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ABSTRACT

Mathematics of non-commutative spaces is a rapidly growing research field, which has to 

date found convincing proof of its legitimacy in the nature, precisely, in quantum systems. In 

this  paper,  I  evaluate  the  extension  of  fundamental  non-commutativity  to  the  theory  of 

chemical  equilibrium  in  reactions,  of  which  little  is  known  about  its  phenomenological 

implication. To do so, I assume time to be fundamentally discrete, with time values taken at 

integer multiples of a time quantum, or chronon. By integrating chemical ordinary differential 

equations (ODE) over the latter, two non-commutative maps are derived. The first map allows 

excluding some hypothetical link between chemical Poisson process and uncertainty due to 

non-commutativity, while the second map shows that, in first-order reversible schemes, orbits 

generate a rich collection of non-equilibrium statistics, some of which have their support close 

to the Cantor triadic set, a feature never reported for the Poisson process alone. This study 

points  out  the  need  for  upgrading  the  current  chemical  reaction  theory  with  non-

commutativity-dependent properties.

* Contact: jerome.chauvet.msc@gmail.com
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INTRODUCTION

Not only quantity and velocity are crucial characteristics in describing a particular process. If 

we let us envisage a naive scientist,  one so eager that he would start writing his research 

report before possessing results to deal with in it, then we seize at once how out of inspiration 

his brain is going to run, and how after this scientist ought to have written it, in any sensible 

manner.  This is,  in fact,  a general  requirement  to all  complex processes.  Recipe cooking, 

chess strategy, room tidying,  and so on, there exists in the everyday life tons of complex 

processes, i.e., processes being a combination of singular well-defined sub-processes, which 

consist in a particular ordering of elementary parts, but for which another order of them would 

not  let  the  resulting  action  fulfil  the  wished  purpose.  This  particular  property  for  two 

elementary  transformations  to  be  not  trivially  exchangeable  is  referred  to  as  non-

commutativity1.

And not only macroscopic evidences can be given. At the microscopic level, the inner and 

irreducible non-commutativity in the description of matter by quantum theory renders this fact 

inevitable  in  the  debate2.  However,  although  macroscopic  systems,  if  smart,  can  by 

themselves compute and find what proper order to set up in view of a particular goal, very 

simple  microscopic  ones  remain  unable  to  perform any reasonable  choice  of  an order  or 

another, for they are not expected to have sorting ability. Historically, it was M. Born and P. 

Jordan  who  first  built  an  explicit  algebraic  bridge  between  the  probabilistic  nature  of 

microscopic  systems and the  non-commutativity  in  their  theoretical  description  by matrix 

operators, proving thereby that real systems should inherit phenomenological properties from 

their formal form3,4. 

In spite of its universality, rarely is non-commutativity specifically studied in natural systems 

other  than quantum ones.  This  is  true even when that  theory is  mathematically  based on 

matrix algebra, and even if the so-called theory deals with uncertainty in the process. Beside 

this, one important field, in which non-commutativity arises, is analysis of partial differential 

equations (PDE). Indeed, when resolving the latter, or attempting to do so, it is of use to split 

operators  into  two  or  more  of  them  in  order  to  facilitate  solution  determination  of  the 

corresponding dynamical systems5. One then analyzes the added bias due to the frequent non-

commutativity  born from operator  duplication.  However,  lack of commutativity  is,  in this 

particular  case,  considered to  be generating  non relevant  errors,  and not  promoting novel 

property discovery6. 
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In chemical reaction networking, in which high dimensionality meets the matrix requirement, 

and in which structural complexity is some constant source of uncertainty7, one can deplore 

such a gap of knowledge. But to date, neither the deterministic description based on ODE 

systems, nor the probabilistic theorization provided by the chemical master equation, were at 

the origin of investigations  chasing specific  effects  causally related to non-commutativity. 

Such an investigation appears though now to be pressing, as many recent advances, which 

involve  information  management  by  large  chemical  systems,  especially  biochemical 

networks, raise the question of the reliability of this  information in noisy environment8–12. 

Thus, this article aims at identifying non-commutativity in the most simple reaction systems, 

and estimating its phenomenological consequences on clear physical basis, in view of future 

development. 

This paper is organized as follows. First part deals with the general approach and notations 

used over the whole report.  In the second part,  I  confront the well-established Poissonian 

chemical uncertainty and a conception of uncertainty due to non-commutativity. Finally, third 

part  aims at  numerically  analyzing the non-equilibrium dynamics specifically  due to non-

commutativity in the reversible scheme.

