass
of the particle m and of its spin-mass η

c2
.

A note should be taken here concerning all that has been said in
the above on elementary particles. Taking into account in the definition
η0 =n~mnAmn that Amn = εmnkΩ∗k, we obtain

η0 = n~mnAmn = 2n~∗kΩ∗k. (4.134)

where ~∗k = 1
2
εnmk~mn. Here, ~∗k is the three-dimensional pseudovec-

tor of the inner momentum of the elementary particle. Hence η0 is
the scalar product of three-dimensional pseudovectors: that of the par-
ticle’s inner momentum ~∗k and that of the angular velocity of the
space rotation Ω∗k. Hence spin-interaction is absent if pseudovectors of
the particle’s inner rotation and the external rotation of the space are
collinear.

Now we refer back to equations of motion of spin-particles. Taking
into account the integration constants we have obtained, the vector
chr.inv.-equations of motion of a mass-bearing spin-particle, located in
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our world, have solutions as

v1 = v1
(0) cos (2Ωτ) , x1 =

v1
(0)

2Ω
sin (2Ωτ) + x1

(0)

v2 = v2
(0) sin (2Ωτ) , x2 = −

v1
(0)

2Ω
cos (2Ωτ) +

v1
(0)

2Ω
+ x2

(0)

v3 = v3
(0), x3 = v3

(0)τ + x3
(0)





. (4.135)

Let us look at the form of a spatial curve along which the parti-
cle moves. We set the observer’s reference frame so that the initial
displacement of the particle is zero x1

(0) =x2
(0) =x3

(0) = 0. Now all its
spatial coordinates at an arbitrary moment of time are

x1=x= a sin (2Ωτ) , x2= y=a
[
1− cos (2Ωτ)

]
, x3= z= bτ , (4.136)

where a=
v1
(0)

2Ω
, b=v3

(0). The obtained solutions for coordinates are para-
metric equations of a surface, along which the particle travels. To illus-
trate what kind of surface it is, we switch from parametric to coordinate
notation, removing the parameter τ from the equations. Squaring the
equations for x and y we obtain

x2 + y2 = 2a2
[
1− cos (2Ωτ)

]
= 4a2 sin2 (Ωτ) = 4a2 sin2 zΩ

b
. (4.137)

The obtained result looks like a spiral line equation x2 + y2 = a2,
z= bτ . However, the similarity is not complete — the particle travels
along the surface of a cylinder at a constant velocity b=v3

(0) along its z
axis , while its radius oscillates at a frequency Ω within the range∗ from

zero up to the maximum 2a=
v1
(0)

Ω
at z= πkb

2Ω
.

So the trajectory of the mass-bearing elementary spin-particle, lo-
cated in our world, looks like a spiral line “wound” over an oscillating
cylinder. The particle’s life span is the length of the cylinder divided
by its velocity along z (the cylinder’s axis). Oscillations of the cylinder
are energy “breath ins” and “breath outs” of the particle.

This means that the cylinder we have obtained is the cylinder of
events of the particle from its birth in our world (the act of material-
ization) through its death (the dematerialization). But even after the
death, its event cylinder does not disappear completely, but the cylinder
splits into few event cylinders of other particles, produced by this decay

∗Where k =0, 1, 2, 3, . . . If v3
(0)

=0, the particle simply oscillates within the x y

plane (the plane of the cylinder’s section).
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either in our world or in the mirror world.
Therefore analysis of births and decays of elementary particles in

the General Theory of Relativity implies analysis of branch points of
event cylinders of the particles, taking into account possible branches
that lead into the mirror world.

If we consider motion of two linked spin-particles, which rotate
around a common centre of masses, for instance, that of positronium
(dumb-bell shaped system of an electron and a positron), we obtain a
double DNA-like spiral — a twisted “rope ladder” with a number of
steps (links of the particles), wound over an oscillating cylinder of their
events.

Let us solve chr.inv.-equations of motion of a mass-bearing spin-
particle, which moves in the mirror world, a world with the reverse
flow of time. With the physical conditions under consideration∗ the
mentioned equations (4.104, 4.105) become

−dm
dτ

=
1
c2
dη

dτ
, (4.138)

d

dτ

(
mvi

)
= − 1

c2
d

dτ

(
ηvi

)
. (4.139)

Solution of the scalar chr.inv.-equation is the live forces integral
m+ η

c2
=B= const, as was the case for the analogous our-world particle

(4.107). Substituting it into the vector chr.inv.-equations (4.139) we
obtain the solution

dvi

dτ
= 0 , (4.140)

hence vi =vi(0) = const. This result implies that from the viewpoint of
a regular observer the mass-bearing spin-particle travels in the mirror
world linearly at a constant velocity in contrast to observable motion
of the analogous our-world particle, which travels along an oscillating
“spiral” line.

On the other hand, from the viewpoint of a hypothetical observer,
who is located in the mirror world, motion of mass-bearing spin-particles
in our world will be linear and even, while mirror-world particles will
travel along oscillating “spiral” lines.

We could also get an analysis of motion of massless (light-like) spin-
particles in a similar way, but we don’t know how adequate our assump-
tion that the linear velocity of the space rotation is much smaller com-

∗Namely — stationary rotation of the space at a low velocity, the absence of the
space deformation, and the Euclidean three-dimensional metric.
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pared to the light velocity would be. And it was thanks to this assump-
tion that we were able to obtain exact solutions of chr.inv.-equations
of motion for mass-bearing elementary spin-particles. Though in gen-
eral, the methods to solve chr.inv.-equations of motion are the same for
mass-bearing and massless particles.

§4.6 A spin-particle in an electromagnetic field

In this section, we are going to deduce chr.inv.-equations of motion of
a particle which has both spin and electric charge, and travels in an
external electromagnetic field located in the four-dimensional pseudo-
Riemannian space. The particle’s summary vector is

Qα = Pα +
e

c2
Aα + Sα, (4.141)

were Pα is the four-dimensional momentum vector of the particle. The
remaining two four-dimensional vectors are an additional momentum,
which the particle gains from interaction of its charge with the electro-
magnetic field, and an additional momentum gained from interaction of
the particle’s spin with the space non-holonomity field. Note, because
the vectors Pα and Sα are tangential to the four-dimensional trajectory
of the particle, we assume that the vector Aα (the electromagnetic field
potential) is also tangential to the trajectory. In this case the vector
is Aα =ϕ0

dxα

ds
, while the formula qi = ϕ

c vi (see §3.8) sets the relation-
ship between the scalar potential ϕ and the vector potential qi of the
electromagnetic field.

Then chr.inv.-projections ϕ̃ and q̃i of the particle’s summary vector
Qα (4.141) under consideration are

ϕ̃ = ±
(
m+

eϕ

c2
+
η

c2

)
, q̃i =

1
c2
mvi +

1
c3

(η + eϕ) vi, (4.142)

where m is the relativistic mass of the particle, ϕ is the scalar potential
of the acting electromagnetic field, while η describes interaction of the
particle’s spin with the space non-holonomity field

m =
m0√
1− v2

c2

, ϕ =
ϕ0√

1− v2

c2

, η =
η0√

1− v2

c2

. (4.143)

Generally speaking, the equations can be deduced in the same way
as those for a charged particle and a charge-free spin-particle, except for
the fact that we have to project the absolute derivative of the sum of the
three vectors. Using formulae for ϕ̃ and q̃i (4.142), we obtain chr.inv.-
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equations of motion of the charged mass-bearing spin-particle located
in our world (it travels from the past into the future)

dm

dτ
− m

c2
Fivi +

m

c2
Dikvivk =

= − 1
c2

d

dτ
(η + eϕ) +

η + eϕ

c4
Fivi − η + eϕ

c4
Dikvivk,

(4.144)

d

dτ

(
mvi

)
+ 2m

(
Di
k +A·ik·

)
vk −mF i +m∆i

nkv
nvk =

= − 1
c2

d

dτ

[
(η + eϕ) vi

]− 2 (η + eϕ)
c2

(
Di
k +A·ik·

)
vk+

+
η + eϕ

c2
F i − η + eϕ

c2
∆i
nkv

nvk,

(4.145)

while for the analogous particle located in the mirror world (it travels
from the future into the past) the equations are

−dm
dτ

− m

c2
Fivi +

m

c2
Dikvivk =

=
1
c2

d

dτ
(η + eϕ) +

η + eϕ

c4
Fivi − η + eϕ

c4
Dikvivk,

(4.146)

d

dτ

(
mvi

)
+mF i +m∆i

nkv
nvk =

= − 1
c2

d

dτ

[
(η + eϕ) vi

]− η + eϕ

c2
F i − η + eϕ

c2
∆i
nkv

nvk.
(4.147)

Parallel transfer in Riemannian spaces leaves the length of any trans-
ferred vector unchanged. Hence its square is invariant in any reference
frame. In particular, in the accompanying reference frame it is constant
as well

QαQ
α = gαβ

(
Pα +

e

c2
Aα + Sα

)(
P β +

e

c2
Aβ + Sβ

)
=

= gαβ

(
m0 +

eϕ0

c2
+
η0
c2

)2 dxα

ds

dxβ

ds
=

(
m0 +

eϕ0

c2
+
η0
c2

)2

.

(4.148)

In §3.9 we showed that introducing a specific direction of the four-
dimensional electromagnetic potential Aα with respect to the trajectory
of a charged particle makes the field to move and we substantially sim-
plified the right hand sides of chr.inv.-equations of its motion. The right
hand side of the vector chr.inv.-equations of motion becomes the Lorentz
chr.inv.-force Φi =−e(Ei + 1

c ε
ikmvkH∗m

)
, while the right hand side of
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the scalar chr.inv.-equation is obtained as scalar product of the electric
strength vector Ei and the observable velocity of the particle. Keeping
this in mind, we present the obtained chr.inv.-equations (4.144–4.147)
in a more specific form. For the particle located in our world we obtain

d

dτ

(
m+

η

c2

)
− 1
c2

(
m+

η

c2

)
Fivi +

+
1
c2

(
m+

η

c2

)
Dikvivk = − e

c2
Eivi,

(4.149)

d

dτ

[(
m+

η

c2

)
vi

]
+2

(
m+

η

c2

)(
Di
k+A

·i
k·

)
vk−

(
m+

η

c2

)
F i+

+
(
m+

η

c2

)
∆i
nkv

nvk = − e

(
Ei +

1
c
εikmvkH∗m

)
,

(4.150)

while for the analogous particle in the mirror world we have

− d

dτ

(
m+

η

c2

)
− 1
c2

(
m+

η

c2

)
Fivi +

+
1
c2

(
m+

η

c2

)
Dikvivk = − e

c2
Eivi,

(4.151)

d

dτ

[(
m+

η

c2

)
vi

]
+

(
m+

η

c2

)
F i+

(
m+

η

c2

)
∆i
nkv

nvk =

= − e
(
Ei +

1
c
εikmvkH∗m

)
.

(4.152)

To make precise conclusions on motion of charged mass-bearing spin-
particles in the pseudo-Riemannian space we have to set a concrete
geometric structure of the space. As we did in the previous section,
§4.5, where we analyzed motion of charge-free spin-particles, we now
assume that:

a) Because gravitational interactions in the scales of elementary par-
ticles are infinitesimal, we can assume that w→ 0;

b) The space rotation is stationary, so
∗∂vk

∂t
=0;

c) The are no space deformations, so Dik =0;
d) The three-dimensional coordinate metric gikdxidxk is Euclidean,

so gik =
∣∣∣∣
−1, i= k

0, i 6= k
;

e) The space rotates at a constant angular velocity Ω around the
axis x3 = z, so components of the linear velocity of the rotation
are v1 =Ω12x

2 =Ωy, v2 =Ω21x
1 =−Ωx.
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Keeping these constraints in mind, we obtain a formula for ds2 for
elementary particles as

ds2 = c2dt2 − 2Ωy dtdx+ 2Ωx dtdy − dx2 − dy2 − dz2, (4.153)

while physical observable characteristics of the reference space under
this metric are

Fi = 0 , Dik = 0 , A12 = −A21 = −Ω , A23 = A31 = 0 . (4.154)

As we did in the previous section, §4.5, looking at motion of elemen-
tary spin-particles, we assume that the linear velocity of the space rota-
tion is much less than the light velocity (a weak field of the space non-
holonomity). In such a case, the metric chr.inv.-tensor hik is Euclidean
and all the Christoffel chr.inv.-symbols ∆i

jk become zeroes, which dra-
matically simplifies the algebra involved. Then chr.inv.-equations of
motion of the particle located in our world become

d

dτ

(
m+

η

c2

)
= − e

c2
Ei
dxi

dτ
, (4.155)

d
(
m+ η

c2

)
v1

dτ
+ 2

(
m+

η

c2

)
Ωv2=−e

(
E1+

1
c
ε1kmvkH∗m

)

d
(
m+ η

c2

)
v2

dτ
− 2

(
m+

η

c2

)
Ωv1=−e

(
E2+

1
c
ε2kmvkH∗m

)

d
(
m+ η

c2

)
v3

dτ
=−e

(
E3+

1
c
ε3kmvkH∗m

)





, (4.156)

while for the mirror-world particle these are

d

dτ

(
m+

η

c2

)
=

e

c2
Ei
dxi

dτ
, (4.157)

d
(
m+ η

c2

)
v1

dτ
= −e

(
E1 +

1
c
ε1kmvkH∗m

)

d
(
m+ η

c2

)
v2

dτ
= −e

(
E2 +

1
c
ε2kmvkH∗m

)

d
(
m+ η

c2

)
v3

dτ
= −e

(
E3 +

1
c
ε3kmvkH∗m

)





. (4.158)

Let us look at the scalar chr.inv.-equation of motion in our world
(4.155) and in the mirror world (4.157). From here, we see that the sum
of the particle’s relativistic mass and its spin-mass equals the work done
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by the electric component of the acting electromagnetic field to displace
this charged particle by an elementary interval dxi. From the vector
chr.inv.-equations of motion we see that in our world (4.156) as well as
in the mirror world (4.158) the sum of the spatial momentum vector of
the particle and its spin-momentum vector along x3 = z is defined only
by the Lorentz force’s component along the same axis.

Now our goal is to obtain the trajectory of an elementary charged
spin-particle in an electromagnetic field with the given particular prop-
erties. As we did in Chapter 3, we assume the field is constant, so its
electric and magnetic strengths Ei and H∗i are

Ei =
∂ϕ

dxi
, (4.159)

H∗i=
1
2
εimnHmn=

1
2c
εimn

[
∂ (ϕvm)
dxn

− ∂ (ϕvn)
dxm

− 2ϕAmn

]
. (4.160)

In Chapter 3 we tackled a similar problem — solving chr.inv.-equa-
tions of motion for a charged mass-bearing particle, but without taking
its spin into account. It is evident that, in a particular case of a spin-
free charged particle (spin is zero), solutions of chr.inv.-equations of
motion of a charged spin-particle, as a general case, should coincide
those obtained in Chapter 3 within “pure” electrodynamics.

To compare our results with those obtained in electrodynamics, it
would be reasonable to analyze motion of the mass-bearing spin-particle
in three typical kinds of electromagnetic fields, which were under study
in Chapter 3 as well as in The Classical Theory of Fields by Landau
and Lifshitz [10]:

a) A homogeneous stationary electric field (i. e. the field magnetic
strength is zero);

b) A homogeneous stationary magnetic field (i. e. the field electric
strength is zero);

c) A homogeneous stationary electromagnetic field (both compo-
nents are non-zeroes).

On the other hand, electrodynamics studies motion of regular macro-
particles and it is not evident that all three cases mentioned above are
applicable, given the metric constraints, typical for micro-world. This
is why.

Firstly, spin of an elementary particle affects its motion only if
an external field of the space non-holonomity exists, hence the non-
holonomity tensor is Aik 6=0. But from the formulae for the electric and
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magnetic strengths Ei and H∗i (4.159, 4.160) we see that the space non-
holonomity only affects the magnetic strength. Hence we will largely
focus on motion of the elementary spin-particle in an electromagnetic
field of strictly magnetic kind.

Secondly, the scalar chr.inv.-equation of motion of a mass-bearing
charged spin-particle (4.155)

(
m0 +

η0
c2

) d

dτ

1√
1− v2

c2

= − e

c2
Eivi (4.161)

in a non-relativistic case, where the particle’s velocity is much less than
the light velocity, becomes

Eivi = 0 , (4.162)

so the electric component of the field does not perform work to displace
the particle under constraints on the metric, typical for the world of
elementary particles. Because we are looking at stationary fields, the
obtained condition (4.162) can be presented as follows

Eivi =
∂ϕ

∂xi
vi =

∂ϕ

∂xi
dxi

dτ
=
dϕ

dτ
= 0 , (4.163)

which implies that the field scalar potential ϕ = const, so that

H∗i =
ϕ

2c
εimn

[
∂vm
∂xn

− ∂vn
∂xm

− 2
(
∂vm
∂xn

− ∂vn
∂xm

)]
. (4.164)

For a relativistic case, the electric component reveals itself (it per-
forms work to displace the particle), provided that the absolute value
of the particle’s velocity is not stationary

1

2c2
(
1− v2

c2

)3/2

(
m0 +

η0
c2

) dv2

dτ
= − e

c2
Eivi 6= 0 . (4.165)

Hence the electric component of the acting electromagnetic field,
given the constraints on the metric, typical for elementary particles,
reveals itself only for relativistic particles, whose velocity is not constant
along the trajectory. Hence all “slow-moving” particles fall out of our
consideration in the field of strictly electric kind.

Therefore, the general case∗ should be studied only for a station-
ary electromagnetic field of strictly magnetic kind, where the electric
component is absent. This will be done in §4.7.

∗Motion of an elementary charged spin-particle at an arbitrary velocity, either
low or relativistic.
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§4.7 Motion in a stationary magnetic field

In this section, we are going to look at motion of a charged spin-particle
in a homogeneous stationary electromagnetic field of strictly magnetic
kind.

As we did in the previous section, §4.6, we assume that the space-
time has the metric (4.153), so Fi =0 and Dik =0. The non-holonomity
field is stationary. In the space rotation around z, out of all components
of the non-holonomity tensor only the components A12 =−A21 =−Ω=
= const are not zeroes, so the space rotates within the x y plane at a
constant velocity Ω.

Under the considered conditions the quantity η0 =n~mnAmn, which
describes interaction between the particle’s spin (its inner rotation) and
an external field of the space non-holonomity, is

η0 = n~mnAmn = n
(
~12A12 + ~21A21

)
= −2n~Ω , (4.166)

where the sign before the product ~Ω depends only on mutual orienta-
tion of the ~ and Ω. “Plus” stands for co-directed ~ and Ω. “Minus”
implies that they are oppositely directed.

In this case∗ chr.inv.-equations of motion of the particle located in
our world become

d

dτ

(
m+

η

c2

)
= 0 , (4.167)

d

dτ

[(
m+

η

c2

)
vi

]
+2

(
m+

η

c2

)
A·ik·v

k+
(
m+

η

c2

)
∆i
nkv

nvk =

= −e
c
εikmvkH∗m ,

(4.168)

while for the analogous particle located in the mirror world we obtain

− d

dτ

(
m+

η

c2

)
= 0 , (4.169)

d

dτ

[(
m+

η

c2

)
vi

]
+

(
m+

η

c2

)
∆i
nkv

nvk = − e

c
εikmvkH∗m . (4.170)

Having the live forces theorem (the scalar chr.inv.-equation of mo-
tion) integrated, we obtain the live forces integral. In our world and in
the mirror world it is, respectively

m+
η

c2
= B = const , m+

η

c2
= −B̃ = const , (4.171)

∗Provided that the electromagnetic field potential Aα is directed along the four-
dimensional trajectory of the particle.
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where B and B̃ are integration constants in our world and in the mirror
world, respectively. We can obtain these constants having the initial
conditions at τ = 0 substituted into (4.171). As a result, we obtain

B = m0 +
η0
c2

= m0 +
n~mnAmn

c2
, (4.172)

B̃ = −m0 − η0
c2

= −m0 − n~mnAmn
c2

. (4.173)

Formulae for the live forces integrals (4.171) imply that, in the ab-
sence of the electric component of the acting electromagnetic field, the
square of the velocity of the charged spin-particle remains unchanged
v2 =hikvivk = const.

Having the formulae for the live forces integrals substituted into
(4.168, 4.170), we arrive at the vector chr.inv.-equations of motion in
our world and in the mirror world, respectively

dvi

dτ
+ 2A·ik·v

k + ∆i
nkv

nvk = − e

cB
εikmvkH∗m , (4.174)

dvi

dτ
+ ∆i

nkv
nvk = − e

cB̃
εikmvkH∗m . (4.175)

These are similar to chr.inv.-equations of motion of a charged macro-
particle (that is a spin-free charged particle) in a homogeneous sta-
tionary magnetic field (3.290, 3.291), except for the fact that here the
integration constant from the live forces integral, found in the right
hand side, is not equal to the relativistic mass m of the particle, as
it was in electrodynamics (3.290, 3.291), but to the formula (4.171),
which accounts for interaction of the particle’s spin with the space non-
holonomity field. The same is true for the vector chr.inv.-equations
(3.298, 3.299).

