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Abstract

Feynman’s Lagrangian path integral was an outgrowth of Dirac’s vague surmise that Lagrangians have a

role in quantum mechanics. Lagrangians implicitly incorporate Hamilton’s first equation of motion, so their

use contravenes the uncertainty principle, but they are relevant to semiclassical approximations and relat-

edly to the ubiquitous case that the Hamiltonian is quadratic in the canonical momenta, which accounts

for the Lagrangian path integral’s “success”. Feynman also invented the Hamiltonian phase-space path

integral, which is fully compatible with the uncertainty principle. We recast this as an ordinary functional

integral by changing direct integration over subpaths constrained to all have the same two endpoints into

an equivalent integration over those subpaths’ unconstrained second derivatives. Function expansion with

generalized Legendre polynomials of time then enables the functional integral to be unambiguously evalu-

ated through first order in the elapsed time, yielding the Schrödinger equation with a unique quantization

of the classical Hamiltonian. Widespread disbelief in that uniqueness stemmed from the mistaken notion

that no subpath can have its two endpoints arbitrarily far separated when its nonzero elapsed time is made

arbitrarily short. We also obtain the quantum amplitude for any specified configuration or momentum

path, which turns out to be an ordinary functional integral over, respectively, all momentum or all config-

uration paths. The first of these results is directly compared with Feynman’s mistaken Lagrangian-action

hypothesis for such a configuration path amplitude, with special heed to the case that the Hamiltonian is

quadratic in the canonical momenta.

Introduction

The incorporation of the correspondence principle into quantum mechanics has proceeded along two profound
and elegant parallel tracks, namely Dirac’s canonical commutation rules and Feynman’s path integrals. It is,
however, unfortunately the case that from their inceptions the prescribed implementations of both of these
have had some physically unrefined aspects—albeit these conceivable stumbling blocks turn out to be of
little or no practical consequence in light of the fact that the Hamiltonians which have been of interest are
almost invariably quadratic forms in the canonical momenta and as well usually consist of sums of terms
which themselves depend either on only the canonical coordinates or on only the canonical momenta, which
makes their unique quantization unmistakably obvious. In this paper we nonetheless show that the physically
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called-for refinements of the prescribed implementations of both the canonical commutation rules and the
path integrals result in the unique quantization of all classical Hamiltonians rather than only those which
have heretofore been of practical interest. This endows quantum mechanics with a degree of coherence and
consistency which is entirely comparable to that of classical mechanics, and also renders fully transparent its
precise relationship to the latter.

Whereas the called-for refinement of Dirac’s canonical commutation rule prescription is the straightforward
strengthening of its classical correspondence to the maximum that is still self-consistent, the physical issue
which besets Feynman’s prescribed Lagrangian path integral is more drastic. Because Lagrangians implicitly

incorporate Hamilton’s first equation of motion, they likewise implicitly contravene the uncertainty principle,
which makes their utilization in rigorous quantum theory impermissible—albeit they do play a role in semiclas-
sical approximations and, relatedly, in the practically ubiquitous special circumstance that the Hamiltonian is
a quadratic form in the canonical momenta.

In general, however, the Lagrangian path integral must be regarded as invalid, and should be replaced
by the Hamiltonian phase-space path integral, also invented by Feynman, which is fully compatible with the
uncertainty principle. We recast this as an ordinary functional integral by changing direct integration over
subpaths constrained to all have the same two endpoints into an equivalent integration over those subpaths’
unconstrained second derivatives. Function expansion with generalized Legendre polynomials of time then
enables the functional integral to be unambiguously evaluated through first order in the elapsed time, yielding
the Schrödinger equation with a unique quantization of the classical Hamiltonian. Widespread disbelief in
that uniqueness stemmed from misapprehension of the fact that arbitrary endpoint stipulations can always be

fulfilled by an infinite number of subpaths no matter how short the nonzero time interval allotted for such a

subpath may be.
The unique quantization of the classical Hamiltonian produced by the Hamiltonian phase-space path in-

tegral turns out to be in complete accord with the unambiguous quantization of that classical Hamiltonian
which emerges from a slightly strengthened, but still self-consistent, variant of Dirac’s canonical commutation
rule prescription that is alluded to above.

This paper also obtains the formal quantum amplitude for a specified configuration-space path or a specified

momentum-space path as an ordinary functional integral over, respectively, all momentum-space paths or all

configuration-space paths. The first of these two results is then instructively directly compared and contrasted
with Feynman’s mistaken Lagrangian-action hypothesis for such a specified configuration-space path amplitude,
with special attention given to the case that the Hamiltonian is a quadratic form in the canonical momenta.

The Lagrangian path integral

In the preface to Quantum Mechanics and Path Integrals by R. P. Feynman and A. R. Hibbs [1], which
treats only the Lagrangian path integral, the reader encounters the revelation that, “Over the succeeding
years, . . . Dr. Feynman’s approach to teaching the subject of quantum mechanics evolved somewhat away
from the initial path integral approach. At the present time, it appears that the operator technique is both
deeper and more powerful for the solution of more general quantum-mechanical problems.” Unfortunately,
no recognizable elaboration of this cautionary note regarding the Lagrangian path integral is to be found in
the book’s main text. But in what might be construed as a muffled echo of this theme, we do learn in the
second paragraph of page 33 of the book that to define the “normalizing factor” 1/A which is required to
convert the Dirac-inspired very short-time Lagrangian-action phase factor [2] into the actual very short-time
quantum mechanical propagator in configuration representation “seems to be a very difficult problem and we
do not know how to do it in general terms” [1]. This makes it clear that the authors, contrary to a widely
held impression, did not succeed in making Lagrangian path integration into a systematic alternate approach
to quantum mechanics—which one could suppose may have been reason enough for Feynman to have turned

away from teaching it.
On page 33 Feynman and Hibbs interpret this “normalizing factor” 1/A as also being the “path measure

normalization factor”, which, when paired with each of multiple integrations over configuration space (at suc-
cessive, narrowly spaced points in time), converts the whole lot of those integrations into an actual integration
over all paths in the limit that the spacing of the successive time points is taken to zero. For the particular

class of one-degree-of-freedom Lagrangians which have the form, L(q̇, q, t) = 1
2mq̇

2 − V (q, t)—to which cor-

responds the class of quantized Hamiltonians that have the form, Ĥ(t) = p̂2/(2m) + V (q̂, t)—Feynman and
Hibbs point out on page 33 that the factor 1/A comes out to equal

√
m/(2πih̄δt), as that particular quantity

properly converts the δt-time-interval Lagrangian-action phase factor into the actual δt-time-interval quantum

mechanical propagator in configuration representation. Feynman and Hibbs fail, however, to scrutinize the
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issue of whether this object can pass muster as also being the “path measure normalization factor” which
they have, on page 33, explicitly claimed it must be. One notes immediately that this particular 1/A depends
on the particle mass m, whereas the set of all paths could not possibly depend on anything other than the
time interval on which they are defined and the constraints on their endpoints. The “measure normalization
factor” for such paths could also feature constants of mathematics and of nature, but that set of all paths
clearly does not change in the slightest if a different value is selected for the particle’s mass! The particle mass
is a parameter of the Lagrangian, which is supposed to be at the heart of the path integrand—the measure

aspect of any integral is always supposed to be independent of the choice of integrand ! Furthermore, “measure
normalization factors” are, by their nature, supposed to be positive numbers, whereas this particular 1/A is
complex-valued! It can only be concluded that the “Lagrangian path integral” simply cannot make sense as
a “path integral” at all! It is a great pity that Feynman failed to recognize these surface anomalies of the
“Lagrangian path integral” immediately, as digging deeper only unearths ever worse ones.

Feynman does not seem to have reflected at all on the fact that mechanical systems that are described
by configuration Lagrangians L(q̇, q, t) can in most instances also be described by momentum Lagrangians
L(ṗ, p, t). Indeed, if L(q̇, q, t) = 1

2mq̇
2−V (q, t), then it turns out that L(ṗ, p, t) = −ṗF−1(ṗ; t)−V (F−1(ṗ; t))−

p2/(2m), where F (q; t)
def
= −∂V (q, t)/∂q. Unpleasant though this L(ṗ, p, t) appears for general V (q, t), it

greatly simplifies when V (q, t) is a quadratic form in q, e.g., for the harmonic oscillator V (q, t) = 1
2kq

2,
L(ṗ, p, t) = ṗ2/(2k) − p2/(2m). Indeed it will pretty much be for only those V (q, t) which are quadratic
forms in q that the very short-time quantum mechanical propagator in momentum representation, which is
simply a Fourier transformation of the one in configuration representation, will bear much resemblance to the
desired very short-time momentum Lagrangian-action phase factor that arises from the quite ugly L(ṗ, p, t)
given above—the good correspondence in the quadratic form cases is an instance of the fact that the Fourier
transformation of an exponentiated quadratic form generally comes out to itself be an exponentiated quadratic
form times a simple factor (albeit that factor is by no means assured to make sense in the role of “path measure
normalization factor”, as we have seen above). When V (q, t) is not a quadratic form in q, it will usually be
quite impossible to transparently relate the Fourier transformation of the very short-time quantum propagator
in configuration representation to the very short-time Lagrangian-action phase factor which arises from the
fraught L(ṗ, p, t) given above. The burden of reconciling the two will then have been loaded entirely onto the
shoulders of the 1/A factor, whose role as a fudge factor will thus have been starkly exposed (its forlorn cause
as a “path measure normalization factor” will certainly not have been furthered).