1. GLOBAL APPROACH, NOTATIONS

I based this work on transformations of ODE smooth solutions into recursive maps over a 

time dimension that is discontinuous in the most fundamental manner. Time discretization 

will be assumed to be fundamental  through consideration of a minimal generator for time 

values,  i.e.,  a  chronon,  which  will  be  denoted  θ. The  latter  should be  interpreted  as  the 

minimal time duration, during which no modification of the system state is possible, as no 

transfer of mass or of information from external source may intervene within that time. In this 

view,  θ  is akin to Caldirola’s chronon13,14  and Planck’s time, at the shortest physical limits. 

However, determining its precise value in the case of an arbitrary chemical system is, at that 

time, still a challenging issue, so we will treat θ  as an open value in this paper. In doing so, 

reaction events become discontinuous, no matter how high the considered concentrations of 

reactants and products are. 

Recursive maps will be derived from ODE smooth solutions through the following procedure. 

Let )(tϖ  be some unknown function of time t, K some constant, Φ the indefinite integral of 
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function  φ , and  Φ–1 the inverse function of Φ . Then, out of any separable linear first-order 

ODE derived from the law of mass action, for which:
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holds, one obtains a map straightforwardly in the form:

)))((()( 1 tKt ϖθθϖ Φ+Φ=+ −        (1.1)

Throughout this article, tϖ  will stand for a global state vector comprising all chemical entities 

concentration of the reaction at time θnt = , with n being positive integer. The special case of 

initial condition will be denoted it =×= :0 θ . Also, constant: 

θκ ak
a e−= (1.2)

where subscript  a refers to some particular half-reaction, will recurrently be used for better 

readability of formulas.

2. NON-COMMUTATIVE INTERPRETATION OF THE POISSON PROCESS

Uncertainty in reaction processes is broadly assumed to be Poissonian15, which is analytically 

proved true for some simple chemical networks by means of the master equation approach16. I 

test here whether or not Poissonian behaviour should be related to some fundamental non-

commutativity, in some typical reaction scheme. The latter will be the mono-molecular pure 

death process of a reactant r into a product p. Its recurrent mapping, elaborated with method 

(1.0), is easily shown, for n being the nth iteration of the map, to be:
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When put into semantic form, the operator of (2.1) means the following: 
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“Draw from r a quantity that is proportional to κ while transferring it directly into p”

Bearing in mind that Poissonian noise occurs where concentration is transferred from reactant 

to product, let us try and build a non-commutative interpretation of this statement by breaking 

up the previous assertion into a couple of the same but now segmented semantic value, which 

yields:  

a – “Pick a quantity from r that is proportional to κ “

b – “Put this quantity into p“

Then, let us assign a different operator to each of these assertions. Each operator will stand for 

either the semantic  value of a,  as an operator  noted  R,  or the semantic  value of b,  as an 

operator noted P. This yields the following couple:
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Given this couple of operators, the only way to recover a map that would be some equivalence 

to  (2.1) is  to  compose  R and  P in  a matrix  product.  This  is  a multiplicative  split  of  the 

operator in (2.1). In this case, it is of common use to calculate the commutator of this product, 

which here is found to be:
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This commutator varies according to κ, which itself depends on both kinetics constant k and 

chronon θ , the two of which are positive real numbers. Thus, relation (2.3) demonstrates the 

non-commutativity  of  matrix  multiplication  between  R and  P.  Note  that  this  commutator 

never equals to the null-matrix, except when considered in the limit of continuity, that is to 

say:

 0],[lim
0

=
→
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Hence,  the  RP product  becomes  commutative  only  for  θ  tends  to  infinitesimal  chronon 

duration dt, otherwise not.

Now, let us construct a new recursive map by means of the two operators of (2.2). Let us also 

invoke, here, a third novel operator, so as to obtain the following map:

  t
n

nt PRC ϖϖ θ ),(≡+ (2.5)

This C  will be called a choice operator, defined as the operator taking two arbitrary square 

matrices of the same order in its arguments field, and multiplying them with either one order 

or the other. When put to its nth power, like in (2.5), C  performs its action n times on initial 

values in a multiplicative chain of the following form:

))1((~),(
1
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(2.6)

In (2.6), the only constraint put on ub  is that it is every uth element of any arbitrary sequence 

of 1’s and 0’s taken from { } n1,0 , together with the convention )1,...,1,1(),(0 diagPRC = . Due 

to the non nullity of (2.3) when time is discrete, it comes that the map orbit then generated is 

in the form of a rooted tree17. From (2.6) should be deduced any walk throughout the vertices 

space of the associated tree, from root, i.e. iPRC ϖ),(0 , to boundary, i.e. iPRC ϖ),(∞ . At each 

step  of  the  recursive  process,  non-commutativity  of  the  RP product  engenders  state 

duplication, and we are logically led to relate (2.1) to (2.5). 

