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Abstract  

    We offer evidence that the Trans Plankian hypothesis 

about Dark energy is incompatible with necessary and 

sufficient conditions for solving the cosmic ray problem 

along the lines presented by Magueijo et al. We can obtain 

conditions for a dispersion relationship congruent with the 

Trans Planckian hypothesis only if we cease trying to match 

cosmic ray data which is important in investigating special 

relativity . This leads us to conclude that the Trans 

Planckian hypothesis is inconsistent with respect to 

current astrophysical data and needs to be seriously 

revised .  
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I.       Introduction 

    We examine if an alteration of special relativity 

presented by Magueijo and Smolin 3,assuming joining the 

speed of light and Planck energy as a new invariant permits 

a dispersion relationship which will set dark energy 2 from 

the ‘tail mode’ of ultra high momentum contributions (of 

the universe) markedly lower than the total energy of the 

universe. We find that the answer is yes after modifying an 

energy equation of E= MC2 to obtain a highly non linear 

dispersion relationship. However, this  dispersion 

relationship does NOT solve the cosmic ray problem for low 

momentum values 1 . Our derived dispersion relationship 

( )kMω  matches the Epstein function used by Mercini et al 2 

only if we cease trying to fit cosmic ray data 5  which  

lead to Magueijo 3  proposing their alteration of special 

relativity in the first place. We follow Mersini et al. 2  

in their derivation of a Trans Planckian dark energy  over 

total energy ratio . Our results argue that we cannot 

reconcile the requirements of a solution of the ‘cosmic 

ray’ problem of special relativity in a manner congruent 

with Mercinis 2 ratios of dark matter energy to total energy  

being calculated via a Bogoliubov coefficient4 . The 
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dispersion relationship which we obtained which actually 

permitted us to calculate the energy of the tail modes of 

Trans-Plankian dark energy 2 vs. total energy ratio 2 to 

have a value less than ten to the minus 30 power mimics the 

Epstein function 2 in a manner which contravenes necessary 

and sufficient conditions 1 for solving the cosmic ray 

problem of special relativity.  Our calculations imply  

that a Trans-Planckian dark energy depends upon initial 

conditions which are too specialized and which do not match 

up with known astrophysical data obtained as of the 1990s. 

This is in tandem with  Lemoine, Martin, and Uzan 5 who 

dispute the Trans Planckian hypothesis on different 

grounds. 

 

II.  Description of procedure used to obtain energy density 

ratio . 

    What Mersini 2 did was to use ultra low dispersion 

relationship values for ultra high momentum values   to 

obtain ‘ultra low’ energy values which were and remain 

allegedly ‘frozen’ today 2 . They found, using the Epstein 

function for frequency dispersion relationships a range of 

frequencies 0H≤ , where 0H  is the present Hubble rate of 

expansion. From there, they computed Trans-Planckian dark 

energy modes which are about 122 to 123 orders of magnitude 
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smaller than the total energy of the universe assumed for 

their expansion model. Note in this discussion that 

( )kKω refers to the dispersion relationship Mercini 2 

derived, while ( )kMω will be a dispersion relationship 

derived from Magueijo and Smolin’s 3 modification of special 

relativity .  Mersini 2 changed a standard linear dispersion 

relationship to one which has a modified Epstein function 

with a peak value for frequency given when k = kC and where 

we have if we can set Ckk <<  

 ( ) 22 kkK ≈ω                                           (1) 

which means for low values of momentum we have a linear 

relationship for dispersion vs. ‘momentum’ in low momentum 

situations. In addition we also have that 

 ( ) ( ) 0exp2 ⎯⎯ →⎯−≈>> ∞→kCCK kkkkω                         (2) 

We also have a specific ‘tail mode’ energy region picked 

by: 

 ( ) 2
0

2 HkHK ≡ω                                         (3) 

to obtain Hk  .  We then have an energy calculation for the 

‘tail ‘ modes: 

( ) 2
22

1
kK

K
KKTAIL dkkdk

H

βωω
π

ρ ⋅⋅⋅
⋅

= ∫ ∫
∞

                      (4) 

which is about 122 orders of magnitude smaller than 
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( ) 2