The inability of the Lagrangian approach to cope in all but very fortuitous circumstances with the Fourier

transformations that take the quantum mechanics configuration representation to its momentum representation
and conversely, suggest a fundamental incompatability of Lagrangians with the canonical commutation rule,
q̂p̂ − p̂q̂ = ih̄I, as that underlies the Fourier relation between those representations. It also, of course, is
the heart of the uncertainty principle. Now Feynman took pains to try to move well away from classical
dynamics by attempting (albeit not so successfully!) to integrate quantum amplitudes over all paths, so it
does not seem likely that conflicts with the above quantum canonical commutation rule could be rooted in
that aspect of his approach. We have, however, just seen that, aside from Lagrangians of quadratic form,
the relationships between L(q̇, q, t) and L(ṗ, p, t) exhibit no suggestion of compatibility with that commutation
rule. This seems to hint that there may be something intrinsic to Lagrangians that is generally incompatible
with the quantum momentum-configuration commutation rule. So might L(q̇,q, t) itself have a property that
clashes with the uncertainty principle? It turns out that one need not look very far to locate that culprit: Dirac
(and later Feynman) simply failed to bear in mind the basic fact that to any configuration path q(t), L(q̇,q, t)
automatically associates a uniquely determined momentum path p(t) = ∇q̇(t)L(q̇(t),q(t), t), a relation that is
patently incompatible with the uncertainty principle!

Dirac’s vague 1933 surmise about the role of the Lagrangian in quantum mechanics [2] has clearly done a
long-lived disservice to physics, but Feynman and also all those who sought to educate themselves in Feynman’s
Lagrangian path integral results were as well scientifically obliged to ponder and pursue any apparently dubious
peculiarities which emanate from them. H. Bethe blurted out that there are no paths in quantum mechanics
upon hearing Feynman’s ideas for the first time at a Cornell University seminar. While this initial visceral
reaction cannot be defended as stated, it seems clear that discomfort concerning the uncertainty principle was
percolating in Bethe’s mind. It is a very great pity that Bethe did not persist in pondering that discomfort,
seeking to pin down and confront its source.
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The Hamiltonian actions and the phase-space path integral concept

Feynman not only originated the Lagrangian path integral idea, he was also the first to publish the idea of the
Hamiltonian phase-space path integral—which he deeply buried in Appendix B of his major 1951 paper [3].
Apparently he attached little importance to it, and it conceivably slipped from his mind by 1965, as there is no

mention of it in the book by Feynman and Hibbs. Perhaps Feynman had a reflexive aversion to all Hamiltonian
approaches because of the fact that the Hamiltonian density in field theories is not Lorentz-invariant, whereas
the Lagrangian density is—that would have been a pity: the full action density in Hamiltonian form is also

a Lorentz invariant; indeed the Lagrangian density is merely a restricted version of this. For quantum theory
the Hamiltonian is far superior, as it does not harbor the uncertainty principle trap that is implicit in the
Lagrangian. To be sure, either one of the two classical Hamiltonian equations of motion does implicitly
contradict the uncertainty principle (indeed, the Lagrangian is a version of the Hamiltonian action integrand
that has been restricted according to one of the classical Hamiltonian equations of motion). But if we firmly
drop both classical Hamiltonian equations of motion, q(t) and p(t) become independent argument functions of
the Hamiltonian action functional, and thus do not challenge the uncertainty principle.

The path integral concept in this context then becomes one of summing quantum amplitudes over all

phase-space paths. This states what must be done a bit too expansively, however, as we know that in order to
obtain a physically useful summed amplitude, we must restrict the q(t) paths to ones which all have the same

value qi at the initial time ti and also all have the same value qf at the final time tf . An alternate useful
restriction is, of course, to require the p(t) paths to all have the same value pi at the initial time ti and also

to all have the same value pf at the final time tf . As is well known, when the configuration paths q(t) are
endpoint-constrained as just described, the two classical Hamiltonian equations of motion result from setting
to zero the first-order variation with respect to [q(t),p(t)] of the Hamiltonian action functional,

SH([q(t),p(t)]; tf , ti)
def
=

∫ tf

ti
dt (q̇(t) · p(t) −H(q(t),p(t), t)) , (1a)

whereas when it is the momentum paths p(t) that are endpoint-constrained as described above, the same two
classical Hamiltonian equations of motion result from setting to zero the first-order variation with respect to
[q(t),p(t)] of the very slightly different Hamiltonian action functional,

S′
H([q(t),p(t)]; tf , ti)

def
=

∫ tf

ti
dt (−q(t) · ṗ(t) −H(q(t),p(t), t)) . (1b)

We are, to be sure, interested in summing the quantum amplitudes for all the appropriately endpoint-
constrained phase-space paths rather than in finding which of those paths is the classical one by the variational
approach. Nevertheless, in order to honor the correspondence principle, we must make it a path summand
requirement that the dominant path as h̄ → 0, i.e., the path of stationary phase, matches the classical path.
For that reason, we must be careful to also match the very slightly different actions, SH or S′

H , respectively,
to their appropriate corresponding configuration or momentum endpoint constraints, respectively, even in the
summands of our path sums over quantum amplitudes—which, in standard fashion, are taken to be proportional
to the exponential of (i/h̄) times the action of the path in question.

We also note that that the values which the two endpoint-constraining vectors qi and qf (or, alternately,
pi and pf ) are permitted to assume are completely arbitrary and mutually independent. We shall, in fact, in
quantum mechanical practice frequently be integrating over the full range of either or both of qi and qf (or,
alternately, of either or both of pi and pf ), so this utter freedom of choice is, in fact, a necessity—in the
language of quantum mechanics the range of both qi and qf (or, alternately, of both pi and pf ) must, for
each, describe a complete set of quantum states. The statements just made are neither modified nor qualified
in the slightest when the positive quantity |tf − ti| is made increasingly small. In other words, |qf − qi| (or,
alternately, |pf − pi|) remains unbounded no matter how small the positive value of |tf − ti| may be. There
always exist an infinite number of paths which adhere to the endpoint constraints no matter how large |qf −qi|
is or how small a positive value |tf − ti| assumes. Indeed, given any velocity v(t) that is defined for t ∈ [ti, tf ]

and which satisfies
∫ tf

ti
dtv(t) = qf − qi, the path,

q(t) = qi +
∫ t

ti
dt′ v(t′),

obviously qualifies. One such velocity v(t) is, of course, the constant one, (qf − qi)/(tf − ti), and to it may
be added an arbitrary number of terms of the form, v(n)(ti)((t − ti)

n/n! − (tf − ti)
n/(n + 1)!), n = 1, 2, . . . .

These utterly elementary observations have, in fact, completely eluded the grasp of an astonishing number of

4



“experts” in the field of path integrals. Time and again it is implicitly or explicitly insisted that,

lim
|tf−ti|→0

|qf − qi| = 0,

which is then taken to justify the resort to completely unsound approximations, in some instances even a vast

class of these [5, 6]. This last approach can produce variegated results that are not merely wrong, but even
mutually incompatible!

The endpoint-constraining configuration vectors qi and qf are, of course, as well part and parcel of the
Lagrangian path integral, and on their page 38, Feynman and Hibbs make a variation of the blunder just
described. Their Equation (2-33) on that page shows a very clear instance of qi and qf being independently

integrated, each over its full range. That notwithstanding, just below their very next Equation (2-34), they
effectively claim that for sufficiently small |tf − ti|, the error expression |q(t) − 1

2 (qf + qi)| is first-order in
|tf − ti| for all t in the interval [ti, tf ]. Of course q(t) obeys the usual two fundamental endpoint constraints
q(ti) = qi and q(tf ) = qf . These constraints immediately imply that the above error expression is equal to
1
2 |qf −qi| both at t = ti and at t = tf . But their independent integrations over the full ranges of qi and qf in
their adjacent Equation (2-33) make it extremely obvious that 1

2 |qf − qi| has no upper bound ! Moreover, this
conclusion is clearly utterly independent of how small a positive value |tf − ti| may have!

Having no upper bound is a very long way indeed from being first-order in |tf − ti| as |tf − ti| → 0! This
massive blunder by the ostensible ultimate experts in the field drives home the lesson that all scientists bear
the obligation to ponder and pursue apparently dubious peculiarities irrespective of their pedigree. Science has
nothing to gain from the perpetuation of unrecognized mistakes whatever their source. The Lagrangian path
integral is, of course, deficient because that approach violates the uncertainty principle, i.e., it is physically

wrong. So adding a gross mathematical mistake on top of that doesn’t really much matter. The critical issue
with this particular category of mathematical blunder is that it has also infiltrated the Hamiltonian phase-
space path integral, which has no known deficiencies of physical principle, and the manner of the blunder’s
intrusion has completely obfuscated the unique, straightforward result which the Hamiltonian path integral in
fact yields.