To  do  so,  it  is  necessary  to  demonstrate  the  possibility  for  the  tree  of  (2.5)  to  be 

parameterized, so as to access every nodes of it by means of one single value. Thus, let:
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ϖ  has an upper coordinate r, which is invariant under multiplication order inversion, so we 

can parameterize its time-dependent evolution by means of one single integer value  n, and 

initial condition ri. This is easily found to be the following:

i
n

n rr κ= (2.8)

Unlike (2.8), the lower coordinate of ϖ , i.e. p, is affected by non-commutativity, and we have 

state duplication at this particular coordinate:
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Relation (2.9) demonstrates that the map orbit is in the form of a tree at coordinate p, but not 

at coordinate r. Thanks to (2.8), we are prompted to re-write (2.9) and make it so that r is no 

more dependent on time parameter n. Thus:
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Notice  that  the  square  brackets  are  here  conventional  ones,  enrolled  for  the  purpose  of 

pointing out the special value put in between them, i.e. 0 or 1. That pair of values provides, at 

each single step of the process, a binary signature of the choice for one order of multiplication 

or the other, that is to say, the ub  values of (2.6). 

As to express pn in the form of a function of initial condition pi and positive integer n, let us 

consider such a state duplication recursively, until step time 0 has been reached. It yields:
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Considering (2.11) recursively up to any mth step finally leads to:

ii
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m prp m +−+++≡ +−+−+− )1)(...( 21 21 κκκκ (2.12)

In (2.12), each jb  equals to either 0 or 1, so a whole infinite sequence of them encodes one 

particular orbit from root to boundary of the tree. One is prompted to reduce the writing of 

(2.12) by changing the parameterization system, as demonstrated hereafter.

Let nbbb ...21 be some binary code of length  n such that each { }0,1∈jb .  Let the following 

parameterization system:
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Then, one can quietly claim that:
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Moreover, an explicit form for the choice operator is found to be:
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In (2.14), the binary code nbbb ...21 encodes time information by means of its index, i.e. 1 to n, 

while values themselves, i.e. 0 and 1, encode the choice for one order of multiplication or the 

other, defined for each jth step of the map. Expression (2.10) demonstrates that 0 encodes 

multiplication order for RP, and 1 for PR. Hence, the binary parameterization of the tree has 

been demonstrated.

To validate the hypothesis that the non-commutative model is a correct theory for the pure 

death process reaction, it is essential to resort to some fundamental principle. The motivation 

for this is that the tree consists in a time-dependent exponential expansion of possible states at 

the product  side of  the  reaction  but  not  at  the  reactant  side of  it,  so  one  is  prompted to 

investigate which ones of these states are consistent with the principle regulating the overall 

mass of the system. Naturally, mass conservation will be this particular principle, through the 

use of a mass hyper-surface. As a matter of fact, we need to prove true, for all n and for all

nbbb ...21 , the following relation:

 0)(...21
=+−+ iibbbn prpr

n
        (2.16)

Combining (2.15) and (2.16), the above relation becomes:
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Let now the sub-set of particular finite walks of length n encoded by all finite sequences such 

that every 0=jb , where nj ≤≤0 . This corresponds to any walk for which the product entity 

appears after reactant entity has reacted. Hence (2.17) becomes: 

1)1( 1 =Σ−+ −
=

jn
j

nn κκκκ           (2.18)

Then, using the well-known formula for the sum of all terms of a geometric sequence up to n, 

we obtain:
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(2.19) is true for all n, thus demonstrating that the particular map orbit determined by all state 

vectors of the form 0...00ϖ   preserves mass conservation all along the walk. Any other kind of 

walk will have one or more 1’s in its binary parameter, so that we will have to substitute one 0 

for one 1 at each dth digit of a given set ∆ of non-redundant indices in the coding sequence. 