For our readers with special interest in the method of chronometric
invariants we will make a remark related to this notation of chr.inv.-
equations of motion.

When obtaining components of the term A·ik·v
k, found only in the

our-world equations, we have, for instance, for i=1

A·1k·v
k = A·11·v

1 +A·12·v
2 = h12A12v1 + h11A21v2, (4.176)

where A12 =−A21 =−Ω. Then obtaining A·11· and A·12· we have

A·11· = h1mA1m = h11A11 + h12A12 = h12A12 , (4.177)
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A·12· = h1mA2m = h11A21 + h12A22 = h11A21 , (4.178)

where hik are elements of a matrix reciprocal to the matrix hik, so the
required components of hik are calculated as

h11 =
h22

h
, h12 = −h12

h
. (4.179)

Then, because the determinant of the metric chr.inv.-tensor (see
§3.12 for details) is

h = det ‖hik‖ = 1 +
Ω2

(
x2 + y2

)

c2
, (4.180)

the unknown quantity A·1k·v
k (4.176) is

A·1k·v
k =

Ω
h

[
Ω2

c2
xyẋ+

(
1 +

Ω2x2

c2

)
ẏ

]
. (4.181)

The component A·2k·v
k, found in the equation of motion along y, can

be found in a similar way.
Let us get back to the vector chr.inv.-equations of motion of the

charged spin-particle in the homogeneous stationary magnetic field. We
approach them in two possible cases of mutual orientation of the mag-
netic strength and the space non-holonomity pseudovector, when they
are co-directed and are orthogonal to each other.

a) Magnetic field is co-directed with non-holonomity field

We assume that the space non-holonomity field, the space non-holono-
mity pseudovector, is directed along z and the field is weak. Then the
vector chr.inv.-equations of motion of the mass-bearing charged spin-
particle located in our world are

ẍ+ 2Ωẏ = −eH
cB

ẏ , ÿ − 2Ωẋ = −eH
cB

ẋ , z̈ = 0 , (4.182)

while for the analogous particle located in the mirror world we have

ẍ = −eH
cB̃

ẏ , ÿ = −eH
cB̃

ẋ , z̈ = 0 . (4.183)

The equations differ from those for a spin-free charged particle under
the same conditions (3.104, 3.305) only by having on the right hand side
the integration constant from the live forces integral, which describes
interaction of the particle’s spin with the space non-holonomity field,
instead of the relativistic mass of the particle.
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Using ready solutions from §3.12 we can immediately obtain the
formulae for coordinates of the our-world charged spin-particle

x = − [
ẏ(0) cos (2Ω + ω) τ + ẋ(0) sin (2Ω + ω) τ

] 1
2Ω + ω

+

+x(0) +
ẏ(0)

2Ω + ω
,

(4.184)

y =
[
ẏ(0) sin (2Ω + ω) τ − ẋ(0) cos (2Ω + ω) τ

] 1
2Ω + ω

+

+ y(0) −
ẋ(0)

2Ω + ω
,

(4.185)

and those for the mirror-world particle

x = − 1
ω

[
ẏ(0) cosωτ + ẋ(0) sinωτ

]
+ x(0) +

ẏ(0)

ω
, (4.186)

y =
1
ω

[
ẏ(0) sinωτ − ẋ(0) cosωτ

]
+ y(0) −

ẋ(0)

ω
, (4.187)

which are different from solutions for a charged particle in electrody-
namics only by the fact that the frequency ω accounts for interaction of
the particle’s spin with the space non-holonomity field.

In our world masses of particles are positive, so ω is

ω =
eH

mc+ η
c

=
eH

√
1− v2

(0)

c2

m0c+ η0
c

=
eH

√
1− v2

(0)

c2

m0c∓ 2n~Ω
c

, (4.188)

where the sign in the denominator depends on mutual orientation of
the ~ and Ω — “minus” stands for the co-directed ~ and Ω (their scalar
product is positive), while “plus” implies that they are oppositely di-
rected, irrespective of our choice of right or left-hand reference frames.

Masses of particles, which inhabit the mirror world, are always neg-
ative

m = − m0√
1− v2

(0)

c2

< 0 , (4.189)

so in the mirror world ω is

ω =
eH

mc+ η
c

=
eH

√
1− v2

(0)

c2

−m0c+ η0
c

=
eH

√
1− v2

(0)

c2

−m0c∓ 2n~Ω
c

. (4.190)
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Note that the obtained formulae for coordinates (4.184–4.187) al-
ready took account of the fact that the square of the particle’s velocity
remains unchanged both in our world and in the mirror world, that is
presented with the conditions (respectively)

ẋ(0) +
ÿ0

2Ω + ω
= 0 , ẋ(0) +

ÿ0
ω

= 0 , (4.191)

which results from the live forces integral (§3.12).
The third equation of motion (along z) has solution as

z = ż(0)τ + z(0) . (4.192)

The obtained formulae for coordinates (4.184–4.187) reveal that a
mass-bearing charged spin-particle in a homogeneous stationary mag-
netic field, parallel to a weak field of the space non-holonomity, performs
harmonic oscillations along x and y. In our world the frequency of the
oscillations is

ω̃ = 2Ω + ω = 2Ω +
eH

m0c∓ 2n~Ω
c

√
1− v2

(0)

c2
, (4.193)

while in the mirror world the analogous particle performs similar oscil-
lations at a frequency ω obtained in (4.190).

In a weak field of the space non-holonomity the quantity n~Ω is
much less than the energy m0c

2, because for any small quantity α it is
true that 1

1∓α
∼=1±α, for low velocities we have

ω̃ ∼= 2Ω +
eH

m0c

(
1± 2n~Ω

m0c2

)
. (4.194)

If at the initial moment of time the displacement and the velocity of
the our-world particle satisfy the conditions

x(0) +
ẏ0

2Ω + ω
= 0 , y(0) −

ẋ0

2Ω + ω
= 0 , (4.195)

it will travel, like a charged spin-free particle, within x y plane along a
circle∗

x2 + y2 =
ẏ2
0

(2Ω + ω)2
. (4.196)

∗We set the y axis along the initial momentum of the particle, which is always
possible. Then all formulae for coordinates will have zero initial velocity of the
particle along x.
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But in this case its radius, which is equal to

r =
ẏ0

2Ω + ω
=

ẏ0

2Ω + eH

m0c∓ 2n~Ω
c

√
1− v2

(0)

c2

, (4.197)

will depend on the absolute value and the orientation of the spin. If
the initial velocity of a charged particle with spin, directed along the
magnetic strength (along z), is not zero, the particle travels along the
magnetic strength along a spiral line with the same radius r.

An analogous mirror-world particle, provided its displacement and
the velocity at the initial moment of time satisfy the conditions

x(0) +
ẏ0
ω

= 0 , y(0) −
ẋ0

ω
= 0 , (4.198)

will also travel along a circle

x2 + y2 =
ẏ2
0

ω2
, (4.199)

with the radius

r =
ẏ0
ω

=
ẏ0

eH
−m0c∓ 2n~Ω

c

√
1− v2

(0)

c2

. (4.200)

In general, where no additional conditions (4.195, 4.198) are im-
posed, the trajectory within the (xy)-plane will not be circular.

Let us obtain the energy and the momentum of the particle. Using
formulae for the live forces integrals, we find the quantity η0, which is
η0 =n~mnAmn =n (~12A12 + ~21A21) =−2n~Ω. Then for the particle
located in our world we have

Etot = Bc2 =
m0c

2 ∓ 2n~Ω√
1− v2

(0)

c2

= const , (4.201)

while in the mirror-world we have

Etot = B̃c2 =
−m0c

2 ∓ 2n~Ω√
1− v2

(0)

c2

= const . (4.202)

Since in this section, §4.7, we have assumed that the electric com-
ponent of the acting electromagnetic field is absent, the field does not
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contribute to the total energy of the particle (as it is known, the mag-
netic component of the field does not perform work to displace electric
charges).

From the obtained formulae (4.201, 4.202) we see that the total
energy of the particle remains unchanged along the trajectory, while its
numerical value depends on mutual orientation of the particle’s inner
momentum ~ and the angular velocity of the space rotation Ω.

The latter statement requires some comments to be made. By def-
inition the scalar quantity n (the absolute value of spin in the ~ units)
is always positive, while ~ and Ω are numerical values of components
of the antisymmetric tensors hik and Ωik, which take opposite signs in
right or left-handed reference frames. But because we are dealing with
the product of the quantities, only their mutual orientation matters,
which does not depend on our choice of a right or left-handed reference
frames.

If ~ and Ω are co-directed, then the total energy of the our-world
particle Etot (4.201) is the sum of its relativistic energy E=mc2 and
its “spin-energy”

Es =
2n~Ω√
1− v2

(0)

c2

, (4.203)

so the total energy becomes greater than E=mc2.
If ~ and Ω are oppositely directed, then Etot is the difference be-

tween the relativistic energy and the spin-energy. This orientation per-
mits a specific case, where m0c

2 =2n~Ω and therefore the total energy
becomes zero (this case will be discussed in the next section, §4.8, con-
cerning proper fields of elementary particles).

For charged spin-particles having negative masses, which inhabit the
mirror world, the situation is different. The total energy Etot (4.202) is
negative and by its absolute value is greater than the relativistic energy
E=−mc2, provided that ~ and Ω are oppositely directed.

So forth, for the total spatial observable momentum of the our-world
particle we have

pitot =
m0c

2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

vi = mvi ∓ 2n~Ω

c2

√
1− v2

(0)

c2

vi, (4.204)

so it is an algebraic sum of the particle’s relativistic observable momen-
tum pi =mvi and the spin-momentum that the particle gains from the
space non-holonomity field. The particle’s total momentum is greater
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than its relativistic momentum, if ~ and Ω are co-directed, and it is less
otherwise.

In the case of opposite mutual orientation of ~ and Ω the total
momentum becomes zero (so does the total energy), provided that the
condition m0c

2 =2n~Ω is true.
For the mirror-world particle the quantity pitot is

pitot =
−m0c

2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

vi = −mvi ∓ 2n~Ω

c2

√
1− v2

(0)

c2

vi, (4.205)

so the particle moves more slowly if the ~ and Ω are co-directed, and it
is faster otherwise.

Components of the velocity of the charged spin-particle in the mag-
netic field co-directed with the space non-holonomity field, taking into
account the conditions (4.191), in our world are

ẋ = ẏ(0) sin (2Ω + ω) τ − ẋ(0) cos (2Ω + ω) τ , (4.206)

ẏ = ẏ(0) cos (2Ω + ω) τ + ẋ(0) sin (2Ω + ω) τ , (4.207)

while for the analogous particle located in the mirror world we have

ẋ = ẏ(0) sinωτ − ẋ(0) cosωτ , (4.208)

ẏ = ẏ(0) cosωτ + ẋ(0) sinωτ . (4.209)

Then components of the total momentum of the particle∗ in our
world are

p1
tot =

m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ẏ(0) sin (2Ω + ω) τ , (4.210)

p2
tot =

m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ẏ(0) cos (2Ω + ω) τ , (4.211)

p3
tot =

m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ż(0) , (4.212)

∗The initial momentum of the particle within x y plane is directed along y.
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where ω is as in (4.188). In the mirror world we have

p1
tot =

−m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ẏ(0) sinωτ , (4.213)

p2
tot =

−m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ẏ(0) cosωτ , (4.214)

p3
tot =

−m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ż(0) , (4.215)

where ω is as of (4.190). Noteworthy, though the magnetic strength does
not appear in the total energy Etot, it appears in the total momentum,
as a term of the formula for ω (4.190).

b) Magnetic field is orthogonal to non-holonomity field

Now we are going to approach motion of a mass-bearing charged spin-
particle in a magnetic field, which is orthogonal to the space non-
holonomity field. So, the magnetic field is homogeneous and stationary.
The non-holonomity field is directed along z and it is weak, so the mag-
netic field is directed along y. Then vector chr.inv.-equations of motion
will be similar to those for a charged spin-free particle under the above
conditions in our world (3.338), namely

ẍ+ 2Ωẏ =
eH

cB
ż , ÿ − 2Ωẋ = 0 , z̈ = −eH

cB
ẋ . (4.216)

The difference from (3.338) is that here the denominator of the right
hand side contains the integration constant from the live forces integral
instead of the relativistic mass, which accounts for interaction between
the particle’s spin and the non-holonomity field. After integration the
equations yields

x =
ẋ(0)

ω̃
sin ω̃τ − ẍ(0)

ω̃2
cos ω̃τ + x(0) +

ẍ(0)

ω̃2
, (4.217)

y = −2Ω
ω̃2

(
ẋ(0) cos ω̃τ +

ẍ(0)

ω̃
sin ω̃τ

)
+ ẏ(0)τ +

+
2Ω
ω̃2

ẍ(0)τ + y(0) +
2Ω
ω̃2

ẋ(0) ,

(4.218)
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z =
ω

ω̃2

(
ẋ(0) cos ω̃τ +

ẍ(0)

ω̃
sin ω̃τ

)
+ ż(0)τ −

− ω

ω̃2
ẍ(0)τ + z(0) −

ω

ω̃2
ẋ(0) ,

(4.219)

which are different from the respective solutions for a charged spin-
free particle by the fact that the frequency ω̃ here depends on the spin
and its mutual orientation with the non-holonomity field. Namely, he
frequency ω̃ is expressed as follows

ω̃ =
√

4Ω2 + ω2 =

√√√√√4Ω2 +
e2H2

(
1− v2

(0)

c2

)2

(
m0c2 ∓ 2n~Ω

c

)2 . (4.220)

Subsequently, an equation of the trajectory of the charged spin-
particle is similar to that of the spin-free particle. In a particular case,
namely — under certain initial conditions, the trajectory equation is
that of a sphere

x2 + y2 + z2 =
1
ω̃2

ẋ2
(0) , (4.221)

whose radius, in contrast to the radius of the trajectory of the spin-
free particle, depends on the particle’s orientation with respect to the
non-holonomity field

r =
1√√√√√4Ω2 +

e2H2
(
1− v2

(0)

c2

)2

(
m0c2 ∓ 2n~Ω

c

)2

ẋ(0) . (4.222)

Let us look at an analogous particle, located in the mirror world,
moves in a weak field of the space non-holonomity, directed along y and
orthogonal to the magnetic field. For the particle, the vector chr.inv.-
equations of motion are

ẍ =
eH

cB̃
ż , ÿ = 0 , z̈ = −eH

cB̃
ẋ , (4.223)

so they are different from the equations for the our-world particle (4.216)
by the absence of the terms which contain the angular velocity of the
space rotation Ω. As a result their solutions can be obtained from the
solutions for our world (4.217–4.219), if we assume ω̃=ω. Subsequently,
an equation of the trajectory of the charged spin-particle located in the
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mirror world is

x2 + y2 + z2 =
1
ω2

ẋ2
(0) , r =

−m0c
2 ∓ 2n~Ω

c

eH

√
1− v2

(0)

c2

ẋ(0) . (4.224)

The total energy of the particle Etot in this case, where the magnetic
field is orthogonal to the space non-holonomity field, is the same as it
was for the case of parallel orientation of the fields. But the formulae for
components of the total momentum (4.201, 4.205) are different, because
they include the particle’s velocity which depends on mutual orientation
of the magnetic field and the non-holonomity field. In the particular
case, where the fields are orthogonal to each other, components of the
particle’s velocity (obtained by derivation of the formulae for 4.217–
4.219) in our world are

ẋ = ẋ(0) cos ω̃τ +
ẍ(0)

ω̃
sin ω̃τ , (4.225)

ẏ =
2Ω
ω̃
ẋ(0) sin ω̃τ − 2Ω

ω̃2
ẍ(0) cos ω̃τ + ẏ(0) +

2Ω
ω̃2

ẍ(0) , (4.226)

ż =
ω

ω̃2
ẍ(0) cos ω̃τ − ω

ω̃
ẋ(0) sin ω̃τ + ż(0) −

ω

ω̃2
ẍ(0) , (4.227)

while in the mirror world we obtain

ẋ = ẋ(0) cosωτ +
ẍ(0)

ω
sinωτ , (4.228)

ẏ = ẏ(0) , (4.229)

ż =
1
ω
ẍ(0) cos ω̃τ − ẋ(0) sinωτ + ż(0) −

1
ω
ẍ(0) . (4.230)

Now we assume that the initial acceleration of the particle and the
integration constants are zeroes. We also set the axis x along the initial
momentum of the particle. In the frames of this consideration we obtain
components of the total momentum for the particle located in our world

p1
tot =

m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ẋ(0) cos ω̃τ , (4.231)

p2
tot =

m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

2Ω
ω̃
ẋ(0) sin ω̃τ , (4.232)
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p3
tot =

m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ω

ω̃
ẋ(0) sin ω̃τ , (4.233)

and for the analogous particle located in the mirror world

p1
tot =

−m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ẋ(0) cos ω̃τ , (4.234)

p2
tot =

−m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ẏ(0) = 0 , (4.235)

p3
tot =

−m0c
2 ∓ 2n~Ω

c2

√
1− v2

(0)

c2

ẋ(0) sin ω̃τ . (4.236)

As it easy to see, the obtained solutions can be transformed into
respective ones from electrodynamics (§3.12) by assuming ~→ 0.

§4.8 The quantization law for masses of elementary parti-
cles

As obtained before, scalar chr.inv.-equations of motion of a charged
spin-particle in an electromagnetic field, located in our world and in the
mirror world, are

d

dτ

(
m+

η

c2

)
= − e

c2
Eivi, − d

dτ

(
m+

η

c2

)
= − e

c2
Eivi. (4.237)

The equations can be easily integrated to produce the live forces
integrals

m+
η

c2
= B , −

(
m+

η

c2

)
= B̃ , (4.238)

where B is integration constant in our world and B̃ is that in the mirror
world. The constants depend only on the initial conditions. Hence it is
possible to choose them as to make the integration constants zeroes.

We find out under what initial conditions the integration constants
become zeroes. For charged spin-particles, located in our world and in
the mirror world (4.238), we obtain, respectively

m+
η

c2
= 0 , −

(
m+

η

c2

)
= 0 , (4.239)
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while the right hand sides of the vector chr.inv.-equations of motion
(4.150, 4.152), which contain the Lorentz chr.inv.-force, also become
zeroes. In other words, with the integration constants in the scalar
chr.inv.-equations equal to zero the acting electromagnetic field does no
work to displace the particles.

Having relativistic square root cancelled in (4.239), which is always
possible for any particle having non-zero rest-masses, we can present
these formulae in a notation that does not depend on the particle’s
velocity. Then for mass-bearing particles located in our world we have

m0c
2 = −n~mnAmn , (4.240)

while for mirror-world particles of non-zero masses we have

m0c
2 = n~mnAmn . (4.241)

We will refer to the formulae (4.240, 4.241) as the law of quantization
of masses of elementary particles:

Rest-mass of any mass-bearing spin-particle is proportional to en-
ergy of interaction between its spin and the field of the space
non-holonomity, taken with the opposite sign.

Or, in other words:
Rest-energy of any mass-bearing spin-particle equals energy of
interaction between its spin and the field of the space non-holono-
mity, taken with the opposite sign.

Because in the mirror world the energy of any particle is negative, “plus”
in the right hand side of (4.241) stands for the energy of interaction in
the mirror world taken with the opposite sign. The same is true for
“minus” in (4.240) for our world.

Evidently, these quantum formulae are not applicable to non-spin
particles.

Let us make some quantitative estimates, which are derived from
the obtained law. Considering an elementary particle, we will obtain
numerical values of the quantity∗ η0 =n~mnAmn as follows. We formu-
late the tensor of angular velocities of the space rotation Amn with the
pseudovector Ω∗i = 1

2
εimnAmn

Ω∗iεimn =
1
2
εipqεimnApq =

1
2

(δpmδ
q
n − δpnδ

q
m)Apq = Amn , (4.242)

∗This quantity characterize the energy of interaction between the particle’s spin
and the space non-holonomity field — the “spin-energy”, in other words.



188 Chapter 4 Motion of Spin-Particles

so we have Amn = εimnΩ∗i. Then because

1
2
εimn~mn = ~∗i (4.243)

is the Planck pseudovector, the quantity η0 = n~mnεimnΩ∗i is

η0 = 2n~∗iΩ∗i, (4.244)

so it is the double scalar product of the Planck three-dimensional pseu-
dovector and the three-dimensional pseudovector of angular velocities
of the space rotation, multiplied by the particle’s spin quantum number.
If ~∗i and Ω∗i are co-directed, then the cosine is positive, hence

η0 = 2n~∗iΩ∗i = 2n~Ωcos
(
~~ ; ~Ω

)
> 0 , (4.245)

while if they are oppositely directed, then

η0 = 2n~∗iΩ∗i = 2n~Ωcos
(
~~ ; ~Ω

)
< 0 . (4.246)

Therefore for any mass-bearing elementary particle, located in our
world, the integration constant from the live forces integral becomes
zero, provided that the pseudovectors ~∗i and Ω∗i are oppositely di-
rected. In the case of any mass-bearing elementary particle, located in
the mirror world, the constant becomes zero if the pseudovectors ~∗i
and Ω∗i are co-directed.