0
22

1
kKKKTOTAL dkkdk βωω

π
ρ ⋅⋅⋅

⋅
= ∫ ∫

∞

                      (5) 

allowing us to write  

( ) 122
2

2
02

4

2

10−≈≈⋅≈
P

HK
P

H

KTOTAL

KTAIL

M
Hk

M
k ω

ρ
ρ

                        (6) 

Here, the tail modes (of energy) are chosen as ‘frozen’ 

during any expansion of the universe. This is for energy 

modes for frequency regions  2
0

2 )( HkK ≤ω   so that we have 

resulting ‘tail modes’ of energy obeying equation 5 above. 

 

III. Forming a dispersion relationship from Magueijo and 

Smolins Energy values and then subsequently modifying it. 

     We shall next determine what sort of dispersion 

relationship we can obtain by the revision of special 

relativity Magueijo 3  proposed.  Magueijo 3 states that the 

energy of an independent particle will not exceed PE  in 

value, which is the Planck energy. This Planck energy is 

the inverse of the Planck length defined by 443 10−≈⋅= cGlP h  

cm , where G is the gravitational constant and c is the 

speed of light. Specifically, Magueijo and Smolin 3 state 

that PPARTICLE EE =  if and only if the rest mass of a particle 

obtains an infinite value. If we set 1== ch , we 

have [ ] [ ]PP EMM ==   as an upper bound. This upper bound with 
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respect to particle energy is consistent with respect to 

four principles elucidated by Magueijo and Smolin 3, which 

are as follows: 

(i): Assume relativity of inertial frames: When 

gravitational effects can be neglected, all observers in 

free, inertial motions are equivalent. This means that 

there is no preferred state of motion. 

(ii): Assume an equivalence principle: Under the effect of 

gravity, freely falling observers are all equivalent to 

each other and are equivalent to inertial observers. 

(iii): A new principle is introduced: The observer 

independence of Planck energy. I.e. that there exists an 

invariant energy scale which we shall take to be the Planck 

energy. 

(iv): There exists a correspondence principle: At energy 

scales much smaller than  PE , conventional special and 

general relativity are true: that is that they hold to 

first order in the ratio of energy scales to PE . We ask now 

how can these principles be fashioned into predictions as 

to energy values, which we shall use to obtain dispersion 

relationships. Magueijo and Smolin 3 obtained a modified 

relationship between energy and mass : 
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`1
2

0

2
0

0

PE
cm

cm
E

⋅
+

⋅
=                                        (7) 

which if   0mm ⋅= γ  and c set = 1 becomes: 

`1
PE

m
mE

+
=                                           (8) 

We found it useful  to work with , instead: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+

=
P

P

E
m

E
m

mE 1

1
11

β

                               (9) 

with a power of  11 put in the denominator due to string 

theory dimensions which gives us preferred numerical values 

we are seeking for the ratio of dark energy over total 

cosmological energy .If PPARTICLE EE <  and km ⋅= α , then 

1<≡
PP k
k

E
m

   permits a re write of equation 9 above as (if 

1000≡β  ): 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
=

P

P

M k
k

k
k

kk 1

1
11

β

αω                             (10) 

where we used   1== ch  and [ ] [ ] ( )[ ]kE Kωω =⋅= h   which if  Pkk <<   

will lead to the same result as spoken of with the modified 

Epstein function 2, assuming that  12 ≅α , so: 

( ) 22 kkM ≈ω                                           (11) 
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Furthermore, if +−→ εPkk , equation 10 will give us 

( ) ++ ≅− εεω PM k2                                       (12)                   

which if ( )kk Mωω ≡)(1  gives the values seen in figure 1 below 

Note how the cut off value of momentum Pk  is due to   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Pk
k1  as a quantity  in dispersion behavior leads to the 

results seen in figure one .  