Given (2.18), we deduce that this yields:
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Considering triviality of equation (2.18), (2.20) turns out to be:

0)1( 2 =Σ−− −

∆∈

d

d

n κκκ (2.21)

If ∆ is finite, then (2.21) holds if κ equals to 1, i.e., in the continuous limit situation dt~θ , 

which pulls this case out of the discontinuity statement; otherwise, (2.21) holds for +∞~n , 

i.e., at an effective infinite time, which is neither observable nor calculable. If  ∆ is infinite, 

then n must tend to infinity too, as n⊆∆ , which is to be rejected with the same argument as 

in the previous case. In the end, we conclude that: 

• Since  the  multiplication  order  encoded  by  0  refers  to  product  order  RP,  and  not 

product order PR, the above inspection justifies the trivial order again, i.e., the order 

such that reactant must disappear first before product can appear, which is commonly 

assumed in schematic form by the arrow direction of pr k→ . 

• Since orbits of the form 0...00ϖ  are the only acceptable ones, the underlying Poisson 

process,  with  respect  to  the  idea  that  it  is  uncertainty  in  the  transformation  from 

reactant to product, should not be imputed to non-commutativity.
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3. COMPETING REACTIONS AND UNCERTAINTY

Irreversible first-order reactions are rare as compared to reversible ones. Most of the time, the 

backward reaction exists, and one ought not to neglect it unless its rate is drastically slow. 

Due to this, an ambiguous situation, in which both yx k→ +  and xy k→ −  are valid at the 

same time, arises. Hence, competing half-reactions generates outcome indetermination, which 

hereafter I analyze from the non-commutative point of view.

Let us adapt the theory to the reversible case. The state vector will now be ),( yx=ϖ , and 

elementary events will be semantically defined so:

 

a – “Draw from x a quantity that is proportional to +κ  while transferring it directly to y”

b – “Draw from y a quantity that is proportional to −κ  while transferring it directly to x”

Again here, we associate one operator acting on the state space with each statement above, 

each  of  which  should  correspond  to  either  the  forward  half-reaction  (+  subscript),  i.e. 

assertion “a”, or the backward half-reaction (– subscript), i.e. assertion “b”. One thus has:
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At each  step of the process, a complete reaction event necessarily consists in the action of 

both operators, so we have to multiply +Q  and −Q . The associated commutator equals to: 








 −−
−−= −+−+ 11

11
)1)(1(],[ κκQQ      (3.2)

With the same arguments  as those invocated  for  (2.3),  this  commutator  is  no null-matrix 

except in the limit of time continuity (i.e. dt~θ ), and proves non-commutativity to be a non 

negligible  feature  of  the  reversible  system.  I  recall  here  that  time  discretization  meets  a 

fundamental  justification  because  there  exists,  in  any  two  coupled  chemical  reactions,  a 

duration equalling to at least Planck’s time, within which neither chemical process is able to 

either  be disturbed by or disturb the other one,  so each half-reaction must be an isolated 

system in a period spanning over one chronon.   
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One immediately validates the model using the mass conservation relation. 

It is, in fact, straightforward to assert that composing this couple of operators conserves mass. 

Indeed, each single operator Q+ and Q– individually conserves mass, as already demonstrated 

in Section 2 (cf.  2.19), so that applying one operator then the other to the state vector does 

map mass with respect to that conservation, whatsoever the composition order is. Hence, one 

will simply assume the following to hold for any value of the binary parameter: 

0)(...... 2121
=+−+ iibbbbbb yxyx

nn
(3.3)

As per Section 2, one is led to state that the map for the reversible first-order scheme has the 

following form:
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In (3.4),  nC  is the nth iteration of the choice operator previously defined in Section 2. The 

consequence of applying C recursively to the state vector will be captured by calculation of 

the non-commutativity-dependent divergence δ , that is to say, the following relation:
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Combined with (3.3), (3.5) is found to be:
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121 ... iibbb yx
n

κκδϖ     (3.6)

From (3.6) must be deduced that the divergence caused by non-commutativity affects both 

coordinates of the state vector and, moreover, that it is stationary since (3.6) does not depend 

on n. Therefore, the orbit triggered by the map (3.4) is in the form of two rooted trees, one per 

dimension of the system, with root at time 0 and exponential expansion of base 2 at boundary. 
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Furthermore, because of the unconditional validity of (3.3), all possible walks through them 

are consistent with the mass conservation principle.