This implies that if the energy of interaction of a mass-bearing el-
ementary particle with the space non-holonomity field becomes equal
to its rest-energy E=m0c

2, then the momentum of the particle neither
reveals itself in our world nor in the mirror world.

We assume that the z axis is co-directed with the pseudovector of
angular velocities of the space rotation Ω∗i. Then out of all three com-
ponents of the Ω∗i the only non-zero component is

Ω∗3=
1
2
ε3mnAmn=

1
2
(
ε312A12+ε321A21

)
= ε312A12=

e312√
h
A12 . (4.247)

To simplify the algebra we assume that the three-dimensional co-
ordinate metric gik is Euclidean and the space rotates at a constant
angular velocity Ω. Then components of the linear velocity of the space
rotation are v1 =Ωx, v2 =−Ωy, and A12 =−Ω. Hence

Ω∗3 =
e312√
h
A12 =

A12√
h

= − Ω√
h
. (4.248)
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The square root of the determinant of the metric chr.inv.-tensor, as
defined in (4.180) is

√
h =

√
det ‖hik‖ =

√
1 +

Ω2 (x2 + y2)
c2

. (4.249)

Because we are dealing with very small coordinate values in the
scales of elementary particles, we can assume

√
h≈ 1 and, according to

(4.248) also Ω∗3 =−Ω = const. Then the law of quantization of masses
of elementary particles (4.240), taken in our world and in the mirror
world, respectively, becomes

m0 =
2n~Ω
c2

, m0 = −2n~Ω
c2

. (4.250)

Hence for any elementary particle of non-zero mass, located in our
world, the following relationship between its rest-mass m0 and the an-
gular velocity of the space rotation Ω is eminent

Ω =
m0c

2

2n~
. (4.251)

This implies that the rest-mass (the true mass) of an observable ob-
ject, under regular conditions does not depend on properties of the ob-
server’s reference space; but for elementary particles it becomes strictly
dependent on these properties, in particular it depends on the angular
velocity of the space rotation.

Hence, proceeding from the quantization law, we can calculate fre-
quencies of rotation of the observer’s space, corresponding to rest-masses
of elementary particles, located in our world.

The results, proceeding from the calculations for elementary parti-
cles of known kinds, are given in Table 4.1.

These results show that for elementary particles, the observer’s space
is always non-holonomic. So forth for instance, in observation of an elec-
tron re = 2.8×10−13 cm the linear velocity of rotation of the observer’s
space is v=Ωr=2200 km/sec∗. Because other elementary particles are
even smaller, this linear velocity seems to be the upper limit†.

∗This value of v equals the velocity of an electron in the Bohr 1st orbit, though
when calculating the velocity of the space rotation (see Table 1) we considered a free
electron, i. e. the one not related to an atomic nucleus and quantization of orbits in
an atom of hydrogen. The reason is that the “genetic” quantum non-holonomity of
the space seems not only to define rest-masses of elementary particles, but to be the
reason of rotation of electrons in atoms.

†It is interesting, the angular velocities of the space rotation in barions (see
Table 1) up within the order of the magnitude match the frequency ∼1023 sec−1

which characterizes elementary particles as oscillators [27,28].
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Elementary particles Rest-mass Spin Ω, sec−1

Leptons

electron e−, positron e+ 1 1/2 7.782×1020

electron neutrino νe and

electron anti-neutrino ν̃e < 4×10−4 1/2 < 3×1017

µ-meson neutrino νµ and

µ-meson anti-neutrino ν̃µ < 8 1/2 < 6×1021

µ−-meson, µ+-meson 206.766 1/2 1.609×1023

Barions

nuclons

proton p, anti-proton p̃ 1836.09 1/2 1.429×1024

neutron n, anti-neutron ñ 1838.63 1/2 1.431×1024

hyperons

Λ0-hyperon, anti-Λ0-hyperon 2182.75 1/2 1.699×1024

Σ+-hyperon, anti-Σ+-hyperon 2327.6 1/2 1.811×1024

Σ−-hyperon, anti-Σ−-hyperon 2342.6 1/2 1.823×1024

Σ0-hyperon, anti-Σ0-hyperon 2333.4 1/2 1.816×1024

Ξ−-hyperon, anti-Ξ−-hyperon 2584.7 1/2 2.011×1024

Ξ0-hyperon, anti-Ξ0-hyperon 2572 1/2 2.00×1024

Ω−-hyperon, anti-Ω−-hyperon 3278 3/2 8.50×1023

Table 4.1: Frequencies of rotation of the observer’s reference space, which
correspond to elementary particles of non-zero mass.

So, what did we get? Generally, the observer compares results of
his measurements with special standards located in his reference body.
But the body and himself are not related to the observed object and
do not affect it during observations. Hence in macro-world there is no
dependence of the true properties of observed bodies (rest-mass, rest-
energy, etc.) on properties of the reference body and the reference space
— these are properties of objects non-related to each other.

In other words, though observed images are distorted by influence
from physical properties of the observer’s reference frame, the observer
himself and his reference body in macro-world do not affect measured
objects anyhow.

But the world of elementary particles presents a big difference. In
this section, we have seen that once we reach the scale of elementary
particles, where spin, a quantum property of the particles, significantly
affects their motion, physical properties of the reference body (the ref-
erence space) and those of the particles become tightly linked to each
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other, so the reference body affects the observed particles. In other
words, the observer does not just compare properties of the observed
particles to those of his references any longer, but instead directly affects
the observed particles. The observer shapes their properties in a tight
quantum relationship with properties of the references he possesses.

We can explain the above in other words as follows. When looking at
effects in the world of elementary particles, there is no border between
the observer (his reference body and the reference space) and the ob-
served particle. Hence we have an opportunity to define a relationship
between the space non-holonomity field, linked to the observer, and rest-
masses of the observed particles — objects of his observations, which
in macro-world are not related to the reference body. So, the obtained
law of quantization of masses is only true for elementary particles.

Please note that we have obtained the result using only geometric
methods of the General Theory of Relativity, and not methods of Quan-
tum Mechanics. In future, this result may possibly become a “bridge”
between these two theories.

§4.9 The Compton wavelength

So, we have obtained that in observation of an elementary particle with
rest-mass m0 the rotation frequency of the observer’s space is Ω= m0c

2

2n~
(4.251). We are going to find the wavelength which corresponds to
that frequency. Assuming that this wave, i. e. the wave of the space
non-holonomity, propagates at the light velocity λΩ = c, we have

λ =
c

Ω
= 2n

~
m0c

. (4.252)

In other words, if we observe a mass-bearing particle with spin n= 1
2

the length of the space non-holonomity wave equals Compton’s wave-
length of this particle λ–c = ~

m0c
.

What does this mean? Compton effect, named after A. Compton
who discovered it in 1922, is “diffraction” of a photon on a free electron,
which results in decrease of its own frequency

∆λ = λ2 − λ1 =
h

mec
(1− cosϑ) = λe

c (1− cosϑ) , (4.253)

where λ1 and λ2 are the photon’s wavelengths before and after the en-
counter, ϑ is the angle of “diffraction”. The multiplier λe

c, specific to
the electron, at first was called the Compton wavelength of the electron.
Later it was found out that other elementary particles during “diffrac-
tion” of photons reveal as well the specific wavelengths λc = h

m0c
, or,
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λ–c = ~
m0c

. That is, elementary particles of every kind (electrons, pro-
tons, neutrons etc.) have their own Compton wavelengths. The physi-
cal sense behind the quantity will be explained later. It was obtained,
within an area smaller than λ–c, any elementary particle is no longer a
point object and its interaction with other particles (and with the ob-
server) is described by Quantum Mechanics. Hence the λ–c-sized area is
sometimes interpreted as the “size” of the elementary particle.

As for the results we have obtained in the previous section, §4.8,
these can be interpreted as follows. In observation of a mass-bearing
elementary particle the observer’s space rotates so fast that the angular
velocity of its rotation makes a specific wavelength equal to the Comp-
ton wavelength of the observed particle, so to the “size” inside which the
particle is no longer a point object. In other words, it is the angular ve-
locity of the space rotation (the wavelength in the space non-holonomity
field), which defines the Compton observable wavelength (the specific
“size”) of the particle.

§4.10 Massless spin-particles

Because massless particles do not have electric charge, their scalar chr.
inv.-equations of motion in our world and in the mirror world are as
follows, respectively,

d

dτ

(
m+

η

c2

)
= 0 , − d

dτ

(
m+

η

c2

)
= 0 . (4.254)

Their integration always gives a constant equal to zero, hence we
always obtain the formulae (4.239). Hence for massless particles in our
world and in the mirror world, respectively

mc2 = − η , mc2 = η . (4.255)

On the other hand, it is obvious that the term “rest-mass” is not
applicable to massless particles — they are always on the move. Their
relativistic masses are defined from energy equivalent E=mc2, mea-
sured in electron-volts. Consequently, massless particles have no rest
spin-energy η0 =n~mnAmn.

Nevertheless, the Planck tensor found in spin-energy η enables
quantization of relativistic masses of massless particles and angular ve-
locities of the space rotation. Hence to obtain angular velocities of the
space rotation for massless particles we need an expanded formula of
their relativistic spin-energy η, which would not contain the relativistic
square root.
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Quantum Mechanics speaks of “spirality” of massless particles —
the projection of spin on the direction of momentum. The reason for
introducing this term is the fact that massless particles can not be at
rest in respect of any regular observer, as they always travel at the
light velocity with respect to him. Hence we can assume that spin of
any massless particle is tangential to its light-like trajectory (either co-
directed or oppositely directed to it).

Keeping in mind that the spin quantum number n of any massless
particle is 1, we assume that for the massless particles

η = ~mnÃmn , (4.256)

where Ãmn is the angular velocities chr.inv.-tensor of their space rota-
tion (the light-like space).

Hence to obtain the relativistic spin-energy of a massless particle
(4.256) we need to find components of the angular velocities chr.inv.-
tensor of the light-like space rotation. We are going to build the tensor
similar to the four-dimensional tensor of the space rotation Aαβ (4.11),
which describes rotation of the space of a frame of reference, which
travels with respect to the observer at an arbitrary velocity (a non-
accompanying reference frame). As a result we obtain

Ãαβ =
1
2
ch̃αµh̃βµãµν , ãµν =

∂b̃ν
∂xµ

− ∂b̃µ
∂xν

, (4.257)

where b̃α is the four-dimensional velocity of a light-like reference frame
with respect to the observer and

h̃αµ = − gαµ + b̃αb̃µ (4.258)

is the four-dimensional generalization of the metric chr.inv.-tensor for
the light-like space and a reference frame located in it.

The space inhabited by massless particles is a space-time area, which
corresponds to the four-dimensional light-like (isotropic) cone set by
the equation gαβ dxαdxβ =0. This cone exists at any point of the four-
dimensional pseudo-Riemannian space with the signature (+−−−).

The four-dimensional velocity vector of the light-like reference frame
of massless particles is

b̃α =
dxα

dσ
=
dxα

cdτ
, b̃αb̃

α = 0 , (4.259)

so its chr.inv.-projections in the reference frame of a regular “sub-light”
observer are

b̃0√
g00

= ±1, b̃i =
1
c

dxi

dτ
=

1
c
ci, (4.260)
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while the other components of this isotropic vector (4.259) are

b̃0 =
1√
g00

(
1
c2
vic

i ± 1
)
, b̃i = −1

c
(ci ± vi) , (4.261)

where ci is the chr.inv.-vector of the light velocity.
Let us consider properties of the light-like space of massless particles

in details. The isotropy condition of the particles’ four-dimensional
velocity bαbα =0 in chr.inv.-form becomes

hik c
ick = c2 = const, (4.262)

where hik is the metric chr.inv.-tensor of a regular “sub-light” observer’s
reference space. Components of the four-dimensional light-like metric
tensor h̃αβ (4.258), whose three-dimensional components make up the
light-like space’s metric chr.inv.-tensor h̃ik, are

h̃00 =
vkv

k ± 2vkck + 1
c2
vkvnc

kcn

c2
(
1− w

c2

)2

h̃0i =
vi ± ci + 1

c2
vkc

kci

c
(
1− w

c2

) , h̃ik = hik +
1
c2
cick





, (4.263)

where “plus” stands for the light-like space with the direct flow of time
(our world) and “minus” stands for the reverse-time (mirror) world.

Now we have to deduce components of the curl of the four-dimen-
sional velocity vector of massless particles, found in the formula (4.257).
After some algebra we obtain

ã00 = 0 , ã0i =
1

2c2
(
1− w

c2

)(
±Fi −

∗∂ci
∂t

)

ãik =
1
2c

(
∂ci
∂xk

− ∂ck
∂xi

)
± 1

2c

(
∂vi
∂xk

− ∂vk
∂xi

)




. (4.264)

Generally, to define the spin-energy of a massless particle (4.256) we
need covariant spatial components of the tensor of its space rotation,
namely — lower-indices components Ãik. To deduce them we take the
formula for contravariant components Ãik and lower their indices, as for
any chr.inv.-quantity using the metric chr.inv.-tensor of the observer’s
reference space.

Substituting into

Ãik = c
(
h̃i0h̃k0 ã00+h̃i0h̃km ã0m+h̃imh̃k0 ãm0+h̃imh̃kn ãmn

)
(4.265)
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the obtained components h̃αβ and ãαβ , we arrive at

Ãik = himhkn
[

1
2

(
∂cm
∂xn

− ∂cn
∂xm

)
+

1
2c2

(Fncm − Fmcn)
]
±

± himhkn
[

1
2

(
∂vm
∂xn

− ∂vn
∂xm

)
+

1
2c2

(Fnvm − Fmvn)
]

+

+
(

1
c2
vnc

n ± 1
) (

ckhim − cihkm
) ∗∂cm

∂t
−

− (
vkhim − vihkm

) ∗∂cm
∂t

+
1

2c2
cm

(
cihkn − ckhin

)×

×
[(

∂cm
∂xn

− ∂cn
∂xm

)
±

(
∂vm
∂xn

− ∂vn
∂xm

)]
.

(4.266)

In this formula, the quantity 1
2

(
∂vm

∂xn − ∂vn

∂xm

)
+ 1

2c2
(Fnvm−Fmvn), by

definition, is the chr.inv.-tensor of angular velocities of the observer’s
space rotation Amn, which is the non-holonomity tensor of the non-
isotropic space ∗ in the same time.

The quantity 1
2

(
∂cm

∂xn − ∂cn

∂xm

)
+ 1

2c2
(Fncm−Fmcn) by its structure is

similar to the tensor Amn, but instead of the linear velocity of the non-
isotropic space rotation vi it has components of the covariant chr.inv.-
vector of the light velocity cm =hmnc

n. The vector cm is a physical
observable quantity, because it was obtained by lowering indices in the
chr.inv.-vector cn using the metric chr.inv.-tensor hmn. We denote that
tensor as Ămn, where the inward curved cap means the quantity belongs
to the isotropic space† with the direct flow of time — the “upper” part
of the light cone, which in a twisted space-time gets “round” shape.
Then we obtain

Ămn =
1
2

(
∂cm
∂xn

− ∂cn
∂xm

)
+

1
2c2

(Fncm − Fmcn) . (4.267)

∗We will refer to an area in the four-dimensional space-time, where particles
with non-zero rest-masses exist as a non-isotropic space. This is the area of world-
trajectories along which ds 6= 0. Subsequently, if the interval ds is real, then the
particles travel at sub-light velocities (regular particles); if it is imaginary, then the
particles travel at super-light velocities (tachyons). So, the space of both sub-light
particles and super-light tachyons is non-isotropic by definition.

†We will refer as the isotropic space to an area of the four-dimensional space-
time, inhabited by massless (light-like) particles. This area can be also-called the
light membrane. From geometric viewpoint the light membrane is the surface of the
isotropic cone, i. e. the set of its four-dimensional elements (world-lines of the light
propagation).
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In a particular case, where gravitational potential is negligible (i. e.
where w≈ 0) the tensor becomes

Ămn =
1
2

(
∂cm
∂xn

− ∂cn
∂xm

)
, (4.268)

so it is the chr.inv.-curl of the light velocity. Therefore we will refer to
Ămn as the isotropic space curl.

The following example gives geometric illustration of the isotropic
space curl. As it is known, the necessary and sufficient condition of
the equality Amn =0 (the space holonomity condition) is equality to
zero of all components vi =−c g0i√

g00
, i. e. the absence of space rotation.

The tensor Ămn is defined only in the isotropic space, inhabited by
massless particles. Outside the isotropic space it is senseless, because
the “interior” of the light cone is inhabited by sub-light particles, while
tachyons inhabit its “exterior”.

Our subject here is massless particles (photons). From (4.268) it is
seen that non-holonomity of the isotropic space is linked to curl nature
of the linear velocity of massless particles cm. Hence any photon is a
spatial curl of the isotropic space, while the photon’s spin results from
interaction between its inner curl field and the external tensor field Ămn.

To make the explanations even more illustrative, we depict areas of
existence of different kinds of particles. The light cone exists in every
point of the space. The light cone equation gαβ dxαdxβ =0 in chr.inv.-
notation is

c2τ2 − hikx
ixk = 0 , hikx

ixk = σ2. (4.269)

On Minkowski’s diagram the light cone “interior” is filled with the
non-isotropic space, where sub-light particles exist. Outside there is
also an area of the non-isotropic space, inhabited by super-light parti-
cles (tachyons). The specific space of massless particles is a space-time
membrane between these two non-isotropic areas. The picture is mirror-
symmetric: in the upper part of the cone there is the sub-light space
with the direct flow of time (our world), separated with the observer’s
spatial section from the lower part — the sub-light space with the re-
verse flow of time (the mirror world). In other words, the upper part is
inhabited by real particles with positive masses and energies, while the
lower part is inhabited by their mirror “counterparts”, whose masses
and energies are negative (from our viewpoint).

Therefore, rotation of the sub-light non-isotropic space “inside” the
cone involves the surrounding light membrane (the isotropic space). As
a result, the light cone begins rotation described by the tensor Ămn
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— the isotropic space curl. Of course we can assume a reverse order of
events, where rotation of the light cone involves “the content” of its inner
part. But because particles “inside” the cone have non-zero rest-masses,
they are “heavier” than massless particles on the light membrane. Hence
the inner “content” of the light cone is also an inertial media.

Now we return to the formula for the relativistic spin-energy of a
massless particle η= ~mnÃmn (4.256). By lowering indices in the non-
holonomity tensor of the isotropic space Ãik (4.266), we obtain

Ãik = ±Aik+Ăik+ 1
2c2

cm
{
ci

[
∂ (cm±vm)

∂xk
− ∂ (ck±vk)

∂xm

]
−

− ck

[
∂ (cm±vm)

∂xi
− ∂ (ci±vi)

∂xm

]}
+

(
vi
∗∂ck
∂t

−vk
∗∂ci
∂t

)
+

+
(

1
c2
vnv

n±1
)(

ck
∗∂ci
∂t

−ci
∗∂ck
∂t

)
.

(4.270)

Having Ãik contracted with the Planck tensor ~ik, we have

η = η0 + n~ikĂik +
[(

1
c2
vnv

n±1
)(

ck
∗∂ci
∂t

− ci
∗∂ck
∂t

)
+

+
(
vi
∗∂ck
∂t

−vk
∗∂ci
∂t

)]
n~ik+

1
2c2

n~ikcm
{
ci

[
∂ (cm±vm)

∂xk
−

− ∂ (ck±vk)
∂xm

]
− ck

[
∂ (cm±vm)

∂xi
− ∂ (ci±vi)

∂xm

]}
,

(4.271)

where “plus” stands for our world and “minus” — for the mirror world.
The quantity η0 = η

√
1− v2/c2 for massless particles is zero, be-

cause they travel at the light velocity. Hence keeping in mind that
η0 =n~mnAmn, we obtain an additional condition imposed on the non-
holonomity tensor of the isotropic space Ãik: at any point of the tra-
jectory of any massless particle the condition

~mnAmn = 2~ (A12 +A23 +A31) = 0 , (4.272)

must be true. Or, in the other notation, Ω1+Ω2+ Ω3=0.
Therefore, in an area, where the observer “sees” the massless parti-

cle, the angular velocity of rotation of the observer’s non-isotropic space
equals zero. Other terms consisting the particle’s relativistic spin-energy
(4.271) are due to possible non-stationary nature of the light velocity
∗∂ci

∂t
and other dependencies which include squares of the light velocity.