                 { place figure 1  about here } 

We can contrast this dispersion behavior with : 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
=

P

P

k
k

k
k

kk 211

1

1 exp

1

β

β

αω                         (13) 

We set  11 ≡β  and 1002 ≡β , leading to figure 2 as given 

below. Note,  if  11 ≡β 000 and 02 ≡β  we recover equation 9 

                 { place figure 2 about here } 

So we used a tail mode  energy  expressions as given by  

( ) 2
22

1
kM

K

K
MMTAIL dkkdk

P

H

βωω
π

ρ ⋅⋅⋅
⋅

= ∫ ∫                      (14) 

and 

( ) 2

0
22

1
kM

K

MMTOTAL dkkdk
P

βωω
π

ρ ⋅⋅
⋅

= ∫ ∫                      (15) 

so  we obtain 2  a ‘frozen’ tail mode energy vs. total 

energy ratio of  
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( )

( )

30

2

0

2

10−<

⋅⋅

⋅⋅

=

∫ ∫

∫ ∫

kM

K

M

kM

K

K
M

MTOTAL

MTAIL

dkkdk

dkkdk

P

P

H

βωω

βωω

ρ
ρ

  and 12210−≠      (16) 

when we are using 
2
P

H
k

k ≤  .Equation 16 has a lower bound 

12210−≈  as stated by Mersini 2 in equation 6 if we use 

( ) 0HkHM ≈ω . Detuning the sensitivity of this ratio to exact 

( ) PH kMk ⋅≤  for any M < 1 is extremely important to the 

viability of our physical theory about how dark matter 

plays a role in inflationary cosmology.  

 

IV. The Bogoliubov function used in this paper.  

     We followed Mercinis  4 assumption of negligible 

deviations from a strictly thermal universe, and we proved 

it in our bogoliubov coefficient calculation. This lead to 

us picking the ‘thermality coefficient’ 4 B to be quite 

small . In addition, the ratio of confocal times as given 

by 
Cη
η

 had little impact upon equation 16. Also, 10 ≤=
Pk
kx . 

Therefore,  

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅⋅−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−⋅

⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅−⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅⋅

≡

−

CC

X

C
k

k
B

k
B

eB
k

B
O

η
ηπ

η
ηπ

π
η
ηπ

β
1

2
sinh12sinh

41
2

cos1
2

sinh

22

22

2
            (17) 
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We derive this expression  in the 1st appendix entry. In 

addition, we should note that Bastero-Gil 6 has a website 

which delineates the size of tail energy density from Dark 

matter as 412210 PX M−≈ρ  which is consistent with our findings 

that our Bogoliubov function as given by equation 17 may be  

often approximated by a constant with small effects on 

calculating the ratio of energy for the tail vs. total 

energy 2 given in equation 6 above. 

  

V. Analytical and numerical evaluation of equation (16) 

    We evaluate ( ) )(kdk MM ωω ⋅  in light of equation 12 in 

our equation 16 integrand. We then obtain: 

( ) dk

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
kk

kdk

P

P

P

P

P

P

P

P
MM ⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

=⋅ 23

2

2

22

2

22

1

1
11

1

1

1

1
)(

βββ

ωω (18) 

and  set up a numerical parameterization of  

( ) 2
kM

K

A
M dkkdk

P

βωω ⋅⋅∫ ∫                               (19) 

with  kβ  chosen by considerations presented in Mercini’s 

4  2nd paper. 

 

VI. Why we still were unable to match cosmic ray data and 

found our dispersion relationship not physically tenable. 
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      1000≡β  in equation 10 was picked so  kH could have a 

wide range of values. This permitted 
MTOTAL

MTAIL

ρ
ρ

 to be bounded 

below by a value 3010−≤ for  
2
P

H
kk ≤   in line with de tuning 

the sensitivity of the ratio results if we use  1000≡β  in 

the equation 10 dispersion relationship. We obtain 

Mercini’s main result 2 at the expense of not matching 

cosmic ray data 1. We should note that  equation 13 lead to 

a far broader dispersion curve width as given in figure 2, 

which also necessitated a far larger kH value needed to have 

the frequency ( ) 0HkHM ≈ω  as used by Mercini 2. This in turn 

leads to a much bigger value for a lower bound for equation 

16 than what would obtain numerically if we used equation 

10 for dispersion . Detuning the sensitivity of this ratio 

to be ( ) PH kMk ⋅≤  for any M < 1 is extremely important to the 

viability of our physical theory about how dark matter 

plays a role in inflationary cosmology.  We find that this 

result is still not sufficient to match the cosmic ray 

problem 1 since equation 10 gives us : 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎯⎯⎯ →⎯ <<