The key consequences of the Hamiltonian phase-space path integral were first correctly worked out in a
groundbreaking paper by Kerner and Sutcliffe [4]. That paper was quickly taken to task by L. Cohen [5]
because it failed to take into account the full consequences of the “fact” that lim|tf−ti|→0 |qf −qi| = 0! Cohen’s
“fact” is, of course, as we have gone to great pains above to demonstrate, a baneful fiction! A consequence
of the toxic assumption that lim|tf−ti|→0 |qf − qi| = 0 is, according to Cohen and his followers Tirapegui et
al. [6], that for all sufficiently small positive values of |tf − ti|, the term H(q(t),p(t), t) in the integrand of
the Hamiltonian action in Eq. (1a) may, for all t in the interval [ti, tf ], always be replaced by any constant-

in-time “discretization” entity of the form h(qf ,qi, p̄, t̄), where p̄ can be regarded as a type of average value
of p(t) for t in the interval [ti, tf ], t̄ is some fixed element of that interval, and h is any smooth function
that satisfies h(q,q,p, t) = H(q,p, t). Thus, H( 1

2 (qf + qi), p̄, t̄)—which is effectively the same as the bad

approximation to q(t) by 1
2 (qf + qi) advocated by Feynman and Hibbs—is one such “discretization”. The

quasi-optimized “discretization” 1
2 (H(qf , p̄, t̄)+H(qi, p̄, t̄)) is nonetheless also a bad approximation, as can be

verified by examining its differences from H(q(t),p(t), t) at the two endpoints t = ti and t = tf when qf is
assumed to be arbitrarily different from qi. The remaining members of this vast class of “discretizations” are
bad approximations as well, as similar arguments about how badly they can miss at one or the other or both
of those two time endpoints shows. One upshot of the misguided imposition of this vast “discretization” class
of unsound approximations on the Hamiltonian phase-space path integral is to foster the false impression that
the Hamiltonian path integral does not yield a unique result—indeed that it even paradoxically simultaneously
yields quite a few mutually incompatible results! The correct treatment of this path integral does in fact yield
a unique result; it is merely the fact that different members of this vast class of unsound “discretization”
approximations can differ substantially from each other that lies behind the pedestrian phenomenon that two
different unsound “discretization” approximations can produce two sufficiently different wrong results such
that they are in fact mutually incompatible. Tirapegui et al. [6] actually set to work categorizing this vast
class of unsound “discretization” approximations and their frequently mutually incompatible results—all of
which are, in fact, nothing more than the counterproductive fruit of Cohen’s completely erroneous assertion

that lim|tf−ti|→0 |qf − qi| = 0!
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Expressing the Hamiltonian phase-space path integral in efficacious form

With the burden of Cohen’s counterproductive mathematical lapse—which has been permitted to block un-
derstanding for far too many decades—lifted, we turn our attention to trying to express the Hamiltonian
phase-space path integral in a form that is as understandable and efficacious technically as it is physically. We
wish to make the concept of summing quantum amplitudes over all phase-space paths completely central ab
initio, not to stumble on it in conseqence of first having written down a great many repeated integrations over
configuration (or momentum) space that arise from some other approach to quantum mechanics. This strategy
automatically orients our thinking toward the concept of functional integration. However, a stumbling block
to the immediate identification of the phase-space path integral as simply a functional integral arises from the
physically key but technically awkward set-of-measure-zero endpoint constraints on the configuration (or mo-
mentum) paths. Because of this obstacle we begin by writing the configuration version of the phase-space path
integral in the standard merely schematic form, with those problematic endpoint constraints only expressed
in words,

KH(qf , tf ;qi, ti) =
∫
D

(t∈[ti,tf ])

[q(t),p(t)] exp(iSH([q(t),p(t)]; tf , ti)/h̄), (2)

where it is understood that all the q(t) configuration paths that enter into the “functional integral” on the
right-hand side of Eq. (2) are restricted by the endpoint constraints q(ti) = qi and q(tf ) = qf . It now
behooves us, of course, to discover mathematical machinery which gives actual effect to that understanding!
Before getting to grips with this issue, however, we note that the configuration path integral KH(qf , tf ;qi, ti)
is to be given its usual quantum-mechanical interpretation as the time-evolution operator for the wave function
in configuration representation, i.e.,

ψ(qf , tf ) =
∫
KH(qf , tf ;qi, ti)ψ(qi, ti)d

nqi, (3a)

which requires, inter alia, that,

lim
tf→ti

KH(qf , tf ;qi, ti) = δ(n)(qf − qi). (3b)

Eq. (3a) certainly underlines the critical quantum-mechanical role which the two endpoint constraints
q(ti) = qi and q(tf ) = qf play in the schematic Eq. (2) path integral. But these endpoint constraints would
have little practical effect if the q(t) paths were not simultaneously required to be sufficiently smooth for all
t ∈ [ti, tf ]. If the q(t) paths were permitted to have jump discontinuities, for example, it is obvious that the
two endpoint requirements would insignificantly constrain them. Now in classical mechanics one varies rather
than sums over the phase-space (q(t),p(t)) paths, and since the classical path obeys a differential equation
that is second-order in time, it suffices to vary only over phase-space paths which are continuously twice differ-
entiable. We shall therefore impose exactly this smoothness requirement on the phase-space paths that we sum

over, i.e., we only sum over phase-space paths which are smooth enough to be classical path candidates. In this
regard, we take note of the fact that given any continuous acceleration a(t) defined for t ∈ [ti, tf ], there exists
a continuously twice-differentiable q(t) defined for t ∈ [ti, tf ] which satisfies the three conditions q(ti) = qi,
q(tf ) = qf and q̈(t) = a(t). Such a q(t) is explicitly given in particular by the object q (t; [a(t′)],qf , tf ,qi, ti),
a function-valued functional whose definition is,

q (t; [a(t′)],qf , tf ,qi, ti)
def
= qi + (t− ti)[(qf − qi)/(tf − ti) +

∫ t

tf
dt′ (t′ − ti)

−2
∫ t′

ti
dt′′ (t′′ − ti)a(t′′)]. (4a)

This particular q(t) clearly satisfies q(ti) = qi and q(tf ) = qf , and its first derivative with respect to t is
given by the function-valued functional,

q̇ (t; [a(t′)],qf , tf ,qi, ti) =

(qf − qi)/(tf − ti) +
∫ t

tf
dt′ (t′ − ti)

−2
∫ t′

ti
dt′′ (t′′ − ti)a(t′′) + (t− ti)

−1
∫ t

ti
dt′ (t′ − ti)a(t′),

(4b)

from which we readily calculate that its second derivative with respect to t comes out to equal a(t). Con-
versely, any continuously twice-differentiable path q(t) that is defined for t ∈ [ti, tf ] and which satisfies the
two endpoint constraints q(ti) = qi and q(tf ) = qf is equal to q (t; [q̈(t′)],qf , tf ,qi, ti). This follows from the
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fact that for any continuously twice-differentiable path q(t) that is defined for t ∈ [ti, tf ] the relation,

q(t) = q (t; [q̈(t′)],q(tf ), tf ,q(ti), ti) , (4c)

is an identity, as can be straightforwardly, albeit tediously, verified by the use of the definition in Eq. (4a) to
expand out its right-hand side, followed by repeated integrations by parts and applications of the fundamental
theorem of the calculus.

Since the identity given by Eq. (4c) is not widely known, we briefly digress to indicate how it can be derived.
For the continuously twice-differentiable path q(t) that is defined for t ∈ [ti, tf ], we form the error remainder

R (t; [q(t′)], ti, tf ) with respect to its linear interpolation from ti to tf ,

R (t; [q(t′)], ti, tf )
def
= q(t) − q(ti) − (t− ti)(q(tf ) − q(ti))/(tf − ti). (5a)

Because this error remainder vanishes at both t = ti and t = tf , we make the Ansatz that,

R (t; [q(t′)], ti, tf ) = (t− ti)
∫ t

tf
dt′ Υ (t′; [q(t′′)], ti, tf ) . (5b)

Now Eq. (5a) implies that,

R̈ (t; [q(t′)], ti, tf ) = q̈(t), (5c)

which, given the Ansatz of Eq. (5b), implies that,

(t− ti)Υ̇ (t; [q(t′)], ti, tf ) + 2Υ (t; [q(t′)], ti, tf ) = q̈(t). (5d)

This is a first-order inhomogeneous linear differential equation for Υ (t; [q(t′)], ti, tf ) whose general solution is,

Υ (t; [q(t′)], ti, tf ) = (t− ti)
−2

∫ t

t0
dt′ (t′ − ti)q̈(t′). (5e)

Since R (t; [q(t′)], ti, tf ) vanishes at t = ti, it is seen from the Ansatz of Eq. (5b) that the only correct choice
for the unknown constant t0 in Eq. (5e) is ti. With that, Eq. (4c) is obtained from Eqs. (5e), (5b) and (5a),
together with the definition given in Eq. (4a). The relation of the Eq. (4c) identity to the error remainder of
linear interpolation is quite analogous to the relation of the identity,

q(t) = q(t0) + (t− t0)q̇(t0) +
∫ t

t0
dt′

∫ t′

t0
dt′′ q̈(t′′), (6)

to the error remainder of first-order Taylor expansion. (Note that the Eq. (6) identity follows from straight-
forward iteration of the fundamental theorem of the calculus.)