We analyze the obtained formula (4.271) to make two simplification
assumptions:
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a) Gravitational potential is negligible (w≈ 0);
b) The three-dimensional chr.inv.-velocity of light is stationary.
In this case the quantities Aik and Ăik (the observer’s space non-

holonomity tensor and the isotropic space curl) become

Aik =
1
2

(
∂vk
∂xi

− ∂vi
∂xk

)
, Ăik =

1
2

(
∂ck
∂xi

− ∂ci
∂xk

)
, (4.273)

and the massless particle’s relativistic spin-energy (4.271) becomes

η = n

(
~ikĂik +

1
c2
cic

m~ikĂkm
)
. (4.274)

Therefore this quantity η, describing action of the massless particle’s
spin, is defined (aside from the spin) only by the isotropic space curl
and in no way depends on the observer’s space non-holonomity (the
rotation).

To make further deductions simpler, we transform η (4.274) as fol-
lows. Similar to the space rotation pseudovector Ω∗i = 1

2
εikmAkm we

introduce a pseudovector

Ω̆∗i =
1
2
εikmĂkm , (4.275)

which can be formally interpreted as the pseudovector of rotation an-
gular velocity of the isotropic space.

Subsequently, Ăkm = εkmnΩ̆∗n. Then the formula for η (4.274) can
be presented as follows

η = n

(
~∗iΩ̆∗i +

1
c2
cic

m~ik εkmnΩ̆∗n
)
. (4.276)

This means that the inner mechanical curl (spin) of a massless par-
ticle only reveals itself in interaction with the isotropic space curl. The
result of the interaction is the scalar product ~∗iΩ̆∗i, to which the mass-
less particle’s spin is attributed. Hence massless particles are elementary
light-like curls of the isotropic space itself.

Let us estimate rotations of the isotropic space for massless particles
having different energies. At present we know for sure that among
massless particles are photons — the quanta of an electromagnetic field.

Any photon’s spin quantum number is 1. Besides, its energy E= ~ω
is positive in our world. Hence taking into account the live forces integral
(4.255), for observable our-world photons we have

~ω = ~∗iΩ̆∗i +
1
c2
cic

m~ik εkmnΩ̆∗n. (4.277)
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Kind of photons Frequency Ω̆, s−1

Radiowaves 103÷ 1011

Infra-red rays 1011÷ 1.2×1015

Visible light 1.2×1015÷ 2.4×1015

Ultraviolet rays 2.4×1015÷ 1017

X-rays 1017÷ 1019

Gamma rays 1019÷ 1023 and above

Table 4.2: Rotation frequencies of the isotropic space, which
correspond to photons.

We assume that the rotation pseudovector of the isotropic space Ω∗i

is directed along the z axis, while the light velocity is directed along y.
Then the relationship (4.277) obtained for photons becomes ~ω=2~Ω̆,
or, after having the Planck constant cancelled,

Ω̆ =
ω

2
=

2πν
2

= πν , (4.278)

so the frequency Ω̆ of the isotropic space rotation for massless parti-
cle is constant and coincides the particle’s own frequency ν. Thanks
to this formula, which results from the quantization law for relativistic
masses of massless particles, we can estimate the isotropic space’s an-
gular velocities, which correspond to photons of different energy levels.
Table 4.2 gives the results.

From Table 4.2 we see that angular velocities of the isotropic space
rotation in photons, taken in the gamma range, are of the order of fre-
quencies of the regular space rotation in electrons and other elementary
particles (see Table 4.1).

§4.11 Conclusions

Here is what we have obtained in this Chapter.
Spin of any particle is characterized by the four-dimensional anti-

symmetric tensor of the 2nd rank called the Planck tensor. Its diagonal
and space-time components are zeroes, while non-diagonal spatial com-
ponents are ±~ depending on the spatial direction of the spin and our
choice of a right or left-handed frame of reference.

The spin (the inner vortical field of the particle) interacts with an
external field of the space non-holonomity. As a result, the particle
gains an additional momentum, which deviates the moving particle
from geodesic line. This interaction energy is found from the scalar
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chr.inv.-equation of motion of the particle (the live forces theorem),
so the equation must be taken into account when solving the vector
chr.inv.-equations of motion.

Particular solution of the scalar chr.inv.-equation is the law of quan-
tization of masses of elementary spin-particles, which unambiguously
links rest-masses of mass-bearing elementary particles with angular ve-
locities of the observer’s space rotation, as well as between relativistic
masses of photons and angular velocities of rotation of their inner light-
like space. Because an area, where light-like particles exist, is the area
of four-dimensional isotropic trajectories, the terms “isotropic space”
and “light-like space” can be used as synonyms.

Please note that we have obtained the result using only geometric
methods of the General Theory of Relativity, not Quantum Mechanics’
methods. In future, this result may possibly become a “bridge” between
these two theories.
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§5.1 Introduction

According to recent data, the average density of matter in our Uni-
verse is ∼ 5÷10×10−30 gram/cm3. The average density of substances
concentrated in galaxies is higher, ∼ 10−24 gram/cm3 in our Galaxy.
Astronomical observations show that most part of the cosmic mass is
accumulated in compact objects, e. g. in stars, whose total volume is
incomparable to that of the whole Universe (so-called “island” distri-
bution of substance). We can therefore assume that our Universe is
predominantly empty.

For a long time the words “emptiness” and “vacuum” have been
considered synonyms. But since the 1920’s the geometric methods of
the General Theory of Relativity have showed that they are different
states of matter.

Distribution of matter in the Universe is characterized by the energy-
momentum tensor, which is linked to the geometric structure of the
space-time (the fundamental metric tensor) by the equations of gravita-
tional field. In Einstein’s theory of gravitation, which is an application
of mathematical methods of Riemannian geometry, the equations re-
ferred to as Einstein’s equations are∗

Rαβ − 1
2
gαβR = −κ Tαβ + λgαβ . (5.1)

These equations, except for the energy-momentum tensor and the
fundamental metric tensor, include other quantities, namely:

1) Rασ =R...βαβσ· is Ricci’s tensor†, which is the result of contraction
of Riemann-Christoffel’s curvature tensor Rαβγδ by two indices;

2) R= gαβRαβ is the scalar curvature;

∗The left hand side of the field equations (5.1) is often referred to as the Einstein
tensor Gαβ = Rαβ − 1

2
gαβ R, in notation Gαβ =−κ Tαβ + λgαβ .

†Gregorio Ricci-Curbastro (1853–1925), an Italian mathematician who was the
teacher of Tullio Levi-Civita in Padua in the 1890’s.
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3) κ= 8πG
c2

= 1.862×10−27 [ cm/gram ] is Einstein’s gravitational con-
stant, while G=6.672×10−8 [ cm3/gram sec2 ] is Gauss’ gravita-
tional constant. Note that some researchers such as Landau and
Lifshitz [10] prefer to use κ= 8πG

c4
instead of κ= 8πG

c2
as used by

Zelmanov and other people. To understand the reason, why not
κ= 8πG

c4
is in our study, we have to look at chr.inv.-projections of

the energy-momentum tensor Tαβ , namely: T00
g00

= ρ is the chr.inv.-

scalar of the observable mass density, cT i
0√
g00

=J i is the chr.inv.-
vector of the observable momentum density, and c2T ik =U ik is
the chr.inv.-tensor of the observable momentum flux density [9].
Accordingly, the scalar chr.inv.-projection of the Einstein equa-
tions is G00

g00
=−κT00

g00
+λ. As it is known, the Ricci tensor has

dimension [ cm−2 ], hence the Einstein tensor Gαβ and the quan-
tity κT00

g00
= 8πGρ

c2
have the same dimension. Consequently, it is

evident that the dimension of the energy-momentum tensor Tαβ
is that of mass density [ gram/cm3 ]. This implies that when we
use 8πG

c4
on the right hand side of the Einstein equations, we ac-

tually use not the energy-momentum tensor itself, but the quan-
tity c2Tαβ , whose scalar and vector chr.inv.-projections are the
observable energy density c2T00

g00
= ρc2 and the observable energy

flux c3T i
0√

g00
= c2J i;

4) λ [ cm−2 ] is the so-called cosmological term, which describes non-
Newtonian forces of attraction or repulsion, depending on the
sign before λ (λ> 0 stands for repulsion, λ< 0 stands for attrac-
tion). The term is referred to as “cosmological”, because it is
assumed that forces described by λ grow up proportionally to
distance and therefore reveal themselves in a full scale at “cosmo-
logical” distances comparable to the size of the Universe. Because
the non-Newtonian gravitational fields (λ-fields) have never been
observed, for our Universe in general the cosmological term is
|λ|< 10−56 cm−2 (as of today’s measurement accuracy).

From the Einstein equations (5.1) we see that the energy-momentum
tensor describing distribution of matter is genetically linked to both the
metric tensor and the Ricci tensor, and hence to the Riemann-Christoffel
curvature tensor. Equality of the Riemann-Christoffel tensor to zero is
the necessary and sufficient condition for the given space-time to be flat.
The Riemann-Christoffel tensor is not zero for curved spaces only. It
reveals itself as an increment of an arbitrary vector V α in its parallel
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transfer along a closed contour

∆V µ = −1
2
R...µαβγ·V

α∆σβγ , (5.2)

where ∆σβγ is the area within this contour. As a result, the initial
vector V α and the vector V α +∆V α have different directions. From
quantitative viewpoint the difference is described by a quantity K, re-
ferred to as the four-dimensional curvature of the pseudo-Riemannian
space along the given parallel transfer (see [9] for details)

K = lim
∆σ→0

tanϕ
∆σ

, (5.3)

where tanϕ is the tangent of the angle between the vector V α and
the projection of the vector V α +∆V α on the area constructed by the
transfer contour. For instance, we consider a surface and a “geodesic”
triangle on it, produced by crossing three geodesic lines. We transfer a
vector, defined in any arbitrary point of that triangle, parallel to itself
along the sides of the triangle. The summary rotation angle ϕ after the
vector returns to the initial point is ϕ=Σ−π (where Σ is the sum of
the inner angles of the triangle). We assume the surface curvature K is
equal at all its points, then

K = lim
∆σ→0

tanϕ
∆σ

=
ϕ

σ
= const, (5.4)

where σ is the triangle’s area and ϕ=Kσ is called spherical excess. If
ϕ= 0, then the curvature is K =0, so the surface is flat. In this case
the sum of all inner angles of the geodesic triangle is π (a flat space).
If Σ>π (the transferred vector is rotated towards the circuit), then
there is positive spherical excess, so the curvature K> 0. An example
of such a space is the surface of a sphere: a triangle on the surface is
convex. If Σ<π (the transferred vector is rotated counter the circuit),
the spherical excess is negative and the curvature is K< 0.

Einstein postulated that gravitation is the space-time curvature.
He understood the curvature as not equality to zero of the Riemann-
Christoffel tensor Rαβγδ 6=0 (the same is assumed in Riemannian geom-
etry). This concept fully includes Newtonian gravitational concept, so
Einstein’s four-dimensional gravitation-curvature for a regular physical
observer can reveal itself as follows:

a) Newtonian gravitation;
b) Rotation of the three-dimensional space (the spatial section);
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c) Deformation of the three-dimensional space;
d) The three-dimensional curvature, so that there are non-zero first

derivatives of Christoffel’s symbols.
According to Mach’s Principle, on which the Einstein theory of grav-

itation rests, “. . . the property of inertia is fully determined by interac-
tion of matter” [29], so the space-time curvature is produced by matter
which fills it. Proceeding from that and from the Einstein equations
(5.1) we can give mathematical definitions of emptiness and vacuum:

Emptiness is the state of a given space-time, for which the Ricci ten-
sor is Rαβ = 0, this implies the absence of any substance Tαβ =0
and of non-Newtonian gravitational fields λ=0. The field equa-
tions(5.1) in emptiness∗ are as simple as Rαβ =0;

Vacuum is the state in which any substance is absent Tαβ =0, but λ 6=0
and hence Rαβ 6=0. Emptiness is a particular case of vacuum in
the absence of λ-fields. The field equations in vacuum are

Rαβ − 1
2
gαβR = λgαβ . (5.5)

The Einstein equations are applicable to the most varied cases of
distribution of matter, except for the cases where the density is close to
that of substance in atomic nuclei. It is hard to give accurate mathe-
matical description to all cases of distribution of matter because such
a problem is so general and it can not be approached per se. On the
other hand, the average density of substance in our Universe is so small
5÷10×10−30 gram/cm3, that we can assume it near vacuum. The Ein-
stein equations say that the energy-momentum tensor is functionally
dependent on the metric tensor and the Ricci tensor (i. e. from the
curvature tensor, contracted by two indices). At such small numerical
values of density we can assume the energy-momentum tensor propor-
tional to the metric tensor Tαβ ∼ gαβ and hence proportional to the
Ricci tensor. Therefore, besides the field equations in vacuum (5.5) we
can consider the equations

Rαβ = kgαβ , k = const, (5.6)

i. e. where the energy-momentum tensor is different from the metric
tensor only by a constant. This case, including the absence of masses

∗If we put down the Einstein equations for an empty space Rαβ − 1
2

gαβ R =0 in

the mixed form Rβ
α− 1

2
gβ

αR = 0, then after contraction (Rα
α− 1

2
gα

αR =0) we obtain

R− 1
2

4R =0. So the scalar curvature in emptiness is R =0. Hence the field equations
(the Einstein equations) in the empty space are Rαβ =0.
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(i. e. in vacuum) and some conditions close to it and related to our
Universe, were studied in details by Petrov [30,31]. He called spaces for
which the energy-momentum tensor is proportional to the metric tensor
(and, hence, to the Ricci tensor) Einstein spaces.

Substance in spaces with Rαβ = kgαβ (namely — Einstein spaces)
is homogeneous at every point, have no mass fluxes, while the density
of matter which fills them (including any substances) is everywhere
constant. In this case

R = gαβRαβ = kgαβg
αβ = 4k , (5.7)

while the Einstein tensor takes the form

Gαβ = Rαβ − 1
2
gαβR = −kgαβ , (5.8)

where kgαβ is the analog of the energy-momentum tensor for that matter
which fills Einstein spaces.

To find out what kinds of matter fill Einstein spaces, Petrov stud-
ied the algebraic structure of the energy-momentum tensor. This is
what he did: the tensor Tαβ was compared to the metric tensor in an
arbitrary point; for this point the difference Tαβ − ξgαβ is calculated,
where ξ are the so-called eigenvalues of the matrix Tαβ ; the difference
is equated to zero to find the values of ξ, which make the equality true.
This problem is also referred to as the matrix eigenvalues problem∗. The
set of the matrix eigenvalues allows us to define the algebraic kind of
this matrix. For a sign-constant metric this problem had been solved
already, but Petrov proposed a method to bring any matrix to canon-
ical form for the sign-alternating metric, which allowed using it in the
pseudo-Riemannian space, in particular, to study the algebraic struc-
ture of the energy-momentum tensor. This can be illustrated as follows.
Eigenvalues of elements of the matrix Tαβ are similar to basic vectors
of the metric tensor matrix, so the eigenvalues define a kind of “skele-
ton” of the tensor Tαβ (the skeleton of matter); but even if we know
what the skeleton is, we may not know exactly what the muscles are.
Nevertheless, the structure of such a skeleton (the length and mutual
direction of the basic vectors)can be depicted based on the properties of
matter, such as homogeneity or isotropy, and their relation to the space
curvature.

As a result, Petrov had shown that Einstein spaces have three basic
algebraic kinds of the energy-momentum tensor and a few subtypes.

∗Generally, the problem should be solved at a given point, but the obtained
result is applicable to any point of the space.
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According to his algebraic classification of the energy-momentum tensor
and the curvature tensor, all Einstein spaces are sub-divided into three
basic kinds so-called Petrov’s classification∗.

Einstein spaces of the kind I are best intuitively comprehensible,
because the field of gravitation there is produced by a massive island
(the “island” distribution of substance), while the space itself may be
empty or filled with vacuum. The curvature of such a space is created
by the island mass and by vacuum. At the infinite distance from the
island mass, in the absence of vacuum, this space remains flat. Devoid
of any island masses but filled with vacuum, the space of the kind I also
has curvature (e. g. de Sitter’s space). An empty space of the kind I,
i. e. the one devoid of any island masses or vacuum, is flat.

Einstein spaces of the kind II and of the kind III are more exotic,
because they are curved by themselves. Their curvature is not related
to the island distribution of masses or the presence of vacuum. The
kind II and the kind III are generally attributed to radiation fields, for
instance, to gravitational waves.

A few years later Gliner [33–35] in his study of the algebraic struc-
ture of the energy-momentum tensor of vacuum-like states of matter
(Tαβ ∼ gαβ , Rαβ = kgαβ) outlined its special kind for which all four
eigenvalues are the same, so three space vectors and the time vector
of the “ortho-reference” of the tensor Tαβ are equal to each other†. The
matter which corresponds to the energy-momentum tensor of such a
structure has a constant density µ= const, equal to coinciding eigen-
values of the energy-momentum tensor µ= ξ (the dimension of µ is the
same as that of Tαβ [ gram/cm3 ]). The energy-momentum tensor in this
case is‡

Tαβ = µgαβ . (5.9)

The field equations under λ=0 are

Rαβ − 1
2
gαβR = −κµgαβ , (5.10)

∗Chr.inv.-interpretation of this algebraic classification of Einstein spaces (or, in
other words, of Petrov’s gravitational fields) had been obtained in 1970 by a co-
author of this book (Borissova, née Grigoreva [32]).

†If we introduce a local flat space, tangential to the given Riemannian space
at a given point, then the eigenvalues ξ of the tensor Tαβ are the quantities in an
ortho-reference, corresponded to this tensor, in contrast to the eigenvalues of the
metric tensor gαβ in an ortho-reference, defined in this tangential space.

‡Gliner used the signature (−+++), hence he had Tαβ =−µgαβ . So because the

observable density is positive ρ = T00
g00

=−µ > 0, he had negative numerical values

of the µ. In our book we use the signature (+−−−), because in this case three-
dimensional observable interval is positive. Hence we have µ > 0 and Tαβ = µgαβ .
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and, under the cosmological term λ 6= 0, are

Rαβ − 1
2
gαβR = −κµgαβ + λgαβ . (5.11)

Gliner called this state of matter µ-vacuum [33–35]: this is be-
cause the state is related to vacuum-like states of substance (Tαβ ∼ gαβ ,
Rαβ = kgαβ), but is not exactly vacuum (in vacuum Tαβ = 0). At the
same time Gliner showed that spaces filled with µ-vacuum are Einstein
spaces, so three basic kinds of µ-vacuum exist, which correspond to
three basic algebraic kinds of the energy-momentum tensor (and the
curvature tensor). In other words, an Einstein space of each kind (I, II,
and III), provided matter is present in them, is filled with µ-vacuum of
the corresponding kind (I, II, or III).

Actually, because being taken in the “ortho-reference” of the energy-
momentum tensor of µ-vacuum all three space vectors and the time
vector are the same (all the four directions have the same significance),
µ-vacuum is the highest degree of isotropic matter. Besides, because
Einstein spaces are homogeneous, so that the matter density at every
point is everywhere equal [30, 31], then µ-vacuum that fills them does
not only have a constant density, but is homogeneous as well.

As we have seen, Einstein spaces can be filled with µ-vacuum, with
regular vacuum Tαβ = 0 or with emptiness. Besides, there may exist
isolated “islands” of mass, which also produce the space curvature.
Therefore Einstein spaces of the kind I are the best illustration of our
knowledge of our Universe as a whole. And thus to study geometry of
our Universe and physical states of matter, which fills it, is the same as
studying Einstein spaces of the kind I.

Petrov has proposed and proved a theorem (see §13 in [30]), we will
refer to it as Petrov’s theorem:

Petrov’s theorem

Any space of a constant curvature is an Einstein space. <So that>
. . . Einstein spaces of the kind II and of the kind III can not be constant
curvature spaces.

Hence constant curvature spaces are Einstein spaces of the kind I, ac-
cording to the Petrov classification. If K =0 an Einstein space of the
kind I is flat. This makes our study of vacuum and vacuum-like states
of matter in the Universe even simpler, because by today we have well
studied constant curvature spaces. These are de Sitter spaces, or, in
other words, spaces with de Sitter’s metric.

In any de Sitter space we have Tαβ =0 and λ 6=0, so it is filled with
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regular vacuum and does not contain “islands” of substance. On the
other hand we know that the average density of matter in our Universe
is rather low. Looking at it in general, we can neglect presence of occa-
sional “islands” and inhomogeneities, which locally distort it. Hence our
space can be generally assumed as a de Sitter space with the constant
curvature radius equal to that of the Universe.

Theoretically a de Sitter space may have either a positive curva-
ture K> 0 or a negative curvature K< 0. Analysis (see Synge’s book)
shows that in de Sitter worlds with K< 0 time-like geodesic lines are
closed: a test-particle repeats its motion again and again along the same
trajectory. This brings to mind some ideas, which seem to be too “rev-
olutionary” from the viewpoint of today’s physics [36]. Consequently,
most physicists (Synge, Gliner, Petrov, and others) have left negative
curvature de Sitter spaces beyond the scope of their consideration.