At  this  point,  an  explicit  binary  parameterization  of  (3.4)  would  be  essential  for  a  deep 

comprehension of this map. However, in this pioneering work, I was not able to exhibit such a 

parameterized  form,  so  I  was  led  to  opt  for  an  estimation  of  the  tree  structure  using  a 

probabilistic method, namely the Monte-Carlo method. Since (3.4) models the step-by-step 

undetermined outcome of two competing half-reactions due to the constitutive randomness of 

events occurring at the molecular level, this map was numerically simulated as if it were some 

stochastic  process  of  which  no  exact  solution  is  known.  Indeed,  (3.4)  deploys,  at  each 

recursion step,  a set of co-temporal  states and not a single path and,  in such a case, it  is 

judicious,  if  no  formal  solution  is  available,  to  randomly  render  one  plausible  trajectory 

among all  possible ones, and assume this being a representative realisation of the general 

solution18. Implementation of Monte-Carlo estimation of the tree is detailed in appendix A. A 

large amount of values for kinetics constants and initial conditions was probed, which have 

always  led  to  the  same  type  of  results.  One  typical  distribution  series,  obtained  with 

3234.0=+k  and 2822.0=−k , is shown in Fig.1. 

In Fig. 1, augmenting θ  as continuously as can be (i.e., in the numerical sense of it) from 0 to 

positive infinity  has the effect  to let  the system dynamics  generate different  distributions, 

every  of  which  smoothly  deform from one  into  another  as  a  direct  function  of  chronon 

duration θ . I found some of those distributions to be of special interest, which from now on 

will be mentioned as key-distributions, and detailed hereafter.

For 0→θ , i.e. dt~θ , statistics around the equilibrium is in the form of a Dirac distribution, 

i.e., tending to the analytic flat solution. At 3729.0=θ , the system has shifted from the Dirac 

distribution to some bell-shaped distribution, which resembles a Gaussian distribution. The 

latter was confirmed by numerical computing of the fit to the Gaussian normal distribution 

curve,  which  gave  the  correlation  coefficient  9967.02 =R  with  this  particular  set  of 

constants. Around 8559.0=θ , the relative frequency distribution is in the form of a Takagi 

triadic  function19.  Around  147.1=θ ,  states  distribution  has  come  down  back  to  a  more 

common statistics density, which is the uniform one. In fact, the latter seems to be the very 

upper limit of a distribution sub-set related to the interval defined by ]147.1,0[∈θ , and of 

shared characteristic that their support appears to be connected. Indeed, as soon as 147.1>θ  
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(for instance  21.1=θ  here) uniform distribution breaks up into a set  of sub-distributions, 

which  jointly  produce  a  global  statistics  with  disconnected  support.  Moreover,  those 

disconnected supports resemble a known class of geometrical set, namely the Cantor set20. To 

add  visual  evidences  to  this  conjecture,  I  checked  if  the  Cantor  triadic  set  C3,  which  I 

calculated in Fig.1.(g) up to the third iteration of its construction rule, matches one or more 

sub-supports, for some value of chronon  θ , and found, at  76201.1=θ , such a match to be 

convincing, provided the triadic Cantor set, which is currently constructed out of the unity 

segment,  was linearly  stretched so as to  fit  the overall  support.  Finally,  as  θ  tends to be 

infinitely long, global distribution progressively fuses into a pair of peaks, one at 0, and the 

other  at ii yx + .  This  limit  statistical  behaviour  is  already  clear  in  Fig.1.(h)  as  soon  as 

3989.10=θ , and rigorous proof of this limit distribution is developed hereafter. 

Let the two limit operators A and B, such that:
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The individual first action of either operator of (3.7) on iϖ , in the limit of θ  tends to infinity, 

is either:
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Let ii yxM += . Then, any subsequent mapped value is in one of the four following cases:
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Moreover, the algebra made of the two operators A and B has a non-Abelian group structure 

demonstrated by the four following equalities:
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Hence, it has been demonstrated that any nth action of the choice operator on the state space, 

in the limit of θ  tends to infinity, yields either vector (0, M), or vector (M, 0). Furthermore, 

since  both  operators  act  with  probability  1/2  in  the  Monte-Carlo  estimation  of  the  tree, 

statistics happens in turn to be strictly bimodal, with one peak at 0, and the other one at M, of 

respective relative frequency 1/2.