P

KKM

k
k

kk
P

31 β
ω                                    (20) 

The 3
3 1011 +⋅≅β whereas we would prefer to find 10

3 1011 −⋅≅β .  
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VII. Can 3β  101011 −⋅≅  with a modified dispersion 

relationship?  

     The answer is no even after a modification of our 

dispersion relationship : 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
=

L

PL

P

k
k

k
k

kk 1

1

112

β

αω                         (21) 

With L  = 2, then 3 put in. However, even with a value of 

L=2 put in equation 21 we obtained, for 25.2≡β  and 
2
P

H
k

k ≡    

( )

( )

3

2
2

0
2

2
22

2

2 10425.6 −⋅≤

⋅⋅

⋅⋅

=

∫ ∫

∫ ∫

k

K

k

K

K

TOTAL

TAIL

dkkdk

dkkdk

P

P

H

βωω

βωω

ρ
ρ

               (22) 

which has a very different lower bound than the behavior 

seen in equation 16. If we pick 1010−≡β  as  suggested by  T. 

Jacobson 1 to try to ‘solve’ the cosmic ray problem, we then 

find that  equation 22 approaches unity which thereby 

throws into question the  Trans-Planckian dark energy 

hypothesis. Indeed, we believe that the entire trans-

Plankian model of Dark energy makes initial conditions, 

which contravene known astrophysical cosmic ray data 1 that 
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has been collected in the last decade. Graphically, having 

even 25.2≡β  for equation 21 in figure 3 

              {  place figure 3 about here } 

 creates a dispersion versus momentum graph, which is much 

greater in width than figure 1 which has  a much larger 

310≡β   value.  Appendix entry 2 shows us that we still 

could not match the beta coefficient values 1 needed to 

solve the cosmic ray problem of special relativity. 

 

VIII. Conclusion 

    We found that the dispersion relationship given in 

equation 10 and its limiting behavior shown in equation 20  

gives the lower bound behavior as noted in equation 16 

above for a wide range of possible PH kMk ⋅≤  values if  M < 

1 above. This was, however, done for a physically 

unacceptably large 310≡β  value 1 while we wanted, instead 

1010−≡β  in order to solve the cosmic ray problem 1 . Our 

additional modifications of dispersion relationships as 

noted in appendix 2 still lead to unacceptably large dark 

energy versus total energy values . We then conclude that 

the Trans-Planckian dark energy hypothesis contravenes 

known solutions to the cosmic ray problem of special 

relativity and is thereby in need of substantial revision.    
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Appendix entry 1 : Deriving the Bogoliubov coefficient 

for section III 

 Part I, initial assumptions. 

    We  derive the Bogoliubov coefficient, which is used in 

equation 16 of the main text. We refer to Mersini’s article 

4 which has a Bogoliubov coefficient which takes into 

account a deviation function ( )Bk ,0Γ , which is a measure of 

deviation from thermality 4 in the spectrum of co moving 

frequency values ( )knΩ  over different momentum values. Note 

that η  is part of a scale factor ( ) ηηη Ca =  and ( )ηank /=  so 

that ‘momentum’ η∝k . Also if we are working with the  

conformal case of 6/1=ε  appearing 4  in : 

( ) ( ) ( ) ( ) ( ) ( ) ( )kFaka
a
aka LINNONLINNONn

2222
''

222 61 ⋅=⋅=⋅⋅−−⋅=Ω −− ηωηεωη  (1) 

then for small momentum : 

( ) 2
00

2 ~~ kkLINNON ≈−ω                                         (2) 

if  ‘momentum’ Pkk <<0
~

, where we use the same sort of linear 

approximation used by Mercini 2, as specified for equation 

17 of their article 2 if the Epstein function specified in 

equation 1 of the main text has a linear relationship . We  

write out a full treatment of the dispersion function  ( )kF  

4 since it permits a clean derivation of the Bogoliubov 
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coefficient which has the deviation function ( )Bk ,0Γ . We 

begin with 4 : 