As it is known, positive curvature Riemannian spaces are general-
ization of a regular sphere, while the negative curvature ones are gener-
alization of Lobachewski-Bolyai space, an imaginary-radius sphere. In
Poincaré interpretation negative curvature spaces reflect on the inner
surface of a sphere. Using the methods of chronometric invariants, Zel-
manov showed that in the pseudo-Riemannian space (its metric is sign-
alternating) the three-dimensional observable curvature is negative to
the Riemannian four-dimensional curvature. Because we perceive our
planet as a sphere, the observable curvature is positive in our world.
If any hypothetical beings inhabited the “inner” surface of the Earth,
they would perceive it as concave and their world will be of negative
curvature.

This illustration inspired some researchers for the idea of possible ex-
istence of our mirror twin, the mirror Universe inhabited by antipodes.
Initially it was assumed that once our world has a positive curvature,
the mirror Universe must be a negative curvature space. But Synge
showed (see [36, Chapter VII]) that in a positive curvature de Sitter
space space-like geodesic trajectories are open, while in a negative cur-
vature de Sitter space they are closed. In other words, a negative cur-
vature de Sitter space is not a mirror reflection of its positive curvature
counterpart.

On the other hand, in our study [19] (see also §1.3 herein) we found
another approach to the concept of the mirror Universe. This study
considered motion of free particles with the reverse time flow. As a
result it has been obtained that the observable scalar component of a
particle’s four-dimensional momentum vector is its negative relativistic
mass. Noteworthy, the particles of “mirror” masses were obtained as
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a formal result of projecting their four-dimensional momentum on a
regular observer’s time line and the result was not related to changing
sign of the space curvature: particles with either the direct or reverse
flow of time may either exist in positive or negative curvature spaces.

These results obtained by geometric methods of the General Theory
of Relativity inevitably affect our view of matter and cosmology of our
Universe.

In §5.2 we are going to obtain the energy-momentum tensor of vac-
uum and in the same time a formula for its observable density. We
will also introduce a classification of matter according to the obtained
forms of the energy-momentum tensor (namely — T-classification). In
§5.3 we are going to look at physical properties of vacuum in Einstein
spaces of the kind I; in particular, we will discuss physical properties of
vacuum in de Sitter space and make conclusions on the global structure
of the Universe. Following this approach in §5.4 we will set forth the
concept of origin and development of the Universe as a result of the
Inversion Explosion from the pra-particle that possessed some specific
properties. In §5.5 we will obtain a formula for non-Newtonian gravi-
tational inertial force, which is proportional to distance, §5.6 and §5.7
will focus on collapse in a Schwarzschild space (gravitational collapse, a
gravitational collapsar) and in a de Sitter space (inflational collapse, an
inflanton). In §5.8 it will be shown that our Universe and the mirror
Universe are worlds with mirror time that co-exist in a de Sitter space
with four-dimensional negative curvature. Also we will set forth phys-
ical conditions, which allow transition through the membrane which
separates our world and the mirror Universe.

§5.2 The observable density of vacuum. Introducing T-
classification of matter

The Einstein equations (the field equations in Einstein’s theory of grav-
itation) are functions which link the space curvature to distribution of
matter. Generally they are Rαβ − 1

2
gαβR=−κ Tαβ +λgαβ . The left

hand side, as it is known, describes geometry of the space, while the
right hand side describes matter filled into the space. The sign of the
second term depends on that of λ. As we are going to see, the sign of λ,
and so the behaviour of Newtonian gravitation (attraction or repulsion)
is directly linked to the sign of the vacuum density.

Einstein spaces are defined by the condition Tαβ ∼ gαβ , the field
equations for them are Rαβ = kgαβ . Such field equations can exist in
two cases: a) where Tαβ 6=0, i. e. in a substance; b) where Tαβ =0, i. e. in
vacuum. But because in Einstein spaces, filled with vacuum, the energy-
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momentum tensor equals zero, it can not be proportional to the metric
tensor that contradicts the definition of Einstein spaces (Tαβ ∼ gαβ). So
what is the problem here? In the absence of any substance, but in the
presence of vacuum, the field equations are Rαβ − 1

2
gαβR=λgαβ , so the

space curvature is produced by λ-fields (non-Newtonian fields of grav-
itation) rather than by substances. In the absence of both substances
and λ-fields we have Rαβ =0, so the space is empty but generally it is
not flat.

As a result we can see that λ-fields and vacuum are practically the
same thing, so vacuum is a non-Newtonian field of gravitation. We will
call this point of the theory the physical definition of vacuum. Hence
λ-fields are action of vacuum potential.

This means that the term λgαβ can not be lost in the field equations
in vacuum, no matter how small it is, because it describes vacuum,
which is one of the reasons that make the space curved. Then the field
equations Rαβ − 1

2
gαβR=−κ Tαβ +λgαβ can be put down as follows

Rαβ − 1
2
gαβR = −κ T̃αβ , (5.12)

on the right hand side of which the tensor

T̃αβ = Tαβ + T̆αβ = Tαβ − λ

κ
gαβ (5.13)

is the energy-momentum tensor which describes matter in general (both
substance and vacuum). The first term here is the energy-momentum
tensor of the substance. The second term

T̆αβ = − λ
κ
gαβ (5.14)

is analogous to the energy-momentum tensor for vacuum.
Therefore, because Einstein spaces may be filled with vacuum, their

mathematical definition is better to be set forth in a more general form
to take care of the presence of both substance and vacuum (λ-fields):
T̃αβ ∼ gαβ . In particular, doing this helps to avoid contradictions when
considering Einstein empty spaces.

Note, the obtained formula for the energy-momentum tensor of vac-
uum (5.14) is a direct consequence of the field equations in general form.

If λ> 0 (the non-Newtonian forces of gravitation repulsion) the ob-
servable density of vacuum is negative

ρ̆ =
T̆00

g00
= − λ

κ
= −|λ|

κ
< 0 , (5.15)
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while if λ< 0 (the non-Newtonian forces of gravitation attraction) the
observable density of vacuum is, to the contrary, positive

ρ̆ =
T̆00

g00
= − λ

κ
=
|λ|
κ

> 0 . (5.16)

The latter fact, as we will see in §5.3, is of great importance, because
a de Sitter space with λ< 0, being a constant-negative curvature space∗

filled with vacuum only (no substance present), best fits our observation
data on our Universe in general.

Therefore proceeding from studies by Petrov and Gliner and tak-
ing into account our note on existence of the energy-momentum tensor
and, hence, physical properties in vacuum (λ-fields), we can set forth
a “geometric” classification of states of matter according to its energy-
momentum tensor. We will call this T-classification of matter :

I) Emptiness: Tαβ = 0, λ= 0 (a space-time without matter), so
that the field equations are Rαβ =0;

II) Vacuum: Tαβ = 0, λ 6=0 (produced by λ-fields), so the field
equations are Gαβ =−λgαβ ;

III) µ-vacuum: Tαβ =µgαβ , µ= const (a vacuum-like state of the
substance, filled into the space), in this case the field equations
are Gαβ =−κµgαβ ;

IV) Substance: Tαβ 6= 0, Tαβ 6∼ gαβ (this state comprises both a reg-
ular substance and electromagnetic fields).

Generally the energy-momentum tensor of substance (kind IV in
T-classification) is not proportional to the metric tensor. On the other
hand, there are states of substance in which the energy-momentum ten-
sor contains a term proportional to the metric tensor, but because it
also contains other terms so it is not µ-vacuum. Such, for instance, is
an ideal fluid

Tαβ =
(
ρ− p

c2

)
UαUβ − p

c2
gαβ , (5.17)

where p is the fluid pressure, and also electromagnetic fields

Tαβ = FρσF
ρσgαβ − FασF

·σ
β· , (5.18)

where FρσF ρσ is the first invariant of an electromagnetic field under
consideration (3.27), Fαβ is the Maxwell tensor. If p= ρc2 (a substance
inside atomic nuclei) and p = const, the energy-momentum tensor of
the ideal fluid seems to be proportional to the metric tensor.

∗We mean here the Riemannian four-dimensional curvature.
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But in the next section, §5.3, we will show that the state equation
of µ-vacuum has fully different form p=−ρc2 (the state of inflation,
expansion of the media in the case of its positive density). Hence the
pressure and density in atomic nuclei should not be constant as to pre-
vent transition of their inner substance into a vacuum-like state.

Noteworthy, this T-classification, just like the field equations, is only
about distribution of matter which affects the space curvature, but not
about test-particles — material points whose masses and sizes are so
small that their effect on the space curvature can be neglected. There-
fore the energy-momentum tensor is not defined for particles, and they
should be considered beyond this T-classification.

§5.3 The physical properties of vacuum. Cosmology

Einstein spaces are defined by field equations like Rαβ = kgαβ , where
k= const. With λ 6= 0 and Tαβ =µgαβ the space is filled with mat-
ter, whose energy-momentum tensor is proportional to the fundamental
metric tensor, so this matter is µ-vacuum. As we saw in the previous
section, §5.2, for vacuum the energy-momentum tensor is also propor-
tional to the metric tensor. This implies that physical properties of
vacuum and those of µ-vacuum are mostly the same, except for a scalar
coefficient which defines the composition of the matter (λ-fields or a sub-
stance) and the absolute values of the acting forces. Therefore we are
going to consider an Einstein space filled with vacuum and µ-vacuum.
In this case the field equations become

Rαβ − 1
2
gαβR = − (κµ− λ) gαβ . (5.19)

Putting them down in a mixed form and then contracting we arrive
at the scalar curvature

R = 4 (κµ− λ) , (5.20)

substituting it into the initial equations (5.19) we obtain the field equa-
tions in their final form

Rαβ = (κµ− λ) gαβ , (5.21)

where κµ−λ= const= k.
Let us look at physical properties of vacuum and µ-vacuum. We

deduce chr.inv.-projections of the energy-momentum tensor: the ob-
servable density of matter ρ= T00

g00
, the observable density of momentum

J i = c T i
0√
g00

, and the observable strength tensor U ik = c2T ik.
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For the energy-momentum tensor of µ-vacuum Tαβ =µgαβ chr.inv.-
projections are

ρ =
T00

g00
= µ , (5.22)

J i =
c T i0√
g00

= 0 , (5.23)

U ik = c2T ik = −µc2hik = −ρc2hik. (5.24)

For the energy-momentum tensor T̆αβ =− λ
κ gαβ (5.14), which de-

scribes vacuum, chr.inv.-projections are

ρ̆ =
T̆00

g00
= − λ

κ
, (5.25)

J̆ i =
c T̆ i0√
g00

= 0 , (5.26)

Ŭ ik = c2 T̆ ik =
λ

κ
c2hik = − ρ̆c2hik. (5.27)

From here we see that vacuum (λ-fields) and µ-vacuum have a con-
stant density, so these are uniformly distributed matter. They are also
non-emitting medias, because the energy flux c2J i in them is zero

c2J̆ i =
c3 T̆ i0√
g00

= 0 , c2J i =
c3T i0√
g00

= 0 . (5.28)

In the reference frame, which accompanies the medium, the strength
tensor equals (see Zelmanov’s book [9])

Uik = p0hik − αik = phik − βik , (5.29)

where p0 is the equilibrium pressure, defined from the state equation,
p is the true pressure, αik is the viscosity of the 2nd kind (the viscous
strength tensor), and βik =αik − 1

3
αhik is its anisotropic part (the vis-

cosity of the 1st kind, which reveal itself in anisotropic deformations),
where α=αii is the spur of the tensor αik.

Formulating the strength tensor for µ-vacuum (5.24) in the reference
frame, which accompanies µ-vacuum itself, we arrive at

Uik = phik = −ρc2hik , (5.30)
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and similarly to the strength tensor of vacuum (5.27), we have

Ŭik = p̆hik = − ρ̆c2hik . (5.31)

This implies that vacuum and µ-vacuum are non-viscous media
(αik =0, βik =0) whose equations of state∗ is

p̆ = − ρ̆c2, p = −ρc2. (5.32)

This state is referred to as inflation because at the positive density
of the matter the pressure becomes negative, so the media expands.

These are physical properties of vacuum and µ-vacuum: they are ho-
mogeneous ρ= const, non-viscous αik =βik =0, and non-emitting J i =0
medias filled in the state of inflation.

Having these general physical properties as a base, let us turn to
analysis of vacuum, which fills constant curvature spaces, in particular,
a de Sitter space, which is the closest approximation of our Universe as
a whole.

In constant curvature spaces the Riemann-Christoffel tensor is (see
Chapter VII in Synge’s book [36])

Rαβγδ = K (gαγ gβδ − gαδ gβγ) , K = const. (5.33)

Having the tensor contracted by two indices, we obtain a formula for
the Ricci tensor, which on subsequent contraction allows us to deduce
the scalar curvature. As a result we have

Rαβ = −3Kgαβ , R = −12K . (5.34)

Assuming our Universe is a constant curvature space, we obtain the
field equations formulated with the curvature

3Kgαβ = −κ Tαβ + λgαβ . (5.35)

We put them down in Synge’s notation as (λ− 3K) gαβ =κ Tαβ .
Then the energy-momentum tensor of a substance in constant curvature
spaces is

Tαβ =
λ− 3K
κ

gαβ . (5.36)

∗The state equation of a distributed matter is the relationship between its pres-
sure and the density. For instance, p =0 is the state equation of a dust media, p = ρc2

is the state equation of a matter in atomic nuclei, p = 1
3
ρc2 is the state equation of

an ultra-relativistic gas.
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From here we see that in constant curvature space the problem of
geometrization of matter solves by itself: the energy-momentum tensor
(5.36) contains the metric tensor and constants only.

De Sitter space is a constant curvature space, where Tαβ =0 and
λ 6=0, so it is filled with vacuum (any substance is absent). Then having
the energy-momentum tensor of substance (5.36) equated to zero we
obtain the same result as Synge’s results: in de Sitter spaces λ= 3K.

Taking into account this relationship, the formula for the observable
density of vacuum in de Sitter world becomes

ρ̆ = − λ
κ

= −3K
κ

= −3Kc2

8πG
. (5.37)

Now we are arriving at the key question about the sign of the four-
dimensional curvature in our Universe. The reason to ask this question
is not only curiosity. Depending on the answer, the de Sitter world cos-
mology we have built may fit the available data of observations or may
lead to results totally alien to commonly accepted astronomical facts.

As a matter of fact, given that the four-dimensional curvature is
positive K> 0 the vacuum density must be negative and hence the in-
flational pressure must be greater than zero — vacuum contracts. Then
because of λ> 0, non-Newtonian forces of gravitation are those of re-
pulsion. We will then observe an encounter between two actions: at
the positive inflational pressure of vacuum, which tend to compress the
space, we will observe repulsion forces of non-Newtonian gravitation.
The result will be as follows: at first, because λ-forces are proportional
to distance, their expanding effect would grow along with growth of the
radius of the Universe and the expansion would accelerate. Secondly,
if the Universe has ever been of size less than the distance, at which
the contracting pressure of vacuum is equal to the expanding action of
λ-forces, the expansion would become impossible.

If to the contrary the four-dimensional curvature is negative K< 0,
the inflational pressure will be less than zero — vacuum expands. Be-
sides, because in this case λ< 0, non-Newtonian forces of gravitation are
those of attraction. Then the Universe can keep expanding from nearly a
point until the vacuum density becomes so low that its expanding action
becomes equal to the compressing action of non-Newtonian λ-forces.

As seen, the question of the curvature sign is the most crucial ques-
tion for cosmology of our Universe.

But human perception is three-dimensional and a regular observer
can not judge anything on sign of the four-dimensional curvature by
means of direct observations. What can be done then? The way out of
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the situation is in the theory of chronometric invariants — a method to
define physical observable quantities.

Among the goals that Zelmanov set for himself was to build the
curvature tensor of an observer’s spatial section (the observable three-
dimensional space — inhomogeneous, non-holonomic, deformed, and
curved, in general case). The Zelmanov curvature tensor (see formula
5.40 — for the tensor, and 5.41 — for the contractions of it) possesses
all properties of the Riemann-Christoffel tensor in the observer’s three-
dimensional space and also, in the same time, possesses the property of
chronometric invariance.

Zelmanov decided to build such a tensor using similarity with the
Riemann-Christoffel tensor, which results from non-commutativity of
the second derivatives from an arbitrary vector in a given space. De-
ducing the difference of the second chr.inv.-derivatives from an arbitrary
vector, he arrived at the equation

∗∇i ∗∇kQl − ∗∇k ∗∇iQl =
2Aik
c2

∗∂Ql
∂t

+H ...j
lki·Qj , (5.38)

which contains the chr.inv.-tensor

H ...j
lki· =

∗∂∆j
il

∂xk
−
∗∂∆j

kl

∂xi
+ ∆m

il ∆
j
km −∆m

kl∆
j
im , (5.39)

which is similar to Schouten’s tensor from the theory of non-holonomic
manifolds∗. But in a general case in the presence of the space rotation
(Aik 6=0), the tensor H ...j

lki· is algebraically different from the Riemann-
Christoffel tensor. Therefore Zelmanov introduced a new tensor

Clkij =
1
4

(Hlkij −Hjkil +Hklji −Hiljk) , (5.40)

which was not only chr.inv.-quantity, but it also possessed all algebraic
properties of the Riemann-Christoffel tensor. Therefore Clkij is the cur-
vature tensor of the three-dimensional observable space of an observer,
who accompanies his reference body. Having it contracted, we obtain
the chr.inv.-quantities

Ckj = C ...ikij· = himCkimj , C = Cjj = hljClj , (5.41)

∗Schouten had built the theory of non-holonomic manifolds for an arbitrary di-
mension space, considering an m-dimensional sub-space in an n-dimensional space,
where m < n [37]. In the theory of chronometric invariants we actually consider
an observer’s (m =3)-dimensional sub-space in the (n =4)-dimensional pseudo-
Riemannian space. In the same time the theory of chronometric invariants is appli-
cable to any metric space, in general — see [9].
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which also describe the curvature of the three-dimensional space. Be-
cause Clkij , Ckj , and C are chr.inv.-quantities, they are physical ob-
servable quantities for this observer. In particular, the C is the three-
dimensional observable curvature [9].

Concerning our analysis of physical properties of vacuum and cos-
mology, we need to know how the observable three-dimensional curva-
ture C is linked to the four-dimensional curvature K in general and in
a de Sitter space in particular. We are going to tackle this problem
step-by-step.

The Riemann-Christoffel four-dimensional curvature tensor is a ten-
sor of the 4th-rank, hence it has n4 =256 components, out of which
only 20 are significant. The remaining components are either zeroes or
identical to each other, because the Riemann-Christoffel tensor is:

a) Symmetric by each pair of its indices Rαβγδ =Rγδαβ ;
b) Antisymmetric in respect of transposition inside each pair of the

indices Rαβγδ =−Rβαγδ, Rαβγδ =−Rαβδγ ;
c) Its components are constructed with the property Rα(βγδ) =0,

where round brackets stand for (β, γ, δ)-transpositions.
Significant components of the Riemann-Christoffel tensor produce

three chr.inv.-tensors

Xik = −c2 R
·i·k
0·0·
g00

, Y ijk = −c R
·ijk
0...√
g00

, Zijkl = c2Rijkl. (5.42)

The tensor Xik has 6 components, Y ijk has 9 components, while
Zijkl has only 9 due to its symmetry. Components of the second tensor
are constructed by the property Y(ijk) =Yijk +Yjki +Ykij =0. Substi-
tuting the necessary components of the Riemann-Christoffel tensor [9],
and having indices lowered, we obtain

Xij=
∗∂Dij

∂t
−(
Dl
i+A

·l
i·
)
(Djl+Ajl)+

1
2

(∗∇iFj+∗∇jFi)− 1
c2
FiFj , (5.43)

Yijk = ∗∇i (Djk +Ajk)− ∗∇j (Dik +Aik) +
2
c2
AijFk , (5.44)

Ziklj = DikDlj−DilDkj+AikAlj−AilAkj+2AijAkl−c2Ciklj . (5.45)

From these Zelmanov formulae we see that spatial observable com-
ponents of the Riemann-Christoffel tensor (5.45) are directly linked to
the chr.inv.-tensor of the three-dimensional observable curvature Ciklj .

Let us deduce a formula for the three-dimensional observable curva-
ture in a constant curvature space.
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In such a space the Riemann-Christoffel tensor is as in (5.33), then

R0i0k = −Khikg00 , (5.46)

R0ijk =
K

c

√
g00 (vjhik − vkhij) , (5.47)

Rijkl = K
[
hikhjl − hilhkj +

1
c2
vi (vlhkj − vkhjl) +

+
1
c2
vj (vkhil − vlhik)

]
,

(5.48)

Having deduced its chr.inv.-projections (5.42), we obtain

Xik = c2Khik, Y ijk = 0 , Zijkl = c2K
(
hikhjl − hilhjk

)
, (5.49)

hence the spatial observable components with lower indices are

Zijkl = c2K (hikhjl − hilhjk) . (5.50)

Contracting this quantity step-by-step, we obtain

Zjl = Zi...·jil = 2c2Khjl , Z = Zjj = 6c2K . (5.51)

On the other hand, we know the formula for Zijkl in an arbitrary
curvature space (5.45). The formula contains the three-dimensional
observable curvature. Evidently it is true for K = const as well. Then
having the general formula (5.45) contracted, we have

Zil = DikD
k
l −DilD +AikA

·k
l· + 2AikAk··l − c2Cil , (5.52)

Z = hilZil = DikD
ik −D2 −AikA

ik − c2C . (5.53)

In a constant curvature space we have Z =6c2K (5.51), hence in
such a space the relationship between the four-dimensional curvature
K and the three-dimensional observable curvature C is

6c2K = DikD
ik −D2 −AikA

ik − c2C . (5.54)

We see that in the absence of space rotation and deformation, the
four-dimensional curvature has the opposite sign with respect to the
three-dimensional observable curvature. In de Sitter spaces (because
there is no rotation or deformation) we have

K = − 1
6
C , (5.55)

so there the three-dimensional observable curvature is C =−6K.
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Now we are able to build a model for development of our Universe
relying on two experimental facts: a) the sign of the observable density
of matter, and b) the sign of the observable three-dimensional curvature.

