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Abstract. We derive a characterization of simple exponential functions that has the exact 
mathematical form to Planck's Formula for blackbody radiation in Quantum Physics. 

Notation:
( ) ( )E E t E s∆ = −

t t sτ∆ = = −
1 ( )

t

av
s

E E E u du
t s

= =
− ∫

( )
t

s

P E u duη = = ∫
Note: All proofs can be found in section  3. Mathematical Derivations of this note.

1. Main Derivations 
The central mathematical result is the following characterization of simple exponential functions:

Characterization 2a: 0( ) tE t E eν=  if and only if  ( )
1avEE s

eη ν
η ν=

−
       (1)

Other useful mathematical results also proven in section 3. are:

Characterization 1: 0( ) tE t E eν=  if and only if E η ν∆ =        (2)

Theorem 2a: For any integrable function E(t),  lim ( )
1avEt s

E s
eη ν

η ν
→

=
−

       (3)

2. 'Planck-like' Characterization

Let ( )
t

s

E u duη = ∫  be the 'accumulation of E' over a time pulse t sτ = − . We can define 

1 η
κ τ

 =   
T  where κ  is a scalar constant. The quantity T  behaves like 'temperature'. The faster 

the accumulation of E the higher the T . 
 
Note also that, avE κ= T        (4)

By letting s=0 and using (4) above, we can rewrite (1) as

0( ) tE t E eν=  if and only if 0 1
E

eη ν κ

η ν=
−T       (5)
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Planck's Law     for blackbody radiation states that,

0 1h kT
hE

e ν

ν=
−

                                           (6)

where 0E  is the energy of radiation, ν  is the frequency of radiation and T is the (Kelvin) 
temperature of radiation (the blackbody), while h is Planck's constant and k is Boltzmann's 
constant.

Clearly 0 1
E

eη ν κ

η ν=
−T  and 0 1h kT

hE
e ν

ν=
−

  have the exact same mathematical form, including 

the 'form' of the quantities that appear in each of these expressions. We can state the main result 
of this note as,

Result I: A 'Planck-like' characterization of simple exponential functions

0( ) tE t E eν=  if and only if 0 1
E

eη ν κ

η ν=
−T

Using (3) above we can drop the condition that 0( ) tE t E eν=  and get,

Result II:  A 'Planck-like' limit of any integrable function

For any integrable function E(t),  00
lim

1t
E

eη ν κ

η ν
→

=
−T

3. Mathematical Derivations (proofs)

Notation. We will consistently use the following notation throughout this section of the paper:

t t s∆ = −  is an 'interval of t' 

( ) ( )E E t E s∆ = −  is the 'change of E'

( )
t

s

P E u du= ∫   is the 'accumulation of E'

1 ( )
t

av
s

E E E u du
t s

= =
− ∫   is the 'average of E '

xD  indicates 'differentiation with respect to x ' 

r  is a constant, often an 'exponential rate of growth'

E(t) is any integrable or possibly differentiable function of t

Although all the following mathematical derivations make no assumptions as to the variables t 
and E, these could be considered to be 'time' and 'energy'. Though many of the proofs given 
below are very simple, they are included primarily for rigorous consistency and completion.
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Part I:  exponential functions

We will use the following characterization of exponential functions without proof:

Basic Characterization: 0( ) rtE t E e=  if and only if  tD E rE=

Characterization 1: 0( ) rtE t E e=  if and only if  E Pr∆ =

Proof:
Assume that 0( ) rtE t E e= . We have that ( ) ( ) 0 0

rt rsE E t E s E e E e∆ = − = − ,

while 0 0 0
1t

ru rt rs

s

EP E e du E e E e
r r

∆ = = − = ∫ . Therefore E Pr∆ = .

Assume next that E Pr∆ = . Differentiating with respect to t, t tD E rD P rE= = .  
Therefore by the Basic Characterization, 0( ) rtE t E e= .    
q.e.d

Theorem 1: 0( ) rtE t E e=  if and only if  
1r t

Pr
e ∆ −

 is invariant with respect to t

Proof: 
Assume that 0( ) rtE t E e= . Then we have, for fixed s,

( )( ) ( )0 0
0

( )1 1
t rs

ru rt rs r t s r t s

s

E E e E sP E e du e e e e
r r r

− −   = = − = − = −   ∫

and from this we get that ( )  constant
1r t

Pr E s
e ∆ = =

−
.

Assume next that 
1r t

Pr C
e ∆ =

−
 is constant with respect to t, for fixed s.