For a  given  real  system,  if  θ  has  been fixed,  one can  directly  calculate  the  real  kinetics 

constants, which match the simulated statistics using the invariance relation below:

 ννρρ θθ kk =     (3.12)

In (3.12),  k refers to kinetics  constant,  θ  refers to chronon, subscript  ρ  refers to the real 

system, and subscript ν refers to the numerical system used as data source. Invariance relation 

(3.12)  allows  exploring  values  for  parameters  while  keeping  (1.2),  and  hence  the 

corresponding statistics, unchanged. Some examples of conversion, performed with reference 

values  Planck’s  time  and  Caldirola’s  chronon,  together  with  the  previous  numerical  data 

presented in Fig.1, are shown in Fig.2. 

Fig.2 shows that, in a range spanning over all special distributions of the theory, real kinetics 

constants  roughly  have  the  order  of  magnitude  of  one  hundredth  of  the  real  chronon 

reciprocal. Interestingly, it can be stated a necessary and sufficient emergence condition on 

the appropriate magnitude for kinetics parameters, which prompts a real system to behave 

according  those  key-distributions.  Indeed,  since  here  −+ ≈ kk ,  one  may  reduce  this 

information  by  assuming  that  νk  approximately  equals  to

3.02/)2822.03234.0(2/)( ≈+=+ −+ kk .  Beside  this,  finding  a  satisfying  interval  for  the 

corresponding ρk , which  would  span  over  all  the  so-called  key-distributions,  is  formally 
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translated  into  maxmin ρρρ kkk ≤≤ .  Using  (3.12),  the  latter  transforms  into 

νρνρνρν θθθθ kkk )/()/( maxmin ≤≤ ,  then  into  ννρρνν θθθ kkk maxmin ≤≤ .  From numerical  data 

(cf.  Fig.1  and  Fig.2),  both  boundaries  are  calculated  to  be  at  least 

1000/73.0022.0min =×=ννθ k , and at most 2/712.33.04.10max ≈=×=ννθ k , the latter being 

majored  so  as  to  allow  arithmetic  reduction,  and  altogether  this  yields  the  remarkable 

condition:

2

1

7

1

1000

1 ≤≤ kθ          (3.13)

In (3.13), subscripts  have been removed since,  according to (3.12), (3.13) applies to both 

numerical  and real  systems.  Inequalities  (3.13) hold for any first-order reversible  reaction 

having both forward and backward kinetics constants close in value to each other. 

Like kinetics constants and chronon do, initial conditions also transform statistics into other 

ones when they are  varied.  Hence,  we need to  determine  what  class of transformation  is 

concerned  in  that  variation  so  as  to  evaluate  the  significance  of  initial  conditions  in  the 

qualitative description of these statistics. To infer this, one may resort to the choice operator 

linearity, as done hereafter.

Let three arbitrary initial state vectors ),( ii yx , ),( ii yx ′′  and ),( ii yx ′′′′ . Let nC  be the nth iteration 

of the choice operator, and 
n
ijC  be its coefficient at the ith row and jth column. Let uuu ppp ′′′ ,,  

and uuu PPP ′′′,,  denote respectively the lower and the upper edge of a given partition region on 

dimension  u associated with the three initial vectors above. By linearity, one is allowed to 

write:
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Every statistics generated through iteration of the choice operator are counts per region of the 

state space partition,  which the map orbit has visited, e.g. when the system is in ],[ uu Pp . 

Because of this last point and since (3.14) holds, one is impelled to write that if:
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is true (resp. false) for some n, and if:
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is also true (resp. false) for the same n, then:
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i.e.:
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is, in the end,  also true (resp. false) for that  n.  The appropriate  conclusion to this  is  that 

varying initial conditions without changing kinetics constants and chronon has no other effect 

than performing a linear lateral stretch of distributions, but with global shape that remains 

qualitatively unchanged. Therefore, kinetics constants and chronon duration are necessary and 

sufficient  control  parameters  to  have  the  system pass  trough  the  set  of  key-distributions 

described here, within the approximated range provided by (3.13) 

DISCUSSION

The theory presented here is valid in the limit of high concentrations, since it ousts de 

facto the variability due to underlying Poisson processes, known to vanish at such a limit. It 

has been shown that non-commutativity does not cause Poissonian uncertainty,  but that it 

generates besides, in the reversible case, its own non-equilibrium statistics. The theory strictly 

depends on the existence of a time quantum, also named chronon, a theoretical statement that 
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has not been yet experimentally clarified, but which, here, has found a plausible pathway to 

its proof of existence. 