At first, our everyday experience shows that the density of matter
in our Universe is positive however sparse it may be. Then to ensure
that the vacuum density (5.37) is positive, the cosmological term should
be negative λ< 0 (non-Newtonian forces attract) and hence the four-
dimensional curvature should be negative K< 0.

Secondly, as Ivanenko referred to McVittie’s speech [38] in his preface
to the Russian edition∗ of Weber’s book [29]:

“Though the data of cosmological observations are evidently not
exact, but, for instance, McVittie maintains that the best results
of observation of the Hubble red shift to H ≈ 75 km/sec Mpc and
of average density of matter ρ≈ 10−31 gram/cm3 support the idea
of the non-disappearing cosmological term λ< 0”.

As a result, the vacuum density in our Universe is positive and
the three-dimensional observable curvature is C > 0. Hence the four-
dimensional curvature isK< 0 and hence the cosmological term is λ< 0.
Then from (5.37) we obtain the observable density of vacuum

ρ̆ = − λ
κ

= −3K
κ

=
C

2κ
> 0 , (5.56)

so the inflational pressure of vacuum is negative p̆=−ρ̆c2 (vacuum ex-
pands). Because homogeneous distribution of matter in the Universe
is among the physical properties of vacuum, the negative inflational
pressure of vacuum also implies expansion of the Universe as a whole.

Therefore the observable three-dimensional space of our Universe
(C > 0) is a three-dimensional expanding sphere, which is a sub-space
of the four-dimensional space-time (K< 0, a space whose geometry is a
generalized case of Lobachewski-Bolyai geometry).

Of course a de Sitter space is merely an approximation of our Uni-
verse. Astronomical data say that though “islands” of masses are occa-
sional and hardly affect the global curvature, their effect on the space
curvature in their vicinities is significant (deviation of light rays and
similar effects). But in our study of the Universe as a whole we can
neglect occasional “islands” of substance and local non-uniformities in
the curvature. In such cases a de Sitter space with the negative four-
dimensional curvature (so, the observable three-dimensional curvature
is positive) can be assumed to be the background of our Universe.

∗Published by Foreign Literature, Moscow, 1962.
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§5.4 The concept of the Inversion Explosion of the Uni-
verse

From the previous section, §5.3, we know that in a de Sitter space
λ=3K, so that according to its physical sense λ-term is approximately
the same as the curvature. For a three-dimensional spherical sub-space
the observable curvature C =−6K is

C =
1
R2

, (5.57)

where R is the observable radius of the curvature (the sphere radius).
Then the four-dimensional curvature of the de Sitter space is

K = − 1
6R2

, (5.58)

i. e. the larger the radius of the sphere, the smaller the curvature K. Ac-
cording to astronomical estimates, our Universe emerged 10÷20 billion
years ago. Hence the distance covered by a photon since it was born at
the dawn of the Universe is RH ≈ 1027 ÷ 1028 cm. This distance is re-
ferred to as the radius of the horizon of events. Assuming our Universe
as whole to be a de Sitter space with K< 0, for the four-dimensional
curvature and hence for λ-term λ= 3K we have the estimate

K = − 1
6R2

H

≈ −10−56 cm−2. (5.59)

On the other hand, similar figures for the event horizon, the cur-
vature and λ-term are available from Roberto di Bartini [39, 40], who
studied relationships between physical constants from topological view-
point. In his works the space radius of the Universe is interpreted as
the longest distance, defined from topological context. According to
di Bartini’s inversion relationship

Rρ

r2
= 1 , (5.60)

the space radius R (the longest distance) is the inversion image of the
gravitational radius of electron ρ=1.347×10−55 cm with respect to the
radius of a spherical inversion r=2.818×10−13 cm, which is the same like
the classical radius of electron (according to di Bartini — the radius of
the spherical inversion). The space radius (the largest radius of the
event horizon) equals

R = 5.895×1029 cm . (5.61)
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From topological context di Bartini defined the space mass (the mass
within the space radius) and the space density as

M = 3.986×1057 gram , ρ = 9.87×10−34 gram/cm3. (5.62)

As a matter of fact, studies done by di Bartini say that the space
of the Universe (from the classical radius of electron up to the event
horizon) is an external inversion image of the inner space of a certain
particle with the size of electron (its radius can be estimated within the
range from the classical radius of electron up to its gravitational radius).
From other viewpoints the particle is different from electron: its mass
equals the space mass M =3.986×1057 gram, while that of electron is
m=9.11×10−28 gram.

The space within the particle can not be represented as a de Sitter
space. As a matter of fact, the vacuum density in a de Sitter space with
K< 0 and the curvature observable radius r=2.818×10−13 cm is

ρ̆ = −3K
κ

= − 1
2κ

r2 = 3.39×1051 gram/cm3, (5.63)

while that inside the di Bartini particle is

ρ =
M

2π2r3
= 9.03×1093 gram/cm3. (5.64)

On the other hand, an outer space, being the inversion image of
the inner space, according to its properties can be assumed as de Sitter
space. So forth let us assume that a space with the curvature radius,
equal to the di Bartini radius R=5.895×1029 cm, is a de Sitter space
with K< 0. Then the four-dimensional curvature and λ-term are

K = − 1
6R2

= −4.8×10−61 cm−2, (5.65)

λ = 3K = − 1
2R2

= −14.4×10−61 cm−2, (5.66)

so they are five orders of magnitude less than the observed estimate,
which equals |λ|< 10−56. This can be explained because the Universe
keeps on expanding and in a distant future numerical values of the space
curvature and the cosmological term will grow down to approach the
figures in (5.65, 5.66), calculated for the longest distance (the space
radius). The estimated density of vacuum in the de Sitter space within
the space radius is

ρ̆ = −3K
κ

= −3Kc2

8πG
≈ 7.7×10−34 gram/cm3, (5.67)
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so it is also less than the observed average density in the Universe
(5÷10×10−30 gram/cm3) and it is close to the density of matter within
the space radius according to di Bartini 9.87×10−34 gram/cm3.

To find out how long our Universe will keep on expanding; we
have to define the difference between the observed radius of the event
horizon RH and the curvature radius R. Assuming the maximal ra-
dius of the event horizon in the Universe RH(max) equal to the space
radius (the outer inversion distance), which according to di Bartini
is R=RH(max) =5.895×1029 cm (5.61), and comparing it with the ob-
served radius of the event horizon (RH ≈ 1027÷1028 cm), we obtain
∆R=RH(max)−RH ≈ 5.8×1029 cm, so the time left for the expansion
of our Universe is

t =
∆R
c

≈ 600 billion years. (5.68)

These calculations of the vacuum density and other properties of the
de Sitter space pave the way for conclusions on the origin and evolu-
tion of our Universe and allow the only interpretation of the di Bartini
inversion relationship. We will call it the cosmological concept of Inver-
sion Explosion. This concept is based on our analysis of properties of
the de Sitter space using geometric methods of the General Theory of
Relativity, and the di Bartini inversion relationship as a result of the
contemporary knowledge of physical constants. We can set forth the
concept as follows:

In the beginning there existed a single pra-particle with a radius
equal to the classical radius of electron and with a mass equal to
the mass of the entire Universe.

Then the inversion explosion occurred: a topological transition
inverted matter in the pra-particle with respect to its surface into
the outer world, which gave birth to our expanding Universe. At
present, 10÷20 billion years since the explosion, the Universe is in
the early stage of its evolution. The expansion will continue for
almost 600 billion years.

At the end of this period the expanding Universe will reach its
curvature radius, at which non-Newtonian forces of gravitation,
proportional to distance, will be equal to the inflational expanding
pressure of vacuum. The expansion will discontinue and stability
will be reached, which will last until the next inversion topological
transition occurs.

Parameters of matter at stages of the evolution are calculated in
Table 5.1 — the pra-particle before the inversion explosion, the stage
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Evolution Age, Space Density, λ-term,
stage years radius, cm gram/cm3 cm−2

Pra-particle 0 2.82×10−13 9.03×1093 ?

Present time 10÷20×109 1027÷1028 5÷10×10−30 < 10−56

After expansion 623×109 5.89×1029 9.87×10−34 1.44×10−60

Table 5.1: Parameters of matter and space at different stages of the evolution
of the Universe.

of the inversion expansion at the present time, and the stage after the
expansion.

The reasons for this topological transition, which led to the spheri-
cal inversion of matter from the pra-particle (after its Inversion Explo-
sion), remain unknown. . . but so do the reasons for the “emergence”
of the Universe in some other contemporary cosmological concepts, for
instance, in the concept of Big Bang from a singular point.

§5.5 Non-Newtonian gravitational forces

Einstein spaces of the kind I, including constant curvature spaces, be-
sides having occasional “islands of matter” may be either empty or filled
with a homogeneous matter. But an empty Einstein space of the kind I
(its curvature is K =0) is dramatically different from non- empty spaces
(K = const 6=0).

To make our discourse more concrete, let us look at the most typical
examples of empty and non-empty Einstein spaces of the kind I.

If an island of mass is a ball (spherically symmetric distribution of
mass in the island) located in emptiness, then the curvature of such a
space is derived from Newtonian field of gravitation, produced by the
island, and such a space is not a constant curvature space. At an infinite
distance from the island the space becomes flat, i. e. a constant curva-
ture space with K =0. A typical example of the field of gravitation,
produced by a spherically symmetric island of mass in emptiness is a
field described by Schwarzschild’s metric

ds2 =
(
1− rg

r

)
c2dt2 − dr2

1− rg

r

− r2
(
dθ2 + sin2θ dϕ2

)
, (5.69)

where r is the distance from the island, rg is the island’s gravitational
radius.

No space rotation or deformation exist in a Schwarzschild space.
Components of the chr.inv.-vector of gravitational inertial force (1.38)
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in such a space can be deduced as follows. According to the metric
(5.69), the component g00 is

g00 = 1− rg
r
, (5.70)

then, differentiating the gravitational potential w = c2(1−√g00) with
respect to xi, we obtain

∂w
∂xi

= − c2

2
√
g00

∂g00
∂xi

. (5.71)

Substituting it into the formula for gravitational inertial force (1.38),
in the absence of space rotation we have

F1 = −c
2rg
2r2

1

1− rg

r

, F 1 = −c
2rg
2r2

. (5.72)

Therefore, the vector F i in a Schwarzschild space describes a Newto-
nian gravitational force, which is reciprocal to the square of the distance
r from the gravitating mass.

If a space is filled with a spherically symmetric distribution of vac-
uum and does not include any island of mass, its curvature will be
everywhere the same. An example of such a field is that described by
de Sitter’s metric∗

ds2 =
(

1− λr2

3

)
c2dt2 − dr2

1− λr2

3

− r2
(
dθ2 + sin2θ dϕ2

)
. (5.73)

Note that though any de Sitter space has no islands of mass, it
produces Newtonian fields of gravitation. So, in a de Sitter space we
can consider motion of small test-particles, whose Newtonian fields are
so weak that they can be neglected.

Any de Sitter metric space is a constant curvature, which becomes
flat only in the absence of λ-fields. No rotation or deformation exist
there, while components of the chr.inv.-vector of gravitational inertial
force are

F1 =
λc2

3
r

1− λr2

3

, F 1 =
λc2

3
r , (5.74)

∗According to the latest studies [41], de Sitter’s space metric (5.73) meets the
condition of spherical symmetry in only ultimate case where λ =0, while in the
common case where λ 6=0 de Sitter’s space can be spherically symmetric only if it
has zero volume (i.e. only if de Sitter’s space degenerates into a point). This means
that an actual de Sitter space (wherein λ 6=0, i.e. a space filled by vacuum) shouldn’t
have the property of spherical symmetry.
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so the vector F i in a de Sitter space describes non-Newtonian gravi-
tational forces, proportional to r: if λ< 0, these are attraction forces,
if λ> 0 these are repulsion forces. Therefore forces of non-Newtonian
gravitation (λ-forces) grow along with distance at which they act.

Therefore we can see the principal difference between empty and
non-empty Einstein spaces of the kind I: in empty spaces with an island
of mass only Newtonian forces exist, while in the spaces filled with
vacuum without islands of mass there are non-Newtonian gravitation
forces only. An example of a “mixed” space of the kind I is that with
Kottler’s metric [42]

ds2=
(
1+

ar2

3
+
b

r

)
c2dt2− dr2

1+ar2

3
+ b
r

−r2(dθ2+sin2θ dϕ2
)

F1 = − c2
ar
3
− b

2r2

1 + ar2

3
+ b

r

, F 1 = − c2
(
ar

3
− b

2r2

)





. (5.75)

where both Newtonian and λ-forces exist: it is filled with vacuum and
includes islands of mass, the latter which produce Newtonian forces
of gravitation. On the other hand, Kottler proposed his metric with
two unknown constants a and b to define which additional constraints
are required. Hence despite some attractive features of Kottler’s met-
ric, only two of its “ultimate” cases are of practical interest to us —
Schwarzschild’s metric (Newtonian forces of gravitation) and de Sitter’s
metric (λ-forces — non-Newtonian forces of gravitation).

§5.6 Gravitational collapse

Evidently, representing our Universe as either a de Sitter space (filled
with vacuum without islands of mass) or a Schwarzschild space (an
island of mass in emptiness) is a certain approximating assumption. The
real metric of our world is “something in between”. Nevertheless, some
problems deal with non-Newtonian gravitation (produced by vacuum),
where influence of concentrated masses can be neglected, de Sitter’s
metric is optimal. And vice versa, in problems with gravitating fields
of concentrated masses Schwarzschild’s metric is more reasonable. An
illustrative example of such a “split” of the models is collapse — a state,
where g00 =0.

Gravitational potential w for an arbitrary metric is (1.38). Then

g00 =
(
1− w

c2

)2

= 1− 2w
c2

+
w2

c4
, (5.76)
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so collapse g00 = 0 occurs at w = c2.
Commonly, gravitational collapse is considered — compression of

an island of mass under action of Newtonian gravitation until the mass
reaches a very small size equal to its gravitational radius. Hence “strict”
gravitational collapse occurs in a Schwarzschild metric space (5.69),
because only Newtonian field of a spherically symmetric island of mass
in emptiness is present.

At larger distances from the concentrated mass the gravitational field
becomes weak and Newton’s law of gravitation becomes true. Hence in
a weak field of Newtonian gravitation the field potential is

w =
GM

r
, (5.77)

where G is the Gauss gravitational constant, M is the mass of the
island, which produced that gravitational field. Because in the weak
field the third term in (5.76) is so small that it can be neglected, hence
the formula for g00 becomes

g00 = 1− 2GM
c2r

, (5.78)

so gravitational collapse in a Schwarzschild space occurs if

2GM
c2r

= 1 , (5.79)

where the quantity

rg =
2GM
c2

, (5.80)

which has the dimension of length, is referred to as the gravitational
radius of the island of mass. Then g00 can be presented as follows

g00 = 1− rg
r
. (5.81)

From here we see that the collapse occurs in a Schwarzschild space
at r= rg.

In such a case, all the mass of the spherically symmetric island (the
source of the Newtonian field) becomes concentrated within its gravita-
tional radius. Therefore the surface of such an island of mass is referred
to as a Schwarzschild sphere. Such objects are also-called gravitational
collapsar , because within the gravitational radius an escape velocity is
above that of the light velocity so light can not be emitted from such
objects outside.
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As it is easy to see from formula (5.69), in a Schwarzschild field of
gravitation the three-dimensional space does not rotate (g0i =0), hence
an interval of observable time (1.25) is

dτ =
√
g00 dt =

√
1− rg

r
dt , (5.82)

so at the distance r= rg the interval of observable time equals zero
dτ = 0: from the viewpoint of an external observer the time on the
surface of a Schwarzschild sphere stops∗. Inside the Schwarzschild sphere
the interval of observable time becomes imaginary. We can also be sure
that a regular observer who lives on the Earth surface, apparently stays
outside its Schwarzschild sphere with radius of 0.443 cm and he can only
look at process of gravitational collapse from “outside”.

If r= rg then the quantity

g11 = − 1

1− rg

r

(5.83)

grows up to infinity. But the determinant of the metric tensor gαβ is

g = −r4 sin2 θ < 0 , (5.84)

so a space-time area inside a gravitational collapsar is generally not
degenerate, though the collapse is also possible in a zero-space.

At this point a note concerning photometric distance and metric
observable distance should be taken. The quantity r is not a metric
distance along the axis x1 = r, because the metric (5.69) has dr2 with the
coefficient

(
1− rg

r

)−1. The quantity r is a photometric distance defined
as function of illumination, produced by a stable source of light and
reciprocal to the square of distance. In other words, r is the radius of
a non-Euclidean sphere with the surface area 4πr2 [9].

∗At g00 =0 (collapse) an interval of observable time (1.25) is dτ =− 1

c2
vidxi,

where vi =−c g0i√
g00

is the linear velocity of the space rotation (1.37). Only assuming

goi =0 and vi =0 the condition of collapse can be defined correctly: for an external
observer the observable time flow on the surface of a collapsar stops dτ =0, while a
four-dimensional interval is ds2 =−dσ2 = gik dxidxk. From here a single conclusion
can be made: on the surface of a collapsar the space is holonomic, so the collapsar
does not rotate.

As it was shown in the study [19], a fully degenerate space-time (so-called zero-
space, where ds =0, dτ =0, and dσ =0 are true) collapses if it does not rotate. Here
we proved a more general theorem: if g00 = 0 the space is holonomic irrespective of
whether it is degenerate (g = 0, a zero-space) or for it g < 0 (the space-time of the
General Theory of Relativity).
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According to the theory of chronometric invariants (physical observ-
able quantities in the General Theory of Relativity), an elementary ob-
servable metric distance between two points in a Schwarzschild space is

dσ =

√
dr2

1− rg

r

+ r2
(
dθ2 + sin2 θ dϕ2

)
. (5.85)

At θ= const and ϕ= const it is

σ =
∫ r2

r1

√
h11 dr =

∫ r2

r1

dr√
1− rg

r

(5.86)

and it is not the same as the photometric distance r.
Let us define the space-time metric inside a Schwarzschild sphere.

So forth, we formulate the external metric (5.69) for a radius r < rg. As
a result we have

ds2 = −
(rg
r
− 1

)
c2dt2 +

dr2

rg

r − 1
− r2

(
dθ2 + sin2θ dϕ2

)
. (5.87)

Introducing notations r= ct̃ and ct= r̃ we obtain

ds2 =
c2dt̃2

rg

ct̃
− 1

−
(
rg

ct̃
− 1

)
dr̃2 − c2dt̃2

(
dθ2 + sin2θ dϕ2

)
, (5.88)

so the space-time metric inside the Schwarzschild sphere is similar to
the external metric, provided that the time coordinate and the spatial
coordinate r swap their roles: the photometric distance r outside the
gravitational collapsar is the coordinate time ct̃ inside, while outside
the gravitational collapsar the coordinate time ct is the photometric
distance r̃ inside.

From the first term of the Schwarzschild inner metric (5.88) we see
that it is not stationary and it exists within a limited period of time

t̃ =
rg
c
. (5.89)

For the Sun, whose gravitational radius is 3 km, the life span of
such a space would be approximately < 10−5 sec. For the Earth, whose
gravitational radius is as small as 0.443 cm, the life span of the inner
Schwarzschild metric would be even less at 1.5×10−11 sec.

Comparison of the metrics inside a gravitational collapsar (5.88) and
outside the collapsed body (5.69) implies that:
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a) The space of both metrics is holonomic, i. e. it does not rotate
(Aik =0);

b) The external metric is stationary, the vector of gravitational iner-
tial force is F 1 =−GM

r2
;

c) The internal metric is non-stationary, the vector of gravitational
inertial force is zero.