 Therefore,  ( ) 2

( ) 1
0

1 1

r t r t

t r t r t

rE t e rP rePrD
e e

∆ ∆

∆ ∆

   ⋅ − − ⋅     = = −  −

and so, ( )
1

r t r t
r t
PrE t e C e

e
∆ ∆

∆
 = = ⋅ − 

 where C  is constant. 

Letting t=s we get E(s)=C. We can rewrite this as ( )
0( ) ( ) r t s rtE t E s e E e−= = .    q.e.d

From the above, we have

Characterization 2: 0( ) rtE t E e=  if and only if  ( ) ( )
1r t s

Pr E s
e − =

−
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Clearly by definition of avE , 
av

Prr t
E

∆ = . We can write 
1r t

Pr
e ∆ −

 equivalently as 
1avPr E

Pr
e −

 in the 

above. Theorem 1 above can therefore be restated as,

Theorem 1a: 0( ) rtE t E e=  if and only if  
1avPr E

Pr
e −

 is invariant with respect to t

The above Characterization 2  can then be restated as

Characterization 2a: 0( ) rtE t E e=  if and only if  ( )
1avPr E

Pr E s
e

=
−

But if  ( )
1avPr E

Pr E s
e

=
−

, then by Characterization 2a , 0( ) rtE t E e= . So by Characterization 1, 

we must have that E Pr∆ = . And so we can write equivalently ( )
1avE E

E E s
e∆

∆ =
−

. We have the 

following equivalence,

Characterization 3: 0( ) rtE t E e=  if and only if  ( )
1avE E

E E s
e∆

∆ =
−

As we've seen above, it is always true that 
av

Pr r t
E

= ∆ . But for exponential functions E(t) we also 

have that E Pr∆ = . So, for exponential functions we have the following result.

Characterization 4: 0( ) rtE t E e=  if and only if  
av

E r t
E
∆ = ∆

Part II:  integrable functions

We next consider that E(t) is any integrable function. In this case, we have the following.

Theorem 2: i) For any integrable  function  E(t),  lim ( )
1r tt s

Pr E s
e ∆→

=
−

        ii) For any differentiable function E(t),   lim ( )
1avE Et s

E E s
e∆→

∆ =
−

 

Proof:

          Since 
0

1 0avE E
E

e∆

∆ →
−

 and 
0

1 0r t
Pr

e ∆ →
−

 as t s→ , we apply L’Hopital’s Rule.

          

i)  Clearly we have 
( )lim lim ( )

1r t r tt s t s

Pr E s r E s
e e r∆ ∆→ →

= =
− ⋅

          ii)  Since we are assuming next that E(t) is differentiable
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2

( )lim lim
( )1

t
E Et s t s

E E t t

D E tE
D E t E D E Ee e

E

∆→ →
∆

∆ =
⋅ − ⋅ ∆ − ⋅   

2 ( )lim
( )

t
E Et s

t t

E D E t
e D E t E D E E∆→

⋅=
⋅ ⋅ − ⋅ ∆  

( )E s=  

    since 0E∆ →  and ( )E E s→  as t s→ . q.e.d.

Corollary A: 
1E E

E
e∆

∆
−

 is invariant with respect to t if and only if ( )
1E E

EE s
e∆

∆=
−

Proof:

Using Theorem 2  we have lim ( )
1avE Et s

E E s
e∆→

∆ =
−

. 

Since 
1avE E

E
e∆

∆
−

 is constant with respect to t, we have ( )
1avE E

EE s
e∆

∆=
−

.

Conversely, if ( )
1avE E

EE s
e∆

∆=
−

, then by Characterization 3, 0( ) rsE s E e= . 

Since ( )E s  is a constant, 
1avE E

E
e∆

∆
−

 is invariant with respect to t.                 q.e.d

Since it is always true by definitions that 
av

Prr t
E

∆ = , Theorem 2 can also be written as,

Theorem 2a: For any integrable function  E(t),  lim ( )
1avPr Et s

Pr E s
e→

=
−

As a direct consequence of the above, we have the following interesting and important 
conclusion: 

Corollary B:  ( )
1avE E

EE s
e∆

∆=
−

 and ( )
1avPr E

PrE s
e

=
−

  are independent of t∆  and E∆ .

Lastly, we state the following simple mathematical identity: (without proof)

 For any integrable function ( )E t ,  
0

( )
avE

E u du
η

η = ∫ ,   where 
0

( )E u du
τ

η = ∫  and  avE η
τ

=

            

4. Appendix

In this appendix we provide a direct and independent proof of Characterization 3 and include 
some other interesting connections and further discussions.