With the above theorems regarding the function-valued functional q (t; [a(t′)],qf , tf ,qi, ti) that is defined
by Eq. (4a) in hand, we can now efficaciously integrate over all continuously twice-differentiable configuration
paths q(t) that are defined for t ∈ [ti, tf ] and which adhere to the two endpoint constraints q(ti) = qi

and q(tf ) = qf . It is clear that this is done by replacing all occurrences of q(t) in the path integrand of
Eq. (2) by q (t; [a(t′)],qf , tf ,qi, ti), followed by functionally integrating without restriction over all continuous
accelerations a(t) that are defined for t ∈ [ti, tf ]. Therefore the merely schematic phase-space path integral of
Eq. (2) is mathematically joined to the understanding given below it concerning the q(t) configuration-path
endpoint constraints by rewriting it as the following unconstrained functional integral,

KH(qf , tf ;qi, ti) =
∫
D

(t∈[ti,tf ])

[a(t),p(t)] exp (iSH ([q (t; [a(t′)],qf , tf ,qi, ti) ,p(t)] ; tf , ti) /h̄) , (7)

where the functional integration embraces all continuous a(t) and all continuously twice-differentiable p(t)
that are defined for t ∈ [ti, tf ]. To make futher progress with the path integral KH(qf , tf ;qi, ti) described
by Eq. (7), we now need to address the question of how to actually carry out its indicated unconstrained
integration over all the above-described functions (a(t),p(t)) that are defined for t ∈ [ti, tf ].
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Normalized multiple integration over the orthogonal components of functions

The set of functions (a(t),p(t)) defined for t ∈ [ti, tf ] that are described in connection with Eq. (7) above
comprises an infinite-dimensional vector space. Integration over any finite-dimensional vector space is, of
course, routinely carried out as normalized multiple ordinary integration over all values of the components of
the vectors of that space which arise from any of its complete orthogonal decompositions. Thus to integrate over
the space of N-dimensional vectors X, we simply perform an appropriately normalized multiple integration
over any of its complete sets of N mutually orthogonal components,

∫
dNX = MN

∫
dX1

∫
dX2 . . .

∫
dXN .

Here X = ΣN
k=1Xkbk, where the bk comprise any complete set of N mutually orthogonal basis vectors, i.e.,

that satisfy bk ·bk′ = 0 if k 6= k′. Thus the N multiple integration variables Xk are the N orthogonal expansion

coefficients, i.e. Xk = bk · X/bk · bk.
Now the time interval [ti, tf ] also has complete sets of real-valued, discrete mutually orthogonal basis

functions Bk(t), k = 0, 1, . . . ,K, . . . , that satisfy,

∫ tf

ti
Bk(t)Bk′(t)dt = 0 if k 6= k′.

We can expand any of our functions (a(t),p(t)) in such a complete, real-valued, discrete orthogonal basis set,

(a(t),p(t)) = Σ∞
k=0(ak,pk)Bk(t),

where the (ak,pk) are that function’s orthogonal expansion coefficients, i.e.,

(ak,pk) =
∫ tf

ti
Bk(t)(a(t),p(t))dt/

∫ tf

ti
(Bk(t))

2
dt.

The integration in Eq. (7) over all the functions (a(t),p(t)) is therefore an appropriately normalized multiple
integration over all the orthogonal expansion coefficients (ak,pk),

∫
D

(t∈[ti,tf ])

[a(t),p(t)] = lim
K→∞

MK

∫
dna0 d

np0

∫
dna1 d

np1 . . .
∫
dnaK dnpK , (8)

where in the particular case of the Eq. (7) functional integration the measure normalization factor MK is
determined by the requirement of Eq. (3b).

A very commonly invoked slight variation of the above complete discrete orthogonal basis set approach to
functional integration involves a sequence of incomplete discrete approximation orthogonal basis sets to the

intuitively appealing complete continuum orthogonal basis set of delta functions in time, Btc
(t)

def
= δ(t − tc),

where tc ∈ [ti, tf ]. Given a partition of the time interval [ti, tf ] into K + 1 disjoint time subintervals, where
K = 0, 1, 2, . . . , we can approximate Btc

(t) by BK
tc

(t), which, for t in any of the K+1 disjoint time subintervals
of [ti, tf ] equals the inverse of the duration of that time subinterval when tc is also in that subinterval, but
equals zero otherwise. Obviously there are only K + 1 distinct such approximating functions BK

tc
(t), so we

may define BK
k (t)

def
= BK

tc
(t), where tc is any time element of time subinterval number k, k = 0, 1, . . . ,K. It is

clear that BK
k (t) is orthogonal to BK

k′ (t) for k 6= k′. One develops in this way a sequence in K of incomplete

orthogonal basis sets that each have only K+1 members. When K → ∞, the intuitively appealing continuum

orthogonal basis set of delta functions Btc
(t) = δ(t− tc), which is, of course, complete, will (very nonuniformly)

be recovered provided that care is taken to ensure that the durations of all of the individual time subintervals

of partition number K tend toward zero in that limit. Notwithstanding that this is the intuitively appealing
“standard” method of functional integration, its highly nonuniform approach to the continuum delta function
orthogonal basis set via sequentially disjoint incomplete discrete orthogonal basis sets could conceivably spawn
convergence issues in cases of unfavorably disposed functionals.

The momentum path integral

In addition to the configuration path integral KH(qf , tf ;qi, ti) of Eq. (7), which is based on the classical action
SH([q(t),p(t)]; tf , ti) of Eq. (1a) that is classically appropriate to endpoint constraints on the configuration

paths, there also exists a momentum path integral which is based on the classical action S′
H([q(t),p(t)]; tf , ti)

of Eq. (1b) that is classically appropriate to endpoint constraints on the momentum paths. In close analogy
with Eq. (2), the schematic form of this momentum path integral is given by,
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K ′
H(pf , tf ;pi, ti) =

∫
D

(t∈[ti,tf ])

[q(t),p(t)] exp(iS′
H([q(t),p(t)]; tf , ti)/h̄), (9)

where the (q(t),p(t)) phase-space paths are continuously twice differentiable, but here it is supposed to be
understood that it is the momentum paths p(t) which are all restricted by two endpoint constraints, namely
that p(ti) = pi and p(tf ) = pf . Just as the configuration path integral KH(qf , tf ;qi, ti) is the time-evolution
operator for the wave function in configuration representation, the momentum path integral K ′

H(pf , tf ;pi, ti)
is the time-evolution operator for the wave function in momentum representation, so that we have, in analogy
to Eq. (3a),

φ(pf , tf ) =
∫
K ′

H(pf , tf ;pi, ti)φ(pi, ti)d
npi, (10a)

which requires that,

lim
tf→ti

K ′
H(pf , tf ;pi, ti) = δ(n)(pf − pi). (10b)

In line with the discussion which follows Eq. (4a), any continuously twice-differentiable p(t) defined for
t ∈ [ti, tf ] that satisfies the two endpoint constraints p(ti) = pi and p(tf ) = pf has the explicit representation
p (t; [w(t′)],pf , tf ,pi, ti) whose definition is,

p (t; [w(t′)],pf , tf ,pi, ti)
def
= pi + (t− ti)[(pf − pi)/(tf − ti) +

∫ t

tf
dt′ (t′ − ti)

−2
∫ t′

ti
dt′′ (t′′ − ti)w(t′′)], (11)

where the “force-rate” w(t) is an unconstrained continuous function that satisfies,

w(t) = p̈ (t; [w(t′)],pf , tf ,pi, ti) .

Therefore we now follow the example set by the replacement of the schematic Eq. (2) by the explicit Eq. (7)
by replacing the schematic presentation of K ′

H(pf , tf ;pi, ti) given in Eq. (9) by the explicit,

K ′
H(pf , tf ;pi, ti) =

∫
D

(t∈[ti,tf ])

[q(t),w(t)] exp (iS′
H ([q(t),p (t; [w(t′)],pf , tf ,pi, ti)] ; tf , ti) /h̄) , (12)

which is an unconstrained functional integral over (q(t),w(t)) that uses the function-valued functional defined
by Eq. (11) to explicitly incorporate the two endpoint constraints which are required of all the permitted

momentum paths p(t) by the supplementary words that are given below the schematic Eq. (9). The measure
normalization factor for the functional integration of Eq. (12) will, of course, be determined by the requirement
of Eq. (10b).

We note that the structure of the momentum path integral K ′
H(pf , tf ;pi, ti) which is given by Eq. (12) is

highly analogous to that of the configuration path integral KH(qf , tf ;qi, ti) as given by Eq. (7). Therefore the
steps of any derivation concerning K ′

H(pf , tf ;pi, ti) which flows from Eq. (12) will obviously proceed in close
parallel with the steps of a corresponding derivation concerning KH(qf , tf ;qi, ti) which flows from Eq. (7).
For that reason we shall in the remainder of this paper be pointing out only steps for derivations concerning
KH(qf , tf ;qi, ti) which flow from Eq. (7), and simply leave the analogous steps for the corresponding deriva-
tions concerning the momentum path integral K ′

H(pf , tf ;pi, ti) which flow from Eq. (12) as straightforward
exercises for the interested reader.