In PDE solution estimation methodology, splitting of operators consists in some cases 

in  the  artificial  decoupling  of  naturally  coupled  phenomenon,  with  the  intention  of 

approximating solution of the coupled system; the disadvantage of this is the concomitant and 

inevitable emergence of inconsistency6. However, as shown in this report, operator splitting 

may no longer be interpreted as an approximation method if this coupling disruption meets a 

fundamental justification. In this idea, θ  appears to be the key value of the theory. As primary 

instances of  θ , Planck’s time – i.e. the photon quantum of time – was taken as the lowest 

imaginable universal value for θ , and Caldirola’s chronon – i.e. the electron quantum of time 

– was taken as the all first and historical attempt of time discretization for a particle endowed 

with mass and charge. However, a generalization of θ  to all chemical compounds is still to be 

discovered,  which  would  make  the  theory  quantitatively  robust  in  its  predictions.  As 

Caldirola’s theory suggests it13,14, such a generalized  θ  should be highly dependent on mass 

and charge of the molecular system under consideration. More precisely speaking, θ  may in 

particular grow up concomitantly with mass, as revealed in the compared use of Planck’s time 

and Caldirola’s chronon for the computation of real kinetics constants. The question of the 

charge, which is a complex feature in large molecules, leaves however this point much too 

intricate for an ascertained conclusion here. In any case, future developments should always 

consider time to be the typical  value in the causal order formally provided by maps,  and 

should not take into account divergences in the time ranging less than one chronon, notably 

through τ -entropy determination, as it is assumed to be the case in chemical master equation 

approaches16.

Observation, in real reaction systems, of distributions having Cantorian support are 

expected to occur in first-order reversible schemes having two half-reactions with very high 

rates each, to push the system into the frame of the emergence condition inequalities. Note 

that  M.  Wilkinson  came  across  spectacular  Cantor  sets  studying  formally  electrons  in 

incommensurable systems21, but it is more relevant to make, here, the connection with the 

coalescence observed in nuclear magnetic resonance (NMR) spectrometry, a technique with 

which  one  analysis,  in  isomers,  the  rapid  internal  reaction  of  passing  from  one  stable 

configuration to the other22. Such reactions are, in standard conditions, usually modelled using 

law of mass action relations, but as NMR plunges those systems in electro-magnetic fields, 

one rather models them using Bloch’s equation23.  It  is known that isomerization reactions 
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have rates that are rather high, e.g. in the order of 4.0 × 1010 s–1 for the pent-1-en-4-yne24, and 

that  their  dynamics  takes  place  at  the  picosecond  time-scale,  e.g.,  in  the  rhodopsin 

isomerization from 11-cis  to all-trans25,  which puts such systems in suitable  condition for 

attaining specific effects of the theory. What has been shown here is a multi-branched fork of 

several levels of concentration, i.e. multimodality, a property that emerges here for the first 

time in linear reaction schemes. The coalescence detected in NMR experiments also generates 

forks, which however have a functional relation with temperature for modulating coalescence, 

and  not  kinetics  constants  or  chronon  duration  like  in  this  study.  Coalescence  in  NMR 

experiments  takes  place in  the resonance frequency domain,  and not  in the concentration 

domain, so all comparisons on this point should be discussed with care. Strong analogies and 

connections are, however, obvious to the eyes. Both coalescences occur in the same exchange 

reaction scheme, and emergence of forks should be, in the future, envisaged for that scheme 

with or without NMR environment. Also, kinetics parameters and temperature can be put in 

functional relation through the use of the Eyring equation or of the Arrhenius law26, which 

renders  both  coalescences  functionally  tied  to  each  other  at  the  level  of  their  control 

parameters. Also, signal in the form of a Cantor set resembles the peak repartition along the 

frequency scale of some ABX spin systems obtained in NMR spectroscopy, e.g. the 60-Mc 

fluorine  resonances  of  2-fluoro-4,6-dibromophénol27.  All  in  all,  this  novel  role  of  non-

commutativity in high-rated first-order reversible reactions might explain why isomerization 

reactions, which are fast-rated reactions, are poorly predicted by common statistical models, 

while the latter prove to be satisfying for slow-rated reactions28,29. As an exciting and concrete 

consequence of this,  the theory appears  as a promising component  in comprehending the 

recently  characterized  intrinsically  unfolded  proteins  (IUP).  Indeed,  that  class  of  bio-

molecules is thought, in biological networks, to be endowed with large spectra of partners 

because of an ability to have many stable conformations, and to rapidly transform from one 

into another so to adapt to all of them30,31,32. The importance of concentration levels in binding 

kinetics implies the importance of a fine model describing those levels, and this new theory 

might have a crucial role to play in that description. Naturally, further investigations will be 

needed to establish, in the most irrefutable way, all of these assertions. 