( ) ( )
( ) ( )−+

−

Ω⋅⋅−Ω⋅⋅

Γ+Ω⋅⋅
=≡ ˆ2sinhˆ2sinh

,ˆ2sinh
22

0
2

22

ππ
π

ββ
Bk

nk                  (3) 

where we get an appropriate value for the deviation 

function ( )Bk ,0Γ  4 based upon having the square of the 

dispersion function ( )kF  obey equations 1 and 2 above for 

Pkk <<0
~

. Note, Pk  is a maximum momentum value along the 

lines Magueijo 3 suggested for an PE  Plank energy value. 

 Part II . Deriving appropriate ( )Bk ,0Γ  deviation function 

values  

We  look at how Bastero- Gil 4 obtained an appropriate 

( )Bk ,0Γ  value. Basterero-Gil wrote: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅⋅=Γ − 14

2
cosh, 2

0
oXeBBk π

                         (4)              

with  

Pk
k

x 0
0

~
=  << 1                                       (5)  

and  

( ) ( ) ( ) 2
101

2
00

2
1

22 ~,)~( kxxVkxxVkkkF +−⋅+⋅−=                  (6) 

where Pkk <1
~

 and where 1
~k  is in the  Trans-Planckian regime 

but is much greater than 0k . We are determining what B 

should be in equation 16 of the main text provided that 
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( ) kkF ≈  as 0

~
x

k
k

x
P

→=  which will lead to specific restraints 

we place upon ( )00 , xxV  as well as  ( )01 xxV −  above. Following 

Bastero-Gil 4, we write : 

( ) ( ) ( )OXXX

X

X ee
eE

e
CxxV

−+⋅+
⋅

+
+

=
111

, 00                         (7) 

and: 

( )
( )201
1 OXX

X

e

eBxxV
−+

⋅−=−                                (8) 

When 0

~
x

k
k

x
P

→=  << 1 we get 2,4   

( ) 2
0

2
0

2
10

2
0

2 )
442

(
42

1)( kBEckEckkkF LINNON ≅−+⋅+⎟
⎠
⎞

⎜
⎝
⎛ −−⋅−≅≡ −ω       (9) 

which then implies 10 <<≈< +εB  . Then we obtain : 

( ) +++ ≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠
⎞

⎜
⎝
⎛ +≅≅Γ εεπε iBk

2
cosh, 2

0 <<1                     (10) 

and  

( )
( ) ( )−+

+−

Ω⋅⋅−Ω⋅⋅

+Ω⋅⋅
≅≡ ˆ2sinhˆ2sinh

ˆ2sinh
22

2
22

ππ
επ

ββ nk                  (11) 

Part 3 .   Finding appropriate +Ω̂   and −Ω⋅ ˆ  values  

     We define, following Bastero-Gil 4  

( )INOUT Ω±Ω⋅=Ω±
ˆˆ

2
1ˆ                                    (12) 

where we have that 
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( )∞≡Ω⎯⎯ →⎯=Ω ∞→ ηη
n

OUT                                 (13) 

and 

( )−∞≡Ω⎯⎯ →⎯=Ω −∞→ ηη
n

IN                                (14) 

whereas we have that 

n
k

k

~
~ˆ Ω
=Ω                                             (15) 

 where k~denotes either out or in. Also : 

1≅Ω≅Ω INOUT                                         (16) 

which  lead to: 

CC kk
B

n
B

η
η

η
η

⋅≅⋅⋅−=⋅−≅Ω+
11)

2
1(1)

2
1(ˆ                       (17)                 

as well as 

01
2

ˆ ≅⋅≅Ω− n
B

                                        (18) 

 

 

 

 

 

 

 

Appendix entry 2 : How equation 16 of text changes for 

varying β  values and different dispersion relationships. 