Path integral evaluation through first order in the elapsed time

From Eq. (3b) it is apparent that we already know the value of the configuration path integral KH(qf , tf ;qi, ti)

through zeroth order in the elapsed time δtfi
def
= (tf − ti). If we can extend the evaluation of KH(qf , tf ;qi, ti)

through first order in δtfi, that result, together with Eq. (3a), will yield a first-order differential equation in

time for the quantum-mechanical wave function ψ(q, t) in configuration representation. Obtaining the solution

of that differential equation in time when the wave function has the initial value ψ(q, ti) at time ti is equivalent

to Eq. (3a) itself—i.e., that solution of the differential equation in time reproduces the effect of applying the
full path integral KH(qf , tf ;qi, ti) to ψ(q, ti), the initial value of the wave function at time ti. In other words,
the evaluation of the path integral KH(qf , tf ;qi, ti) through just first order in the elapsed time δtfi yields a
first-order in time differential equation for the wave function whose solution duplicates evaluation of the effect
of the full path integral on an initial wave-function value. This permits evaluation of the full path integral
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KH(qf , tf ;qi, ti) to, in principle, be sidestepped, which is a considerable incentive to work it out through just

first order in the elapsed time δtfi.
To carry out the evaluation of KH(qf , tf ;qi, ti) through just first order in δtfi, we will obviously first need

to expand out its integrand functional, namely the integrand of the functional integral on the right-hand side
of Eq. (7), through first order in δtfi. That Eq. (7) integrand functional is, of course, given by,

IH([a(t),p(t)];qf , tf ,qi, ti)
def
= exp (iSH ([q (t; [a(t′)],qf , tf ,qi, ti) ,p(t)] ; tf , ti) /h̄) . (13a)

We can express the above Eq. (7) integrand functional in greater detail by applying Eq. (1a) to it,

IH([a(t),p(t)];qf , tf ,qi, ti) = e
i
∫

tf

ti
(q̇(t;[a(t′)],qf ,tf ,qi,ti)·p(t)−H(q(t;[a(t′)],qf ,tf ,qi,ti), p(t), t))dt/h̄

. (13b)

The expansion of IH([a(t),p(t)];qf , tf ,qi, ti) through first order in δtfi would obviously be facilitated if we
could expand out (a(t),p(t)) for t ∈ [ti, tf ] in the familiar but nonorthogonal Taylor-expansion monomial basis,

Tk(t) = (t− 1
2 (tf + ti))

k/k!, k = 0, 1, 2 . . . .

Use of this Taylor-expansion basis isn’t very feasible here, however, because the straightforward approach
to functional integration requires that an orthogonal basis be utilized. But an orthogonal-polynomial basis
{Bk(t), k = 0, 1, 2, . . .}, whose members have the same leading behavior as those of the Taylor-expansion

monomial basis, and which as well share the crucial property of being of order O
(
(δtfi)

k
)

for t ∈ [ti, tf ], is
readily constructed by systematic successive orthogonalization of the monomial Tk(t) in the interval [ti, tf ].
One thus obtains B0(t) = T0(t) = 1 and,

Bk(t) = (t− 1
2 (tf + ti))

k/k! + Σk
j=1c

(j)
k (t− 1

2 (tf + ti))
k−j( 1

2 (tf − ti))
j for k = 1, 2, . . . ,

where the k dimensionless constants c
(1)
k , . . . , c

(k)
k are determined by the k orthogonality requirements that,

∫ tf

ti
(t− 1

2 (tf + ti))
k′

Bk(t)dt = 0 for k′ = 0, 1, . . . , k − 1.

With dimensionless c
(j)
k , j = 1, 2, . . . , k, it is clear that Bk(t) is of order O

(
(δtfi)

k
)

for t ∈ [ti, tf ], as is

foreshadowed above, and the above scheme for Bk(t) does indeed produce dimensionless c
(j)
k because,

∫ tf

ti
(t− 1

2 (tf + ti))
Ndt = ( 1

2 (tf − ti))
N+1(1 + (−1)N )/(N + 1).

It is convenient to note here that the first three Bk(t) are, explicitly,

B0(t) = 1, B1(t) = (t− 1
2 (tf + ti)), B2(t) = (t− 1

2 (tf + ti))
2/2 − ( 1

2 (tf − ti))
2/6,

which again illustrates the key fact that Bk(t) is of order O
(
(δtfi)

k
)

for t ∈ [ti, tf ]. In view of their properties,
we can recognize these orthogonal basis polynomials Bk(t) as scaled, translated Legendre polynomials which

have Taylor-like normalizations.
The expansion in this orthogonal-polynomial basis of a continuously twice-differentiable momentum path

p(t) that is defined for t ∈ [ti, tf ] is,
p(t) = Σ∞

k=0pkBk(t),

where the momentum path’s orthogonal expansion coefficients pk, k = 0, 1, 2, . . . , with respect to this basis
are given by,

pk =
∫ tf

ti
Bk(t)p(t)dt/

∫ tf

ti
(Bk(t))2dt.

If this expansion is replaced by just its leading k = 0 term, the error made is obviously (p(t)−p0), which,

in detail, is
(
p(t) −

∫ tf

ti
p(t′)dt′/(tf − ti)

)
. If we now adopt the following [ti, tf ]-interval mean-value notation

for functions g(t′) of t′ in [ti, tf ],

〈g(t′)〉t′∈[ti,tf ]
def
=

∫ tf

ti
g(t′)dt′/(tf − ti),

then this error can be rewritten as 〈(p(t) − p(t′))〉t′∈[ti,tf ]. Since p(t) is continuously differentiable for t ∈
[ti, tf ], the fundamental theorem of the calculus tells us that for t, t′ ∈ [ti, tf ], we may replace (p(t) − p(t′))
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by
∫ t

t′
ṗ(t′′)dt′′. With that we are able to conclude that the error made by substituting for a continuously

differentiable momentum path p(t) just its leading k = 0 orthogonal-polynomial expansion term p0 can, for
t ∈ [ti, tf ], be written,

(p(t) − p0) =
〈∫ t

t′
ṗ(t′′)dt′′

〉

t′∈[ti,tf ]
,

whose right-hand side is clearly of order O(δtfi) when t ∈ [ti, tf ]—note the key role which the fact that p(t)
is continuously differentiable plays in this conclusion.

Now such a momentum path p(t) is, in fact, continuously twice differentiable, which leads us to suspect
that an even stronger theorem holds for the error which is made by substituting for p(t) the sum of its leading
two orthogonal-polynomial expansion terms, which is [p0 + p1(t − 1

2 (tf + ti))]. Indeed, the fact that p(t) is
continuously twice differentiable implies that this considerably more complicated error can, via two successive

integrations by parts, followed by repeated regroupings and applications of the fundamental theorem of the
calculus, be written for t ∈ [ti, tf ] in the form,

(p(t) − [p0 + p1(t− 1
2 (tf + ti))]) = (3/2)

〈∫ t

t′
dt′′

〈∫ t′′

t(3)
dt(4)p̈(t(4))

〉

t(3)∈[ti,tf ]

〉

t′∈[ti,tf ]

−(1/4)
〈∫ t

t′
dt′′

(∫ t′′

tf
dt(3)p̈(t(3)) +

∫ t′′

ti
dt(3)p̈(t(3))

)〉

t′∈[ti,tf ]

−2(t− 1
2 (ti + tf ))(tf − ti)

−2
〈
(t′ − 1

2 (ti + tf ))3p̈(t′)
〉

t′∈[ti,tf ]
,

whose right-hand side consists of three terms, each of which is clearly of order O
(
(δtfi)

2
)

when t ∈ [ti, tf ].
Another entity which enters into the integrand functional IH([a(t),p(t)];qf , tf ,qi, ti) on the right-hand

side of Eq. (13b) is the time derivative of the configuration path functional, q̇ (t; [a(t′)],qf , tf ,qi, ti), which is
explicitly given by Eq. (4b). Because the acceleration function a(t) is continuous for t ∈ [ti, tf ], Eq. (4b) tells
us that the error made by substituting for q̇ (t; [a(t′)],qf , tf ,qi, ti) the constant velocity (qf − qi)/(tf − ti) is
of order O(δtfi). It is important, however, to be aware of the fact that this constant velocity itself is of order
O
(
(δtfi)

−1
)
! Therefore the error made by substituting for the composite object,

∫ tf

ti
q̇ (t; [a(t′)],qf , tf ,qi, ti) · p(t)dt,

that appears on the right-hand side of Eq. (13b) the approximation,

〈(qf − qi) · [p0 + p1(t− 1
2 (tf + ti))]〉t∈[ti,tf ] ,

which fortuitously evaluates to simply (qf − qi) · p0, is clearly of order O
(
(δtfi)

2
)
. With that, a significant

contribution to the integrand functional IH([a(t),p(t)];qf , tf ,qi, ti), as it appears on the right-hand side of
Eq. (13b), has been evaluated and found to have the simple form (qf − qi) · p0 through first order in δtfi.
This particular contribution itself is obviously of order O

(
(δtfi)

0
)
.

By way of making further progress toward completing the task of evaluating through first order in δtfi

the integrand functional IH([a(t),p(t)];qf , tf ,qi, ti) as it appears on the right-hand side of Eq. (13b), we also
note from the fact that the the acceleration a(t) is continuous for t ∈ [ti, tf ], together with the representation
of configuration path functional q (t; [a(t′)],qf , tf ,qi, ti) which is given by Eq. (4a), that the error made
by substituting for this entity the straight-line path qi + (t − ti)(qf − qi)/(tf − ti) when t ∈ [ti, tf ], is of
order O

(
(δtfi)

2
)
. Of course this straight-line path itself is of order O

(
(δtfi)

0
)
. Therefore, assuming that all

the gradients of the classical Hamiltonian H(q,p, t) are continuous, the error made by substituting for the

composite object, ∫ tf

ti
H (q (t; [a(t′)],qf , tf ,qi, ti) , p(t), t) dt,

that occurs on the right-hand side of Eq. (13b) the approximation,

∫ tf

ti
H(qi + (t− ti)(qf − qi)/(tf − ti), p0, ti)dt,

which, on changing the integration variable from t to the dimensionless λ
def
= (t − ti)/(tf − ti), assumes the

form,

(δtfi)
∫ 1

0
H(qi + λ(qf − qi), p0, ti)dλ,
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is clearly of order O
(
(δtfi)

2
)
. With that, the key remaining contribution to IH([a(t),p(t)];qf , tf ,qi, ti), as it

appears on the right-hand side of Eq. (13b), has been evaluated through first order in δtfi. As we see from its
displayed form given just above, this particular contribution itself is of order O(δtfi).