Let us give more detailed analysis of the external and internal met-
rics. To make the analysis simpler we assume θ= const and ϕ= const,
so that out of all possible spatial directions we limit our study to radial
directions only. Then the external metric is

ds2 = −
(rg
r
− 1

)
c2dt2 +

dr2

rg

r − 1
, (5.90)

while for the internal metric we have

ds2 =
c2dt̃2

rg

ct̃
− 1

−
(
rg

ct̃
− 1

)
dr̃2. (5.91)

Now we will define the physical observable distance (5.86) to the
attracting mass (namely — the gravitational collapsar)

σ =
∫

dr√
1− rg

r

=
√
r (r − rg) + rg ln

(√
r +

√
r − rg

)
+ const (5.92)

along the radial direction r. From here we see: at r= rg the observable
distance is

σg = rg ln
√
rg + const, (5.93)

and it is a constant value.
This means that a Schwarzschild sphere, defined by a photometric

radius rg, for an external observer is a sphere with the observable radius
σg = rg ln√rg + const (5.93). Therefore for an external observer any
gravitational collapsar is a sphere with constant observable radius, on
whose surface his observable time stops.

Let us analyze a gravitational collapsar’s interiors. An interval of
observable time (5.82) inside a Schwarzschild sphere is imaginary for an
external observer

dτ = i

√
rg
r
− 1 dt , (5.94)
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or, in the “interior” coordinates r= ct̃ and ct= r̃ (from viewpoint of an
“inner” observer),

dτ̃ =
1√
rg

ct̃
− 1

dt̃ . (5.95)

Hence for the external observer the collapsar’s internal “imaginary”
time (5.94) stops at its surface, while the “inner” observer sees the pace
of his observable time on the surface growing infinitely.

So, from viewpoint of the external observer, the physical observable
distance inside the collapsar, according to the metric (5.87), is

σ =
∫

dr√
rg

r −1
= −

√
r (r−rg) + rg arctan

√
rg
r
−1 + const, (5.96)

or, from viewpoint of the “inner” observer

σ̃ =
∫ √

rg

ct̃
− 1 dr . (5.97)

From here we see: at r= ct̃= rg for the external observer the ob-
servable distance between any two points converges to a constant, while
for the “inner” observer the observable distance grows down to zero.

In conclusion we will address the question of what happens to parti-
cles, which fall from “outside” on a Schwarzschild sphere along its radial
direction. Its external metric is as follows

ds2 = c2dτ2 − dσ2, dτ =
(
1− rg

r

)
dt , dσ =

dr

1− rg

r

. (5.98)

For real-mass particles ds2> 0, for light-like particles ds2 =0, for
super-light tachyons ds2< 0 (their masses are imaginary). In radial
motion towards the gravitational collapsar these conditions are:

1) Massive real particles:
(
dτ
dt

)2
<c2

(
1− rg

r

)2;

2) Light-like particles:
(
dτ
dt

)2= c2
(
1− rg

r

)2;

3) Imaginary particles-tachyons:
(
dτ
dt

)2
>c2

(
1− rg

r

)2.

On any Schwarzschild sphere we have r= rg, so dτ
dt

=0 there. Hence
any particle, including a light-like particle, will stop there. A four-
dimensional interval on the sphere is

ds2 = −dσ2 < 0 , (5.99)

so it is space-like. This implies that Schwarzschild spheres (gravitational
collapsars) are filled with particles with imaginary rest-mass.
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§5.7 Inflational collapse

There are no islands of mass in de Sitter spaces, hence fields of Newto-
nian gravitation are absent as well — gravitational collapse is impossi-
ble. Nevertheless, the condition g00 =0 is a strictly geometric definition
of collapse, not necessarily related to Newtonian fields. Subsequently,
we can consider collapse in any arbitrary space.

We are going to look at de Sitter’s metric (5.73), which describes a
non-Newtonian field of gravitation in a constant curvature space without
islands of mass (a de Sitter space). In this case collapse may occur due
to non-Newtonian gravitational forces. From de Sitter’s metric (5.73)
we see that

g00 = 1− λr2

3
, (5.100)

so gravitational potential w = c2(1−√g00) in a de Sitter space is

w = c2

(
1−

√
1− λr2

3

)
. (5.101)

Because it is a potential of non-Newtonian gravitation, produced
by vacuum, we will call it λ-potential. From here we see that the
λ-potential is zero, if the de Sitter space is flat so that λ=3K =0.

Because in any de Sitter space λ=3K, hence
1) g00 =1−Kr2> 0 at distances r < 1√

K
;

2) g00 =1−Kr2< 0 at distances r > 1√
K

;

3) g00 =1−Kr2 =0 (collapse) at distances r= 1√
K

.

At curvature K< 0 the numerical value of g00 =1−Kr2 is always
greater than zero. Hence collapse is only possible in a de Sitter space
with K> 0.

In §5.3 we showed that the basic space of our Universe as a whole has
K< 0. But we can assume the presence of local inhomogeneities with
K> 0, which do not affect the space curvature in general. In particular,
on such inhomogeneities collapse may occur. Therefore it is reasonable
to consider a de Sitter space with K> 0 as a local space in the vicinities
of some compact objects.

In de Sitter spaces the three-dimensional observable curvature C
is linked to the four-dimensional curvature with relationship C =−6K
(5.55). Then assuming the observable three-dimensional space to be a
sphere, we obtain C = 1

R2 (5.57) and hence K =− 1
6R2 (5.58), where R

is the observable radius of the curvature. In the case K< 0 the value of
R is real, at K> 0 it becomes imaginary.
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Collapse in a de Sitter space is only possible at K> 0. In this case
the observable radius of the curvature is imaginary. We denote R= iR∗,
where R∗ is its absolute value. Then in the de Sitter space with K> 0
we have

K =
1

6R∗2
, (5.102)

and the collapse condition g00 =1−Kr2 can be written as follows

r = R∗
√

6 . (5.103)

So at the distance r=R∗
√

6 in a de Sitter space with K> 0 the con-
dition g00 = 0 is true, hence the observable time flow stops and collapse
occurs.

In other words, an area of a de Sitter space within the radius r=
=R∗

√
6 stays in collapse. Taking into account that vacuum, which fills

any de Sitter space, stays in inflation, we will refer to such a collapse as
inflational collapse to differentiate it from gravitational collapse (which
occurs in Schwarzschild spaces), while the value r=R∗

√
6 (5.77) will be

referred to as the inflational radius rinf . Then the collapsed area of the
de Sitter space within the inflational radius will be referred to as the
inflational collapsar, or inflanton.

Inside an inflanton we have K> 0, so the three-dimensional observ-
able curvature is C < 0. In this case the vacuum density is negative (the
inflational pressure is positive, vacuum compresses) and λ> 0, so there
are non-Newtonian forces of repulsion. This means that the inflational
collapsar (inflanton) is filled with vacuum with the negative density and
it is in the state of fragile balance between the compressing pressure of
vacuum and the expanding forces of non-Newtonian gravitation.

In the de Sitter space with K> 0 we have

dτ =
√
g00 dt =

√
1−Kr2 dt =

√
1− r2

r2inf

dt , (5.104)

so on the surface of the inflational sphere the observable time flow
stops dτ =0. The signature we have accepted (+−−−), i. e. the condition
g00> 0, is true at r < rinf .

Using the term the “inflational radius” we represent de Sitter’s met-
ric with K> 0 as follows

ds2 =
(

1− r2

r2inf

)
c2dt2 − dr2

1− r2

r2inf

− r2
(
dθ2 + sin2θ dϕ2

)
, (5.105)
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then components of the chr.inv.-vector of gravitational inertial force
(5.74) are

F1 =
c2

1− r2

r2inf

r

r2inf

, F 1 = c2
r

r2inf

. (5.106)

Let us deduce formulae for observable distances and the observable
inflational radius in an inflanton. To make our calculations simpler we
assume θ= const and ϕ= const, i. e. out of all spatial directions only the
radial direction will be considered. Then an arbitrary three-dimensional
observable interval is

σ =
∫ √

h11 dr =
∫

dr√
1−Kr2

= rinf arcsin
r

rinf
+ const, (5.107)

so the observable inflational radius is constant

σinf =
∫ rinf

0

dr√
1−Kr2

=
π

2
rinf . (5.108)

In a space with Schwarzschild’s metric, which we looked at in the
previous section, §5.6, a collapsar is a collapsed compact mass, which
produces the curvature of the space as a whole. A regular observer of a
Schwarzschild space stays outside gravitational collapsar.

In a de Sitter space a collapsar is vacuum, which fills the whole space.
Here, a collapse area is comparable to a surface, whose radius equals
the radius of the space curvature. So, a regular observer of a de Sitter
space stays under the surface of inflational collapsar and he “watches”
it from within.

To look beyond an inflational collapsar we present de Sitter’s metric
with K> 0 (5.105) for r > rinf . Considering radial directions, in coor-
dinates of a regular observer (“inner” coordinates of the collapsar) we
obtain

ds2 = −
(
r2

r2inf

− 1
)
c2dt2 +

dr2

r2

r2inf
− 1

, (5.109)

or, from viewpoint of an observer, who is located outside the collapsar
(in its “external” coordinates r= ct̃ and ct= r̃), we have

ds2 =
c2dt̃2

c2 t̃2

r2inf
− 1

−
(
c2t̃2

r2inf

− 1
)
dr̃2. (5.110)
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§5.8 Conclusions

At low values of density (as observed, 5÷10×10−30 g/cm3 in the Meta-
galaxy, i. e. the space is nearly empty) it can be assumed that the
energy-momentum tensor Tαβ ∼ gαβ . In this case Einstein’s equations
are Rαβ = kgαβ , where k= const. This case was studied in details by
Petrov [30, 31]. He referred to this kind of spaces as Einstein spaces.
According to Gliner [33,34], who studied the algebraic structure of the
energy-momentum tensor, a special type of it is outlined: Tαβ =µgαβ ,
where µ= const is density of matter. It characterizes vacuum-like state
of matter. He referred to this state as µ-vacuum. Gliner also showed
that a space filled with µ-vacuum is an Einstein space.

We outlined the meaning of the energy-momentum tensor of vacuum
T̆αβ =λgαβ and that of µ-vacuum Tαβ =µgαβ , we also found mathemat-
ical expressions for the physical observable properties of vacuum and of
µ-vacuum such as density, density of momentum, and stess-tensor: vac-
uum was found as a homogeneous, non-viscous, non-emitting, and inflat-
ing (expanding at positive density) medium. Proceeding from Petrov’s
and Gliner’s studies and taking into account the energy-momentum ten-
sor in vacuum (and hence the existence of physical properties of vacuum)
we have suggested a “geometrical” classification of matter according to
energy-impulse tensor. We referred to it as T-classification: empti-
ness (empty space-time) — a condition that occurs when the energy-
momentum tensor of matter is zero (Tαβ =0) and non-Newtonian grav-
itation is not found (λ=0); vacuum — a condition when no matter
(Tαβ =0), but non-Newtonian gravitation is found (λ 6=0); µ-vacuum
Tαβ =µgαβ , µ= const (vacuum-like state of matter); substance Tαβ 6= 0,
Tαβ � gαβ (includes regular matter and electromagnetic field).

Routine experience shows that: density of matter in our Universe is
positive. With positive density of vacuum the cosmological term λ < 0
(non-Newtonian gravitational forces are forces of attraction) and its
inflation pressure is negative (vacuum expands).

Studying spaces filled exclusively with vacuum (and no substance
inside), such as a de Sitter space, we have found that the collapse con-
dition (g00 = 0) is realized therein as a collapsed area (object) we re-
ferred to as inflational collapsar, or inflanton. Inside an inflanton λ> 0,
i.e. the density of vacuum is negative, pressure is positive, and non-
Newtonian gravitational forces are forces of repulsion making inflanton
to exist thereby balancing the compressing pressure of vacuum and the
expanding forces of non-Newtonian gravitation.



Chapter 6 The Mirror Universe

§6.1 Introducing the concept of the mirror world

As we mentioned in §5.1, attempts to represent our Universe and the
mirror Universe as two spaces with positive and negative curvature
failed: even within de Sitter’s metric, which is among the simplest space-
time metrics; trajectories in a positive curvature space are substantially
different from those in its negative curvature twin (see Chapter VII in
Synge’s book [36]).

On the other hand, numerous researchers, commencing from Dirac,
intuitively predicted that the mirror Universe (as the antipode to our
Universe) must be sought not in a space with the opposite curvature
sign, but rather in a space, where particles have masses and energies
with the opposite sign. That is, because masses of particles in our
Universe are positive, then those of particles in the mirror Universe
must be evidently negative.

Joseph Weber [29] wrote that neither Newton’s law of gravitation
nor the relativistic theory of gravitation ruled out existence of negative
masses; rather, our empirical experience says that they have never been
observed. Both Newtonian theory of gravitation and Einstein’s General
Theory of Relativity predicted behaviour of negative masses, totally
different from what electrodynamics prescribes for negative charges. For
two bodies, one of which has positive mass and the other has negative
mass, but equal in magnitude, it would be expected that positive mass
will attract the negative mass, while the negative mass will repulse the
positive mass, so that one will chase the other! If motion occurs along
a line which links the centres of the two bodies, such a system will
move with a constant acceleration. This problem had been studied by
Bondi [43]. Assuming the gravitational mass of positron to be negative
(observations say that its inertial mass is positive) and using Quantum
Electrodynamics’ methods, Schiff had obtained that there is a difference
between the inertial mass of positron and its gravitational mass. The
difference proved to be much greater than the error margin in Eötvös’
experiment, which showed equality of gravitational and inertial masses
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[44]. As a result, Schiff had concluded that a negative gravitational
mass in positron can not exist (see Chapter 1 in Weber’s book [29]).

Besides, “co-habitation” of positive and negative masses in the same
space-time area would cause ongoing annihilation. Possible consequen-
ces of particles of a “mixed” kind, which have both positive and negative
masses, were also studied by Terletskii [45, 46].

Therefore this idea of the mirror Universe as a world of negative
masses and energies faced two obstacles:

a) The experimentum crucis, which would point directly at exchange
interactions between our Universe and the mirror Universe;

b) The absence of a theory, which would clearly explain separation
of the worlds with positive and negative masses as different space-
time locations.

In this section, §6.1, we are going to tackle the second (theoretical)
part of the problem.

Let us look at the term “mirror properties” as applied to the space-
time metric. To solve this problem we write the square of the space-time
interval in chr.inv.-form, namely

ds2 = c2dτ2 − dσ2, (6.1)

where
dσ2 = hik dx

idxk, (6.2)

dτ =
(
1− w

c2

)
dt− 1

c2
vidx

i =
(

1− w + viu
i

c2

)
dt . (6.3)

From here we see that an elementary spatial interval (6.2) is a square
function of elementary spatial increments dxi. Spatial coordinates xi

are all equal, so there are no principal differences between translational
movement to the right or to the left, up or down. Therefore we will no
longer consider mirror reflections with respect to spatial coordinates.

Time is a different thing. Physical observable time τ for a regular
observer always flows from the past into the future, so that dτ > 0. But
there are two cases where time stops. At first, it is possible in a regular
space-time in the state of collapse. Secondly, this happens in a zero-
space — the fully degenerate four-dimensional space-time. Therefore
the state of an observer, whose own observable time stops, may be
regarded to be transitional, i. e. unavailable under regular conditions.

We will consider the problem of the mirror Universe for both dτ > 0
and dτ =0. In the last case the analysis will be done separately for
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collapsed areas of the regular space-time and for the zero-space. We
start the analysis from a regular case of dτ > 0. From the formula for
physical observable time (6.3) it is evident that this condition is true if

w + viu
i < c2. (6.4)

In the absence of the space rotation (vi =0) this formula becomes
w<c2, which corresponds to the space-time structure in the state of
collapse.

Then ds2 (6.1) can be expanded as follows

ds2=
(
1− w

c2

)2

c2dt2 − 2
(
1− w

c2

)
vidx

idt−

− hik dx
idxk +

1
c2
vivk dx

idxk,

(6.5)

on the other hand

ds2 = c2dτ2 − dσ2 = c2dτ2

(
1− v2

c2

)
, v2 = hikvivk. (6.6)

Let us divide both sides of the formula for ds2 (6.5) by the next
quantities, according to the kind of particle trajectory:

1) c2dτ2
(
1− v2

c2

)
if the space-time interval is real ds2> 0;

2) c2dτ2 if the space-time interval equals zero ds2 =0;

3) −c2dτ2
(

v2

c2
− 1

)
if the interval is imaginary ds2< 0.

As a result in all cases we obtain the same square equation with re-
spect to the function of the “true coordinate time” t from the observer’s
measured physical time τ , namely — the equation

(
dt

dτ

)2

− 2vivi

c2
(
1− w

c2

)
dt

dτ
+

1
(
1− w

c2

)2
(

1
c4
vivkvivk − 1

)
= 0 , (6.7)

which has two solutions
(
dt

dτ

)

1

=
1

1− w

c2

(
1
c2
vivi + 1

)
, (6.8)

(
dt

dτ

)

2

=
1

1− w

c2

(
1
c2
vivi − 1

)
. (6.9)
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Having t integrated with respect to τ , we obtain

t =
1
c2

∫
vidx

i

1− w

c2

±
∫

dτ

1− w

c2

+ const. (6.10)

It can be easily integrated, if the space does not rotate and gravi-
tational potential is w = 0. Then the integral is t=±τ + const. Proper
choice of the initial conditions can make integration constant zero. In
this case we obtain

t = ±τ , τ > 0 , (6.11)

that graphically represents two beams, which are mirror reflections of
each other with respect to τ > 0. We can say that here, the observer’s
own time serves as the mirror membrane, whose mirror surface separates
two worlds: one with the direct flow of coordinate time∗ from the past
into the future t= τ , and the other, the mirror case, with the reverse
flow of coordinate from the future into the past t=−τ .

Noteworthy, the world with the reverse flow of time is not like a
videotape being rewound. Both worlds are quite equal, but for a reg-
ular observer the mentioned time coordinate in the mirror Universe is
negative. The mirror surface of the membrane in this case only reflects
the time flow, but does not affect it.

Now we assume that the space does not rotate vi =0, but gravita-
tional potential is not zero w 6=0. Then we have

t = ±
∫

dτ

1− w

c2

+ const. (6.12)

If gravitational potential is weak (w¿ c2), our integral (6.12) be-
comes

t = ±
(
τ +

1
c2

∫
w dτ

)
= ± (τ + ∆t) , (6.13)

where ∆t is a correction that accounts for the field w, which produces
acceleration. This quantity w may define any scalar potential field —
either a field of Newtonian potential or a field of non-Newtonian gravi-
tation.

If a field of gravitation produced by the potential w is strong, then
this integral will take the form of (6.12) and will depend on the potential
w: the stronger the field w, the faster the coordinate time flow (6.12).

∗Any observer’s measured physical time τ everywhere flows from the past into
the future, so the condition dτ > 0 is true in any observer’s reference frame.
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In the ultimate case, where w = c2, we have t→∞. On the other hand,
at w = c2 collapse occurs dτ =0. We will look at this case below, but
for now we are still assuming that w<c2.

Let us look at coordinate time in a Schwarzschild space and a de Sit-
ter space. If the potential w describes a Newtonian gravitational field
(the space with Schwarzschild’s metric), then

t = ±
∫

dτ

1− GM
c2r

= ±
∫

dτ

1− rg

r

, (6.14)

which implies that the closer we approach the gravitational radius of
the mass, the greater the difference between coordinate time and the
observer’s measured time. If w is the potential of a non-Newtonian field
of gravitation (the space with de Sitter’s metric), then

t = ±
∫

dτ√
1− λr2

3

= ±
∫

dτ√
1− r2

r2inf

, (6.15)

which implies that the closer the measured photometric distance r to
the inflational radius in the space, the faster the coordinate time flow.
In the ultimate case at r→ rinf we have t→∞.

Therefore, in the absence of the space rotation but in the presence
of a gravitational field, the coordinate time flow is faster and the field
potential is stronger. This is true both in a Newtonian gravitational
field and in a field of non-Newtonian gravitation.

Now we turn to a more general case, when both space rotation and
gravitational fields are present. Then the integral for t takes the form
(6.10), so coordinate time in a non-holonomic (rotating) space includes:

a) “Rotational” time determined by the presence of the term vidx
i,

which has dimension of rotational momentum divided by unit
mass;

b) Regular coordinate time, linked to the pace of the observer’s mea-
sured time.

From the integral for t (6.10) we see that the “rotational” coordinate
time, produced by the space rotation, exists independently from the ob-
server because it does not depend on τ . For an observer who is at rest
on the Earth surface (anywhere apart from the poles) it can be inter-
preted as the time flow determined by rotation of the planet. It always
exists irrespective of whether the observer records it at this particular
location or not. Regular coordinate time is linked to our presence (it
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depends on our measured time τ) and to the field, which exists at the
point of observation; in particular, to the field of Newtonian potential.

Noteworthy, at vi 6=0 time coordinate t at the initial moment of
observation (when the observer’s measured time is τ0 =0) is not zero.

Presenting the integral for t (6.10) as

t =
∫ 1

c2
vidx

i ± dτ

1− w

c2

, (6.16)

we obtain that the quantity under the integral sign is:
1) Positive, if 1

c2
vidx

i>∓dτ ;

2) Zero, if 1
c2
vidx

i =±dτ ;

3) Negative, if 1
c2
vidx

i<∓dτ .
Hence coordinate time t for a real observer stops, if the scalar prod-

uct of the linear velocity of the space rotation and the observable ve-
locity of the object is vivi =±c2. This happens, if numerical values of
both velocities equal to that of light, and they are either co-directed or
oppositely directed.