Starting with equation 21 of the main text. 
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If β  = 1.05 and L = ½, 
PP k
k

k
k

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, then 371.≅

MTOTAL

MTAIL

ρ
ρ

  

If β  = 1.05 and L=1, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

PP k
k

k
k

, then 263.≅
MTOTAL

MTAIL

ρ
ρ

 

If β  = 1.05 and L= 2, 
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

PP k
k

k
k

, then 115.≅
MTOTAL

MTAIL

ρ
ρ

 

If β  = 10.5 and L = ½, 
PP k
k

k
k

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, then 510935.1 −⋅≅

MTOTAL

MTAIL

ρ
ρ

 

If β  = 10.5 and L=1, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

PP k
k

k
k

, then 610347.7 −⋅≅
MTOTAL

MTAIL

ρ
ρ

 

If β  = 10.5 and L=2, 
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

PP k
k

k
k

, then 8107448.6 −⋅≅
MTOTAL

MTAIL

ρ
ρ

 

We  need 1010−≅β  with 3010−≤
MTOTAL

MTAIL

ρ
ρ

  to get our results via 

this trans-Plankian model to be consistent with physically 

verifiable solutions to the cosmic ray problem.  

 

 

 

                    

 

Figures 
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1, Graph of 1st dispersion relationship ( )kMω  against 

momentum. This gives the desired  behavior in line with the 

trans planckian dark energy hypothesis. However, 310≡β ! 

2. Graph of 2nd dispersion relationship ( )k1ω  against 

momentum which has too broad a width  to be useful  

3.  Graph of  3rd  dispersion relationship ( )k2ω  against 

momentum which is still too broad in width , and has 25.2≡β   

 

 

              

 

 

 

 

 

 

 

 

 

 

 

 



 20

 
 
 
 
 
 
 
 
 
 
 
 

0.0 2.0x106 4.0x106 6.0x106 8.0x106 1.0x107 1.2x107 1.4x107

0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

Fr
eq

ue
nc

y

Momentum

 
 
 
 
 
          Figure 1  
 
          Beckwith et al 
 
 
 
 
 
 
 
 
  

 



 21

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0 2.0x106 4.0x106 6.0x106 8.0x106 1.0x107 1.2x107 1.4x107
0

1x105

2x105

3x105

4x105

5x105

Fr
eq

ue
nc

y

Momentum

 
 
 
          Figure 2  
 
          Beckwith et. al 
 
 
 
  



 22

 
 
                         
 
 
 
 
 
 
 
 
 
 
 

0.0 2.0x107 4.0x107 6.0x107 8.0x107 1.0x108 1.2x108 1.4x108

0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

1.4x107

1.6x107

1.8x107

2.0x107

'F
re

qu
en

cy
'

Momentum value

 
 
 
 
 
 
    Figure 3 
 
 
 
    Beckwith et al. 
 
 
 
 
 
        
              



 23

REFERENCES  

 

1)    ‘Threshold effects and Planck scale Lorentz violations : combined constraints from 

high energy astrophysics  ‘ by  Jacobson,  Liberati, and Mattingly   in arXiv: astro-

ph/0209264  v2 15 Aug  2003 

 

2) ‘Relic Dark Energy from the trans-Planckian regime’ by 

Mersini, Bastero-Gil, and Kanti in ‘Physical Review D, 

Volume  64, page # 043508 (received 23 January 

2001;published 24 July 2001) 

 

3) ‘Lorenz Invariance with an Invariant Energy Scale’ by 

Magueijo and Smolin in ‘Physical Review Letters, Volume 88, 

Number 19, page # 190403 ( received 18 December 

2001;published 26 April 2002) 

 

4) ‘SN1a data and the CMP of Modified Curvature at Short and Large Distances’ by 

Bastero-Gil and Mersini in arXiv: astro-ph/0107256 v2 13 Sep 2001 

 

5) ‘Trans- Planckian Dark Energy ?’ by Lemoine, Martin, and Uzan in arXiv :astro-

ph/0209264 v2 15 Aug 2003 

 

6)  http://www.shef.ac.uk/physics/idm2002/talks/pdfs/bastero-gil.pdf 