With both key contributions through first order in δtfi to IH([a(t),p(t)];qf , tf ,qi, ti) as it appears on
the right-hand side of Eq. (13b) now in hand, we are finally in a position to write down the result for
IH([a(t),p(t)];qf , tf ,qi, ti) itself through first order in δtfi,

IH([a(t),p(t)];qf , ti + δtfi,qi, ti) =

e
i(qf−qi)·p0/h̄−i(δtfi/h̄)

∫ 1

0
H(qi+λ(qf−qi), p0, ti))dλ+O((δtfi)

2) =

ei(qf−qi)·p0/h̄
(
1 − i(δtfi/h̄)

∫ 1

0
H(qi + λ(qf − qi), p0, ti)dλ

)
+O

(
(δtfi)

2
)
.

(14)

We see from Eqs. (14) and (13a) that the integrand functional of the functional integral on the right-hand
side of Eq. (7) has, through first order in δtfi, no dependence on the acceleration function a(t) and only

depends on the momentum path p(t) through its k = 0 orthogonal-polynomial expansion coefficient p0. This
independence through first order in δtfi of the integrand of the functional integral on the right-hand side of
Eq. (7) of all but one of the orthogonal-polynomial expansion coefficients a0,p0,a1,p1, . . . ,aK ,pK , . . . of
the function (a(t),p(t)) implies, via the multiple-integration prescription given by Eq. (8) for that functional
integration, that we have a formally divergent, undefined result for KH(qf , ti + δtfi;qi, ti) through first order
in δtfi! The cause of this predicament is that the Eq. (14) expansion through first order in δtfi of the inte-
grand functional of the functional integral on the right-hand side of Eq. (7), while true for any given function
(a(t),p(t)), loses its validity when considered over the entire set of such functions. For example, over the
entire set of continuous acceleration functions a(t), the error made in substituting for the time derivative of
the configuration path functional q̇ (t; [a(t′)],qf , tf ,qi, ti) of Eq. (4b) the constant velocity (qf − qi)/(tf − ti)
can obviously be made arbitrarily large, notwithstanding that it is clearly of order O(δtfi) for any particular

continuous acceleration function a(t).
Therefore the only way to deal with this quandary concerning the functional integration of integrand

functionals that are given through just a certain order of δtfi is to cut off the integration which normally

runs over the entire set of applicable functions. From a physics point of view the imposition of such a function
integration cutoff does not seem very concerning because path integrals are typically dominated by a quite

narrow range of functions whose actions differ by no more than several times h̄ from the action of the classical

solution. Nevertheless, the possibility that the value of the thus cut-off functional integral might irrevocably
depend on the details of the cutoff which is imposed is a dismaying one. Fortunately, such cutoffs seem to
typically affect only the value of an overall factor which multiplies the rest of the functional integration result,
and the path-integral requirement of Eq. (3b) ensures that the measure normalization factor MK present in
the Eq. (8) multiple-integration prescription for the Eq. (7) functional integration cancels out such factors.

Returning now to the Eq. (14) result for the integrand functional through first order in δtfi of the functional
integral which appears on the right-hand side of Eq. (7), we note that this integrand’s lack of dependence on the
orthogonal-polynomial expansion coefficients a0,a1,p1,a2,p2, . . . ,aK ,pK , . . . leaves us no choice but to cut

off the Eq. (8) multiple integrations over these particular coefficients. From this unavoidably cutoff-modified

Eq. (8) prescription for the functional integral of Eq. (7) that applies to its integrand through just first order
in δtfi as given by Eq. (14), we obtain for KH(qf , ti + δtfi;qi, ti) through first order in δtfi,

KH(qf , ti + δtfi;qi, ti) =

lim
K→∞

MK FK(A0, A1, P1, A2, P2, . . . , AK , PK)×

(∫
dnp0 e

i(qf−qi)·p0/h̄
(
1 − i(δtfi/h̄)

∫ 1

0
H(qi + λ(qf − qi), p0, ti)dλ

))
+O

(
(δtfi)

2
)
,

(15)

where the overall multiplicative factor FK(A0, A1, P1, A2, P2, . . . , AK , PK) is the product of all the unavoidably

cut-off integrals over Eq. (8) orthogonal-polynomial expansion coefficients, namely,

FK(A0, A1, P1, A2, P2, . . . , AK , PK)
def
=

∫
{|a0|≤A0}

dna0

∫
{|a1|≤A1,|p1|≤P1}

dna1d
np1

∫
{|a2|≤A2,|p2|≤P2}

dna2d
np2 . . .

∫
{|aK |≤AK ,|pK |≤PK}

dnaKd
npK .
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Now since, ∫
dnp0 e

i(qf−qi)·p0/h̄ = (2πh̄)nδ(n)(qf − qi),

we must choose the Eq. (8) measure normalization factor MK on the right-hand side of Eq. (15) to be equal to
((2πh̄)nFK(A0, A1, P1, A2, P2, . . . , AK , PK))−1 in order to satisfy the δtfi → 0 path-integral limit requirement
of Eq. (3b). With that, Eq. (15) becomes,

KH(qf , ti + δtfi;qi, ti) = δ(n)(qf − qi) − i(δtfi/h̄)QH(ti;qf ;qi) +O
(
(δtfi)

2
)
, (16a)

where,

QH(ti;qf ;qi)
def
=

∫ 1

0
dλ (2πh̄)−n

∫
dnpH(qi + λ(qf − qi),p, ti)e

i(qf−qi)·p/h̄. (16b)

It is easily demonstrated that QH(ti;qf ;qi) is Hermitian, i.e. that,

QH(ti;qf ;qi) = (QH(ti;qi;qf ))∗. (16c)

When Eq. (16a) is combined with Eq. (3a), we at long last obtain the first-order differential equation in time
that we have been seeking for the wave function in configuration representation,

ih̄∂ψ(qf , ti)/∂ti =
∫
QH(ti;qf ;qi)ψ(qi, ti)d

nqi, (17)

The quantized Hamiltonian operator and the Schrödinger equation

At this point we wish to mention the results for the momentum path integral K ′
H(pf , tf ;pi, ti) that parallel

those which we have just demonstrated for the configuration path integral KH(qf , tf ;qi, ti). Through first
order in δtfi = (tf − ti), K

′
H(pf , tf ;pi, ti) satisfies relations which are highly analogous to those given in

Eqs. (16) for KH(qf , tf ;qi, ti), namely,

K ′
H(pf , ti + δtfi;pi, ti) = δ(n)(pf − pi) − i(δtfi/h̄)Q

′
H(ti;pf ;pi) +O

(
(δtfi)

2
)
, (18a)

where,

Q′
H(ti;pf ;pi)

def
=

∫ 1

0
dλ (2πh̄)−n

∫
dnqH(q,pi + λ(pf − pi), ti)e

−i(pf−pi)·q/h̄. (18b)

It is easily demonstrated that Q′
H(ti;pf ;pi) is Hermitian, i.e. that,

Q′
H(ti;pf ;pi) = (Q′

H(ti;pi;pf ))∗. (18c)

When Eq. (18a) is combined with Eq. (10a), we obtain in analogy with Eq. (17) a first-order differential
equation in time for the wave function in momentum representation,

ih̄∂φ(pf , ti)/∂ti =
∫
Q′

H(ti;pf ;pi)φ(pi, ti)d
npi, (19)

A crucial relationship which holds between Q′
H(ti;pf ;pi) and QH(ti;qf ;qi) is that,

∫
dnpfd

npi 〈qf |pf 〉Q
′
H(ti;pf ;pi)〈pi|qi〉 = QH(ti;qf ;qi), (20)

where we have used the standard Dirac quantum mechanics notation for the overlap amplitude between a
configuration state and a momentum state, i.e., 〈q|p〉 = eip·q/h̄/(2πh̄)n/2 and 〈p|q〉 = (〈q|p〉)∗. To carry
out the verification of Eq. (20), it is useful to make the dλ-integration that arises from Q′

H(ti;pf ;pi) via
Eq. (18b) the outermost integration, and then change integration variables from the (pf ,pi) pair to the
p = pi + λ(pf − pi) and p− = (pf − pi) pair. This variable transformation has unit Jacobian, and the
dnp−-integration will give rise to a delta function which, in turn, permits the dnq-integration that arises
from Q′

H(ti;pf ;pi) via Eq. (18b) to be carried out. The upshot is to leave only the dnp-integration and the
dλ-integration, both of which indeed occur in QH(ti;qf ;qi), which is itself, of course, the result being sought.
With this outline of the procedure, we leave the remaining straightforward details of verifying Eq. (20) to the
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reader.
Eq. (20) shows that QH(ti;qf ;qi) and Q′

H(ti;pf ;pi) are, respectively, the configuration and momentum

representations of the very same quantum mechanical operator, which we shall now denote as Ĥ(ti). Thus, in
the standard Dirac quantum mechanics notation,

QH(ti;qf ;qi) = 〈qf |Ĥ(ti)|qi〉, (21a)

and,

Q′
H(ti;pf ;pi) = 〈pf |Ĥ(ti)|pi〉. (21b)

Eqs. (16c) and (18c) of course show that this quantum mechanical operator Ĥ(ti) is a Hermitian one. Further-
more, if we transcribe the first-order in time differential equation that appears in Eq. (17) into standard Dirac
quantum mechanics notation by rewriting ψ(q, t) as 〈q|ψ(t)〉 and switching to the notation on the right-hand

side of Eq. (21a), we can readily demonstrate that Eq. (17) is equivalent to,

ih̄∂|ψ(t)〉/∂t = Ĥ(t)|ψ(t)〉, (22)

which is the familiar Schrödinger equation for the time evolution of the quantum state vector |ψ(t)〉 under

the influence of the Hermitian Hamiltonian operator Ĥ(t). Here, however, this Hamiltonian operator Ĥ(t)
is uniquely determined, via Eqs. (21a) and (16b) (or alternatively via Eqs. (21b) and (18b)) by the classi-

cal Hamiltonian function H(q,p, t) for the physical system. Inter alia, this crystallizes the correspondence
principle in a very strong form indeed.