An area of the space-time, where the condition vivi =±c2 is true, so
that coordinate time stops for a real observer, is the mirror membrane
separating two areas of positive and negative time coordinate — areas
with the direct and reverse flow of time.

It is also evident that no regular observer, who is located in a regular
Earth laboratory, can accompany such a space.

We will refer to an area of the space-time, where coordinate time
takes negative numerical values as the mirror space. Let us analyze
properties of particles, which inhabit the mirror space with respect to
those of particles located in the regular space, where time coordinate is
positive.

The four-dimensional momentum vector of a mass-bearing particle,
which has a non-zero rest-mass m0, is

Pα = m0
dxα

ds
, (6.17)

whose chr.inv.-projections are

P0√
g00

= m
dt

dτ
= ±m, P i =

m

c
vi, (6.18)

where “plus” stands for the direct flow of coordinate time, while “minus”
stands for the reverse time flow with respect to the observer’s measured
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time. The square of the vector Pα is

PαP
α = gαβ P

αP β = m2
0 , (6.19)

while its length equals ∣∣√PαPα
∣∣ = m0 . (6.20)

Therefore any particle with non-zero rest-mass, being a four-dimen-
sional structure, is projected on the observer’s time line as a dipole
consisting of a positive mass +m and a negative mass −m. But in
projection of Pα on the spatial section, both projections merge into
a single one — the particle’s three-dimensional observable momentum
pi =mvi. In other words, each observable particle with a positive rela-
tivistic mass has its own mirror twin with the same negative mass: the
particle and its mirror twin are only different by the sign of mass, while
three-dimensional momenta of both particles are positive.

Similarly, for the four-dimensional wave vector

Kα =
ω

c

dxα

dσ
= k

dxα

dσ
, (6.21)

which describes a massless particle, chr.inv.-projections are

K0√
g00

= ±k , Ki =
k

c
ci. (6.22)

This implies that any massless particle, as a four-dimensional object,
also exists in two states: in our world with the direct time flow it is
a massless particle with a positive frequency, while in the world with
the reverse time flow it is a massless particle with the same negative
frequency.

We define the material Universe as the four-dimensional space-time,
filled with a substance and fields. Then because any particle is a four-
dimensional dipole object, we can consider the material Universe to be
a combination of the basic space-time and particles and is also a four-
dimensional dipole object, which exists in two states: as our Universe,
inhabited by particles with positive masses and frequencies, and as its
mirror twin — the mirror Universe, where masses and frequencies of
particles are negative, while three-dimensional observable momentum
remains positive. On the other hand, our Universe and the mirror Uni-
verse have the same background four-dimensional space-time.

For instance, analyzing properties of the Universe as a whole, we ne-
glect action of Newtonian fields, produced by occasional islands of sub-
stance, so we assume the basic four-dimensional space of our Universe to
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be a de Sitter space with the negative four-dimensional curvature, while
its three-dimensional observable curvature is positive (see §5.5 herein).
Hence we can assume that our Universe as a whole is an area in the
de Sitter space with the negative four-dimensional curvature, where the
time coordinate is positive as well as masses and frequencies of particles
located in the area. Besides, vice versa, the mirror Universe is an area
of the same de Sitter space, where the time coordinate is negative as
well as masses and frequencies of particles located in it.

The space-time membrane, which separates our Universe and the
mirror Universe in the basic space-time, does not allow them to “mix”,
thus preventing total annihilation. This membrane will be discussed at
the end of this section.

Let us turn to the dipole structure of the Universe for dτ =0, so
we will consider collapsed areas of the regular space-time and a fully
degenerate space-time area (zero-space).

As we have shown, the condition dτ =0 is true in a regular (non-
degenerate) space-time, where collapse occurs and the space is holo-
nomic (it does not rotate). Then

dτ =
(
1− w

c2

)
dt = 0 . (6.23)

This condition is true for collapse of any kind, so for fields of grav-
itational potential w of any kind, including non-Newtonian potential.
At dτ =0 (6.23) the four-dimensional metric is

ds2 = −dσ2 = −hik dxidxk = gik dx
idxk = giku

iukdt2, (6.24)

hence in this case the absolute value of the interval ds equals

|ds| = idσ = i
√
hikuiuk dt = iudt , u2 = hiku

iuk, (6.25)

so that the four-dimensional momentum vector on the surface of a col-
lapsar is

Pα = m0
dxα

dσ
, dσ = udt . (6.26)

Its square is

PαP
α = gαβP

αP β = −m2
0 , (6.27)

hence the length of the vector Pα (6.26) is imaginary
∣∣√PαPα

∣∣ = im0 . (6.28)
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The latter, in particular, implies that the surface of the collapsar
is inhabited by particles with imaginary rest-masses. But, at the same
time, this does not imply that super-light particles (tachyons) should
be found there, because their rest-masses are real (in that time they are
regular particles), while their relativistic masses become imaginary only
after the particles become super-light tachyons.

On the surface of any collapsar the term “observable velocity” is
void, because the observer’s measured time stops there dτ =0.

Components of the four-dimensional momentum vector of a particle
found on the surface of a collapsar (6.26), can be formally written as
follows

P 0 =
m0c

u
, P i =

m0

u
ui. (6.29)

But as a matter of facts, we can not observe such a particle, because
on the surface of a collapsar our observable time stops. On the other
hand, the velocity ui = dxi

dt
, found in this formula, is coordinate and it

does not depend on the observer’s measured time which stops there.
Hence, we can interpret the spatial vector P i = m0

u ui as the particle’s
coordinate momentum, while the quantity m0c

3

u can be interpreted as
the particle’s energy. Here the energy has only one sign, so the surface of
any collapsar as a four-dimensional area is not a dipole four-dimensional
object, presented by two mirror twins. The surface of any collapsar,
irrespective of its Newtonian or non-Newtonian nature, exists in a single
state.

On the other hand, the surface of a collapsar (g00 =0) can be re-
garded as a membrane, which separates four-dimensional areas of the
space-time before the collapse and after the collapse. Before the collapse
we have g00> 0, so the observer’s measured time τ is real. After the col-
lapse we have g00< 0, thus τ becomes imaginary. When the observer,
penetrating into the collapsar, crosses the surface then his measured
time is subjected to 90◦ “rotation”, swapping roles with his measured
spatial coordinates.

The term “light-like particle” has no sense in the surface of a collap-
sar, because for light-like particles we have dσ= cdτ so on the surface
(dτ =0) for such particles

u =
√
hikuiuk =

√
hik dxidxk

dt2
=
dσ

dt
=
cdτ

dt
= 0 . (6.30)

The observer’s measured time also stops dτ =0 in a fully degenerate
space-time (zero-space). There, by definition, the conditions dτ =0 and
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dσ=0 are true. Thus, as was shown in our study [19], the degeneration
conditions can be written as follows

w + viu
i = c2, gik u

iuk = c2
(
1− w

c2

)2

. (6.31)

Particles found in the degenerate space-time (zero-particles) have
zero relativistic mass m=0, but non-zero mass M (1.71) and non-zero
constant-sign momentum

M =
m

1− 1
c2

(w + viui)
, pi = Mui. (6.32)

Therefore, mirror twins are only found in regular matter — massless
and mass-bearing particles, which are not in the state of collapse. Col-
lapsed objects in the regular space-time (including gravitational collap-
sars), which do not possess the property of mirror dipoles, are common
objects for our Universe and the mirror Universe. Zero-space objects,
which neither possess the property of mirror dipoles, lay beyond the
basic space-time due to total degeneration of the metric. It is possi-
ble to enter “neutral zones” on the surfaces of collapsed objects of the
regular space and in the zero-space from either our Universe (where co-
ordinate time is positive) or the mirror Universe (where coordinate time
is negative).

§6.2 The conditions to move through the membrane, to the
mirror world

Now we need to discuss the question of the membrane which separates
our Universe and the mirror Universe in the basic space-time, thus pre-
venting total annihilation of all particles with negative and positive
masses.

In our Universe dt> 0, in the mirror Universe dt< 0. Hence the
membrane is an area of the space-time, where dt=0 so coordinate time
stops. It is an area, where

dt

dτ
=

1

1− w

c2

(
1
c2
vivi ± 1

)
= 0 , (6.33)

which can also be presented as the physical condition

dt =
1

1− w

c2

(
1
c2
vidx

i ± dτ

)
= 0 . (6.34)
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The latter notation is more versatile, because it is applicable not
only to the space-time of the General Theory of Relativity, but also
to a generalized space-time, which permits total degeneration of the
metric.

Conditions inside the membrane (t= const, so that dt=0), in accor-
dance with (6.34) are defined by the formula

vidx
i ± c2dτ = 0 , (6.35)

which can be also written in the form

vivi = ± c2. (6.36)

This condition can be presented as follows

vivi =
∣∣vi

∣∣∣∣vi ∣∣ cos
(
vi; vi

)
= ± c2. (6.37)

From here we see that it is true, if numerical values of the velocities
vi and vi equal to that of light and are either co-directed (“plus”) or
oppositely directed (“minus”).

Thus the membrane from the physical viewpoint is a space which
experiences translational motion at the light velocity and at the same
time rotates at the light velocity, so it is a world of light-like spiral
trajectories. It is possible, such a space may be attributed to particles,
which possess the spirality property (e. g. massless light-like particles —
photons).

Having dt= 0 substituted into the formula for ds2 we obtain the
metric inside the membrane

ds2 = gik dx
idxk, (6.38)

which is the same as that on the surface of a collapsar. Because it is a
particular case of a space-time metric with signature (+−−−), then ds2

is always positive. This implies that in an area of the four-dimensional
space-time, which serves the membrane between our Universe and the
mirror Universe, the four-dimensional interval is space-like. The differ-
ence from the space-like metric on the surface of a collapsar (6.24) is that
there is no rotation of the space so that gik =−hik, while in this case
gik =−hik + 1

c2
vivk (1.18). Or, in other words, inside the membrane

we have

ds2 = gik dx
idxk = −hik dxidxk +

1
c2
vivk dx

idxk, (6.39)
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so the four-dimensional metric there becomes space-like due to the space
rotation, which makes the condition vidxi =±c2dτ true.

As a result a regular mass-bearing particle (irrespective of the sign
of its mass) can not in its “natural” form pass through the membrane:
this area of the space-time is inhabited by light-like particles which move
along light-like spirals.

On the other hand the ultimate case of particles with m> 0 or m< 0
are particles with zero relativistic mass m= 0. From geometric view-
point the area, where such particles are found, is tangential to areas in-
habited by particles with either m> 0 or m< 0. This implies that zero-
mass particles may have exchange interactions with either our-world
particles m> 0 or mirror-world particles m< 0.

Particles with zero relativistic mass, by definition, exist in an area
of the space-time where ds2 =0 and c2dτ2 = dσ2 =0. Equating ds2 to
zero inside the membrane (6.38) we obtain

ds2 = gik dx
idxk = 0 , (6.40)

so this condition may be true in two cases:

1) All values of dxi are zeroes, so dxi =0;

2) The three-dimensional metric is degenerate g̃= det ‖gik‖=0.

The first case may occur in the regular space-time under the ul-
timate conditions on the surface of a collapsar: when all the surface
shrinks into a point, all dxi = 0 so the metric on the surface according
to ds2 =−hik dxidxk = gik dx

idxk (6.24) becomes zero.
The second case occurs on the surface of a collapsar located in

the zero-space: because the condition gik dxidxk =
(
1− w

c2

)2
c2dt2 is true

there, then at w = c2 we have gik dxidxk =0 always.
The first case is asymptotic, because it never occurs in reality. Hence

we can expect that “middlemen” in exchanges between our Universe and
the mirror Universe are those particles with zero relativistic mass, which
inhabit the surfaces of collapsars located in the fully degenerate space-
time. In other words, the “middlemen” are those zero-particles, which
inhabit the surfaces of collapsars in the zero-space.

§6.3 Conclusions

So we have shown that our Universe is the observable area of the basic
space-time, where time coordinate is positive so all particles have pos-
itive masses and energies. The mirror Universe is an area of the basic
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space-time, where from the viewpoint of a regular observer time coordi-
nate is negative so all particles have negative masses and energies. From
the viewpoint of an our-world observer the mirror Universe is a world
with the reverse flow of time, where particles travel from the future into
the past with respect to us.

The two worlds are separated with the membrane — an area of the
space-time, inhabited by light-like particles which travel along light-like
spirals. In the scale of elementary particles such a space can be at-
tributed to particles which possess spirality (e. g. photons). This mem-
brane prevents mixing of positive-mass and negative-mass particles, so
it prevents their total annihilation. Exchange interactions between the
two worlds can be effected through particles with zero relativistic masses
(zero-particles) under physical conditions, which exist on the surfaces
of collapsars in the fully degenerate space-time (zero-space).



Appendix A Notations of physical

quantities

Theory of chronometric invariants

bα four-dimensional monad vector
hik three-dimensional chr.inv.-metric tensor
τ physical observable time
dσ physical observable spatial interval
vi three-dimensional chr.inv.-velocity
Aik three-dimensional antisymmetric chr.inv.-tensor of

the space non-holonomity (rotation)
F i three-dimensional chr.inv.-vector of the gravitational

inertial force
w gravitational potential
vi three-dimensional linear velocity of the space rotation
ci three-dimensional chr.inv.-velocity of light
Dik three-dimensional chr.inv.-tensor of the rate of the space

deformations
∆i
jk chr.inv.-Christoffel symbols of the 2nd kind

∆jk,m chr.inv.-Christoffel symbols of the 1nd kind

Motion of particles

uα four-dimensional velocity
ui three-dimensional coordinate velocity
Pα four-dimensional momentum vector
pi three-dimensional momentum vector
Kα four-dimensional wave vector
ki three-dimensional wave vector
ψ wave phase (eikonal)
S action
L Lagrange function (Lagrangian)
~αβ four-dimensional antisymmetric Planck tensor
~∗αβ four-dimensional Planck dual pseudotensor
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Electromagnetic fields

Aα four-dimensional potential of an electromagnetic field
ϕ physical observable scalar potential of an electromagnetic

field (time chr.inv.-component of Aα)
Ai physical observable vector-potential of an electromagnetic

field (spatial chr.inv.-components of Aα)
Fαβ Maxwell tensor of an electromagnetic field
Ei three-dimensional chr.inv.-strength vector of an electric field
E∗ik three-dimensional chr.inv.-strength pseudo-tensor of

an electric field
Hik three-dimensional chr.inv.-strength vector of a magnetic field
H∗i three-dimensional chr.inv.-strength pseudo-tensor of

a magnetic field

Riemannian space

xα four-dimensional coordinates
xi, t three-dimensional coordinates and time
s space-time interval
gαβ four-dimensional fundamental metric tensor
δαβ four-dimensional unit tensor
J Jacobi matrix determinant (Jacobian)
eαβµν four-dimensional completely antisymmetric unit tensor
eikm three-dimensional completely antisymmetric unit tensor
Eαβµν four-dimensional completely antisymmetric tensor
εikm completely antisymmetric chr.inv.-tensor
Γαµν Christoffel symbols of the 2nd kind
Γµν,ρ Christoffel symbols of the 1st kind
Rαβµν Riemann-Christoffel curvature tensor
Tαβ energy-momentum tensor
ρ chr.inv.-density of matter
J i chr.inv.-vector of the density of momentum
U ik chr.inv.-stress tensor
Rαβ Ricci tensor
K four-dimensional curvature
C three-dimensional chr.inv.-curvature
λ cosmological term (λ-term)



Appendix B Notations of tensor algebra

and analysis

Ordinary differential of a vector:

dAα =
∂Aα

∂xσ
dxσ.

Absolute differential of a contravariant vector:

DAα = ∇β Aαdxβ = dAα + ΓαβµA
µdxβ .

Absolute differential of a covariant vector:

DAα = ∇β Aαdxβ = dAα − ΓµαβAµdx
β .

Absolute derivative of a contravariant vector:

∇βAα =
DAα

dxβ
=
∂Aα

∂xβ
+ ΓαβµA

µ.

Absolute derivative of a covariant vector:

∇βAα =
DAα
dxβ

=
∂Aα
∂xβ

− ΓµαβAµ .

Absolute derivative of a 2nd rank contravariant tensor:

∇β F σα =
∂F σα

∂xβ
+ ΓαβµF

σµ + ΓσβµF
αµ.

Absolute derivative of a 2nd rank covariant tensor:

∇β Fσα =
∂Fσα
∂xβ

− ΓµαβFσµ − ΓµσβFαµ .

Absolute divergence of a vector:

∇αAα =
∂Aα

∂xα
+ ΓαασA

σ.

Chr.inv.-divergence of a chr.inv.-vector:

∗∇i qi =
∗∂qi

∂xi
+ qi

∗∂ ln
√
h

∂xi
=

∗∂qi

∂xi
+ qi∆j

ji .
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Physical chr.inv.-divergence:

∗∇̃i qi = ∗∇i qi − 1
c2
Fi q

i.

D’Alembert’s general covariant operator:

¤ = gαβ ∇α∇β .
Laplace’s ordinary operator:

∆ = − gik∇i∇k .
Chr.inv.-Laplace operator:

∗∆ = hik ∗∇i ∗∇k .
Chr.inv.-derivative with respect to the time coordinate and that with
respect to the spatial coordinates:

∗∂
∂t

=
1√
g00

∂

∂t
,

∗∂
∂xi

=
∂

∂xi
+

1
c2
vi
∗∂
∂t
.

The square of the physically observable velocity:

v2 = vivi = hik vivk.

The linear velocity of the space rotation:

vi = − c g0i√
g00

, vi = − cg0i√g00 , vi = hik v
k.

The square of vi. This is the proof: because of gασgσβ = gβα, then under
α=β=0 we have g0σgσ0 = δ00 =1, hence v2 = vkv

k = c2(1−g00 g00), i.e.:

v2 = hikv
ivk.

The determinants of the metric tensors gαβ and hαβ are connected as:
√
− g =

√
h

√
g00 .

Derivative with respect to the physically observable time:

d

dτ
=

∗∂
∂t

+ vk
∗∂
∂xk

.

The 1st derivative with respect to the space-time interval:

d

ds
=

1

c
√

1− v2

c2

d

dτ
.
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The 2nd derivative with respect to the space-time interval:

d2

ds2
=

1
c2−v2

d2

dτ2
+

1

(c2−v2)2

(
Dikvivk +vi

dvi

dτ
+

1
2

∗∂hik
∂xm

vivkvm
)
d

dτ
.

The chr.inv.-metric tensor:

hik = − gik +
1
c2
vivk , hik = − gik, hki = δki .

Zelmanov’s relations between the Christoffel regular symbols and the
chr.inv.-characteristics of the space of reference:

Di
k +A·ik· =

c√
g00

(
Γi0k −

g0kΓi00
g00

)
,

giαgkβΓmαβ = hiqhks∆m
qs , F k = − c2 Γk00

g00
.

Zelmanov’s 1st identity and 2nd identity:

∗∂Aik
∂t

+
1
2

(∗∂Fk
∂xi

−
∗∂Fi
∂xk

)
= 0 ,

∗∂Akm
∂xi

+
∗∂Ami
∂xk

+
∗∂Aik
∂xm

+
1
2

(
FiAkm + FkAmi + FmAik

)
= 0 .

Derivative from v2 with respect to the physically observable time:

d

dτ

(
v2

)
=

d

dτ

(
hikvivk

)
= 2Dikvivk +

∗∂hik
∂xm

vivkvm + 2vk
dvk

dτ
.

The completely antisymmetric chr.inv.-tensor:

εikm =
√
g00E

0ikm =
e0ikm√

h
, εikm =

E0ikm√
g00

= e0ikm
√
h .
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Differentialgeometrie. Noordhoff, Groningen, 1938 (first published in Zen-
tralblatt für Mathematik, 1935, Bd. 11 und Bd. 19).

38. McVittie G.C. Remarks on cosmology. Paris Symposium on Radio As-
tronomy (IAU Symposium no. 9 and URSI Symposium no. 1, July 30 —
August 6, 1958), Stanford University Press, Stanford, 1959, 533–535.

39. Oros di Bartini R. Some relations between physical constants. Soviet
Physics Doklady, 1965, vol. 10 (translated from Doklady Academii Nauk
USSR, 1965, vol. 163, no. 4, 861–864).

40. Oros di Bartini R. Relations between physical constants. Progress in
Physics, 2005, vol. 3, 34–40 (translated from Problemy Teorii Gravitazii
i Elementarnykh Chastiz, vol. 1, Atomizdat, Moscow, 1966, 249–266).

41. Crothers S. J. On the general solution to Einstein’s vacuum field for the
point-mass when λ =0 and its consequences for relativistic cosmology.
Progress in Physics, 2005, vol. 3, 7–18.
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