In this logic, identification of distributions with their support belonging to the class of 

Cantor set – in particular the triadic Cantor set C3 – is strategic, because it provides the theory 

with a straightforward bridge towards novel mathematical tools developed in the field of non-

commutative geometry. In recent pre-printed papers33,34, J. Pearson and J. Bellissard explored 
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Cantor sets when seen as non-commutative spaces. They have developed a measure theory for 

distributions having Cantorian support, which notably makes use of Dirichlet series; and, they 

demonstrate two powerful tools of special interest here: a canonical probability measure on 

Cantor sets, and the formalization of Brownian motion on the triadic Cantor set, from which 

they deduce the mean displacement by diffusion in the limit of short times. No doubt that 

these novel methods will be essential in the quest for a chemical kinetics theory augmented 

with non-commutativity-dependent properties. 
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APPENDIX A: TREE ESTIMATION WITH MONTE-CARLO METHOD

For each set of pre-determined initial conditions, kinetics constants and chronon value, the 

map defined by nnnn QQQQ ϖεεϖ ))1((1 +−−++ −+=  was iterated up to 30000 times, the value 

nε  being the nth item of a sequence of 0’s or 1’s, which were drawn at random according to a 

Bernoulli  law of  parameter 2/1 .  Bernoulli  process  can effectively  be  generated  using the 

uniform distribution provided by the Bernoulli shift, after it has been stretched and truncated 

with the ceiling function, i.e.  2)1mod3( 0 ×= sn
nε 35, where  s0 is the initial seed randomly 

chosen in ]1,0[ . Due to the mass conservation law, the state space of the first-order reversible 

reaction  is  bounded  to  the  interval ],0[ ii yx + ,  so  all  statistical  assessments  should  be 

performed within that interval. For each orbit generated, relative frequencies were calculated 

for  a  partition  of  either  the  whole  state  space,  or  of  a  windowed  sub-part  of  it  around 

analytical equilibrium given by ))/()(( +−− ++= kkkyxx iieq  and ))/()(( +−+ ++= kkkyxy iieq . 

Those partitions always consisted in a sub-division into 1024 regions; windowing allowed 

convenient zooming on a particular sub-set of the tree. Relative frequency in a partition region 

was  calculated  counting  the  number  of  times  nϖ  has  visited  this  particular  region,  then 

dividing the cumulated count by the total number of mapped values, i.e. 30000.
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FIG. 1.  Non-commutativity-dependent coalescence as a function of chronon duration. 

Left: (a) Non-equilibrium statistics in a windowed state space defined by the boundary values 

68.0± , with initial conditions xi = 4 and yi = 0. Each of these white lines labelled from b to h 

stands for a key-distribution chosen over the continuum of control parameter  θ .  Right: The 

so-called  key-distributions,  where ordinate is  the statistical  relative frequency.  Qualitative 

characterization  of  key-distributions:  (b)  Dirac,  (c)  Bell-shaped,  (d)  Takagi  function,  (e) 

Uniform, (f) Transition from connected to disconnected support, (g) Cantorian distribution + 

C3 indicated with red segments, (h) Bimodal in the limit +∞→θ  (here at 3989.10=θ ). Both 

chemical entities x and y have similar statistics, with respect to the symmetry provided by the 

mass conservation law niin yyxx −+= )( .
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FIG. 2. Real system kinetics constants determination as a function of numerical chronon 

duration. Function  νρνν θθθϕ ×= )/()( k was  computed  with  key-values  placed  at  regular 

intervals, so as to obtain the seven key-phases corresponding to the seven key-distributions on 

a regular scale. Letters mean D: Dirac, B: Bell-shaped, T: Takagi class function, U: Uniform, 

DS: From connected to disconnected support phase,  C: Cantorian,  BM: Bimodal. Constants 

were chosen such that += kkν or −k , and 
441037.5 −×=ρθ s (left y axis), or 

241097.6 −×=ρθ

s (right y axis).
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