Of course one can tread a highly analogous route with the first-order in time differential equation that
appears in Eq. (19) by rewriting φ(p, t) as 〈p|φ(t)〉 and switching to the notation on the right-hand side of
Eq. (21b), following which it is readily demonstrated that Eq. (19) is equivalent to,

ih̄∂|φ(t)〉/∂t = Ĥ(t)|φ(t)〉, (23)

which is exactly the same quantum state vector Schrödinger equation as that of Eq. (22). Again, its controlling

Hamiltonian operator Ĥ(t) is uniquely determined, via Eqs. (21b) and (18b) (or alternatively via Eqs. (21a)
and (16b)) by the classical Hamiltonian function H(q,p, t) for the physical system.

The unique classically underpinned Hamiltonian operator Ĥ(ti) of Eqs. (21), (16b) and (18b) was first
obtained from the Hamiltonian phase-space path integral by Kerner and Sutcliffe [4], but it had been mooted
by Born and Jordan [8] in their pre-Dirac version of quantum mechanics. Born and Jordan’s theory featured
commutation rules which were more elaborate than those of Dirac, but those rules were nevertheless still
not sufficiently strong to uniquely pin down the particular Ĥ(ti) of Eqs. (21). Therefore Born and Jordan’s

discovery of Ĥ(ti) must be regarded as fascinatingly fortuitous rather than wholly systematic. Dirac, with his
Poisson bracket insight into quantum commutators, had an excellent chance to uniquely pin down exactly this
Ĥ(ti), but ironically he ended up choosing commutation rules that were even much weaker [7] than those of
his predecessors Born and Jordan! Kerner [9] was apparently the first to work out the slightly strengthened
self-consistent canonical commutation rule that Dirac ought, by rights, to have lit upon, but very unfortunately
Kerner failed to publish that work. We shall briefly develop the highly satisfactory canonical commutation
rule that Dirac missed in the last section of this paper.

Quantum amplitudes for individual configuration or momentum paths

As an extension of the interpretation that we have given to the configuration path integrals of Eq. (2) and
Eq. (7), it seems reasonable to interpret the corresponding unconstrained functional integral over only mo-

mentum paths p(t), namely,

AH([q(t)]; tf , ti)
def
=

∫
D

(t∈[ti,tf ])

[p(t)] exp(iSH([q(t),p(t)]; tf , ti)/h̄), (24a)

as the quantum amplitude that the dynamical system traverses a specified configuration path q(t) for t ∈ [ti, tf ].
If we now also ponder the interpretation that we have given to the momentum path integrals of Eq. (9) and
Eq. (12), it as well seems reasonable that the quantum amplitude that the dynamical system traverses a
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specified momentum path p(t) for t ∈ [ti, tf ] ought to similarly be given by the corresponding unconstrained
functional integral over only configuration paths q(t),

A′
H([p(t)]; tf , ti)

def
=

∫
D

(t∈[ti,tf ])

[q(t)] exp(iS′
H([q(t),p(t)]; tf , ti)/h̄). (24b)

Now we note from Eq. (1a) that the unconstrained variation of the classical action SH([q(t),p(t)]; tf , ti)
with respect to the momentum path p(t) yields the first classical Hamiltonian equation, and from Eq. (1b)
that the unconstrained variation of the classical action S′

H([q(t),p(t)]; tf , ti) with respect to the configuration

path q(t) yields the second classical Hamiltonian equation. We therefore see that our above unconstrained
functional integrals in Eq. (24a) for AH([q(t)]; tf , ti) and in Eq. (24b) for A′

H([p(t)]; tf , ti) are the precise em-

bodiments of the principle that the quantization of classical dynamics is achieved by substituting superposition

of the exponential of (i/h̄) times the classical action for variation of that action. (Additionally, of course,
that classical action must not be one that implicitly contravenes the uncertainty principle!) This validates the
interpretation of AH([q(t)]; tf , ti) as the quantum amplitude that the dynamical system traverses the specified
configuration path q(t) for t ∈ [ti, tf ] and of A′

H([p(t)]; tf , ti) as the quantum amplitude that the dynamical
system traverses the specified momentum path p(t) for t ∈ [ti, tf ]. The dominant stationary phase p(t) mo-

mentum path that contributes to AH([q(t)]; tf , ti) is readily seen to be the one that comes from algebraically

solving the first classical Hamiltonian equation, i.e.,

q̇(t) = ∇p(t)H(q(t),p(t), t), (25a)

whereas the dominant stationary phase q(t) configuration path that contributes to A′
H([p(t)]; tf , ti) is seen to

be the one that comes from algebraically solving the second classical Hamiltonian equation, i.e.,

ṗ(t) = −∇q(t)H(q(t),p(t), t). (25b)

In order to obtain the configuration path integral KH(qf , tf ;qi, ti) described below Eq. (2), we clearly must
superpose the amplitudes for all configuration paths q(t) that satisfy the two endpoint constraints q(ti) = qi

and q(tf ) = qf , i.e., we must superpose AH([q(t)]; tf , ti) over all the q(t) which satisfy these two endpoint
constraints. A mathematically efficacious method for superposing over only those q(t) which conform to these
two endpoint constraints has already been developed with the aid of the configuration path functional of
Eq. (4a), and application of this method to the Eq. (24a) representation of AH([q(t)]; tf , ti) will clearly pro-
duce Eq. (7). Obtaining K ′

H(pf , tf ;pi, ti) from the Eq. (24b) representation of A′
H([p(t)]; tf , ti) with the aid

of the momentum path functional of Eq. (11) proceeds along closely parallel lines, and analogously produces
Eq. (12).

We note that in the mistaken Feynman-Dirac Lagrangian-action version of the configuration path integral
KH(qf , tf ;qi, ti), the amplitude for the path q(t), namely AH([q(t)]; tf , ti), is not given by Eq. (24a) but
instead by the exponential of (i/h̄) times the Lagrangian action for that configuration path q(t). This phase

factor is only the integrand corresponding to one particular momentum path of the Eq. (24a) functional in-

tegral for AH([q(t)]; tf , ti) that runs over all momentum paths. The particular momentum path p(t) which
the Feynman-Dirac Lagrangian-action hypothesis inadvertently singles out is the one which the Lagrangian
implicitly determines (in contravention of the uncertainty principle) from the configuration path q(t), namely,

p(t) = ∇q̇(t)L(q̇(t),q(t), t).

From classical mechanics one readily verifies that this particular momentum path is in fact the dominant

contributor to the actually required sum over momentum paths in Eq. (24a) because it is precisely the one which
algebraically satisfies the Eq. (25a) first classical Hamiltonian equation. That explains why the Lagrangian path
integral “works” under certain favorable conditions, and it also explains why, even under the most favorable

of those conditions, namely Hamiltonians which are quadratic forms in p(t) whose Gaussian-phase functional
integrals over the p(t) automatically produce the dominant phase factor, the Lagrangian path integral still

requires a mysterious additional factor—this “mystery factor” arises because integration over even Gaussian

phases yields not only the dominant phase factor, but a non-phase factor as well. In the subsequent integration
over endpoint-constrained configuration paths, this factor is not, as Feynman’s mistaken Lagrangian approach
drove him to erroneously conclude, a totally ad hoc measure “normalizing factor” which needs to be puzzled
out and inserted by hand, but rather part of the correct integrand. The Lagrangian path integral is thus
seen to be a not-quite-adequate relative of systematic semiclassical asymptotic approximations to the correct
Hamiltonian phase-space path integral.
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The slightly stronger self-consistent canonical commutation rule Dirac missed

The unique Hamiltonian quantization given by Eqs. (21) in conjunction with Eq. (16b) or Eq. (18b) could
very well have been discovered by Dirac when he was formulating his canonical commutation rule in 1925 [7],
or at any time thereafter that he should have chosen to revisit that work. We now briefly explore just what
it was that Dirac failed to light on during an entire lifetime (see reference [10] for greater detail). We note
that the canonical commutation rules which Dirac ended up postulating in 1925 (after some struggling) can
be gathered into the single formula,

[c1I + k1 · q̂ + l1 · p̂, c2I + k2 · q̂ + l2 · p̂] = ih̄(k1 · l2 − l1 · k2)I, (26a)

where c1 and c2 are constant scalars, and k1, l1, k2, l2 are constant vectors. The above equation can be
reexpressed in the much more suggestive form,