We first prove the following,

Lemma: For any E, ( )( )t
E t ED E t

t s
−=

−
 and ( )( )s

E E sD E s
t s
−=

−
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Proof:

We let t t s∆ = −  and
1 ( )

t

s

E E u du
t s

=
− ∫ . 

Differentiating with respect to t we have ( ) ( ) ( )tt s D E t E E t− ⋅ + =

Rewriting, we have ( )( )t
E t ED E t

t s
−=

−
.

Differentiating with respect to s we have ( ) ( ) ( )st s D E s E E s− ⋅ − = −

Rewriting, we have ( )( )s
E E sD E s

t s
−=

−
.  

q.e.d.

Characterization 3: 0( ) rtE t E e=  if and only if  ( )
1avE E

E E s
e∆

∆ =
−

Proof:
Assume that 0( ) rtE t E e= . From, 

0 0
0

( )1 1
t rs

ru rt rs r t r t

s

E E e E sP E e du e e e e
r r r

∆ ∆     = = − = − = −     ∫

we get, ( )
1r t

PrE s
e ∆=

−
. This can be rewritten as, ( )

1avPr E
PrE s

e
=

−
. 

Since E Pr∆ = , this can further be written as ( )
1avE E

EE s
e∆

∆=
−

.

Conversely, consider next a function ( )E s  satisfying
 

( )
1

EE s
eξ

∆=
−

,   where 

( ) ( )

1 ( )
t

s

E E t E s
t t s

E
E

E E u du
t

ξ

∆ = −
 ∆ = −

∆ =



= ∆
∫

      and t can be any real value.

From the above, we have that
( ) ( ) ( ) ( )1

( ) ( ) ( )
E E t E s E s E te

E s E s E s
ξ ∆ − += + = = .  

Differentiating with respect to s, we get 2

( ) ( ) ( )
( ) ( )

s s
s

E t D E s D E se D e
E s E s

ξ ξξ − ⋅⋅ = = − ⋅

and so,  
( )

( )
s

s
D E sD

E s
ξ = −               (1)

From the above Lemma  we have that ( )( )s
E E sD E s

t s
−=

−
       (2)
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Differentiating 
E

E
ξ ∆=  with respect to s we get, 

2

( ) ( )s s
s

D E s E E D E sD
E

ξ − ⋅ − ∆ ⋅=                (3)

and combining (1), (2), and (3) we have 

( ) ( )
2 2

( ) ( ) ( )( ) ( )
( )

s
s s

ED E s E E E s E E sD E s D E s Et
E s E E t E

∆− ⋅ − − −∆∆− = = − − ⋅
∆

We can rewrite the above as follows, 
( )

2

( )( ) ( ) ( )( )
( ) ( )

s s
s

E E sD E s D E s E E s ED E s
E s E E s E t E

− − ∆− = = ⋅ ⋅ ∆ 
  

and so, 
( ) 1

( )
sD E s E
E s t E

∆= ⋅
∆ . 

Using (1), this can be written as sD
t

ξξ− =
∆

 , or as  sD tξ ξ= − ⋅ ∆  .               (4)

Differentiating (4) above with respect to s, we get  2
s s sD D t Dξ ξ ξ= − ⋅ ∆ + . 

Therefore,  2 0sD ξ = . Working backward, this gives constantsD rξ = − = . 

From (1), we then have that 
( )

( )
sD E s r
E s

=  and therefore  0( ) rsE s E e= .                          q.e.d.

Further Discussion:

The formula ( )
1avE E

EE s
e∆

∆=
−

 can be interpreted as saying that the 'instantaneous value' of the 

quantity E can be calculated exactly if we knew the 'change' and the 'average' of E over some 
time interval. Thus if we knew the value of E∆  and avE , by substituting these values in this 
formula we can calculate the exact 'instantaneous value' of E. Furthermore, we would get the 
same value of E regardless of the interval of time over which the values of E∆  and avE were 
taken. That is to say, the formula is independent of t∆  (Corollary B).

Consider a 'black box' containing some quantity E. Although we may not be able to measure the 
exact (absolute) 'instantaneous' value of E directly, if we have instruments that can measure the 
'change of E' and the 'average of E' over some time interval, and if the specific interval is not 
relevant (as it shouldn't be if there is just one exact value of E in the box at any one instant), then 
using this formula we could calculate the exact (absolute) 'instantaneous' value of E. In a sense, 
the instrument 'samples' the box by measuring E∆  and avE . From these values we can then 
calculate from the formula the exact 'instantaneous' value of E in the box.

Note further that for any function E(t), the expression 
1r t

Pr
e ∆ −

 can also be written as 

0

( )
t

s
t s

ru

E u du

e du
−

∫

∫
. 
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