[
︷ ︸︸ ︷
c1 + k1 · q + l1 · p,

︷ ︸︸ ︷
c2 + k2 · q + l2 · p] = ih̄

︷ ︸︸ ︷
{c1 + k1 · q + l1 · p, c2 + k2 · q + l2 · p} , (26b)

where the overbrace denotes the quantization of the classical dynamical variable beneath it, and the vertical
curly brackets of course denote the classical Poisson bracket. (We use overbraces to denote quantization only

where the orthodox “hat” accent ,̂ which is the standard way to denote quantization, fails to be sufficiently
wide.) Eq. (26b) is compellingly elegant in light of Dirac’s amazing groundbreaking demonstration that the
quantum mechanical analog of the classical Poisson bracket must be (−i/h̄) times the commutator bracket [7].
Indeed, this form of Dirac’s postulate rather strongly suggests the possibility that it might perhaps be strength-

ened to simply read,

[
︷ ︸︸ ︷
F1(q,p),

︷ ︸︸ ︷
F2(q,p)] = ih̄

︷ ︸︸ ︷
{F1(q,p), F2(q,p)} . (27)

We note that the Eq. (26b) form of Dirac’s postulate is the restriction of Eq. (27) to Fi(q,p), i = 1, 2, that
are both inhomogeneous linear functions of phase space. Another, equivalent way to make this restriction
is to require that all the second-order partial derivatives of the Fi(q,p), i = 1, 2, must vanish. Dirac was
very tempted by Eq. (27), but upon playing with it he found to his consternation that it overdetermined the
quantization of classical dynamical variables, and thus would be self-inconsistent as a postulate [7]. Dismayed,
he retreated to the restriction on the Fi(q,p) that results in Eq. (26b), which, however, cannot determine
the order of noncommuting factors at all ! Far better that abject underdetermination of the quantization of
classical dynamical variables than the outright self-inconsistency of their overdetermination was undoubtedly
the thought that ran through Dirac’s mind.

But could there be a “middle way” that skirts overdetermination without having to settle for not determin-
ing the order of noncommuting factors at all? Very unfortunately, Dirac apparently never revisited this issue
after 1925. If one plays with polynomial forms of the Fi(q,p), one realizes that the overdetermination does not

occur if no monomials that are dependent on both q and p are present. This tells us that Dirac’s restriction on
the Fi(q,p), which requires that all their second-order partial derivatives must vanish, is excessive: to prevent
the self-inconsistent overdetermination of quantization it is quite enough to require that only the mixed q,p
second-order partial derivatives of the Fi(q,p) must vanish, i.e., that,

∇p∇qFi(q,p) = 0, i = 1, 2, (28a)

which has the general solution, Fi(q,p) = fi(q)+ gi(p), i = 1, 2. Therefore, if we merely replace the Eq. (26b)
form of Dirac’s postulate by,

[
︷ ︸︸ ︷
f1(q) + g1(p),

︷ ︸︸ ︷
f2(q) + g2(p)] = ih̄

︷ ︸︸ ︷
{f1(q) + g1(p), f2(q) + g2(p)} , (28b)

we will still have a canonical commutation rule that does not provoke the self-inconsistent overdetermination

of classical dynamical variables. But does it make any dent in the gross nondetermination of the ordering of
noncommuting factors that characterizes Dirac’s Eq. (26b)? The question of whether a proposed approach
fully determines the quantization of all classical dynamical variables can be boiled down to the issue of whether
it fully determines the quantization of the class of exponentials exp(i(k · q + l · p)), because if it does, the
linearity of quantization, combined with Fourier expansion, then determines the quantization of all dynamical
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variables. It is apparent that the only truly new consequence of Eq. (28b) versus Dirac’s Eq. (26b) is that,

[f(q̂), g(p̂)] = ih̄
︷ ︸︸ ︷
∇qf(q) · ∇pg(p) . (28c)

Putting now f(q) = eik·q and g(p) = eil·p, we see that Eq. (28c) yields,

︷ ︸︸ ︷
ei(k·q+l·p) = (i/(h̄k · l))[eik·̂q, eil·p̂], (29)

which clearly answers the question concerning full determination of quantization in the affirmative! It now
remains to be worked out how the unique, self-consistent quantization that results from slightly strengthening

Dirac’s excessively restricted canonical commutation rule of Eq. (26b) to the marginally less restricted canon-
ical quantization rule of Eq. (28b) in fact compares with the unique quantization rule of Eq. (16b), which is a
key consequence of the Hamiltonian phase-space path integral. To carry out the comparison, it is very helpful
to use the identity,

[eik·̂q, eil·p̂] =
∫ 1

0
dλ

(
d(eiλk·̂qeil·p̂ei(1−λ)k·̂q)/dλ

)
, (30a)

which is simply a consequence of the fundamental theorem of the calculus. Now if we carry out the differenti-
ation under the integral sign, there results,

[eik·̂q, eil·p̂] =

∫ 1

0
dλ eiλk·̂q[ik · q̂, eil·p̂]ei(1−λ)k·̂q = −ih̄k · l

∫ 1

0
dλ eiλk·̂qeil·p̂ei(1−λ)k·̂q,

(30b)

Combining this identity with the quantization result of Eq. (29) yields,

︷ ︸︸ ︷
ei(k·q+l·p) =

∫ 1

0
dλ eiλk·̂qeil·p̂ei(1−λ)k·̂q. (31)

We note here that the form of Eq. (31) is that of a rule for the ordering of noncommuting factors—and that
rule has a characteristically Born-Jordan [8] appearance, i.e., all of the orderings of the class that it embraces
appear with equal weight. H. Weyl, a mathematician who liked to dabble in the new quantum mechanics,
thought it highly plausible that Nature would select the most symmetric of that class of orderings [11], i.e., the
one for which λ = 1

2 , but Eq. (31) has it that Nature does not select amongst orderings at all, that it instead

achieves an alternate kind of symmetry through utter nondiscrimination amongst orderings (an echo, perhaps,
of the need to sum over all paths). Now in order to compare the quantization given by Eq. (31) to the result
of the integration which is called for by Eq. (16b), we must first obtain the configuration representation of the
former, which is facilitated by the well-known result that,

〈qf |e
il·p̂|qi〉 = δ(n)(qf + h̄l − qi).

Using this, we obtain from Eq. (31) that,

〈qf |
︷ ︸︸ ︷
ei(k·q+l·p) |qi〉 =

∫ 1

0
dλ eik·(qi+λ(qf−qi)) δ(n)(qf + h̄l − qi), (32)

which result, it is readily verified, is also produced by the path integral quantization formula of Eq. (16b)
when ei(k·q+l·p) is substituted for the classical Hamiltonian.

We do not really need to go further than this to have demonstrated that the quantization produced by
the path integral is the same as that produced by the slightly strengthened canonical commutation rule of
Eq. (28b). The reader may find it interesting, however, to follow out the full consequences of combining the
linearity of quantization with the Fourier expansion of an arbitrary classical dynamical variable F (q,p), which
together formally imply that,
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〈qf |
︷ ︸︸ ︷
F (q,p) |qi〉 =

(2π)−2n
∫
dnq′dnp′ F (q′,p′)

∫
dnkdnl e−i(k·q′+l·p′)〈qf |

︷ ︸︸ ︷
ei(k·q+l·p) |qi〉.

(33a)

The next step is, of course, to substitute the unambiguous result for the quantization of the exponential
ei(k·q+l·p), which was obtained in Eq. (32) from the slightly strengthened canonical commutation rule of
Eq. (28b), for the last factor of the integrand on the right hand side of Eq. (33a). We leave it to the reader to
then plow through all the integrations that can be carried out in closed form to obtain,

〈qf |
︷ ︸︸ ︷
F (q,p) |qi〉 =

∫ 1

0
dλ (2πh̄)−n

∫
dnp F (qi + λ(qf − qi),p)ei(qf−qi)·p/h̄, (33b)

which is precisely the same quantization result as is obtained from the Hamiltonian phase-space path integral,
namely that given by Eq. (16b), when F (q,p) is subtituted for the classical Hamiltonian. Dirac’s 1925
postulation of Eqs. (26) as the canonical commutation rule is thus seen to be a purely historical aberration.
One can only suppose that if Dirac had kept working over the years on trying to obtain a more satisfactory
canonical commutation rule than the abjectly deficient Eqs. (26), he would surely have eventually lit upon their
slight strengthening to Eq. (28b), which removes their vexing ordering ambiguity without imperiling their self-
consistency. The Hamiltonian phase-space path integral’s utterly straightforward unique quantization ought

to have been the needed wake-up call to the physics community on this issue, but by then the result of Dirac’s
inadequate work had become so ingrained that it was mentioned by Cohen [5] in his last paragraph as another
reason to call into question the correct path integral results of Kerner and Sutcliffe [4]. Cohen’s mention of
the “usual” ambiguity of quantization may have been one of Kerner’s motivations to revisit Dirac’s canonical
commutation rule. He soon came up with its slight strengthening to Eq. (28b) and showed this to produce the
very same Born-Jordan [8] quantization as does the Hamiltonian phase-space path integral [9]. Stunningly,
however, Kerner never published those results! Neither did he ever reply in print nor at any scholarly forum to
the meritless lim|tf−ti|→0 |qf − qi| = 0 objection that Cohen raised regarding his groundbreaking paper with
Sutcliffe on the consequences of the Hamiltonian phase-space path integral. Pressed on why, he said that he
“did not want to pick a fight with Leon Cohen” [9]. Kerner’s apparently shy, retiring nature came within a
hair of denying physics the gifts that his mind had produced. To read page after page of solemn classification
by Tirapegui et al. [6] of wrong “discretization” results that flow from Cohen’s lapse is to utterly despair of
Kerner’s choice of silence.
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